SlidePub
Home
Categories
Login
Register
Home
General
SLATER’S RULE.pdf
SLATER’S RULE.pdf
7,817 views
27 slides
May 11, 2023
Slide
1
of 27
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
About This Presentation
This is the way of finding the effective nuclear charge.credit goes to the professor
Size:
426.52 KB
Language:
en
Added:
May 11, 2023
Slides:
27 pages
Slide Content
Slide 1
PRESENTER:
SEEMASAINI
ASSOCIATEPROF.INCHEMISTRY
GOVT.COLLEGE,RUPNAGAR
SLATER’SRULE
Slide 2
Slater’sRule
INTRODUCTION:
In1930,ascientist proposedasetof
empiricalrulestounderstandtheconceptofEffective
NuclearChargeandtocalculatetheScreening
ConstantorShieldingConstant.
HeproposedaformulaforcalculationofEffective
NuclearCharge
Zeff=Z–S
whereSistheSlater’sscreeningconstant,
ZistheNuclearcharge
Slide 3
PriortoexplainingSlater’srules,certaintermslikeNuclear
Charge,ShieldingEffectandEffectiveNuclearChargehave
tobeUnderstood.
WhatisNuclearCharge?
Itisthechargeonthenucleuswithwhichitattractsthe
electronsoftheatom.Basically,theNuclearChargeissaid
tobeequaltotheAtomicNumber(i.e,.theNumberof
protons)inanatom.ItisdenotedbythesymbolZ.
WhatisShieldingEffect?
IncaseofMultielectronatoms,astheorbitalsarefilled
up,theelectronsintheInnerorbitalsshieldtheelectronsin
theOuterorbitalsfromtheNucleus.
Slide 4
So,theelectronsintheOuterorbitalsdonotfeelthefullforce
orchargeofthenucleus.Thus,thereductionofnuclear
chargeontheOutermostelectronsiscalledShielding.Effect
orScreeningEffect.ShieldingEffectisdefinedasameasure
oftheextenttowhichtheinterveningelectronsshieldthe
outerelectronsfromthenuclearcharge.Itisdenotedbythe
symbolS
WhatisEffectiveNuclearCharge?
EffectiveNuclearChargeistheactualchargefeltbythe
outerelectronsaftertakingintoaccountshieldingofthe
electrons.ItisdenotedbythesymbolZ*orZeff
Slide 5
Slater'sRules:
1)Writetheelectronconfigurationfortheatomusing
thefollowingdesign;
(1)(2,2)(3,3)(3)(4,4)(4)(4)(5,5)(5d)
(5f)(6s,6p)…….etc.
2)Anyelectronstotherightoftheelectronofinterest
contributesnothingtowardsshielding.
3)Allotherelectronsinthesamegroupasthe
electronofinterestshieldtoanextentof0.35
nuclearchargeunitsirrespectiveofwhetherthe
electronsareins,p,d,orforbitals.
Slide 6
4)Incaseof1selectronshieldinganother1selectronthe
screeningconstantvalueistakentobe0.30.
5)Iftheelectronofinterestisanorelectron:Allelectrons
withonelessvaluei.e.(n-1)valueoftheprincipal
quantumnumbershieldtoanextentof0.85unitsofnuclear
charge.Allelectronswithtwoormorelessvaluesi.e.
(n–2,n–3,n–4etc.)valuesoftheprincipalquantum
numbershieldtoanextentof1.00units.
6)Iftheelectronofinterestisanorelectron:Allelectronsto
theleftshieldtoanextentof1.00unitsofnuclearcharge.
7)Sumtheshieldingamountsfromsteps2through5and
subtractfromthenuclearchargevaluetoobtaintheeffective
nuclearchargevalue.
Slide 7
CalculateZ
*
foravalenceelectronin
fluorine(Z=9).
Electronicconfigurationoffluorineis1
2
,2
2
,2
5
Groupingitacc.toslater’srule:(1
2
)(2
2
,2
5
)
Rule2doesnotapply;
Now,oneelectronoutofthe7valenceelectrons
becomestheelectronofinterest.Theotherremaining
6valenceelectronswillcontribute0.35eachtowards
shielding.
