rs_9fsfssdgdgdgdgdgdgdgsdgdgdgdconverted.pdf

JefrilCuregSingunGui 40 views 47 slides Aug 30, 2025
Slide 1
Slide 1 of 47
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47

About This Presentation

dg


Slide Content

ES 7-Principles of
REMOTE SENSING
AND GEOGRAPHIC
INFORMATION
SYSTEM
Engr. Erwin C. Torio, Ph.D.

Remote Sensing Course
Module-9
“Image Processing – Conversion”

Learning Objective of Module 9
“Image Processing –Conversion”
Objective

To learn about various image conversion and
manipulation techniques for better analysis and
interpretation by understanding the physics of
colors and features.

Outline of Module 9
“Image Processing –Conversion”
Contents:

1.Types of Image Conversion
2.Image Enhancement
3.Color Display
4.Spatial filtering
5.Normalized Difference vegetation Index (NDVI)
6.Principal Component Analysis
7.Textural Analysis

1. Types of image conversion

Types of image conversion
Image
Conversion
Image
enhancement Color composition
HSI conversion
Grey scale conversion
Histogram conversion
Spectral feature
Principal Component etc
Geometric feature
Edge, Lineament etc.
Textural feature
Spatial Frequency etc.
Feature
extraction
© Shunji Murai 2004

Different types of feature in imagery
Spectral pattern
Geometric pattern
Textural pattern



6
Geometric pattern Geometric pattern
Odaiba area
in Tokyo
(reclaimed land)
IKONOS Pan
imagery (1m)

Different types of feature in imagery
Fine texture of sea water, grass; Coarse texture of trees
IKONOS Image © JSI, 2003
Textural patterm Textural patterm

Different types of feature in imagery
Clear water
Spectral patterm
Road
vegetation
Turbid
water

2. Image Enhancement

Grey scale conversions
x
min
y
max
y
min x
y
x
y
x
y
x
y
linear fold
x
max
saw exponential
© Shunji Murai 2004

Example:
Grey scale conversion
Example: grey scale conversion on ASTER NIR band
after linear conversion original image

Histogram conversions
x
frequency

x
frequency

x
y
© Shunji Murai 2004
x
Histogram Equalization
Histogram Modified Histogram
cumulative Histogram Linear cumulative Histogram
y

Example:
Histogram equalization
R : G : B = NIR : RED : GREEN
Before After

3. Color Display

Human visions for color
Color matching function
Of CIE1931RGB
Stimulus
value

-0.1
400 500 600
wavelength (nm)
700
b(  )
g(  )
r(  )
435.8 nm 546.1 nm 700 nm
0.4
0.3
0.2
0.1
0
© Shunji Murai 2004

Human visions for color
Color matching function
of CIE1931XYZ
Stimulus
value

0.5
0
400 500 600
wavelength (nm)
700
1.5
1.0
2.0
y(  )
z(  )
x(  )
x(  )
© Shunji Murai 2004

Color Mixing:
XYZ Color System
780
 X  
Y  
380
780

380
780

380
xLd
yLd
zLd Z  
= constant
L() : spectral irradiance
of standard illumination
() : spectral reflectance
of sample

Color Mixing:
XYZ Color System
In 1931,
the CIE ( Commission Internationale de l'Eclairage)
developed the
XYZ color system
Tri-chromatic co-ordinates
X
x 
X  Y  Z
Y
X  Y  Z
y 
Y corresponds brightness
(x,y) corresponds hue and
satuartion

19
Color Representation:
Munsell Color System
white
black

Color Space Conversion:
RGB to HSI
Colors in HSI can be derived with respect to
normalized RGB values as ……
The above equations need corrections with the following…
·H = (360
o
- H) if (B/I) > (G/I) and H is normalized by H = H/360
o
·H is not defined if S = 0
·S is undefined if I = 0

Color Space Conversion:
RGB to HSI
C
B M
R
I
G Y
White
H
Black
S
Relationship
between RGB
space and
HSI space
© Shunji Murai 2004

Color Composite
Mixing two colors
additively leads
to a lighter color
Mixing two colors
substractively leads
to a darker color
G B
Y C
M
Additive Composite
R
Subtractive Composite

