CHAPTER III
SOLUTION PURIFICATION AND
METALS RECOVERY FROM
PREGNANT LEACH SOLUTION
Remember thefollowinggeneralflowsheetof
hydrometallurgicalprocess:
Ore/concentrate
leaching
Solid-liquid separation
Solution purification
Precipitation
Pregnant Solution
Solid residu to waste
Leaching agentOxidant
Precipitant or
electric current
Pure compound Metals
Four main methods of Solution
Purification
•Adsorption on Activated Carbon
•Ion Exchange (IX)
•Solvent Extraction (SX)
•Precipitation
–Precipitation by pH adjusment
–Precipitation by metals (cementation)
–Precipitation by gas
–Precipitation by electric current (electrodeposition)
–Precipitation by thermal treatment (cystallization)
Preparation of Active Carbon
•Activatedcarboncanbemadefromawiderangeof
sourcematerials,suchascoal,coconutshells,wood,
peat,orbone.
•Therearetwotypesofamorphouscarbon,namely,
carbonblacksandcharcoals.
•Carbonblack:nonporousfineparticlesofcarbon
preparedbyincompletecombustionofgaseousor
liquidcarbonacesousmaterials(naturalgas,
acetylene,oils,tar)inlimitedsupplyofair.
•Carbonblacksareusedaspigmentsintherubber
industryandinkmanufacture.
Preparation of Active Carbon
•Heatingofsolidcarbonaceusmaterialssuchascoal,
woodandnutsheelsatabout600
o
Cintheabsenceof
airtovolatilizecomponentsotherthancarbon–the
processknownas“carbonization“.
•Furtherheatingto400-800
o
Cforlimitedtimewithair,
chlorineorsteamtoproducehighporousmaterialof
„activatedcharcoal“.
•Intheactivationstep,thesmallporestructureis
developedbyburningawaysomeremainingmaterial
tocreatenewporeandenlargeothers.
Active carbon is prepared as follow:
Preparation of Activated Charcoal
•Charcoalactivatedatlowtemperature(400
o
C)
areabbreviatedbyL-charcoalsandthose
activatedathightemperature(800
o
C)are
abbreviatedbyH-charcoals.
•Afteractivation,H-charcoalmustbecooledin
aninertatmosphere,otherwisetheywillbe
convertedtoL-charcoal.
Tipical properties of L-charcoal and H-
charcoal activated at different temperatures
Activationtemperature
400
o
C 550
o
C 650
o
C 800
o
C
L-Charcoal H-charcoal
Analysis (%)
Carbon 75.7 85.2 87.3 94.3
Oxygen 19.0 10.4 7.4 3.2
Hydrogen 3.2 2.7 2.1 1.5
Ash 0.7 1.3 1.4 1.2
Surfacearea
[m
2
/g]
40 400 390 480
Typical microstructure of active carbon showing
the porous structure
•Ingoldextractionindustries,activatedcarbonis
usedintheformofpelletsorbreeze,having
diameterofabout2mm.
Adsorption of Au and Ag from pregnant
cyanide solution
-Theadsorptionconsistsoftwounitprocess:
-LOADING,and
-STRIPPING
StrippingdesorptionofAu,Agfromactivecarbonsurfaceby
meansofwashingwithasolutionsuchas20-25wt%ethyleneor
propyleneglycoland2wt%causticsoda).
recoveryofAuandAgisfurtherdonewithelectrowinning.
strippedcarbonmustbereactivated.
