Valence Bond Theory

Aslamchemist 13,805 views 67 slides Dec 13, 2020
Slide 1
Slide 1 of 67
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67

About This Presentation

Valence Bond Theory


Slide Content

Valence Bond Theory
(VBT)

Natureofmetal-ligandbondingincomplexcompounds
•WehavealreadysaidthatWernerwasthefirsttoexplainthenature
ofbondingincomplexcompounds.
•However,withtheadvancementoftheoriesofvalence,modem
theorieshavebeenproposedtoexplainthenatureofmetal-ligand
bondingincomplexes.
•Thesetheoriescanalsoexplainthe:
–Colour
–Geometry
–Magneticproperties
ofthecomplexcompounds.
•Thesemodemtheoriesare:
–ValenceBondTheory,VBT(duetoL.PaulingandJL.Slater,
1935)
–CrystalFieldTheory,CFT(duetoH.Brethe,1929andVanVleck,
1932)
–LigandFieldTheory,LFTorMolecularOrbitalTheory,MOT(due
toIVanVleck,1935).
•Hereweshalldiscussonlyvalencebondtheoryandcrystalfieldtheory.

ValenceBondTheory,VBT
•ThistheoryismainlyduetoPauling.
•Itdealswiththeelectronicstructureofthecentralmetalioninits
groundstate,kindofbonding,geometryandmagneticpropertiesof
thecomplexes.
Assumptionsofvalencebondtheory
•Thistheoryisbasedonthefollowingassumptions:
1.Thecentralmetalatomorion(asthecasemaybe)makesavailablea
numberofemptys,panddatomicorbitalsequaltoitscoordination
number.
•Thesevacantorbitalshybridisetogethertoformhybridorbitals
whicharethesameinnumberastheatomicorbitalshybridising
together.
•Thesehybridorbitalsarevacant,equivalentinenergyandhave
definitegeometry.
•Importanttypesofhybridisationoccuringinthefirstrowtransition
metal(3dmetals)complexesandthegeometryofthecomplexesare
giveninfollowingtable.

2.Theligandshaveatleastoneσ-orbitalcontainingalonepairof
electrons.
3.Vacanthybridorbitalsofthemetalatomorionoverlapwiththe
filled(containinglonepairofelectrons)σ-orbitalsoftheligandsto
formligand→metalσ-bond(representedas
•Thisbondwhichisgenerallyknownascoordinatebondisaspecial
typeofcovalentbondandshowsthecharacteristicsofboththe
overlappingorbitals.
•However,italsopossessesaconsiderableamountofpolarity
becauseofthemodeofitsformation.
4.Thenon-bondingelectronsofthemetalatomorionarethen
rearrangedinthemetalorbitals(viz.pured,sorporbitalsasthe
casemaybe)whichdonotparticipateinformingthehybridorbitals.
•Therearrangementofnon-bondingelectronstakesplaceaccording
toHund'srule.

Geometryof6-coordinatedcomplexions
•Examplesof6-coordinatedcomplexionsformedbysometransition
metalsaregiveninfollowingtable.
•Inallthesecomplexionsthecoordinationnumberofthecentral
metalatomorionissixandhencethesecomplexionshave
octahedralgeometry.
•Thisoctahedralgeometryarisesduetod
2
sp
3
orsp
3
d
2
hybridisation
ofthecentralmetalatomorion.
•Whattypeofhybridisation(i.e.,whethersp
3
d
2
ord
2
sp
3
)willoccur
dependsonthenumberofunpairedorpairedelectronspresentin
thecomplexion.
•d
2
sp
3
orsp
3
d
2
hybridisationisalsocalledoctahedralhybridization.
•Octahedralcomplexesinwhichthecentralatomisd
2
sp
3
hybridised
arecalledinner-orbitaloctahedralcomplexeswhiletheoctahedral
complexesinwhichthecentralatomissp
3
d
2
hybridisedarecalled
outer-orbitaloctahedralcomplexes.
•Nowletusseehowd
2
sp
3
/sp
3
d
2
hybridisationtakesplacein
octahedralcomplexes.

