Signal and System, CT Signal DT Signal, Signal Processing(amplitude and time scaling)

WaqasAfzal2 1,949 views 17 slides Feb 02, 2021
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

Signal and System(definitions)
Continuous-Time Signal
Discrete-Time Signal
Signal Processing
Basic Elements of Signal Processing
Classification of Signals
Basic Signal Operations(amplitude and time scaling)


Slide Content

TOPICS
•Signal and System(definitions)
•Continuous-Time Signal
•Discrete-Time Signal
•Signal Processing
•Basic Elements of Signal Processing
•Classification of Signals
•Basic Signal Operations(amplitude and time scaling)
1

2
•Signal:
Asignalisdefinedasafunctionofoneormorevariables
whichconveysinformationonthenatureofaphysical
phenomenon.Thevalueofthefunctioncanbeareal
valuedscalarquantity,acomplexvaluedquantity,or
perhapsavector.
•System:
Asystemisdefinedasanentitythatmanipulatesoneor
moresignalstoaccomplishafunction,therebyyielding
newsignals.

3
•Continuos-TimeSignal:
Asignalx(t)issaidtobeacontinuoustimesignalifitis
definedforalltimet.
•Discrete-TimeSignal:
Adiscretetimesignalx[nT]hasvaluesspecifiedonlyat
discretepointsintime.
•SignalProcessing:
Asystemcharacterizedbythetypeofoperationthatit
performsonthesignal.Forexample,iftheoperationis
linear,thesystemiscalledlinear.Iftheoperationisnon-
linear,thesystemissaidtobenon-linear,andsoforth.
Suchoperationsareusuallyreferredtoas“Signal
Processing”.

4
Basic Elements of a Signal Processing
System
Analog
Signal Processor
Analog input
signal
Analog output
signal
Analog Signal Processing
Digital
Signal Processor
A/D
converter
D/A
converter
Digital Signal Processing
Analog
input
signal
Analog
output
signal

5
Classification of Signals
•DeterministicSignals
Adeterministicsignalbehavesinafixedknownwaywith
respecttotime.Thus,itcanbemodeledbyaknown
functionoftimetforcontinuoustimesignals,oraknown
functionofasamplernumbern,andsamplingspacingT
fordiscretetimesignals.
•RandomorStochasticSignals:
Inmanypracticalsituations,therearesignalsthateither
cannotbedescribedtoanyreasonabledegreeofaccuracy
byexplicitmathematicalformulas,orsuchadescriptionis
toocomplicatedtobeofanypracticaluse.Thelackof
sucharelationshipimpliesthatsuchsignalsevolveintime
inanunpredictablemanner.Werefertothesesignalsas
random.

6
Even and Odd Signals
Acontinuoustimesignalx(t)issaidtoanevensignalifit
satisfiesthecondition
x(-t)=x(t)forallt
Thesignalx(t)issaidtobeanoddsignalifitsatisfiesthe
condition
x(-t)=-x(t)
Inotherwords,evensignalsaresymmetricaboutthe
verticalaxisortimeorigin,whereasoddsignalsare
antisymmetricaboutthetimeorigin.Similarremarks
applytodiscrete-timesignals.
Example:
even
odd odd

7
Periodic Signals
Acontinuoussignalx(t)isperiodicifandonlyifthere
existsaT>0suchthat
x(t+T)=x(t)
whereTistheperiodofthesignalinunitsoftime.
f=1/TisthefrequencyofthesignalinHz.W=2/Tisthe
angularfrequencyinradianspersecond.
Thediscretetimesignalx[nT]isperiodicifandonlyif
thereexistsanN>0suchthat
x[nT+N]=x[nT]
whereNistheperiodofthesignalinnumberofsample
spacings.
Example:
0 0.2 0.4
Frequency=5Hzor10rad/s

8
Continuous Time Sinusoidal Signals
Asimpleharmonicoscillationismathematically
describedas
x(t)=Acos(wt+)
Thissignaliscompletelycharacterizedbythree
parameters:
A=amplitude,w=2f=frequencyinrad/s,and=
phaseinradians.
A T=1/f

9
Discrete Time Sinusoidal Signals
Adiscretetimesinusoidalsignalmaybeexpressedas
x[n]=Acos(wn+) -<n<
Properties:
•Adiscretetimesinusoidisperiodiconlyifitsfrequencyisarational
number.
•Discretetimesinusoidswhosefrequenciesareseparatedby
anintegermultipleof2areidentical.
•Thehighestrateofoscillationinadiscretetimesinusoidis
attainedwhenw=(orw=-),orequivalentlyf=1/2(orf=-
1/2).
0 2 4 6 8 10
-1
0
1

10
Energy and Power Signals
•Asignalisreferredtoasanenergysignal,ifandonlyif
thetotalenergyofthesignalsatisfiesthecondition
0<E<
•Ontheotherhand,itisreferredtoasapowersignal,if
andonlyiftheaveragepowerofthesignalsatisfiesthe
condition
0<P<
•An energy signal has zero average power, whereas a power
signal has infinite energy.
•Periodic signals and random signals are usually viewed as
power signals, whereas signals that are both deterministic and
non-periodic are energy signals.

11
Basic Operations on Signals
(a)Operationsperformedondependent
variables
1.AmplitudeScaling:
letx(t)denoteacontinuoustimesignal.Thesignaly(t)
resultingfromamplitudescalingappliedtox(t)is
definedby
y(t)=cx(t)
wherecisthescalefactor.
Inasimilarmannertotheaboveequation,fordiscrete
timesignalswewrite
y[nT]=cx[nT]
x(t)
2x(t)

12
2.Addition:
Let x
1[n] and x
2[n] denote a pair of discrete time signals.
The signal y[n] obtained by the addition of x
1[n] + x
2[n]
is defined as
y[n] = x
1[n] + x
2[n]
Example: audio mixer
3.Multiplication:
Letx
1[n]andx
2[n]denoteapairofdiscrete-timesignals.
Thesignaly[n]resultingfromthemultiplicationofthe
x
1[n]andx
2[n]isdefinedby
y[n]=x
1[n].x
2[n]
Example:AMRadioSignal

13
(b)Operationsperformedonindependent
variable
•TimeScaling:
Lety(t)isacompressedversionofx(t).Thesignaly(t)
obtainedbyscalingtheindependentvariable,timet,by
afactorkisdefinedby
y(t)=x(kt)
–ifk>1,thesignaly(t)isacompressedversionof
x(t).
–If,ontheotherhand,0<k<1,thesignaly(t)isan
expanded(stretched)versionofx(t).

14
Exampleoftimescaling
0 5 10 15
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
exp(-2t)
exp(-t)
exp(-0.5t)
Expansion and compression of the signal
e
-t
.

15
-3 -2 -1 0 1 2 3
0
5
10
x[n]
-1.5-1 -0.5 0 0.5 1 1.5
0
5
10
x[0.5n]
-6 -4 -2 0 2 4 6
0
5
x[2n]
n
Time scaling of discrete time systems

16
TimeReversal
•This operation reflects the signal about t = 0
and thus reverses the signal on the time scale.
0 1 2 3 4 5
0
5
x[n]
n
0 1 2 3 4 5
-5
0
x[
-
n]
n

17
TimeShift
Asignalmaybeshiftedintimebyreplacingthe
independentvariablenbyn-k,wherekisan
integer.Ifkisapositiveinteger,thetimeshift
resultsinadelayofthesignalbykunitsoftime.If
kisanegativeinteger,thetimeshiftresultsinan
advanceofthesignalby|k|unitsintime.
x[n
]
x[n+3]
x[n
-
3]
n
Tags