Runoff - Hydrology and Irrigation Engineering

surekha1287 466 views 71 slides Feb 24, 2024
Slide 1
Slide 1 of 71
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71

About This Presentation

Hydrology And Irrigation Engineering


Slide Content

Runoff, Hydrograph

Module-III
•Runoff:Definition,conceptof
catchment,factorsaffecting
runoff,rainfall–runoff
relationshipusingregression
analysis.
•Hydrographs: Definition,
componentsofhydrograph,base
flowseparation,unithydrograph,
assumption,applicationand
limitations,derivationfrom
simplestormhydrographs,S
curveanditscomputations,
ConversionofUHofdifferent
durations

catchment

4

factors affecting runoff hydrograph

Rainfall –Runoff relationship using regression analysis

7
Hydrograph
Hydrographsaregraphicalrepresentationsof“flowparameters
againsttime”.Whenastormfallsinacatchment,afterinitial
lossesandlossdueinfiltration,rainfallexcesseventuallyflowsto
themainstream.
“Ifthedischarge‘Q’,averagevelocity’V’anddepthorstage‘Y’at
outletpointofthestreamismeasuredfrombeginningofthe
stormtotheendofstorminthecatchmentandiftheyareplotted
againsttime,theymaybecalledHydrograph”.
i)If‘Q’isplottedagainsttime‘t’,itiscalledflowor“flood
Hydrograph”
ii)If‘V’isplottedagainst‘t’,itisknownas“Velocity
Hydrograph”
iii)Ifdepth‘Y’orstage‘H’isplottedagainsttime‘t’,itiscalled
depthor“StageHydrograph”.
“ButmostcommonlyinHydrology,Hydrographmeansthe
graphofflowrate‘Q’againsttime‘t’”
HYDROGRAPH ANALYSIS

8
HydrographofSingleandComplexStorms(Picture-I)
HYDROGRAPH ANALYSIS

9
HydrographofSingleandComplexStorms(Picture-II)
HYDROGRAPH ANALYSIS

10
Components of Hydrograph of Isolated Storm
i.ABisapproachsegment
ii.BCisrisinglimporconcentrationcurve
iii.CPDiscrestsegmentorpeaklimb
iv.DEisfallinglimb
v.LowerportionDEiscalled“GroundWaterDepletion”curve
vi.Pisthepointofcrestorpeak
vii.t
Bistimeofrise
viii.T
pisthetimeofpeak
ix.AreaunderABEisthevolumeofbaseflow(shownbyshaded
line).Thisvolumeisassumedtohavenocontributionofstorm.
x.AreabetweenBPEandBEisthevolumeofdirectsurfacerunoff
(DSR)shownbydots.
xi.OAisthevalueofdischargeatinitialtimet=0andthisOAmay
beassumedtobethebaseflow.
xii.‘C’isthefirstpointofinflexionand‘D’isthesecondpointof
inflexion.
xiii.OE
1isthebaseperiod‘T’ofthehydrograph
HYDROGRAPH ANALYSIS

11
HydrographSegment
HYDROGRAPH ANALYSIS

12
Segments of Hydrograph of an Isolated Storm
Hydrographisbroadlydividedintofollowingthreesegments;
RisingLimb/Segment
Intheinitialtimeofrainfall,lossescausethedischargetorise
slowly.Buildingupofstorageisevidentlygradual.
However,ifthestormiscontinuous,aaccumulativedischarge
fromupstreamreachestheoutlet(asinfiltrationandabsorption
lossdecreaseswithtime).“Ofcourse,shapeofbasinandstorm
characteristicsaffecttherisinglimp”.
PeakLimb/CrestSegment
ItisthemostimportantpartofHydrograph.Peakoutflowis
essentialfordesignofHydraulicStructures.Whenrunoffsfrom
allsourcesreachtheoutlet,peakflowoccurs.
Inlargecatchment,peakflowmayevenoccurafterthestorm.
“Estimationofpeakflowanditstimeofoccurrencearevery
importantinHydrology”.
HYDROGRAPH ANALYSIS

