Technical seminar for btech student for the presentation which can be present

pavanitellagorla2003 26 views 25 slides Sep 30, 2024
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

Technical seminars report for btech students


Slide Content

BhojReddy Engineering College for Women
(Sponsored by Sangam LaxmibaiVidyapeet, approved by AICTE and affiliated to JNTUH)
Vinaynagar, IS SadanCrossroads, Saidabad, Hyderabad –500 059, Telangana. www.brecw.ac.in
Department of
Electronics
and Communication Engineering
Seminar on
Application of Artificial Intelligence to
Network Forensics
Internal Guide: Incharge: PranathiiSubburu
SVMG PhaniKumar C Shafia Tasneem 20321A0492
Assistant Professor Assistant Professor IV ECE-B

CONTENTS
Introduction.
Datasets for Network Forensics
State of the Art
Advantages
Disadvantages
Applications
Conclusion
Future scope
References
13-10-2023
2

INTRODUCTION
ArtificialIntelligenceiswidelyadoptedbyvariousorganizationsandtechnologies.
ArtificialIntelligencetechnologiesareplayingcrucialincybersecurityanddigitalforensics.
TheGrowthincybercrimeandtherelevanceofdigitaldevicesincrimeinvestigationshas
drivendemandfordigitalforensics.
26-09-2023 3


Digitalforensicsisusedtogatherevidenceforlegalpurposes.Ithelpsuncoverdigital
evidencetosupportinvestigationsandlegalproceedings.
Digitalforensicsinvolveslegallyacceptableprocessincludes
•Identification
•Verifications
•Analysis
•Presentationofdigitalevidence
NetworkForensicsinvolvesanalyzingnetworktraffictoinvestigatesecurityincidents,data
breachesandpolicyviolationsandhelpsinunderstandingamitigatingvariousattacks.
13-10-2023
4

Networkforensicsfocusesontheidentificationandinvestigationofinternalandexternal
networkattacksandtheuninstrumentedinvestigationofnetworkeddevices.Itliesatthe
intersectionofdigitalforensics,incidentresponseandnetworksecurity
13-10-2023
5

DATASETS FOR NETWORK FORENSICS

Innetworkforensics,datasetsarecollectionsofnetworktrafficdatathatareusedfor
analysisandinvestigation.
Thesedatasetstypicallycontaininformationsuchaspacketcaptures,networklogs,and
othernetwork-relateddata.
Theyarevaluableresourcesforstudyingnetworkbehavior,identifyingsecurityincidents,
andconductingresearchinthefieldofnetworkforensics.
13-10-2023
6

There are various publicly available datasets for network forensics, such as
•DARPAIntrusionDetectionDataSets:Thisdatasetisoneofthemostcommonlyusedfor
networkintrusiondetectionresearch.Itcontainsalargeamountofsimulatednetworktraffic
datawithdifferenttypesofattacks,includingDoSattacks,probing,andU2Rattacks.
•UNSW-NB15:TheUniversityofNewSouthWales(UNSW)providesthisdataset,which
includesadiverserangeofnetworktrafficdata.Itcontainsnormaltrafficaswellasvarious
typesofattacks,includingDoS,probing,andmalware.
•ISCXNSL-KDDDataset:ThisdatasetisanimprovedversionoftheKDDCup1999dataset,
addressingsomeofitslimitations.Itincludeslabelednetworktrafficdatawithattacksand
normaltraffic.
13-10-2023 7


CIC-IDS2017Dataset:Thisdatasetcontainslabelednetworktrafficdatafromthe
CanadianInstituteforCybersecurity(CIC).Itincludesavarietyofattacksandnormaltraffic.
•AWID(AarhusWirelessDataset):Thisdatasetfocusesonwirelessnetworktraffic
analysis.Itincludesdatafromdifferentwirelessprotocolsandcapturesvarioustypesof
networkactivities.
•CTU-13Dataset:TheCzechTechnicalUniversityinPragueprovidesthisdataset,which
containsdatarelatedtorealbotnetattacks.Itincludesnetworktrafficfrom13different
scenarios.
•SCXVPN-nonVPNDataset :ThisdatasetfocusesondistinguishingbetweenVPNand
non-VPNnetworktraffic.Itcontainsdatafrombothtypesoftraffic.
13-10-2023
8

