Financial Management I Chapter Three.pdf

belaywube 9 views 40 slides Nov 02, 2025
Slide 1
Slide 1 of 40
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40

About This Presentation

Chapter Three: The Time Value of Money
Discussion Points:
Introduction
Compound Interest and Future Value
Future Value of An Annuity
Discounting Techniques and Present Value
Annuities – A Level Stream


Slide Content

Chapter Three
Time value of money (TVM)
5.1.Introduction
Businessorganizationsdealswithinterestrateswhenitmakesboth
financingandinvestmentdecisions.
▪Acompanycan,therefore,earnarateofreturnonitsinvested
fundsandarateofinterestonthefundsitlenttoborrowers.
▪Thekeyconceptthatunderliesthisisthetimevalueofmoney:that
“abirrtodayisworthmorethanabirrreceivedayearfromnow”.
▪Thisisbecauseifyouhaditnow,youcouldinvestthatbirrorgiven
asloansduringtheyearandearnedareturnoraninterestonit.
▪Ingeneralbusinessterms,interestisdefinedasthecostofusing
moneyovertime.

▪Thisdefinitionisincloseagreementwiththedefinitionusedby
economists,whoprefertosaythatinterestrepresentsthetimevalue
ofmoney.
▪Ignoringtheeffectsofinflation,adollartodayisworthmorethana
dollartobereceivedayearfromnow.
▪Inotherwords,wewouldallprefertoreceiveaspecificamountof
moneynowratherthanonsomefuturedate.
✓Thispreferencerestsonthetimevalueofmoney.
TVMisalsodescribedasdiscountedcashflow(DCF).
✓DCFisatechniqueusedtodeterminethepresentvalueofa
certainamountofmoneyreceivedatafuturedate.
▪Theinterestrateisusedasthediscountingfactor,whichcanbe
foundbyusingapresentvalue(PV)table.

❑Inflowsofdollarsonvariousfuturedatesshouldnotbeadded
togetherasiftheywereofequalvalue.
▪Thesefuturecashinflowsmustberestatedattheirpresentvalues
beforetheyareaggregated.
Theconceptofthetimevalueofmoneytellsusthatmore
distantcashinflowshaveasmallerpresentvaluethancash
inflowstobereceivedwithinashortertimespan.
“Thelattermoneyisreceived,thelessvalueitholds,andBr.1
todayisworthmorethanBr.1receivedatadateinthefuture”.
❑Similarreasoningappliestocashoutflows.
Beforeweaddtogethercashoutflowsonvariousfuturedates,we
mustrestatetheseoutflowsattheirpresentvalues.
Themoredistantthedateofacashoutflow,thesmallerisits
presentvalues.

▪Asasimpleexampleofthisconceptofpresentvalue,assumethat
youaretryingtosellyourcarandyoureceiveoffersfromthree
prospectivebuyers.
❖Buyers“A”offersyouBr.8000tobepaidimmediately.Buyer“B”offersyouBr.8,200
tobepaidoneyearfromnow.Buyer“C”offersthehighestprice,Br.9,200butthis
offerprovidesthatpaymentwillbemadeinfiveyears.Assumingthattheoffersby“B”
and“C”involvesnocreditriskandthatmoneymaybeinvestedat5%interest
compoundedannually,whichofferwouldyouaccept?
YoushouldaccepttheofferofBr.8000tobereceivedimmediately,
becausethepresentvalueoftheothertwooffersislessthanBr.
8000.
✓IfyouweretoinvestBr.8000today,evenatthemodestrateof
interestof5%,yourinvestmentwouldbe(8,400)morethanBr.
8200inoneyearandconsiderably(10,000)morethanBr.9,200in
fiveyears.

▪Thisexamplesuggeststhatthetimingofcashreceiptsandpayments
hasanimportanteffectontheeconomicworthandtheaccounting
valuesofbothassetsandliabilities.
▪Consequently,investmentandborrowingdecisionsshouldbemade
onlyafteracarefulanalysisoftherelativepresentvaluesofthe
prospectivecashinflowsandoutflows.

5.2.SimpleInterestandCompoundInterest
•Interestistheexcessofresources(usuallycash)receivedorpaidover
theamountofresourcesloanedorborrowedatanearlierdate.
•Businesstransactionssubjecttointereststatewhethersimpleor
compoundinterestistobecalculated.
1)Simpleinterestisthereturnonaprincipalamountforonetime
period.
•Wemayalsothinkofsimpleinterestasareturnformorethanone
timeperiodifweassumethattheinterestitselfdoesnotearna
return,butthiskindofsituationoccursrarelyinthebusinessworld.
•Simpleinterestisusuallyapplicableonlytoshort-terminvestment
andborrowingtransactionsinvolvingatimespanoflessthanone
year.

