Understanding and Implementation the Bode Plot

hanihasan86 66 views 37 slides Jul 21, 2024
Slide 1
Slide 1 of 37
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37

About This Presentation

Bode Plot


Slide Content

Introduction
•Frequencyresponseisthesteady-stateresponseofa
systemtoasinusoidalinput.
•Infrequency-responsemethods,thefrequencyof
theinputsignalisvariedoveracertainrangeandthe
resultingresponseisstudied.
System

The Concept of Frequency Response
•Inthesteadystate,sinusoidalinputstoalinear
systemgeneratesinusoidalresponsesofthe
samefrequency.
•Eventhoughtheseresponsesareofthesame
frequencyastheinput,theydifferinamplitude
andphaseanglefromtheinput.
•Thesedifferencesarefunctionsoffrequency.

The Concept of Frequency Response
•Sinusoidscanberepresentedascomplexnumbers
calledphasors.
•Themagnitudeofthecomplexnumberisthe
amplitudeofthesinusoid,andtheangleofthe
complexnumberisthephaseangleofthesinusoid.
•Thus canberepresentedas
wherethefrequency,ω,isimplicit.)cos(tM
1 11M

The Concept of Frequency Response
•Asystemcausesboththeamplitudeandphaseangle
oftheinputtobechanged.
•Therefore,thesystemitselfcanberepresentedbya
complexnumber.
•Thus,theproductoftheinputphasorandthesystem
functionyieldsthephasorrepresentationofthe
output.

The Concept of Frequency Response
•Considerthemechanicalsystem.
•Iftheinputforce,f(t),issinusoidal,thesteady-stateoutput
response,x(t),ofthesystemisalsosinusoidalandatthesame
frequencyastheinput.

The Concept of Frequency Response
•Assume that the system is represented by the complex number
•Theoutputisfoundbymultiplyingthecomplexnumber
representationoftheinputbythecomplexnumber
representationofthesystem.)()(M )()(M

The Concept of Frequency Response
•Thus, the steady-state output sinusoid is
•M
o(ω)isthemagnituderesponseandΦ(ω)isthephaseresponse.
Thecombinationofthemagnitudeandphasefrequency
responsesiscalledthefrequencyresponse.)()(M )]()([)()()()( 
iioo MMM 

Frequency Domain Plots
•Bode Plot
•Nyquist Plot
•Nichol’s Chart

Bode Plot
•ABodediagramconsistsoftwographs:
–Oneisaplotofthelogarithmofthemagnitudeof
asinusoidaltransferfunction.
–Theotherisaplotofthephaseangle.
–Bothareplottedagainstthefrequencyona
logarithmicscale.

Basic Factors of a Transfer Function
•Thebasicfactorsthatveryfrequentlyoccurin
anarbitrarytransferfunctionare
1.GainK
2.IntegralandDerivativeFactors(jω)
±1
3.FirstOrderFactors(jωT+1)
±1
4.QuadraticFactors))((
)(
)(
251
1320
2



ssss
s
sG

Basic Factors of a Transfer Function
1.GainK
•Thelog-magnitudecurveforaconstantgainKisahorizontal
straightlineatthemagnitudeof20log(K)decibels.
•ThephaseangleofthegainKiszero.
•TheeffectofvaryingthegainKinthetransferfunctionisthat
itraisesorlowersthelog-magnitudecurveofthetransfer
functionbythecorrespondingconstantamount,butithasno
effectonthephasecurve.

-15
-5
5
15
Magnitude (decibels)
Frequency (rad/sec)
0.1 1 10 1005KIf db)((K) 1452020 loglog Then 10
3
10
4
10
5 10
6
10
7
10
8 10
9

-90
o
-30
0
30
o
90
o
Phase (degrees)
Frequency (rad/sec)
0.1 1 10 1005KIf 0 )
5
0
(tan)
Re
Im
(tan Then
1-1-
 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
o

Basic Factors of a Transfer Function
2.IntegralandDerivativeFactors(jω)
±1jswheressG  ,)( )log()( 20jG 
90
0
1


)(tan)(

jG
Derivative Factor
Magnitude
Phase
ω
0.1 0.2 0.4 0.5 0.7 0.8 0.9 1
db
-20 -14 -8 -6 -3 -2 -1 0
Slope=20db/decade
Slope=6b/octave

-30
-10
10
30
Magnitude (decibels)
Frequency (rad/sec)
0.1 1 10 100decade
db20 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
-20

-180
o
-60
0
60
o
180
o
Phase (degrees)
Frequency (rad/sec)
0.1 1 10 100
90 )
0
(tan
1-
 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
o
90
0

