SLATER’S RULE.pdf

7,817 views 27 slides May 11, 2023
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

This is the way of finding the effective nuclear charge.credit goes to the professor


Slide Content

PRESENTER:
SEEMASAINI
ASSOCIATEPROF.INCHEMISTRY
GOVT.COLLEGE,RUPNAGAR
SLATER’SRULE

Slater’sRule
INTRODUCTION:
In1930,ascientist proposedasetof
empiricalrulestounderstandtheconceptofEffective
NuclearChargeandtocalculatetheScreening
ConstantorShieldingConstant.
HeproposedaformulaforcalculationofEffective
NuclearCharge
Zeff=Z–S
whereSistheSlater’sscreeningconstant,
ZistheNuclearcharge

PriortoexplainingSlater’srules,certaintermslikeNuclear
Charge,ShieldingEffectandEffectiveNuclearChargehave
tobeUnderstood.
WhatisNuclearCharge?
Itisthechargeonthenucleuswithwhichitattractsthe
electronsoftheatom.Basically,theNuclearChargeissaid
tobeequaltotheAtomicNumber(i.e,.theNumberof
protons)inanatom.ItisdenotedbythesymbolZ.
WhatisShieldingEffect?
IncaseofMultielectronatoms,astheorbitalsarefilled
up,theelectronsintheInnerorbitalsshieldtheelectronsin
theOuterorbitalsfromtheNucleus.

So,theelectronsintheOuterorbitalsdonotfeelthefullforce
orchargeofthenucleus.Thus,thereductionofnuclear
chargeontheOutermostelectronsiscalledShielding.Effect
orScreeningEffect.ShieldingEffectisdefinedasameasure
oftheextenttowhichtheinterveningelectronsshieldthe
outerelectronsfromthenuclearcharge.Itisdenotedbythe
symbolS
WhatisEffectiveNuclearCharge?
EffectiveNuclearChargeistheactualchargefeltbythe
outerelectronsaftertakingintoaccountshieldingofthe
electrons.ItisdenotedbythesymbolZ*orZeff

Slater'sRules:
1)Writetheelectronconfigurationfortheatomusing
thefollowingdesign;
(1)(2,2)(3,3)(3)(4,4)(4)(4)(5,5)(5d)
(5f)(6s,6p)…….etc.
2)Anyelectronstotherightoftheelectronofinterest
contributesnothingtowardsshielding.
3)Allotherelectronsinthesamegroupasthe
electronofinterestshieldtoanextentof0.35
nuclearchargeunitsirrespectiveofwhetherthe
electronsareins,p,d,orforbitals.

4)Incaseof1selectronshieldinganother1selectronthe
screeningconstantvalueistakentobe0.30.
5)Iftheelectronofinterestisanorelectron:Allelectrons
withonelessvaluei.e.(n-1)valueoftheprincipal
quantumnumbershieldtoanextentof0.85unitsofnuclear
charge.Allelectronswithtwoormorelessvaluesi.e.
(n–2,n–3,n–4etc.)valuesoftheprincipalquantum
numbershieldtoanextentof1.00units.
6)Iftheelectronofinterestisanorelectron:Allelectronsto
theleftshieldtoanextentof1.00unitsofnuclearcharge.
7)Sumtheshieldingamountsfromsteps2through5and
subtractfromthenuclearchargevaluetoobtaintheeffective
nuclearchargevalue.

CalculateZ
*
foravalenceelectronin
fluorine(Z=9).
Electronicconfigurationoffluorineis1
2
,2
2
,2
5
Groupingitacc.toslater’srule:(1
2
)(2
2
,2
5
)
Rule2doesnotapply;
Now,oneelectronoutofthe7valenceelectrons
becomestheelectronofinterest.Theotherremaining
6valenceelectronswillcontribute0.35eachtowards
shielding.
Theelectronsin(n–1)orbitalsi.e.1sorbitalwill
contribute0.85eachtowardsshielding.

S=0.35x(No.ofelectronsinthesameshelli.e.
norbital)+0.85x(No.ofelectronsinthe
(n–1)shell)
S=0.35x6+0.85x2=3.8
Z
*
=Z–S=9–3.8=5.2foravalenceelectron.
CalculateZ
*
fora6electroninPlatinum
(Z=78)

TheelectronicconfigurationofPlatinum(Z=78)is
1s
2
,2s
2
,2p
6
,3s
2
,3p
6
,4s
2
,3d
10
,4p
6
,5s
2
,4d
10
,5p
6
,
6s
2
,4f
14
,5d
8
,
.
Groupingitacc.toSlater’srule:
(1
2
)(2
2
,2
6
)(3
2
,3
6
)(3
10
)(4
2
,4
6
)(4
10
)(4
14
)
(5
2
,5
6
)(5
8
)(6
2
)
Rule2doesnotapply;
Now,oneelectronoutofthetwovalenceelectrons
becomestheelectronofinterest.Theother
remainingvalenceelectronswillcontribute0.35
eachtowardsshielding.

