UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS

rknatarajan 120 views 37 slides Apr 29, 2024
Slide 1
Slide 1 of 37
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37

About This Presentation

Units
and dimensions Properties of fluids mass density, specific weight,
specific volume, specific gravity, viscosity, compressibility, vapor pressure,
surface tension and capillarity


Slide Content

UNIT I -FLUID PROPERTIES &
FLOW CHARACTERISTICS

UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS
Unitsanddimensions-Propertiesoffluids-massdensity,specificweight,
specificvolume,specificgravity,viscosity,compressibility,vaporpressure,
surfacetensionandcapillarity.Flowcharacteristics–conceptofcontrol
volume-applicationofcontinuityequation,energyequationand
momentumequation.

Fluid Properties:
1. Density
2. Specific Gravity
3. Viscosity
4. Surface Tension
5. Capillarity
6. Compressibility
7. Bulk modulus
8. Vapour pressure

Density:
Mass densityor specific mass: 
Thedensityofafluidisdefinedasitsmassperunitvolumeat
standardtemperatureandpressure.
�=
????????????�����ℎ����??????�
���������ℎ����??????�
Where,
=
�
�
unit -kg/m
3
For water, = 1000 kg/m
3

Specific Weight or weight density: w
It is defined as Weight per unit volume at standard temperature and pressure
Where,
w = g ; Unit -N/m
3
;
w
water= 9.81 kN/m
3
�=
��??????�ℎ������??????�
�����������??????�
=
????????????�������??????�
�����������??????�
�
Specific Volume: v
It is defined as Volume per unit mass of the fluid.
v = V/m = 1/
Unit -m
3
/kg;1 m
3 =
1000 litres

SpecificGravity:S
Itistheratioofthespecificweightoftheliquidtothe
specificweightofthestandardfluid.
??????���??????�??????�??????�??????�??????��=
specificweightoftheliquid
Specificweightofthepurewater
Where,
WeightDensityofLiquid=SXWeightdensityofwater
=SX1000X9.81N/m
3
DensityofLiquid=SXdensityofwater
=SX1000kg/m
3

Problem 1: Calculate the density, specific weight and weight of one litreof
petrol of specific gravity = 0.7
Given:
�=1�??????���=1�1000��
3
=
1000
10
6
m
3
= 0.001 m
3
S = 0.7
Solution:
(i) Density, ρ= S x1000 kg/m
3
= 0.7 x1000 = 700 kg/m
3
(ii) Specifcweight, w= ρxg = 700 x9.81 N/m
3
= 6867 N/m
3
(iii) Weight, W =
��????????????ℎ�
�??????����
w=
�
0.001
or 6867 =
�
0.001
W = 6867 x0.001
W = 6.867 N

Kinematic viscosity:
It is defined as the ratio between the dynamic viscosity and mass
density of fluid.
Units: m
2
/s ; 1 Stoke = 10
-4
m
2
/s
Viscosity:
Dynamic viscosity:
Viscosity is defined as the property of fluid which offers resistance to
flow.
Unit -Ns/m
2
; 1 Poise = (1/10) Ns/m
2
; 1 Centipoise= (1/100) Poise
????????????
��
��
,??????=�
��
��
,
�=
�
�

Dynamic Viscosity
Force
Area
Shear stress (

)
Shear rate (du/dy)Slopeofline=
�=
??????

��
��

Problem2:APlate0.025mmdistantfromafixedplate,movesat60cm/sand
requiresaforceof2Nperunitareai.e.,2N/m
2
tomaintainthisspeed.
Determinethefluidviscositybetweentheplates.
Given:
dy= 0.025 mm = 0.000025 m
u = 60 cm/s = 0.6 m/s
du = u –0 = 0.6 m/s
??????= 2 N/m
2
Solution:
µ =
??????
????????????
????????????
=
2
0.6
0.000025
µ = 8.33 x 10
-5
Ns/m
2
(or) 8.33 x 10
-4
poise

Problem3:Determinetheintensityofshearofanoilhavingviscosity=1poise.Theoil
isusedforlubricatingtheclearancebetweenashaftofdiameter10cmanditsjournal
bearing.Theclearanceis1.5mmandtheshaftrotatesat150r.p.m.
Given:
µ = 1 poise =
1
10
??????�
�
2
D = 10 cm = 0.1 m
Dy = 1.5 mm = 0.0015 m
N = 150 r.p.m.
Solution:
u =
??????????????????
60
=
??????∗0.1∗150
60
= 0.785 m/s
du = u –0 => u = 0.785 m/s
??????= µ
��
��
=
1
10
x
0.785
1.5�10
−3
??????= 52.33 N/m
2

Problem4:Ifthevelocitydistributionoveraplateisgivenbyu=3/4y–y
2
inwhichuis
thevelocityinmertrepersecatadistanceymetreabovetheplate.Determinetheshear
stressaty=0andy=0.15m.Takedynamicviscosityoffluidas8.5poise.
Solution:
u =
3
4
y –y 2
��
��
=
3
4
−2y
At y = 0.15,
��
��
=
3
4
−2∗0.15=0.75−0.30=0.45
Viscosity, µ = 8.5 poise = 0.85 Ns/m
2
We know,
??????= µ
��
��
=0.85∗0.45
??????= 0.3825 N/ m
2

