Time Complexity of an algorithm/code - Part 2.pptx

ZuaAuh 1 views 10 slides Oct 20, 2025
Slide 1
Slide 1 of 10
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10

About This Presentation

The Time Complexity of an algorithm/code is not equal to the actual time required to execute a particular code, but the number of times a statement executes.


Slide Content

Time Complexity Part 2 Instructors Farhat Jalil

Slide courtesy

Asymptotic Complexity The 5N+3 time bound is said to "grow asymptotically" like N This gives us an approximation of the complexity of the algorithm Ignores lots of (machine dependent) details, concentrate on the bigger picture

Comparing Functions: Asymptotic Notation Big Oh Notation: Upper bound Omega Notation: Lower bound Theta Notation: Tighter bound

Big Oh Notation To denote asymptotic upper bound, we use O-notation. For a given function g(n), we denote by O(g(n)) (pronounced “big-oh of g of n”) the set of functions: O(g(n ))= { f(n) : there exist positive constants c and n0 such that  0≤ f(n)≤ c∗g (n)  for all  n≥n0  }

Omega Notation To denote asymptotic lower bound, we use Ω-notation. For a given function g(n), we denote by Ω(g(n)) (pronounced “big-omega of g of n”) the set of functions: Ω(g(n ))= { f(n) : there exist positive constants c and n0 such that  0≤c∗g(n)≤f(n)  for all  n≥n0  }

Theta Notation To denote asymptotic tight bound, we use Θ-notation. For a given function g(n), we denote by Θ(g(n)) (pronounced “big-theta of g of n”) the set of functions: Θ(g(n ))= { f(n) : there exist positive constants c1,c2 and n0 such that  0≤c1∗g(n)≤f(n)≤c2∗g(n)  for all  n>n0  }

Example : Comparing Functions Which function is better? 10 n 2 Vs n 3

Comparing Functions As inputs get larger, any algorithm of a smaller order will be more efficient than an algorithm of a larger order

Big-Oh Notation Even though it is correct to say “7n - 3 is O(n 3 )”, a better statement is “7n - 3 is O(n)”, that is, one should make the approximation as tight as possible Simple Rule: Drop lower order terms and constant factors 7n-3 is O(n) 8n 2 log n + 5n 2 + n is O(n 2 log n)
Tags