X2 T05 04 reduction formula (2010)

4,313 views 66 slides Apr 27, 2010
Slide 1
Slide 1 of 66
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66

About This Presentation

No description available for this slideshow.


Slide Content

Reduction Formula

Reduction Formula
Reduction (or recurrence) formulae expresses a given integral as
the sum of a function and a known integral.
Integration by parts often used to find the formula.

Reduction Formula
Reduction (or recurrence) formulae expresses a given integral as
the sum of a function and a known integral.
Integration by parts often used to find the formula.
e.g. (i) (1987)









 

2
0
5
2
2
0
cos evaluate hence,2 andinteger an is where

1
that prove ,cos Given that


xdx n n
I
n
n
I xdx I
n n
n
n



2
0
cos

xdx I
n
n



2
0
cos

xdx I
n
n



2
0
1
coscos

xdxx
n



2
0
cos

xdx I
n
n
x
u
n1
cos




xdxx ndu
n
sincos1
2




x
dxdv cos

x
vsin




2
0
1
coscos

xdxx
n



2
0
cos

xdx I
n
n
x
u
n1
cos





 
 
2
0
22
2
0
1
sincos1 sincos


xdxx nxx
n n


xdxx ndu
n
sincos1
2




x
dxdv cos

x
vsin




2
0
1
coscos

xdxx
n



2
0
cos

xdx I
n
n
x
u
n1
cos





 
 
2
0
22
2
0
1
sincos1 sincos


xdxx nxx
n n


xdxx ndu
n
sincos1
2




x
dxdv cos

x
vsin




2
0
1
coscos

xdxx
n



 






 
  
2
0
2 2 1 1
cos1cos10sin0cos
2
sin
2
cos


dxxx n
n n n



2
0
cos

xdx I
n
n
x
u
n1
cos





 
 
2
0
22
2
0
1
sincos1 sincos


xdxx nxx
n n


xdxx ndu
n
sincos1
2




x
dxdv cos

x
vsin




2
0
1
coscos

xdxx
n



 






 
  
2
0
2 2 1 1
cos1cos10sin0cos
2
sin
2
cos


dxxx n
n n n


 
 

2
0
2
0
2
cos1 cos1


xdx nxdx n
n n



2
0
cos

xdx I
n
n
x
u
n1
cos





 
 
2
0
22
2
0
1
sincos1 sincos


xdxx nxx
n n


xdxx ndu
n
sincos1
2




x
dxdv cos

x
vsin




2
0
1
coscos

xdxx
n



 






 
  
2
0
2 2 1 1
cos1cos10sin0cos
2
sin
2
cos


dxxx n
n n n


 
 

2
0
2
0
2
cos1 cos1


xdx nxdx n
n n




n n
I
n
I
n1 1
2






2
0
cos

xdx I
n
n
x
u
n1
cos





 
 
2
0
22
2
0
1
sincos1 sincos


xdxx nxx
n n


xdxx ndu
n
sincos1
2




x
dxdv cos

x
vsin


2
1



n n
I
nn
I



2
0
1
coscos

xdxx
n



 






 
  
2
0
2 2 1 1
cos1cos10sin0cos
2
sin
2
cos


dxxx n
n n n


 
 

2
0
2
0
2
cos1 cos1


xdx nxdx n
n n




n n
I
n
I
n1 1
2






2
0
cos

xdx I
n
n
x
u
n1
cos





 
 
2
0
22
2
0
1
sincos1 sincos


xdxx nxx
n n


xdxx ndu
n
sincos1
2




x
dxdv cos

x
vsin


2
1



n n
I
nn
I



2
0
1
coscos

xdxx
n



 






 
  
2
0
2 2 1 1
cos1cos10sin0cos
2
sin
2
cos


dxxx n
n n n


 
 

2
0
2
0
2
cos1 cos1


xdx nxdx n
n n




n n
I
n
I
n1 1
2





2
1






n n
I
n
n
I

5
2
0
5
cosIxdx 

5
2
0
5
cosIxdx 


3
5
4
I 

5
2
0
5
cosIxdx 


3
5
4
I 
1
3
2
5
4
I

5
2
0
5
cosIxdx 


3
5
4
I 
1
3
2
5
4
I


2
0
cos
15
8

xdx

5
2
0
5
cosIxdx 


3
5
4
I 
1
3
2
5
4
I


2
0
cos
15
8

xdx

2
0
sin
15
8

x 

5
2
0
5
cosIxdx 


3
5
4
I 
1
3
2
5
4
I


2
0
cos
15
8

xdx

2
0
sin
15
8

x 
15
8
0sin
2
sin
15
8







 




