X2 t03 05 rectangular hyperbola (2013)

2,616 views 61 slides Feb 24, 2013
Slide 1
Slide 1 of 61
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61

About This Presentation

No description available for this slideshow.


Slide Content

Rectangular Hyperbola

Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other

Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
1


a
b
a
b

Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
1


a
b
a
b
a b
a b

2 2

Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
1



a
b
a
b
a b
a b

2 2equation; the has hyperbola

2 2 2
2
2
2
2
1
a y x
a
y
a
x
 
 

Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
1


a
b
a
b
a b
a b

2 2equation; the has hyperbola

2 2 2
2
2
2
2
1
a y x
a
y
a
x
 
 
22
2
2
aa
e
a

Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
1



a
b
a
b
a b
a b

2 2equation; the has hyperbola

2 2 2
2
2
2
2
1 a y x
a
y
a
x
 
 
22
2
2
aa
e
a


2
2
2
e
e

Rectangular Hyperbola
A hyperbola whose asymptotes are perpendicular to each other
1


a
b
a
b
a b
a b

2 2equation; the has hyperbola

2 2 2
2
2
2
2
1
a y x
a
y
a
x
 
 
2 isty eccentrici

22
2
2
aa
e
a


2
2
2
e
e

y
x
Y
X

y
x
P
,

y
x
Y
X

y
x
P
,
In order to make the
asymptotes the coordinate
axes we need to rotate the
curve 45 degrees
anticlockwise.

y
x
Y
X

y
x
P
,
In order to make the
asymptotes the coordinate
axes we need to rotate the
curve 45 degrees
anticlockwise.



45 cis by multiplied is , i.e.iy x yxP

y
x
Y
X

y
x
P
,
In order to make the
asymptotes the coordinate
axes we need to rotate the
curve 45 degrees
anticlockwise.



45 cis by multiplied is , i.e.iy x yxP



 
45 sin 45 cosi iy x





  
2
1
2
1
i iy x

y
x
Y
X

y
x
P
,
In order to make the
asymptotes the coordinate
axes we need to rotate the
curve 45 degrees
anticlockwise.



45 cis by multiplied is , i.e.iy x yxP



 
45 sin 45 cosi iy x





  
2
1
2
1
i iy x
 
i
yx yx
y iy ix x
i iy x
2 2
2
1
1
2
1




   
  

y
x
Y
X

y
x
P
,
In order to make the
asymptotes the coordinate
axes we need to rotate the
curve 45 degrees
anticlockwise.



45 cis by multiplied is , i.e.iy x yxP



 
45 sin 45 cosi iy x





  
2
1
2
1
i iy x
 
i
yx yx
y iy ix x
i iy x
2 2
2
1
1
2
1




   
  
2

2
y
x
Y
y
x
X




y
x
Y
X

y
x
P
,
In order to make the
asymptotes the coordinate
axes we need to rotate the
curve 45 degrees
anticlockwise.



45 cis by multiplied is , i.e.iy x yxP



 
45 sin 45 cosi iy x






  
2
1
2
1
i iy x
 
i
yx yx
y iy ix x
i iy x
2 2
2
1
1
2
1




   
  
2

2
y
x
Y
y
x
X





2
2 2
y x
XY

y
x
Y
X

y
x
P
,
In order to make the
asymptotes the coordinate
axes we need to rotate the
curve 45 degrees
anticlockwise.



45 cis by multiplied is , i.e.iy x yxP



 
45 sin 45 cosi iy x






  
2
1
2
1
i iy x
 
i
yx yx
y iy ix x
i iy x
2 2
2
1
1
2
1




   
  
2

2
y
x
Y
y
x
X





2
2 2
y x
XY


2
2
a
XY

focus;


0,ae


0,2a 

focus;


0,ae


0,2a 

ai a
i a








2
1
2
1
2

focus;


0,ae


0,2a 

ai a
i a








2
1
2
1
2


aa, focus

focus;


0,ae


0,2a 

ai a
i a








2
1
2
1
2


aa, focus

directrix;
e
a
x2
a
x

focus;


0,ae


0,2a 

ai a
i a








2
1
2
1
2


aa, focus

directrix;
e
a
x2
a
x
x y
y


to|| rotated when
axis to|| are s directrice

focus;


0,ae


0,2a 

ai a
i a








2
1
2
1
2


aa, focus

directrix;
e
a
x2
a
x
x y
y


to|| rotated when
axis to|| are s directrice
0 form in thus



k
y
x

focus;


0,ae


0,2a 

ai a
i a








2
1
2
1
2


aa, focus

directrix;
e
a
x2
a
x
x y
y


to|| rotated when
axis to|| are s directrice
0 form in thus



k
y
x
2
2
is s directrice between distance Now
a

focus;


0,ae


0,2a 

ai a
i a








2
1
2
1
2


aa, focus

directrix;
e
a
x2
a
x
x y
y


to|| rotated when
axis to|| are s directrice
0 form in thus



k
y
x
2
2
is s directrice between distance Now
a
2
is directrix origin to from distance
a

focus;