Problem 5: A 400 mm diameter shaft is rotating at 200 r.p.m. in a bearing of length 120 mm. If
the thickness of oil film is 1.5 mm and the dynamic viscosity of the oil is 0.7 N.s/m
2
determine:
(i) Torque required to overcome friction in bearing (ii) Power utilised in overcoming viscous
resistance.
Given: D = 400 mm = 0.4 m
N = 200 rpm
L = 120 mm = 0.12 m
dy= 1.5 mm
µ = 0.7 Ns/m
2
To find:
(i) Torque
(ii) Power
Solution:
u
1 = 0; u
2=
??????????????????
60
=
??????∗0.4∗120
60
= 2.5 m/s
du = u
2–u
1= 2.5 m/s

µ =
??????
????????????
????????????
=> 0.7 =
??????
2.5
0.0015
=> ??????= 1172.26 N/m
2
F
shear= ??????* A = ??????* �* D * L
= 1172.26 * �* 0.4 * 0.12
F
shear= 176.77 N
T = F
Shear* r
= 176.77 * 0.2
T = 35.2 N m
P =
2??????????????????
60
=
2??????120∗35.2
60
P = 737.2 W

Problem6:Calculatethedynamicviscosityofanoil,whichisusedforlubricationbetweena
squareplateofslice0.8mx0.8mandaninclinedplanewithangleofinclination30
o
asshown
infig.Theweightofthesquareplateis300Nanditslidesdowntheinclinedplanewitha
uniformvelocityof0.3m/s.Thethicknessofoilfilmis1.5mm.
Given:
A = 0.8 x 0.8 = 0.64 m
2
θ= 30
o
W = 300 N
u = 0.3 m/s
du = u –0 = 0.3 m/s
t = dy= 1.5 mm = 1.5 x 10
-3
m
To find:
µ

Solution:
Component of weight W, along the plane = W cos 60
o
= 300 cos 60
o
= 150 N
Shear force F, on the bottom surface of the plate = 150 N
??????=
??????
??????��??????
=
150
0.64
=234.375
Using Newton’s law,
µ =
??????
????????????
????????????
µ =
234.375
0.3
0.0015
= 1.17 Ns/m
2
µ = 11.7 poise.
30
o
60
o
W

Homework: Two large plane surfaces are 2.4 cm apart. The space between the surfaces is filled
with glycerine. What force is required to drag a very thin plate of surface area 0.5 square metre
between the two large plane surfaces at a speed of 0.6 m/s, if (i) the thin plate is in the middle of
the two plane surfaces, and (ii) the thin plate is at a distance of 0.8 cm from one of the plane
surfaces? Take the dynamic viscosity of glycerine= 8.10 x 10
-1
Ns/m
2

Types of Fluids:
Shear stress (
??????
)
Shear rate(du/dy)
Ideal Solid
Ideal Fluid

IdealFluid:
Afluid,whichisincompressibleandishavingnoviscosity,isknownasIdeal
fluid.ItisonlyimaginaryFluid
RealFluid:
Afluid,whichishavingviscosity,isknownasRealfluid.AllfluidsareReal
fluids.
Newtonianfluids:
ThesefluidsfollowNewton’sviscosityequation.Forsuchfluidsdoesnot
changewithrateofdeformation.Exp.Water,Keroseneetc.,
NonNewtonianfluids:
Therefluidswhichdonotfollowthelinearrelationshipbetweentheshear
stressandtherateofdeformation.Exp.Polymersolutions,Bloodetc.,

SurfaceTensionofLiquids
Thephenomenonofsurfacetensionarisesduetothetwokinds
ofintermolecularforces.SurfaceTensioniscausedbytheforceof
cohesionatthefreesurface.
(i)Cohesion:Theforceofattractionbetweenthemoleculesofthe
sameliquid.Surfacetensionisduetocohesionbetweenparticlesat
thefreesurface.
(ii)Adhesion:Theforceofattractionbetweenunlikemoleculesofa
solidboundarysurfaceincontactwiththeliquid

Case I -Water droplet:
Let, P = Pressure inside the droplet above outside pressure
D = Diameter of the droplet
= Surface tension of the liquid
i. Pressure force = ??????×
??????
4
�
2
and
ii. Surface tension force acting around the circumference = d
Under equilibrium conditions these two forces will be equal and opposite,
??????×
??????
4
�
2
=??????��
�=
4??????
�

Case II -Soap bubble:
i.Pressure force =??????×
??????
4
�
2
, and
ii.Surface tension force acting around the circumference =2(d)
??????×
�
4
�
2
=2??????��
�=
8??????
�
Case III-A liquid Jet:
i.Pressure force = p ld , and
ii.Surface tension force acting around the circumference =2 l
??????×�×�=??????×2�
�=
2??????
�

