Selective Laser Melting versus Electron Beam Melting

carstenengel 26,078 views 44 slides Dec 23, 2014
Slide 1
Slide 1 of 44
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44

About This Presentation

No description available for this slideshow.


Slide Content

“État actuel des fabrications additives pour les
applications métalliques”
Atelier CNES – 18/19 Novembre 2013, Toulouse, France

Olivier RIGO
Carsten ENGEL
25.11.13 1 © sirris | www.sirris.be | [email protected] |

Special thanks …


Le Fonds Européen de Développement Régional
et la Région Wallonne investissent dans votre avenir.
25.11.13 2 © sirris | www.sirris.be | [email protected] |

Sirris | Metal Additive Manufacturing
25.11.13 3
Index
Sirris – short overview
Generalities:
Metal Additive Manufacturing
Technology comparison: LBM vs EBM
Metallurgical aspects
Mechanical aspects
Case studies
Contact
© sirris | www.sirris.be | [email protected] |

Sirris | Driving industry by technology
130 experts & hight-tech infrastructure
Collective centre
of the technology industry
• Non profit organization
• Industry owned
4,700 industrial interventions
(advice, projects, services)

•within 1,700 different companies
•whose 75% are SME’s
•24M EUR turnover
Mission: “Increase the competitiveness of
companies of the Agoria sectors through
technological innovations”

Sirris | 23 years of Additive Manufacturing
AM centre – Leading position in EU
16 engineers and technicians
17 high-tech additive technologies in house
Most complete installed base in EU
Driving technology companies in applications
Technologies:
• Stereolithography (normal & hi-res)
• Paste polymerisation for ceramics and metals (Optoform)
• 3D Printing of plaster and metal powder
• Laser sintering of polymeric powder (PA,…): P360 – P390
• Objet Connex 500: bi-material
• Laser sintering of metal powder (parts and mould inserts)
• Electron Beam Melting (Arcam A2)
• 3D Printing of wax (Thermojet)
• Vacuum Casting of Alu, Bronze, Zamak
• Laser Cladding (EasyClad)
• Laser Beam Melting (MTT)
• Bi-material FDM system
• Fab@home system (for students)
• MCOR technology (color 3Dprinter)
25.11.13 5 © sirris | www.sirris.be | [email protected] |

Sirris | Metal Additive Manufacturing
25.11.13 6
Index
Sirris – short overview
Generalities:
Metal Additive Manufacturing
Technology comparison: LBM vs EBM
Metallurgical aspects
Mechanical aspects
Case studies
Contact
© sirris | www.sirris.be | [email protected] |

Generalities: Metal Additive Manufacturing
25.11.13 7 © sirris | www.sirris.be | [email protected] |
Direct
Fabrication
system
Laser
E-Beam
Print head
Nozzle
Post-
processing
Indirect
Binder
Debinding
+ sintering
Post-
processing

Generalities: Metal Additive Manufacturing
Electron Beam
Melting (EBM)
Laser Beam Melting
(LBM)
• Metallic powder deposited in a
powder bed
• Electron Beam
• Vacuum
• Build temperature: 680-720°C
• Metallic powder deposited in
a powder bed
• Laser Beam
• Argon flow along Ox direction
• Build temperature: 200°C
25.11.13 8 © sirris | www.sirris.be | [email protected] |

Generalities: Metal Additive Manufacturing
25.11.13 9 © sirris | www.sirris.be | [email protected] |
Electron Beam Melting

Generalities: Metal Additive Manufacturing
25.11.13 10 © sirris | www.sirris.be | [email protected] |
Electron Beam Melting

Benefits and drawbacks - EBM


Benefits Drawbacks
 Few developed materials, only
conductive materials possible
 Tricky to work with fine powder
 Powder is sintered -> tricky to
remove (e.g. interior channels)
 Long dead time between 2
productions (8 hours for cooling –
A2, A2X, A2XX systems)
 Sintered powder = good for
thermal conductivity = less supports
 Suitable for very massive parts
 Less supports are needed for
manufacturing of parts
 Possibility to stack parts on top of
each other (mass production)
 Process under vacuum (no gaz
contaminations)
 High productivity
 No residual internal stress (constant
680-720°C build temperature)
 Very fine microstructures (Ti6Al4V),
very good mechanical and fatigue
results (Ti6Al4V)
 Expensive maintenance contract
25.11.13 11 © sirris | www.sirris.be | [email protected] |