d
2
sp
3
Hybridizationininnerorbitaloctahedralcomplexes
•Thistypeofhybridisationtakesplaceinthoseoctahedral
complexeswhichcontainstrongligands.
•Onthebasisoftheorientationofthelobesofd-orbitalsinspace,
theseorbitalshavebeenclassifiedintotwosetsviz.t
2g
ord
ε
ande
g
ord
r
.
•t
2g
setconsistsofd
xy
,d
yz
,andd
zx
orbitalswhilee
g
sethasd
z
2
and
d
x
2
-
y
2
orbitals.
•Intheformationofsixd
2
sp
3
hybridorbitals,two(n-1)d-orbitals
ofe
g
set[i.e.,(n-1)d
z
2
and(n-1)d
x
2
-
y
2
orbitals],onensandthree
np(np
x
,np
y
andnp
z
)orbitalscombinetogetherandformsixd
2
sp
3
hybridorbitals.
•Thusweseethatthetwod-orbitalsusedind
2
sp
3
hybridisationarefrom
penultimateshell[i.e.(n-1)
th
shell]whilesandthreep-orbitalsarefrom
ultimateshell(i.e.,nthshell).
•Thisdiscussionshowsthatincaseofoctahedralcomplexionsof3d
transitionserieselements,twod-orbitalsusedind
2
sp
3
hybridisationare
3d
z
2
and3d
x
2
-
y
2
orbitals(e
g
setoforbitals)whiles-andp-orbitalsare4s
and4porbitals.

•Thusd
2
sp
3
hybridisationtakingplaceinsuchcomplexescanbe
representedas3d
x
2
-y
2
.3d
z
2
.4s.4p
x
.4p
y
.4p
z
(d
2
sp
3
).
•Sincetwod-orbitalsusedind
2
sp
3
hybridisationbelongtoinner
shell[i.e.,(n-1)
th
shell],theoctahedralcomplexcompounds
resultedfromd
2
sp
3
hybridisationarecalledinnerorbitaloctahedral
complexes.
•Sincethesecomplexeshavecomparativelylessernumberof
unpairedelectronsthantheouter-orbitaloctahedralcomplexes(see
lateron),thesecomplexesarealsocalledlowspinorspinpaired
octahedralcomplexes.
•Itisduetothepresenceofstrongligandsininner-orbitaloctahedral
complexesof3dtransitionseriesthattheelectronspresentin3d
z
2
and3d
x
2
-y
2
orbitals(e
g
set)areforcedtooccupy3d
xy
,3d
yz
,and3d
xz
orbitals(t
2g
set)andthus3dorbitalsofe
g
setbecomevacantand
hencecanbeusedin3d
x
2
-y
2
.3d
z
2
.4s.4p
x
.4p
y
.4p
z
(d
2
sp
3
)
hybridisation.
•Nowletusdiscussthestructureofsomeoctahedralcomplexionsof
3dtransitionserieselementswhichresultfromd
2
sp
3
hybridisation.

1.Ferricyanideion,[Fe(CN)
6
]
3-
[Alsocalledhexacynoferrate
(III)ion]
•InthisionthecoordinationnumberofFeissixandhencethe
givencomplexionisoctahedralinshape.
•Inthision,FeispresentasFe
3+
ionwhosevalence-shell
configurationis3d
5
ort
3
2g
e
2
g
(Fe=3d
6
4s
2
4p
0
,Fe
3+
=3d
5
=
t
3
2g
e
2
g
)asshowninfollowingfigure.
•AccordingtoHund'srule,eachofthefiveelectronsin3d
orbitalsisunpairedinfreeFe
3+
ion(uncomplexedion)and
hencethenumberofunpairedelectrons(n)isequalto5.
•However,magneticstudyof[Fe(CN)
6
]
3-
ionhasshownthat
thisionhasoneunpairedelectron(n=1)andhenceis
paramagnetic.
•Thus,intheformationofthision,twoelectronsofe
g
setof3d
orbitals(i.e.,3d
z
2
and3d
x
2
-y
2
orbitals)pairupwiththethree
electronsoft
2g
setoforbitals(i.e.,3d
xy
,3d
yz
and3d
zx
orbitals).

•Thisresultsinthate
g
setoforbitalsbecomesvacantandis
usedind
2
sp
3
hybridisation.
•Thisalsoresultsinthatthevalence-shellconfigurationofFe
3+
iongetschangedfromt
3
2g
e
2
g
tot
5
2g
e
0
g
andthusthenumberof
unpairedelectronsin3dorbitalnowbecomesequalto1.
•Now3d
x
2
-y
2
,3d
z
2
(e
g
set),4sandthree4p(4p
x
,4p
y
and4p
z
orbitalscombinetogetherandgiverisetotheformationofsix
3d
z
2
.3d
x
2
-y
2
.4s.4p
x
.4p
y
.4p
z
hybridorbitals(d
2
sp
3
hybridisation).
•Eachofthesehybridorbitalsisvacant.
•EachofthesixCN
-
ions(ligands)donatesitslonepairof
electronstod
2
sp
3
hybridorbitalsandsix coordinate
bondsareestablished.
•Theabovediscussionshowsthat[Fe(CN)
6
]
3-
ionhasoneunpaired
electronandhenceisparamagnetic.
•Itisaninnerorbitaloctahedralcomplexion,sinceitisformedby
d
2
sp
3
hybridisation.

