Textile coloration, dyeing and printing of textile materials

gezuketema2009 427 views 189 slides Dec 23, 2023
Slide 1
Slide 1 of 311
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204
Slide 205
205
Slide 206
206
Slide 207
207
Slide 208
208
Slide 209
209
Slide 210
210
Slide 211
211
Slide 212
212
Slide 213
213
Slide 214
214
Slide 215
215
Slide 216
216
Slide 217
217
Slide 218
218
Slide 219
219
Slide 220
220
Slide 221
221
Slide 222
222
Slide 223
223
Slide 224
224
Slide 225
225
Slide 226
226
Slide 227
227
Slide 228
228
Slide 229
229
Slide 230
230
Slide 231
231
Slide 232
232
Slide 233
233
Slide 234
234
Slide 235
235
Slide 236
236
Slide 237
237
Slide 238
238
Slide 239
239
Slide 240
240
Slide 241
241
Slide 242
242
Slide 243
243
Slide 244
244
Slide 245
245
Slide 246
246
Slide 247
247
Slide 248
248
Slide 249
249
Slide 250
250
Slide 251
251
Slide 252
252
Slide 253
253
Slide 254
254
Slide 255
255
Slide 256
256
Slide 257
257
Slide 258
258
Slide 259
259
Slide 260
260
Slide 261
261
Slide 262
262
Slide 263
263
Slide 264
264
Slide 265
265
Slide 266
266
Slide 267
267
Slide 268
268
Slide 269
269
Slide 270
270
Slide 271
271
Slide 272
272
Slide 273
273
Slide 274
274
Slide 275
275
Slide 276
276
Slide 277
277
Slide 278
278
Slide 279
279
Slide 280
280
Slide 281
281
Slide 282
282
Slide 283
283
Slide 284
284
Slide 285
285
Slide 286
286
Slide 287
287
Slide 288
288
Slide 289
289
Slide 290
290
Slide 291
291
Slide 292
292
Slide 293
293
Slide 294
294
Slide 295
295
Slide 296
296
Slide 297
297
Slide 298
298
Slide 299
299
Slide 300
300
Slide 301
301
Slide 302
302
Slide 303
303
Slide 304
304
Slide 305
305
Slide 306
306
Slide 307
307
Slide 308
308
Slide 309
309
Slide 310
310
Slide 311
311

About This Presentation

The document deliberates on the dyeing of textile materials.


Slide Content

1
Wolkite University
College of Engineering and Technology
Textile Engineering Department
Textile coloration
By:
Gezu K.
2012

INTRODUCTION TO TEXTILE COLORATION

3
Textilecolorationreferstotheprocessof
impartingcolortotextilematerials.
COLORATION DEFINED
DYEING
PRINTING
Onlycertainareaofthesubstrate
getscoloredbasedondesign
requirement.
Thewholesubstrategetsthe
colorbyimmersing intoa
solutionofthecolor.
Thetextilematerialmaybeinoneofseveralformssuchasfiber,
yarn,fabric,garment,etc.

DYES/PIGMENTS
Coloringmattersarerequiredtoprovidethedesiredcolorto
textilesubstrates
Thesesubstancesareknownasdyestuffsandpigments
Ingeneraldyes/pigmentsareorganicmolecules
Adyeissolubleintheapplicationmediaandis
substantivetothetextilesubstrate.
Apigmentisinsoluble&isnotsubstantivetothe
textilesubstratebinding[byadhesiveagent].
No interaction with fiber

5
HistoricalDevelopment of Dyes
Dyedevelopment stages Driving forces
Natural dyes Poor substantivity & poor fastness
Use of mordant with natural dyes Long and difficult process
Indigo[Water insoluble pigment]Goodfastness but sill long process
First synthetic dye [Mauveine]Affinity for few fibers only &poor light fastness
Acid typeazo dyes Acid dyeing of wool andsilk
Direct substantive dyes Poor wet/wash fastness
Synthetic indigo vat dye Processdifficulty
Fiber reactive dyes Limited substantivity [Hydrophobic fibers]
Disperse dyes For hydrophobic fibers [method of application]
Dyes

6
SUBSTANTIVITY AFFINITY
Coloredcompoundswhichareabsorbedbythefiberfromasolution
orsuspensionwheretheyaresubsequentlyfixed.

Colour and Constitution of dyes
7
chromogen:chromogen:
achemicalcompoundthatiseithercolouredorcanbemadecolouredbythe
attachmentofsuitablesubstituents–thechromophoreandthe
auxochrome(s)arepartofthechromogen;
Chromophore (chromophoric group):Chromophore (chromophoric group):
Anorganiccompoundappearscolorduetothepresenceof
unsaturatedgroupsinit,suchgroupsarechromophores
responsiblefortheappearanceofcolor
alldyescontainedarylringsbearingunsaturatedgroupswhich
termed‘chromophores

8
Some typical chromophores are,
Thecolourintensityincreaseswiththenumberof
chromophoresordegreeofconjugated.

Auxochrome:
a substituent group in a chromogen that influences its colour.
such as –OH or –NH–groups,
Thepresenceofauxochromsinthechromogenmoleculeis
essentialtomakeitadye
auxochromesare acidicsuch as carboxylic and sulphonicgroups
and in basicauxochromes includes amino and hydroxyl groups.

10
Diazo groupDiazo group
Amino group
chromogen
chromophore
auxochroms
azobenzene
yellow 4,4′-diaminoazobenzene

11
HISTORICALDEVELOPMENT OF DYES
Dyedevelopment stages Driving forces
Natural dyes Poor substantivity & poor fastness
Use of mordant with natural dyes Long and difficult process
Indigo[Water insoluble pigment]Goodfastness but sill long process
First synthetic dye [Mauveine]Affinity for few fibers only &poor light fastness
Acid typeazo dyes Acid dyeing of wool andsilk
Direct substantive dyes Poor wet/wash fastness
Synthetic indigo vat dye Processdifficulty
Fiber reactive dyes Limited substantivity [Hydrophobic fibers]
Disperse dyes For hydrophobic fibers [method of application]

12
Scientific classificationbased on chemical structure
Example: Anthraquinone dyes, Azo dyes etc.
Technical classification based on dyeing properties
Example: Direct dyes, Acid dyes, Disperse dyes etc.
Commercialclassificationbasedonmanufacturers’aspects
[Brand names based on fastness, method of dyeing and so on]
Example:Indanthrene,Remazol,Procion,etc
CLASSICATION OF DYES

13
BASICDYES
DISPERSEDYES
MORDANTDYES
METALCOMPLEXDYES
OTHERDYES*
[Sulphur,chromeetc]
CLASSIFICATION BASED ON DYEING PROPERTIES
DIRECTDYES
REACTIVEDYES
VATDYES
AZOICDYES
ACIDDYES

DYESELECTION
Type of fiber present
Form of textile material & degree of levelness
Fastness properties required
Dyeing method used
Availability of machinery
Customer color requirement
14
Cost & Environment

Interaction ofmatter with light
Lightisaformofenergypropagatedathighspeedinthe
formofelectromagneticwaves.
Limitedrangeoftheelectromagneticwavedetectedbyhumaneye
Responseoflight:matterinteraction
ABSORBANCE REFLECTION
VISIBLE RANGE [400 –700nm]
COLOR & DYES

Colorisproducedduetoselectiveabsorptionofthe
visiblelight.Thereflectedportionofthevisiblelight
correspondstothecoloroftheobject.
ALL REFLECTED
ALL ABSORBED
WHITE
BLACK

17
Wavelength (nm) Absorbed Light Reflected Light
400 -440 Violet Greenish-yellow
440 -480 Blue Yellow
480 -510 Blue-green Orange
510 -540 Green Red
540 -570 Yellowish-green Magenta
570 -580 Yellow Blue
580 -610 Orange Greenish-blue
610 -700 Red Blue-green
Colorsoftypicalspectralbandsandperceivedcolors
afterabsorptionbyamaterialviewedinwhitelight

Preparationofdyesolution[Dyeandauxiliarychemicals]
Applicationofthedye
Fixationofthedye
Aftertreatment
Batch
Continuous
DYEING METHODS
SALIENT FEATURES OF DYEING PROCESS
The stages/steps in dyeing process are:
EXHAUSTION
IMPREGNATION
Semi continuous

Padding and squeezing
Fixation [Batching , Steam or hot air ]
Rinsing
Drying
CONTINOUS DYEING
PADDER

20

21
Semi Continuous
Thefabricisfirstpassedthoughwiththedye-liquor,thatiscalleda
paddingmachineorpaddingmangle.Thenitissubjectedtobatch
wisetreatmentinajigger
stored with a slow rotation for many hours
dyeing consists of
Pad-batch,at room temp.
Pad-roll at increased temp. by employing a heating chamber
This helps in fixation of the dyes on to the fiber
The dye is applied continuously by a padding.
The fixationand washingremains discontinuous

22
BATCH DYEING
Discontinuoussystemofdyeing
Thedyebathisallowedtoexhaustbyprovidingthenecessarycondition
Dyefixationtakesplaceinthedyebath
CIRCULATINGLIQUOR IN A STATIONARY MATERIAL
MATERIAL MOVEMENT IN A STATIONARY LIQUOR
CIRCULATION OF BOTH LIQUOR AND MATERIAL
Three general types of BD machine

AFTERTREATMENT
Washing in detergent at or near the boil [Soaping]
Treatment with chemicals to improve fastness
Application of simple finishing chemicals
23

24
DYEABILITY FACTORS
LIQUOR RATIO
DYE CHARCTERISTICS
DYEBATH ADDITIONS
DYEING CONDIIONS
FIBER CHRACTERISTICS CRYSTALLINITY & HYDROPHILICITY
STRUCTURE & DIFFUSEABILITY
TIME & TEMPERATURE
SALTS & OTHER AUXILARIES
TYPE OF MACHINE

25
Exhaustion referstotheamountofdyetransferredfromdye-bathtothe
substrateinthedyeingprocess.

Co: initial concentration of dye in dye bath
Cs= concentration during the process
Dyefixationmeansthereactionbetweenthedyeandfibermolecules.
EXHAUSION AND FIXATION
E % =(Co –Cs)/Co * 100
PROCESS TERMINOLOGIES

COLOUR YIELD
DEPTH OF SHADE
Paleness or dullness of a given shade
Shade depth per a given amount of dye

27
DYE MIGRATION
LEVELLING
Tendency of dye transfer from heavily dyed region
Uniformity of shade throughout the substrate

28
FASTNESS
LIQUOR RATIO
Resistance to color change or color removal
Ratio of weight of material to volume of liquor
COMPATIBILITY
Dyes having same or similar rates of dyeing

THEORY OF
DYEING

Fundamental steps in dyeing
From molecular point of view dyeing process involves
•Transport of dye from dye bath to fiber
surface
•Adsorption on the surface of fiber
•Diffusion in the fiber interior
•Fixation of dye
30

STUDIES ON THEORY OF DYEING
31
THERMODYNAMIC APPROACH
KINETIC APPROACVH
Dyeing equilibrium
Rate of Dyeing

32
Exhaustionofthedyeinsolutiontakesplaceindyeingprocess
Aftertheinitialincreaseinthedegreeofexhaustion,iteventuallybecomesconstant.
Nonettransferofdyefromsolutiontothefiber.Atthispointdyeingequilibriumisestablished.
DYEING EQUILIBRIUM
Subsidiaryequilibriaisestablishedbetweendyedissolvedinthe
bath&dyeadsorbedonfibersurface;betweendyedadsorbed&
dyediffusedinthefiber.
Nernst Isotherm
Langmuir Isotherm
Freundlich Isotherm
Inthecaseofdyeingequilibria,
themostcommonlyencountered
adsorptionisothermsarethe
partitionisotherm:

33

34
Nernst Isotherm
Dye is equally divided betweensolution and fiber
whichistypicallydisplayedfor
theadsorptionofdisperse
dyesonhydrophobicfibers
suchasPES.