Generalities: Metal Additive Manufacturing
Electron Beam
Melting (EBM)
Laser Beam Melting
(LBM)
• Metallic powder deposited in a
powder bed
• Electron Beam
• Vacuum
• Build temperature: 680-720°C
• Metallic powder deposited in
a powder bed
• Laser Beam
• Argon flow along Ox direction
• Build temperature: 200°C
25.11.13 12 © sirris | www.sirris.be | [email protected] |

25/11/2013
© Sirris | www.sirris.be | [email protected] |
13
Spread powder
Recoater
Laser beam
Melted
zones
Previous layers
Initial plate
Argon
Main tank
The building steps
Generalities: Metal Additive Manufacturing

Laser Beam Melting – SLM Solutions 250HL

25.11.13 14 © sirris | www.sirris.be | [email protected] |

Benefits and drawbacks - LBM


Benefits Drawbacks
• Flexibility for new material
developments
• Possibility to work with fine
powders 10µm (d50)
• Easy powder removing from the
parts (the parts are not embedded in
pre-sintered cake)
• Short dead time between 2
productions (2 hours for cooling)
• Possibility of restarting an
interrupted job
• Easy visual inspection of building
process during the manufacturing
(either with unaided eye or with
optical camera)
• Process is wall thickness dependent.
(not suitable for massive parts)
• Process involving internal stresses
in the parts need additional
annealing
• Process requiring strong supports
for parts fasten during the
manufacturing (not only for heat
transfer)
• Need to use build plates of the
same material than the powder used
in the machine (e.g.: more expensive
for titanium powder)
• Cutting tool necessary (eg: a saw) in
order to release the parts from the
build plate
25.11.13 15 © sirris | www.sirris.be | [email protected] |

Technology comparison – EBM – LBM
LBM EBM
Size (mm) 250 x 250 x 350*¹ 210 x 210 x 350*²
Layer thickness (µm) 30 - 60 50
Min wall thickness (mm) 0.2 0.6
Accuracy (mm) +/- 0.1 +/- 0.3
Build rate (cm³/h) 5 - 20 80
Surface roughness (µm) 5 - 15 20 - 30
Geometry limitations Supports needed
everywhere (thermal,
anchorage)
Less supports but powder
is sintered
Materials Stainless steel, tool steel,
titanium, aluminum,…
Only conductive materials
(Ti6Al4V, CrCo,…)
CENG
25/11/2013 © sirris 2013 | www.sirris.be | [email protected] |
16
*1 SLM Solutions 250HL
*2 Arcam A2

0
2
4
6
8
10
productivity
3D complexity
maximum size
Accuracy Surface finish
mech prop -
density
material range
EBM (Arcam)
LBM (SLM Solutions
Technology comparison – EBM – LBM
CENG
25/11/2013 © sirris 2013 | www.sirris.be | [email protected] |
17
*1 SLM Solutions 250HL
*2 Arcam A2

Sirris | Metal Additive Manufacturing
25.11.13 18
Index
Sirris – short overview
Generalities:
Metal Additive Manufacturing
Technology comparison: LBM vs EBM
Metallurgical aspects
Mechanical aspects
Case studies
Contact
© sirris | www.sirris.be | [email protected] |

Metallurgical aspects – LBM & EBM
Electron Beam
Melting (EBM)
Laser Beam Melting
(LBM)
• Metallic powder deposited in a
powder bed
• Electron Beam
• Vacuum
• Build temperature: 680-720°C
• Metallic powder deposited in
a powder bed
• Laser Beam
• Argon flow along Ox direction
• Build temperature: 200°C
25/11/2013
© sirris 2013 | www.sirris.be | [email protected] | 19