2.Ferrocyanideion,[Fe(CN)
6
]
4-
[Alsocalledhexacyanoferrate(II)
ion]
•Inthision,sincethecoordinationnumberofFeissix,thegiven
complexionhasoctahedralgeometry.
•Inthision,FeispresentasFe
2+
ionwhosevalence-shell
configurationis3d
6
4s
0
4p
0
ort
4
2g
e
2
g
4s
0
4p
0
whichshowsthatFe
2+
ionhas4unpairedelectrons.
•Magneticstudieshave,however,shownthatthegivencomplexion
isdiamagneticandhenceithasnounpairedelectrons(n=0).
•Henceinordertogetalltheelectronsinthepairedstate,two
electronsofe
g
orbitalsaresenttot
2g
orbitalssothatnbecomes
equaltozero.
•SinceCN
-
ions(ligands)arestrongligands,theyarecapableof
forcingthetwoelectronsofe
g
orbitalstooccupyt
2g
orbitalsandthus
makealltheelectronspaired.
•Nowfortheformationof[Fe(CN)
6
]
4-
ion,two3dorbitalsofe
g
set,
4sorbital(oneorbital)andthree4porbitals(allthesesixorbitalsare
vacantorbitals)undergod
2
sp
3
hybridisation(seefollowingfigure).

•Itisduetod
2
sp
3
hybridisationthat[Fe(CN)
6
]
4-
ionisaninnerorbital
octahedralcomplexion.
•TheelectronpairdonatedbyCN
-
ion(ligand)isaccommodatedineachof
thesixd
2
sp
3
hybridorbitalsasshowninfollowingfigure.

3.Pentacyanonitrosylferrate(II)ion,[Fe
2+
(CN)
5
(NO
+
)]
2-
(Also
callednitroprussideion)
•SincethecoordinationnumberofFeissix,thegivenionhas
octahedralgeometry.
•Pauling(1931)andSidgwick(1935)havesuggestedthatNOis
presentasNO
+
ion(nitrosylion)whichisatwo-electrondonor.
•NO
+
ionisobtainedwhenNOmolecule(5+6=11electrons)
losesitsunpairedelectronresidinginitsπ*
y
molecularorbital
[MolecularorbitalconfigurationofNOmoleculeis(σ
b
2s
)
2
(σ*
2s
)
2

b
x
)
2

b
y
)
2

b
z
)
2
(π*
y
)
1
.Thusmolecularorbitalconfigurationof
NO
+
ion(5+6-1=10electrons)is(σ
b
2s
)
2
(σ*
2s
)
2

b
x
)
2

b
y
)
2

b
z
)
2
(π*
y
)
0
.
•ThepresenceofNO
+
ioninthegivencomplexionindicatesthat
FeispresentasFe
2+
ion(Fe
2+
=3d
6
4s
0
=t
4
2g
e
2
g
4s
0
havingn=
0).
•Magneticmomentvalueof[Fe(CN)
5
(NO)]
2-
ionhasshownthat
thegivenionhasnounpairedelectron(n=0)andhenceis
diamagnetic.

•Inordertoaccountforitsdiamagneticcharacter,itisassumed
thatthetwoelectronsofe
g
orbitalsareforcedtooccupythet
2g
orbitalssothatwehavealltheelectronsinthepairedstateand
two3dorbitalsofe
g
setbecomevacantandhenceavailablefor
d
2
sp
3
hybridisation.
•Thusthegivenionresultsfromd
2
sp
3
hybridisationandhenceis
inner-orbitaloctahedralcomplexion(seefollowingfigure).

