Solution Purification and Metal Recovery

asfulhariyadi2 13 views 86 slides Mar 10, 2025
Slide 1
Slide 1 of 86
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86

About This Presentation

Purifikasi pada Hidrometalurgi


Slide Content

CHAPTER III
SOLUTION PURIFICATION AND
METALS RECOVERY FROM
PREGNANT LEACH SOLUTION

Remember thefollowinggeneralflowsheetof
hydrometallurgicalprocess:
Ore/concentrate
leaching
Solid-liquid separation
Solution purification
Precipitation
Pregnant Solution
Solid residu to waste
Leaching agentOxidant
Precipitant or
electric current
Pure compound Metals

Solution Purification
▪Leachingusuallynot100%selective.Once
thesolutionisseparatedfromthesolids,it
requirespurification.
▪Withoutpurificationthesubsequentprocess
ofmetalsrecoverywouldnotnotperform
effectively.
▪Oftenhighpuritysolutionsarerequiredto
producehighpurityproductsinmetals
recovery.

Four main methods of Solution
Purification
•Adsorption on Activated Carbon
•Ion Exchange (IX)
•Solvent Extraction (SX)
•Precipitation
–Precipitation by pH adjusment
–Precipitation by metals (cementation)
–Precipitation by gas
–Precipitation by electric current (electrodeposition)
–Precipitation by thermal treatment (cystallization)

Adsorption on Activated Carbon
•Adsorptiononactivatedcarbonisdonemainlyfor
concentratinggoldandsilverfromcyanideleach
solution.
•Activecarbonpreparedfromactivatedcharcoalis
muchcheaperadsorberthanIXresinsandSX
reagents.
•Theadsorptionofmetalionsbyactivatedcharcoalis
usuallyfavorableonlytoanionsandnottocations.
•Activatedcarbonisan“amorphous“formofcarbon;it
hasnoregularatomicstructure,hassosmallcrystal
sizethatitdoesnotgiveanX-raydiffractionpattern,
unlikethatofdiamond,graphite.

Preparation of Active Carbon
•Activatedcarboncanbemadefromawiderangeof
sourcematerials,suchascoal,coconutshells,wood,
peat,orbone.
•Therearetwotypesofamorphouscarbon,namely,
carbonblacksandcharcoals.
•Carbonblack:nonporousfineparticlesofcarbon
preparedbyincompletecombustionofgaseousor
liquidcarbonacesousmaterials(naturalgas,
acetylene,oils,tar)inlimitedsupplyofair.
•Carbonblacksareusedaspigmentsintherubber
industryandinkmanufacture.

Preparation of Active Carbon
•Heatingofsolidcarbonaceusmaterialssuchascoal,
woodandnutsheelsatabout600
o
Cintheabsenceof
airtovolatilizecomponentsotherthancarbon–the
processknownas“carbonization“.
•Furtherheatingto400-800
o
Cforlimitedtimewithair,
chlorineorsteamtoproducehighporousmaterialof
„activatedcharcoal“.
•Intheactivationstep,thesmallporestructureis
developedbyburningawaysomeremainingmaterial
tocreatenewporeandenlargeothers.
Active carbon is prepared as follow:

Preparation of Activated Charcoal
•Charcoalactivatedatlowtemperature(400
o
C)
areabbreviatedbyL-charcoalsandthose
activatedathightemperature(800
o
C)are
abbreviatedbyH-charcoals.
•Afteractivation,H-charcoalmustbecooledin
aninertatmosphere,otherwisetheywillbe
convertedtoL-charcoal.

Properties of Activated Carbon
•Thepropertiesofactivatedcarbondepend
primarilyonthetemperatureofactivation.
–Ithashighporosityandsurfaceareaper
unitweight.
–Itishydrophilic,meanswettedbywater
duetosurfacecomplexes.
–Itcontainsappreciableamountsof
hydrogenandoxygenintheirstructure
(boundintheformofsurfacecomplexes).