Industrial application of Active carbon
-Activecarbonareusedin:
-CarboninLeach(CIL)
-CarboninPulp(CIP),and
-CarbonInColumn(CIC)
-CarboninLeach(CIL):
-Appliediftheorescontainscarbonaceousmaterialssuchas
carbonate
-Carbonisaddedinleachingtanktoavoidgoldlossesinfine
carbonparticlesinoresthatarenotrecoveredbyscreening
-CarboninPulp(CIP):
-Carbonisaddedinthepulpafterleaching
-CarboninColumn(CIC):
-Carbonisplacedinacolumnandgold-bearingsolutionin
loadedtothecolumn
Block diagram of gold extraction applying
CIP method
Pictorial diagram of gold extraction
applying CIP method
Block diagram of gold extraction applying
CIL method
Organicsolventextractanttypes
•Ethers and their derivatives
•Alcohols
•Aldehydes
•Ketones
•Oxime
•Organic acids
•Phenols
•Esters
•Amine and amine oxides
•Organic sulfides and sulfoxides
•Others
Some trade marks of extractants
•LIX
•Cyanex
•Kelex
•Versatic
•etc
Strippingand Distribution Coefficients
•Thetransportofmetalsfromaqueousphasetoorganic
phaseismeasuredbydistributioncoefficientD,in
which:
ThehigherDvalueatequilibrium,thehigheristhe
possibilityofasolventinextractingacertainmetalsin
aqueoussolution.phaseaqueous in ionconcentrat metals
phase organic in ionconcentrat metals
D=
Distribution coefficient
•Strippingcoefficient(D‘)isdefinedas:
SemakintingginilaiD‘padakesetimbangansemakin
besarkecenderunganionlogamditransferdarifasa
organikkefasaaqueous.
Ada2tujuanprosesstripping,yaitu:
1.Recoverylogamdarifasaorganik
2.Regenerasipelarut/extractantuntukdigunakan
kembali
StrippingCoefficientphase organic in ionconcentratmetals
phaseaqueous in ionconcentratmetals
=D'
Strippingdapatdengansalahsatucaraberikut:
a.Pencuciankembalifasaorganik
b.Pengendapanlogamsecaralangsungdarifasa
organik
c.Selectivestrippingjikapelarutorganikmelarutkan
lebihdarisatulogam.Dalamkasusini,stripping
dilakukandenganreagenyangberbedasecara
berurutan.
Nisbah (Rasio) Fasa
Nisbahvolumeorganik/aqueousbernilairendah,
mungkinbanyakpelarut(solvent)yanghilang.
Sebaliknyaapabilanisbahvolumeorganik/aqueous
bernilaibesar,kemungkinanberartikonsumsisolvent
tinggi(aspekekonomis).o
a
V
V
fasa Nisbah
V
a= Volume fasa aqueous
V
o= volume fasa organik
Persen Ekstraksi
•Apabilaberatsolute(zatterlarut)mula-muladalamfasa
aqueous=w,dansetelahekstraksiberkurangmenjadi
=w
1,maka
dimana,V
o=volumefasaorganik
V
a=volumefasaaqueousa
o
Vw
Vww
D
/
/)(
1
1
(1)1001
100
1
1
w
w
w
ww
ekstraksipersen
100
oaV/VD
D
ekstraksipersen Daripersamaan(1)dapatdiperolehhubungan:ao
a
VDV
V
w
w
1
sehingga100x
VDV
V
- 1 ekstraksi persen
ao
a
Faktor Pengayaan dan Pemisahan
•Saat2ionlogamyangberbedadiekstrakdarisebuahlarutan
aqueousolehpelarutorganik,makaseparationfactor,β,untuk
2ionlogamtersebutdidefinisikansebagai:
dimana,D
AdanD
Bkoefisiendistribusimasing-masingion
logam.Agarpemisahanmungkinterjadi,makafaktor
separation,β,harustidaksamadengan1(β≠1).
Faktorpengayaan(enrichmentfactor),E,adalahB
A
D
D
Bekstraksi
Aekstraksi
E
%
%
oaA
oaB
oaB
B
oaA
A
V/VD
V/VD
V/VD
D
/
V/VD
D
Bekstraksi%
Aekstraksi%
E
100100 Untukmemilikifaktorenrichmentbesar,makatidakhanya
faktorseparationharusbesar,tetapijugaperlu
dipertimbangkanperbandinganvolumefasaaqueous/fasa
organikdimanavolumefasaorganikharussekecilmungkin
dibandingvolumefasaaqueous.