4.Cobalticnitriteion,[Co(NO
2
)
6
]
3-
[Alsocalledhexanitrocobaltate
(III)ion]
•ItisevidentfromthefactthatsincethecoordinationnumberofCo
3+
ionis6,thegivencomplexionhasoctahedralgeometry.
•Magneticstudieshaveshownthatthegivencomplexionhasno
unpairedelectronsandhencetheionisdiamagnetic.
•Itisduetodiamagneticcharacterthatallthesixelectronsofthe
valenceshellofCo
3+
ion(Co
3+
=3d
6
4s
0
4p
0
ort
4
2g
e
2
g
4s
0
4p
0
)are
pairedint
2g
setoforbitalsande
g
setbecomesvacant,i.e.,the
configurationofCo
3+
ioninthecomplexionist
6
2g
e
0
g
4s
0
4p
0
.
•Thuse
g
orbitalsbecomevacantandhenceareusedind
2
sp
3
hybridisation.ItisduetostrongcharacterofNO
-
2
ions(ligands)that
thetwoelectronsofe
g
setareforcedtooccupyt
2g
orbitals.(see
followingfigure).

5.InnerorbitaloctahedralcomplexesofCo(+2)
•Examplesofsuchcomplexesare[Co(NO
2
)
6
]
4-
and[Co(CN)
6
]
4-Boththeseionsareparamagneticcorrespondingtothepresence
ofoneunpairedelectron.
•Thevalence-shellelectronicconfigurationofCo
2+
ioninitsfree
stateis3d
7
4s
0
4p
0
5s
0
ort
5
2g
e
2
g
4s
0
4p
0
5s
0
whichshowsthat
thisionhas3unpairedelectrons.
•Paulinghassuggestedthat,inordertohaveonlyoneunpaired
electron,oneelectronofe
g
orbitalsisforcedtooccupyt
2g
orbitalsandtheotherelectronofe
g
setispromotedtothehigher
energyvacant5sorbital.
•ThusnowtheconfigurationofCo
2+
ionbecomest
6
2g
e
0
g
4s
0
4p
0
5s
1
inwhichthenumberofunpairedelectronsisequaltoone
andboth3dorbitalsofe
g
setbecomeemptyandhenceare
availableford
2
sp
3
hybridisation.
•Theformationof[CoL
6
]
4-
ion(L=NO
-
2
orCN
-
)byd
2
sp
3
hybridisationhasbeenshowninfollowingfigure.

•Thepresenceofunpairedelectronin5sorbitalis
supportedbythefactthat,since5sorbitalisofveryhigh
energy,thesingleelectronresidinginitshouldbe
unstableandhenceshouldbeeasilylost.
•Experimentallyithasbeenfoundtobetrue.
•When[CoL
6
]
4-
ionisacteduponbyairorH
2
O
2
,the
unpairedelectronislostand[Co
2+
L
6
]
4-
ionisoxidisedto
[Co
3+
L
6
]
3-
ion.
•ThuswefindthatCo(+2)lowspin(innerorbital)
octahedralcomplexesareunstable(arelabile)andhence
areeasilyoxidisedtoCo(+3)complexesbyairorH
2
O
2
.
•Consequentlysuchcomplexesshouldbepreparedinan
inertatmosphere.

6.Hexachloroplatinate(IV)ion,[PtC1
6
]
2-
•SincethecoordinationnumberofPt
4+
ionissix,thegivencomplex
ionisoctahedralinshape.
•Valence-shellconfigurationofPt
4+
is4f
14
5d
6
6s
0
6p
0
or4f
14
t
4
2g
e
2
g
6s
0
6p
0
whichhas4unpairedelectrons(n=4).
•Magneticstudyof[PtC1
6
]
2-
ionhasshownthatthisionhasno
unpairedelectron(n=0)andhenceisdiamagnetic.
•Thusintheformationofthisionbothelectronsofe
g
orbitals(5d
z
2
and5d
x
2
-y
2
orbitals)areforcedtooccupyt
2g
orbitals(5d
xy
,5d
yz
and
5d
zx
orbitals)andthusthenumberofunpairedelectronsbecomes
equaltozero(n=0)andalsoe
g
orbitalsbecomeavailableford
2
sp
3
hybridisation.
•Thuswefindthat[PtC1
6
]
2-
ionresultsfromd
2
sp
3
hybridisationof
Pt
4+
ion(seefollowingfigure).
•Examplesofsomeinner-orbitaloctahedralcomplexesaregivenin
followingtable.

