Diffusion in Semiconductor IC Technology

gsvirdi07 16 views 30 slides Nov 01, 2025
Slide 1
Slide 1 of 30
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30

About This Presentation

This lecture, presented by Dr. G.S. Virdi, Ex-Chief Scientist at CSIR–Central Electronics Engineering Research Institute, Pilani, is an important part of the IC Technology and Microelectronic Devices course. The lecture provides an in-depth explanation of diffusion, one of the key doping technique...


Slide Content

IC Technology -Diffusion
Dr.G.S.Virdi
Ex.Chief Scientist
CSIR-Central Electronics Engineering Research Institute
Pilani—33303 1,India

Overview
•Introduction
•BasicDiffusionProcess
•DiffusionEquation
G.S.VIRDI

Diffusionandionimplantationarethetwokeyprocesses
tointroduceacontrolledamountofdopants
intosemiconductorsandtoaltertheconductivitytype.
•Figurecomparesthesetwotechniquesandtheresulting
dopantprofiles.Inthediffusionprocess,thedopantatoms
areintroducedfromthegasphaseofbyusingdoped-oxide
sources.
•Thedopingconcentrationdecreasesmonotonicallyfromthe
surface,andthein-depthdistributionofthedopantis
determinedmainlybythetemperatureanddiffusiontime.
•Generallyspeaking,diffusionandionimplantation
complementeachother.Forinstance,diffusionisusedto
formadeepjunction,suchasann-tubinaCMOSdevice,
whileionimplantationisutilizedtoformashallowjunction,
likeasource/drainjunctionofaMOSFET.
IntroductiontoDiffusion
G.S.VIRDI

Shallow
junction
Deep
junction
G.S.VIRDI

Comparisonof(a)diffusionand(b)ionimplantationfortheselective
introductionofdopantsintoasemiconductorsubstrate.
G.S.VIRDI

Diffusion
Anexampleofthechemicalreaction
diffusionusingaliquidsourceis
4POCl
3+3O
2 2P
2O
5+6Cl
2
forphosphorous
TheP
2O
5formsaglassonsiliconwaferandisthenreducedto
phosphorousbysilicon.
2P
2O
5+5Si 4P+5SiO
2
Thephosphorousisreleasedanddiffusesintothesiliconand
Chlorineisvented.
G.S.VIRDI

•Boronisthemostcommonp-typeimpurityinsilicon,
whereasarsenicandphosphorusareusedextensivelyasn-
typedopants.
•Thesethreeelementsarehighlysolubleinsiliconwith
solubilitiesexceeding5x10
20atoms/cm
3inthediffusion
temperaturerange(between800
oCand1200
oC).
•Thesedopantscanbeintroducedviaseveralmeans,
includingsolidsources(BNforB,As
2O
3forAs,andP
2O
5for
P),liquidsources(BBr
3,AsCl
3,andPOCl
3),andgaseous
sources(B
2H
6,AsH
3,andPH
3).
•Usually,thegaseoussourceistransportedtothe
semiconductorsurfacebyaninertgas(e.g.N
2)andisthen
reducedatthesurface.
Diffusion
G.S.VIRDI

Schematicdiagramofatypicalopen-tubediffusionsystem
G.S.VIRDI

•Fordiffusioningalliumarsenide,thehighvapourpressureof
arsenicrequiresspecialmethodstopreventthelossof
arsenicbydecompositionorevaporation.
•Thesemethodsincludediffusioninsealedampuleswithan
overpressureofarsenicanddiffusioninanopentube
furnacewithadopedoxidecappinglayer(e.gSiliconnitride)
•Mostofthestudiesofp-typediffusionhavebeenconfined
touseofzincintheformsofZn-Ga-AsalloysandZnAs
2for
thesealedampuleapproachorZnO-SiO
2fortheopen-tube
approach.
•Then-typedopantsingalliumarsenideincludeseleniumand
tellurium.
G.S.VIRDI

