UNIT_-V_MA(1).ppt (1).pdf multivariate analysis

GunasundariChandrase 47 views 28 slides Oct 17, 2024
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

multivariate analysis


Slide Content

MULTIVARIATE
ANALYSIS
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
1
UNIT - V

Random Vectors and Matrices - Mean
vectors and Covariance matrices –
Multivariate Normal density and its
properties - Principal components
Population principal components -
Principal components from standardized
variables.
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
2
SYLLABUS

A random vector is a vector whose elements are random variables.
Similarly, a random matrix whose elements are random variables.
Random Vectors & Matrices
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
3

Expected Value of a Random Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
4
The expected value of a random matrix (or vector) is the matrix
(vector) consisting of the expected values of each of the elements.

Mean Vectors
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
5

Covariance Matrices
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
6

Covariance Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
7
⚫Covariance matrix captures the variance and linear
correlation in multivariate/ multidimensional data.
⚫If data is an n x p matrix, the Covariance Matrix is a p x p
square matrix
⚫.Think of n as the number of data instances (rows) and p
the number of attributes (columns).

Covariance
⚫The covariance of the return is



⚫It is always true that

⚫i.

⚫ii.

IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
8

Mean Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
9

Covariance Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
10

Covariance Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
11

Example
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
12
Find the mean & covariance matrix for the 2 r.v. X
1
& X
2
for the given
joint probability function P
12
(x
1
,x
2
) is






Soln:
Marginal Distribution of X
X
1
-1 0 1
P(X
1
) 0.3 0.3 0.4

X
2
0 1
P(X
2
) 0.8 0.2
Marginal Distribution of Y
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
13
Example

IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
14
Example

IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
15
Example

Sample Covariance
⚫Example. The table provides the returns on three assets
over three years






⚫Mean returns

Year 1Year 2Year 3
A 10 12 11
B 10 14 12
C 12 6 9
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
16

Sample Covariance
⚫Covariance between A and B is



⚫Covariance between A and C is



IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
17

Variance-Covariance Matrix

⚫Covariance between B and C is



⚫The matrix is symmetric




IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
18

Variance-Covariance Matrix
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
19
⚫For the example the variance-covariance matrix is

Correlation Coefficient
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
20
Let the population correlation coefficient matrix be the p x p symmetric
matrix

Standard Deviation
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
21
Let the p x p standard deviation be
Then it is verified that

Example
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
22

IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
23

Linear Combination of Random
Variables
IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
24
Prove that the linear combination cʹX = aX
1
+ bX
2
has
Mean = E(cʹX) = cʹμ
Var = Var(cʹX) = cʹΣc
Where μ = E(X) & Σ = cov(X)
Soln:

IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
25

IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
26
The previous result can be extended to a linear combination of
p random varaibles:
The linear combination cʹX = c
1
X
1
+ c
2
X
2
+… + c
p
X
p
has
Mean = E(cʹX) = cʹμ
Var = Var(cʹX) = cʹΣc


In general, consider for q linear combinations Z=CX of the p
random varaibles X
1
, X
2
, …, X
p


μ
Z
= E(Z) = E(CX) = C μ
X

Σ
Z
= cov(Z) = cov(CX) = CΣ
X

Example
IFETCE/H&S-
II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED
PROBABILITY AND STATISTICS
/UNIT–V/PPT/VER1.1
27

IFETCE/H&S- II/MATHS/MATHIVADHANA/IYEAR/
M.E.(CSE)/I-SEM/MA7155/APPLIED PROBABILITY AND
STATISTICS /UNIT–V/PPT/VER1.1
28
Tags