Unit 4 helical gear

bcet96 9,356 views 84 slides Nov 28, 2019
Slide 1
Slide 1 of 84
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84

About This Presentation

Helical Gears, Helix Angle, Parallel helical gears, Crossed helical gears, Herringbone gears, Left Hand & Right Hand Gear


Slide Content

Unit-4
Helical Gear
Dr. L.K. Bhagi
Associate Professor
School of Mechanical Engineering
Lovely Professional University

Helical Gears
Inhelicalgears,thetwomeshinggearsmaybe
mountedonparallelorintersectingshafts.The
teethonhelicalgeararecutatanangle(helix
angle)tothegearaxis.
Thehelixangleusuallyrangesbetween15ºand
30º.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
2

Helical Gears
Spurgears,aremerelyhelicalgearswithazero
helixangle.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
3

Helical Gears
Spurgears,aremerelyhelicalgearswithazero
helixangle.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
4

Helical Gears
Spurgears,aremerelyhelicalgearswithazero
helixangle.
Carrymoreloadthanequivalent-sizedspurgears
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
5

Helical Gears» Helix Angle
Thehelixangleofhelicalgearsisgenerally
selectedfromtherange6,8,10,12,15,20,30
degrees.
Thelargertheanglethesmootherthemotionand
thehigherspeedpossiblehoweverthethrust
loadingsonthesupportingbearingsalso
increases.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
6

Helicalgearsareclassifiedas
Parallelhelicalgears
Crossedhelicalgearsand
Herringbonegears
Allthehelicalgearsgeneratethrustloadsontheshafts
becauseofinclinedteeth;hence,thesemustbetaken
carewhiledesigningthemachines.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
7
Helical Gears» Classification

Helical Gears» Thrust & Radial Load
THRUSTloadisloadparalleltotheshaftofthegear.Itis
producedbyhelicalgearsbecausethehelixangle,notthe
pressureangle.Itisnotproducedbyspurgears,whichhave
straightteeththatareparalleltotheshaftaxis.
RADIALloadistheloadthattendstoseparatethegears.It
actsperpendiculartotheshaft.Thisiswhatisproducedby
thepressureangle.Bothspurgearsandhelicalgears
producethiskindofload.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
8

Helical Gears» Parallel Helical Gears
•Referstowhentheshaftsareparalleltoeachother.
•Notethatmatinghelicalgears(onparallelshafts)
musthavethesamehelixanglebuttheopposite
hand.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
9

Helical Gears» Crossed Helical Gears
Theshaftsarenon-parallel,andinthisconfigurationthe
gearsaresometimesknownas"skewgears"
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
10

Helical Gears» Herringbone Gears
Doublehelicalgearsovercometheproblemofaxial
thrustpresentedbysinglehelicalgearsbyusingtwo
setsofteeththataresetinaVshape.Thisarrangement
cancelsoutthenetaxialthrust,sinceeachhalfofthe
gearthrustsintheoppositedirection,resultinginanet
axialforceofzero.
However,doublehelicalgearsaremoredifficultto
manufactureduetotheirmorecomplicatedshape.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
11

Helical Gears» Herringbone Gears
Toavoidaxialthrust,two
helicalgearsofoppositehand
canbemountedsidebyside,
tocancelresultingthrust
forces.
Herringbonegearsaremostly
usedonheavymachinery.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
12

Helical Gears»Left Hand & Right Hand
Gear
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
13

Helical Gears»Advantages
❑Theangledteethengagemoregraduallythandospur
gearteethcausingthemtorunmoresmoothlyand
quietly.
❑Helicalgearsarehighlydurableandareidealfor
highloadapplications.
❑Helicalgearscanbeusedonnonparallelandeven
perpendicularshafts,andcancarryhigherloadsthan
canspurgears.
❑Atanygiventimetheirloadisdistributedover
severalteeth,resultinginlesswear.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
14

Helical Gears»Drawbacks
❑Oneofthedisadvantagesofthesegearsisthethrust
whichresultsalongthegearaxis,whichneedstobe
accommodatedbyusingadequatethrustbearings.
❑Thereisagreaterdegreeofslidingfrictionbetween
theteeth.Thisproducesgreaterwearduring
operation,andtheneedforlubricationsystems.
❑Thehelicalgearefficiencyislowerduetothecontact
betweenitsteeth,whichproducesaxialthrustand
generatesheat.Agreaterlossofenergyreduces
efficiency.
❑Highermanufacturingcostthanspurgears.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
15