DiffusionEquation
•Diffusioninasemiconductorcanbevisualizedastheatomic
movementofthedopantinthecrystallatticebyvacancies
orinterstitials.
•Thereisafiniteprobabilitythatahostatomcanacquire
sufficientenergytoleavethelatticesiteandtobecomean
interstitialatomtherebycreatingavacancy.
•Whenaneighboringimpuritymigratestothevacancysite,
themechanismiscalledvacancydiffusion.
•Ifaninterstitialatommovesfromoneplacetoanother
withoutoccupyingalatticesitethemechanismisinterstitial
diffusion.
G.S.VIRDI

(a):Diagramtoshowvacancydiffusioninasemiconductor.
(b):Diagramtoshowinterstitialdiffusioninasemiconductor.
Source:
http://web.eng.gla.ac.uk/groups/sim_centre/courses/diffusion/diff_3.html
G.S.VIRDI

Modelsofatomicdiffusionmechanismsforatwo-dimensional lattice,witha
beingthelatticeconstant:(a)Vacancymechanism.
(b)Interstitialmechanism.
G.S.VIRDI

DiffusionEquation
•Thebasicdiffusionprocessofimpurityatomsissimilarto
thatofchargecarriers.LetFbethefluxofdopantatoms
traversingthroughaunitareainaunittime,and
•whereDisthediffusioncoefficient,Cisthedopant
concentration,andxisthedistanceinonedimension.
•Theequationimpartsthatthemaindrivingforceofthe
diffusionprocessistheconcentrationgradient,∂C/∂x.
•Infact,thefluxisproportionaltotheconcentrationgradient,
andthedopantatomswilldiffusefromahigh-concentration
regiontowardalow-concentrationregion.
G.S.VIRDI

DiffusionEquation
•Thebasicdiffusionprocessofimpurityatomsissimilarto
thatofchargecarriers.LetFbethefluxofdopantatoms
traversingthroughaunitareainaunittime,and
•whereDisthediffusioncoefficient,Cisthedopant
concentration,andxisthedistanceinonedimension.
•Theequationimpartsthatthemaindrivingforceofthe
diffusionprocessistheconcentrationgradient,∂C/∂x.
•Infact,thefluxisproportionaltotheconcentrationgradient,
andthedopantatomswilldiffusefromahigh-concentration
regiontowardalow-concentrationregion.
G.S.VIRDI

DiffusionEquation
•Thenegativesignontheright-hand-sideofstatesthat
mattersflowinthedirectionofdecreasingdopant
concentration,thatis,theconcentrationgradientisnegative.
•Accordingtothelawofconservationofmatter,thechange
ofthedopantconcentrationwithtimemustbeequivalentto
thelocaldecreaseofthediffusionflux,intheabsenceofa
sourceorasink.
G.S.VIRDI

DiffusionEquation
•Whentheconcentrationofthedopantislow,thediffusion
constantatagiventemperaturecanbeconsideredasa
constantandcanbewrittenas:
•ThisequationisreferredtoasFick'sSecondLawofDiffusion.
G.S.VIRDI

DiffusionEquation
coefficientsforlowconcentrationsofvarious
•Figureonnextslideshowsthemeasureddiffusion
dopant
impuritiesinsiliconandgalliumarsenide.
•Thelogarithmofthediffusioncoefficientsplottedagainst
thereciprocaloftheabsolutetemperatureyieldastraight
lineinmostofthecases,implyingthatoverthetemperature
range,thediffusioncoefficientscanbeexpressedas:.
whereDodenotesthediffusioncoefficientextrapolatedto
infinitetemperatureandE
astandsfortheArrhenius
activationenergy.
G.S.VIRDI

Diffusioncoefficient(alsocalleddiffusivity)asafunctionofthereciprocalof
temperaturefor(a)siliconand(b)galliumarsenide.
Fastmoving
species
Slowmoving
species
G.S.VIRDI

Forinterstitialdiffusion,Eaisrelatedtotheenergyrequired
tomoveadopantatomfromoneinterstitialsitetoanother.
ThevaluesofE
aarebetween0.5to1.5eVinbothSiand
GaAs.
Forvacancydiffusion,Eaisrelatedtoboththeenergiesof
motionandformationofvacancies.
Hence,E
aforvacancydiffusionislargerthanthatfor
interstitialdiffusionandisusuallybetween3to5eV.
G.S.VIRDI

