Statistics and statistical methods pdf.

omegaadrian33 79 views 35 slides Sep 09, 2024
Slide 1
Slide 1 of 35
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35

About This Presentation

Statistic


Slide Content

STATISTICS
INTRODUCTORY CONCEPTS

STATISTICS AND STATISTICAL
METHODS
Statisticsisabodyofknowledgethatdealswiththe
collection,presentation,analysisandinterpretationof
numericalandcategoricaldata.
Statisticalmethodsreferstotheproceduresusedinthe
collection,presentation,analysisandinterpretationofdata.

WHY STUDY STATISTICS?
Thefieldofstatisticsisthescienceoflearningfromdata.
Statisticalknowledgehelpsyouusethepropermethodsto
collectthedata,employthecorrectanalyses,andeffectively
presenttheresults.Statisticsisacrucialprocessbehindhowwe
makediscoveriesinscience,makedecisionsbasedondata,and
makepredictions.Statisticsallowsyoutounderstandasubject
muchmoredeeply.

TWO AREAS OF STATISTICS
DescriptiveStatisticscomprisesstatisticalmethodsconcerned
withcollectinganddescribingasetofdatasoastoyield
meaningfulinformation.
InferentialStatisticscomprisesstatisticalmethodsconcerned
withtheanalysisofasubsetofdataleadingtopredictionsor
inferencesabouttheentiresetofdata.

POPULATION AND SAMPLE
Populationconsistsofthetotalityofobservationwhichweareconcerned
about.
Sampleisasubsetofagivenpopulation.
Parameterreferstoanynumericalvaluedescribingacharacteristicofa
population.
Statisticreferstoanynumericalvaluedescribingacharacteristicofa
sample.

EXAMPLE
Situation:TherearetwelvemajorsuppliersofCalamansifruitacross
Region8.Theyweresurveyed,anddataontheamountoftheirmonthly
Calamansifruitsupplyforthepastsevenyearsweregatheredfromeach
supplier.Thefollowingwerepartoftheresultsofthesurvey:
a.Theaveragemonthlysupplyofthetwelvemajorsuppliersforthepast
sevenyearsis24.90thousandmetrictons.
b.Thetop1supplierisSupplierCwhoseaveragemonthlysupplyforthe
pastsevenyearsis6.80thousandmetrictons.
c.TherewillbeanincreaseofCalamansifruitsupplybythemajor
suppliersinthecomingyears.

EXAMPLE
Whatcomprisesthepopulation?
MonthlyamountofCalamansifruitsupplyforthepastsevenyears
ofeachofthetwelvemajorsuppliers
Giveasamplementionedinthegivensituation.
MonthlyamountofCalamansifruitsupplyforthepastsevenyears
ofSupplierC
Giveanexampleofparameter.
Averagemonthlysupplyofthetwelvesuppliersforthepastseven
years(24.90thousandmetrictons)

EXAMPLE
Giveanexampleofstatistic.
AveragemonthlysupplyofSupplierCforthepasttwelveyears
(6.80thousandmetrictons)

VARIABLE AND CONSTANT
Variableisacharacteristicofobjectsorindividualsthatcantakeon
differentvaluesfordifferentmembersofthegroupunderstudy.
Example:IQ,heightandweightofall10-yearoldfemalechildren
inaparticularbarangay
Constantisacharacteristicthatassumesthesamevalueforall
membersofthegroup.
Example:Age,sexandhomeaddressofall10-yearoldfemale
childreninaparticularbarangay

TYPES OF VARIABLES
QuantitativeVariableisavariablethattakesonlynumericalvalues.
Example:I.Q.,height,weight,incomeandage
QualitativeVariableisavariablethattakesonlynon-numerical
values,andnumbersareusedonlyascategories
Example:Gender,sex,religion,yearlevel,educationalattainment
andoccupation

TYPES OF VARIABLE ACCORDING TO
LEVEL OF MEASUREMENT
Nominal–numbersareusedmerelyaslabelsofthecategoriesof
thevariable
Ex.sex,religion,andoccupation
Ordinal–havethesamecharacteristicwithanominalvariableand
inaddition,thenumberscanbemeaningfullyranked
Ex.economicstatus,yearlevel,andsalarygrade
Interval–havethesamecharacteristicwithanordinalvariableand
inaddition,thecategoriesintheintervalscalearedefinedinterms