•Interestisexpressedintermsofanannualrate.
•Theformulaforsimpleinterestis:
I=p*r*t(Interest=principalxannualrateofinterestxnumberof
yearsorfractionofayearthatinterestaccrues).
Or,usingalternativeapproach,
F=P+IThen,substituteI=P*i*nintheexpressiontoobtain
F=P+Pin
F=P(1+in)
Forexample,interestonBr.10,000at8%foroneyearisexpressedasfollows:
I=p.r.t
I=Br.10,000x0.08x1
I=Br.800
▪Theamounttoberepaidattheendoftheyearisthematurity(future)valueof
thespecifiedmoney.
Accordingly,F=P+I
F=10000+800
F=Br.10,800
I = p * r * t
F = P + I
F = P (1 + in)

Exercise:
1.Salon borrowed $5,000 at per year simple interest of 5% for
two years to buy new hair dryers. How much interest must be
paid?
2.Marcus Logan can purchase furniture with a two-year simple
interest loan at 9% interest per year. What is the maturity
value for a $2,500 loan?

2)Compoundinterestisthereturnonaprincipalamountfortwoor
moretimeperiods,assumingthattheinterestforeachtimeperiod
isaddedtotheprincipalamountattheendofeachperiod,and
earnsinterestinallsubsequentperiods.
•Iscalculatedontheprincipalamountandontheaccumulated
interestofpreviousperiod(andthereforeberegardedas“intereston
interest”)
•Becausemostinvestmentandborrowingtransactionsinvolvemore
thanonetimeperiod,businessexecutivesevaluateproposed
transactionsintermsofperiodicreturns,eachofwhichisassumedto
bereinvestedtoyieldadditionalreturns.
Forexample,ifinterestat8%iscompoundedquarterlyforoneyearona
principalamountofBr.10,000thetotalinterest(compoundinterest)
wouldbeBr.824.32,ascomputedbelow:

Period PrincipalxRatexTime=CompoundInterestAccumulatedAmounts
1stquarter----Br.10,000x0.08x¼ Br.200 Br.10,200
2ndquarter-------10,200x0.08x¼ 204 10,404
3rdquarter--------10,404x0.08x¼ 208.08 10,612.08
4thquarter-----10,612.08x0.08x¼ 212.24 10,824.32
Interest--------------------------------------------------------------824.32
N.B,
•Aperiod,forthispurpose,canbeanyunitoftime.
•Ifinterestiscompoundedannually,ayearistheappropriate
compoundingorconversionorinterestperiod.
•Ifitiscompoundedmonthly,amonthistheappropriateperiod.
•Itisimportanttoknowthatthenumberofcompoundingperiod/s
withinayearis/areusedinordertofindtheinterestrateper
compoundingperiodsanditisdenotedbyiintheaboveformula.

▪Consequently,whentheinterestrateisstatedasannualinterestrate
andiscompoundedmorethanonceayear,theinterestrateper
compoundingperiodiscomputedbytheformula:
Where;j=isannualquotedornominalinterestrate
m=numberofconversationperiodsperyearorthe
compoundingperiodsperyear
Where;t=isthenumberofyears
❑Inthecomputationofcompoundinterest,theaccumulatedamount
(interest)attheendofeachperiodbecomestheprincipalamount
forpurposesofcomputinginterestforthefollowingperiod.
i= j / m
n = m x t

•Incomputingsimpleinterest,thenumberofyearsortime,n,can
bemeasuredindays.
•Insuchcase,therearetwowaysofcomputingtheinterest.
1)TheExactMethod:ifayearisconsideredas365days,theinterest
iscalledexactsimpleinterest.
•Iftheexactmethodisusedtocalculateinterest,thenthetimeis
n=numberofdays/365
2)TheOrdinaryMethod(Banker’sRule):ifayearisconsideredas
360days,theinterestiscalledordinarysimpleinterest.
•Thetime,iscalculatedas
n=numberofdays/360

5.3FutureandPresentValues
▪Futurevalueinvolvesacurrentamountthatisincreasedinthe
futureasaresultofcompoundinterestaccumulation.
▪Presentvalue,incontrast,involvesafutureamountthatisdecreased
tothepresentasaresultofcompoundinterestdiscounting.
▪Discounting,ineffect,extractstheinterestfromafuturevalue
therebyreturningtotheprincipalamount.
▪Thefactthatinvestmentshavestartingpointsandendingpoints
makesiteasiertounderstandpresentandfuturevalues.
▪Presentvalueingeneralreferstodollar(birr)valuesatthestarting
pointofaninvestment,andfuturevaluereferstoend-pointdollar
(birr)values.