Ion Exchange Resin
•Ionexchangeresin:non-solublesolidmaterialwhich
canselectivelyandreversiblyadsorpmetalionsin
aqueoussolutionbymeansofionexchange
mechanism
•Structureofresin:M(PI)
n
–Matrix(M)
–Polarion(P)dancounterion(I)whichhas
oppositechargewiththepolarion
•IfPnegative,I=cationcationexchanger;I=anion
thentheresin=anionexchangerresin
Schematic of the interior structure of an ion exchange resin
(organic IX resin)
Ion Exchange
•The ion exchange reaction generally
can be formulated as follow:
M(PI)
n+ S
= M(PS)
n+ nI
Material of IX Resin
Based on the material use to prepare, IX resin can be
classified by inorganicand organicresin
InorganicResin
▪Natural:generallyhaswelldefinedcrystalstructure:
contoh:aluminosilicate,zeolite,chahabazite,analite
▪Synthetic:canbepreparedfrominorganicmaterials
suchasby:
Fusionofsoda,kaolin,feldspar,
Formation of gelatinous precipitates from Al-Na-Si
solutionand drying
Crystallization at high temp. and press. From aqueous
solutionscontainingSi, Al and alkalisuch as TiO
2•x H
2O,
zirconium phosphate
Advantages of Inorganic Resin
•Relatively has lower cost
•Operation at higher temperatures is
possible
•Inert to radioactivity
Organic Ion Exchange Resin
•Usuallypolystyrenebased
•Made byadditioncopolymerization
•Degree of crosslinkingis important
•If insufficient, resin with low capacity
Water absorbs and blocks sites
Resin soft and easily abraded
•If too much, resin capacity is reduced
-Slow to exchange ions, especially larger ones
•Typically capacities of 3-6 meq/g
•Researches have been done to prepare natural
organic IX from coal.
Types of Organic IX Resins
Characteristics of good IX Resin
•HighCapacityLargeamountof
exchangeableionsontheresinperunit
weight(expressedasmeq/g)
•HighSelectivity
•InsolubleinLeachSolution
•LowCost
Distribution Coefficient
Example
Teknik adsorpsi:
-Resin in Column
-Resin in Pulp
resin-in-pulp process
PRECIPITATION OF METALS
BY OTHER METAL
(CEMENTATION)
Cementation
•Precipitation of a metal from an aqueous solution
byanothermetal whichismoreelectronegative
M
1
z+
+ M
2
o
M
2
z+
+ M
1
o
•Application:
–Precipitationof copperwithiron scrap
–Precipitation of Au/Ag from cyanide solution with Zn
powder
–Removal of Cu, Cd, Fe byZn powderforpurification
of Zn-richsolutionfromZnOleaching
–Garemoval from aluminatesolutions with Al powder.
The purpose of cementation
1.Recovery of metals from pregnant-leach
solution:
–Example:
•Cu from Cu-rich solution resulted from Cu-oxide
leaching by iron scrapCu
2+
+ Fe Cu +
Fe
2+
•Au/Ag from cyanide solution by zinc powder[ ] [ ]→
-2
4
-
2 )CN(Zn+Au2Zn+)CN(Au2 [ ] [ ]→
-2
4
-
2 )CN(Zn+Ag2Zn+)CN(Ag2
Thepurposeof cementation
2.Purification of pregnant-leach solution:
–Example:
•Purification of Zn-rich solution from ZnO calcine
leaching
Removal of Cu, Cd by zinc powder
Cu
2+
+ Zn Cu + Zn
2+
Cd
2+
+ Zn Cd + Zn
2+
Iron at higher concentration is precipitated by oxidation
and pH adjusment as iron hydroxide (Fe(OH)
3)
Fe
2+
Fe
3+
+ e
Fe
3+
+ 3(OH)
-
Fe(OH)
3
Flowsheet of Merril-Crowe Process involving
gold/silver cementation by zinc powder
Equipment
•Small scale cementation process usually
conducted in agitation tank and rotating
drum
•Separation of precipitate is done by filtering
•For larger scale, cementation is done in
launder and inverted cone
•Launder: narrow tank, about 170 m long,
1.3 –3 m wide and 0.3 –1.3 m deep laid at
a slope of about 2%.