0,ae


0,2a 

ai a
i a








2
1
2
1
2


aa, focus

directrix;
e
a
x2
a
x
x y
y


to|| rotated when
axis to|| are s directrice
0 form in thus



k
y
x
2
2
is s directrice between distance Now
a
2
is directrix origin to from distance
a

2 2
00a k


focus;


0,ae


0,2a 

ai a
i a








2
1
2
1
2


aa, focus

directrix;
e
a
x2
a
x
x y
y


to|| rotated when
axis to|| are s directrice
0 form in thus



k
y
x
2
2
is s directrice between distance Now
a
2
is directrix origin to from distance
a

2 2
00a k



a
k
a k



focus;


0,ae


0,2a 

ai a
i a








2
1
2
1
2


aa, focus

directrix;
e
a
x2
a
x
x y
y


to|| rotated when
axis to|| are s directrice
0 form in thus



k
y
x
2
2
is s directrice between distance Now
a
2
is directrix origin to from distance
a

2 2
00a k



a
k
a k




a y
x




are s directrice

The rectangular hyperbola with x and yaxes as aymptotes,
has the equation;
2
2
1
a xy
where;

aa


, : foci
a y
x



:s directrice
2 ty eccentrici

The rectangular hyperbola with x and yaxes as aymptotes,
has the equation;
2
2
1
a xy
where;

aa


, : foci
a y
x



:s directrice
2 ty eccentrici

2
c xy ofs Coordinate Parametric

The rectangular hyperbola with x and yaxes as aymptotes,
has the equation;
2
2
1
a xy
where;

aa


, : foci
a y
x



:s directrice
2 ty eccentrici

2
c xy ofs Coordinate Parametric

c
t
x

tc
y

The rectangular hyperbola with
x
and
y
axes as aymptotes,
has the equation;
2
2
1
a xy
where
;

aa


, : foci
a y
x



:s directrice
2 ty eccentrici

2

c xy ofs Coordinate Parametric

c
t
x

tc
y
Tangent:ct ytx
2
2

The rectangular hyperbola with
x
and
y
axes as aymptotes,
has the equation;
2
2
1
a xy
where
;

aa


, : foci
a y
x



:s directrice
2 ty eccentrici

2

c xy ofs Coordinate Parametric

c
t
x

tc
y
Tangent:ct ytx
2
2


Normal:


1
4 3



tc ty xt

e.g. (
i
) (1991)
The hyperbola
H
is
xy
= 4
a) Sketch
H
showing where
H
intersects the axis of symmetry.

e.g. (
i
) (1991)
The hyperbola
H
is
xy
= 4
a) Sketch
H
showing where
H
intersects the axis of symmetry.
y
x
y
=
x

e.g. (
i
) (1991)
The hyperbola
H
is
xy
= 4
a) Sketch
H
showing where
H
intersects the axis of symmetry.
y
x
y
=
x
2
4
4
2


x
xx
y


2,2

2,2

e.g. (i) (1991)
The hyperbola His xy= 4
a) Sketch Hshowing where Hintersects the axis of symmetry.
y
x
y= x
2
4
4
2


x
xx
y


2,2

2,2


t ytx
t
t P4 is
2
,2 at tangent that the Show b)
2
  



e.g. (i) (1991)
The hyperbola His xy= 4
a) Sketch Hshowing where Hintersects the axis of symmetry.
y
x
y= x
2
4
4
2


x
xx
y


2,2

2,2


t ytx
t
t P4 is
2
,2 at tangent that the Show b)
2
  




2
4
4
x
dx
dy
x
y


e.g. (i) (1991)
The hyperbola His xy= 4
a) Sketch Hshowing where Hintersects the axis of symmetry.
y
x
y= x
2
4
4
2


x
xx
y


2,2

2,2


t ytx
t
t P4 is
2
,2 at tangent that the Show b)
2
  




2
4
4
x
dx
dy
x
y


 2
21

2
4
,2 when
t
t dx
dy
t x


 

e.g. (i) (1991)
The hyperbola His xy= 4
a) Sketch Hshowing where Hintersects the axis of symmetry.
y
x
y= x
2
4
4
2


x
xx
y


2,2

2,2


t ytx
t
t P4 is
2
,2 at tangent that the Show b)
2
  




2
4
4
x
dx
dy
x
y


 2
21

2
4
,2 when
t
t dx
dy
t x


 

t x
t
t
y2
1 2
2
  

e.g. (i) (1991)
The hyperbola His xy= 4
a) Sketch Hshowing where Hintersects the axis of symmetry.
y
x
y= x
2
4
4
2


x
xx
y


2,2

2,2


t ytx
t
t P4 is
2
,2 at tangent that the Show b)
2
  




2
4
4
x
dx
dy
x
y


 2
21

2
4
,2 when
t
t dx
dy
t x


 

t x
t
t
y2
1 2
2
  
t ytx
t x t yt
4
2 2
2
2
 







 






 
tsts
st
M
s
s Q P t s s
4
,
4
at intersect
2
,2 and at tangents that the show , ,0 c)
2 2