35
Rapid sorption limited by accessibility of fiber surface sites
Freundlich Isotherm
theadsorptionofdirect
dyesoncottonandother
cellulosicfibers.

36
Sorption limited by fixed number of adsorption sites
Langmuir Isotherm
theadsorptionofanionicdyes(e.g.
non-metallizedaciddyes)onwool,
silkandPAfibers,aswellasbasic
dyesonPANfibers.

AFFINITY
37
TheattractionofthedyestofibersisgenerallyexpressedasAFFINITY.
Duringdyeingmasschangesoccurthatchangethermodynamicfunctions
Thechemicalpotentialisdefinedasthechangeinfreeenergyofa
systemthatoccurswhenthecompositionchangesbyaunitmolar
amountofsubstance,allothervariablessuchasthetemperature,
pressureandtheamountsofothercomponentsremainingconstant.
CHEMICAL POTENTIAL
µ = µ0+ RT ln (a)

38
Inthecaseofdyeing,ifthechemicalpotentialofthedyeinsolutionishigher
thaninthefiber,thedyewilltransfertothefiber.
Thechemicalpotentialinsolutionfalls;thatinthefiberincreases.
Atequilibrium,thechemicalpotentialofthedyeinthefiberisequaltothe
chemicalpotentialofthedyeinthesolution.
Thestandardaffinityofadyeforafiberisdefinedasthedifferenceofthe
standardchemicalpotentialsofthedyeinthetwophases.

39
Thestandardaffinityisthechangeinchemicalpotentialofdyewhenone
moleistransferredfromstandardstateinsolutiontostandardstateinthefiber.
Thestandardmolarfreeenergychangefordyeing
Enthalpy of dyeing [-ΔHo]
Entropy of dyeing [ΔSo]
Immobilization of dye in the fiber
MEASUREOFSTRENGTHOFDYE-FIBERBONDS

40
EXOTHERMIC NATURE OF DYEING
Establishmentofequilibriuminvolvesdecreaseinthetotalfree
energy
Henceheatisgivenoutduringdyeing
Exothermicreactionsarefavoredatlowtemperatures

Fick'sLawofdiffusion:Therateoftransportofdye(dQ/dt)
acrossagivenareaisproportionaltoconcentrationgradient
RATE OF DYEING

•Therateofdyeingincreaseswithincreasingtemperature.
•Theequilibriumuptakeofdyedecreasesowingtothe
exothermicnatureofdyeadsorption.
Effect of Temperature on Dye Diffusion

MODELS OF DYE DIFFUSION
43
FREE VOLUME

Cotton, flaxand CLY
Hydrophobic substrates such
as PES

45
Rapid Dyeings @ shorter half dyeing time
HALF DYEING TIME
The time required for the exhaustion to reach half [50%] of is equilibrium value.

FACTORS ON RATE OF DYEING
Type/constructionofmaterial
Dyebathtemperature&pH
Typeofdye-bathadditions
Liquorratio
Degreeofagitation

DYE-FIBER INTERACTIONS
47
Ionic links
Hydrogen bonds
Covalent bonds
Physical forces

Cellulosic dyeing
48
Direct dye
Reactive dye
Vat/indigo dye
Sulphur dye

Dyeing of Cellulosic Textiles
Dyes for cellulosic fibers:
•CottonandothercellulosicfiberscanbedyedwithReactive,
Direct,Vat,Sulphur,Azoic,Phtalogen,PigmentandMordantdyes.
•Applicationmethods,dyeingcharacteristics,cost,fastness
propertiesandcolorrangearedifferforeachdye.
•Theyhavetheirownparticularadvantagesanddisadvantages.
49

DIRECT DYEING

Dyeingprocesseswhichinvolveuseofdirectdyes
Directdyesaresocalleddirectbecausetheyareappliedtocellulosic
fibertextilesdirectlywithouttheneedforamordant.
TypicalcharacteristicsofDirectDyes
•Inherentsubstantivitytocottonandothercellulosics
•Donotrequiremordant,dyeingprocedureisquitesimple.
•Directdyesareanionicinnature
•Theiraqueoussolutionsdyecottonusuallyinthepresenceofan
electrolytesuchasNaClorNa2SO4.
•Generallythesedyesarewatersoluble
•Relativelyinexpensive,availableinafullrangeofhuesbutnotnoted
(known)fortheircolorbrilliance.
Introduction

•Directdyesusuallyhavelinearlongcoplanarmolecular
structure
•Sulphonatedazodyesconstitutethepredominantgroupof
directdyes
•Theirmajordrawbackistheirpoortomoderatefastnessto
washing.
•Varioustreatmentstoimprovefastness
•DyeSolubilitydependson
Numberofsolublizinggroups,
Molecularweightand
temperatureofdyeing
After treatment
Solubilizinggroup

53
Bybringingdyebathtoboilgraduallyandholdingatboil
whilstthedyediffusesintothefiber.
Inabsenceofelectrolytesomedirectdyeswillnotdye
celluloseatall.
Usuallyappliedwiththeadditionofelectrolyteatornearthe
boil.
Dyeingwithdirectdyesiscarriedoutinneutralsolution
Simpledyeingprocedure
Requirementofsoftwaterforsomedirectdyesduring
application
Applicationofdirectdyestocellulose

54

55

CLASSIFICATION OF DIRECT DYES
56
CHEMICAL STRUCTURE OF CHROMOPHORE
DIRECT AZOIC DYES
DIRECT THIAZOLIC DYES
Classificationbasedonchemicalstructureisnotsignificantforthe
dyerbecausedyeswithsimilarconstitutioncanhavequitedifferent
applicationandfastnessproperties.

57
DYEING PROPERTIES [EQUALIZING]
Class A: Self leveling
Class B: Average leveling
Class C: Poor leveling
ThemostcommonclassificationofdirectdyesisthatoftheSocietyof
DyersandColorists(SDC),basedontheirlevellingabilityandtheir
responsetoincreaseinthedyeingtemperatureandtoaddedsaltduring
exhaustdyeing.

58
Class A: Self leveling
Lowmolecularweight=>mono-andbis-azodyeswithseveral
anionicsulphonategroupspermolecule.
Goodmigration,eveninthepresenceofsalt.
Severalsulphonatedgroupspermolecule
Goodsolubilityandnoaggregation
Lowsubstanivity
Largeamountofsaltforexhaustion

59
Dyeingisstartedat50°Cinthepresenceofaddedsalt,
thebathheatedtotheboilover30–40min,anddyeing
continuedattheboilforuptoanhour.
Severalfurthersaltadditions,ofincreasingsize,are
requiredtopromoteexhaustion,thetotalamountofsalt
(5–20%owfNaCl)dependinguponthedepthofshade
andtheliquorratio.

60
Class B: Salt Controllable
MolecularweighthigherthanClassA
LowersulphonatedgroupsthanClassAdyes
Mediumsolubilityanddegreeofaggregation
Lowtomoderatesubstanivity[Absenceofsalt]
Saltsensitive&exhaustwellwithsaltaddition

61
Class C: Temperature controllable
Highmolecularweight
Fewsulphonatedgroupspermolecule
Lesssolubilityandhighdegreeofaggregation
Highsubstantivity
Verysensitivetosaltaddition
Levelingbycontroloftemperature&levelingagents

TYPE MIGRATION LEVELING FASTNESS
Class A Good Self leveling Low
Class B Medium Medium levelingModerate
Class C Poor Poor leveling High
AdditionalClassificationParameters:
Further treatment, continuous dyeing, high temperature dyeing
COMPARISON OF DIRECT DYES

63
DIRECT DYE SUBSTANTIVITY FOR CELLULOSE
Long,coplanardyemoleculescansitontopofacellulose
polymerchainwiththearomaticringsparalleltotheglucose
rings.
Possibilityofhydrogenbondformation
Vanderwallsandothersecondaryforcesofinteraction

64

65
Theirlongflat(coplanar)structureenablesthemtoliealonga
cellulosechaininregisterwithhydroxylgroupsandresultsin
effectivevanderwaalsforces.

66
Dyeing methods
Theselectionofspecificdirectdyesfordyeingcellulosic
fibresdependson
Theirdyeingproperties,
Theparticularfastnessrequirements,
Anyaftertreatmentsusedtoimprovethe
washingfastness,and
Theparticularfinishingprocessesinvolved.

67
AtypicaldyeingprocessforaClassBdirectdyeoncotton
EXHAUST DYEING

68
Immerse the
wetted fabric
NaCl NaCl
40
o
C
100
o
C
35 min
25min 35min

Salient Features of Batch Dyeing
69
Solutionpreparationstartswithsmalldyepastetowhichisadded
sufficienthotwaterfordissolution
Wettingagentassistpenetrationandleveldyeing
Depthenhancementbycontrollingsaltaddition&temperature
Examples
Hankandpackagedyeingforcottonyarns
Jiggerforwovenfabrics
Winchforknittedfabrics

PAD DYEING
70
Majorpaddyeingoperation s:
Paddyeingmethodsareonlyusedonfabrics
Padwithdyesolution,padwithsaltbathandroll
Padwithdyesolution,dry,padwithsaltsolutionandsteam
Padwithsalt,padwet-on-wetwithdyesolutionandsteam
Dyes with less strike rates are preferable.
Migration of Class A during steaming/drying & very rapid strike
by Class C dyes
Class B dyes are better choice for continuous dyeing
Less Suitable for continuous dyeing

71
FACTORS AFFECTING DIRECT DYEING
EFFECT OF SALT
Celluloseimmersedinwaterdevelopsanegativesurface
potential
Repulsionbetweennegativechargeofcellulosesurface&anionic
dyemolecule
Theaddedsaltprovidessodiumionstocounteractthenegative
surfacepotentialofthewetcotton
Henceincreaseinexhaustionofdirectdyes
Commercialdirectdyesalreadycontainmuchelectrolyte.

Thenatureoftheanionoftheaddedelectrolytehaslittle
influenceontheamountofadsorbeddye.
Therefore,NaClandNa2SO4,atthesametotalsodiumion
concentration,haveaboutthesameinfluence.
Ahigherpositivechargeonthecationpromotesincreased
adsorptionbecausemetalionscounteractthenegativesurface
potentialmoreeffectively,thusdecreasingtherepulsionof
approachingdyeanions.
72

73

74

75
B is more salt sensitive than A

EFFECT OF TEMPERAURE
76
•Temperatureincreasesdyemigrationandrateofdyeing.
•Equilibriumexhaustiondecreaseasdyeingtemperature
increases
DYE DEAGGREGATION
RATE OF DYEING
EXHUASTION

Thesediversevariationsofdirectdyeexhaustiondependontwo
opposinginfluencesoftheincreasingdyeingtemperature.
1.Thesearetheusualeffectofincreasingtemperaturedecreasingthe
dyebathexhaustionbecausedyeingisexothermic,andits
enhancementofthedyeingrateparticularlyatlowertemperatures.
77

2.Increasingtemperaturealsopromotesdyede-aggregationinthe
dyeingsolutionliberatingmoreindividualdyemoleculestoenterthe
fibre.
ThedyesCIDirectYellow12,DirectRed81andDirectYellow28have
maximumexhaustionat30°C(a),60°C(b)and100°C(c),
Respectively.
Forexample,openjigdyeingmachinescannotachievedyeing
temperaturesmuchabove85°C.
78

GreaternegativepotentialunderalkalinepHandretardation
Increasing dissociation of a number of cellulose hydroxyl groups
Oxycellulose(overbleaching)presencereductioninexhaustion
anddepth Higherproportionofcarboxylgroups
Alkalinereductionofazoicdyesreducingcoloryield
Acidbathsspeciallystrongacidnotsuitable
[Cellulose Damage]
DyeingofcottonwithdirectdyesatneuralpH
79
EFFECT OF DYEING PH
Reduce exhaustion
Carboxylate ions repel the dye anions of like charge.