STATE OF THE ART
13-10-2023
9
NETWORK TAFFIC ANALYSIS
NetworkTrafficAnalysisdetectsand
analyzessecuritythreatsandoperational
difficultiesusingnetworkcommunications
andprotocols.
NetworkTrafficAnalysismovesthreat
huntingfromsecurityperimetersand
endpointstonetworkflows.

NTAcombinesmachinelearning,advancedanalytics,andrule-baseddetectiontocreatea
baselinemodelofnormalnetworkactivity.
Anomalouspatternstriggerhighlycontextualizedwarnings.
IncreasednetworktrafficvolumeshaveledtothedevelopmentofnewNTAtechniques.
Expertsystemswerepopularinthe1990sforNTA,utilizingrule-baseddetectionand
logicalconclusions.
SEMACSisareal-timemonitorandcontrolsystemimplementedonthenetwork.
13-10-2023 10

INSTRUSION DETECTION SYSTEM
ANetwork-basedIntrusionDetectionSystem(NIDS)isamechanismthatmonitorsnetwork
trafficforhostileandsuspiciousbehavior.
NIDSplaysavitalroleinenhancingsecuritycontrolsandsecuringnetworkenvironments.
13-10-2023 11


NIDSmonitorsnetworktrafficforsuspiciousbehavior.
NIDScanstrengthensecuritycontrolsandsecurethenetworkenvironmentoforganizations.
NIDSusestwomainapproaches:signature-basedandanomaly-based.
•Signature-basedNIDSreliesonalibraryofknownattackstocomparenetworktrafficagainst
knownvulnerabilities.
•Anomaly-basedNIDSusesAItechniquestodetectabnormalbehavior.
NIDSmostlyrelyonpubliclyavailabledatasets,raisingquestionsabouttheirrepresentation
ofreal-worldtraffic.
13-10-2023 12

IoT FORENSICS
IoT(InternetofThings)isarelativelynewcategory
ofconsumerandindustrialelectronics.
IoTforensicsisanemergingfieldfocusedon
detectingandretrievingdigitalinformationinanethicalandforensicallyreliablemanner.
EvidenceinIoTforensicscanbecollectedfromanIoTdevice'slocalstorage,localnetwork,
orassociatedcloudserviceback-end.
13-10-2023 13

AspecializedincidentresponsetechniqueforIoTforensicsisneededtoaddresscybercrime
incidentsintheIoTdomain.
CLOUDFORENSICS
Cloudforensicsinvolvestheexamination
ofcybercrimethatrequiresevidencefrom
cloudcomputingplatformsorservices.
Thechallengeincloudforensicsisthatevidencecanbestoredanywhereinavirtual
environment.
13-10-2023 14

Earlyinvestigationsreliedontraditionaldigitalforensicsmethodologiesandtechnologies.
Rapidimprovementsincloudcomputingledtothedevelopmentofnewapproaches,frameworks,
andtoolsforcloudforensics.
Cloudforensicscoverevidencecollection,networkconcerns,privacyissues,andframeworks.
Challengesincloudcomputingincludetrust,threats,risks,andinsiderattacks.
DNSTUNNELING
DNStunnelingisanattacktechniquethatusesDNSrequestsandresponsestotransmitdata.
DNStunnelscancarrymalwarepayloadsandcommandandcontrolmessaging.
13-10-2023 15

