Reduction Formula
Reduction (or recurrence) formulae expresses a given integral as
the sum of a function and a known integral.
Integration by parts often used to find the formula.
Reduction Formula
Reduction (or recurrence) formulae expresses a given integral as
the sum of a function and a known integral.
Integration by parts often used to find the formula.
e.g. (i) (1987)
2
0
5
2
2
0
cos evaluate hence,2 andinteger an is where
1
that prove ,cos Given that
xdx n n
I
n
n
I xdx I
n n
n
n
2
0
cos
xdx I
n
n
2
0
cos
xdx I
n
n
2
0
1
coscos
xdxx
n
2
0
cos
xdx I
n
n
x
u
n1
cos
xdxx ndu
n
sincos1
2
x
dxdv cos
x
vsin
2
0
1
coscos
xdxx
n
2
0
cos
xdx I
n
n
x
u
n1
cos
2
0
22
2
0
1
sincos1 sincos
xdxx nxx
n n
xdxx ndu
n
sincos1
2
x
dxdv cos
x
vsin
2
0
1
coscos
xdxx
n
2
0
cos
xdx I
n
n
x
u
n1
cos
2
0
22
2
0
1
sincos1 sincos
xdxx nxx
n n
xdxx ndu
n
sincos1
2
x
dxdv cos
x
vsin
2
0
1
coscos
xdxx
n
2
0
2 2 1 1
cos1cos10sin0cos
2
sin
2
cos
dxxx n
n n n
2
0
cos
xdx I
n
n
x
u
n1
cos
2
0
22
2
0
1
sincos1 sincos
xdxx nxx
n n
xdxx ndu
n
sincos1
2
x
dxdv cos
x
vsin
2
0
1
coscos
xdxx
n
2
0
2 2 1 1
cos1cos10sin0cos
2
sin
2
cos
dxxx n
n n n
2
0
2
0
2
cos1 cos1
xdx nxdx n
n n
2
0
cos
xdx I
n
n
x
u
n1
cos
2
0
22
2
0
1
sincos1 sincos
xdxx nxx
n n
xdxx ndu
n
sincos1
2
x
dxdv cos
x
vsin
2
0
1
coscos
xdxx
n
2
0
2 2 1 1
cos1cos10sin0cos
2
sin
2
cos
dxxx n
n n n
2
0
2
0
2
cos1 cos1
xdx nxdx n
n n
n n
I
n
I
n1 1
2
2
0
cos
xdx I
n
n
x
u
n1
cos
2
0
22
2
0
1
sincos1 sincos
xdxx nxx
n n
xdxx ndu
n
sincos1
2
x
dxdv cos
x
vsin
2
1
n n
I
nn
I
2
0
1
coscos
xdxx
n
2
0
2 2 1 1
cos1cos10sin0cos
2
sin
2
cos
dxxx n
n n n
2
0
2
0
2
cos1 cos1
xdx nxdx n
n n
n n
I
n
I
n1 1
2
2
0
cos
xdx I
n
n
x
u
n1
cos
2
0
22
2
0
1
sincos1 sincos
xdxx nxx
n n
xdxx ndu
n
sincos1
2
x
dxdv cos
x
vsin
2
1
n n
I
nn
I
2
0
1
coscos
xdxx
n
2
0
2 2 1 1
cos1cos10sin0cos
2
sin
2
cos
dxxx n
n n n
2
0
2
0
2
cos1 cos1
xdx nxdx n
n n
n n
I
n
I
n1 1
2
2
1
n n
I
n
n
I
6
find ,cot Given that Ixdx I ii
n
n
xdx I
n
n
cot
6
find ,cot Given that Ixdx I ii
n
n
xdx I
n
n
cot
xdxx
n22
cotcot
6
find ,cot Given that Ixdx I ii
n
n
xdx I
n
n
cot
xdxx
n22
cotcot
dxxx
n
1cosec cot
2 2
xdx xdxx
n n2 2 2
cot cosec cot
6
find ,cot Given that Ixdx I ii
n
n
xdx I
n
n
cot
xdxx
n22
cotcot
dxxx
n
1cosec cot
2 2
xdx xdxx
n n2 2 2
cot cosec cot
x
ucot
x
dx du
2
cosec
6
find ,cot Given that Ixdx I ii
n