Theelectronsin(n–1)orbitalsi.e.(6–1)=5
th
orbitalwill
contribute0.85eachtowardsshielding.
Theelectronsin(n–2),(n–3),(n–4)….etc.orbitals
{i.e.(6–2),(6–3),(6–4)……etc.}orbitalswill
contribute1.00eachtowardsshielding.
S=0.35x(No.ofelectronsinthesameshelli.e.
norbital)+0.85x(No.ofelectronsinthe
(n–1)shell)+1.00x(No.ofelectronsinthe(n–2),
(n–3)….etc.orbitals)
S=0.35x1+0.85x16+60x1.00=73.95
Z
*
=Z–S=78–73.95=4.15foravalenceelectron.

CalculatetheEffectiveNuclearChargeforone
ofthe4felectronsofCerium(Z=58)
TheelectronicconfigurationofCeriumis:
1s
2
2s
2
2p
6
3s
2
3p
6
3d
10
4s
2
4p
6
4d
10
4f
2
5s
2
5p
6
6s
2
Groupingtheorbitalsacc.toSlater’s:
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)(3d
10
)(4s
2
4p
6
)(4d
10
)(4f
2
)
(5s
2
5p
6
)(6s
2
)
Aswehavetocalculatetheeffectivenuclearcharge
of4felectronsofCerium,theelectronslyingafterthe
4felectronwillnotcontributetoshielding

Now,
S=0.35x(No.ofelectronsinthesameorbital+
1.00x(alltheelectronsinthelowerorbitals)
S=0.35x1+1.00x46=46.35
Zeff=Z–S=58–46.35=11.65
CalculatetheEffectiveNuclearChargein
theperipheryofNitrogen(Z=7)
InordertocalculatetheEffectiveNuclearChargeinthe
peripheryofanatomorion,theshieldingofnuclear
chargebyalltheelectronspresentintheelectronic
configurationoftheatomorion.

TheelectronicconfigurationofNitrogenis1s
2
2s
2
2p
6
Groupingacc.toSlater’srule:(1s
2
)(2s
2
2p
6
)
S=0.35x(No.ofelectronsinthesameorbital)+
0.85x(No.ofelectronsinthe(n–1)orbital
S=0.35x5+0.85x2=3.45
ZeffintheperipheryofN-atom=Z–S=7–3.45
=3.55

APPLICATIONSOFSLATER’SRULE
Itprovidesaquantitativejustificationforthe
sequenceoforbitalsintheenergyleveldiagram.
Ithelpstoexplainthefillingofns-orbital(4s,5s,6s
etc.–orbitals)priortothefillingof(n-1)dorbital(3d,
4d,5d…etc.).
LetusconsiderthecaseofPotassium(Z=19),in
whichthelastelectronisaddedto4sorbital

TheconfigurationofPotassiumacc.toSlateris
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)(4s
1
)
Astheeffectivenuclearchargeonelectronin4s
orbitalhastobecalculated,theelectronsinthe
sameorbitali.e.norbitalwillcontribute0.35each,
theelectronsin(n–1)orbitali.e.3sand3p
orbitalswillcontributeS=0.85eachandallthe
electronsin(n–2,n–3….Etc)orbitalsi.e.(2s,
2p,1s)orbitalswillcontributeS=1.00each.

So,
=0x0.35+8x0.85+10x1.00
=16.80
Therefore,EffectiveNuclearCharge
Z*=Z–S=19–16.80=2.20
Now,Letusassumethatthelastelectronenters
the3dorbitalratherthan4sorbital,
Thentheconfigurationacc.toSlateris
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)(3d
1
)

HerethedelectronisunderInterest,sotheelectrons
inthesameorbitali.e.3dorbitalwillcontributeS=
0.35each,whereastheelectronsinalltheother
orbitalsi.e.(3s,3p,2s,2p,1s)willallcontributeS=
1.00each.
So,
S=0x0.35+18x1.00=18.00
ThereforeEffectiveNuclearCharge
Z*=Z–S=19.00–18.00=1.00
OncomparingtheEffectiveNuclearChargeofboth4s
and3dorbitals,weseethatthe4selectronisunderthe
influenceofgreaterEffectiveNuclearcharge(Zeff=2.20)
ascomparedto3delectron(Zeff=1.00)inPotassium
atom.