 






 
tsts
st
M
s
s Q P t s s
4
,
4
at intersect
2
,2 and at tangents that the show , ,0 c)
2 2
t ytxP4 :
2


s ysxQ4 :
2





 






 
tsts
st
M
s
s Q P t s s
4
,
4
at intersect
2
,2 and at tangents that the show , ,0 c)
2 2
t ytxP4 :
2


s ysxQ4 :
2




s t ys t4 4
2 2






 






 
tsts
st
M
s
s Q P t s s
4
,
4
at intersect
2
,2 and at tangents that the show , ,0 c)
2 2
t ytxP4 :
2


s ysxQ4 :
2




s t ys t4 4
2 2









t
s
y
s
t
ys
t
s
t






4
4





 






 
tsts
st
M
s
s Q P t s s
4
,
4
at intersect
2
,2 and at tangents that the show , ,0 c)
2 2
t ytxP4 :
2


s ysxQ4 :
2




s t ys t4 4
2 2









t
s
y
s
t
ys
t
s
t






4
4
t
t
s
t
x4
4
2






 






 
tsts
st
M
s
s Q P t s s
4
,
4
at intersect
2
,2 and at tangents that the show , ,0 c)
2 2
t ytxP4 :
2


s ysxQ4 :
2




s t ys t4 4
2 2









t
s
y
s
t
ys
t
s
t






4
4
t
t
s
t
x4
4
2



t
s
st
ts
t t st
x






4
4 4 4
2 2





 






 
tsts
st
M
s
s Q P t s s
4
,
4
at intersect
2
,2 and at tangents that the show , ,0 c)
2 2
t ytxP4 :
2


s ysxQ4 :
2




s t ys t4 4
2 2









t
s
y
s
t
ys
t
s
t






4
4
t
t
s
t
x4
4
2



t
s
st
ts
t t st
x






4
4 4 4
2 2




 

tsts
st
M
4
,
4
is

origin. the including not but origin, he through t line
straight a is of locus that the show ,
1
that Suppose d)M
t
s

origin. the including not but origin, he through t line
straight a is of locus that the show ,
1
that Suppose d)M
t
s


t
s
y
t
s
s
t
x




4

4

origin. the including not but origin, he through t line
straight a is of locus that the show ,
1
that Suppose d)M
t
s


t
s
y
t
s
s
t
x




4

4
t
s
1


1 st

origin. the including not but origin, he through t line
straight a is of locus that the show ,
1
that Suppose d)M
t
s


t
s
y
t
s
s
t
x




4

4
t
s
1


4
x
st



1 st

origin. the including not but origin, he through t line
straight a is of locus that the show ,
1
that Suppose d)M
t
s


t
s
y
t
s
s
t
x




4

4
t
s
1


4
x
st



4
y
st
x




1 st

origin. the including not but origin, he through t line
straight a is of locus that the show ,
1
that Suppose d)M
t
s


t
s
y
t
s
s
t
x




4

4
t
s
1


4
x
st



4
y
st
x




x
y



1 st

origin. the including not but origin, he through t line
straight a is of locus that the show ,
1
that Suppose d)
M
t
s


t
s
y
t
s
s
t
x




4

4
t
s
1


4
x
st



4
y
st
x




x
y




0,0 thus ,0
4
 

M
t
s
1 st

origin. the including not but origin, he through t line
straight a is of locus that the show ,
1
that Suppose d)
M
t
s


t
s
y
t
s
s
t
x




4

4
t
s
1


4
x
st



4
y
st
x




x
y




0,0 thus ,0
4
 

M
t
s


0,0 excluding , is of locus
x
y
M



1 st

(
ii
)
a S
P
P
S2 that Show



x


y
x
P
,
S
S

(ii)a S
P
P
S2 that Show



y
x


y
x
P
,
S
S

By definition of an ellipse;

(ii)a S
P
P
S2 that Show



y
x


y
x
P
,
S
S

By definition of an ellipse;
ePM S
P
P
S

e
a
x
M
e
a
x

(ii)a S
P
P
S2 that Show



y
x


y
x
P
,
S
S

By definition of an ellipse;
ePM S
P
P
S

M
eP


e
a
x
M
e
a
x
M

(ii)a S
P
P
S2 that Show



y
x


y
x
P
,
S
S

By definition of an ellipse;
ePM S
P
P
S

M
eP


e
a
x
M
e
a
x
M


M
P
P
Me



a
e
a
e
2
2







(ii)a S
P
P
S2 that Show



y
x


y
x
P
,
S
S

By definition of an ellipse;
ePM S
P
P
S

M
eP


e
a
x
M
e
a
x
M


M
P
P
Me



a
e
a
e
2
2








Exercise 6D; 3, 4, 7, 10, 11a,
12, 14, 19, 21, 26, 29,
31, 43, 47