▪Ifthedollar(birr)amounttobeinvestedatthestartisknown,the
futurevalueofthatamountattheendcanbeprojected,providedthe
interestrateandnumberofinterestcompoundingperiodsarealso
specified.
▪Similarly,ifthedollar(birr)amountavailableattheendofan
investmentperiod(futurevalue)isknown,theamountofmoney
neededatthestartoftheinvestmentperiod(presentvalue)canbe
determined,againiftheinterestrateandnumberofinterest
compoundingperiodsareknown.
❑Presentvalueandfuturevalueapplytointerestcalculationsonboth
singlepaymentamountsandperiodicequalpaymentamounts
(annuities)

5.3.1.FuturevalueofaSingleSum
•Theaccumulatedamountofasingleamountinvestedatcompound
interestmaybecomputedperiodbyperiodbyaseriesof
multiplication,asillustratedaboveforBr.10,000investedforone
yearat8%compoundedquarterly.
•Ifnisusedtorepresentthenumberofperiodsthatinterestistobe
compounded,iisusedtorepresenttheinterestperperiod,andpis
theprincipalamountinvested,theseriesofmultiplicationsto
computetheaccumulatedamount(FV)intheexampleabove
determinedasflows:
FV=p(1+i)
n
FV=Br.10,000(1.02)4
FV=Br.10,000[(1.02)(1.02)(1.02)(1.02)]
FV=Br.10,824.32
i= j/m=8%/4 = 2%
n= m*t=1*4 = 4

Exercise:
1.Find the future value of a $10,000 investment at 2% annual
interest compounded semiannually for three year.
2.A loan of $2,950 at 8% is made for two years compounded
annually. Find the future value (compound amount) of the
loan. Find the amount of interest paid on the loan.
3.Davis invested $20,000 that earns 6% compounded monthly
for four years. Find the future value of Davis’s investment.

Illustrationofcomputationoffutureamount
▪Ifonthedayherdaughterwasborn,BetheldepositedBr.10,000in
asavingsaccountthatguaranteestoaccumulateinterestquarterlyat
10%ayear.
▪Whatwillbetheamountinthesavingsaccountonherdaughter’s
18thbirthday?
❑Solution:Theamountinthesavingsaccountonherdaughter’s18th
birthdaywillbeBr.10,000(1+0.025)
72
.BecauseTabledoesnotgo
beyond50periods,theamountinthesavingsaccountonthe
daughter’s18thbirthdaymaybecomputedasfollows:
FV=Br.10,000(1+0.025)
50
x(1+0.025)
22
FV=Br.10,000(3.437109)x(1.721571)
=Br.59,172
i= j/m=10%/4=2.5%
n= m*t=18*4=72

OtherApplicationoffuturevalueamountofsinglepayment:
▪Thefuturevalueequationforsinglepaymentstatedinthismaterial
canalsobeusedtofindinterestrates,aswellas,numbersofyears
thatwillbeneededforthecompoundedamounttoequalthedesired
value.
FindingtheInterestrate:
•Ausefulapproachistotreattheinterestrateasanimplicitinterest
rateandfoundbyusingtheinteresttable(futurevaluetableofsingle
payment).

▪Toillustrate,assumethatyouhaveinvested15,000Birrtodayata
bankwhereitcangrowtothefuturevalueof17,900Birrwithin
threeyearsfromnowintothefuture.
✓Whatistheinterestratethatthebankshouldpayforyour
accountinordertofulfillyourdesire?
▪Toanswerthisquestion,substitutingthosevaluesintothefuture
valueofsinglepaymentequation,youget:
FV
3= PV (1+i)
3
Fv/Pv= (1+i)
3
FVIF
i,
3= (1+i)
3
= 193.1
000,15
900,17
=

▪Thefuturevalueinterestfactorintheinterest(futurevalueofsingle
paymenttable)correspondingtotheunknowninterestrate(i)anda
periodof3yearsn=3)is1.193.
▪Hence,lookupthethreeyear(n=3)rowandreadhorizontallyuntil
youfindthetablevalue(futurevalueinterestfactor)thatisequalor
theclosesttothecomputedvalueof1.193.
▪Thereisnotablevaluethatisexactlyequalto1.193.
▪Thetablevalueof1.191isfoundtobetheclosestvalueto1.193
anditcorrespondsto6percent.
▪Therefore,theinterestthatthebankactuallyhastopaytoyour
accountisslightlygreaterthan6percent.