Tipical properties of L-charcoal and H-
charcoal activated at different temperatures
Activationtemperature
400
o
C 550
o
C 650
o
C 800
o
C
L-Charcoal H-charcoal
Analysis (%)
Carbon 75.7 85.2 87.3 94.3
Oxygen 19.0 10.4 7.4 3.2
Hydrogen 3.2 2.7 2.1 1.5
Ash 0.7 1.3 1.4 1.2
Surfacearea
[m
2
/g]
40 400 390 480

Typical microstructure of active carbon showing
the porous structure
•Ingoldextractionindustries,activatedcarbonis
usedintheformofpelletsorbreeze,having
diameterofabout2mm.

Adsorption of Au and Ag from pregnant
cyanide solution
-Theadsorptionconsistsoftwounitprocess:
-LOADING,and
-STRIPPING
StrippingdesorptionofAu,Agfromactivecarbonsurfaceby
meansofwashingwithasolutionsuchas20-25wt%ethyleneor
propyleneglycoland2wt%causticsoda).
recoveryofAuandAgisfurtherdonewithelectrowinning.
strippedcarbonmustbereactivated.

Industrial application of Active carbon
-Activecarbonareusedin:
-CarboninLeach(CIL)
-CarboninPulp(CIP),and
-CarbonInColumn(CIC)
-CarboninLeach(CIL):
-Appliediftheorescontainscarbonaceousmaterialssuchas
carbonate
-Carbonisaddedinleachingtanktoavoidgoldlossesinfine
carbonparticlesinoresthatarenotrecoveredbyscreening
-CarboninPulp(CIP):
-Carbonisaddedinthepulpafterleaching
-CarboninColumn(CIC):
-Carbonisplacedinacolumnandgold-bearingsolutionin
loadedtothecolumn

Block diagram of gold extraction applying
CIP method

Pictorial diagram of gold extraction
applying CIP method

Block diagram of gold extraction applying
CIL method

Solvent Extraction
•Extractionofmetalsfrompregnantaqueousleachsolution
byanorganicreagenttoformorganometalliccomplex
solution.
•Metalspeciesleavetheaqueousphaseandenterthe
organicphase
•Unitprocess:Extractionandstripping

Flow of material in metals extraction
by leaching-SX-electrowinning

▪SXwasusedfirstlyforuraniumextraction
(Manhattanproject),followedbytheextractionsof
plutonium,thorium,niobium,tantalum,
zirconium,hafnium,boron,berrilium,molybdenum
▪Nowdays,SXisalsoindustriallyusedin
hydrometallurgicalextractiontoproducebase
metalssuchascopper(fromlowgradeore)and
nickelaswellasplatinumgroupmetalas(Pt,Pd,
Rh)
▪Mechanismofcopperextractionperformsbythe
followingreaction:[] []
aq
+
org2
Extraktion
stripping
aq
+2
org H2+CuRCu+H-R2

Copper extraction by heap leaching-SX-
electrowinning

Equipment of solvent extraction
▪Mixer-Settler
Consistsofamixingchamberwherethe
aqueousandorganicphasesaremixed
togetherbyarotatingimpeller
Certaintimeareprovidedformixedphases
toseparateinasettlingchamber
Themixersettlerrequireslargespace.
Manystagesareusuallyused(3to5)and
areoperatedincountercurrentflow.

Schematic of mixer settler phase separation
between liquid and aqueous phase

Equipment of solvent extraction
▪Column
Columndesigns:packedcolumn,pulsecolumn,
rotatingdiskcolumn
Packedcolumn:simplestdesign.Theorganic
solutionisintroducedfromthebottom,whereas
theaqueoussolutionfromthetop.
Pulsecolum:usingscreenpartitionsinsteadof
packing
Rotatingdiskcolumn:consistsofaverticaltower
withannulardiskattachedtothetowershell

Contactor columns in SX
Schematic
figure of
packed
column (left)
and pulsating
column (right)

▪SX Extractant Selection Criteria
•Availabilityandcost
•Highsolubilityininorganicdiluentwhichisinsolublein
aqueousphase
–e.g.kerosene(i.e.,usually2to20%extractant)
•Easeofformationofmetal-organiccomplexwhichis
solubleinorganicphase
•Selectivetoimportantmetalsinaqueoussolution
•Goodseparationfromaqueousaftercontacting
densityisappreciablydifferent
lowviscosity
highsurfacetension
•Easeofmetalrecoveryfromorganicphase
•Easeofregenerationofextractantforrecycle