Basic Factors of a Transfer Function
2.IntegralandDerivativeFactors(jω)
±1
•Whenexpressedindecibels,thereciprocalofanumber
differsfromitsvalueonlyinsign;thatis,forthenumberN,)log()log(
N
N
1
2020  )log()( 

 20
1

j
jG
Magnitude
•Therefore,forIntegralFactortheslopeofthemagnitudelinewould
besamebutwithoppositesign(i.e-6db/octaveor-20db/decade).
90
0
1


)(tan)(

jG
Phase

-30
-10
10
30
Magnitude (decibels)
Frequency (rad/sec)
0.1 1 10 100decade
db20 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
20

-180
o
-60
0
60
o
180
o
Phase (degrees)
Frequency (rad/sec)
0.1 1 10 100
90 )
0
(tan
1-
 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
o
-90
0

Basic Factors of a Transfer Function
3.FirstOrderFactors(jωT+1)
–ForLowfrequenciesω<<1/T
–Forhighfrequenciesω>>1/T)log()( TjM   120 )log()(
22
120 TM   0120  )log()(M )log()( TM 20 )()()( 1
3
1
3  sssG T T
1

Basic Factors of a Transfer Function
3.FirstOrderFactors(jωT+1))(tan
-1
T)( 
000  )(tan when
-1
)(, 
451
1
 )(tan when
1-
)(,
T 
90 )(tan when
-1
)(,

-30
-10
10
30
Magnitude (decibels)
Frequency (rad/sec)
0.1 1 10 100 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
20)()()( 1
3
1
3  sssG
ω=3
20 db/decade

-90
o
-30
0
30
o
90
o
Phase (degrees)
Frequency (rad/sec)
0.1 1 10 100 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
o
45
o

Basic Factors of a Transfer Function
3.FirstOrderFactors(jωT+1)
-1
–ForLowfrequenciesω<<1/T
–Forhighfrequenciesω>>1/T)log()( TjM   120 )log()(
22
120 TM   0120  )log()(M )log()( TM 20 )(
)(
3
1


s
sG

Basic Factors of a Transfer Function
3.FirstOrderFactors(jωT+1)
-1)(tan
-1
T )( 
000  )(tan when
-1
)(, 
451
1
 )(tan when
1-
)(,
T 
90 )(tan when
-1
)(,

-30
-10
10
30
Magnitude (decibels)
Frequency (rad/sec)
0.1 1 10 100 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
-20)(
)(
3
1


s
sG
ω=3
-6 db/octave
-20 db/decade

-90
o
-30
0
30
o
90
o
Phase (degrees)
Frequency (rad/sec)
0.1 1 10 100 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
o
-45
o

Example#1
•DrawtheBodePlotoffollowingTransferfunction.)(
)(
10
20


s
s
sG
Solution:).(
)(
110
2


s
s
sG
•Thetransferfunctioncontains
1.GainFactor(K=2)
2.DerivativeFactor(s)
3.1
st
OrderFactorindenominator(0.1s+1)
-1

Example#1).(
)(
110
2


s
s
sG
1.GainFactor(K=2)dbK
db
6220  )log(
2.DerivativeFactor(s)db/decade 2020  )log(
db
s
3.1
st
OrderFactorindenominator(0.1s+1)0120
110
1
10 

 )log(
.
,
db
j
 when db/dec when 201020
110
1
10 

 ).log(
.
, 


db
j

-30
-10
10
30
Magnitude (decibels)
Frequency (rad/sec)
0.1 1 10 100 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
-20)(
)(
10
20


s
s
sG
K=2
20 db/decade
-20 db/decade

-30
-10
10
30
Magnitude (decibels)
Frequency (rad/sec)
0.1 1 10 100 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
-20)(
)(
10
20


s
s
sG
20 db/decade
-20 db/decade+20db/decade

Example#1).(
)(
110
2





j
j
jG ).()( 1102   jjjG ).(tan)(tan)(tan)( 

 10
02
0
111 
jG ).(tan)(  1090
1


jG
ω
0.1 1 5 10 20 40 70 1001000 ∞
Φ(ω)89.484.263.445 26.514 8 5.7 0.5 0

-90
o
-30
0
30
o
90
o
Phase (degrees)
Frequency (rad/sec)
0.1 1 10 100 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
o
-45
o
ω 0.1 1 5 10 20 40 70 1001000 ∞
Φ(ω)89.484.263.4 45 26.5 14 8 5.7 0.5 0

-20
-10
0
10
20
30
Magnitude (dB)
10
-1
10
0
10
1
10
2
10
3
0
45
90
Phase (deg)
Bode Diagram
Frequency (rad/sec)

Example#2))((
)(
)(
10020
320



sss
s
sG
Solution:).)(.(
).(.
)(
10101050
1330030



sss
s
sG
Tags