So,theelectronin4sorbitalwillbemoreattractedbythe
nucleusandwillhavelowerenergythanthe3delectron.
Thus,thelastelectronwillenterinthe4sorbital,rather
thanthe3dorbitalincaseofPotassiumatom.
Slater’sruleexplainwhy4selectronsarelostprior
to3delectronsduringcationformationincaseof
Transitionelements.
Letusconsiderthecaseof (Z=23)
TheelectronicconfigurationofVanadiumis
1s
2
2s
2
2p
6
3s
2
3p
6
3d
3
4s
2

Afterlosing2electrons,theelectronicconfigurationof
V
2+
is
1s
2
2s
2
2p
6
3s
2
3p
6
3d
1
4s
2
Andnot
1s
2
2s
2
2p
6
3s
2
3p
6
3d
3

TheaboveElectronicConfigurationcanbeexplainedby
Slater’srules
TheEffectiveNuclearChargefor4selectronis
calculatedas:
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)(3d
3
)(4s
2
)
Now,oneoftheelectronsofthe4sorbitalbecomes
electronofinterest.Thesecondelectronhowever,will
contributetowardsshieldingeffect

S=1x0.35+11x0.85+10x1.00=19.70
So,Zeff=Z–S=23–19.70=3.30
Now,letscalculatetheEffectiveNuclearCharge
fora3delectron
AccordingtoSlater’srule
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)(3d
3
)(4s
2
)
As4sorbitalliesaftertheelectronunderinterestitwill
contributesnothingtowardsshielding.
Oneelectronof3dorbitalbecomeselectronofinterest.The
othertwo3delectronswillcontributetowardsshielding
effect.
S=2x0.35+18x1.00=18.70
Zeff=Z–S=23–18.70=4.30

ComparingtheEffectiveNuclearChargeofboththe
3dandthe4selectron,itisseenthatEffectiveNuclear
Chargeon3delectronis4.30whereas4selectronhas
3.30.
Theforceofattractionexperiencedbythe3d
electronsismoreascomparedto4selectrons.
The3delectronsaremoretightlyheldtothenucleus
than4selectrons.
Thus,the4selectronsareremovedinpreferenceto3d
electrons.

Theforceofattractionexperiencedbythe3d
electronsismoreascomparedto4selectrons.
The3delectronsaremoretightlyheldtothenucleus
than
4selectrons.
Thus,the4selectronsareremovedinpreferenceto3d
electrons.
Ithelpstoexplainwhysizeofacationis
alwayssmallerthanitsneutralatom.
Let’staketheexampleofLithiumatomandLithiumion
TheElectronicconfigurationofLithiumatomis1s
2
2s
1
WriteitaccordingtoSlater’s(1s
2
)(2s
1
)
As2sorbitalhasonlyoneelectron,itbecomesthe
electronofinterest.

Onlythe1selectronswillcontributetowardsshielding.
S=2x0.85=1.70
Zeff=Z–S=3–1.70=1.30
IncaseofLithium(Li
+
)Ion
TheElectronicConfigurationofLi
+
is1s
2
Groupingacc.toSlater:(1s
2
)
InCaseofLi
+
,oneofthe1selectronsbecomeselectron
ofinterestandtheother1selectroncontributestowards
shielding.
S=1x0.30=0.30
Zeff=Z–S=3–0.30=2.70

ComparisonoftheEffectiveNuclearChargeofLiatom
(Zeff=1.30)andLi
+
ion(Zeff=2.70),showsthat
EffectivenuclearchargeofLi
+
ionismorethanLiatom.
So,thesizeofLi
+
ionissmallerthanLiatom.
Itexplainswhyaanionisalwayslargerthanitsneutral
atom
TakingtheexampleofChlorineatomandChlorineion.
IncaseofChlorineatom(Z=17),theelectronic
configurationis1s
2
2s
2
2p
6
3s
2
3p
5
Groupingitacc.toSlater’srule
(1s
2
)(2s
2
2p
6
)(3s
2
3p
5
)
S=6x0.35+8x0.85+2x1.00=10.90
Zeff=Z–S=17–10.90=6.10

IncaseofChlorineionCl
-
Theelectronicconfigurationis1s
2
2s
2
2p
6
3s
2
3p
6
Groupingitacc.toSlater’srule
(1s
2
)(2s
2
2p
6
)(3s
2
3p
6
)
S=7x0.35+8x0.85+2x1.00=11.25
Zeff=Z–S=17–11.25=5.75
ComparisonoftheEffectiveNuclearChargeofClatom
(Zeff=6.10)andCl
-
ion(Zeff=5.75),showsthatEffective
nuclearchargeonClatomismorethanCl
-
ion.
So,thesizeofCl
-
ionislargerthanClatom.

Slatergroupedbothsandporbitalstogetherfor
calculatingeffectivenuclearcharge,whichis
incorrect.Thisisbecauseradialprobability
distributioncurvesshowthatsorbitalsaremore
penetratingthanporbitals.So,thesorbitals
shouldshieldtoagreaterextentascomparedtop
orbital.
AccordingtoSlater,allthes,p,dandfelectrons
presentinshellorenergylevellowerthan(n–1)
shellwillshieldtheouternelectronswithequal
contributionofS=1.00each.Thisisnotjustified
asenergeticallydifferentorbitalsshouldnot
contributeequally.
Slater’srulesarelessreliableforheavierelements
LIMITATIONSOFSLATER’SRULE

THANKYOU
*THEEND
Tags