6
find ,cot Given that Ixdx I ii
n
n




6
find ,cot Given that Ixdx I ii
n
n

xdx I
n
n
cot




6
find ,cot Given that Ixdx I ii
n
n

xdx I
n
n
cot

xdxx
n22
cotcot




6
find ,cot Given that Ixdx I ii
n
n

xdx I
n
n
cot

xdxx
n22
cotcot 


 

dxxx
n
1cosec cot
2 2


 
 xdx xdxx
n n2 2 2
cot cosec cot




6
find ,cot Given that Ixdx I ii
n
n

xdx I
n
n
cot

xdxx
n22
cotcot 


 

dxxx
n
1cosec cot
2 2


 
 xdx xdxx
n n2 2 2
cot cosec cot
x
ucot

x
dx du
2
cosec




6
find ,cot Given that Ixdx I ii
n
n

xdx I
n
n
cot

xdxx
n22
cotcot 


 

dxxx
n
1cosec cot
2 2


 
 xdx xdxx
n n2 2 2
cot cosec cot
x
ucot

x
dx du
2
cosec


2
2




n
n
Iduu




6
find ,cot Given that Ixdx I ii
n
n

xdx I
n
n
cot

xdxx
n22
cotcot 


 

dxxx
n
1cosec cot
2 2


 
 xdx xdxx
n n2 2 2
cot cosec cot
x
ucot

x
dx du
2
cosec


2
2




n
n
Iduu2
1
1
1





n
n
Iu
n
2
1
cot
1
1





n
n
Ix
n

6
6
cotIxdx 

6
6
cotIxdx 

4
5
cot
5
1
Ix

6
6
cotIxdx 

4
5
cot
5
1
Ix
2
3 5
cot
3
1
cot
5
1
Ixx 

6
6
cotIxdx 

4
5
cot
5
1
Ix
2
3 5
cot
3
1
cot
5
1
Ixx 
0
3 5
cotcot
3
1
cot
5
1
Ixxx 

6
6
cotIxdx 

4
5
cot
5
1
Ix
2
3 5
cot
3
1
cot
5
1
Ixx 
0
3 5
cotcot
3
1
cot
5
1
Ixxx 

dxxxx cotcot
3
1
cot
5
1
3 5

6
6
cotIxdx 

4
5
cot
5
1
Ix
2
3 5
cot
3
1
cot
5
1
Ixx 
0
3 5
cotcot
3
1
cot
5
1
Ixxx 

dxxxx cotcot
3
1
cot
5
1
3 5
cxxxx  cotcot
3
1
cot
5
1
3 5

(iii) (2004 Question 8b)

4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn




2
1
) Show that
1
nn
aII
n



(iii) (2004 Question 8b)

4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn




2
1
) Show that
1
nn
aII
n



2 44
2
00
tan tan
nn
nn
I Idx dx




 


(iii) (2004 Question 8b)

4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn




2
1
) Show that
1
nn
aII
n



2 44
2
00
tan tan
nn
nn
I Idx dx




 


2 4
0
tan 1 tan
n
x
xdx



2 4
0
tan sec
n
x
xdx


(iii) (2004 Question 8b)

4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn




2
1
) Show that
1
nn
aII
n



2 44
2
00
tan tan
nn
nn
I Idx dx




 


2 4
0
tan 1 tan
n
x
xdx



2 4
0
tan sec
n
x
xdx



tan ux

2
sec du xdx

(iii) (2004 Question 8b)

4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn




2
1
) Show that
1
nn
aII
n



2 44
2
00
tan tan
nn
nn
I Idx dx




 


2 4
0
tan 1 tan
n
x
xdx



2 4
0
tan sec
n
x
xdx



tan ux

2
sec du xdx

when 0, 0
, 1
4
x
u
x
u




(iii) (2004 Question 8b)

4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn




2
1
) Show that
1
nn
aII
n



2 44
2
00
tan tan
nn
nn
I Idx dx




 


2 4
0
tan 1 tan
n
x
xdx



2 4
0
tan sec
n
x
xdx



tan ux

2
sec du xdx

1
0
n
udu 

when 0, 0
, 1
4
x
u
x
u




(iii) (2004 Question 8b)

4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn




2
1
) Show that
1
nn
aII
n



2 44
2
00
tan tan
nn
nn
I Idx dx




 


2 4
0
tan 1 tan
n
x
xdx



2 4
0
tan sec
n
x
xdx



tan
ux

2
sec du xdx

1
0
n
udu 

when 0, 0
, 1
4
x
u
x
u





1
1
0
1
n
u
n






(iii) (2004 Question 8b)

4
2
0
Let tan and let 1 for 0,1,2,
n
n
nnn
IxdxJIn




2
1
) Show that
1
nn
aII
n



2 44
2
00
tan tan
nn
nn
I Idx dx




 


2 4
0
tan 1 tan
n
x
xdx



2 4
0
tan sec
n
x
xdx



tan
ux

2
sec du xdx

1
0
n
udu 

when 0, 0
, 1
4
x
u
x
u





1
1
0
1
n
u
n





11
0
11 nn





1
1
) Deduce that for 1
21
n
nn
bJJ n
n

 




1
1
) Deduce that for 1
21
n
nn
bJJ n
n

 