▪SX Reagent Selection Criteria (cont.)
•Safetohandle
Nontoxic
Nonflammable
Non-volatile
•Stableduringstorageorwhenincontactwith
acidsoralkalinesanddoesnothydrolize
duringextractionorstripping

Diluent
•Anextractantisseldomusedinpureform.It
isusuallydilutedinacheaporganicsolvent
(calleddiluent)inorderalsotoimproveits
physicalpropertiessuchasitsdensityand
viscosity.
•Diluenthasnocapacitytoextractmetalions
fromsolution.
•Themostcommonly useddiluent:
hydrocarbonsandsubstitutedhydrocarbon
suchaskerosene.

Organicsolventextractanttypes
•Ethers and their derivatives
•Alcohols
•Aldehydes
•Ketones
•Oxime
•Organic acids
•Phenols
•Esters
•Amine and amine oxides
•Organic sulfides and sulfoxides
•Others

Some trade marks of extractants
•LIX
•Cyanex
•Kelex
•Versatic
•etc

Strippingand Distribution Coefficients
•Thetransportofmetalsfromaqueousphasetoorganic
phaseismeasuredbydistributioncoefficientD,in
which:
ThehigherDvalueatequilibrium,thehigheristhe
possibilityofasolventinextractingacertainmetalsin
aqueoussolution.phaseaqueous in ionconcentrat metals
phase organic in ionconcentrat metals
D=
Distribution coefficient

•Strippingcoefficient(D‘)isdefinedas:
SemakintingginilaiD‘padakesetimbangansemakin
besarkecenderunganionlogamditransferdarifasa
organikkefasaaqueous.
Ada2tujuanprosesstripping,yaitu:
1.Recoverylogamdarifasaorganik
2.Regenerasipelarut/extractantuntukdigunakan
kembali
StrippingCoefficientphase organic in ionconcentratmetals
phaseaqueous in ionconcentratmetals
=D'

Strippingdapatdengansalahsatucaraberikut:
a.Pencuciankembalifasaorganik
b.Pengendapanlogamsecaralangsungdarifasa
organik
c.Selectivestrippingjikapelarutorganikmelarutkan
lebihdarisatulogam.Dalamkasusini,stripping
dilakukandenganreagenyangberbedasecara
berurutan.

Nisbah (Rasio) Fasa
Nisbahvolumeorganik/aqueousbernilairendah,
mungkinbanyakpelarut(solvent)yanghilang.
Sebaliknyaapabilanisbahvolumeorganik/aqueous
bernilaibesar,kemungkinanberartikonsumsisolvent
tinggi(aspekekonomis).o
a
V
V
fasa Nisbah
V
a= Volume fasa aqueous
V
o= volume fasa organik

Persen Ekstraksi
•Apabilaberatsolute(zatterlarut)mula-muladalamfasa
aqueous=w,dansetelahekstraksiberkurangmenjadi
=w
1,maka
dimana,V
o=volumefasaorganik
V
a=volumefasaaqueousa
o
Vw
Vww
D
/
/)(
1
1

(1)1001
100
1
1










w
w
w
ww
ekstraksipersen

100


oaV/VD
D
ekstraksipersen Daripersamaan(1)dapatdiperolehhubungan:ao
a
VDV
V
w
w


1
sehingga100x
VDV
V
- 1 ekstraksi persen
ao
a

Faktor Pengayaan dan Pemisahan
•Saat2ionlogamyangberbedadiekstrakdarisebuahlarutan
aqueousolehpelarutorganik,makaseparationfactor,β,untuk
2ionlogamtersebutdidefinisikansebagai:
dimana,D
AdanD
Bkoefisiendistribusimasing-masingion
logam.Agarpemisahanmungkinterjadi,makafaktor
separation,β,harustidaksamadengan1(β≠1).
Faktorpengayaan(enrichmentfactor),E,adalahB
A
D
D
 Bekstraksi
Aekstraksi
E
%
%

oaA
oaB
oaB
B
oaA
A
V/VD
V/VD
V/VD
D
/
V/VD
D
Bekstraksi%
Aekstraksi%
E

























100100 Untukmemilikifaktorenrichmentbesar,makatidakhanya
faktorseparationharusbesar,tetapijugaperlu
dipertimbangkanperbandinganvolumefasaaqueous/fasa
organikdimanavolumefasaorganikharussekecilmungkin
dibandingvolumefasaaqueous.

