Problem 1.3
Does any analytic contractive operator function on
the polydisk have a dissipative scattering nD
realization?
Dmitry S. Kalyuzhniy-Verbovetzky
Department of Mathematics
The Weizmann Institute of Science
Rehovot 76100
Israel
[email protected]
1 DESCRIPTION OF THE PROBLEM
LetX,U,Ybe finite-dimensional or infinite-dimensional separable Hilbert
spaces. Consider nD linear systems of the form
α:
x(t)=
n
k=1
(Akx(t−e k)+B ku(t−e k)),
y(t)=
n
k=1
(Ckx(t−e k)+D ku(t−e k)),
(t∈Z
n
:
n
k=1
tk>0)
(1)
wheree
k:= (0,...,0,1,0,...,0)∈Z
n
(here unit is on thek-th place), for all
t∈Z
n
such that
n
k=1
tk≥0 one hasx(t)∈X(the state space),u(t)∈U
(the input space),y(t)∈Y(the output space),A
k,Bk,Ck,Dkare bounded
linear operators, i.e.,A
k∈L(X),B k∈L(U,X),C k∈L(X,Y),D k∈L(U,Y)
for allk∈{1,...,n}. We use the notationα=(n;A,B,C,D;X,U,Y)for
such a system (hereA:= (A
1,...,An), etc.). ForT∈L(H 1,H2)
n
and
z∈C
n
denotezT:=
n
k=1
zkTk. Then thetransfer functionofαis
θ
α(z)=zD+zC(I X−zA)
−1
zB.
Clearly,θ
αis analytic in some neighbourhood ofz=0inC
n
.Let
G
k:=
ffi
A
kBk
CkDk
Γ
∈L(X⊕U,X⊕Y),k =1,...,n.
We callα=(n;A,B,C,D;X,U,Y)adissipative scattering nD system(see
[5, 6]) if for anyζ∈T
n
(the unit torus)ζGis a contractive operator, i.e.,