13
Segments of Hydrograph of an Isolated Storm
RecessionLimb/DepletionCurve
Therecessionlimbrepresentsthe“withdrawalofwaterfrom
storageafterallinflowstothechannelhaveceased.“Therefore,it
istimeindependentofrainfallorinfiltrationandisessentially
dependentonchannelfeaturesalone”.
HYDROGRAPH ANALYSIS

Effective Rainfall (ER)

Base flow Separation
Forthederivationofunithydrograph,thebaseflowhastobeseparatedfromthetotal
runoffhydrograph
Baseflowistheinitialflowofthestreambeforetheraincomes.“Itisthesustained
ordryweatherflowofthestreamresultingfromtheoutflowofperennialoralmost
permanentgroundwaterflowthatreachesthechannel”.Thisbaseflowofsuch
channelismoreorlessassumedtobeconstant.

Base flow Separation Procedure
1.Bysimplydrawingaline‘AC’tangentialtoboththelimbsat
theirlowerportion.Thismethodisverysimplebutis
approximateandcanbeusedonlyforpreliminaryestimates.
2.Extendingtherecessioncurveexistingpriortotheoccurrenceof
thestormuptothepoint‘D’directlyunderthepeakofthe
hydrographandthendrawingastraightlineDE.WhereEisa
pointonhydrograph‘N’daysafterthepeak&N(indays)is
givenby
N= 0.84A
0.2
3.SimplybydrawingastraightlineAE,fromthepointofriseto
thepointEonthehydrograph,‘N’daysafterthepeak.

17
ComputationofDirectSurfaceRunoff(DSR)fromaStorm
Enclosedfigureshowsthefloodhydrographofastormwithflood
ordinatesatdifferenttimeintervalΔ
t.“Fromthefloodhydrograph,
separatethebaseflowbyanyoneofthemethodsdescribedearlier”.
Letthe“BaseFlow”isseparatedbysimplestraightlinemethodand
DirectSurfaceRunoff(DSR)Hydrographisdrawn(figureenclosed).
LetQ
1,Q
2,Q
3,Q
4,….,Q
n-2,Q
n-1,Q
naretheordinatesofDirectSurface
Runoff(DSR)HydrographatdifferenttimeintervalΔ
t.
Findtheareaunderthe(DSR)Hydrograph,whichwillrepresentthe
volumeof(DSR);
AreaunderthecurveAPB=VolumeofDSR
=A
1+A
2+A
3+A
4+…..+A
n-2+A
n-1+A
n
=1Q

t+[Q
1+Q
2]Δ
t+[Q
2+Q
3]Δ
t+[Q
3+Q
4]Δ
t+…+[Q
n+2+Q
n+1]Δ
t
2 2 2 2 2
+[Q
n-1+Q
n]Δ
t+1Δ
t
2 2
HYDROGRAPH ANALYSIS

18
=[1QΔ
t+Q

t]+[Q

t+Q

t]+[Q

t]+[Q

t+Q

t]+…+[Q
n-2Δ
t+Q
n-2Δ
t]
2 2 2 2 2 22 2 2
+[Q
n-1Δ
t+Q

t]+[Q

t+Q

t]
22 2 2
=[(Q
1+Q
2+Q
3+Q
4+….Q
n-2+Q
n-1+Q
n)]Δ
t
=∑QΔ
t
Q=TotalvolumeofDirectSurfaceRunoff.If‘Q’inm
3
/sec,&Δ
tinhr.
VolumeofDSR=∑QΔ
tm
3
x(60x60)sec
sec
=∑QΔ
tm
3
x(60x60)m
3
If‘A’istheareaofthecatchmentinkm
2
,A=Ax10
6
m
3
DSRincm={[(60x60)∑QΔ
t]x100}cm
Ax10
6
DSR=0.36∑Qxt(cms)
A
Thus,DSRvolume(depthincm)=Rainfallexcessornetrainfall
HYDROGRAPH ANALYSIS