Contoh,
Jikasebuahlarutanmengandungsejumlahion-ionA
danBdiekstrakolehpelarutorganikdanperbandingan
distribusiuntukmasing-masingkomponenD
A=10dan
D
B=1,makaβ=10.pengayaandapatdihitungpada2
perbandinganvolumefasaaqueous/organikdengan
menggunakanpersamaandiatas:
SaatV
a/V
o=1:
PersenAyangditransferkefasaorganikadalah
PersenByangditransferkefasaorganikadalah%9,90100
110
10


 

 %50100
11
1 8,1
50
9,90
E

•SaatV
a/V
o=10:%50100
1010
10



PersenAyangditransferkefasaorganikadalah
PersenByangditransferkefasaorganikadalah%09,9100
101
1


 5,5
09,9
50
E
Inimenunjukkanbahwafaktorpengayaanmeningkat
denganmeningkatnyaV
a/V
o.

Multiple Extractions
•JikaVa=volumefasaaqueousyangmengandungw
gramzatterlarut,V
o=volumefasaorganik,dansetelah
extraksipertama,w
1=beratsisazatterlarutdalamfasa
aqueous,makakonsentrasikesetimbangandalamfasa
aqueous=w
1/V
a,dankonsentrasikesetimbangandalam
fasaorganik=(w–w
1)/V
o.Jadi:Vaww)DVoVa(
w.Vaw.VaVo.Dw
Vo
ww
Va
Dw
Va/w
Vo/)ww(
D






1
11
11
1
1 









Va/DVo
w
DVoVa
wVa
w
1
1
1

•Setelahekstraksikedua,w
2=beratsisazatterlarut
dalamfasaaqueous;konsentrasikesetimbangandalam
fasaaqueous=w
2/Va,dankonsentrasikesetimbangan
dalamfasaorganik=(w
1–w
2)/Vo.2
12
2
21
)/(1
1
)/(1
1
/
/)(












VaVoD
w
VaVoD
ww
Vaw
Voww
D

•Setelahekstraksike-n
dimana,w
n=beratsisadalamfasaaqueoussetelah
ekstraksike-n,atau:
dimana,C
n=konsentrasisetelahekstraksike-n,danC
1
=konsentrasiawaldalamfasaaqueous.n
n
VaVoD
ww








)/(1
1 n
n
n
n
VaVoD
CC
VaVoDVa
w
Va
w
















)/(1
1
)/(1
1
1

Diagram McCabe-Thiele

Diagram McCabe-Thiele
•DiagramMcCabe-Thielemencakup:
–Kurvakesetimbangandistribusiisothermal
•Ditentukansecaraempirikdengan cara
memvariasikannisbahaqueous(A)versusorganik
(O)untuklarutantertentu
–Garisoperasi(ditentukandarineracamaterial)
•Slopekurvamenunjukkan“nisbahfasa“(Va/Vo)
•Posisiawal(0,0)menunjukkankonsentrasiraffinate
(aqueousphase)dankonsentrasiorganikyang
sudahdistripping(strippedorganic)
•Posisiakhirmenunjukkankonsentrasifasaaqueous
umpandankonsentrasiloadedorganicphase

Diagram McCabe-Thiele
•DiagramMcCabe-Thielemencakup:
–Jumlahteoritiktahap(step)dalamproses
yangditentukansecaragrafis:
•Menentukankonsentrasifasaaqueousdan
fasaorganikyangmasukdankeluardalam
setiaptahap

ADSORPTION WITH
ION EXCHANGE RESIN (IX)

Ion Exchange Resin
•Ionexchangeresin:non-solublesolidmaterialwhich
canselectivelyandreversiblyadsorpmetalionsin
aqueoussolutionbymeansofionexchange
mechanism
•Structureofresin:M(PI)
n
–Matrix(M)
–Polarion(P)dancounterion(I)whichhas
oppositechargewiththepolarion
•IfPnegative,I=cationcationexchanger;I=anion
thentheresin=anionexchangerresin