Theelectronsin(n–1)orbitalsi.e.1sorbitalwill
contribute0.85eachtowardsshielding.
Slide 8
S=0.35x(No.ofelectronsinthesameshelli.e.
norbital)+0.85x(No.ofelectronsinthe
(n–1)shell)
S=0.35x6+0.85x2=3.8
Z
*
=Z–S=9–3.8=5.2foravalenceelectron.
CalculateZ
*
fora6electroninPlatinum
(Z=78)
Slide 9
TheelectronicconfigurationofPlatinum(Z=78)is
1s
2
,2s
2
,2p
6
,3s
2
,3p
6
,4s
2
,3d
10
,4p
6
,5s
2
,4d
10
,5p
6
,
6s
2
,4f
14
,5d
8
,
.
Groupingitacc.toSlater’srule:
(1
2
)(2
2
,2
6
)(3
2
,3
6
)(3
10
)(4
2
,4
6
)(4
10
)(4
14
)
(5
2
,5
6
)(5
8
)(6
2
)
Rule2doesnotapply;
Now,oneelectronoutofthetwovalenceelectrons
becomestheelectronofinterest.Theother
remainingvalenceelectronswillcontribute0.35
eachtowardsshielding.
Slide 10
Theelectronsin(n–1)orbitalsi.e.(6–1)=5
th
orbitalwill
contribute0.85eachtowardsshielding.
Theelectronsin(n–2),(n–3),(n–4)….etc.orbitals
{i.e.(6–2),(6–3),(6–4)……etc.}orbitalswill
contribute1.00eachtowardsshielding.
S=0.35x(No.ofelectronsinthesameshelli.e.
norbital)+0.85x(No.ofelectronsinthe
(n–1)shell)+1.00x(No.ofelectronsinthe(n–2),
(n–3)….etc.orbitals)
S=0.35x1+0.85x16+60x1.00=73.95
Z
*
=Z–S=78–73.95=4.15foravalenceelectron.
Slide 11
CalculatetheEffectiveNuclearChargeforone
ofthe4felectronsofCerium(Z=58)
TheelectronicconfigurationofCeriumis:
1s
2
2s
2
2p
6
3s
2
3p
6
3d
10
4s
2
4p
6
4d
10
4f
2
5s
2
5p
6
6s
2
Groupingtheorbitalsacc.toSlater’s:
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)(3d
10
)(4s
2
4p
6
)(4d
10
)(4f
2
)
(5s
2
5p
6
)(6s
2
)
Aswehavetocalculatetheeffectivenuclearcharge
of4felectronsofCerium,theelectronslyingafterthe
4felectronwillnotcontributetoshielding
Slide 12
Now,
S=0.35x(No.ofelectronsinthesameorbital+
1.00x(alltheelectronsinthelowerorbitals)
S=0.35x1+1.00x46=46.35
Zeff=Z–S=58–46.35=11.65
CalculatetheEffectiveNuclearChargein
theperipheryofNitrogen(Z=7)
InordertocalculatetheEffectiveNuclearChargeinthe
peripheryofanatomorion,theshieldingofnuclear
chargebyalltheelectronspresentintheelectronic
configurationoftheatomorion.
Slide 13
TheelectronicconfigurationofNitrogenis1s
2
2s
2
2p
6
Groupingacc.toSlater’srule:(1s
2
)(2s
2
2p
6
)
S=0.35x(No.ofelectronsinthesameorbital)+
0.85x(No.ofelectronsinthe(n–1)orbital
S=0.35x5+0.85x2=3.45
ZeffintheperipheryofN-atom=Z–S=7–3.45
=3.55
Slide 14
APPLICATIONSOFSLATER’SRULE
Itprovidesaquantitativejustificationforthe
sequenceoforbitalsintheenergyleveldiagram.
Ithelpstoexplainthefillingofns-orbital(4s,5s,6s
etc.–orbitals)priortothefillingof(n-1)dorbital(3d,
4d,5d…etc.).