19
FloodHydrographofaSingleStorm
HYDROGRAPH ANALYSIS

20
CalculationofDirectSurfaceRunoff(DSR)Hydrograph
(Depth)
HYDROGRAPH ANALYSIS

21
Example:-
CalculateDirectSurfaceRun-offforRainfallexcessfromaStorm
Hydrographfromthefollowingdata.AssumeAreaofCatchmentas
30km
2
HYDROGRAPH ANALYSIS
Date and TimeOrdinate of Hydrograph
Total Q (Cumecs)
Base Flow
(Cumecs)
Direct Runoff
(Cms)
1 2 3 4
14.08.2012
0500 14 14 0
0800 25 12 13
1100 51 11 40
1400 65 10 55
1700 54 11 43
2000 28 13 15
2300 14 14 0
∑Q = 166

22
HYDROGRAPH ANALYSIS
Solution
Findthe“ordinatesofstormHydrograph”,representingtotal
dischargeQatagiventimeinterval,say‘t’hours.
Separatethe“BaseFlow”byanyofthemethods.Findthe
ordinatesofthebaseflowatthesametimeinterval.
Findtheordinatesof“DirectRun-off”bysubtractingthe
ordinatesofbaseflowfromtotaldischargeordinates.
TheDirectSurfaceRun-off(depthincm)isfoundfromthe
expression.

23
HYDROGRAPH ANALYSIS

UnitHydrograph
UnitHydrograph(UH)is“definedastheHydrographofsurfacerunoffofa
catchmentarearesultingfromunitdepth (usually1cm)ofrainfall
excessornetrainfalloccurringuniformlyoverthebasinandatuniformrate
foraspecifiedduration”.
EffectiveRainfall:alsoknownasexcessrainfallisthatpartoftherainfallthatbecomes
directrunoffattheoutletofthewatershed.Itisthusthetotalrainfallinagivenduration
fromwhichabstractionssuchasinfiltrationandinitiallossesaresubtracted.
UnitHydrographisalinearmodelofthecatchmentwhichisusedtofindout
thevolumeofDSRdueto1cmofdirectsurfacerunoffor1cmofrainfall
excess.Thisisalwaysconstantforthecatchmentsinceareaofthe
catchmentisconstant.
Ifrainfallcomestothecatchmentproducing2cmofrainfallexcess,“the
ordinatesoftheDSRwillbetwiceasgreatoftheUnitHydrograph(UH)
ordinatesandvolumeofDSRwillbetwotimethevolumeofDSRofunit
hydrograph”.
HYDROGRAPH ANALYSIS

AssumptionsinDerivationofUHTheory
i.Therainfallisof“uniformintensity”withinitsspecifiedduration.
ii.Theeffectiverainfallis“uniformlydistributed”throughoutthe
wholeareaofdrainagebasin.
iii.“ThebaseoftimedurationofHydrographofdirectrunoffdueto
effectiverainfallsofunitdurationisconstant”.Baseperiodof
Hydrographofdifferentrainfallintensitiesremainapproximately
same.Asrepresentedinenclosedfigure.
iv.TheordinatesofDSRHydrograph“duetonetrainsofdifferent
intensitiesbutsamedurationareproportional”.
v.AUnitHydrographreflectsallthecombinedphysical
characteristicsofthebasin.
HYDROGRAPH ANALYSIS

Limitations
•Forunithydrographanalysisstormsofshortduration
shouldbeselectedsinceuniformintensityoverlong
durationislesslikelytooccur.
•UH’scanbeeffectivelyappliedtodrainagebasinswith
smallarea,sinceuniformarealdistributionofrainfallover
largeareasislesslikelytooccur.
•Basinswithoddshapesparticularlythosewhicharelong
andnarrowwillcommonlyhaveunevenrainfalldistribution
andhenceunithydrographarenotwelladoptedtosuch
basins.
•Theunithydrographmethodcanbeappliedwhenthe
majorportionoftheprecipitationisintheformofsnow

