References RAKESH NANDAN IIT BHUBANESWAR, SMS PAGE NUMBER : 17 [1] R. Kandasamy, X. Q. Wang, and A. S. Mujumdar, “Transient cooling of electronics using phase change material (PCM)-based heat sinks,” Appl. Therm. Eng. , vol. 28, no. 8–9, pp. 1047–1057, 2008, doi : 10.1016/j.applthermaleng.2007.06.010. [ 2 ] R. Kalbasi , “Introducing a novel heat sink comprising PCM and air - Adapted to electronic device thermal management,” Int. J. Heat Mass Transf. , vol. 169, p. 120914, 2021, doi : 10.1016/j.ijheatmasstransfer.2021.120914. [3] X. H. Yang, S. C. Tan, Z. Z. He, Y. X. Zhou, and J. Liu, “Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock,” Appl. Therm. Eng., vol. 119, pp. 34–41, 2017, doi : 10.1016/j.applthermaleng.2017.03.050. [4] Al-Omari, S.A.B., Qureshi, Z.A., Elnajjar , E. and Mahmoud, F., 2022. A heat sink integrating fins within high thermal conductivity phase change material to cool high heat-flux heat sources. International Journal of Thermal Sciences, 172, p.107190. [5] Shaikh A, Kumar S, Dawari A, Kirwai S, Patil A, Singh R. Effect of temperature and cooling rates on the α+ β morphology of Ti-6Al-4V alloy. Procedia Structural Integrity. 2019 Jan 1;14:782-9. [6] Jalilvand , A., Mochizuki, M., Singh, R., Saito, Y., Kawahara, Y. and Wuttijumnong , V., 2014. Air Impingement Cooling by Synthetic Jet. Journal of Thermal Science and Engineering Applications, 6(3), p.031008. [ 7 ] A. Lindstrom and M. Amitay, “Effect of orifice geometry on synthetic jet evolution,” AIAA J., vol. 57, no. 7, pp. 2783–2794, 2019, doi : 10.2514/1.J058135. [8] Y. H. Liu, T. H. Chang, and C. C. Wang, “Heat transfer enhancement of an impinging synthetic air jet using diffusion-shaped orifice,” Appl. Therm. Eng., vol. 94, pp. 178–185, 2016, doi : 10.1016/j.applthermaleng.2015.10.054.