LetusconsiderthecaseofPotassium(Z=19),in
whichthelastelectronisaddedto4sorbital
Slide 15
TheconfigurationofPotassiumacc.toSlateris
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)(4s
1
)
Astheeffectivenuclearchargeonelectronin4s
orbitalhastobecalculated,theelectronsinthe
sameorbitali.e.norbitalwillcontribute0.35each,
theelectronsin(n–1)orbitali.e.3sand3p
orbitalswillcontributeS=0.85eachandallthe
electronsin(n–2,n–3….Etc)orbitalsi.e.(2s,
2p,1s)orbitalswillcontributeS=1.00each.
Slide 16
So,
=0x0.35+8x0.85+10x1.00
=16.80
Therefore,EffectiveNuclearCharge
Z*=Z–S=19–16.80=2.20
Now,Letusassumethatthelastelectronenters
the3dorbitalratherthan4sorbital,
Thentheconfigurationacc.toSlateris
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)(3d
1
)
Slide 17
HerethedelectronisunderInterest,sotheelectrons
inthesameorbitali.e.3dorbitalwillcontributeS=
0.35each,whereastheelectronsinalltheother
orbitalsi.e.(3s,3p,2s,2p,1s)willallcontributeS=
1.00each.
So,
S=0x0.35+18x1.00=18.00
ThereforeEffectiveNuclearCharge
Z*=Z–S=19.00–18.00=1.00
OncomparingtheEffectiveNuclearChargeofboth4s
and3dorbitals,weseethatthe4selectronisunderthe
influenceofgreaterEffectiveNuclearcharge(Zeff=2.20)
ascomparedto3delectron(Zeff=1.00)inPotassium
atom.
Slide 18
So,theelectronin4sorbitalwillbemoreattractedbythe
nucleusandwillhavelowerenergythanthe3delectron.
Thus,thelastelectronwillenterinthe4sorbital,rather
thanthe3dorbitalincaseofPotassiumatom.
Slater’sruleexplainwhy4selectronsarelostprior
to3delectronsduringcationformationincaseof
Transitionelements.
Letusconsiderthecaseof (Z=23)
TheelectronicconfigurationofVanadiumis
1s
2
2s
2
2p
6
3s
2
3p
6
3d
3
4s
2
Slide 19
Afterlosing2electrons,theelectronicconfigurationof
V
2+
is
1s
2
2s
2
2p
6
3s
2
3p
6
3d
1
4s
2
Andnot
1s
2
2s
2
2p
6
3s
2
3p
6
3d
3
TheaboveElectronicConfigurationcanbeexplainedby
Slater’srules
TheEffectiveNuclearChargefor4selectronis
calculatedas:
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)(3d
3
)(4s
2
)
Now,oneoftheelectronsofthe4sorbitalbecomes
electronofinterest.Thesecondelectronhowever,will
contributetowardsshieldingeffect
Slide 20
S=1x0.35+11x0.85+10x1.00=19.70
So,Zeff=Z–S=23–19.70=3.30
Now,letscalculatetheEffectiveNuclearCharge
fora3delectron
AccordingtoSlater’srule
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)(3d
3
)(4s
2
)
As4sorbitalliesaftertheelectronunderinterestitwill
contributesnothingtowardsshielding.
Oneelectronof3dorbitalbecomeselectronofinterest.The
othertwo3delectronswillcontributetowardsshielding
effect.
S=2x0.35+18x1.00=18.70
Zeff=Z–S=23–18.70=4.30
Slide 21
ComparingtheEffectiveNuclearChargeofboththe
3dandthe4selectron,itisseenthatEffectiveNuclear
Chargeon3delectronis4.30whereas4selectronhas
3.30.
Theforceofattractionexperiencedbythe3d
electronsismoreascomparedto4selectrons.
The3delectronsaremoretightlyheldtothenucleus
than4selectrons.
Thus,the4selectronsareremovedinpreferenceto3d
electrons.