DerivationofUHfromasimpleFloodHydrograph–
(IsolatedStorm)
Step1FromthegivenfloodHydrograph,“separatethebaseflow”by
anyoneofthemethods.Mostcommonlyusedmethodto
drawastraightlinewithoutmucherrorforsimplicity(Figure
enclosed)
Step2DeterminethevolumeofDSRHydrographbytheformula;
“VolumeofDSR=∑QΔ
t

Step3Dividethisvolumeby“knownAreaofCatchment”togetDSR
volume(depthincm)i.e.,“netrainfallorrainfallexcess”.
Step4DividetheordinatesofDSRbythedepthofDSRHydrograph
toobtainordinatesofUH.
Step 5 Plot the ordinates of UH of the catchment as per enclosed
figure.
HYDROGRAPH ANALYSIS

UnitHydrographDerivation
HYDROGRAPH ANALYSIS

Example-I
HYDROGRAPH ANALYSIS
CalculateandDrawa“UnitHydrograph”fromaStormHydrograph,resulting
fromaCatchmentAreaof25km
2
.Thedataisshowninthefollowingtable:

HYDROGRAPH ANALYSIS
DirectRunoff=0.36(∑Qxt)=0.36x822x2=23.7cm
A 25

HYDROGRAPH ANALYSIS
UnitHydrographfromaSingleFloodHydrograph

Example-II:-(UH)fromaSingleFloodHydrograph(Isolated)
HYDROGRAPH ANALYSIS

LimitationsandUsesofUHTheory
Limitations
i.Similarrainfalldistributionfromstormoveralargeareaisrare.
HenceUHtheoryissuitedtocatchmentareaunderabout500km
3
(=2000sq.miles)
ii.Oddshapedbasinsparticularlythosewhicharelongandnarrow,
commonlyhaveveryunevenrainfalldistributionandhenceUH
theoryforsuchbasinsisnotmuchsuitable.
iii.Inmountainousregions,subjecttoorographicrainfall,aerial
distributionisveryuneven,butthepatterntendstoremainthe
samefromstormtostorm,andUHtheorymaynotbe
successfullyapplied.
iv.Theunithydrographmethodcannotbeappliedwhenan
appreciableportionofthestormprecipitationfallsassnow.
v.Thecatchmenthavinglargestoragelikereservoir,lake,lowareas,
etc.affectthelinearrelationshipandhencetheorycannotbe
applied.
vi.Ifthevariationofbaseperiodandpeakflowvarymorethan+/-
10%,theoryappliedisnotgenerallyaccepted.
HYDROGRAPH ANALYSIS

LimitationsandUsesofUHTheory
Uses
i.AstheUHisa“linearmodelofthecatchment”,itisusedto
determinerunoffHydrographoftheCatchmentevenfor
extrememagnitudefor“thecalculationofpeakdischargeto
designtheHydraulicStructures”.
ii.Itcanalsobeusedforfloodforecastingandwarning.
iii.Basedonrainfallrecords,“itisusedforextensionofflood
records”.
HYDROGRAPH ANALYSIS

CALCULATION OF STORM
HYDROGRAPH
FROM
THE GIVEN UNIT HYDROGRAPHS
OF VARIOUS RAINFALL
INTENSITIES
HYDROGRAPH ANALYSIS

Applicationofthe(UH)Theoryforthe“ConstructionofaFlood
HydrographResultingfromRainfallofSingleDuration”
TheUnitHydrographcanbeusedtoconstructa“FloodHydrograph“
resultingfromrainfallofthe“sameunitdurationforwhichtheUnit
Hydrographisavailable”.
ThenumberofUnitHydrographsforagivendrainagebasinis
theoreticallyinfinitesincetheremaybeoneforeverypossible
durationofrainfallandeverypossibledistributionpatterninabasin.
PracticallyonlyalimitednumberofUnitHydrographscanbeused
foragivenbasin.“TheUnitHydrographselectedforcomputingthe
floodHydrographshouldbecorrespondingtothestormoflike
durationandpattern”.
However,atoleranceofasmuchas25%oftheUnitHydrograph
durationcanordinarilybeacceptedwithoutmuchseriouserror.Thus
a6-hoursUnitHydrographmustbeappliedforstormsof4.5to7.5
hoursduration.
Alternatively,UnitHydrographhavingasimilarrangeindurationmay
beaveragedtoobtainanaverageUnitHydrograph.
HYDROGRAPH ANALYSIS
Case-I