Natural Color and
Infrared Color Composite
Natural Color Red : Green : Blue = Red : Green : Blue
water
forest
bare
land
city
Landsat ETM+ Imagery

Natural Color and
Infrared Color Composite
Infrared Color Red : Green : Blue = IR : Red : Green
water
forest
bare
land
city
Landsat ETM+ Imagery

Pseudo Color Display
Different colors may be assigned to the subdivided
gray scale of a single image. Such a color allocation
is called pseudo-color
Greyscale
Rainbow Blue-Green-Red-Yellow
EOS-A

Example: Pseudo Color
Grey Scale
Landsat ETM+ Band3

Example:
Pseudo Color
Pseudo color Blue-Green-Red-Yellow
Landsat ETM+ Band3

Photoshop for Color Display
Red (NIR)
Green (Red)
Blue (Green)
RGB image

4. Spatial filtering

Major spatial filters
Filter 3 x 3 operator effects


Sobel
A  B
 1
A 

 2


 1

or
0
0
0
A
2
 B
2
where,
1 1  2
2

B 

0 0
 
1
 
1 2
 

 1 
0


1



gradient
(finite
differences)


Prewitt
A  B
 1
A 

 1


 1

or
0
0
0
A
2
 B
2
where,
1 1 1
1

B 

0 0
 
1
 
1 1
 

1
0


1


gradient
(finite
differences)

Major spatial filters
Filter 3 x 3 operator effects
 0

 1


0

 1 0  1
 1

or

 1
 
0
 
 1
 
 1  1
 1


 1


Laplacian 4 8 differential
 1  1
 1
1 
1
9


1

1 1  0
1
 1 
1
 or
5

1
 
0
 
1 0
1


0


Smoothing 1 1
1 1
Median median of 3 x 3 image smoothing

Major spatial filters
Filter 3 x 3 operator effects


High-pass
 0

 1


0

 1 0
5  1

 or
 1 0


  1
1 
1
9


1


1
8
1
1
1


1



edge-
enhancement


Sharpening
 1  8
1 
 8 37
9


1  8

1
 8


1



clearer
image

Examples of Enhanced Image
ASTER
imagery Median Laplacian
after applying 3 x 3 filter
Sharpen Sobel
R G B = NIR : Red : Green

5. Normalized Difference
Vegetation Index (NDVI)

NDVI
NDVI can be defined as,
NIR  R
NIR  R
NIR : near infrared band
R : red band
Image Credit: Earth Observatory, NASA
http://earthobservatory.nasa.gov/

36
Example of NDVI
World NDVI for 2001 from Terra-MODIS
Animation made using data from “Introductory MODIS multi-disciplinary data-set” by NASA

6. Principal Component Analysis

Principal Component Analysis
It is used to reduce the dimensions of measured variables
( p dimension ) to the representative principal components
( m dimension )
If p dimensional variables be {x
i } i = 1,p
the principal components {z
k } k = 1, m
can be expressed as the linear combination as follows…
z
k = a
1k x
1 + a
2k x
2 + ...... + a
pk x
p
(a
1k - a
pk ) are determined under the following constrains.
•a
ik = 1
•variance z
k should be maximum
•z
k and z
k+1 should be independent each other
© Shunji Murai 2004

Example of PCA for
multi-channel images
x
2
z
x
1
Graphically speaking, the first principal component
for example in the case of two dimensional variables
will be the principal axis which gives the maximum variance.
© Shunji Murai 2004

Example of PCA for
multi-channel images
PCA on first 6 bands of Landsat ETM+ Imagery
R G B = NIR : RED : Green

Example of PCA for
multi-channel images
PCA on first 6 bands of Landsat ETM+ Imagery
PC 3 PC 1
corresponds
to brightness
PC 2
corresponds
to greenness

Example of PCA for
multi-channel images
PCA on first 6 bands of Landsat ETM+ Imagery


R G B
PC 1 2 3

7. Texture Analysis

Density and Pattern
Densely spaced
paddy fields
Sparsely spaced
paddy fields
ASTER imagery R G B = NIR : Red : Green

Examples of classification
with textural analysis
After textural classification
for bush density
Airphoto of bushes
Red -> Orange -> yellow -> Green -> Blue
Low    High
Tags