Unit-III Non-Parametric Tests BSRM.pdf

5,372 views 31 slides Oct 19, 2022
Slide 1
Slide 1 of 31
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31

About This Presentation

Unit-III Non Parametric tests: Wilcoxon Rank Sum Test, Mann-Whitney U test, Kruskal-Wallis
test, Friedman Test. BP801T. BIOSTATISITCS AND RESEARCH METHODOLOGY (Theory)


Slide Content

Unit-III
Non-Parametric tests
✓Wilcoxon Rank Sum Test
✓Mann-Whitney U test
✓Kruskal-Wallis test
✓Friedman Test
Ravinandan A P 1
Ravinandan A P
Assistant Professor,
Department ofPharmacyPractice,
Sree Siddaganga College of Pharmacy
In association with
Siddaganga Hospital,
Tumkur-02

Level of significance
(Non-parametric data)-
1.
Wilcoxan’s signed rank test
2.
Wilcoxanrank sum test
3.
Mann Whitney U test
4.
Kruskal -Wallis test (one way ANOVA)
5.Friedman Test
2Ravinandan A P

Ravinandan A P 3

Why non-parametric methods?
••Certainstatisticaltestslikethet-testrequireassumptionsofthe
distributionofthestudyvariablesinthepopulation
•–t-testrequirestheunderlyingassumptionofanormaldistribution
•–Suchtestsareknownasparametrictests
••Therearesituationswhenitisobviousthatthestudyvariable
cannotbenormallydistributed,e.g.,
#ofhospitaladmissionsperpersonperyear
#ofsurgicaloperationsperperson
4Ravinandan A P

•Thestudyvariablegeneratesdatawhicharescores&soshouldbe
treatedasacategoricalvariablewithdatameasuredonordinalscale
–E.g.,scoringsystemfordegreeofskinreactiontoachemicalagent:
•1:intenseskinreaction
•2:lessintensereaction
•3:Noreaction
•Forsuchtypeofdata,theassumptionrequiredforparametrictestsseeminvalid=>non-
parametricmethodsshouldbeused
••Akadistribution-freetests,becausetheymakenoassumptionabouttheunderlying
distributionofthestudyvariables
5Ravinandan A P

Ravinandan A P 6

Advantages of Non-Parametric tests
1.Distributionfree&hencenoassumptionaboutthepopulationis
required.
2.Whensamplesizeissmallitissimpleto&understand&easyto
apply.
3.Itislesstimeconsuming&forsignificantresultnofurtherworkis
necessary
4.Applicabletoalltypeofdata
5.Helpfultoresearcherscollectingpilotstudyorthemedical
researchersworkingwithararedisease
6.Makefewerassumptionsthanclassicalprocedures.
7Ravinandan A P

Ravinandan A P 8

Ravinandan A P 9

Ravinandan A P 10

Wilcoxontest.
•Usedtotestwhetherornotthedifferencebetweentwopaired
populationmediansiszero.
•Thenullassumptionisthatitis,i.e.thetwomediansareequal.
•Variablescanbeeithermetricorordinal.
•Distributionsanyshape,butthedifferencesshouldbe
distributedsymmetrically.
•Thisisthenon-parametricequivalentofthematched-pairst
test.
11Ravinandan A P

WILCOXON SIGNED RANK TEST
•For the comparison of two treatments in a paired design, a more
sensitive non-parametric test is Wilcoxon signed rank test
•Ex: paired data obtained from bioavailability experiment: Time to
Peak concentration
12Ravinandan A P

Ravinandan A P 13

WILCOXON SIGNED RANK TEST
Subject Time to Peak Difference
A B B-A
1 2.5 3.5 1
2 3 4 1
3 1.25 2.5 1.25
4 1.75 2 0.25
5 3.5 3.5 0
6 2.5 4 1.5
7 1.75 1.5 -0.25
8 2.25 2.5 0.25
9 3.5 3 -0.5
10 2.5 3 0.5
11 2 3.5 1.5
12 3.5 4 0.5 14Ravinandan A P

Ranks with +ve Sign Ranks with -Ve sign
2 2
2 5
5
5
7.5
7.5
9
10.5
10.5
59 7
If the Smaller Rank sum is Less than or Equal to the
table value , the comparative groups are different at the
Indicated level of significance
At 5% and 1%
For N= 11 table Value = 13 at 5% - Level
Cal value < Table Value
Difference is Significant Ravinandan A P