EFFECT OF LIQUOR RATIO
Lowerliquorratioenhancesexhaustionforsubstantivedyes
Dyeingatlowliquorratio
Decreasestheamountofwastedyeinthe
effluent.
Consumeslesswaterandsteam,and
Allowsagivensaltconcentrationwithless
addedsalt.

Inhibittheformationoflargeraggregatesandincreasethe
proportionofdyeinthemonomolecularform.Hencesolubilisation
isincreased.
EFFECT OF SURFACTANT
TIME OF DYEING
Theproductionoflevelandwell-penetrateddyeingsisusually
favoredbyanincreasedtimeofdyeing,althoughprolongeddyeing
atboilsometimesresultsinthedecompositionofdirectdyes.

82
DIRECT DYEING OF DIFFERENT CELLULOSIC FIBERS
COTTON< MERCERIZED COTTON < LINEN < VISCOSE RAYON
Dyeingofblendsofthesecellulosefibreswithdirectdyes,theydonot
absorbdyesatthesamerateortothesameextentbecauseofthe
differencesintheirmorphology.
Withdyesoflowsubstantivity,nepsusuallyabsorblessdyeand
appearaspalerspotsonthefabric.Sinceimmaturefibresgivemuch
greaterratesofdyedesorption,thepalerdyednepsmaynotappearuntil
afterwashing.
Improvedbymercerizationbeforedyeingswellsthe
immaturefibres
Therateofdyeingincreasesasthediameterofafibredecreases

83
Directdyeshavehighersubstantivityforregularviscosethanforcotton
becauseviscoseislesscrystallineandorientedsoithasamuchgreater
internalsurface.
Itismoreaccessiblethanregularcotton
Mercerizedcottonwillabsorbmoredyeandbedarkerincolorthan
normalcottondyedinthesamebath.

HIGH TEMPERATURE DYEING
84
Conventionaldirectdyeingprocess@boil
Hightemperaturedyeingupto130C
Reductivecleavageathighertemperature
Decompositionofdirectdyes
REDUCTION OF DYES USED IN STRIPPING & DISCHARGE PRINTING
POOR WET/WASH FASTNESS

AFTERTREATMENT OF DYEINGS WITH DIRECT DYES
85
Aftertreatmentiscarriedouttoimprovewashingfastness
Basicprincipleinvolvedisincreasingthedye’smolecularweight
Adsorbeddyebecomesinsolublized&haslowdiffusioncoefficient
Impactonhueandlightfastness
Aftertreatmentsaredifficultandcostlytocarryout
Replacementsofdirectdyestodayreduceuseofaftertreatment
Reactive dye

AFTERTREATMENTS IN DIRECT DYEING
•Metal complex formation
•Aftertreatment with formaldehyde
•Use of cationic fixatives
•Based on resin crosslinkks
86

METAL COMPLEX FORMATION
87
Treatmentwithacidiccoppersluphatesolutionfortheformation
ofacomplexbetweencopperandadsorbeddye

88
FORMALDEHYDE TREATMENT
Basedonformationofmethylenebridgebetweenadsorbed
directdyemolecules

89
TREATMENT WITH CATIONIC FIXATIVES
Cationicagentsofrelativelyhighmolecularweightformwater-
insolublesaltlikemoleculewithanionicdirectdye.
Precipitationofanionicdyesinthecottonwithacationicsurfactant
orpolymerinwarmwater
Basedonadditionofcrosslinkingagentsusedforeasycare
finishing
Directdyedcelluloseiscrosslinkedusingcrosslinkingagents
Surfacedyeshavelesstendencyofmovement
Washfastnessisimprovedduetostronganchoringeffect
RESIN TREATMENT
Reduce the fastness
lightThe change in hue is only slight
Decreasethelightfastnessandgiveahuechange.
Amino resins

90
Ionicbondsinvolvetheattractionbetweenoppositelycharged
chemicalgroupsonthedyeandfibre.
Example

REACTIVE DYEING

INTRODUCTION
•Poorwashingfastnessbecauseonlyweakpolaranddispersion
forcesbindthedyemoleculestothecellulosepolymerchains.
•Weakerforcesofinteraction(Hydrogenandphysicalbond)
[Dye–fiber]
Immobilizingdyemoleculebycovalentbondformationwith
reactivegroupsinfiber
Easily diffuse out of the cotton
during washing.
Adyewhichiscapableofreactingchemicallywithasubstrateto
formacovalentdyesubstratelinkage
Direct dye
Reactive dye

Cont. …
A
L
K
A
L
I
N
E
Mild
Theroleofthealkaliistocauseacidicdissociationofsomeofthe
hydroxylgroupsinthecellulose,anditisthecellulosateion(Cell–O–)
thatreactswiththedye.
Reactive chlorine atom on the triazine ring
Anionicandwatersolublelikedirectdye

Simplemolecularstructure&lowsubstantivity
Highdegreeofwashfastness
Brightshade
Completecolorgamut/widecolorrange
Relativelysimpledyeingprocedure[noredoxsystem]
Versatileinapplication[bothbath&continuous]
Characteristics of Reactive Dyes

95
STRUCTUREOF REACTIVE DYES
Solubilizinggroup(S)
Chromophore(C)
Bridgegroup(B)
Reactivegroup(RG)withaleavinggroup(X)attachedtoit
≥1 sulphonic acid substituents
Reacts with Cell-OH
Color + Substantivity
Links R with C

Thereactivegroupmustexhibitadequatereactivitytowardscotton,
butbeoflowerreactivitytowardswaterthatcandeactivateitby
hydrolysis.
Thedye–fibrebond,onceformed,shouldhaveadequatestabilityto
withstandrepeatedwashing.

THE REACTIVE SYSTEM
TRIAZINYL RING VINYL SULPHONE
Reactivedyeslooklikedirect,butwithaddedreactivegroup
Anionicandwatersolublelikedirectdyes
NH

98
MECHANISM OF DYEING WITH REACTIVE DYES
Reactivegroupsareoftwomaintypes
1.Thosereactingwithcellulosebynucleophilicsubstitutionoflabile
leavinggroupssuchaschlorine,fluorine,methylsulphoneor
nicotinylleavinggroupactivatedbyanadjacentnitrogenatomina
heterocyclicring

99
Innucleophilicsubstitution,amobilehalogenatomofthedyeis
substitutedbytheionizednucleophilicoxygengroupofthecellulose
(Cell-O).

100
2.Reactionwithcellulosebynucleophilicadditiontoacarbon–
carbondoublebond,activatedbyanadjacentelectron-attracting
sulphonegroup.
Thevinylsulphonegroupisusuallygeneratedbyeliminationof
sulphateionfromsulphatoethylsulphonewithalkali.
CELLULOSE ETHER FORMATION

101
Covalent bond formation
Innucleophilicaddition,aprotonandtheionizedoxygengroup
ofthecelluloseareaddedtotheactivegroupofthedye.
Thebest-knowndyesofthisgroup–thevinylsulphones–carrya
protectivegroup,whichiseliminatedevenatafairlylowpHand
setsthereactivegroupfreeduringdyeing.

102
Dyed sample
Hydrolysis

103
BasisofClassification
Basedonchemicalstructure
Basedondyeingproperty
Commercial–Manufactureraspectofbrandname
CLASSIFICATIONOF REACTIVE DYES

104
[AZO & ANTHRAQUINONE]
MONOFUNCTIONAL BIFUNCTIONAL
HOMOBIFUNCTIONAL
HETROBIFUNCTIONAL
REACTIVE GROUP
CHROMOPHORE GROUP
Basedonchemicalstructure
POLY-FUNCTIONAL

Monofunctional Reactive Dyes
Presenceofreactivegroup(oneortwo)atasinglelocationondye
molecule
Reactivedyesdevelopedatearlystagesweremono-functionaltypical
examplesare
Mono-chlorotriazine
Di-chlorotriazine(tworeactivegroupslocatedonthesame
triazinering)
Vinylsulphone

DICHLOROTRIAZINYL [DCT]
Monofunctional Reactive Dyes
MONOCHLOROTRIAZINYL [MCT]
VINYLSULPHONE [VS]
No separation of reactive groups
from each other
Reactive group attached to a single
Chromophore

107
DCT
MCT
VS
Low reactivity
Medium reactivity
Highreactivity

108
Other Monofunctional Reactive Dyes

BIFUNCTIONAL REACTIVE DYES
•Presenceoftworeactivegroupsofsametype(monoordichloro
triazine)ordifferenttypes(monochlorotriazineandvinylsulphone).
•Attwodifferentlocationsinthedyemolecule.
•Showhighexhaustion,highfixation
•Bettercoloryield
•Reducedpollution:lessdyeineffluent
•Verypopularforexhaustdyeing.
•Highexhaustionisduetohighmolecularweightsimilartodirect
dyes,highaffinitytocotton
•Reactwithcellulosewithcrosslinkformation.

BIFUNCTIONAL REACTIVE DYES
BIS(AMINOCHLOROTRIAZINYL )
AMINOCHLOROTRIAZINE -SULPHATOETHYLSULPHONE

111
BIS(SULPHATOETHYLSULPHONE )
Homobifunctional Reactive Dyes
Consist of two similar reactive groups

112
Reactive Dye Reactivity
Differentreactivegroupsofreactivedyesshowawiderangeofreactivity
Themorereactivethedyesthelessweakerthealkalirequiredand
Thelowerthereactivityofreactivegroupofthedyetowardsthealkaline
cellulose,thehigherthefinaldyeingtemperaturerequired.

113
DYE REACTIVITY DYEING TEMP. pH
DCT
HIGH
20 -40
Weak alkali (NaHCO3
or Na2CO3)
MCT
LOW
80 -85
Strongalkali
(Na2CO3 or NaOH)
MFT
MODERATE
40 -60
Moderatelyalkaline
VS
MODERATE 40 -60 Moderatelyalkaline
NT*
MODERATE TO HIGH
100 -130
Neutral
ALKALISUSED: Sodium bicarbonate, sodium carbonate & sodium hydroxide/Sodium silicate

CLASSIFICATION BASED ON DYEING PROPERTY
114
Alkalicontrollablereactivedyes
Saltcontrollablereactivedyes
Temperaturecontrollablereactivedyes
On the basis of dyeing temperature
COLD BRAND, WARM BRAND & HOT BRAND

ALKALI-CONTROLLABLE REACTIVE DYES
Havehighreactivityandonlymoderatesubstantivity
Appliedatrelativelylowtemperatures
Leveldyeingrequirescarefulcontroloftheadditionofalkali
Examples:DCT,DFCPandVS

Thesearedyesofrelativelylowreactivity
Theyhaveappreciablesubstantivity
Dyeingtemperatureashighas85°C
Requirescarefuladditionofsalt
Examples:MCTandMFT
SALT-CONTROLLABLE REACTIVE DYES

117
•Attemperaturesabovetheboilintheabsenceofalkali
•Noauxiliaryproductadditionindyebath
•Controloverrateoftemperaturerise
Examples:NTreactivedyes
TEMPERAURE-CONTROLLABLE REACTIVE DYES

Cold BRAND dyes -fixation temperature of 30-40°C
 Warm BRAND dyes -fixation temperature of 50-80°C
Hot BRAND dyes-fixation temperature of > 80°C
•Lowersubstantivitydyesdiffuseeasilyintofibersandareeasyto
washoutunfixeddyesbutlessexhaustion.
•Highersubstantivedyesgivehigherbathexhaustion,better
reactionwithfiber,butgreaterdifficultyofremovingunfixeddye

120
Reactivedyesinamixtureshouldallexhaustandreactwiththe
fiberataboutthesamerate.
Dyeswithdifferentreactivegroupsanddifferentsubstantivityare
available
Mixdyeswithsametypeofreactivegrouphavingthesame
substantivity.
Compatibledyeingbehaviourisafunctionofalltheprocess
variablesandrequirescarefulcontrolofthedyeingparameters.
Dyeing compatibility of reactive dyes
Ideally
Different dyeing characteristics and reactivities.
Requirescarefulcontrolofthedyeingtemperature,saltandalkali
concentrations,thedyeingtimeandtheliquorratio.