sp
3
d
2
Hybridisationinouteroctahedralcomplexes
•Thistypeofhybridisationtakesplaceinthoseoctahedralcomplex
ionswhichcontainweakligands.
•Weakligandsarethosewhichcannotforcetheelectronsofd
z
2
and
d
x
2
-y
2
orbitals(e
g
set)oftheinnershelltooccupyd
xy
,d
yz
andd
zx
orbitals(t
2g
set)ofthesameshell.
•Thusinthishybridisation,(n—1)d
z
2
and(n—1)d
x
2
-y
2
orbitals
arenotavailableforhybridisation.
•Inplaceoftheseorbitals,weusend
z
2
andnd
x
2
-y
2
orbitals(Thesed-
orbitalsbelongtotheoutershell)andhencesp
3
d
2
hybridisationcan
berepresentedasns.np
x
.np
y
.np
z
.nd
z
2
.nd
x
2
-y
2
.
•Thishybridisationshowsthatallthesixorbitalsinvolvedin
hybridisationbelongtothehigherenergylevel(outershell).
•Thisdiscussionshowsthatincaseofoctahedralionof3dtransition
series,d-orbitalsusedinhybridisationare4d
z
2
and4d
x
2
-y
2
orbitals.
•Sincetwod-orbitalsarefromtheoutershell(i.e.,nthshell),the
octahedralcomplexesresultedfromsp
3
d
2
hybridisationarecalled
outerorbitaloctahedralcomplexes.

•Sincethesecomplexeshavecomparativelygreaternumberof
unpairedelectronsthantheinnerorbitaloctahedralcomplexes,
thesearealsocalledhighspinorspinfreeoctahedralcomplexes.
•Nowletusdiscussthestructureofsomeoctahedralcomplexionsof
3dtransitionserieselementswhichareformedbysp
3
d
2
hybridisation.
1.Hexafluroferrate(III)ion,[FeF
6
]
3-
•Inthision,thecoordinationnumberofFeissixandhencethegiven
complexionhasoctahedralgeometry.
•HereironispresentasFe
3+
whosevalenceshellelectronic
configurationis3d
5
4s
0
4p
0
ort
3
2g
e
2
g
4s
0
4p
0
.
•Eachofthefiveelectronsisunpairedandhencen=5.
•Magneticpropertiesofthegivenionhavealsoshownthattheion
hasfiveunpairedelectronsandhenceisparamagentic
correspondingtothepresenceoffiveunpairedelectrons.
•Thustwoelectronsresidingine
g
orbitalscannotbeforcedto
occupyt
2g
orbitalsaswehavedoneincaseof[Fe(CN)
6
]
3-
ion,
otherwisethenumberofelectronswouldbecomeequaltoone.

•Thuswefindthatincaseofthegivenion,thetwod-orbitalsusedin
hybridisationare4d
z
2
and4d
x
2
-y
2
andsandporbitalsare4sand4p.
•Thusthegivenionresultsfrom(4s)(4p
3
)(4d
z
2
)(4d
x
2
-y
2
)hybridisationas
showninfollowingfigure.
•Thisdiscussionshowsthatintheformationof[FeF
6
]
3-
iontheoriginal
valence-shellconfigurationofFe
3+
ionisnotdisturbed.

2.Pentaquanitrosoniumiron(I)ion,[Fe
+
(NO
+
)(H
2
O)
5
]
2+
ion
•ThisionisobtainedwhenNOgasispassedthrougha
freshly-preparedaqueoussolutionofFeSO
4
.
•SincethecoordinationnumberofFeatomissix,thegiven
ionhasoctahedralgeometry.
•Themagneticmomentofthisionhasbeenfoundtobe
equalto3.89B.M.whichshowsthatthegivenionhas
threeunpairedelectrons,i.e.,FeispresentasFe
+
ion(Fe
+
=3d
6
4s
1
or3d
7
4s
0
ort
5
2g
e
2
g
4s
0
havingn=3).
•Inordertoshow+2chargesonthecomplexion,NOis
assumedtobepresentasnitrosylcation(NO
+
)whichisa
two-electrondonor.

•Inordertoshowthepresenceofthreeunpairedelectrons
inthegivenion,t
5
2g
e
2
g
configurationofFe
+
ionisnot
disturbed.
•Thismeansthatd
2
sp
3
hybridisationschemecannotbeused
toaccountforthepresenceofthreeunpairedelectrons
(d
2
sp
3
hybridisationgivesoneunpairedelectronwhich
wouldnotbepresentint
2g
setoforbitalsbutinsomeother
orbital).
•Weassumethatthegivenionresultsfromsp
3
d
2
hybridisationandhencethegivenionisanouter-orbital
octahedralion(seefollowingfigure).

