GunasundariChandrase
47 views
28 slides
Oct 17, 2024
Slide 1 of 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
About This Presentation
multivariate analysis
Size: 1.2 MB
Language: en
Added: Oct 17, 2024
Slides: 28 pages
Slide Content
MULTIVARIATE
ANALYSIS
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
1
UNIT - V
Random Vectors and Matrices - Mean
vectors and Covariance matrices –
Multivariate Normal density and its
properties - Principal components
Population principal components -
Principal components from standardized
variables.
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
2
SYLLABUS
A random vector is a vector whose elements are random variables.
Similarly, a random matrix whose elements are random variables.
Random Vectors & Matrices
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
3
Expected Value of a Random Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
4
The expected value of a random matrix (or vector) is the matrix
(vector) consisting of the expected values of each of the elements.
Mean Vectors
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
5
Covariance Matrices
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
6
Covariance Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
7
⚫Covariance matrix captures the variance and linear
correlation in multivariate/ multidimensional data.
⚫If data is an n x p matrix, the Covariance Matrix is a p x p
square matrix
⚫.Think of n as the number of data instances (rows) and p
the number of attributes (columns).
Covariance
⚫The covariance of the return is
⚫It is always true that
⚫i.
⚫ii.
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
8
Mean Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
9
Covariance Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
10
Covariance Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
11
Example
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
12
Find the mean & covariance matrix for the 2 r.v. X
1
& X
2
for the given
joint probability function P
12
(x
1
,x
2
) is
Soln:
Marginal Distribution of X
X
1
-1 0 1
P(X
1
) 0.3 0.3 0.4
X
2
0 1
P(X
2
) 0.8 0.2
Marginal Distribution of Y
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
13
Example
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
14
Example
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
15
Example
Sample Covariance
⚫Example. The table provides the returns on three assets
over three years
⚫Mean returns
Year 1Year 2Year 3
A 10 12 11
B 10 14 12
C 12 6 9
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
16
Sample Covariance
⚫Covariance between A and B is
⚫Covariance between A and C is
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
17
Variance-Covariance Matrix
⚫Covariance between B and C is
⚫The matrix is symmetric
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
18
Variance-Covariance Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
19
⚫For the example the variance-covariance matrix is
Correlation Coefficient
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
20
Let the population correlation coefficient matrix be the p x p symmetric
matrix
Standard Deviation
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
21
Let the p x p standard deviation be
Then it is verified that
Example
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
22
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
23
Linear Combination of Random
Variables
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
24
Prove that the linear combination cʹX = aX
1
+ bX
2
has
Mean = E(cʹX) = cʹμ
Var = Var(cʹX) = cʹΣc
Where μ = E(X) & Σ = cov(X)
Soln:
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
25
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
26
The previous result can be extended to a linear combination of
p random varaibles:
The linear combination cʹX = c
1
X
1
+ c
2
X
2
+… + c
p
X
p
has
Mean = E(cʹX) = cʹμ
Var = Var(cʹX) = cʹΣc
In general, consider for q linear combinations Z=CX of the p
random varaibles X
1
, X
2
, …, X
p
μ
Z
= E(Z) = E(CX) = C μ
X
Σ
Z
= cov(Z) = cov(CX) = CΣ
X
Cʹ
Example
IFETCE/H&S-
II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED
PROBABILITY AND STATISTICS
/UNIT–V/PPT/VER1.1
27
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
28