PROBLEMS IN DYEING WIH REACTIVE
DYES
Hydrolysis[particularlyforhighreactivityseries,e.g.DCT]
Lowleveloffixationwhendyeingusingahighliquorratio
Appreciabledyeconcentrationsinthedyehouseeffluent
Highsaltconcentrationsarealsopresent
Less than 70% of the original dye reacts with the fibre.
For exhaustion

122
Precipitationorinsolublizationbymetalionsinwatersupply
Freechlorinehydrolyzeanddye-fiberbondbreakage
Unreactedchlorineatomsinthedye’sreactivegroupmayhydrolyze
underwarmhumidstorageconditions,liberatingHCl.
Catalyzesthehydrolysisofthedye–fibrebond.
Calcium,magnesiumorheavymetalions

INITIAL EXHAUSTION [NEUTRAL PHASE]
123
Dyeingisstartedinneutralaqueous-littlelikelihoodofdye-fiber
reaction-capableofmigrationtopromoteleveldyeing
Salt/neutralelectrolyteisaddedgraduallytopromoteexhaustion
(higherconc.Comparedtodirectdyeing).
Temperatureisgraduallyincreasedtoaidpenetrationofdyeassist
migration;
Dyeabsorptiondependinguponsubstantivity
STAGES INREACTIVE DYEING PROCESS

124
FIXATION (REACTION) [ALKALINE PHASE]
FixationatalkalinepH
Alkalifacilitatesdissociationofcellulosehydroxylgroups;
Nucleophiliccellulosateionsbegintoreactwiththedye.
Fixationofdyesresultsinadditionaldyeabsorption,re-establishes
dyeingequilibrium.
Dyeabsorptionfromsolutionandreactionwiththefiberthen
progressuntilnofurtherdyeistakenup.

AFTERTREATMENT [POST –DYEING WASHING]
125
Unfixedandhydrolyzeddyeoncotton
Residualalkaliandsalt
Asmuchaspossibleunfixeddyemustbewashedoutofthe
dyeing
Ifnot,desorptionofthisdyeduringwashingbytheconsumercan
causestainingofothermaterialsinwash.
I.Successiverinsinginwarmwater
II.Thoroughwashingusingaboilingdetergentsolution(soaping)
III.FinalrinsinginwarmwaterthencoldwashDRYING

REACTIVE DYEING METHODS
126
Both exhaustion and padding methods canbe used
JIGGER
WINCH
PAD-BATCH
PAD-DRY
PAD-STEAM
SOFT WATER

Levelwell-penetrateddyeing'srequirecarefulpreparationofthe
material.
Materialavailablefordyeinginneutral,uniform&readily
absorbent
Residualsizemustalwaysberemovedfromwovengoodsbecause
oftheriskofdyewastagebyreactionwithhydroxylgroupsinsize
PREPARATION

128
ALKALI/SALT/SEQUESTERANT/WETTING AGENTS
Alltracesofresidualchlorineorperoxycompoundsmust
beremovedpriortodyeing,otherwiselossofreactivityand
destructionofdye
Variationincoveringabilityofnepsofimmaturecotton
needforeffectivemercerizationorcausticization

129
BATCHDYEING
Alkaline

130

131
a=dyeindyebath
b=hydrolyseddyeonthefiber
c=fixeddye
d=dyetobewashedout

ProblemsEncounteredincontinuousdyeing
(1)Dyesoflowsubstantivityaredesirabletoavoidpreferentialdye
absorptionduringpaddingandtheinitialcolortailingthatit
causes.
(2)Highdyeconcentrationfordeepshadesthatmayexceed
limitingsolubilityofdye[useofureafordisaggregation]
CONTINUOUS DYEING
Veryrapidfixation(<60s)athightemperaturesthatispossiblein
fullycontinuousdyeinggiveshighproductivityforlongrunsofa
givencolor.
Tailing is shade variation along the length of the fabric
Urea helps to break up dye aggregates

3]whenusingpre-preparedalkalinesolutionsofreactivedyes
Stability of dye/alkaline mixture
[hydrolysis dye’s reactive group in pad bath will result in a loss of
fixed color.]
[Pad –dry –Pad]
4)Migrationcontrolandheatinguniformity
[Anti-migrant]
(5)Finalrinsingandsoapingofgoodsdyed@highspeedwithless
timeofcontact
salt as an anti-migrant and also a thickening agent
such as sodium alginate
Counter current washing

134
Thelowerlimitofliquorratioinbatchwisedyeingisabout5:1.
Paddingmethodsextendthisfurthertotherange1:1to0.5:1.
Enhanced exhaustion and fixation
ADVANTAGE
DYE SELECTION
Excellent solubility
moderate substantivity, and
versatile reactivity

135
Single-padsequence:dyeandalkaliareappliedtogether
Double-padsequence:dyeandalkaliarepaddedseparately,
withorwithoutanintermediatedryingstep.
Padding
PAD –DRY –WASH
PAD –BATCH -WASH
PAD –DRY –BAKE -WASH
PAD –DRY –STEAM -WASH
PAD –DRY –PAD -BATCH –WASH
PAD –DRY –PAD -STEAM -WASH
PAD –DRY –PAD -WASH
SINGLE PAD DOUBLE PAD

1.Impregnationofthewell-prepareddryfabricinasolution
ofdyeandalkaliatambienttemperature
A4:1dye-to-alkalisolutionvolumeratioisverycommon.
Thedyeandalkalisolutionsareusuallymixedjustbefore
paddingusingmeteringpumpstomaintainthecorrect
ratio.
2.Uniformsqueezingofsurplusliquorfromthefabricasit
passesthroughthemanglenip.
PAD –BATCH DYEING
1000 –10000m
CPB[Cold PadBatch]

137
3.Wrappingofthebatchedrollofwetfabricinpolythenefilm
4.Washing-off
5.Drying
SLOW ROTATION
Cost Reduction Scheme
To avoid drainage of the internal liquid within the batch.
Storageatambienttemperatureforaspecifieddwelltime(2–
24h),dependingondyereactivityandpH)
The more reactive dyes give effective fixation within 2–6 h.

138
PAD–HEAT/DRY DYEING
Suitableforreactivedyeswithfairlyhighreactivity.
Thefabricisfirstpaddedwithadyesolutioncontainingsodium
bicarbonate.
Duringdrying,bicarbonateisconvertedintocarbonate,whichgives
ahigherpHandmoreeffectivefixation
Thedyesolutionalsocontainsahighconcentrationofurea(100
g/l).
Retain water during drying
Increases dye solubility
Pollution problem
Nutrients for algal growth

139
PAD –STEAM DYEING
Inthisprocess,goodsarepaddedwithasolutioncontainingreactive
dyes,saltandappropriatealkali.
Hothumidconditionsduringsteamingtendtocauseexcessive
hydrolysisofreactivegroupandlowercoloryield.
Two-stagewet-on-wetpaddingisusedtoavoidanintermediate
dryingstep.
Sufficientpickupandminimumcolorbleedingmustbeensured
During dyeing of terry towel and other pile fabrics
Selecteddyesaresuitableandthe
manufacturer’srecommendationsshould
befollowed.

140
Thedyesolutionisquitestable,becausethereisnoalkali
Anti-migrantshelptominimizemigrationduringinitialdrying
Intermediatedryingensuresuniform&highpick-upofchemical
solution&minimizesbleedingofdye
Sodiumhydroxideisthepreferredalkali
Pad–dry–pad–steam
Thefabricispaddedwithaneutralsolutionofthereactivedyes,
driedandthenpaddedwiththealkalisolutioncontainingsalt
beforesteaming

141
TEMPERATURE/TIME
FACTORS AFFECTING REACTIVE DYEING
PH [ALKALI]
SALT & OTHER AUXILARY
MLR

142
Dyeingtemperatureischosenbasedonreactivity
Timedependingonexhaustionandleveling
Selectionofalkalibasedonreactivity&easeofhydrolysis
Effectofsaltissimilartodirectdyeingprocess
Largeramountofsaltduetolowmolecularweightandlarge
numberofsulphonicgroupsperreactivedyemolecule
SelectionofMLRconsideringtendencyofhydrolysisand
solubility

143
Itisnotusualtoexceedadye-bathpHof11:Hydrolysis.
Forpolysulphonateddyes,oneeffectofdyeingatpHabove11isthe
decreaseinsubstantivityofthedyefortheincreasinglyanionic
dissociatedcellulose.
Somedyesactuallydesorbfromthefiberintothedye-bathwhenthe
alkaliisaddedatthestartofthefixationstagegivingasudden
decreaseinthedegreeofexhaustion.
LARGE AMOUNT OF SALT
Longer LR m/c ---dyes of higher substantivity are preferred

144
Viscosefibersgivehigherfixationandexhaustionof
reactivedyesthancotton.
Foridenticalconditions,exhaustionandfixation
increaseintheorder:
COTTON, MERCERISED COTTON, VISCOSE.
Becauseoftheeaseofswellingofviscose,thedyeingpHand
temperatureforagivendyeisdifferentthanforcotton

145
Dyeingsareresistanttocolorstrippingwithhotaqueous
pyridine,asolventthatremovesdirectdyesfromcotton.
Dyeingsofcottonobtainedwithbifunctionaldyesexhibit
reducedswellinganddecreasedsolubilityincuprammonium
EVIDENCE FOR COVALENT BOND FORMATION
Thegoodfastnesstowashingofdyeing'swithreactivedyeson
cellulosicfibresisaconsequenceofthestablecovalentbond
formedbetweenthedye’sreactivegroupandthecellulose
polymer.