3.Outer-orbitaloctahedralcomplexesofNi(+2)
•OctahedralcomplexesofNi
2+
ionareouter-orbitaloctahedral
complexes(sp
3
d
2
hybridisation).
•Theformationofinner-orbitaloctahedralcomplexesofNi
2+
ion
(Ni
2+
=3d
8
=t
6
2g
e
2
g
)isnotpossible,sincethetwounpaired
electronspresentine
g
setoforbitalscannotbesenttot
2g
orbitals
whicharealreadycompletelyfilled.
•Thuse
g
orbitalscannotbemadeemptyford
2
sp
3
hybridisation.
•OuterorbitalcomplexesofNi
2+
ionareparamagnetic
correspondingtothepresenceoftwounpairedelectronspresentin
e
g
orbitals.
•Asanexampleletusseehowsp
3
d
2
hybridisationtakesplacein
[Ni(NH
3
)
6
]
2+
ion(Seefollowingfigure).
•Examplesofsomeouter-octahedralcomplexesaregivenin
followingtable.

Geometryof4-coordinatedcomplexions
•Examplesof4-coordinatedcomplexionsformedbysome
transitionmetalsaregiveninfollowingtable.
•Inthesecomplexionsthecoordinationnumberofthecentral
metalatomorionisfour.
•Suchcomplexionsmayhaveeithersquareplanarortetrahedral
geometry,dependingonwhetherthecentralatomorionis
dsp
2
orsp
3
hybridised.
•Whattypeofhybridisation(i.e.,whetherdsp
2
orsp
3
)thecentral
metalatomorionofa4-coordinatedcomplexionundergoes
dependsonthenumberofunpairedorpairedelectrons
presentinthecomplexion.
Squareplanarcomplexions
•Hereweshallconsiderthefollowingcomplexions.
1.[Ni(CN)
4
]
2-
ion
•Inthiscomplexion,sincethecoordinationnumberofNi
2+
ionis
4,thegivencomplexionmaybesquareplanarortetrahedralin
shape.
Important

Important

•Inordertodecidewhetherthegivencomplexionis
squareplanarortetrahedral,wetakethehelpofmagnetic
propertyofthecomplexion.
•Experimentallyithasbeenshownthat[Ni(CN)
4
]
2-
ionhas
nounpairedelectron(n=0)andhenceisdiamagnetic.
•Twocasesarise:
(a)When[Ni(CN)
4
]
2-
ionhastetrahedralgeometry
•InthiscaseNi
2+
ionissp
3
hybridisedasshownin
followingfigure.
•sp
3
hybridisationschemegiveninfollowingfigureshows
that[Ni(CN)
4
]
2-
ionhastwounpairedelectrons(n=2).

(b)When[Ni(CN)
4
]
2-
ionhassquareplanargeometry
•Forgettingthisgeometry,Ni
2+
ionshouldbedsp
2hybridised.
•Inthishybridisation,duetotheenergymadeavailableby
theapproachoffourCN
-
ions(ligands),thetwounpaired
3d-electronsarepairedup,thereby,makingoneofthe3d
orbitalsempty.
•Thisempty3dorbital(whichis3d
x
2
-y
2
orbital)isusedin
dsp
2
hybridisation.
•Thishybridisationmakesalltheelectronspaired(n=0)
asshowninfollowingfigure.

Conclusion
•Wehavesaidabovethatexperimentshaveshownthat
[Ni(CN)
4
]
2-
ionhasnounpairedelectron(n=0)and
henceisdiamagnetic.
•Thismagneticpropertyconfirmsthefactthat[Ni(CN)
4
]
2-
ionhassquareplanargeometrywithn=0andnot
tetrahedralgeometrywithn=2.
2.[Cu(NH
3
)
4
]
2+
ion
(OxidationofCu
2+
toCu
3+
doesnotoccur)
•SincethecoordinationnumberofCu
2+
ionis4,thegiven
complexionhaseithersquareplanarortetrahedral
geometry.
•Squareplanargeometryarisesduetodsp
2
hybridisationof
Cu
2+
ionasshowninfollowingfigurewhiletetrahedral
geometryisduetosp
3
hybridisationofCu
2+
ionasshown
infollowingfigure.

Square planar geometry

dsp
2

Tetrahedral geometry

sp
3

•Asisevidentfromabovefiguresthatinboththegeometries,
[Cu(NH
3
)
4
]
2+
ionhasoneunpairedelectron(n=1).
•Insquareplanargeometry,theunpairedelectronresidesin4p
orbitalwhileintetrahedralgeometrythiselectronispresentin
3dorbital.
•Theabovediscussionshowsthatthemagneticpropertyof
[Cu(NH
3
)
4
]
2+
ioncannotbehelpfulindecidingastowhatis
theexactgeometryof[Cu(NH
3
)
4
]
2+
ion.
•However,physicalmeasurementshaveindicatedthatthe
tetrahedralgeometryfor[Cu(NH
3
)
4
]
2+
ionisnotpossible.
•Nowifthesquareplanargeometryfor[Cu(NH
3
)
4
]
2+
ionis
supposedtobecorrect,theunpairedelectronpresentinthe
higherenergy4porbital(dsp
2
hybridisation)shouldbe
expectedtobeeasilylost,i.e.,[Cu(NH
3
)
4
]
2+
ion(Cu=+2)
shouldbeeasilyoxidisedto[Cu(NH
3
)
4
]
3+
ion(Cu=+3)by
losingtheunpairedelectronresidingin4porbital.

