STRUCTURAL DYNAMICS MULTI DEGREE OF FREEDOM SYSTEMS EQUATION OF MOTION

tekalign24 207 views 15 slides May 30, 2024
Slide 1
Slide 1 of 15
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15

About This Presentation

STRUCTURAL DYNAMICS
MULTI DEGREE OF FREEDOM SYSTEMS EQUATION OF MOTION


Slide Content

Class #8

Structural Dynamics

Multi-Degree of Freedom Systems
Equations of Motion

Dr. Tesfaye Alemu

Degrees of Freedom

e SDOF: Single Degree of Freedom System:
e One mass moving in one direction.

e MDOF: Multi-Degree of Freedom System:
e More than one mass moving in
one (same, lateral) direction.
e One mass moving in
more than one direction.

1 234 5

WERD

„12345

NA
WT UM AN

Equations of Motion

e SDOF:
e Free Vibrations: Forcing function = F(t) = 0 = p(t)
e Undamped: energy dissipation = 0
e Damped: energy dissipation # 0
e Forced Vibrations: Forcing function = F(t) #0 # p(t)
e Undamped: energy dissipation = 0
e Damped: energy dissipation # 0

e MDOF:
e Free Vibrations: Forcing function = F(t) = 0 = p(t)
—— > Undamped: energy dissipation = 0
e Damped: energy dissipation # 0
e Forced Vibrations: Forcing function = F(t) #0 # p(t)
e Undamped: energy dissipation = 0
e Damped: energy dissipation # 0

Stiffness Coefficients for MDOF

e Multi-story structures can be divided
into 2 types:
e According to deformation characteristics

e Shear Structure be
e Floors move only horizontally,
e Rigid beam-column joints, NO Rotation

e Flexural Structure =, |
e Floors move horizontally and Rotate |
e Flexible (pinned) beam-column joints

Stiffness Coefficients for Shear Building

he

hy

DEM +Lr)

in

= GAG ba)
hy

k=

12E (1, +12)
hy

| rl, AG)
E a hi
Lar ha :
| IT) net)
E k, = 7 2 |
12E, UG + 1)
a
Palt) Fig ult
la ust) Fag
ie Feat pat)
Feat =
Fsor S3R

Forces Acting ona
Shear Building

[no Pr) ml] pp?” mb O1 ps”

u,(t Uat)
OI Sel, -à (0) 0-0]
ku] k,[u,(t)—u,(1)] k,|u;(t)—u,(r)]

Forces Acting ona
Shear Building

e For Mass #1:

im) Bro >
~mlii,(¢)]-¢,[4, (Qk. ba + Li Où 0+ koa (0-4. D+ p,(0)=0
= multi, (e)]-(c, + Ji (O]+ cl (1)]- (4, +8 Ju (]+k le = =p, (0)
Define: c,,=C,+C, k,, =k, +k,

— C2 = Cy Kyo =k,
= ma (O1 (ei lé OI cale OT Jin Ol- 4, oh (01==p, (0)
tml + (i Ol+ cola O]+& u O]+ kale = +20)

t

Ir a] pep Putt malito] po ml) 2°
7, u,(t up(t) ux(t)
C la, ala: li, ()- uy ote li, ()- uy ort)

k[u,@] k,[u,(t)—u,(1)] k[u,()-u,(0)]

Forces Acting ona
Shear Building

e For Mass # 2:

2F,=0 +=>

mal (cali (lu (+ ei (1) + lus (o) u,(1)]+ 20 =

Define: =C,, =+C, Ca =C,+C; —C ou
-k, =k Ta +k,

0

“ale (+ coli l(c, + (clé (Ok lu le im +k ie ]+klae)]=-D.)

maki, (e)]-(c,, Jl, ()]- E, ali, ( e)|- © ali, (-( x re kl 1-60 (01=-p,(0)
+ mi, (+ (cr (+ enfin 2 le li, QE 21 Ju, (+ Kal ll (0l=+p, t)