Helical Gears»Efficiency
Efficiencies of spur gear and helical gear compared?
a)efficiency of spur gear = efficiency of helical gear
b)efficiency of spur gear < efficiency of helical gear
c)efficiency of spur gear > efficiency of helical gear.
d)none of the above
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
16

Helical Gears»Efficiency
Efficiencies of spur gear and helical gear compared?
a)efficiency of spur gear = efficiency of helical gear
b)efficiency of spur gear < efficiency of helical gear
c)efficiency of spur gear > efficiency of helical gear.
d)none of the above
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
17

Helical Gears»Efficiency
Spurgearsarethegearsinwhichtheteethareparallel
tothegearaxis,whereasinhelicalgear,theteethare
notparalleltothegearaxis.
Becauseofthisarrangementofteethinhelicalgears,
theyhaveslidingcontactbetweentheteeth.
Duetotheslidingcontactbetweentheteethofhelical
gear,axialtrustofgearshaftalsoproducesandalso
producemoreheat.Thustheefficiencyofhelicalgear
islessthanthatofthespurgear.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
18

Helical Gears»Strength
Forsametoothsize(module)andequivalentwidth,helicalgears
canhandlemoreloadthanspurgearsbecause...?helicalgear
toothiseffectivelylargersinceitisdiagonallypositioned
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
19

Helical Gears»Strength
Forsametoothsize(module)andequivalentwidth,helicalgears
canhandlemoreloadthanspurgearsbecausethehelicalgear
toothiseffectivelylargersinceitisdiagonallypositioned.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
20

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
21
SpurGears HelicalGears
Teetharecutparalleltotheaxisofthe
shaft
Teetharecutintheformofhelixon
thepitchcylinderbetweenmeshing
gears
Contactbetweenmeshingteethoccurs
alongtheentirefacewidthofthetooth
Contactbetweenmeshinggearsbegins
withapointontheleadingedgeofthe
toothandgraduallyextendsalongthe
diagonallineacrossthetooth
Loadapplicationissuddenresulting
intoimpactconditionsandgenerating
noiseinhighspeedapplications
Pickupofloadbythetoothisgradual,
resultinginsmoothengagementand
quietoperationevenathighspeeds
Helical Gears»Helical vsSpur Gear

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
22
SpurGears HelicalGears
Usedforparallelshaftsonly Crossedhelicalgearsarealsousedon
shaftswithcrossedaxes
Speedislimitedtoabout20m/s Usedinautomobile,turbinesandhigh
speedapplicationsupto50m/s
Imposesradialloadonly Imposesradialandaxialthrustloads
Contactratioislow Contactratioishigh
Helical Gears»Helical vsSpur Gear

Helical Gears» Geometry
Spurgearshavethediametralandcircularpitches.
Helicalgeargeometryrequiresadditionalpitches.
Figureshowsaportionofthetopviewofahelicalrack.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
23

Helical Gears» Geometry
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
24

Helical Gears» Geometry
TheangleΨisthehelixangle.
Thetransversecircularpitch(p)orcircularpitchismeasuredonaplane
normaltotheshaftaxis(A-Aplane).
Thenormalcircularpitch(p
n)isthedistancebetweencorrespondingpointsof
adjacentteeth,measuredonaplaneperpendiculartothehelix(B-Bplane).
Theaxialpitch(p
a)isthedistancebetweencorrespondingpointsofadjacent
teeth,measuredonaplaneparalleltotheshaftaxis.Forsmoothtransferof
load,thefacewidthofhelicalgear(b)isusuallymadeatleast20%longer
thantheaxialpitch(p
a).
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
25

Helical Gears» Geometry
So,
Diametralpitchspurgear Circularpitchspurgear
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
26p
p
n
=cos cospp
n
= )d(diameter circlepitch per
(z) teeth of No.