146
VAT DYE
Gezu K.
2019

Introduction
Vatdyesareoneoftheoldesttypesandwaterinsolubledyes.
Vatdyes‐aseriesofdyesofdifferentchemicalconstitution…containtwoor
moreketo(C=O)groups
Theyarecalleddyesbecause:
i.Chemicalreductionintoawater-solubleleucoform
ii.Substantivityinleucoformforcotton

Insolubleinwater
Havebestoverallfastnessproperties...oftenusedforfabricsthatwillbe
subjectedtoseverewashingandbleachingconditions(toweling,industrialand
militaryuniforms)
Notbrightcolors
Nosubstantivityforcellulose
Havealimitationwithregardstouseofstronglyalkalinesolutions
Mostlycomplexdyestructureswithnoionicgroups
CHARACTERISTICS OF VAT DYES

Cont. …
Vatdyesareusedpredominantlyfordyeingcellulosicfibers.
Althoughleucodyeshavesubstantivityforwoolandnylon,technicalreasons
(damageinwoolandpoorfastnessonnylon)vatdyeapplicationisrestrictedto
celluloseonly.
Thevatpigmentandtheleucocompoundoftenhavequitedifferentcolors
Theprimitivecolorisdevelopedbysubsequentoxidation

Characterizedbycontainingattwoormoreketogroup[C=O]
Mostly complex dye structures with no ionic groups
ChemicalCharacteristics

MECHANISM OF DYEING WITH VAT DYES
Convertingawater-insolubleketo-substitutedcolorantby
reductiontoawater-solubleleucocompound.
Thispenetratesintothefiber,whereitisreoxidisedbacktothe
originalinsolubleform.
Fixationbasedonsecondaryforcesandinsolublization

Theprocessofreductionofvatdyeinaqueousalkalinesolutionisknownas
VATTING.
Sodiumdithionite[sodiumhydrosulphiteorhydros]isusedasreducingagentand
causticsodaasalkali.
Hydrosisaverystrongreducingagent,moreeffectiveathighpHandathigher
concentration.
Controloverconcentration&temperatureforoptimumreduction
Rateofreductiondependsonpigmentdispersion
DISPERSIONSTABILITYFORPROPERREDUCTION
Theprocessofreductionofvatdyeinaqueousalkalinesolutionisknownas
VATTING.
Sodiumdithionite[sodiumhydrosulphiteorhydros]isusedasreducingagentand
causticsodaasalkali.
Hydrosisaverystrongreducingagent,moreeffectiveathighpHandathigher
concentration.
Controloverconcentration&temperatureforoptimumreduction
Rateofreductiondependsonpigmentdispersion
DISPERSIONSTABILITYFORPROPERREDUCTION
Na
2
S
2
O
4
& NaOH

CLASSIFICATIONOFVATDYES
Basedonchemicalstructure
Methodofapplication

Indigo
Anthraquinonoidvatdyes:Basedon
anthraquinonewhichgiveleucocompoundsof
relativelyhighaffinity
Based on chemical structure
a)Dyesderivedfromindigo–bothnaturalandsynthetic
Anthraquinon
e
Indigoidvatdyes:Derivativesofindigowhichgiveleuco
compoundsofrelativelylowaffinity
b) Dyes derived from anthraquinone –most
of vat dyes
Indigodyesgivemorebrilliantcolorsthan
anthraquinoneButtheirlightandwashfastnessare
notasgood

Classification Based on Application/dyeing properties
IN[INDANTHRENE NORMAL]
IW[INDANTHRENE WARM]
IK[INDANTHRENE COLD{KALT}]

UseofconcentratedNaOH
Havehighmolecularweight
Highvattingtemperatures(60°C)
Highdyeingtemperatures(60°C)
Highsubstantivity
Nosaltadditiontothedyebath
THE IN (INDANTHRENE NORMAL)

IW [INDANTHRENE WARM] DYES
ModerateconcentrationofNaOH
LowervattingtemperaturethanINdyes(50°C)
LowerdyeingtemperaturesthanINdyes(50°C)
Moderatesubstantivity
Someamountofsaltadditiontoaidexhaustion

IK[INDANTHRENE COLD {KALT}] DYES
LowconcentrationofNaOH
Lowervattingtemperature(40°C)
Dyeingatroomtemperature(20°C).
Poorsubstantivity
Considerableamountofsaltadditionforgoodexhaustion

Thevattingtemperatureisoftenhigherthanthesubsequentdyeingtemperature.
Toavoiddecompositionofhydrosanddecreasestheriskofover-reduction

1)Reductionofthepigmenttothesolubleleucocompound
2)Absorptionoftheleucocompoundbythecottonduringdyeing
3)Oxidationoftheabsorbedleucocompoundinthecotton,reformingthe
insolublepigmentinsidethefibers.
4)Soapingtoremovepigmentlooselyadheringtothefibersurfacesandtodevelop
thetrueshadeandfastnessproperties
Key Steps in Vat Dyeing Of Cotton
Air Oxidation Or Chemical Oxidants
Recrystallization/Aggregation
Preparationofthevatcontainingtheleucoformsofthedyes
Water-solubleleucocompound

Application of Vat Dyes on Cellulose
i.Reduction of pigment to soluble leuco compound, a process called vatting;
Converting a water-insoluble keto-substituted colorant by reduction to a water-
soluble enolate leuco compound.
ii.Absorption of leuco compound by cotton; water-soluble enolate leuco
penetrates into the fiber, where it is reoxidised back to the original insoluble
form.
iii.Fixation based on secondary forces and insolublization. Oxidation of absorbed
leuco compound in cotton, reforming insoluble pigment inside the fibers.

Themostimportantreducingagentin
vatdyeingissodiumdithionite
(Na2S2O4),referredtoas
hydrosulphiteorhydros.
ReductionofVatdyes
Vatdyesareavailableasfinepowdersorgrains,
andasliquiddispersionsorpastes.
Theinsolublepigmentisextensivelymilledwith
dispersantssuchassodiumligno-sulphonatesto
produceverysmallparticles
InthepresenceofNaOH-alkali

Controloverconcentrations&temperatureforoptimumreduction
Rateofreductiondependsonpigmentdispersion
Dispersionstabilityforproperreduction

SomeQuinonevatdyescanbeover-reducedreductionofmorethanonepair
ofketogroups(C=O)
Over-reducedvatdyesgivehavepoorsubstantivityforcotton;moredifficultto
oxidize;producesdullershades;giveslowercoloryield.

Others...sodiumsulphoxylateformaldehydeandsodiumsulphoxylate
acetaldehyde,particularlyinprintingandincontinuousdyeingprocesses.
Cont’d
Othersauxiliaries....neutralsalts(toincreasesubstantivity),wetting,sequestering
anddispersingagents,levelingagent.
Helptoovercomedyeingproblemscausedbyinadequatepretreatment.

ALKALI PREVENT VAT ACID FORMATION
Causticsoda‐isusedfor:
1.Theformationoftheleuco:pH=12‐13needed.
2.Thetransformationofcelluloseintoalkali‐cellulose,
3.Neutralizationofacidproductsofdecompositionofhydros
Cont’d

Absorption and levelling
Alkalineleucovatdyeexhaustsveryfastontocelluloseuntilequilibriumis
attained.
Thehigherthesubstantivitythehigheristheexhaustion
HighconcentrationofNa
+
fromsodiumhydrosulfiteandsodiumhydroxide
facilitateexhaustion

Becauseofthis,manydyeshavearapidstrike;dyebathmaybe80–90%
exhaustedwithin10minutes.
Themorerapidlydyeexhausts,thegreateristheriskofobtaininganunleveled
dyeing.
High electrolyte content
Use of retardants

Adsorption Isotherm For Vat Dyes On Cotton

Substantivity of Leuco Vat Dyes for Cotton
H-bondsb/nhydroxylgroupsandphenolateiongroups,oraminooramide
substituentsareimportant
Moleculesofleucovatdyesarelargeandalsocoplanarityofstructureis
essential.

Oxidation and subsequent process/soaping
Oncethedyehasbeenabsorbedbythefiberintheformofaleucoderivative,its
oxidationtakesplace.
Theleucoderivativemustbeoxidized
Anyexcesshydrosulphitemustbeeliminated
Theexcessofalkalinityinthefibermustbe
neutralized
Leucodyeisthenreconvertedintoitsoriginalformbyoxidation.
Carriedoutwithoxidizingagentslikehydrogenperoxide,sodiumperborate,Sodium
dichromateorpercarbonate.
ThehigherthetemperatureandthelowerthepH,thehighertherateofoxidation
reactions

Dyesthatareeasytoreducearemoredifficulttooxidize,andviceversa.
Chemicaloxidantspreferredbecausetheygivemorerapidanduniformoxidation
throughoutthematerial.

Soaping
Removespigmentdepositedonfibersurfacethatwouldwashorruboffinuse.
Involvesthoroughlywashinggoodsinadetergentsolutionatornearboiling
point.
Itimprovesthelight,washingandrubbingfastnessofthedyeing.
Soapingprobablyinvolvesre-crystallizationofoxidizedanddispersedvatdye
particles
Crystallizationresultsinslightchangeinhueandimprovementsinfastness
properties.Neutralizingwithaceticacidsolutionandfinalrinsing.

Twomethods:
1.Dyeingwithreducedvat‐thedyeintheformofsolubleleucoisputinto
contactwiththecellulosicfiber,isabsorbedbyitandthenoxidizedinthe
fiberitself.
2.Dyeingbypigmentation‐theinsolubledyeintheformofafinedispersionis
depositedonthesurfaceofthefiber;reducedinanalkalinesolutionwhich
causesrapidabsorption,finally,theprocessiscontinuedasinthereducedvat
system.
Dyeing Processes

DYEING METHODS
Bothbatchandcontinuousmethodsareused
Batch–(hotmethod,warmmethodandcoldmethod)‐leveling
problemduetohighdyeingrate
Continuousmethod–mostlyusedmethod(mostcommonispad‐steam
process)

Exhaust Dyeing: Typical Vat Dyeing Cycle
Leuco Process
Intheleucoprocessthematerialtobe
dyedisenteredintoaprepareddye
liquorthatcontainsthefullyvatted
dye,alkali(causticsoda)and
reducingagent(hydrosulphite),
togetherwithvariousamountsof
Salt,
Dispersingagent,
Sequesteringagentand
Levellingagent,asrequired.

High Degree Of Fastness
Pre-oxidation
Ancillary Chemicals
[Chelating Agents, Wetting Agents, Sequesterants , Dispersants]
Over-reduction
Over-oxidation
Effective Pretreatment
General features Of Vat Dye
Washingfastness
Lightfastness

VATDYEINGFAULTS
Unlevellness [inadequate oxidation, salt, temperature]
Poor penetration (rapid heating result surface deposition)
Dull shade due to over-reduction
Staining [inadequate vatting, rinsing & circulation]
Poor rub fastness [inadequate vatting, poor soaping]
Incorrect shade [Soaping too short or low energy]
Fiber damage

DENIM AND INDIGO VAT
DENIMisawarpfacedtwillfabricmadefrom
cottonyarns
Thewarppredominatesonthesurface
Dyedyarnsinthewarpandundyedyarnsinthe
weft
Smallwhiteflecksdistributedinadarkerbasic
color
JEANSmadefrombluedenimismostpopular
Inexpensive,durable,versatile

Indigoisappliedinaseriesof‘dips’,withintermediatesqueezingandatmospheric
oxidation.
Reductionofindigotosolubleleuco-indigo
Multipledip-squeeze-oxidizeoftheyarn
Rinsing,soaping&drying
Blue-dyed warps wash down to an attractive blue
No staining on the white yarns
STONEWASHINGFORFADEDLOOK

The goods are threaded through each box and skyed
Thefirstboxisusedtowetoutthematerial.
Insubsequentboxes,thegoodsareimmersedintheleucoIndigosolutionfor
10–30s,squeezedandskyedfor2mintooxidisetheleucodyetoIndigo.
Thisprocessofseveraldipsandoxidationsisthenrepeatedinasecondseriesof
boxes,andsoon.
Deepshadesbuiltupbyrepeateddippinginthedyebathaftereachoxidation.
Severalrinsingandwashingboxescompletetheprocess.

SULPHUR DYES
SULPHURdyesconstitutethelargestclassofdyesintermsofquantity
Likevatdyesappliedtocellulosicsbyredoxmechanism
Theinsolublepigmentisconvertedintothesubstantiveleucocompoundby
reductionandtheleucoformissubsequentlyoxidizedinsidethefiber.
Chromophorebasedonsulphurcontainingcompounds
ThedyescontainTHIAZINESANDTHIOZOLES
Limitedcolorgamut[Knownforblack]
SULPHURBLACK

THIAZOLES
THIAZINES
Sulphur containing aromatic heterocyclic linked by sulphide bonds

Ontreatmentofanaqueousdispersionoftheinsolublepigmentwithsodium
sulphide,thesulphidelinksarereducedformingindividualheteroaromaticunits
withthiolgroups.
DYEING PROCESS WITH SULPHUR DYES
Thesearesolubleinthealkalinesolutionintheformofthiolateionsthathave
substantivityforcellulose.
Afterdyeing,thethiolateionsinthefiberscanbere-oxidizedbacktothe
polymericpigment.
Lowtomoderatesubstantivityforcellulose
Saltadditiontopromoteexhaustion
RINSED, OXIDIZED SOAPED

Reduce
d
Sulphurdyesareimportantforblack,navy,brown,olive
andgreencolorsinmediumtoheavydepths,being
relativelyinexpensive.