Rotating drum for cementation of copper
Rotating drum for cementation of copper
in Duisburg, Germany
Inverted cone for cementation of copper
ProblemsinCementation
•High reagent consumption
Causing factors: Consumed by unwanted side reactions
Example: Fe in Cu precipitation reacts with H
+
and Fe
3+
and
ions in solution
•Redissolution of precipitated metal
Example: In Cu cementation, Cu can be redissolved through
the following reactions:OHCuOHCu
CuCuCu
2
2
2
2
2/12
2
2
2
2 HFeHFe
23
32 FeFeFe
Iron consumption 2 –
4 of its theoretical
consumption
Precipitated must be
immediately
separated and over
agitation should be
avoided.
ProblemsinCementation(cont.)
•Formation of precipitates or alloys (impure product)
•Formation of hydrolytic product Solution pH must
be properly adjusted
•Formation of toxic gases, for example in Cu
cementation by iron scrap.3
2
23
236 AsHMHAsM
M is divavent metal, AsH
3 is poisonous gas
PRECIPITATION OF
METALS
FROM SOLUTION BY GAS
Precipitation by gases
•Gases that are usually used
–H
2
–SO
2
–CO
–H
2S
•Except H
2S gas which results in metal sulfide
as a product, the other gases precipites
metals as metal powders
Precipitation by gases
•Reductionbygasisusuallydoneathightemperature
andpressureinapressurevesselsuchasautoclave.
•Itshouldbenoticedthat
–Solubilityofgasesdecreasesbytherisesof
temperatureupto100
o
Candre-increasesbythe
furthertemperaturincrease
–Solubilityofmostsaltsincreasesbytherisesof
temperatureupto100
o
C.
–Solubilityofcertainsaltsandgasesinfluencedby
thepresenceofothersaltsinsolution
Precipitation by hydrogen gas
•Theprecipitationofdivalentmetalperformsbythe
followingreaction
M
2+
+H
2M+2H
+
•Application:PrecipitationsofNi,Co,Cupowderfrom
solutionwithhighconcentrationsofthosemetals
•Precipitationofplatinumgroupmetals(PGMs)
•Precipitationcanbedoneeitherwithoutcatalyst
trhoughhomogenousreaction(i.e.nosolidsurfaceis
requiredforprecipitationsubstrate)and
heterogenouslybythepresenceofcatalyst.
Precipitation by hydrogen gas
•Theequilibriumconstantisgivenby
therefore,
Log[M
2+
]=-2pH–(logK+logpH
2)
Thismeansthatwhenprecipitationiscarriedoutat
constanttemperature,thenatequilibroumthereisa
linearrelationbetweenLog[M
2+
]andpHofsolution,
andtheslopethelineequals-2.[]
[]pHH
H
=K
2
+
2
+
Precipitation by hydrogen gas
•Precipitationofnickelproducedbyammonialeaching
(CaronProcess)
Ni
2+
+2NH
3+H
2Ni+2NH
4
+
Pictorial flowsheet of Ni HPAL plant in Murin-Murin, Western Australia
(involving H
2reduction)
Precipitation by SO
2 Gas
•Products:
–metal
–sulfate
•Example:DepositionofCuatroomtemperatureand
1atm,resultsinCuSO
4
SO
2+Cu
2+
+H
2O+1/2O
2CuSO
4+2H
+
•Attemperatureof100
o
Candpressureof50psi,Cu
metalwillbeprecipitated
SO
2+H
2OH
+
+HSO
3
-
Cu
2+
+HSO
3
-
+H
2OCu+HSO
4
-
+2H
+
Inthiscondition,Fe
3+
ionwillbereducedtoFe
2+
(not
-precipitated).