UNIT II RHEOLOGY PPT Physical Pharmaceutics II

10,240 views 47 slides Mar 27, 2024
Slide 1
Slide 1 of 47
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47

About This Presentation

Physical Pharmaceutics II


Slide Content

Presentation
on
RHEOLOGY
Presented By: Ms. SarikaS. Suryawanshi
M. Pharm Pharmaceutics
Associate Professor
AshokraoMane College of Pharmacy, Peth
Vadgaon

Introduction:
Rheo–toflow
logos–science
Resistancetoflowofliquid&deformationof
solid
Usedinsimpleliquids,ointments,cream,
pastes
Changeinflowbehaviorunderstress
condition
1.Manufacturingofdosageforms:mixing,
flowingthroughpipes,fillingintocontainers
II.HandlingofDrugsforadministration:pouring
fromthebottle,extrusionfromatubeora
passageoftheliquidtoasyringeneedle

Conceptofviscosity
Shearstress:Forceperunitareawhich
appliedtobringtheflow.
ShearStressF=F’/A
Rateofshear:changeinvelocity,dv
withinfinitechangeindistance,dr
RateofshearG=dv/dr
Higherviscosity,greaterforceperunit
arearequiredtoproducerateofshear.
F=nG
n=coefficientofviscosity
Centipoise,cp=0.01P
CGS:dy.sec/cm2

Factors:
IntrinsicFactors
1.Molecularweight:Highermolecular
weight,higherviscosity
2.Large&irregularshapeparticles
moreviscousthanregularshape
3.Intermolecularinteraction:stronger,
particlessticktoeachother
enhancesviscosity

ExtrinsicFactors
Pressure:enhancescohesiveforces
Additionofnonelectrolytes:increases
Polymers
Strongelectrolytes:Decreases,alkali
metal
Temperature:breakingofcohesive
forcesleadstodecreaseviscosity

Determinationofflowproperties
CapillaryViscometer
Fallingsphereviscometer
AtaSinglerateofshearonepointonthe
curve
Newtonianfluids
Cup&Bob
Cone&Plate
Rateofshearmanypointsonthecurve
Both

Ostwald Viscometer
n1 = ρ1t1/ρ2t2 X n2
ρ1-density ofunknown liquid
t1-time of flow of unknown
liquid
n2-viscosity of known liquid
Applications
1.Quality control purpose in
formulation & evaluation of
dispersed system
2.Evolution of liquid paraffin,
dextran40 injection

BasedonHoepplervicometer
Glasstubeplacedvertically
Constanttemperaturejacketforwater
circulationisarrangedaroundglasstube
Steel/glassballdropped&allowedtoreach
equilibriumwithtempofouterjacket
Inverttubewithjacket
Notetimetakenfortheballtofallbetweentwo
marks
Newtonianliquids
n1=t(Sb-Sf)B
Sb&Sf-specificgravityofball&fluid
0.5-200000poise
NLT30sec

Rotationalviscometer
Bobrotatory
No.ofrpm&torquerepresentsrateof
shear&shearingstressrsp.
Pseudoplasticsystem-
n=KvW/v
W-shearingstress
V-rpm
n-viscosity
Kv-contant

Plug flow
Bob exert pressure on inner wall of cup
Use largest bob to reduce gap
Increase speed of bob
Cone & Plate
Plug flow can not be observed
0.1-0.2 ml sample
Cleaning & filling easy
Less time required

Newtonian flow
n= C T/v
T= torque
V= speed
Plastic flow
U= Cf T-Tf/v

Brookfield viscometer

Types of Flow
Newtonian(NewtonianLawofFlow)
LiquidobeysNewton’slaw
F=nG
Shearstress&rateofshearintheform
curvecalledrheogramorconsistencycurve
Rheogrampassesthroughorigin&slope
givesthecoefficientofviscosity
InaNewtonianfluid,therelationbetweenthe
shearstressandthestrainrateislinear
Eg:water,glycerin,solutionofsyrup

Non-Newtonian
DoesnotfallowsNewton'slaw
Manypolymersolutionsandketchup,
starchsuspensions,paint,bloodand
shampoo.
Plastic
Pseudoplastic
Dilatant

Plastic
Curvedoesn'tpassthroughtheorigin.
Substanceinitiallybehaveslikeanelasticbody&
failstoflowwhenlessamountofstressisapplied.
Furtherincreaseinshearstressleadstononlinear
portiongetlinear
LinearportionextrapolatedintersectstheXaxisat
thepointcalledyieldpoint
flocculatedparticlesinsuspensions,butter,pastes,
gel
Yieldvaluerepresentsstressrequiredtobreakthe
interparticlecontactsoparticlebehaveindividually.
Oncestressisincreaseswithrateofshear