=P (z) teeth of No.
d
p

=
 =Pp

Helical Gears» Geometry
So,normalandtransversediametralpitchesare
andnormal(m
n)andtransverse(m)module
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
27=Pp =
nn
pP 

 coscos
PP
pp
n
n
== cos
P
P
n
= cos
11
mm
n
= cosmm
n
=

The Module of a Gear
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
28
isdefinedasinverseofdiametralpitch

Helical Gears» Geometry
Foraxialpitch(p
a)
Therelationbetweenthenormalpressureangle(α
n)inthe
normalplaneandtransversepressureangle(α)is
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
29a
p
p
=tan tan
p
p
a
= 


tan
tan
cos
n
=

Helical Gears» Geometry
Thepitchcirclediameterofthehelicalgear(d),isrelatedtothe
numberofteeth(z),normalmodule(m
n)andhelixangle(ψ)as
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
30

cos
zm
zm
zzp
z
n
=====
P
d
d
p cos
zm
n
=d

Helical Gears» Geometry
Centredistancebetweenthematinggearsis
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
31cos2
z
cos2
z
22
2121 nn
mmdd
a +=+= ( )
cos2
zz
21
+
=
n
m
a

Helical Gears» Geometry
Centredistancebetweenthematinggearsis
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
32cos2
z
cos2
z
22
2121 nn
mmdd
a +=+= ( )
cos2
zz
21
+
=
n
m
a

Helical Gears» Virtual Number of
Teeth
Thevirtualnumberofteethforahelicalgearmaybedefinedas
thenumberofteeththatcanbegeneratedonthesurfaceofa
cylinderhavingaradiusequaltotheradiusofcurvatureatapoint
atthetipoftheminoraxisofanellipseobtainedbytakinga
sectionofthegearinthenormalplane.
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
33

Helical Gears» Virtual Number of
Teeth
Theshapeofthetoothin
thenormalplaneisnearly
thesameastheshapeofa
spurgeartoothhavinga
pitchradiusequaltoradius
ofcurvaturer’atpointPof
theellipsesis
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
34b
a
r
2
=

Helical Gears» Virtual Number of
Teeth
Theequationofanellipsewithitscentreatoriginofanxysystem
withaandbasthesemi-majorandsemi-minoraxesis
Alsotheformulaforradiusofcurvatureis
Bythesetwoequationsandbyputtingx=0andy=b,weget
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
351
2
2
2
2
=+
b
y
a
x 2
2
2
3
2
1
dx
yd
dx
dy














+
= b
a
2
=

Helical Gears» Virtual Number of
Teeth
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
36

Helical Gears» Virtual Number of
Teeth
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
37b
a
r
2
= ellipse theof axismajor Semi
cos2

=

d
a axisminor Semi
2
−==
d
b 
2
cos2
d
r=

Helical Gears» Virtual Number of
Teeth
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
38
2
cos
2
d
rd ==
Inthedesignofhelicalgears,an
imaginaryspurgearis
consideredintheplaneA-Awith
apitchcircleradiusr’and
modulem
n.Itiscalledvirtual
spurgear.

Helical Gears» Virtual Number of
Teeth
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
39nn
m
d
p
r
z












=

=
2
cos2
2
2
Thenumberofteethz’onthis
imaginaryspurgeariscalledthe
virtualnumberofteeth.

2
2
cos
cos
nn m
d
m
d
z =








=

Helical Gears» Virtual Number of
Teeth
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
40
Thedesignofhelicalgearsisbasedonvirtualnumberofteeth(z’)
andzistheactualnumberofteeth..



3
22
cos

cos
cos
cos
z
m
zm
m
d
z
n
n
n
=
==

Helical Gears» Tooth Proportions
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
41
Asageneralguide,toothproportionsshouldbebasedonanormal
pressureangleof20°.Inhelicalgears,thenormalmodulem
n
shouldbeselectedfromstandardvalues.
m
n(inmm)=1,1.25,1.5,2,2.5,3,4,5,6,8and10
Thestandardproportionsoftheaddendumandthededendumare,
addendum(h
a) =m
n
dedendum(h
f) =1.25m
n
clearance(c) =0.25m
n(Tipandrootclearance)

Helical Gears» Tooth Proportions
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
42
Theaddendumcirclediameterd
aisgivenby
Similarly,dedendumcirclediameterd
fisn
n
aa
m
zm
hdd 2
cos
2 +=+=
 





+= 2
cos
z
md
na n
n
ff
m
zm
hdd 5.2
cos
2 −=−=
 





−= 5.2
cos
z
md
nf

Helical Gears» Tooth Proportions
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
43
Trailing edge of the tooth
Leading edge of the tooth
Leading edge of the tooth should be advanced ahead of the
trailing edge by a distance greater than the circular pitch
From the ΔA
1A
2C
So, px  tantan
1
2
bx
b
x
CA
CA
=== 

tan
bor tan
p
pb 

Helical Gears» Tooth Proportions
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
44
And
Therefore,
This is the minimum face width
Manyauthoritiesrecommendedthatthefacewidthbeatleast
twicetheaxialpitchtoobtaintruehelical-gearaction.





