Singular Value Decompostion (SVD): Worked example 3

ISAACAMORNORTEYYOWET 2,151 views 18 slides Jan 02, 2022
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

It is about a general understanding of SVD with 2x3 worked Example.


Slide Content

Singular Value Decomposition (SVD)
Isaac Amornortey Yowetu
December 31, 2021

Example 3
Find the matrices Uand V for the matrix
A=
"
3 1 1
1 3 1
#
2/18

Finding the Singular Values
Solution
A=
"
3 1 1
1 3 1
#
A
T
=
2
6
6
4
31
1 3
1 1
3
7
7
5
AA
T
=
"
11 1
1 11
#
3/18

Characteristics Polynomial
det(A
T
A) =





11 1
1 11





(1)
P(A
T
A) = (11)(11)1 (2)
=
2
22+120 (3)
= (12)(10) (4)
Eigenvalues
1=
2
1=12 (5)
2=
2
2=10 (6)
4/18

Singular Values
1=
p
1=
p
12 (7)
2=
p
2=
p
10 (8)
Singular Values Decompostion of A
=
"p
12 0 0
0
p
10 0
#
5/18

Constructing Matrix U
A=UV
T
(9)
AA
T
=UV
T
(UV
T
)
T
(10)
=U
T
V
T
VU
T
(11)
=U
2
U
T
(12)
=UDU
T
(13)
AA
T
=
"
11 1
1 11
#
(14)
6/18

Constructing Matrix U Cont'd
When=12
"
11 1
1 11
#
=
"
1 1
11
#
(15)
By row reduction form, we have:
"
1 1
11
#
=>
"
1 1
0 0
#
(16)
Forming equations with some variables:
x+y=0 (17)
Our eigenvector becomes:(1;1)
t
7/18

Constructing Matrix U Cont'd
When=10
"
11 1
1 11
#
=
"
1 1
1 1
#
(18)
By row reduction form, we have:
"
1 1
1 1
#
=>
"
1 1
0 0
#
(19)
Forming equations with some variables:
x+y=0 (20)
Our eigenvector becomes:(1;1)
t
8/18

Constructing Matrix U Cont'd
Let Z be the egigenvectors of the various eigenvalues.
Z=
"
1 1
11
#
We normalized each column of Z to get U
U=
"p
2
2
p
2
2p
2
2

p
2
2
#
9/18

Constructing Matrix V
A
T
A=
2
6
6
4
31
1 3
1 1
3
7
7
5
"
3 1 1
1 3 1
#
(21)
=
2
6
6
4
10 0 2
0 10 4
2 4 2
3
7
7
5
(22)
10/18

Constructing Matrix V Cont'd
Characteristics Polynomial
det(AA
T
) =








10 0 2
0 104
2 4 2








(23)
P(AA
T
) =(12)(10) (24)
Eigenvalues
1=
2
1=12 (25)
2=
2
2=10 (26)
3=
2
3=0 (27)
11/18

Constructing Matrix V Cont'd
When=12
2
6
6
4
10 0 2
0 104
2 4 2
3
7
7
5
=
2
6
6
4
2 0 2
02 4
2 4 10
3
7
7
5
(28)
By row reduction form, we have:
2
6
6
4
2 0 2
02 4
2 4 10
3
7
7
5
=>
2
6
6
4
2 0 2
02 4
0 4 8
3
7
7
5
=>
2
6
6
4
2 0 2
02 4
0 0 0
3
7
7
5
(29)
12/18

Constructing Matrix V Cont'd
Forming equations with some variables:
2x+2z=0 (30)
2y+4z=0 (31)
Our eigenvector becomes:(1;2;1)
t
13/18

Constructing Matrix V Cont'd
When=10
2
6
6
4
10 0 2
0 104
2 4 2
3
7
7
5
=
2
6
6
4
0 0 2
0 0 4
2 48
3
7
7
5
(32)
By row reduction form, we have:
2
6
6
4
2 48
0 0 2
0 0 4
3
7
7
5
=>
2
6
6
4
2 48
0 0 2
0 0 0
3
7
7
5
(33)
14/18

Constructing Matrix V Cont'd
Forming equations with some variables:
2x+4y=0 (34)
z=0 (35)
Our eigenvector becomes:(2;1;0)
t
15/18

Find the remaining eigenvector
AX=0 (36)
"
3 1 1
1 3 1
#
2
6
6
4
x
y
z
3
7
7
5
=
"
0
0
#
(37)
By row reduction form, we have:
"
3 1 1
1 3 1
#
=>
"
3 1 1
0 10 4
#
=>
"
3 1 1
0 5 2
#
(38)
Forming equations with the variables:
3x+y+z=0 (39)
5y+2z=0 (40)
Our eigenvector becomes:(1;2;5)
t
16/18

Constructing Matrix V Cont'd
Z=
2
6
6
4
1 2 1
21 2
1 0 5
3
7
7
5
(41)
We normalize each column vector of Z to obtain matrix V
V=
2
6
6
4
p
6
6
2
p
5
5
p
30
30p
6
3

p
5
5
p
30
15p
6
6
0

p
30
6
3
7
7
5
(42)
17/18

Singular Value Decomposition
A=
"p
2
2
p
2
2p
2
2

p
2
2
# "p
12 0 0
0
p
10 0
#
2
6
6
4
p
6
6
p
6
3
p
6
6
2
p
5
5

p
5
5
0
p
30
30
p
30
15

p
30
6
3
7
7
5
(43)
18/18