Introduction
•Frequencyresponseisthesteady-stateresponseofa
systemtoasinusoidalinput.
•Infrequency-responsemethods,thefrequencyof
theinputsignalisvariedoveracertainrangeandthe
resultingresponseisstudied.
System
The Concept of Frequency Response
•Inthesteadystate,sinusoidalinputstoalinear
systemgeneratesinusoidalresponsesofthe
samefrequency.
•Eventhoughtheseresponsesareofthesame
frequencyastheinput,theydifferinamplitude
andphaseanglefromtheinput.
•Thesedifferencesarefunctionsoffrequency.
The Concept of Frequency Response
•Sinusoidscanberepresentedascomplexnumbers
calledphasors.
•Themagnitudeofthecomplexnumberisthe
amplitudeofthesinusoid,andtheangleofthe
complexnumberisthephaseangleofthesinusoid.
•Thus canberepresentedas
wherethefrequency,ω,isimplicit.)cos(tM
1 11M
The Concept of Frequency Response
•Asystemcausesboththeamplitudeandphaseangle
oftheinputtobechanged.
•Therefore,thesystemitselfcanberepresentedbya
complexnumber.
•Thus,theproductoftheinputphasorandthesystem
functionyieldsthephasorrepresentationofthe
output.
The Concept of Frequency Response
•Considerthemechanicalsystem.
•Iftheinputforce,f(t),issinusoidal,thesteady-stateoutput
response,x(t),ofthesystemisalsosinusoidalandatthesame
frequencyastheinput.
The Concept of Frequency Response
•Assume that the system is represented by the complex number
•Theoutputisfoundbymultiplyingthecomplexnumber
representationoftheinputbythecomplexnumber
representationofthesystem.)()(M )()(M
The Concept of Frequency Response
•Thus, the steady-state output sinusoid is
•M
o(ω)isthemagnituderesponseandΦ(ω)isthephaseresponse.
Thecombinationofthemagnitudeandphasefrequency
responsesiscalledthefrequencyresponse.)()(M )]()([)()()()(
iioo MMM
Frequency Domain Plots
•Bode Plot
•Nyquist Plot
•Nichol’s Chart
Basic Factors of a Transfer Function
•Thebasicfactorsthatveryfrequentlyoccurin
anarbitrarytransferfunctionare
1.GainK
2.IntegralandDerivativeFactors(jω)
±1
3.FirstOrderFactors(jωT+1)
±1
4.QuadraticFactors))((
)(
)(
251
1320
2
ssss
s
sG
Basic Factors of a Transfer Function
1.GainK
•Thelog-magnitudecurveforaconstantgainKisahorizontal
straightlineatthemagnitudeof20log(K)decibels.
•ThephaseangleofthegainKiszero.
•TheeffectofvaryingthegainKinthetransferfunctionisthat
itraisesorlowersthelog-magnitudecurveofthetransfer
functionbythecorrespondingconstantamount,butithasno
effectonthephasecurve.
-180
o
-60
0
60
o
180
o
Phase (degrees)
Frequency (rad/sec)
0.1 1 10 100
90 )
0
(tan
1-
10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
o
-90
0
Basic Factors of a Transfer Function
3.FirstOrderFactors(jωT+1)
–ForLowfrequenciesω<<1/T
–Forhighfrequenciesω>>1/T)log()( TjM 120 )log()(
22
120 TM 0120 )log()(M )log()( TM 20 )()()( 1
3
1
3 sssG T T
1
Basic Factors of a Transfer Function
3.FirstOrderFactors(jωT+1))(tan
-1
T)(
000 )(tan when
-1
)(,
451
1
)(tan when
1-
)(,
T
90 )(tan when
-1
)(,
-90
o
-30
0
30
o
90
o
Phase (degrees)
Frequency (rad/sec)
0.1 1 10 100 10
3
10
4
10
5 10
6
10
7
10
8 10
9
0
o
45
o
Basic Factors of a Transfer Function
3.FirstOrderFactors(jωT+1)
-1
–ForLowfrequenciesω<<1/T
–Forhighfrequenciesω>>1/T)log()( TjM 120 )log()(
22
120 TM 0120 )log()(M )log()( TM 20 )(
)(
3
1
s
sG
Basic Factors of a Transfer Function
3.FirstOrderFactors(jωT+1)
-1)(tan
-1
T )(
000 )(tan when
-1
)(,
451
1
)(tan when
1-
)(,
T
90 )(tan when
-1
)(,