Slide 22
Theforceofattractionexperiencedbythe3d
electronsismoreascomparedto4selectrons.
The3delectronsaremoretightlyheldtothenucleus
than
4selectrons.
Thus,the4selectronsareremovedinpreferenceto3d
electrons.
Ithelpstoexplainwhysizeofacationis
alwayssmallerthanitsneutralatom.
Let’staketheexampleofLithiumatomandLithiumion
TheElectronicconfigurationofLithiumatomis1s
2
2s
1
WriteitaccordingtoSlater’s(1s
2
)(2s
1
)
As2sorbitalhasonlyoneelectron,itbecomesthe
electronofinterest.
Slide 23
Onlythe1selectronswillcontributetowardsshielding.
S=2x0.85=1.70
Zeff=Z–S=3–1.70=1.30
IncaseofLithium(Li
+
)Ion
TheElectronicConfigurationofLi
+
is1s
2
Groupingacc.toSlater:(1s
2
)
InCaseofLi
+
,oneofthe1selectronsbecomeselectron
ofinterestandtheother1selectroncontributestowards
shielding.
S=1x0.30=0.30
Zeff=Z–S=3–0.30=2.70
Slide 24
ComparisonoftheEffectiveNuclearChargeofLiatom
(Zeff=1.30)andLi
+
ion(Zeff=2.70),showsthat
EffectivenuclearchargeofLi
+
ionismorethanLiatom.
So,thesizeofLi
+
ionissmallerthanLiatom.
Itexplainswhyaanionisalwayslargerthanitsneutral
atom
TakingtheexampleofChlorineatomandChlorineion.
IncaseofChlorineatom(Z=17),theelectronic
configurationis1s
2
2s
2
2p
6
3s
2
3p
5
Groupingitacc.toSlater’srule
(1s
2
)(2s
2
2p
6
)(3s
2
3p
5
)
S=6x0.35+8x0.85+2x1.00=10.90
Zeff=Z–S=17–10.90=6.10
Slide 25
IncaseofChlorineionCl
-
Theelectronicconfigurationis1s
2
2s
2
2p
6
3s
2
3p
6
Groupingitacc.toSlater’srule
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)
S=7x0.35+8x0.85+2x1.00=11.25
Zeff=Z–S=17–11.25=5.75
ComparisonoftheEffectiveNuclearChargeofClatom
(Zeff=6.10)andCl
-
ion(Zeff=5.75),showsthatEffective
nuclearchargeonClatomismorethanCl
-
ion.
So,thesizeofCl
-
ionislargerthanClatom.
Slide 26
Slatergroupedbothsandporbitalstogetherfor
calculatingeffectivenuclearcharge,whichis
incorrect.Thisisbecauseradialprobability
distributioncurvesshowthatsorbitalsaremore
penetratingthanporbitals.So,thesorbitals
shouldshieldtoagreaterextentascomparedtop
orbital.
AccordingtoSlater,allthes,p,dandfelectrons
presentinshellorenergylevellowerthan(n–1)
shellwillshieldtheouternelectronswithequal
contributionofS=1.00each.Thisisnotjustified
asenergeticallydifferentorbitalsshouldnot
contributeequally.
Slater’srulesarelessreliableforheavierelements
LIMITATIONSOFSLATER’SRULE
Slide 27
THANKYOU
*THEEND
Tags
Categories
General
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
7,817
Slides
27
Favorites
1
Age
943 days
Related Slideshows
22
Pray For The Peace Of Jerusalem and You Will Prosper
RodolfoMoralesMarcuc
35 views
26
Don_t_Waste_Your_Life_God.....powerpoint
chalobrido8
38 views
31
VILLASUR_FACTORS_TO_CONSIDER_IN_PLATING_SALAD_10-13.pdf
JaiJai148317
34 views
14
Fertility awareness methods for women in the society
Isaiah47
31 views
35
Chapter 5 Arithmetic Functions Computer Organisation and Architecture
RitikSharma297999
30 views
5
syakira bhasa inggris (1) (1).pptx.......
ourcommunity56
31 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-27)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better