Procedure
ThecalculationsforthestormHydrographcorrespondingto‘n’cmof
rainfall-excessaredoneinthetabularformasperenclosedtable;
Directrunoffordinates=(ordinatesofUnitHydrograph)x‘n’cm
Step-I:Writedownthe“givenhourlyordinates”(Discharge)of
UnitHydrograph.
Step-II:MultiplytheordinatesofUnitHydrographwith‘n’cmof
Rainfall.
Step-III:Listoutthegivenhourly“baseflow(m
3
/sec)”
Step-IV:Findoutthetotalstormordinatesi.e.=Step-II+Step-III
Theaboveprocedureiselaboratedbytheenclosedtable.Throughan
example(CalculationofStormHydrographResultingfrom8cm
Rainfall.
HYDROGRAPH ANALYSIS

HYDROGRAPH ANALYSIS
4 5
Example:-CalculateStormHydrographof8cmRainfall

Case-II
ApplicationofUnitHydrographTheory“fortheConstructionofa
FloodHydrographResultingfromtwoormorePeriodsof
Rainfall(MultiDurationRainfall)”fromaSingleUH
AUnitHydrographofsomespecificunitdurationcanalsobe
utilizedforconstructionoffloodHydrographresultingfromthe
“rainfalllastingforalongerduration”.
Theessentialcondition,however,isthatthestormpatternshould
bethesameasthatfortheUnitHydrograph.
Asanexample,leta3-hoursUnitHydrographisavailable,andit
isrequired“tocomputethefloodHydrographresultingfroma
rainfalllastingfor9-hourswithvariableintensitiesofrainfall”.
Theintensityrateshaving“n1cm/3-hours”forthefirstperiodof
3-hours,“n2cm/3-hours”forthesecond3-hours,andthatof
“n3cm/3-hours”forthelast3-hours.
HYDROGRAPH ANALYSIS

Step-I
Thestormisdividedinto3parts,andthefloodHydrographof
eachpartiscomputedseparatelyandadded.
Step-II
TheHydrographsforthesecondpartofthestormstarts3hours
laterthanthatforthefirstpart.
Step-III
Similarly,theHydrographforthethirdpartofthestormstarts6
hourslaterthanthatforthefirst,or3hourslaterthanthatforthe
secondpart.
Theaboveprocedureisillustratedthroughtheenclosedexample.
HYDROGRAPH ANALYSIS
Procedure

Example:-
Findtheordinatesofa“stormHydrographresultingfroma3hours
stormwithrainfallof2.0,6.75and3.75cmsduringsubsequent3
hoursintervals”.TheordinatesofUnitHydrographaregiveninthe
followingtable.Assumeaninitiallossof5mm,infiltrationindexof
2.5mm/hourandbaseflowof10cumecs.
HYDROGRAPH ANALYSIS
Ordinates of given Unit Hydrograph
Hours03060912151821240306091215182124
Ordinate of
UH
011036550039031025023517513095654022100

Solution:-
i)Rainfallexcessduringthefirstthreehours
=20–(2.5x3)–5=7.5mm=0.75cm
ii)Rainfallexcessduringthesecondthreehours
=67.5–(3x2.5)=60mm=6cm.
iii)Rainfallexcessduringthelastthreehours.
=37.5–(3x2.5)=30mm=3cm
TheRainfallexcessasratiooftheunitRainfallof1cmduringthe
subsequent3hoursintervalsare0.75,6and3.
ThecomputationsofRunoffdueto0.75cmrainfallexcesswill
startfrom03hours.Thecomputationsofrunoffdueto6cm
rainfallexcesswillstartfrom6hours.Lastly,thecomputationsof
runoffdueto3cmrainfallexcesswillstartfrom9hours.
“Theaboveprocedureisillustratedintheenclosedtable”.
HYDROGRAPH ANALYSIS

Table:-
HYDROGRAPH ANALYSIS

FloodHydrographResultingfromaStormofLongerDuration
HYDROGRAPH ANALYSIS

Example:-
CalculationofStormHydrographResultingfromSingle
UnitHydrographofVariousRainfallIntensities
HYDROGRAPH ANALYSIS
Contd…..