DiffusionProfiles
•Thediffusionprofileofdopantatomsisdependentontheinitialand
boundaryconditions.
•Solutionofequationhavebeenobtainedforvarioussimpleconditions,
includingconstant-surface-concentrationdiffusionandconstant-total-
dopantdiffusion.
•Inthefirstscenario,impurityatomsaretransportedfromavapour
sourceontothesemiconductorsurfaceanddiffuseintothe
semiconductorwafer.
•Thevapoursourcemaintainsaconstantlevelofsurfaceconcentration
duringtheentirediffusionperiod.
•Inthesecondsituation,afixedamountofdopantisdepositedontothe
semiconductorsurfaceandissubsequentlydiffusedintothewafer.
G.S.VIRDI

ConstantSurfaceDiffusion
•Theinitialconditionatt=0is
C(x,0)=0
Whichstatesthatthedopantconcentrationinthehost
semiconductorisinitiallyzero.
•Theboundaryconditionare
C(0,t)=C
sandC(∞,t)=0
•whereCsisthesurfaceconcentration(atx=0)whichis
independentoftime.
•Thesecondboundaryconditionstatesthatatlargedistances
fromthesurface,therearenoimpurityatoms.
•ThesolutionoftheFick’sdiffusionequationthatsatisfiesthe
initialandboundaryconditionsisgivenby:
G.S.VIRDI

ErrorFunctionAlgebra
G.S.VIRDI

Diffusionprofiles.(a)Normalizedcomplementaryerrorfunction(erfc)versusdistancefor
successivediffusiontimes.
(b)NormalizedGaussianfunctionversusdistanceforsuccessivetimes.
ConstantSurfaceDiffusion
G.S.VIRDI

ConstantTotalDopant
•Afixed(orconstant)amountofdopantisdepositedontothe
semiconductorsurfaceinathinlayer,andthedopantis
subsequentlydiffusedintothesemiconductor.
•Theinitialconditionatt=0isagainC(x,0)=0.
Theboundaryconditionsare:
whereSisthetotalamountofdopantperunitarea.
Thesolutionofthediffusionequationsatisfyingtheabove
conditionsis:
ThisexpressionistheGaussiandistribution,andthedopant
profileisdisplayedinFigure
G.S.VIRDI

NormalizedconcentrationversusnormalizeddistancefortheerfcandGaussian
functions.
G.S.VIRDI

Influencingfactorsfordiffusion
•Diffusingspecies:Interstitialatomsdiffuseeasilythan
substitutionalatoms.
•Againsubstitutionalatomswithsmalldifferenceinatomic
radiuswithparentatomsdiffusewitheasethanatomswith
largerdiameter.
•Temperature:Itisthemostinfluencingfactor.Theirrelations
canbegivenbythefollowingArrheniusequation
•whereD
0isapre-exponentialconstant,Qistheactivation
energyfordiffusion,Risgasconstant(Boltzmann’sconstant)
andTisabsolutetemperature.
G.S.VIRDI

Influencingfactorsfordiffusion
•Fromthetemperaturedependenceofdiffusivity,itis
experimentallypossibletofindthevaluesofQandD
0.
•Latticestructure:Diffusivityishighforopenlatticestructure
andinopenlatticedirections.
•Presenceofdefects:Theotherimportantinfluencingfactor
ofdiffusivityispresenceofdefects.Manyatomic/volume
diffusionprocessesareinfluencedbypointdefectslike
vacancies,interstitials.
•Apartfromthese,dislocationsandgrainboundaries,i.e.
short-circuitpathsastheyfamouslyknown,greatly
enhancesthediffusivity.
G.S.VIRDI

Junctiondepthmeasurementbygroovingandstaining.
G.S.VIRDI

EvaluationofDiffusedLayers(contd..)
•IncaseifR
0ismuchlargerthanaandb,then
•Thejunctiondepthisthepositionwherethedopant
concentrationequalsthesubstrateconcentrationC
Bor
C(x
j)=C
B
•Thus,ifthejunctiondepthandC
Bareknown,theC
sandthe
impuritydistributioncanbecalculated,providedthe
diffusionprofile.
G.S.VIRDI

Thank You…
G.S.VIRDI
Tags