 sincostantantan
nn
mmmp
=== 

sin
n
m
b

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
45
Problem4.1:Apairofparallelhelicalgearsconsistsofa20teeth
pinionmeshingwitha40teethgear.Thehelixangleis25°andthe
normalpressureangleis20°.Thenormalmoduleis3mm.Calculate:
(a)Transversemodule
(b)Transversepressureangle
(c)Axialpitch
(d)Pitchcirclediameterofthepinionandthegear
(e)Centredistance
(f)AddendumandDedendumcirclediamtersofthepinion
Helical Gears» Numerical Problem 4.1

Helical Gears» Numerical Problem»
Prob. 4.1 solution
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
46
TransverseModule
TransversePressureAngle
AxialPitchmm
m
m
n
31.3
25cos
3
cos
=

==
 =


== 88.21
25cos
20tan
cos
tan
tan 



n ()
mm
mp
p
a
3.22
25tan
3
tantan
====



Helical Gears» Numerical Problem»
Prob. 4.1 solution
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
47
Pitchcirclediameterofpinionandgear
Centredistance()
mm
mz
d
np
p
2.66
25cos
320
cos
=

==
 mm
dd
a
gp
3.99
2
4.1322.66
2
=
+
=
+
= ()
mm
mz
d
ng
g
4.132
25cos
340
cos
=

==

Helical Gears» Numerical Problem»
Prob. 4.1 solution
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
48
AddendumandDedendumcirclediametersofpinionmm
z
md
na
2.722
25cos
20
32
cos
=






+=






+=
 mm
z
md
nf
7.585.2
25cos
20
35.2
cos
=






−=






−=

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
49
Problem4.2:Apairofhelicalgearsconsistsofa25teethpinion
meshingwitha50teethgear.Thenormalmoduleis4mm.Findthe
requiredvalueofhelixangle,ifthecentredistanceisexactly165mm.
Helical Gears» Numerical Problem 4.2

Helical Gears» Numerical Problem»
Prob. 4.2 solution
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
50
Helixanglefromequation( )
cos2
zz
21
+
=
n
m
a ( )
cos2
50254
165
+
= ( )
818.1
165
50254
cos2 =
+
= 909.0cos= =619.24

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
51
Problem4.2:Apairofparallelhelicalgearsconsistsofa20teeth
pinionandvelocityratio3:1.Thehelixangleis15°andthenormal
moduleis5mm.Calculate:
(i)Pitchcirclediameterofthepinionandthegear
(ii)Centredistance
Helical Gears» Numerical Problem 4.3

Helical Gears» Numerical Problem»
Prob. 4.3 solution
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
52
(i)Pitchcirclediameters()
mm
mz
d
np
p
53.103
15cos
520
cos
=

==
 ()
mm
mz
d
ng
g
58.310
15cos
560
cos
=

==

Helical Gears» Numerical Problem»
Prob. 4.3 solution
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
53
(ii)Centredistance( )
cos2
zz
21
+
=
n
m
a ( )

+
=
15cos2
60205
a mm 06.207=a

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
54
Problem4.4:Twentydegreefulldepthinvoluteprofiled19-tooth
pinionand37-toothgearareinmesh.Ifthemoduleis5mm,thecentre
distancebetweenthegearpairwillbe
(a) 140 mm.
(b) 150 mm
(c) 280 mm
(d) 300 mm
Helical Gears» Numerical Problem 4.4

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
55
Problem4.5:Ifα=helixangle,andp
c=circularpitch;thenwhichone
ofthefollowingcorrectlyexpressestheaxialpitchofahelicalgear?
(a.) (b) (c) (d)
Helical Gears» Numerical Problem 4.5tan
c
p cos
c
p cos
c
p sin
c
p

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
56
Problem 4.6:
Assertion(A):Shaftssupportinghelicalgearsmusthaveonlydeep
grooveball-bearings.
Reason(R):Helicalgearsproduceaxialthrusts.
(a)BothAandRareindividuallytrueandRisthecorrectexplanation
ofA.
(b)BothAandRareindividuallytruebutRisnotthecorrect
explanationofA
(c)AistruebutRisfalse
(d)AisfalsebutRistrue
Helical Gears» Numerical Problem 4.6