HYDROGRAPH ANALYSIS

Case-III
S-Hydrograph(S-Curve)
S-HydrographorS-CurveisaHydrographwhichisproducedbya
“continuouseffectiverainfallataconstantrateforindefinite
period”.
Itisa“continuousrisingcurve”,intheformofletter‘S’,till
equilibriumisreached.Atthetimeofequilibrium,“itwill
representaconstantrateofcontinuouseffectiverainfall,sayR
o
cmperhour”.
Atthetimeofequilibrium,“theS-Curvewillrepresentarunoff
dischargeasunder”;
Q
o=(Ax100x100)R
o
100x3600
=AR
ocumec
36
(WhereAisthecatchmentareainhectares)
HYDROGRAPH ANALYSIS
Contd…

Ifthecatchmentarea‘A’isin“squarekilometers”,thedischarge
representedbyS-Curve,atthetimeofequilibriumisgivenby;
Q
o=(Ax1000x1000)R
o
100x3600
=(AR
0)x100(cms)
36
=2.778AR
o(cms)
(‘A’=Areaofcatchmentinkm2andR
o=Constantrateof
continueseffectiveRainfall.)
TheS-HydrographorS-Curveisconstructedby“addingtogether
numberofUnitHydrographsofunittimeduration(T
0)spacedata
unittimeduration(T
0)(i.e.,durationofeffectiverainfall).
“ThisisillustratedintheenclosedexamplewereinS-Curvehas
beendrawnfor6hoursUnitHydrograph.Areaofbasinis311
km
2
”.
HYDROGRAPH ANALYSIS

HYDROGRAPH ANALYSIS
ComputationofS-HydrographfromSuccessiveUnitHydrograph
Contd…

HYDROGRAPH ANALYSIS
Thisdischargeof144cumecswillbeachievedintheabovetableat36
hours(whichisequaltobaseperiod–T
0hours.)

HYDROGRAPH ANALYSIS
DerivationofS-HydrographfromSeriesofUnitHydrograph

CALCULATION OF UNIT
HYDROGRAPH
FROM
THE GIVEN UNIT HYDROGRAPHS
OF VARIOUS INTENSITIES
HYDROGRAPH ANALYSIS

ConstructionofUnitHydrographofDifferentUnitDuration
fromtheaUnitHydrographofgivenUnitDuration
UnitHydrographmaybeofdifferentduration‘D’.Ifaunit
hydrographof2hrs.durationavailable,unithydrographof4hrs.
duration,6hrs.duration,8hrs.duration,etc.maybeobtainedi.e.,
theunithydrographtobederivedisanintegralmultiple.Insuch
cases,durationsfrom2hrs.to4hrs.,6hrs.etc.canbedoneby
methodofsuperposition.
However,iftheDurationofUnitHydrographtobederivedisless
thandurationofknownUnitHydrograph,“thismethodof
superpositionwillnotholdgood”.Thus,UnitHydrographof
differentdurationmaybederivedbythefollowingtwomethods.
i)MethodofsuperpositionwhendurationofUHtobederivedis
2times,3timesor4timesofthedurationofknownUH.
ii)S-Curvemethod(Summationhydrographmethod)when
durationofUHtobederivedislessthanthedurationofthe
knownUH.
HYDROGRAPH ANALYSIS
Case-I