Schematic of the interior structure of an ion exchange resin
(organic IX resin)

Ion Exchange
•The ion exchange reaction generally
can be formulated as follow:
M(PI)
n+ S

= M(PS)
n+ nI

Material of IX Resin
Based on the material use to prepare, IX resin can be
classified by inorganicand organicresin
InorganicResin
▪Natural:generallyhaswelldefinedcrystalstructure:
contoh:aluminosilicate,zeolite,chahabazite,analite
▪Synthetic:canbepreparedfrominorganicmaterials
suchasby:
Fusionofsoda,kaolin,feldspar,
Formation of gelatinous precipitates from Al-Na-Si
solutionand drying
Crystallization at high temp. and press. From aqueous
solutionscontainingSi, Al and alkalisuch as TiO
2•x H
2O,
zirconium phosphate

Advantages of Inorganic Resin
•Relatively has lower cost
•Operation at higher temperatures is
possible
•Inert to radioactivity

Organic Ion Exchange Resin
•Usuallypolystyrenebased
•Made byadditioncopolymerization
•Degree of crosslinkingis important
•If insufficient, resin with low capacity
Water absorbs and blocks sites
Resin soft and easily abraded
•If too much, resin capacity is reduced
-Slow to exchange ions, especially larger ones
•Typically capacities of 3-6 meq/g
•Researches have been done to prepare natural
organic IX from coal.

Types of Organic IX Resins

Characteristics of good IX Resin
•HighCapacityLargeamountof
exchangeableionsontheresinperunit
weight(expressedasmeq/g)
•HighSelectivity
•InsolubleinLeachSolution
•LowCost

Distribution Coefficient

Example

Teknik adsorpsi:
-Resin in Column
-Resin in Pulp

resin-in-pulp process

PRECIPITATION OF METALS
BY OTHER METAL
(CEMENTATION)

Cementation
•Precipitation of a metal from an aqueous solution
byanothermetal whichismoreelectronegative
M
1
z+
+ M
2
o
M
2
z+
+ M
1
o
•Application:
–Precipitationof copperwithiron scrap
–Precipitation of Au/Ag from cyanide solution with Zn
powder
–Removal of Cu, Cd, Fe byZn powderforpurification
of Zn-richsolutionfromZnOleaching
–Garemoval from aluminatesolutions with Al powder.

The purpose of cementation
1.Recovery of metals from pregnant-leach
solution:
–Example:
•Cu from Cu-rich solution resulted from Cu-oxide
leaching by iron scrapCu
2+
+ Fe Cu +
Fe
2+
•Au/Ag from cyanide solution by zinc powder[ ] [ ]→
-2
4
-
2 )CN(Zn+Au2Zn+)CN(Au2 [ ] [ ]→
-2
4
-
2 )CN(Zn+Ag2Zn+)CN(Ag2

Thepurposeof cementation
2.Purification of pregnant-leach solution:
–Example:
•Purification of Zn-rich solution from ZnO calcine
leaching
Removal of Cu, Cd by zinc powder
Cu
2+
+ Zn Cu + Zn
2+
Cd
2+
+ Zn Cd + Zn
2+
Iron at higher concentration is precipitated by oxidation
and pH adjusment as iron hydroxide (Fe(OH)
3)
Fe
2+
Fe
3+
+ e
Fe
3+
+ 3(OH)
-
Fe(OH)
3

Flowsheet of Merril-Crowe Process involving
gold/silver cementation by zinc powder

Gold/silver Cementation
•Gold/silvercementation(Merril-Crowe) ismoreeffective
forhigh ratioof Ag/Au in ore
•For Lowratioof Au/Ag, activatedcarbonadsorptionis
morepreferable
•Cementationmustbedonein clarifiedand deaerated
solution
•Thepurposeof clarification: avoidtheformationof passive
layeron thesurfaceof zinc.
•ThePurposeof deaeration
–Preventredissolutionof Au-Ag precipitate
–Increasestherate of Au-Ag precipitation

Equipment
•Small scale cementation process usually
conducted in agitation tank and rotating
drum
•Separation of precipitate is done by filtering
•For larger scale, cementation is done in
launder and inverted cone
•Launder: narrow tank, about 170 m long,
1.3 –3 m wide and 0.3 –1.3 m deep laid at
a slope of about 2%.