Pa(t)

alt)

Ir GO] Pt mi, (+)] K mil >

7. ut uo(t ux(t)
C la, ala: li, ()- uy ote li, ()- uy ort)
k[u,@] k,[u,(t)—u,(1)] k[u,()-u,(0)]

Forces Acting ona
Shear Building

e For Mass #3:

1 2F,=0 =>=+
—malii,(+)]-c.[ú,()-ú,()]-x,[u,(+)-u,(1)]+ p,(+)=0
—molii,(+)]+c,[ú, (]-c,[a,(0]+ k,[u, ()]-4,[u, Ok =P; (e)
Den SC CS —k,, =k,
SO = ae; —k,; =—kz

-m,[ü,(t )I- (calli, (s))- Cala (e )- (a lu, (e))- k,slus()|=-p;(1)
|. tmliis()]+ (cs, AO) AO) CS A0) alu, = +750)

ml

pa(t) Palt)

| ii, (a) P,(t) m, lii, ()] a Ws lii, ()]

7. ut uo(t us(t)
C la, ala: li, ()- uy ote li, ()- uy ort)
k[u,@] k,[u,(t)—u,(1)] k[u,()-u,(0)]

Forces Acting ona

Shear Building

Writing the force equations for all 3 masses in
matrix form.

0

Note:

0 m,

0 O m
Symmetry of Mass, Damping, and Stiffness matrices

o : Ci2 iR x ky
ii,(t) 20, O ü,(t) + Ka kn

Gin

0 © C3 últ) 0 ky

ü,(e)
C33 = C, ky =k =

kz =k,

C=C, FC

Con = C2 +C,

0
ky,
Rz

ka, = ky =k

u(t) p(t)
„&)|=| pole)
u(t) pst)

—k, ky, =k, +k,
ky =k, +k,

q la, 9)
k, la, ()]

RD

[no li, 9)
do

Pa(t)

OO Pr
k,[u,(t)- u, ()]

mlü, (0)]
C3 la, ()- uy ote |
k alu, ()- u, ol

Pa(t)

ci T 1)]
ku]

Forces Acting ona
Shear Building

0
0 m,

m,

rm

0 0 m
writing in

[mlfi(e)]+[c

0
0

G1 Ci

Ji} +{eTa] =

for seismic excitation :

ii(t) 1 12
ii,(t) Gn E
3 ü,() 0 cy,

Ca

matrix vector

[56]
[p(e)] =-mii, (+)

0
CG

C3

ui(t) ky ky Ou
3 últ) + ky ko Ko |
3 ui,(t) 0 k, k;]lu
form:

|

m 0
0 m 0
0 0 mI

oT

)| Fr)
t)|=| pale)
1)] Lt)

Miran wo EE
[u,(t) u, ()]

Po(t)

ml, ()]

G li, ()- uy el
k alu, ( )- u, ol

MDOF - Equations of Motion

Assumptions: (Same as for SDOF)

Massless
frame

Mass of structure is concentrated at roof and floors.
Frame has zero mass.
Beams & columns are inextensible axially.
Motion of structure depends on
e Lateral Stiffness (spring)
e Relative displacement between base and mass
e Energy Dissipation (damper, dashpot)
e Relative velocity between base and mass
Applied Force Ground Motion

Mass

Pit)

‘Viscous
amper

MDOF - Equations of Motion

Assumptions: (same as for SDOF)

e Three separate PURE components
e Mass component,
e Roof, floors, walls, columns, beams
e lumped together into ONE mass per floor level or roof level.
e Stiffness component.
e Lateral stiffness of walls, columns, beam-column joints
e lumped together into ONE stiffness per level.
e Stiffness depends on relative displacement between base and mass.
e Damping component
+ Energy (kinetic & strain) dissipation of all elements
e lumped together into ONE damper per level.
e Damping depends on relative velocity between base and mass.
Applied Force Ground Motion
Mass =
Pit)
Massless Viscous
frame damper
7 2
(a) @) pa] Ue