•However,experimentshaveshownthattheoxidationof
[Cu(NH
3
)
4
]
2+
to[Cu(NH
3
)
4
]
3+
asshownabovedoesnotoccur.
•Thenhowtoexplainthegeometryof[Cu(NH
3
)
4
]
2+
ion.
Huggin'ssuggestion
•Hugginhassuggestedthat[Cu(NH
3
)
4
]
2+
ionhassquare
planargeometryandCu
2+
ionissp
2
d[(4s)(4p)
2
(4d)]
hybridisedasshowninfollowingfigure.
•Theunpairedelectronresidesin3dorbital.
Conclusion
•[Cu(NH
3
)
4
]
2+
ion→squareplanargeometry
•Cu
2+
ion→sp
2
d[(4s)(4p)
2
(4d)]hybridised
•Unpairedelectron→3dorbital
(Does not possible)

Square planar geometry

4(sp
2
d)

3.[Ni(dmg)
2
]
0
molecule
•Inthiscomplexcompound,NiispresentasNi
2+
ion(Ni
2+=3d
8
4s
0
).
•dmgisanegatively-chargedionwhichactsasabidentate
ligand.
•Magneticmeasurementshaveshownthat[Ni(dmg)
2
]
0
has
nounpairedelectrons(n=0)andhassquareplanar
geometrywhicharisesbecauseofdsp
2
hybridisationof
Ni
2+
ion.
•Forgettingdsp
2
hybridisation,one3dorbitalshouldbe
vacant.
•Inordertomake3dorbitalvacant,twounpairedelectrons
presentin3dorbitalsareforcedtogetpaired(see
followingfigure).

Tetrahedralcomplexions
•Hereweshalldiscussthestructureofthefollowing
complexcompoundswhichhavetetrahedralgeometry.
1.Ni(CO)
4
molecule(Ni→zerooxidationstate)
•InthiscomplexcompoundNiisinzerooxidationstate
andhasitsvalence-shellconfigurationas3d
8
4s
2
.
•Thiscompoundhastetrahedralgeometrywhicharisesdue
tosp
3
hybridisationofNiatom.
•ThemagneticstudiesofNi(CO)
4
haveindicatedthatthis
moleculeisdiamagnetic(n=0),showingthatthetwo4s
electronsareforcedtopairupwith3dorbitals.
•Thisresultsinsp
3
hybridisationandNi(CO)
4
molecule
hastetrahedralstructure(seefollowingfigure).

2.[NiCl
4
]
2-
ion(Ni→+2oxidationstate)
•ThiscomplexionhasNi
2+
ionwhosevalence-shellconfigurationas
3d
8
4s
0
.
•Magneticmeasurementsrevealthatthegivenionisparamagnetic
andhastwounpairedelectrons(n=2).
•Thisispossibleonlywhenthisionisformedbysp
3
hybridisation
andhastetrahedralgeometry(seefollowingfigure).

Tofindoutthenumberofunpairedelectronsinagivencomplex
ion
•Thenumberofunpairedelectrons(n)presentinagivencomplex
iondependsonthegeometryofthecomplexionandthetypeof
hybridisationundergonebythecentralmetalatomorion.
•Thisisevidentfromfollowingtableinwhichwehaveshowna
relationbetweenthenumberofunpairedelectronsandgeometries
ofthecomplexions.

LimitationsofVBT
1.VBTcannotaccountfortherelativestabilitiesfordifferent
shapesanddifferentcoordinationnumbersinmetal
complexes,e.g.,itcannotexplainsatisfactorilyastowhy
Co(+2)(d
7
system)formsbothoctahedralandtetrahedral
complexeswhileNi(+2)(d
8
system)rarelyformstetrahedral
complexes.
•Similarly,Fe(+3)(d
5
system)formsbothtetrahedraland
octahedralcomplexeswhileCr(+3)(d
3
system)givesonly
octahedralcomplexes.
2.VBTcannotexplainastowhyCu(+2)formsonlyone
distortedoctahedralcomplexesevenwhenallthesixligands
areidentical.
3.Thistheorycannotaccountfortherelativeratesofreactionsof
analogousmetalcomplexes,e.g.[Mn(phen)
3
]
2+
dissociates
instantaneuslyinacidicaqueoussolutionwhile[Fe(phen)
3
]
2+
dissociatesataslowrate.