MaterialshowsplasticflowcalledBingham
bodies
Slope=mobility&reciprocaliscalled
plasticflow
U=F-f/G
F=hearstress
F=yieldvalue
G=rateofshear

PseudoplasticFlow
Curvebeginsatorigin(nearlyzeroatlowershear
stress)
Stressincreasewithrateofshearbutitisnonlinear
Polymersinwatersuchastragacanth,sodium
alginate,methylcellulose

DilatantFlow
Enhancesresistanceofflowwithincreasingrateof
shear
Volumeincreases,socalleddilatant
Shearthickening
Stressisremovedsystemreturnstoinitialstate
Suspensioncontaininghigh-concentrationofsmall
deflocculatedparticles
Suspensionofstarch
Zincoxide30%inwater

Atrest,moleculesarecloselypacked,
minimumvoidspace,amountofvehicleis
sufficienttofillvoidspace.
Whenshearstressisappliedparticlesare
openorexpands/dilatants
Increasesvoidspace,insufficientfluid,
particlenotwetted,slowspastelike
consistancy
FN=nG
Nishigherthan1

THIXOTROPY

Hysteresisloop
Up&downcurvesofthixotropicsystem
Regionbetweencurvesfortheincreasing&
decreasingshearrateramps
TheareaofHysteresisisameasurementof
thixotropicbreakdown.
Shearingrateofplasticthixotropicmaterialis
increasedatconstantratefrompointa–bthen
decreasedatsamerateatpointe.
ConnectivitygivesformationofHysteresisloopabe
Staringfrompointaifsampleonapplicationof
sheartakentopointb&ifatthispointshearrateis
heldconstantforsometime,t1secthendepending
uponextentoftimeofshear

Rate of shear & degree of sample structure it
shows reduction in shearing stress & hence
consistency of material.
Further decrease in shear rate results in
formation of Hysteresis loop abce
If sample held at constant rate of shear at
point (b) for some extended time t2 sec, loop
abcde is observered
So, rheogram of thixotropic material is not
unique but it depends upon sample &
material

Rheological property depends on rate at
which shear is increased or decreased &
length of time for which material is subjected
to any rate of shear.
Procaine penicillin suspension in water

Bulges
Swell in presence of water gives bulges
Conc aq solution of bentonite gel
(magma) 10-15 % gives hysteresis loop
with bulge in up curve
Due to formation of some specific str of
crystalline plates of bentonite which
leads to swelling of magma.
Swelled 3D str responsible for bulge in
up curve

Spurs
Highlystructuredmaterialsuchas
parenteralsolution(Procainepenicillin
gelforinjectionin2%cmcsolution),
buldgedcurvedevelopslikespur
Duetosharpstructuralbreakdown
whentakenintosyringeneedle
Complexstrexhibitshighyieldvalue
calledspurvalueinupcurve
Thisvaluerepresentssharppointof
structuralbreakdownatlowshearrate

Negativethixotropy
NegativethixotropyKnownasanti
thixotropywhichrepresentstime
dependantincreasingapparentviscosity
ratherthandecreaseonapplicationof
shearingstress.
Thisiscalledsoltogel
Atrestingconsistsoflargenumberof
individualparticlesandsmallsize
floccules
Whenthesystemisshearedthe
moleculesofdispersedphasecolloids
Increaseincollisionfrequencyofthese
moleculescauseIncreaseininterpartical

Atequilibriumstateverysmallnumberof
largeflocculesexiststhereforesystem
exhibitssolform.
Againwhensystemisatrestlargesize
flocculesbreakupandgraduallyreturns
tooriginalstateofsmallsizefloccules
andindividualparticles.
Itcontains1-10%ofsolid,dilatant
systemaredeflocculatedcontaining
morethan50%byvolumeofsolid.

Observedinmagnesiummagma
Itwasobservedthatwhenmagnesium
magmawasshearedwithalternatively
firstbyincreasingthendecreasing
shearrates,itcontinuouslyget
thickened.
Withcontinuationofcycletheextent
ofthickeningreducesgraduallythen
reachestoequilibriumState.