Experimental procedures
Electron Beam
Melting (EBM)
Laser Beam Melting
(LBM)
• Random scanning strategy
• Vacuum
• Pre-heating of the subtrate:
680-720°C
• Complex lasing strategy:
79° rotation between two
successive layers
• Argon flow along Ox direction
• Pre-heating of the subtrate:
200°C
Characteristics of theTi6Al4V ELI powders
Process Ti (wt%) Al(wt%) V(wt%)
LBM Bal 5,9 4,2
EBM Bal 3,3 4,4
Reference axis for EBM
and LBM
25.11.13 20 © sirris | www.sirris.be | [email protected] |

Results and discussion
Laser Beam Melting
Perpendicular to the building direction
• Equiaxed morphology (around 50μm
of diameter)

• Width does NOT significantly change
along the height


No evolution of the thermal gradient
intensity, no evolution of the grain
width
25.11.13 21 © sirris | www.sirris.be | [email protected] |

Results and discussion
Laser Beam Melting
Parallel to the building direction
• Elongated grains characteristic of an
epitaxial growth aligned with the heat
flow
• No epitaxial growth apparent
Explanation: Tilt of the primary β grains
Suggestion: combined effect of part geometry
and a modification of the direction of the
maximum heat flow that had possibly been
brought about by the Argon flow
25.11.13 22 © sirris | www.sirris.be | [email protected] |

Results and discussion
Perpendicular to the
building direction

• Equiaxed morphology as for LBM
Electron Beam Melting (EBM)
Parallel to the building direction
Explanation:
• Random scanning trategy
• Thermal homogeneity due to
substrate preheating (680-720°C)
• No argon flow
Hoped this would allow a significant reduction of
internal stresses and then improve mechanical
properties
• Epitaxial growth:
• No Tilt (≠LBM)

25.11.13 23 © sirris | www.sirris.be | [email protected] |

Results and discussion
Electron Beam Melting (EBM)
• Typical morphology of a
Widmanstätten microstructure


• Pre-heating of the substrate
induces slower cooling rates
thus favouring a diffusive
transformation to α
Cooling rate is directly influenced by the preheating of the
substrate: the lower the preheating, the faster the cooling
rates and the finer the resulting microstructure
Characteristics:
• Uniform, Fine Grain
• Columnar
• Lamellar Alpha Phase
• Larger Beta Grains
25.11.13 24 © sirris | www.sirris.be | [email protected] |

Results and discussion
Electron Beam Melting (EBM)
Two types of porosities (spherical and non- spherical) due to entrapped
argon in powder particles (amount porosity in GA is about 0.2-0.1%) or un-
melted areas can be observed.
25.11.13 25 © sirris | www.sirris.be | [email protected] |

Sirris | Metal Additive Manufacturing
25.11.13 26
Index
Sirris – short overview
Generalities:
Metal Additive Manufacturing
Technology comparison: LBM vs EBM
Metallurgical aspects
Mechanical aspects
Case studies
Contact
© sirris | www.sirris.be | [email protected] |

Mechanichal comparison
Electron Beam
Melting (EBM)
Laser Beam Melting
(LBM)
• Layer Thickness: 70µm

• Job 130503a

• As built sample without
additional post treatment
• Layer Thickness: 50µm

• Job 130423a

• Laser Beam

• Argon flow along Ox direction
25.11.13 27 © sirris | www.sirris.be | [email protected] |

Tensile test:
According to standard ASTM E111-04 and
NF EN 10002 standards

Experimental procedures
25.11.13 28 © sirris | www.sirris.be | [email protected] |

Results and discussion
Mechanical properties comparison (Tensile testing)
1126
1202
1029
1094
Rp0.2 (Mpa) Rm (Mpa)
Yield strenght/UTS
(Oy samples)
LBM (50µm anealed) EBM (70µm)
3,1
9,9
LBM EBM
A (%)
25.11.13 29 © sirris | www.sirris.be | [email protected] |