4.Theclassificationofmetalcomplexesonthebasisoftheir
magneticbehaviourintocovalent(inner-orbital)andionic
(outer-orbital)complexesisnotsatisfactoryandisoften
misleading,e.g.,manyoftheso-calledioniccomplexeslike
[Fe
3+
(acac)
3
]
0
havepropertieslikehighvolatility,highsolubility
inorganicsolventsetc.whicharecharacteristicsofcovalent
compounds.
•Alsoitisknownthattheaquoion,[Cr(H
2
O)
6
]
3+
(pKa=3.8at
25°C)isamuchweakeracidthan[Fe(H
2
O)
6
]
3+
(pKa=2.2)and
[Co(H
2
O)
6
]
3+
(pKa=0.7)ions,despitethefactthatonly
[Fe(H
2
O)
6
]
3+
isofouter-orbitaltypewithionicbondingwhilethe
othertwoaquoionsareofouter-orbitaltypewithcovalent
bonding.
•Both[Fe(H
2
O)
6
]
3+
and[Co(H
2
O)
6
]
3+
ionsexchangeH
2
O
18
in
solventinstantaneouslywhile[Cr(H
2
O)
6
]
3+
ionexchangesH
2
O
18
veryslowly.
•Theacidityofanaquometalionisexpectedtoincreasewiththe
increaseofcovalentcharacterofthemetal-oxygenbond.

•Butneitherthesequenceofaciditiesnortheexchangeratesofthe
abovementionedthreeaquometalionsareintheorderexpected
fromtheirclassificationintoionicandcovalenttypesonthebasis
ofPauling'sVBT.
5.VBTfailstoexplainthefinerdetailsofmagneticproperties
includingthemagnitudeoftheorbitalcontributiontothemagnetic
moments,e.g.althoughbothtetrahedral(sp
3
hybridisation)and
outer-orbitaloctahedral(sp
3
d
2
hybridisation)complexesofCo(+2)
(d
7
system)havethreeunpairedelectronsandare,therefore,
expectedtohaveμvalueequalto3.87B.M.;thetetrahedral
complexesgenerallyhaveμvalueintherangeof4.4–4.8B.M,
whiletheoctahedralcomplexeshavestillhighervalueofμinthe
rangeof4.7–5.2B.M.
•Theincreaseinthevalueofμisduetotheorbitalcontribution.
•Similaristhecasewithtetrahedralandoctahedralcomplexesof
Ni(+2)(d
8
system).
•VBTcannotexplaintheincreaseinthevalueofμ.
6.VBTcannotinterpretthespectra(colour)ofthecomplexes.

7.Thistheorydoesnotpredictorexplainthemagneticbehavioursof
complexes.
•Thistheoryonlypredictsthenumberofunpairedelectrons.
•Itspredictionevenforthenumberofunpairedelectronsandtheir
correlationwithstereochemistryismisleading.
•Forexampleitwasassumedforlongthatallsquareplanar
complexesofNi(+2)(d
8
system)formedbydsp
2
hybridisationwere
diamagnetic(n=0),whilealltetrahedralcomplexesofNi(+2)
formedbysp
3
hybridisationwereparamagneticduetothepresence
oftwounpairedelectrons(n=2).
•X-raystudyof4-coordinateNi(+2)complexeshasshownthatone
andthesamecomplexcanbeobtainedinbothaparamagneticform
(havingbluecolour)andadiamagneticform(havingyellow
colour).
•VBThasnoexplanationforit.
•VBTcannotexplainthetemperaturedependentparamagnetismof
thecomplexes.

8.VBTcannotgiveanyexplanationfortheorderofreactivitiesofthe
inner-orbitalinertcomplexesofd
3
,d
4
,d
5
andd
6
ionsandofthe
observeddifferencesintheenergiesofactivationinaseriesof
similarcomplexes.
9.Themagneticmomentvaluesofthecomplexesofcertainions(e.g.,
Co
2+
,Ni
2+
,etc.)aremuchhigherthanthoseexpectedbyspin-only
formula.
•VBTcannotexplaintheenhancedvaluesofmagneticmoment.

The End
Tags