https://www.eejournals.org Open Access
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited
Page | 89
Future Directions in Precision Medicine. Int J Nanomedicine. 20, 1213–1262 (2025).
https://doi.org/10.2147/IJN.S488961
19. Jia, Y., Jiang, Y., He, Y., Zhang, W., Zou, J., Magar, K.T., Boucetta, H., Teng, C., He, W.: Approved
Nanomedicine against Diseases. Pharmaceutics. 15, 774 (2023).
https://doi.org/10.3390/pharmaceutics15030774
20. Uti, D.E., Alum, E.U., Atangwho, I.J., Ugwu, O.P.-C., Egbung, G.E., Aja, P.M.: Lipid-based nano-carriers
for the delivery of anti-obesity natural compounds: advances in targeted delivery and precision
therapeutics. Journal of Nanobiotechnology. 23, 336 (2025). https://doi.org/10.1186/s12951-025-03412-
z
21. Jiang, C., Tang, M., Su, Y., Xie, J., Shang, Q., Guo, M., An, X., Lin, L., Wang, R., Huang, Q., Zhang, G.,
Li, H., Wang, F.: Nanomedicine-driven tumor glucose metabolic reprogramming for enhanced cancer
immunotherapy. Acta Pharmaceutica Sinica B. 15, 2845 –2866 (2025).
https://doi.org/10.1016/j.apsb.2025.04.002
22. Li, Y.-J., Wu, J.-Y., Liu, J., Xu, W., Qiu, X., Huang, S., Hu, X.-B., Xiang, D.-X.: Artificial exosomes for
translational nanomedicine. J Nanobiotechnology. 19, 242 (2021). https://doi.org/10.1186/s12951-021-
00986-2
23. Cao, Y., Yi, Y., Han, C., Shi, B.: NF-κB signaling pathway in tumor microenvironment. Front. Immunol.
15, (2024). https://doi.org/10.3389/fimmu.2024.1476030
24. Chen, B., Dai, W., He, B., Zhang, H., Wang, X., Wang, Y., Zhang, Q.: Current Multistage Drug Delivery
Systems Based on the Tumor Microenvironment. Theranostics. 7, 538 –558 (2017).
https://doi.org/10.7150/thno.16684
25. Ciepła, J., Smolarczyk, R.: Tumor hypoxia unveiled: insights into microenvironment, detection tools and
emerging therapies. Clinical and Experimental Medicine. 24, 235 (2024).
https://doi.org/10.1007/s10238-024-01501-1
26. Lappano, R., Todd, L.A., Stanic, M., Cai, Q., Maggiolini, M., Marincola, F., Pietrobon, V.: Multifaceted
Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers.
14, 539 (2022). https://doi.org/10.3390/cancers14030539
27. Kuo, C.-L., Ponneri Babuharisankar, A., Lin, Y.-C., Lien, H.-W., Lo, Y.K., Chou, H.-Y., Tangeda, V.,
Cheng, L.-C., Cheng, A.N., Lee, A.Y.-L.: Mitochondrial oxidative stress in the tumor microenvironment
and cancer immunoescape: foe or friend? Journal of Biomedical Science. 29, 74 (2022).
https://doi.org/10.1186/s12929-022-00859-2
28. Lobel, G.P., Jiang, Y., Simon, M.C.: Tumor microenvironmental nutrients, cellular responses, and cancer.
Cell Chemical Biology. 30, 1015–1032 (2023). https://doi.org/10.1016/j.chembiol.2023.08.011
29. Sun, H., Li, Y., Xue, M., Feng, D.: Tumor Microenvironment-Responsive Nanoparticles: Promising
Cancer PTT Carriers. Int J Nanomedicine. 20, 7987–8001 (2025). https://doi.org/10.2147/IJN.S526497
30. Alum, E.U., Nwuruku, O.A., Ugwu, O.P.-C., Uti, D.E., Alum, B.N., Edwin, N.: Harnessing nature: plant-
derived nanocarriers for targeted drug delivery in cancer therapy. Phytomedicine Plus. 5, 100828 (2025).
https://doi.org/10.1016/j.phyplu.2025.100828
31. Majumder, J., Minko, T.: Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic
delivery. Expert Opin Drug Deliv. 18, 205–227 (2021). https://doi.org/10.1080/17425247.2021.1828339
32. Zeng, Y., Ma, J., Zhan, Y., Xu, X., Zeng, Q., Liang, J., Chen, X.: Hypoxia-activated prodrugs and redox-
responsive nanocarriers. Int J Nanomedicine. 13, 6551 –6574 (2018).
https://doi.org/10.2147/IJN.S173431
33. Mi, P.: Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics.
Theranostics. 10, 4557–4588 (2020). https://doi.org/10.7150/thno.38069
34. Hosonuma, M., Yoshimura, K.: Association between pH regulation of the tumor microenvironment and
immunological state. Front Oncol. 13, 1175563 (2023). https://doi.org/10.3389/fonc.2023.1175563
35. Khalaf, K., Hana, D., Chou, J.T.-T., Singh, C., Mackiewicz, A., Kaczmarek, M.: Aspects of the Tumor
Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol. 12, 656364
(2021). https://doi.org/10.3389/fimmu.2021.656364
36. Alum, E.U., Akwari, A.Ak., Okoroh, P.N., Aniokete, U.C., Abba, J.N., Uti, D.E.: Phytochemicals as
modulators of ferroptosis: a novel therapeutic avenue in cancer and neurodegeneration. Mol Biol Rep. 52,
636 (2025). https://doi.org/10.1007/s11033-025-10752-4
37. Akter, R., Awais, M., Boopathi, V., Ahn, J.C., Yang, D.C., Kang, S.C., Yang, D.U., Jung, S.-K.: Inversion
of the Warburg Effect: Unraveling the Metabolic Nexus between Obesity and Cancer. ACS Pharmacology
& Translational Science. 7, 560 (2024). https://doi.org/10.1021/acsptsci.3c00301
38. DeBerardinis, R.J., Chandel, N.S.: We need to talk about the Warburg effect. Nat Metab. 2, 127–129
(2020). https://doi.org/10.1038/s42255-020-0172-2
39. Zhang, J., Pan, T., Lee, J., Goldberg, S., King, S.A., Tang, E., Hu, Y., Chen, L., Hoover, A., Zhu, L., Eng,
O.S., Dekel, B., Huang, J., Wu, X.: Enabling tumor-specific drug delivery by targeting the Warburg effect
of cancer. Cell Rep Med. 6, 101920 (2025). https://doi.org/10.1016/j.xcrm.2024.101920