TYPES OF VARIABLE ACCORDING TO
LEVEL OF MEASUREMENT
ofa“standardunitofmeasurement”sothatequalityofdifferences
betweensuccessivecategoriesofthescaleisdefined
Ex.temperatureinDegreeCelsiusandIQscore
Ratio–havethesamecharacteristicwithanintervalvariableandin
addition,ithasatruezeropoint
Ratioandintervalvariablearewhatyoucallscalevariableswhile
ordinalandnominalvariablearecategoricalvariables.
Ex.age,height,andnumberofsiblings

FREQUENCY DISTRIBUTION
Itisatabulararrangementofdataindicatingthedifferentclasses
orcategoriesandthecorrespondingfrequencies.
Therearethreebasictypesoffrequencydistributions.Thethree
typesarecategorical,ungroupedandgroupedfrequency
distributions.

CATEGORICAL FREQUENCY
DISTRIBUTION
Thecategoricalfrequencydistributionisusedfordatathatcanbe
placedinspecificcategories,suchasnominal-orordinal-leveldata.
Forexample,datasuchaspoliticalaffiliation,religiousaffiliation,or
majorfieldofstudy.

EXAMPLE
Twenty-fivearmyinducteesweregivenabloodtesttodetermine
theirbloodtype.Thedatasetisasfollows:
RAW DATA OF BLOOD TYPE
A B B AB O
O O B AB B
B B O A O
A O O O AB
AB A O B A

EXAMPLE
Blood Type Tally Total %
A 5 25 20%
B 7 25 28%
O 9 25 36%
AB 4 25 16%

UNGROUPED FREQUENCY
DISTRIBUTION
Anungroupedfrequencydistributionisusedfornumerical
dataandwhentherange(thedifferencebetweenthehighest
andthesmallestvalues)issmall.

EXAMPLE
Considerthefollowingtable,whichliststhenumberoflaptopcomputersowned
byfamiliesineachof40homesinasubdivision.

EXAMPLE
Considerthefollowingtable,whichliststhenumberoflaptopcomputersowned
byfamiliesineachof40homesinasubdivision.
No. of Laptops Tally Total %
0 5 40 12.5
1 12 40 30
2 14 40 35
3 3 40 7.5
4 2 40 5
5 3 40 7.5
6 0 40 0
7 1 40 2.5

EXAMPLE
Considerthefollowingtable,whichliststhenumberoflaptopcomputersowned
byfamiliesineachof40homesinasubdivision.
No. of Laptops Frequency Percentage
0 5 12.5
1 12 30
2 14 35
3 3 7.5
4 2 5
5 3 7.5
6 0 0
7 1 2.5
N=30 100

GROUPED FREQUENCY
DISTRIBUTION
Whentherangeofthedataislarge,thedatamustbegroupedintoclassesthat
aremorethanoneunitinwidth.
Toconstructafrequencydistribution,followtheserules:
1.Thereshouldbebetween5and20classes.
2.Theclasswidthshouldbeanoddnumber.Thisensuresthatthemidpointof
eachclasshasthesameplacevalueasthedata.
3.Theclassesmustbemutuallyexclusive.Mutuallyexclusiveclasseshave
nonoverlappingclasslimitssothatdatacannotbeplacedintotwoclasses.
4.Theclassesmustbecontinuous.Thereshouldbenogapsinafrequency
distribution.

GROUPED FREQUENCY
DISTRIBUTION
Whentherangeofthedataislarge,thedatamustbegroupedintoclassesthat
aremorethanoneunitinwidth.
Toconstructafrequencydistribution,followtheserules:
5.Theclassesmustbeexhaustive.Thereshouldbeenoughclassesto
accommodateallthedata.
6.Theclassesmustbeequalinwidth.Thisavoidsadistortedviewofthedata.

GROUPED FREQUENCY
DISTRIBUTION
CONSTRUCTINGGROUPEDFREQUENCYDISTRIBUTION
1.Findtherange.
�??????���=ℎ??????�ℎ����??????���−�������??????���
2.Decideonthenumberofclassintervalsorclasses,wedenoteitby�.
➢�=�
➢5-20classes
3.Determinetheclasssizeorclasswidthoftheinterval,wedenoteitbyc.
(roundedtothenearestoddwholenumber)
4.DeterminethelowerlimitLLandtheupperlimitandtheupperlimitULofthelowest
classinterval.Thelowestclassintervalshouldcontainthelowestvalueinthedataset.