n
xdx I
n
n
cot
xdxx
n22
cotcot
dxxx
n
1cosec cot
2 2
xdx xdxx
n n2 2 2
cot cosec cot
x
ucot
x
dx du
2
cosec
2
2
n
n
Iduu
6
find ,cot Given that Ixdx I ii
n
n
xdx I
n
n
cot
xdxx
n22
cotcot
dxxx
n
1cosec cot
2 2
xdx xdxx
n n2 2 2
cot cosec cot
x
ucot
x
dx du
2
cosec
2
2
n
n
Iduu2
1
1
1
n
n
Iu
n
2
1
cot
1
1
n
n
Ix
n
(iii) (2004 Question 8b)
4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn
2
1
) Show that
1
nn
aII
n
(iii) (2004 Question 8b)
4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn
2
1
) Show that
1
nn
aII
n
2 44
2
00
tan tan
nn
nn
I Idx dx
(iii) (2004 Question 8b)
4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn
2
1
) Show that
1
nn
aII
n
2 44
2
00
tan tan
nn
nn
I Idx dx
2 4
0
tan 1 tan
n
x
xdx
2 4
0
tan sec
n
x
xdx
(iii) (2004 Question 8b)
4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn
2
1
) Show that
1
nn
aII
n
2 44
2
00
tan tan
nn
nn
I Idx dx
2 4
0
tan 1 tan
n
x
xdx
2 4
0
tan sec
n
x
xdx
tan ux
2
sec du xdx
(iii) (2004 Question 8b)
4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn
2
1
) Show that
1
nn
aII
n
2 44
2
00
tan tan
nn
nn
I Idx dx
2 4
0
tan 1 tan
n
x
xdx
2 4
0
tan sec
n
x
xdx
tan ux
2
sec du xdx
when 0, 0
, 1
4
x
u
x
u
(iii) (2004 Question 8b)
4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn
2
1
) Show that
1
nn
aII
n
2 44
2
00
tan tan
nn
nn
I Idx dx
2 4
0
tan 1 tan
n
x
xdx
2 4
0
tan sec
n
x
xdx
tan ux
2
sec du xdx
1
0
n
udu
when 0, 0
, 1
4
x
u
x
u
(iii) (2004 Question 8b)
4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn
2
1
) Show that
1
nn
aII
n
2 44
2
00
tan tan
nn
nn
I Idx dx
2 4
0
tan 1 tan
n
x
xdx
2 4
0
tan sec
n
x
xdx
tan
ux
2
sec du xdx
1
0
n
udu
when 0, 0
, 1
4
x
u
x
u
1
1
0
1
n
u
n
(iii) (2004 Question 8b)
4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn
2
1
) Show that
1
nn
aII
n
2 44
2
00
tan tan
nn
nn
I Idx dx
2 4
0
tan 1 tan
n
x
xdx
2 4
0
tan sec
n
x
xdx
tan
ux
2
sec du xdx
1
0
n
udu
when 0, 0
, 1
4
x
u
x
u
1
1
0
1
n
u
n
11
0
11 nn
1
1
) Deduce that for 1
21
n
nn
bJJ n
n
1
1
) Deduce that for 1
21
n
nn
bJJ n
n
1
12 22
11
nn
nnnn
JJ I I
1
1
) Deduce that for 1
21
n
nn
bJJ n
n
1
12 22
11
nn
nnnn
JJ I I
222
11
nn
nn
II
1
1
) Deduce that for 1
21
n
nn
bJJ n
n
1
12 22
11
nn
nnnn
JJ I I
222
11
nn
nn
II
222
1
n
nn
II
1
1
) Deduce that for 1
21
n
nn
bJJ n
n
1
12 22
11
nn
nnnn
JJ I I
222
11
nn
nn
II
222
1
n
nn
II
1