SODIUMSULPHIDE[Na
2S]ISUSEDASTHEREDUCINGAGENT

Sulphurdyeshavethedullestrangeofcolorsofalldyeclassesbutarerelatively
inexpensive.
Whenblackcoloranddullshadesareneeded,withgoodfastnessatreasonablecost,
sulphurdyesareirreplaceable.
Cottondyedwithsomesulphurblacksbecomestenderedonstoringunderwarm
humidconditions.Formationofsulphuricaciddueoxidationofdye.
Jigandpadsteamforwovenfabrics
Largeamountsofsodiumsulphideusedintheapplicationofsulphurdyes,posea
significantenvironmentalproblem.
OVER-REDUCTION

CATIONIC [BASIC] DYEING
Dyescontainingbasicfunctionalgroupsthatareprotonated
Organiccations
Dyefiberswithanionicsitesbyaprocessofionexchange
Mostlyappliedforacrylic,woolandsilk
Lowsubstantivityforcotton

Dyeadsorptionbyacrylicfibersinvolvesinteractionbetweenanionic
sulphonate/sulphatepolymerendgroupsandcationicdyemolecules
TRIPHENYL METHANE ANTHRAQUINONE

ACID DYEING

Aciddyesareappliedinacidicmedia
•Aciddyesareusuallysodiumsaltsofsulphonicacidsorless
frequentlyofcarboxylicacids
•Anionicinaqueoussolution
•Affinityforfiberswithcationicsites
•Usuallysubstitutedammoniumiongroupsinfibers
•Cationiccharacterbyacidabsorption
•Affinityforwool,silkandnylon
INTRODUCTION

MECHANISM OF DYEING WITH ACID DYES
Ionicinteractionbetweendyeanionsandamino
groupsoffibers
Vanderwaalsforcesexertedbetweenhydrophobicdyeanion&
hydrophobicpartsoffiberadjacenttoaminogroups

Inwool,thenumbersofaminoandcarboxylicacidgroupsarealmost
equal(820and770mmolkg–1,respectively)
ISOELECTRIC POINT OF WOOL: Equal numbers of cationic and anionic groups [pH ~5]

Basedonchemicalstructureofchromophore
CLASSIFICATION OF ACID DYES
AZO DYES ANTHRAQUINONE

Basedondyeingcharacteristics
GROUP I: LEVELLING ACID DYES
GROUP II: MILLING ACID DYES
GROUP III: SUPERMILLING ACID DYES
Millingis the process by which wool is treated, in weakly alkaline solution, with
considerable mechanical action to promote felting.

201
MOLECULAR WEIGHTOFDYE
SOLUBILITYORDEGREEOFSULPHONATION
DYEINGPH
DEGREEOFAGGREGATION
DEGREEOFMIGRATION/LEVELLNESS
DEGREEOFWETFASTNESS
COMPARISON FEATURES

203
LEVELLING ACID DYES
1.AddGlauber’ssaltplussulphuricacid
2.Adddye
3.Rinse

204
Strongacidareneededtoachievegoodexhaustion
Glauber’ssaltactsasaretarding/levelingagent
Leveldyeingcontrolledbyusinglesssulphuricacid
initially
DecreasingexhaustiononincreasingdyebathpH
above4,andwithincreasingtemperature
Smallmolecularsizeforgoodpenetrationintopores

205
MILLING ACID DYES
1.Ammoniumsulphate/acetate+Aceticacid
2.Adddye
3.Rinse

206
Highermolecularweightsandgreatersubstantivityforwool
thanlevellingaciddyes
Weakacidsortheirsaltsarerequired(sodiumacetateor
ammoniumsulphate)
Haveonesulphonategroupperdyemoleculeandlowerwater
solubility
Dyeingstartsinthepresenceofammoniumsulphate
Additionofaceticacidtopromoteexhaustion
Bothionexchangeandhydrophobicinteractions
Glauber’ssaltisneveradded
Highconcentrationofsodiumionssuppressesfibernegative
chargeandresultshighexhaustionwithminimumleveling

207
SUPERMILLING ACID DYES
1.Ammoniumsulphate/acetate
2.Adddye
3.Rinse

208
AmmoniumacetateorsulphateisusedatnearlyneutralpH
Morehydrophobicthanmillingaciddyes
Characterizedbypresenceoflongalkylchains
LowerpHresultsrapidexhaustionandunlevellness
Ratecontrolbytemperatureincrease
Highdegreeofaggregationevenatboil

209
Auxiliariesareusedinwooldyeingtopromoteleveling.
Twomaintypesoflevellingagents:ANIONICANDCATIONIC/NON-IONIC.
Wooladsorbsanioniclevelingagentsandtheyretarddye
absorptionbyinitiallyblockingthecationicammoniumionsites.
Moresubstantivedyeanionseventuallydisplaceanionicproduct.
Anionicsurfactantswithlongalkylchainshavehigherfibre
substantivity.
LEVELLING AGENTS
Cationic polyethoxylated amine

210
Cationicagentsformacomplexwiththeanionicdyeinthe
dye-bathandpreventitsuptakebythewool.
Thenon-ionicportionofthistypeofproductkeepsthe
auxiliary–dyecomplexdispersedinsolution.
Avoiditsprecipitationinthebathoronthematerialsurface.
Freedyemoleculesareliberatedasthedyeingtemperature
increasessincethecomplexislessstableathighertemperatures

211
PROBLEMS IN ACID DYEING OF WOOL
TemperatureandpHcontrol
Skitterydyeingortippydyeiing
Ringdyeing
Shadevariation

DISPERSE DYEING

DISCOVERY
•Cellulosetriacetatefibersandpoordyeability
•Hydrophobiccharacter;couldnotbepenetrated
bywater,&notbedyedbywatersolubledyes.
•Therewaslittlepointintreatingfiberswithamixtureofpuredye
andwaterbecauseparticleswouldnotbedistributeduniformly.
•Incorporatingsurface-activeagentwithdyeensuresuniform
distributionofdyeinthedye-bath,allowinguniformdyeings
DISPERSE DYES

INTRODUCTION
Dispersedyesarenon-ionicandslightlysolubleinwater
Applied in the form of fine aqueous dispersions
Dyeparticlesareabletopenetratefiberduringdyeingina
molecularlydispersedstateandareheldinfiber
Dispersedyeshaveaffinityforsyntheticfibers
Polyester,nylon,celluloseacetateandacrylic
fibers
COMPACTNESS
[CRYSTALLINITY/ORIENTATION ]
HYDROPHOBICITY

Dyeing of polyester with disperse dye
Polyesterishydrophobicandcharacterizedby
compactphysicalstructure
PETisnonionicandthermoplasticfibers
Becauseofnonionicitneedsnonionicdye
Dyeableonlywithdispersedye

Chemical constitution
Simplelowmolecularnonionicmonoazoand
anthraquinonewithpolargroupsforslightsolubility
requiredindyeing.
DISPERSION STABILITY
DYE SOLUBILITY
PARTICLE SIZE
Hydrophobic dye ‘dissolving’ in hydrophobic fiber

Stablesuspensionofthedyesisachievedbyusing
dispersingagentinthepreparationofthedyes.
Thesolubility(slight)dependsonthepresenceof
polargroupssuchasOH,NO
2,-CH
2–CH
2–OHand
theparticlesize.
Ingeneraltheparticlesizeofdyemustbeverysmall.
Thisisinfluencedbythedegreeofgrindingand
affectsdisaggregationofdyehencedegreeof
absorption.

REASONABLE RATE OF DYEING
HIGHTEMPERATURE INREFERENCE TOTg
DYEINGACCELERATORS [CARRIERS]
FREE VOLUME THEORY

POLYESTER DYEING METHODS
DYEINGWITHCARRIERATBOIL
Benzoicandphenoliccompounds
unpleasantodoursandaretoxic
HIGHTEMPERATURE PRESSUREDYEING
DYEINGBYTHERMOSOL PROCESS
Exhaust and continuous

Carrier dyeing method
Acarrierisanorganiccompounddissolvedinthedyebathandwhich
increasetherateofdyeing
Mechanism:
Thepolyesterfibersabsorbthecarrierandswell.
Swellingcanimpedeliquorflowinpackagescausingunlevelness.
Theoveralleffectseemstobeloweringofthepolymer(Tg),thus
promotingpolymerchainmovementsandcreatingfreevolume.
Thisspeedsupthediffusionofthedyeintothefibers.

221
Dyeing Temperature 100
o
C
Alternatively,thecarriermayformaliquidfilmaroundthesurface
ofthefiberinwhichthedyeisverysoluble,thusincreasingtherateof
transferintothefiber

HTHP dyeing method
Thedyeingofpolyesterwithdispersedyesattheboilis
slowbecauseofthelowrateofdiffusionofthedyesinto
thefiber.
Theactivationenergyfordiffusionisquitehighand
raisingthedyeingtemperaturefrom100to130°C
considerablyincreasestherateofdyediffusion.

223
HTHP DYEING
Dyeing Temperature ~ 130
o
C

224
Paddingfabricwithadispersionofdispersedyes
(use of a migration inhibitor in the pad bath)
Dryingusinghotflueairdryerorbyinfraredradiation
Heatinginair,orbycontactwithhotmetalsurface,toa
temperatureintherangeof190–220°Cfor1–2min.
Thefabricapproachesthemaximumtemperature,thedispersedyes
begintosublimeandthepolyesterfibersabsorbthevapours.
THERMOSOL DYEING

225
Dyeing Temperature ~ 220 C
Dryingisusedtominimizethemigrationduringheating
DuringheatingdyeswillbeconvertedintogaseousstateandPETfibershas
veryhighaffinitytotheegaseousdispersedyes

Incaseofdyeingwithdispersedye,temperatureplaysan
importantrole.
Fortheswellingoffiber,temperatureabove130°Cisrequiredif
hightemperaturedyeingmethodisapplied.Againincaseof
carrierdyeingmethod,thisswellingoccursat90-100°C.
Ifitiskeptformoretime,thendyesublimationandlossof
fabricstrengthmayoccur.
Effect of Temperature

227
FordispersedyeingthedyebathshouldbeacidicandpH
shouldbeinbetween4.5-5.5.
FormaintainingthispH,generallyaceticacidisusedatthispH
dyeexhaustionissatisfactory.
Duringcolordevelopment,correctpHshouldbemaintained
otherwisefastnesswillbeinferiorandcolorwillbeunstable.
EffectofpH

Textile Auxiliaries
1.DispersingAgent-makethedyesolutionstable
anddisperseinthedyebath.
2.Acid-adjustpHtothesuitableconditionforthe
dyebath.
3.Carrier-swellthefiberanddissolvethedyeto
makethedyegettingintofiber.
4.Levelingagent-makemorelevelingdyeing(some
willhaveadverseeffectonslowerdyeing)
5.Water-dyeingmedia

229
MODIFICATION OF POLYESTER
IMPROVED DYEABILITY
Cationic Dyeable Polyester [CDP]
Copolymerization for lower Tg

230
DYEING BLEND FIBERS (UNION DYEING)

Why blending ???
Achievingeconomicadvantagesviablendingofexpensive
fiberswithcheaperones
Enhancingperformanceandqualitypropertiesvia
combinationofdesirablepropertiesofbothfibercomponents
Prolongingthedurabilityoftextileproductviaincorporation
ofamoredurablefibercomponent,etc

Fiber classes according to affinity to dyes
GroupA:Acidandpre-metallizedaciddyesfordyeingwool,
silk,nylonandpolyurethane(electrostaticbond)
GroupB:Basicdyesforacrylicsandmodacrylics,cationic
dyeablepolyesters(electrostaticbond)
GroupC:Cellulosicdyes,e.g.reactive,direct,vat,sulphur,
etc.viaformationofphysicaland/orcovalentbonds
GroupD:Dispersedyesforpolyester,celluloseacetate,nylon
andpolyurethanesviahydrophobicbonding

Color effects obtained by dyeing blends
Solideffect:Allfibercomponentsareidenticallycolored
Reserveeffect:Onetypeoffiberiskeptwhite
Shadoweffect:(toneintone)dyeingAllcomponents
coloredtothesamehuebutofvaryingdepthofshades.
Contrasteffect:fibercomponentsaredyedincontrast
hues.,
orange-blackblue-yellow

Methods of dyeing blends
1-bath1-stepmethod:reducescostofdyeingdrasticallydue
tonearly50%reductioninuseofwater,heat,chemicals,time
andmanpower
1-bath2-stepmethod:materialhandlingisremarkablyless,as
theblendonceloadedremaintheretillcompletionofdyeing
forbothcomponents;thesamebathisusedfordyeingboth
thesefiberssavingwaterandenergy
2-bath2-stepmethod:todyeblendsmadefibersofdifferent
nature-morehandlingofmaterial,hugewaterconsumption,
doubledloading/unloadingtime,moremanpower

IMPORTANT FACTORSIN DYEING BLENDS
DYEBATHCONDITIONS
dyeauxiliaries
dyebathtemperature
stressonfabric
CROSS-STAININGOFDIFFERENTFIBERS
Thecoloureffectsandfastnessproperties
required;
Theprocesscosts.