Surface Tension Formulae:
S. No. Pressure forceSurface TensionPressure
Water Jet p ld 2 l �=
2??????
�
Water Droplet??????×
�
4
�
2
d �=
4??????
�
Soap Bubble ??????×
�
4
�
2
2 (d) �=
8??????
�

Problem 7: Find the surface tension in a soap bubble of 40 mm diameter when
the inside pressure is 2.5 N/m
2
above atmospheric pressure.
Given:
d = 40 mm = 0.04m
p = 2.5 N/m
2
To find :
Surface Tension (σ)
Solution:
p =
8??????
�
σ=
p∗d
8
=>
2.5∗0.04
8
σ= 0.0125 N/m

Capillarity:
➢Capillarityisaphenomenonbywhichaliquidrisesintoathinglasstube
aboveorbelowitsgenerallevel.surfacerelativetotheadjacentlevelof
thefluidiscalledcapillarity.
➢Thisphenomenonisduetothecombinedeffectofcohesionandadhesion
ofliquidparticles.
For water = 0
For mercury = 140
0

Expression for Capillary Rise:
= Surface tension of the liquid
= Angle of contact between the liquid and glass tube
= Density of the liquid
The weight of the liquid of height h in the tube = (Area of the tube x h) x x g
=
�
4
�
2
×ℎ×�×�
Vertical component of the surface tensile force=(??????×????????????�����������)×cos??????
=??????×��×cos??????
Equating these two eqn.,
�
4
�
2
×ℎ×�×�=??????×��×cos??????
ℎ=
??????×��×cos??????
�
4
�
2
��
=
4??????cos??????
���
ℎ=
4??????
���
If is equal to zero

Expression for Capillary Fall:
= Surface tension of the liquid
= Angle of contact between the liquid and glass tube
= Density of the liquid
Intensity of the pressure at the depth = (Area of the tube x h) x x g
=
�
4
�
2
×ℎ×�×�
Vertical component of the surface tensile force=(??????×????????????�����������)×cos??????
=??????×��×cos??????
Equating these two eqn.,
�
4
�
2
×ℎ×�×�=??????×��×cos??????
ℎ=
??????×��×cos??????
�
4
�
2
��
ℎ=
4??????cos??????
���
Note: For mercury
and glass tube is 138
o

Problem8:Calculatethecapillaryriseinaglasstubeof4mmdiameter,when
immersedin(i)water,and(ii)mercury.thetemperatureoftheliquidis20
o
Candthe
valuesofthesurfacetensionofwaterandmercuryat20
o
Cincontactwithairare
0.073575N/m&0.51N/mrespectively.Theangleofcontactforwateriszerothatfor
mercury130
o
.Takedensityofwaterat20
o
Casequalto998kg/m
3
.
Given:
d = 4 mm = 0.004 m
Solution:
(i)Capillary effect for water
σ = 0.073575 N/m, θ= 0
o
ρ= 998 kg/m
3
@ 20
o
C
h =
4σcosθ
ρ??????�
=
4∗0.073575∗cos0
998∗9.81∗0.004
h = 0.00751 m or 7.51 mm

Contd…
(i)Capillary effect for mercury
σ = 0.51 N/m, θ= 130
o
ρ= 13600 kg/m
3
(ρ= S * 1000 => 13.6 * 1000)
h =
4σcosθ
ρ??????�
=
4∗0.51∗cos130
13600∗9.81∗0.004
h = -0.00246 m or –2.46 mm

Bulkmodulus:
Itisdefinedastheratioofcompressivestresstovolumetric
strain.
Unit-Τ
??????
�
2
Thenegativesignindicatesthevolumedecreasesaspressure
increases.
Compressibility:
Whenafluidissubjectedtoapressureincreasethe
volumeofthefluiddecreases.Itisknownascompressibility.It
isreciprocalofbulkmodulus.
Compressibility=1/k
�=−
��
���

Vapourpressure:
Allliquidshaveatendencytoevaporatewhenexposed
toagaseousatmosphere.Thevapourmoleculesexertapartial
pressureinthespaceabovetheliquid,knownasvapour
pressure.

Gas Laws:
Boyle’s Law
Atagiventemperatureforagivenquantityofgas,theproductof
thepressureandthevolumeisaconstant.
P
1V
1= P
2V
2
Ideal Gas Law:
Ideal Gas Law relates pressure to Temp for a gas
P = RT
Where, T = Absolute temperature in
o
K units
R= Gas constant = 287 Joule / Kg-
o
K

Universal Gas constant:
PV = mRT
Where,
m = Mass of gas in kg;
v = Specific Volume.
p = Absolute pressure ;
T = Absolute temperature

Pressure in a Fluid
�=��ℎ

Pressure:
Forceperunitarea:1N/m
2
=Pascal=Pa
StandardAtmosphereP=101.33kPa=101.3kN/m
2
=10.3mofmg

Thank you
Tags