Tcp/ip Protocol presentation on Networking .pptx

HinaAsghar16 8 views 55 slides May 08, 2024
Slide 1
Slide 1 of 55
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55

About This Presentation

Protocol presentation


Slide Content

OBJECTIVES: To get familiar with the networking devices and their working

Network Hardware – Network Interface Card Network Interface Card (NIC) Network adapter card Ethernet Card LAN card Types of NICs Media Specific Network Design Specific OSI Model Layers 7 Application 6 Presentation 5 Session 4 Transport 3 Network 2 Data Link 1 Physical

Network Hardware - Hub Hub An unintelligent network device that sends one signal to all of the stations connected to it. All computers/devices are competing for attention because it takes the data that comes into a port and sends it out all the other ports in the hub. Traditionally, hubs are used for star topology networks, but they are often used with other configurations to make it easy to add and remove computers without bringing down the network. Resides on Layer 1 of the OSI model OSI Model Layers 7 Application 6 Presentation 5 Session 4 Transport 3 Network 2 Data Link 1 Physical

CSMA/CD

Network Hardware - Hub Hub Two types based on ports Ethernet HUB Combo HUB Types of HUB Passive HUB Active HUB OSI Model Layers 7 Application 6 Presentation 5 Session 4 Transport 3 Network 2 Data Link 1 Physical

Network Hardware Repeater Used to boost the signal between two cable segments or wireless access points. Can not connect different network architecture. Does not simply amplify the signal, it regenerates the packets and retimes them. Resides on Layer 1 of the OSI model. OSI Model Layers 7 Application 6 Presentation 5 Session 4 Transport 3 Network 2 Data Link 1 Physical

Network Hardware Bridge Connects two LANs and forwards or filters data packets between them. Creates an extended network in which any two workstations on the linked LANs can share data. Transparent to protocols and to higher level devices like routers. Forward data depending on the Hardware (MAC) address, not the Network address (IP). Resides on Layer 2 of the OSI model. OSI Model Layers 7 Application 6 Presentation 5 Session 4 Transport 3 Network 2 Data Link 1 Physical

Network Hardware Switch Split large networks into small segments, decreasing the number of users sharing the same network resources and bandwidth. Understands when two devices want to talk to each other, and gives them a switched connection Helps prevent data collisions and reduces network congestion, increasing network performance. Resides on Layer 2 of the OSI model. OSI Model Layers 7 Application 6 Presentation 5 Session 4 Transport 3 Network 2 Data Link 1 Physical

Switch Working

Remember! Remember, there are three things that switches do that, hubs do not: Hardware address learning Intelligent forwarding of frames Loop avoidance

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Remember That! Routers separate broadcast and collision domains. Switches separate collision domains. Hubs belong to only one collision domain. Switches and hubs both only belong to one broadcast domain.

VLANs – A Layer-2 or Layer-3 Function? By default, a switch will forward both broadcasts and multicasts out every port but the originating port. However, a switch can be logically segmented into multiple broadcast domains, using Virtual LANs (or VLANs). Broadcasts from one VLAN will not be forwarded to another VLAN. The logical separation provided by VLANs is not a Layer-3 function. VLAN tags are inserted into the Layer-2 header. Remember , though VLANs provide separation for Layer-3 broadcast domains, they are still a Layer-2 function.

Multilayer Switching Multilayer switching is a generic term, referring to any switch that forwards traffic at layers higher than Layer-2. Thus, a Layer-3 switch is considered a multilayer switch, as it forwards frames at Layer-2 and packets at Layer-3. A Layer-4 switch provides the same functionality as a Layer-3 switch, but will additionally examine and cache Transport-layer application flow information, such as the TCP or UDP port. Some advanced multilayer switches can provide load balancing, content management, and other application-level services. These switches are sometimes referred to as Layer-7 switches.

Network Hardware Router A device that connects any number of LANs. Uses standardized protocols to move packets efficiently to their destination. More sophisticated than bridges, connecting networks of different types (for example, star and token ring) Forwards data depending on the Network address (IP), not the Hardware (MAC) address. Routers are the only one of these four devices that will allow you to share a single IP address among multiple network clients. Resides on Layer 3 of the OSI model. OSI Model Layers 7 Application 6 Presentation 5 Session 4 Transport 3 Network 2 Data Link 1 Physical

Assignment 3 Differentiate b/w HUB and REPEATER? Differentiate b/w BRIDGE and SWITCH? Differentiate b/w ROUTER and SWITCH?

THANKS
Tags