UnitHydrographofDifferentDurations
Phase-A:-
ConstructionofLongerperiodUnitHydrographfromagiven
UnitHydrographofShorterUnitPeriod/Duration.
MethodofSuperposition
i)Asshown(figureenclosed)D-hrUHisplotted(Curve-1)
ii)AlsoplottheUHlaggedbyDhrs.(Curve-2)
iii)AddthetwoUnitHydrographsandplotit(Curve-3)
iv)DivideCurve-III,i.e.DSRHydrographby2Ddurationtoget
thecurveshownbydottedline,i.e.(Curve-4)
Itisnotedthatbaseperiodof2-D-hrUHshownbydottedline
increasesbyD-hrsfromthegivenUHofThrsbaseperiod.
Therefore,thepeakof2-D-hrsUHwilldecreaseasthebase
periodisincreasedfromTto(T+Dhrs)
HYDROGRAPH ANALYSIS

Example–UnitHydrographofDifferentDurations
A4-hrUHofdifferentdurationsisshowninthefollowingtable.Derive
the8hrUnitHydrograph.
HYDROGRAPH ANALYSIS
Column(5)givestheordinatesof8-hrunitHydrographderivedfrom
column(4)andunitUHincolumn(2).Thepeakofthe8-hrUHis
reducedto16m
3
/secfrom20m
3
/secasthebaseperiodisincreased
from20to24hrs.

MethodofSuperposition
HYDROGRAPH ANALYSIS

Example-II:-MethodofSuperposition
HYDROGRAPH ANALYSIS

Case-II
UnitHydrographofDifferentDurations-S-CurveMethod
S-Curve(SummationCurve),alsoknownasS-Hydrographisa
Hydrographproducedbya“continuouseffectiverainfallofunit
depthataconstantrateforindefiniteperiod”.Itisacurve
obtainedbysummationofaninfiniteseriesofUnitHydrographs
eachlaggedbyD-hrswithrespecttoprecedingone.
ItisshownthatwhenaUHof‘n’‘D’durationisrequiredwhere‘n’
iswholenumberlike2,3,4etc.,methodofsuperpositionserves
thepurpose.If‘n’isin-fraction,thenS-Curvemethodisrequired.
Asanexample,fromUHof4hrs.duration,todevelopUHof2hrs.
durationcannotbedevelopedbytheperviousmethodof
superposition.Insuchsituation,“S-Hydrographisconstructed.
WhichisusedtofindtheUHofdesiredduration”.
Asshown(figureenclosed),S-Hydrographiscontinuouslya
risingcurvewhichultimatelyattainsaconstantvaluewhen
equilibriumdischargeisreached.
HYDROGRAPH ANALYSIS

UnitHydrographofDifferentDurations
UnitHydrographcanbederivedasunder;
Step1“ConstructtheS-Curve”fromthegivenUnitHydrographof
knowntimedurationD-hrs.
Step2“Thenadvanceoroffset”thepositionofalltheordinatesof
“S-Hydrograph”foraperiodequaltothedesireddurationof
D
0hrs.ofunknownUH.“NamethisS-Hydrographasoffset
Hydrograph”.
Step3Findthe“Difference”oftheordinatesofOriginalS-Curveand
“OffsetHydrograph”.
Step4“Dividethiseachdifference”by(D
0/D)togettheordinatesof
newUHofD
0hrs.duration.
HYDROGRAPH ANALYSIS

S-HydrographorS-Curve
HYDROGRAPH ANALYSIS

HYDROGRAPH ANALYSIS
Letitberequiredtoobtaina“UnitHydrograph”ofunitperiodt
0froma
givenUnitHydrographofunitperiod.T
0,“wheret
0canbeeithergreater
orsmallerthanT
0”.Forthis,theS-Hydrographmethodwillbeused.
FromthegivenUnitHydrographofunitperiodT
0,“S-Curveisderived”.
ThisS-CurvewillrepresentaconstanteffectiverainfallofR
0=1/T
0
cm/hour.
“Anoffsetcurveisthendrawnbyadvancingoroffsettingthepositionof
originalS-Curve”foraperiodequaltothedesiredunitperiodtohours.
“ThedifferencebetweentheordinatesoforiginalS-Curveandtheoffset
S-CurvedividebytheR
0t
0“willgivetheordinateofthedesiredUnit
Hydrograph.
Thus,foranytimeperiodt,ifthedifferenceordinatesofthetwoS-
CurvesisΔy,thentheordinateofthedesiredUnitHydrographoft
0unit
period.
Δy=Δy =Δy.T
0
R
0t
0(1/T
0)t
0 t
0
Phase-B:
ConstructionofShorterorLongerPeriodUnitHydrograph
fromagivenUnitHydrograph