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
57
Problem4.7:
Assertion(A):Whiletransmittingpowerbetweentwoparallelshafts,
thenoisegeneratedbyapairofhelicalgearsislessthanthatofan
equivalentpairofspurgears.
Reason(R):Apairofhelicalgearshasfewerteethincontactas
comparedtoanequivalentpairofspurgears.
(a)BothAandRareindividuallytrueandRisthecorrectexplanation
ofA
(b)BothAandRareindividuallytruebutRisnotthecorrect
explanationofA
(c)AistruebutRisfalse.
(d)AisfalsebutRistrue
Helical Gears» Numerical Problem 4.7

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
58
Helical Gears» Force Analysis

F a
F t
F r
F  n
  

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
60
ResultantforceFactingonthe
toothofhelicalgear
F
t=tangentialcomponent
F
r=radialcomponent
F
a=axialcomponent
Helical Gears» Force Analysis
A
B
D
C
FromΔABCnr
FF sin= n
FBC cos=
E

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
61
Helical Gears» Force Analysis
A
B
D
C
FromΔBDCsinBCF
a
= sincos
n
F= cosBCF
t
= coscos
n
F=
DividingF
aandF
t


tan
coscos
sincos
==
n
n
t
a
F
F
F
F tan
ta
FF=
E

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
62
Helical Gears» Force Analysis
A
B
D
C
DividingF
randF
t



cos
tan
coscos
sin
n
n
n
t
r
F
F
F
F
== 







=


cos
tan
n
tr
FF
E

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
63
Helical Gears» Force Analysis
A
B
D
C
FromΔEDCt
r
F
F
=tan
E
and


costancos tan
cos
tan
n
==
==
t
r
t
rr
n
F
F
F
F
BC
F 


tan
tan
cos
n
=

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
64
Helical Gears» Force Analysis
The tangential component is calculated from the relationship2
d
M
F
t
t
=
M
t = transmitted torque (N-mm)
d = pitch circle diameter (mm)
Thefollowinginformationisrequiredinordertodecidethedirection
ofthreecomponents
(i)Whichisthedrivingelement?Whichisdrivenelement?
(ii)Ispinionrotatinginclockwiseoranticlockwise?
(iii)Whatishandofhelix?Isitrighthandedorlefthanded?

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
65
Helical Gears» Force Analysis

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
66
Helical Gears» Force Analysis

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
67
Problem4.8:Apairofparallelhelicalgears,5kWpower
at720rpmissuppliedtothepinionAthroughitsshaft.The
normalmoduleis5mmandthenormalpressureangleis
20°.Thepinionhasright-handteeth,whilethegearhasleft-
handteeth.Thehelixangleis30°.Thepinionrotatesinthe
clockwisedirectionwhenseenfromtheleftsideofthe
page.Determinethecomponentsofthetoothforceand
drawafree-bodydiagramshowingtheforcesactingonthe
pinionandthegear.
Helical Gears» Numerical Problem 4.8

Helical Gears» Numerical Problem»
Prob. 4.8 solution
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
68
Power(kW)=5
n
A=720rpm
z
A=20
z
B=30
m
n=5mm
ψ=30°
α
n=20°

Helical Gears» Numerical Problem»
Prob. 4.8 solution
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
69
Componentsoftoothforce
F
t=tangentialcomponent
F
r=radialcomponent
F
a=axialcomponent
Asweknow()






=
2
A
At
t
d
M
F ()
A
At
n
kWPower
M
2
)(1060
6

= cos
nA
A
mZ
d=

Helical Gears» Numerical Problem»
Prob. 4.8 solution
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
70
So,( )
NF
t
6.1148
47.115
56.663142
== ()
()
NmmM
At
56.66314
7202
51060
6
=

=
 ()
mm
mZ
d
nA
A
47.115
30cos
520
cos
===

Helical Gears» Numerical Problem»
Prob. 4.8 solution
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
71
So,( )
NF
t
6.1148
47.115
56.663142
== tan
ta
FF= () NFF
ta
14.66330tan6.1148tan === 







=


cos
tan
n
tr
FF NFF
n
tr
73.482
30cos
20tan
6.1148
cos
tan
=








=








=

Helical Gears» Numerical Problem»
Prob. 4.8 solution
29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
72
Free-bodydiagramofforces
Thedirectionofthreecomponentson
thegearatthepoint-2willbeopposite
tothatofthepinion.