Ravinandan A P 16

WILCOXON RANK SUM TEST
•Thewilcoxonsignedranktestfornon-parametrictestforthe
comparisonofpairedsample
•Iftwotreatmentsaretocompared,wheretheobservationshave
beenobtainedfromtwoindependentgroups,thenon-parametric
wilcoxonranksumtestorMann–whitneyU-testisalternative
forPooledt-test
17Ravinandan A P

Wilcoxon rank sum test
(aka Mann-Whitney U test)
•Non-parametric equivalent of parametric t-test for 2
independent samples (unpaired t-test)
•Suppose the waiting time (in days) for cataract surgery at
two eye clinics are as follows:
Patients at clinic A (nA=18) 1, 5, 15, 7, 42, 13, 8, 35, 21,
12, 12, 22, 3, 14, 4, 2, 7, 2
Patients at clinic B (nB=15) 4, 9, 6, 2, 10, 11, 16, 18, 6,
0, 9, 11, 7, 11, 10
18

Ravinandan A P 19

Amount Amount Rank(old) Rank(New)
DissolvedDissolved
53 58 3 11
61 55 14 5.5
57 67 9 21
50 62 1 15.5
63 55 17 5.5
62 64 15.5 18.5
54 66 4 20
59 59 2 12.5
59 68 12.5 12
57 57 9 9
64 69 18.5 23
56 7
105.5 160.5
Z = (| T - N1(N1+N2+1)/2 |) / (sqrt(N1N2(N1+N2+1)/12)
T= Sum of the ranks for the smaller sample size
N1 = Size of sample1 11
N2 = Size of sample2 12 20Ravinandan A P

Mann-Whitney test
•Usedtotestwhetherornotthedifferencebetweentwoindependent
populationmediansiszero.
•Thenullassumptionisthatitis,i.e.thetwomediansareequal.
•Variablescanbeeithermetricorordinal.
•Norequirementastoshapeofthedistributions,buttheyneedtobe
similar.
•Thisisthenon-parametricequivalentofthetwo-samplettest.
21Ravinandan A P

Kruskal-Wallis test.
•Usedtotestwhetherthemediansofthreeofmore
independentgroupsarethesame.
•Variablescanbeeitherordinalormetric.Distributionsany
shape,butallneedtobesimilar.
•Thisnon-parametrictestisanextensionoftheMann-
Whitneytest.
22Ravinandan A P

Friedman Test
•TheFriedmantestisanon-parametricstatistical
testdevelopedbyMiltonFriedman.
•Similartotheparametricrepeated
measuresANOVA,itisusedtodetectdifferences
intreatmentsacrossmultipletestattempts.
•Theprocedureinvolvesrankingeachrow
(orblock)together,thenconsideringthevaluesof
ranksbycolumns.
•Applicabletocompleteblockdesigns.
Ravinandan A P 23

Friedman Test
•The Friedman test is a non-parametric alternative to ANOVA
with repeated measures.
•No normality assumption is required.
•The test is similar to the Kruskal-Wallis Test.
•We will use the terminology from Kruskal-Wallis Test and Two
Factor ANOVA without Replication.
Ravinandan A P 24

Ravinandan A P 25

Ravinandan A P 26

Ravinandan A P 27

Non-parametric vs. parametric methods
Advantages:
1.Donotrequirestheassumptionneededforparametrictests.
Thereforeusefulfordatawhicharemarkedlyskewed
2.Goodfordatageneratedfromsmallsamples.Forsuchsmall
samples,parametrictestsarenotrecommendedunlessthenature
ofpopulationdistributionisknown
3.Goodforobservationswhicharescores,i.e.measuredon
ordinalscale
4.Quickandeasytoapplyandyetcomparequitewellwith
parametricmethods
28Ravinandan A P

Non-parametric vs. parametric methods
•Disadvantages
1.Notsuitableforestimationpurposesasconfidence
intervalsaredifficulttoconstruct
2.Noequivalentmethodsformorecomplicatedparametric
methodsliketestingforinteractionsinANOVAmodels
3.Notquiteasstatisticallyefficientasparametricmethods
iftheassumptionsneededfortheparametricmethods
havebeenmet
29Ravinandan A P

30Ravinandan A P

THANK YOU
31Ravinandan A P