Inmostcases,methodofblenddyeingissimilarto
thatofdyeingindividualcomponentfiberswith
particulartypesofdyesselected
Thisissobecausemostbinaryblendsaremixtures
ofasyntheticandanaturalfiber.
Insuchcases,thereisminimalcross-staining.

Dyeing cotton/polyester blends
Dyeingpropertiesofpolyesterandcottonarequitedifferent-mostly
thetwofibersdyedseparately
Polyestercomponentisinvariablydyedfirstwithofdispersedyes
Forcotton,thereisachoiceofdyes,actualselectiondependingon
desiredcolor,typeoffinishingrequired,demandedfastness
properties,costsetc
Cottonisusuallydyedwithreactive,direct,sulphur,vat,orazoicdyes
Reactive/dispersedyecombinationisthemostpopular

Ifcottonisdyedfirstdyeingofpolyesterat120–130°Ccanchange
shadeofdyedcotton-cottondyesarelessstableathigh
temperatures.
Dyeingpolyesterbeforecottonallowsreductionclearingofany
dispersedyeonthepolyestersurfaceorstainingcotton-cross
stainingofcottonbydispersedyescanbeaproblem.
Oncepolyesterisdyedanydetrimentaleffectsofcottondyeing
assistantssuchasalkaliandsaltondispersedyesareavoided.

major areas of concern in dyeing of cotton/polyester
Degreeofcross-staining
Dispersedyesstaincottonbutanioniccottondyesusuallycompletelyreserve
polyester.
Dispersedyesselectedshouldbethosethatgiveminimalcottonstaining
Interactionsbetweendyesandauxiliaries
Whenpresentinsamebathmanydispersedyesarenotstableunderalkaline
reducingconditionsusedinleucovatdyeing.
Saltandalkalifordyeingcottonwithreactivedyesoftenhaveaharmfuleffecton
dispersingagentfordispersedyesandcauseparticleaggregation;

Conditions for fixation or aftertreatment
Cottondyesmustbestabletohightemperaturesin
Thermosolprocess-iftobeappliedsimultaneouslyor
beforedispersedyes.
Notpossibletocleardispersedyesstainingcottonwith
analkalinehydrossolutionifcottonisalreadydyed.
Alltypesofdyesusedtocolorcottonwillbereduced
undertheseconditionsandcolordestroyed.

Disperseandreactivedyesareadded,temperatureraisedto
130°Catacidicconditionstofixdispersedye.
Dyebathisthencooledto80°Candsodiumcarbonateis
addedtofixthereactivedye,beforewashing.
Reactivedyefixationandclearingofsurfacedispersedyesis
combinedhere,makingPCsinglebathdyeingpossible
Developments in PC Blend Dyeings

TEXTILE PRINTING
Gezu k
WolkiteUniversity
2012

Textileprintingisrelatedtodyeingbut,whereasin
dyeingprocesswholefabricisuniformlycoveredwith
onecolor,inprintingoneormorecolorsareappliedtoit
incertainpartsonly,andinsharplydefinedpatterns.
ATYPEOFCOLOURATIONFORIMPARTINGCOLORINSPECIFICAREA
ONASUBSTRATEBASEDONPATTERNORDESIGNREQUIREMENT.
Textile Printing Defined

DIFFERENCES BETWEEN
DYEING AND PRINTING

PRINTING
Printinginvolveslocalizedcoloration
Thisisachievedbyapplyingthickenedpastescontainingdyes
orpigmentsontofabricsurfaceaccordingtoagivencolordesign
Thepastemustcolorallthevisiblefibersontheprintedsurface
Soitmustpenetratesomewhatintotheyarnstructure
Ifthepasteistoothinitwillspread,givingpoorprintdefinition
andpenetratetoofarintotheyarnsdecreasingthecoloryield

PRINTING PROCESS
PREPARATION OF PRINT PASTE
APPLICATION OR PRINTING
DRYING
FIXATION

DYE OR PIGMENT
THICKENER
BINDER
AUXILIARIES
PRINT PASTE INGREDIENTS

Imparttherequiredcolorofdesignasperrequirement
Dyesarechosenwithrespecttotheiraffinity
Example:Reactivedyesforcotton,aciddyesforwool,disperse
dyesforpolyesterandsoon
Pigmentsareappliedforallkindsoffibertextiles
DYE OR PIGMENT

Tolocalizetheprintingpasteonthedesiredareaofthe
fabric.
Enables the print paste to stay in place once it is deposited onto the fabric
Clear cut design and proper outline definition of print
Naturaland syntheticthickeners are available
Based mainly on polysaccharidesand polyacrylic acids
THICKENER
Optimum Viscosity

Desirablepropertiesofthickenersusedinpigmentprinting:
lowsolidcontent
clearandcolorless
don’tdecreasethefastnessandhandoftextileprints
goodlevelingpowerwithoutspreadingsideways.

Pigmentsarefixedbybindershencebindersprovidedurabilityofthepigment
onthefabric.
Apigmentbinderistheresinthatformsathree-dimensionalfilmonthe
surfaceofthefiber.
Thisfilmcontainsthedispersionoftextilepigmentandwill
acttoadherethepigmenttothesurfaceofthesubstrate.
Thepermanenceofthisfilmisdependentonthepolymertypeandthe
applicationconditions.
BINDER

Crosslinking agents to improve fastness
Softeners to improve handle of pigment printed
fabric
Defoamers to prevent foam generation
Humectants to increase water content of the paste
catalyst and so on
AUXILIARIES

DifferenttechniquescanbeusedtotransferthepasteTO
textilesubstrate .
Thetransfercanbebymeansofblocks,screens,rollers:
reproductionofimage.
Thereispossibilityofdigitizingdesignandtransferimage
withoutreproduction.
APPLICATION OF PRINT PASTE

DRYING AND CURING (STEAMING)
The main purpose of drying is to control migration
Curing/steaming for fixation of pigment/dye
Cylinder dryers and stenterscan be used
Curing temperatures depend on the fiber
180
o
C for pigment, 205
o
C for dispersed dye

Inthecaseofdyeprints,theprintedfabricis
thoroughlywashedthendriedafterfixation.
Necessarytoremovethickener,alkali,other
ingredientsofprintpasteleftonfabricafter
fixation.
Couldinterferewithsubsequentfinishing
processes.
Pigmentsareoftenprintedonfinished
AFTERWASHING

Reactivedyesforcottonfibershasgiventhepossibilityof
usingonlyonetypeofdyeandsimpleapplicationconditions,
inplaceofthecomplexpermutationsnecessary
Reactivedyesproducebrilliantshadesofverygood
fastnessandlevelingpropertiesoncellulosicfibers.
Nexttopigmentprintingthemostimportantprinting
methodisprintingwithreactivedyes.
REACTIVE DYE PRINTING

Selectionofthickeners isveryimportantforreactivedye
printings;andtheselectionofproperreactivedyesalsoplays
amajorrole.
Normallylowreactivedyesarepreferredforprintingoncotton.
Becausethestabilityofthelowreactivedyesishighin
printingpaste.
Furthermoreforobtaininggoodeffect properpretreatmentof
fabricbeforeprintingisveryimportant.

Requirements of an ideal thickener for reactive printing
•Good compatibility and no affinity or reactivity
with dye
•Good flow property
•Good swelling and moisture absorption capacity
during steaming for dye fixation
•Quickdryingtopreventbleeding&goodwater
solubilityforeasyremoval

Conventional reactive printing thickener
Theusualpolysaccharidethickenerssuchasstarchand
gumsusedinprintingarenotsuitableforprintingwith
reactivedyes
Asallthesecontainprimaryhydroxylgroupsintheir
molecularstructureandreactwithreactivedyes.
Sodiumalginateiswidelyusedforreactivedyeprinting.Itis
ananionicpolymer,hasonlytwofreeOHgroups.

Polysaccharide illustration
Thereactionbetweenalginateanddyeislimitedbyanionrepulsion
ofalginate'scarboxylgroupsanddye'ssulfonicacidgroups.

Moderate to low reactivity dyes such as MCT and VS
Reactive dyes in printing
Dyeshavinglesssubstantivitytowardscellulosearepreferredfor
printing.
Becauseofgreatereaseof“washingoff”andavoidanceof
stainingofadjacentwhiteareas.
Printingpastesmadefromlessreactivedyeshave betterstorage
stability andthisisofconsiderableimportance.
Thereactiveprintpastenormallycontainsreactivedye,
sodiumbicarbonate/carbonate,urea,sodiumalginateand
water.
DCTisnotrecommended

PIGMENT PRINTING
DIFFERENCE BETWEEN DYE AND PIGMENT
PIGMENT
NO AFFINITY TO FIBRE
INSOLUBLE IN WATER
NEED BINDER FOR FIXATION ONTO FIBRE
DYE
AFFININTY TO FIBRE
WATER SOLUBLE OR CAN BE MADE WATER SOLUBLE
HELD ON FIBRE DYE-FIBRE INTERACTIVE FORCES
MOST WIDELY USED

MECHANISM OF BINDING
SEQUENCE:
PRINT > DRY > CURE (DRY HEAT)
DURINGCURINGBINDERPOLYMERIZESANDFORMSASTRONG
FILM.
BINDERFILMEMBEDESPIGMENTCOLOURANDALSOSTRONGLY
ADHERESTOTHEFIBRE.
BINDERISAPRE-POLYMERAVAILABLEINTHEFORMOF
AQUESOUSEMULSION
CROSSLINKING

CHOICE OF THICKENER
DYEPRINTINGTHICKENERSARENOTSUITABLE.
INTERACTWITHBINDER,REDUCEINTERATIONWITHFIBRE.
AFFECTINGTHEFASTNESSPROPERTIES
SUITABLE THICKENERS
EMULSION THICKENER
SYNTHETIC THICKENER
DEVELOPMENT OF VISCOSITY
HMW COPOLYMERS OF ACRYLIC ACID
OIL + WATER EMULSIONS

ADVANTAGES OF PIGMENT PRINTING
PRACTICALLYALLTYPESOFFIBRESANDBLENDSCANBEPRINTED
PIGMENTCOLOURSCANBEREADILYMIXEDWITHEACHOTHER
TOGETQUICKSHADEMATCHING
NOAFTERTREATMENTSUCHASWASHING&SOAPINGREQUIRED
DISADVANTAGES
HARSH FABRIC FEEL DUE TO BINDER FILM
LOW RUBBING FASTNESS

FIBERCHARACTERISTICS
YARNTYPES
FABRICCONSTRUCTION
CONSIDERATIONS ON PRINTING PROCESS

STYLES OF PRINTING
There are two basic styles of printing
Direct printing andIndirect printing
DIRECT PRINTING
Thedyeorthepigmentisprintedonthefabricinthepasteform
andanydesiredpatternmaybeproduced
Designsprinteddirectlyusingpigmentsordyesonwhiteor
coloredbackground
Isthemostimportantprintingstyleandthemostpopularas
comparedtoindirectstyle

INDIRECT PRINTING
IP is classified into two categories
Discharge printing
thedye.
Indischargestyle,thefabricisdyedtotherequiredgroundcolor.
Next,thefabricisprintedwithachemicalthatselectivelydestroys
thedye.
Thisallowsprintingofwhitedesignsonagroundcolorofanydepth
withapatterndefinitionthatismuchhigherthanwouldbepossibleby
directcolorprinting.
Ifthepastecontainsdyesresistanttothedischargingagent,these
dyes,calledilluminatingcolors,willcolortheprintedareas.