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
73
Helical Gears» Beam Strength
ForBeamstrength,thehelicalgearisconsideredtobe
equivalenttoaformativespurgear.
The pitch circle diameter of this gear is d´, the number of teeth
is z´and the module m
n.
The beam-strength of the spur gear is given by,
Beamstrength(S
b)isthemaximumvalueofthetangential
forcethatthetoothcantransmitwithoutbendingfailure.YmbS
bb
=

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
74
Helical Gears» Beam Strength
ForBeamstrength,thehelicalgearisconsideredtobe
equivalenttoaformativespurgear.
The pitch circle diameter of this gear is d´, the number of teeth
is z´and the module m
n.
The beam-strength of the spur gear is given by,
Beamstrength(S
b)isthemaximumvalueofthetangential
forcethatthetoothcantransmitwithoutbendingfailure.YmbS
bb
=

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
75
Helical Gears» Beam Strength
The beam-strength of the spur
gear is given by,
S
b=(S
b)
n=beamstrength
perpendiculartothetooth
element
m=m
n=normalmoduleYmbS
bb= cos
b
b= YmbS
bb
= ()


cos
Ybm
S
bn
nb
=

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
76
Helical Gears» Beam Strength
Y= Lewis form factor based on
virtual number of teeth z´.YbmS
bnb
= ()


cos
Ybm
S
bn
nb
=
S
bis the component of (S
b)
nin
the plane of rotation. Thus,()cos
nbb
SS=
Inordertoavoidthefailureofgear
toothduetobending,thebeam
strengthshouldbemorethanthe
effectiveforcebetweenthe
meshingteeth.effb
FS

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
77
Helical Gears» Effective Load on Gear
Tooth
Whengearsrotateatverylowspeedthetangentialload(F
t)can
beconsideredasactualforcebetweentwomeshingteeth.
Butwhengearsrotateathighspeedthenitisnecessaryto
considerthedynamicforceresultingfromtheimpactbetween
matingteeth.()
d
M
d
M
F
tt
t
2
2







=

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
78
Helical Gears» Effective Load on Gear
Tooth
Thedynamicforceisinduceddueto:
(i)Inaccuraciesoftoothprofile
(ii)Errorsintoothspacing
(iii)Elasticityofparts

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
79
Helical Gears» Effective Load on Gear
Tooth
Therearetwomethodstoaccountfordynamicload:
(i)Approximateestimationbyvelocityfactor(C
v)inthe
preliminarystagesofgeardesignand
(ii)PrecisecalculationbyBuckingham’sequationinthefinal
stagesofgeardesign

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
80
Helical Gears» Effective Load on Gear
Tooth
Inthepreliminarystages,theeffectiveloadF
effbetweentwo
meshingteethisgivenby
C
s= service factor and C
v= velocity factor
Thevelocityfactorforhelicalgearsis(v>20m/s)
Where,visthepitchlinevelocityinm/sv
ts
eff
C
FC
F= v
C
v
+
=
6.5
6.5

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
81
Helical Gears» Effective Load on Gear
Tooth
Inthefinalstagesofgeardesign,thedynamicloadiscalculated
byequationderivedbyEarleBuckingham.Thedynamicloadis
givenby,( )
( )
t
t
d
FCebv
FCebv
F
++
+
=


2
2
cos21
coscos21
F
d=dynamicload; v=pitchlinevelocity
e=sumoferrorsbetweentwomeshingteeth
b=facewidthoftooth;F
t=tangentialforceduetoratedtorque

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
82
Helical Gears» Effective Load on Gear
Tooth
Theeffectiveloadisgivenby
Where,F
disthedynamicloadoradditionalloadduetodynamic
conditionsbetweentwomeshingteeth.( )
dtseff
FFCF +=

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
83
Helical Gears» Wear Strength
Tocalculatewearstrength,pairofhelicalgearsisconsideredto
beequivalenttoaformativepinionandaformativegearina
planeperpendiculartothetoothelement.Thewearstrengthof
thespurgearisgivenby
Wearstrengthisthemaximumvalueofthetangentialforcethat
thetoothcantransmitwithoutpittingfailure.KdbQS
pw
=

29-11-2019
Design of Machine Elements II MEC306
(Dr. L K Bhagi)
84
Helical Gears» Wear Strength