21
n
n
1
1
) Show that
421
n
m
m
n
cJ
n
1
1
) Show that
421
n
m
m
n
cJ
n
1
1
21
m
mm
JJ
m
1
1
) Show that
421
n
m
m
n
cJ
n
1
1
21
m
mm
JJ
m
1
2
11
2123
mm
m
J
mm
11
0
11 1
2123 1
mm
J
mm
1
1
) Show that
421
n
m
m
n
cJ
n
1
1
21
m
mm
JJ
m
1
2
11
2123
mm
m
J
mm
11
0
11 1
2123 1
mm
J
mm
4
0
1
1
21
n
m
n
dx
n
1
1
) Show that
421
n
m
m
n
cJ
n
1
1
21
m
mm
JJ
m
1
2
11
2123
mm
m
J
mm
11
0
11 1
2123 1
mm
J
mm
4
0
1
1
21
n
m
n
dx
n
4
0
1
1
21
n
m
n
x
n
1
1
214
n
m
n
n
1
1
) Show that
421
n
m
m
n
cJ
n
1
1
21
m
mm
JJ
m
1
2
11
2123
mm
m
J
mm
1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u
1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u
4
0
tan
n
n
Ixdx
1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u
4
0
tan
n
n
Ixdx
1
tan tan uxx u
2
1
du
dx
u
1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u
4
0
tan
n
n
Ixdx
1
tan tan uxx u
2
1
du
dx
u
when 0, 0
, 1
4
x
u
x
u
1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u
4
0
tan
n
n
Ixdx
1
tan tan uxx u
2
1
du
dx
u
when 0, 0
, 1
4
x
u
x
u
1
2
0
1
n
n
du
Iu
u
1
2
0
1
n
n
udu
I
u
1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u
4
0
tan
n
n
Ixdx
1
tan tan uxx u
2
1
du
dx
u
when 0, 0
, 1
4
x
u
x
u
1
2
0
1
n
n
du
Iu
u
1
2
0
1
n
n
udu
I
u
1
) Deduce that 0 and conclude that 0 as
1
nn
eI Jn
n
1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u
4
0
tan
n
n
Ixdx
1
tan tan uxx u
2
1
du
dx
u
when 0, 0
, 1
4
x
u
x
u
1
2
0
1
n
n
du
Iu
u
1
2
0
1
n
n
udu
I
u
1
) Deduce that 0 and conclude that 0 as
1
nn
eI Jn
n
2
0, for all 0
1
n
u
u
u
1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u
4
0
tan
n
n
Ixdx
1
tan tan uxx u
2
1
du
dx
u
when 0, 0
, 1
4
x
u
x
u
1
2
0
1
n
n
du
Iu
u
1
2
0
1
n
n
udu
I
u
1
) Deduce that 0 and conclude that 0 as
1
nn
eI Jn
n
2
0, for all 0
1
n
u
u
u
1
2
0
0, for all 0
1
n
n
u
Iduu
u
2
1
1
nn
II
n
2
1
1
nn
II
n
2
1
1
nn
II
n
2
1
1
nn
II
n
2
1
1
nn
II
n
2
1
, as 0
1
nn
II
n
2
1
1
nn
II
n
2
1
1
nn
II
n
1
0
1
n
I
n
2
1
, as 0
1
nn
II
n
2
1
1
nn
II
n
2
1
1
nn
II
n
1
0
1
n
I
n
1
as , 0
1
n
n
2
1
, as 0
1
nn
II
n
2
1
1
nn
II
n
2
1
1
nn
II
n
1
0
1
n
I
n
1
as , 0
1
n
n
0
n
I
2
1
, as 0
1
nn
II
n
2
1
1
nn
II
n
2
1
1
nn
II
n
1
0
1
n
I
n
1
as , 0
1
n
n
0
n
I
2
10
n
nn
JI
2
1
, as 0
1
nn
II
n
2
1
1
nn
II
n
2
1
1
nn
II
n
2
1
, as 0
1
nn
II
n
1
0
1
n
I
n
1
as , 0
1
n
n
0
n
I
2
10
n
nn
JI
Exercise 2D; 1, 2, 3, 6, 8,
9, 10, 12, 14