Results and discussion
Mechanical properties comparison (Tensile testing)
1079
1120
974
1032
Rp0.2 (Mpa) Rm (Mpa)
Yield strenght/UTS
(Oz samples)
LBM (50µm anealed) EBM (70µm)
4,1
10,8
LBM EBM
A (%)
25.11.13 30 © sirris | www.sirris.be | [email protected] |

Mechanichal comparison
Electron Beam
Melting (EBM)
Laser Beam Melting
(LBM)
• Layer Thickness: 70µm

• Job 120124a

• As built sample without
additional post treatment
• Layer Thickness: 30µm

• Job 121214b

• Laser Beam

• Argon flow along Ox direction
25.11.13 31 © sirris | www.sirris.be | [email protected] |

Experimental procedures
Whöler fatigue curve with a stress ratio
of 0.1 and 4 different levels tensile test
probes (3 each) :
 10-50 kcycles (level 1)
 100-200 kcycles (level 2)
 500-800 kcycles (level 3)
 1-2 exp 6 kcycles (level 4)
Mode: strain-strain
Control: force
Form: sinusoidal
R: 0.1
End process criteria: break or 10^7 cycles

25.11.13 32 © sirris | www.sirris.be | [email protected] |
Fatigue test:
According to standard ASTM E466-07

Results and discussion
Mechanical properties comparison (Fatigue testing)

EBM Oz
Post-machined
samples
LBM Oz
Post-machined
samples

25.11.13 33 © sirris | www.sirris.be | [email protected] |

Results and discussion
Mechanical properties comparison (Fatigue testing)

EBM Oz
Post-machined
samples
LBM Oz
Post-machined
samples

Ref 2
Roll formed
TiAl6V4
25.11.13 34 © sirris | www.sirris.be | [email protected] |

Results and discussion
Hip treatement in order to improve fatigue properties

EBM Oz
Post-machined
samples
Ref 2
Roll formed
TiAl6V4
EBM Oz
Post-machined
samples + HIP
25.11.13 35 © sirris | www.sirris.be | [email protected] |

Results and discussion
Orientation impact?

EBM Ox
Post-machined
samples + HIP
Ref 2
Roll formed
TiAl6V4
EBM Oz
Post-machined
samples + HIP
25.11.13 36 © sirris | www.sirris.be | [email protected] |

Results and discussion
Surface roughness impact

EBM Oz
Post-machined
samples
EBM Oz
As-Built sample
Ref 2
Roll formed
TiAl6V4
25.11.13 37 © sirris | www.sirris.be | [email protected] |

Sirris | Metal Additive Manufacturing
25.11.13 38
Index
Sirris – short overview
Generalities:
Metal Additive Manufacturing
Technology comparison: LBM vs EBM
Metallurgical aspects
Mechanical aspects
Case studies
Contact
© sirris | www.sirris.be | [email protected] |

Case study 01: Massive ESA-CSL part
EBM
 Dimensions:
208*175*38mm (L*W*H)
Machining
25.11.13 39 © sirris | www.sirris.be | [email protected] |

Case study 02: ESA-CSL-AlmaSpace
LBM
Machining
Machining EBW
25.11.13 40 © sirris | www.sirris.be | [email protected] |

Case study 03: Design of an “improved”
support geometry for an antenna
Support mass : 223 g 57.5% mass reduction Initial mass ~ 400 g
LBM
25.11.13 41 © sirris | www.sirris.be | [email protected] |

Sirris | Metal Additive Manufacturing
25.11.13 42
Index
Sirris – short overview
Generalities:
Metal Additive Manufacturing
Technology comparison: LBM vs EBM
Metallurgical aspects
Mechanical aspects
Case studies
Contact
© sirris | www.sirris.be | [email protected] |

+32 498 91 94 71
[email protected]
Olivier RIGO
25.11.13 © sirris | www.sirris.be | [email protected] |
Olivier.rigo1

http://www.sirris.be
#sirris
http://www.linkedin.com/company/sirris
25.11.13
http://techniline.sirris.be
© sirris | www.sirris.be | [email protected] |
Tags