AItechniqueshavebeendeployedtoaddress
DNStunnelingattacks.
DNStunneldetectionapproachescanberule-
basedormodel-based.
Rule-baseddetectionusesmanuallydefined
rulesbasedonrelevantfeatures.
Signature-baseddetectioncandetectDNStunnelswithhighaccuracy.
DNStunnelingdetectionischallengedbythediversityofmaliciousbehavior.
13-10-2023 16

SMART GRID FORENSICS
SmartGridforensicsisusedtoidentifysecurityissuesinsmartelectricalgridsystems.
Itcanalsobeusedforcybercrimeinvestigations,includinghackinganddatatheft.
Thesmartgridsystemandfocusesonefficient
energymanagement.
AItechniques,suchasMLandDL,areusedto
resolvecomplexproblemsinthesmartgrid.
Securityinthesmartgridnetworkisbasedonconfidentiality,integrity,andavailability.
13-10-2023 17

VEHICULARFORENSICS
Digitalvehicleforensicsinvolvescapturingandanalyzingdigitalevidencefrommotorvehicles.
Thisevidencecanbeusedininvestigatingcrimesinvolvingmotorvehiclesordeterminingthe
causeofautomobileaccidents.
TheDrivingAdHocNetworkingInfrastructure(DAHNI)focusesondeliveringdriver
assistanceusinglocationawareness,adhocnetworking,andaccesstofixedinfrastructure.
Utilizingvehicularnetworkstotracknearbyvehiclesandalertdriverstopotentialrisks.
13-10-2023 18

ADVANTAGES
Efficiency
Adaptability
EarlyThreatDetection
ResourceEfficiency
13-10-2023
19

DISADVANTAGES
Complexity
ResourceIntensiveness
FalseAlarms
13-10-2023
20

APPLICATIONS
AnomalyDetection
MalwareDetectionandAnalysis
IncidentResponseAutomation
ContinuousNetworkMonitoring
13-10-2023
21

CONCLUSION
TheapplicationofArtificialIntelligence(AI)tonetworkforensicsofferssignificant
advantages,includingenhancedthreatdetection,real-timeresponsecapabilities,andthe
abilitytohandlevastandcomplexdatastreams.
AIsystemsarebecomingessentialtoolsfororganizationsseekingtoprotecttheirdigital
assetsinthefaceofincreasinglysophisticatedcyberthreats.
13-10-2023
22

FUTURE SCOPE
OneofthesignificantfuturedirectionsforAIinnetworkforensicsisthecreationof
autonomoussystemsthatrelyonmachinelearninganddeeplearningmodels.
Thesesystemswillhavetheabilitytoidentifyandmitigatethreatsinreal-timewithout
humanintervention,resultinginfasterresponsetimesandimprovedcyberattackdefense.
ThefutureofAIinnetworkforensicsisbright,offeringthepromiseofmorerobust,
efficient,andproactivecybersecuritystrategiestosafeguardourdigitalworld
13-10-2023
23

REFERENCES
J.FlynnandC.Giannetti,‘‘Usingconvolutionalneuralnetworkstomaphousessuitable
forelectricvehiclehomecharging,’’AI,vol.2,no.1,pp.135–149,Mar.2021[10]Cisco.
(2020).CiscoAnnualInternetReport(2018–2023).
L.Taheri,A.F.A.Kadir,andA.H.Lashkari,‘‘ExtensibleAndroidmal-waredetection
andfamilyclassificationusingnetwork-flowsandAPI-calls,’’inProc.Int.CarnahanConf.
Secur.Technol.(ICCST),Oct.2019,pp.1–8.
Q.Chen,‘‘Towardrealizingself-protectinghealthcareinformationsys-tems:Designand
securitychallenges,’’inAdvancesinComputers,vol.114.Amsterdam,TheNetherlands:
Elsevier,2019.
S.Peisert,R.Gentz,J.Boverhof,C.McParland,S.Engle,A.Elbashandy,andD.Gunter,
‘‘LBNLopenpowerdata,’’LBNL,Berkeley,CA,USA,Tech.Rep.,2017
13-10-2023
24

13-10-2023
25