1
12 22
11
nn
nnnn
JJ I I



 



1
1
) Deduce that for 1
21
n
nn
bJJ n
n

 





1
12 22
11
nn
nnnn
JJ I I



 



222
11
nn
nn
II

 



1
1
) Deduce that for 1
21
n
nn
bJJ n
n

 





1
12 22
11
nn
nnnn
JJ I I



 



222
11
nn
nn
II

 



222
1
n
nn
II

 



1
1
) Deduce that for 1
21
n
nn
bJJ n
n

 





1
12 22
11
nn
nnnn
JJ I I



 



222
11
nn
nn
II

 



222
1
n
nn
II

 

1
21
n
n




1
1
) Show that
421
n
m
m
n
cJ
n







1
1
) Show that
421
n
m
m
n
cJ
n








1
1
21
m
mm
JJ
m






1
1
) Show that
421
n
m
m
n
cJ
n








1
1
21
m
mm
JJ
m







1
2
11
2123
mm
m
J
mm



 







11
0
11 1
2123 1
mm
J
mm

 






1
1
) Show that
421
n
m
m
n
cJ
n








1
1
21
m
mm
JJ
m







1
2
11
2123
mm
m
J
mm



 







11
0
11 1
2123 1
mm
J
mm

 





4
0
1
1
21
n
m
n
dx
n









1
1
) Show that
421
n
m
m
n
cJ
n








1
1
21
m
mm
JJ
m







1
2
11
2123
mm
m
J
mm



 







11
0
11 1
2123 1
mm
J
mm

 





4
0
1
1
21
n
m
n
dx
n









4
0
1
1
21
n
m
n
x
n







1
1
214
n
m
n
n









1
1
) Show that
421
n
m
m
n
cJ
n








1
1
21
m
mm
JJ
m







1
2
11
2123
mm
m
J
mm



 


1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u


1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u



4
0
tan
n
n
Ixdx


1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u



4
0
tan
n
n
Ixdx



1
tan tan uxx u



2
1
du
dx
u


1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u



4
0
tan
n
n
Ixdx



1
tan tan uxx u



2
1
du
dx
u

when 0, 0
, 1
4
x
u
x
u




1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u



4
0
tan
n
n
Ixdx



1
tan tan uxx u



2
1
du
dx
u

when 0, 0
, 1
4
x
u
x
u





1
2
0
1
n
n
du
Iu
u



1
2
0
1
n
n
udu
I
u


1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u



4
0
tan
n
n
Ixdx



1
tan tan uxx u



2
1
du
dx
u

when 0, 0
, 1
4
x
u
x
u





1
2
0
1
n
n
du
Iu
u



1
2
0
1
n
n
udu
I
u



1
) Deduce that 0 and conclude that 0 as
1
nn
eI Jn
n
  

1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u



4
0
tan
n
n
Ixdx



1
tan tan uxx u



2
1
du
dx
u

when 0, 0
, 1
4
x
u
x
u





1
2
0
1
n
n
du
Iu
u



1
2
0
1
n
n
udu
I
u



1
) Deduce that 0 and conclude that 0 as
1
nn
eI Jn
n
  

2
0, for all 0
1
n
u
u
u


1
2
0
) Use the substitution tan to show that
1
n
n
u
duxIdu
u



4
0
tan
n
n
Ixdx



1
tan tan uxx u



2
1
du
dx
u

when 0, 0
, 1
4
x
u
x
u





1
2
0
1
n
n
du
Iu
u



1
2
0
1
n
n
udu
I
u



1
) Deduce that 0 and conclude that 0 as
1
nn
eI Jn
n
  

2
0, for all 0
1
n
u
u
u


1
2
0
0, for all 0
1
n
n
u
Iduu
u



2
1
1
nn
II
n



2
1
1
nn
II
n



2
1
1
nn
II
n



2
1
1
nn
II
n



2
1
1
nn
II
n



2
1
, as 0
1
nn
II
n




2
1
1
nn
II
n



2
1
1
nn
II
n



1
0
1
n
I
n



2
1
, as 0
1
nn
II
n




2
1
1
nn
II
n



2
1
1
nn
II
n



1
0
1
n
I
n



1
as , 0
1
n
n
 

2
1
, as 0
1
nn
II
n




2
1
1
nn
II
n



2
1
1
nn
II
n



1
0
1
n
I
n



1
as , 0
1
n
n
 

0
n
I


2
1
, as 0
1
nn
II
n




2
1
1
nn
II
n



2
1
1
nn
II
n



1
0
1
n
I
n



1
as , 0
1
n
n
 

0
n
I



2
10
n
nn
JI
 
2
1
, as 0
1
nn
II
n




2
1
1
nn
II
n



2
1
1
nn
II
n



2
1
, as 0
1
nn
II
n




1
0
1
n
I
n



1
as , 0
1
n
n
 

0
n
I



2
10
n
nn
JI
 
Exercise 2D; 1, 2, 3, 6, 8,
9, 10, 12, 14