GROUPED FREQUENCY
DISTRIBUTION
CONSTRUCTINGGROUPEDFREQUENCYDISTRIBUTION
ThevalueoftheULisdeterminedusingtheequation.
????????????=????????????+(??????−1)
5.Determinetheupperclassintervalsbyconsecutivelyaddingtheclasssize??????to
thevaluesofLLandULofthelowestclassintervaluntilwegettheclassinterval
withthehighestvalueinthedataset.
6.Tallythedata,findthefrequencies.

GROUPED FREQUENCY
DISTRIBUTION
CONSTRUCTINGGROUPEDFREQUENCYDISTRIBUTION
▪Theclassboundariesareusedtoseparatetheclassessotatthereareno
gapsinthefrequencydistribution.
RuleofThumb:Classlimitsshouldhavethesamedecimalplacevalueasthe
data,buttheclassboundarieshaveoneadditionalplacevalueandendina5.
▪Theclassmidpointisfoundbyaddingtheupperandlowerboundaries(or
limits)anddividingby2.
▪Thecumulativefrequenciesareusedtodeterminethenumberofcasesfailing
below(for<cf)orabove(for>cf)aparticularvalueinadistribution.

GROUPED FREQUENCY
DISTRIBUTION
CONSTRUCTINGGROUPEDFREQUENCYDISTRIBUTION
▪Therelativefrequency(rf)ofaclassintervalistheproportionofobservations
fallingwithintheclassandmaybepresentedinpercent.Thus,
&#3627408479;&#3627408467;=
&#3627408467;
&#3627408475;
×100

EXAMPLE
DistributionofscoresoffortystudentsinaMathematicsclass.
RAW SCORES
76 92 87 78
87 88 85 92
67 85 93 91
85 79 92 82
99 95 79 85
81 96 75 88
82 86 83 87
79 92 80 74
86 93 98 71
81 86 80 94

EXAMPLE
SOLUTION:
Step1:????????????&#3627408475;&#3627408468;&#3627408466;=????????????&#3627408468;ℎ&#3627408466;&#3627408480;&#3627408481;&#3627408483;??????&#3627408473;&#3627408482;&#3627408466;−??????&#3627408476;&#3627408484;&#3627408466;&#3627408480;&#3627408481;&#3627408483;??????&#3627408473;&#3627408482;&#3627408466;=99−67=32.
Step2:&#3627408472;=&#3627408475;=40≈7
Step3:??????=
32
7
≈5
Step4:????????????=65+5−1=65+4=69
Step5:????????????=70+5−1=74
????????????=75+5−1=79
????????????=80+5−1=84

EXAMPLE
SOLUTION:
????????????=85+5−1=89
????????????=90+5−1=94
????????????=95+5−1=99

EXAMPLE
SOLUTION:
Step6:
Class Interval ?????? ?????? ???????????? <???????????? >????????????
95-99 4 97 10 40 4
90-94 8 92 20 36 12
85-89 12 87 30 28 24
80-84 7 82 17.5 16 31
75-79 6 77 15 9 37
70-74 2 72 5 3 39
65-69 1 67 2.5 1 40

HISTOGRAM, FREQUENCY
POLYGONS AND OGIVES
Thehistogramisagraphthatdisplaysthedatabyusingcontiguousvertical
barsofvariousheightstorepresentthefrequenciesoftheclasses.(class
boundariesalong&#3627408485;-axis)
Thefrequencypolygonisagraphthatdisplaysthedatabyusinglinesthat
connectpointsplottedforthefrequencies,atthemidpointsoftheclasses.(class
midpointsalong&#3627408485;-axis)
Theogive(cumulativefrequencygraph)isagraphthatshowsthecumulative
frequenciesfortheclasses.(withconnectedpointsandclassboundariesalong&#3627408485;-
axis)

HISTOGRAM, FREQUENCY
POLYGONS AND OGIVES

HISTOGRAM, FREQUENCY
POLYGONS AND OGIVES

HISTOGRAM, FREQUENCY
POLYGONS AND OGIVES

RELATIVE FREQUENCY GRAPHS
Class Interval ?????? ???????????? <???????????? >???????????? ??????????????????
95-99 4 10% 40 4 10%
90-94 8 20% 36 12 30%
85-89 12 30% 28 24 60%
80-84 7 17.5% 16 31 77.5%
75-79 6 15% 9 37 92.5%
70-74 2 5% 3 39 97.5%
65-69 1 2.5% 1 40 100%
Tags