Resististhetermthatdescribespreventionofdyeingprocessbyapplication
ofaphysicalorchemicalsubstancetofabrictopreventadye’saccessto
fabric.
Resistagentscanbewaxes,thickeners,surfactants,organicacids,oxidizing
agents,orreducingagents.
Indischargestyle,thefabricisdyedtotherequiredgroundcolor.Next,the
fabricisprintedwithachemicalthatselectivelydestroysthedye.
Resist printing

BATIK
TIE-DIE

Inbatikeffectthefabriciscoatedwithwax
andthendyedwithsuitabledyes
dependingonthefiber.
Intie-dieeffectfirstthefabricistiedin
certainportionstolowerthepenetrationof
dyeintothefiberandthendyeingis
carriedoutconventionally.

Methods of Printing
Non contact printing
Contact printing

STENCIL PRINTING
BLOCK OR SURFACE PRINTING
ENGRAVED ROLLER PRINTING
SCREEN PRINTING
TRANSFER AND DIGITAL PRINTING
TECHNIQUES OR METHODOF PRINTING
Refers to the technical means by which pastes are put onto design areas

Stencil printing
Stencilprintingistheprocessofcutouttherequired
designsontheplasticpapers
Thesurfaceofthepapersshouldbesmooth
Colorantsaresmallermolecularweight(noneedof
washing)
Pastesareforcedoutthroughcuttingoutshapesfrom
papersontofabricunderneath
Theideaofscreenprintingisoriginatedfromstencil
printing

BLOCK PRINTING
Itistheoldestandsimplestwayofprinting
Inthismethodawoodenblockwitharaisedpatternonthe
surfacewasdippedintotheprintingcolorantandthenpressed
facedownontofabric.
Thedesiredpatternwasobtainedbyrepeatingtheprocess
usingdifferentcolors.
Generallythewoodenblockiscarvedoutofhand
Printingisdonemanually

Screenismadeofwovenfabricsfirmlyattachedtoa
suitableframe
Mostlyofnylon/silk/polyester
Thescreenistheimagecarriermadefromaporousmesh
stretchedtightlyoverametalorwoodenframe.
Reproducepatternsasperdesignrequirement.
SCREEN PRINTING
SCREEN, INK, SQUEEGEE

281
( Majorstepinscreenprinting)
(1)theselectionofthefabricandtheprinteddesign
(2)thechoiceofthesizeandarrangementofdesign’s
repeatrectangle
(3)thenecessarycolorseparationofthedesign
Colorseparationinvolvesreproduction
ofthepatternforeachcoloronseparate
clearfilmswithopaquetracer.
Screen production

Single color Multi color

285
Thescreeniscoatedwithaphoto-sensitiveemulsion.
Atypicalpolymerispolyvinylalcohol,its
crosslinkingsensitizedbyammoniumdichromate.
Thecoatedscreenisdried
Exposedbeneathdiapositiveforthegivencolor
All operations take place in a dark-room!!
Screen Preparation Steps Screen Preparation Steps
Lacquer

Theresthardens(becomeinsoluble)
Theinkedzones,correspondingtoparticular
colorpattern,donottransmitultravioletlightused
forexposure.
Thelayerofpolymeronthescreenbeneaththe
patternisthusnotexposedanddoesnotcrosslink.
Theresthardens(becomeinsoluble)
Thenon-exposedpolymerremainssolubleandcanbewashed
out,leavingthescreenopeninthoseareas.
Anysmallholesinhardenedareasonscreenarepaintedover.

MIXINGPHOTO-EMULSION
COATING
DRYING
PREPARINGPOSITIVE
EXPOSING
WASHINGANDDRYING

288288
Flatscreenprintingcanbecarriedoutbyhandandautomaticallyby
usingdifferentmachines.
Rotaryscreenprintingiscarriedoutbyfullycontinuousmachines.
TYPES OF SCREEN PRINTING
FLAT SCREEN PRINTING
Inflatscreenprinting,ascreen
onwhichprintpastehasbeen
appliedisloweredontoasection
offabric.Asqueegeethen
movesacrossthescreen,forcing
theprintpastethroughthe
screenandintothefabric.
ROTARY SCREEN PRINTING
Thetubularscreensrotateatthe
samevelocityasthefabric,the
printpasteisdistributedinsidea
tubularscreen,whichisforced
intothefabricasitispressed
betweenthescreenandaprinting
blanket(acontinuousrubber
belt).

•Printingiscarriedoutonaflat,solidtablecoveredwith
alayerofresilientfeltandawashableblanket.
•Heatfordryingtheprintedfabricmaybeprovidedeitherunder
theblanketorbyhotairfansabovethetable.
•Fabricmovementorshrinkagemustbeavoidedinorder
tomaintainregistrationofthepattern.
HAND SCREEN PRINTING

Theprocessconsistsofforcingprintpastethroughthe
openareasofthescreenwithasyntheticrubber
squeegee(rubberbladecontainedinwooden/metalsupport)
Therubberbladeisdrawnsteadilyacrossthescreenataconstant
anglespeedandpressure.
Thescreeniswashedimmediatelyafteruse.Ifthisisnotdone,
pastedriesonscreenandclogsupdesign.

S
C
R
E
E
N
P
R
I
N
T
I
N
G
MANUAL

SEMI-AUTOMATIC FLAT SCREEN PRINTING
296
Themanualprocesshasbeensemi-automatedby
mountingthescreeninacarriage.
Insemi-automatedscreenprinting,amechanicallydriven
squeegeetransfersthecolor.
Longtables,typically20–60mlong,areused,andsome
provisionisusuallymadefordryingtheprintedfabric.
Verypopularwherethescaleofproductionisnot
large,orwherecapitalinvestmentislimited.

FULLY AUTOMATIC FLAT-SCREEN PRINTING
•Toincreasethespeedofflat-screenprinting,itwas
necessarytodeviseamethodofprintingallthe
colorssimultaneously.
•Allthescreensforthedesign(onescreenforeachcolor)are
positionedaccuratelyalongtopofalongendlessbelt(blanket)on
topofwhichisthefabrictobeprinted.
•Thefabricisgummedtotheblanketattheentryendand
movesalongwiththeblanketinanintermittentfashion,
onerepeatdistanceatatime.

•Allcolorsindesignareprintedsimultaneouslywhile
thefabricisstationary ;thenthescreensarelifted
andthefabricandblanketmoveon.
•Whenthefabricapproachestheturningpointoftheblanket,
itispulledoffandpassesintoadryer.
•Thesoiledblanketiswashedanddriedduringitsreturn
passageontheunderside.

PRODUCTIVITY

Correctfabricplacementisvitalforaccurate
registrationofthedifferentcoloredpatterns.
Aslightpatternoverlappreventsawhitegap
betweentwoprintedcolors.

301
Themainfaultinscreenprintingispoorpatternregistration
Inaccurate screen placement
Inaccurate fabric movement
Fabric slippage on the blanket (poor adhesion)
Distortion of screen mesh by drag of squeegee
PROBLEMS IN FLAT SCREEN PRINTING
SLOW PRINTING PROCESS [5 -10m/min]

302
Number of squeegee passes
LOW PRODUCTION RATE
Morethanonepassisusedtoachieveuniformityandadequatepenetration,
especiallyinblotchareas,forthickfabricsorirregularsurface
Squeegeetakeslongertomovealongthescreen
wheretherepeatdistancesarelarge
Efficiency of the dryer
Ifthedryerisshort,oriftemperatureindryeristoolow,printingspeedwill
havetobereducedinordertoensuretheprintedfabricisadequatelydried.

ROTARY SCREEN PRINTING
Theprocessinvolvesinitiallyfeedingfabricontothe
rubberblanket.Asthefabrictravelsundertherotary
screens,thescreensturnwiththefabric.
Printpasteiscontinuouslyfedtotheinteriorofthescreen
throughacolorpipe.

•Asthescreenrotates,squeegeedevicepushesprintpaste
throughthedesignareasofthescreenontothefabric.
•Asinflat-bedscreenprinting,onlyonecolorcanbeprintedbyeach
screen.Afterpasteapplication,theprocessisthesameasflat
screenprinting.

305
Byconvertingthescreen-printingprocessfromsemi-
continuoustocontinuous,higherproductionspeedsare
obtained.
Typicalspeedsarefrom45-100mpmforrotaryscreenprinting
dependingupondesigncomplexityandfabricconstruction.
Continuouspatternssuchaslinearstripesarepossible.
Rotaryscreenmachinesaremorecompactthanflatscreen
machinesforthesamenumberofcolorsinthepattern(less
floorspace).

306
Gluestreaks–fromtherubberblanket
Colorout–fromalackofprintpaste
Creasedfabric
Pinholesinanyscreen
Damagetothescreenleadingtomisprints
Lintonthefabriccausespick-off
Withprintdesigns,colorapplicationmustbecorrectthefirsttime,
becauseprintingdefectscannotberepaired.
General screen printing defects

307
Longprocesssetuptimeforcolorandpattern
change
Screenproductionisslowandexpensive
Screensrequireconsiderablestoragespace
Limitations Specific to Rotary Screen Printing

ROLLER PRINTING
Engravedrollerprintingisamoderncontinuousprinting.
Thedesignisengravedonthesurfaceofametalroller,to
whichdyeisapplied,andtheexcessisscrapedoffthe
roller'ssurface,leavingdyeintheengravedsections.
Whenitrollsacrossthefabric,thedyeontheroller
transferstothefabric.

TRANSFER PRINTING
Heattransferprintingisatechniquewherepaperisprinted,followedby
thetransferofthedesignfromthepaperontothetextilefabric.
Commercialprocessinvolvesprintingreleasepaperwithpigments.
Thedesignonpaperisplacedontothefabric,heatedso
thatthepigmentbindersoftens,releasesfromthepaper,
andadherestothefabric.
Heattransferprintingiscleanandenvironment
friendly
Theonlyby-productisthepapercarrier.
Transferringanimagetofabricfromapapercarrier.Whenheat
andpressureareappliedtothispapertheinksaretransferred.

DIGITAL PRINTING
It is the more advanced type of printing.
This includes :-
 Jet spray printing
 Electrostatic printing
 Photo printing
 Differential printing

Rotary Screen Printing60%
Automatic Flat Bed 18%
Other methods 22%
WORLD PRODUCTION SHARE