Rheopexy
Soltransformstoagelmorereadily
afterithasbeendeformedbygentle
shakingandregularrollingandrocking
movements.
Rheopexyisanalogoustorheopexyand
fluidsbehaviorcalledrheopectic
Itprovidesamildturbulencewhichhelps
thedispersedparticlestoget
themselvesinrandomalignmenttore-
establishgelstructure.
Usedinplasticandpseudoplastic
system
Magnesium magma

Measurementsofthixotropy
Thixotropicmeasurementsofplastic
andpseudoplasticsystemcanbe
achievedbyuseofhysteresisloop
formedduringthixotropicbreakdown
ofthesystem.
Degreeofthixotropyobtainedby..
1.Structuralbreakdownwithtimeat
constantrateofshear
2.Structuralbreakdownwithtimeat
twodifferentratesofshear

Importance
Desirablepropertyinemulsion,
suspension,cream,ointment,pastes,
parenteralsuspensionfordepottherapy.
Onstoragegelonshakingsol.sopoured
outeasily.
Helpfulinimprovingstabilityof
thixotropicpharmaceuticalsystem.
Greaterthixotropyhigherphysical
stability.
Speardabilityofcreamandointmentcan
becorrectedwiththixotropicproperty

Pouringoflotionsfromcontainer,shape
ofcreamincontainer,extrusionofpaste
fromtubeshowshighthixotropic
property.
T agents: bentonite,kaolin
microcrystallinecelluloseforviscosity
whichobstructsedimentationand
creaming.
Degreeofthixotropymaychangeover
periodtime.Soplasticviscosity,spur
valueyieldvalueareimportant
parameters.

Deformation of solid
Deformation change in size and shape of
object changing dimensions
Stress
Force per unit area that applies on object to
deform it unit Nm
-2
or Pa
Types
1. Direct stress
It is produced under direct loading conditions
1Tensile stress
Tensile force acting per unit area of the body
Extension or elongate dimensions of the body
Ratio of change in length to original length

2.Compressivestress
Compressiveforceactingperunitareaofthe
body
Forcesappliedisoppositetoeachother
Compressthedimensions
3.Shearstress
Shearforceactingperunitareaofthebody
Duetothisbodydevelopssomeresistive
forcewhichisparalleltoeachsurfacebut
oppositetodirectionofforceapplied
2.Indirectstress
Duetotorqueproducedinthebody
3.combinedstress
Combinationofabovetwotypesofstress

Strain
Measure the amount of deformation
If bar has original length L and load is
applied on bar length of barwill change
∆L
Strain =∆L/L
Types
1. Tensile strain
Ratio of increase in length to original
length of bar
2. Compressive strain: Ratio. Of
decrease in length to original length of
bar
3. Shear strain: Produced by shear force

Elasticmodulus
Ratioofstress/strain
Theconstantofproportionalitydependson
theMaterialbeingdeformedandnatureof
thedeformation.
Determineamountofforcerequiredperunit
deformation.

Hooke'sLaw
Inanelasticmemberstressisdirectly
proportionaltostrainwithinelasticlimit
N/m2
Young'smodulususedtoidentifyhowmuch
theMaterialiselastic
ElasticlimitmaximumstressthatNanbe
appliedtothesubstancebeforeitdeforms
permanently.
Initialstrainstraincurveisstraightline.
Stressincreases,curveisnolongerstraight.

Stress exceeds the elastic limit, object
is permanently distorted and does not
return to its original shape after stress
is removed.
Hence shape of the object is
permanently changed.
As stress increases even further
material ultimately breaks

Heckel equationFrom tablet dosage form we can
understand deformation behaviour of individual
components
Useful method for estimating the volume reduction under
the compression pressure in pharmacy.
Plot can be affected by time of compression, degree of
lubrication and size of die.
In [1/1D]=KP +A
Kuentz and Leuenberger modified Rule which explain
transition between state of powder to state of tablet
Hersey and Rees , York and Pilpel differentiate powders
into 3 types
Types A
Material comparatively soft, readily undergoes plastic
deformation. Sodium chloride
Linear relationship observed with plots remaining parellel
at the applied pressure increases

TypeB
Initialcurveregionfollowedbyastraightline.
Hardermaterialhavinghigheryieldpressure
Lactose
TypesC
Initialsteeplinearregionwhichbecome
superimposedandflattenedoutasappliedpressure
isincreased
Significance
Usedtocharacterizesinglematerialandalsofor
powder
TworegionsofplotItypeBmaterialrepresentsthe
initialrepackingstageandsubsequentdeformation
process
Crushingstrengthoftabletsiscorrelatedwithvalues
ofKofplot
Tags