SlidePub
Home
Categories
Login
Register
Home
General
Tensorflow explain in coursera cousre. it is very useufl
Tensorflow explain in coursera cousre. it is very useufl
hsuwaikyawsdb
3 views
24 slides
Jul 12, 2024
Slide
1
of 24
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
About This Presentation
this is tensorflow
Size:
1.21 MB
Language:
en
Added:
Jul 12, 2024
Slides:
24 pages
Slide Content
Slide 2
0 64 128
48 192144
142226168
-1 0 -2
.5 4.5-1.
5
1.5 2 -3
Current Pixel Value is
192
Consider neighbor Values
Filter Definition
CURRENT_PIXEL_VALUE = 192
NEW_PIXEL_VALUE = (-1 * 0) + (0 * 64) + (-2 * 128) +
(.5 * 48) + (4.5 * 192) + (-1.5 * 144)
+
(1.5 * 142) + (2 * 226) + (-3 * 168)
Slide 3
-1 0 1
-2 0 2
-1 0 1
Slide 4
-1 -2 -1
0 0 0
1 2 1
Slide 5
0 64128128
48192144144
142226168 0
255 0 0 64
0 64
48 192
192
128128
144144
144
142226
255 0
255
168 0
0 64
168
192144
255168
Slide 6
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
Slide 7
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, (3,3), activation='relu',
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
Slide 8
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, (3,3), activation='relu',
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
Slide 9
https://bit.ly/2UGa7uH
Slide 10
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, (3,3), activation='relu',
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
Slide 11
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(64, (3,3), activation='relu',
input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
Slide 12
model.summary()
Slide 13
Layer (type) Output Shape Param #
=================================================================
conv2d_12 (Conv2D) (None, 26, 26, 64) 640
_________________________________________________________________
max_pooling2d_12 (MaxPooling (None, 13, 13, 64) 0
_________________________________________________________________
conv2d_13 (Conv2D) (None, 11, 11, 64) 36928
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 5, 5, 64) 0
_________________________________________________________________
flatten_5 (Flatten) (None, 1600) 0
_________________________________________________________________
dense_10 (Dense) (None, 128) 204928
_________________________________________________________________
dense_11 (Dense) (None, 10) 1290
=================================================================
Slide 14
Layer (type) Output Shape Param #
=================================================================
conv2d_12 (Conv2D) (None, 26, 26, 64) 640
_________________________________________________________________
max_pooling2d_12 (MaxPooling (None, 13, 13, 64) 0
_________________________________________________________________
conv2d_13 (Conv2D) (None, 11, 11, 64) 36928
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 5, 5, 64) 0
_________________________________________________________________
flatten_5 (Flatten) (None, 1600) 0
_________________________________________________________________
dense_10 (Dense) (None, 128) 204928
_________________________________________________________________
dense_11 (Dense) (None, 10) 1290
=================================================================
Slide 20
Layer (type) Output Shape Param #
=================================================================
conv2d_12 (Conv2D) (None, 26, 26, 64) 640
_________________________________________________________________
max_pooling2d_12 (MaxPooling (None, 13, 13, 64) 0
_________________________________________________________________
conv2d_13 (Conv2D) (None, 11, 11, 64) 36928
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 5, 5, 64) 0
_________________________________________________________________
flatten_5 (Flatten) (None, 1600) 0
_________________________________________________________________
dense_10 (Dense) (None, 128) 204928
_________________________________________________________________
dense_11 (Dense) (None, 10) 1290
=================================================================
Slide 21
Layer (type) Output Shape Param #
=================================================================
conv2d_12 (Conv2D) (None, 26, 26, 64) 640
_________________________________________________________________
max_pooling2d_12 (MaxPooling (None, 13, 13, 64) 0
_________________________________________________________________
conv2d_13 (Conv2D) (None, 11, 11, 64) 36928
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 5, 5, 64) 0
_________________________________________________________________
flatten_5 (Flatten) (None, 1600) 0
_________________________________________________________________
dense_10 (Dense) (None, 128) 204928
_________________________________________________________________
dense_11 (Dense) (None, 10) 1290
=================================================================
Slide 22
Layer (type) Output Shape Param #
=================================================================
conv2d_12 (Conv2D) (None, 26, 26, 64) 640
_________________________________________________________________
max_pooling2d_12 (MaxPooling (None, 13, 13, 64) 0
_________________________________________________________________
conv2d_13 (Conv2D) (None, 11, 11, 64) 36928
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 5, 5, 64) 0
_________________________________________________________________
flatten_5 (Flatten) (None, 1600) 0
_________________________________________________________________
dense_10 (Dense) (None, 128) 204928
_________________________________________________________________
dense_11 (Dense) (None, 10) 1290
=================================================================
Slide 23
Layer (type) Output Shape Param #
=================================================================
conv2d_12 (Conv2D) (None, 26, 26, 64) 640
_________________________________________________________________
max_pooling2d_12 (MaxPooling (None, 13, 13, 64) 0
_________________________________________________________________
conv2d_13 (Conv2D) (None, 11, 11, 64) 36928
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 5, 5, 64) 0
_________________________________________________________________
flatten_5 (Flatten) (None, 1600) 0
_________________________________________________________________
dense_10 (Dense) (None, 128) 204928
_________________________________________________________________
dense_11 (Dense) (None, 10) 1290
=================================================================
Slide 24
Layer (type) Output Shape Param #
=================================================================
conv2d_12 (Conv2D) (None, 26, 26, 64) 640
_________________________________________________________________
max_pooling2d_12 (MaxPooling (None, 13, 13, 64) 0
_________________________________________________________________
conv2d_13 (Conv2D) (None, 11, 11, 64) 36928
_________________________________________________________________
max_pooling2d_13 (MaxPooling (None, 5, 5, 64) 0
_________________________________________________________________
flatten_5 (Flatten) (None, 1600) 0
_________________________________________________________________
dense_10 (Dense) (None, 128) 204928
_________________________________________________________________
dense_11 (Dense) (None, 10) 1290
=================================================================
Tags
Categories
General
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
3
Slides
24
Age
508 days
Related Slideshows
22
Pray For The Peace Of Jerusalem and You Will Prosper
RodolfoMoralesMarcuc
30 views
26
Don_t_Waste_Your_Life_God.....powerpoint
chalobrido8
32 views
31
VILLASUR_FACTORS_TO_CONSIDER_IN_PLATING_SALAD_10-13.pdf
JaiJai148317
30 views
14
Fertility awareness methods for women in the society
Isaiah47
29 views
35
Chapter 5 Arithmetic Functions Computer Organisation and Architecture
RitikSharma297999
26 views
5
syakira bhasa inggris (1) (1).pptx.......
ourcommunity56
28 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-24)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better