Rotating drum for cementation of copper

Rotating drum for cementation of copper
in Duisburg, Germany

Inverted cone for cementation of copper

ProblemsinCementation
•High reagent consumption
Causing factors: Consumed by unwanted side reactions
Example: Fe in Cu precipitation reacts with H
+
and Fe
3+
and
ions in solution
•Redissolution of precipitated metal
Example: In Cu cementation, Cu can be redissolved through
the following reactions:OHCuOHCu
CuCuCu
2
2
2
2
2/12
2



 2
2
2 HFeHFe 
 

23
32 FeFeFe
Iron consumption 2 –
4 of its theoretical
consumption
Precipitated must be
immediately
separated and over
agitation should be
avoided.

ProblemsinCementation(cont.)
•Formation of precipitates or alloys (impure product)
•Formation of hydrolytic product Solution pH must
be properly adjusted
•Formation of toxic gases, for example in Cu
cementation by iron scrap.3
2
23
236 AsHMHAsM 

M is divavent metal, AsH
3 is poisonous gas

PRECIPITATION OF
METALS
FROM SOLUTION BY GAS

Precipitation by gases
•Gases that are usually used
–H
2
–SO
2
–CO
–H
2S
•Except H
2S gas which results in metal sulfide
as a product, the other gases precipites
metals as metal powders

Precipitation by gases
•Reductionbygasisusuallydoneathightemperature
andpressureinapressurevesselsuchasautoclave.
•Itshouldbenoticedthat
–Solubilityofgasesdecreasesbytherisesof
temperatureupto100
o
Candre-increasesbythe
furthertemperaturincrease
–Solubilityofmostsaltsincreasesbytherisesof
temperatureupto100
o
C.
–Solubilityofcertainsaltsandgasesinfluencedby
thepresenceofothersaltsinsolution

Precipitation by hydrogen gas
•Theprecipitationofdivalentmetalperformsbythe
followingreaction
M
2+
+H
2M+2H
+
•Application:PrecipitationsofNi,Co,Cupowderfrom
solutionwithhighconcentrationsofthosemetals
•Precipitationofplatinumgroupmetals(PGMs)
•Precipitationcanbedoneeitherwithoutcatalyst
trhoughhomogenousreaction(i.e.nosolidsurfaceis
requiredforprecipitationsubstrate)and
heterogenouslybythepresenceofcatalyst.

Precipitation by hydrogen gas
•Theequilibriumconstantisgivenby
therefore,
Log[M
2+
]=-2pH–(logK+logpH
2)
Thismeansthatwhenprecipitationiscarriedoutat
constanttemperature,thenatequilibroumthereisa
linearrelationbetweenLog[M
2+
]andpHofsolution,
andtheslopethelineequals-2.[]
[]pHH
H
=K
2
+
2
+

Precipitation by hydrogen gas
•Precipitationofnickelproducedbyammonialeaching
(CaronProcess)
Ni
2+
+2NH
3+H
2Ni+2NH
4
+
Pictorial flowsheet of Ni HPAL plant in Murin-Murin, Western Australia
(involving H
2reduction)

Precipitation by SO
2 Gas
•Products:
–metal
–sulfate
•Example:DepositionofCuatroomtemperatureand
1atm,resultsinCuSO
4
SO
2+Cu
2+
+H
2O+1/2O
2CuSO
4+2H
+
•Attemperatureof100
o
Candpressureof50psi,Cu
metalwillbeprecipitated
SO
2+H
2OH
+
+HSO
3
-
Cu
2+
+HSO
3
-
+H
2OCu+HSO
4
-
+2H
+
Inthiscondition,Fe
3+
ionwillbereducedtoFe
2+
(not
-precipitated).

Precipitation by CO(Carbon Monoxide)Gas
•COgashasbeenusedforprecipitatingsilverfrom
AgNO
3solutionandcopperfrom[Cu(NH
3)
4]
2+
OBTAINEDfrombrassscrapleachinginammoniacal
ammoniumcarbonate.
[Cu(NH
3)
4]
2+
Cu
2+
+4NH
3
Cu
2+
+CO+H
2OCu+CO
2+2H
+
Tags