HYDROGRAPH ANALYSIS
Example-I
DerivationofUnitHydrographoft
0(=3hours)unitdurationfromthe
givenUnitHydrographofdurationT
0(=6hours)

HYDROGRAPH ANALYSIS
ConstructionofShorterorLongerPeriodofUnitHydrograph
fromagivenUnitHydrograph

Example-II:-ofS-CurveMethod
Givenbelowaretheordinatesof4hrsUHofabasin.
Derive2hrsUHfromitusingS-CurveMethod.
HYDROGRAPH ANALYSIS

HYDROGRAPH ANALYSIS

HYDROGRAPH ANALYSIS

Case-III
DerivationofUHfromComplexStorm
Practically,“itisnotalwayspossible“tohavesuchisolated
storms”.StormshavingdifferentrainfallexcesslikeR
1,R
2andR
3
mayoccur.“Suchstormsofdifferentrainfallexcessarecalled
complexstorm”.
Assume3stormswhichcanproducerainfallexcessR
1,R
2and
R
3.TheHydrographofthese3storms(afterdeductingbaseflow)
isshowninfigureenclosed.
LetQ
1,Q
2,Q
3,…..Q
naretheknownordinatesofcomplexstormas
perfigureenclosedandU
1,U
2,U
3,…..U
nareordinatesofUnit
Hydrographwhicharetobedetermined.R
1,R
2andR
3areknown
rainfallexcessesduetocomplexstorm,whicharealsoknown.
Then;
HYDROGRAPH ANALYSIS

DerivationofUHfromComplexStorm
Q
n=R
nU
1+R
n-1U
2+R
n-2U
3+….,
When
n=1,Q
1=R
1U
1
(i.e.Q
1andR
1areknown,U
1isdetermined)
n=2,Q
2=R
2U
1+R
1U
2
(i.e.Q
2,R
2,U
1,R
1areknown,U
2isdetermined)
n=3, Q
3=R
3U
1+R
2U
2+R
1U
3
(i.e.Q
3,R
3,U
1,U
2,R
1,R
2areknown,U
3isdetermined)
n=4,Q
4=R
4U
1+R
3U
2+R
2U
3+R
1U
4,
R
4U
1iszero,sinceno4
th
rainfallisconsidered
SinceQ
4,R
3,R
2,R
1,U
2,U
3areknown,U
4canbedetermined
Thus,allordinateofUnitHydrographU
1,U
2,U
3,U
4,……U
ncanbe
determinedandresultingUnitHydrograph(UH)canbeobtained.
HYDROGRAPH ANALYSIS

DerivationofUHfromComplexStorm
HYDROGRAPH ANALYSIS

Derivation(UH)fromComplexStorm
Example
DrawtheUnitHydrographfromthecomplexstormhavingthedata
givenbelow;
HYDROGRAPH ANALYSIS
Solution
NetRainfallareDSRindepth1
st
hr=4–5ΦIndex=4–2x1=2cm
2
nd
hr=3–2x1=1cm
3
rd
hr=2.5–2x1=0.5cm
Time (Hrs) 012345678910111213
UH Ordinates
m3/sec
0 5811096532614 8 5 4 31.51 0
ComputethestormHydrographresultingfromthreehourstormrainfall
asunder:-
Time 1
st
hr 2
nd
hr 3
rd
hr
Rainfall depth (cm)4 3 2.5
TakeΦ-indexas2cm/hrandassumeabaseflowof2m3/sec.

ExampleofDerivation(UH)fromComplexStorm
HYDROGRAPH ANALYSIS
Tags