Findingthenumberofyears:
▪Thefuture(compound)valueofsinglepaymentequationcanbeused
toestimatethenumberofyearsthatarerequiredforagivenamount
ofmoneydepositedataspecificinterestratetoproduceordesired
compoundamount.
▪Forexample,adepositof1000Birrismadeinaninterestbearing
accountthatpays10percentcompoundedyearly.
▪Yourgoalasadepositoristocollect1,500Birrafteranunknown
numberofyears.
▪Howmanyyearsshouldyouwaitforthedesiredamounttobe
realized?

Bysubstitutingthevaluesintothefuturevalueofsinglepaymentequation,
youget:
FVn=1000(1+I)
n
1,500=1000(1+0.1)
n
=1000(1.1)n
(1.1)
n
=1500/1000
=1.5,byusinglogarithm
n=log1.11.5=log1.5/log1.1=0.176/0.041=4.29years
•Againitispossibletolookupthe10percentcolumninthefuture
valueinterestfactors(futurevalue)tableandreadverticallyuntilyou
findatablevaluethatisequalto1.5orclosesttoit.
•Theclosesttablevalueis1.611,whichcorrespondstofiveyears(n=5).
•Thatmeansifthe1000Birriskeptintheaccountthatpays10percent
forfiveyears;theresultingcompoundingamountwillbe1,611Birr.
•Thisamountexceedsthedesiredamountof1,500Birr.Ifthe1000
Birriskeptintheaccountonlyforfouryears,thetablevalueis1.464.
Hence,the1000Birrhastobekeptintheaccountforaperiodslightly
greaterthan4years.

5.3.2.PresentValueofaSingleSum
▪Manymeasurementandvaluationproblemsinfinancialaccounting
requirethecomputationofthediscountedpresentvalueofa
principalamounttobepaidorreceivedonafixeddate.
▪Thepresentvaluerepresentsthediscountedamount(interest
excluded)thatwillaccumulatetothefutureamount(interest
included).
▪Thepresentvalueofafutureamountisalwayslessthanthatfuture
amount.
▪Thecomputationofthepresentvalueofasinglefutureamountisa
reversaloftheprocessoffindingtheamounttowhichapresent
amountwillaccumulate.

FV=p(1+i)
n
,andwhenwesolveforpbydividingbothsidesofthe
equationby(1+i)
n
,wehave
PV=()
n
i
FV
+1
Therefore,theformulaforthePVofFVdueinnperiodsatirateof
interestperperiodis
PV=
Example:IfwewantanamountofBr.30,000after12yearsbymaking
asingledepositinasavingaccountwhichwillpay16%interest
compoundedquarterly,whatshouldtheamountofinitialdepositbe?()
n
i
FV
+1
FV = future amount
P = present value
i= interest rate per period
n = number of compounding period

Solution:ThepresentvalueisBr.30,000discountedat4%for48periods.
Thepresentvalueis
Exercise:
Abnetneeds$20,000infiveyearstobuyanewmachine.Howmuch
mustheinvestatthepresentifhereceives5%interestcompounded
semi-annual?()
n
i
FV
+1 ( ) 570528.6
000,30.
04.01
000,30.
48
BrBr
=
+
PV=
=
=Br.4565.84
=
i= j/m=16%/4=4%
n= m*t=12*4=48

Annuities
▪Anannuityisaseriesofuniformpaymentsorreceiptsoccurringat
uniformintervalsoveraspecifiedinvestmenttimeframe,withall
amountsearningcompoundinterestatthesamerate.
▪Paymentsofanytypeareconsideredasannuitiesifallofthe
followingconditionsarepresent:
i.Theperiodicpaymentsareequalinamount
ii.Thetimebetweenpaymentsisconstantsuchasayear,half
ayear,aquarterofayear,amonthetc.
iii.Theinterestrateperperiodremainsconstant.
iv.Theinterestiscompoundedattheendofeverytime.

▪Annuitiesareclassifiedaccordingtothetimethepaymentismade.
▪Accordingly,wehavetwobasictypesofannuities.
1)Ordinaryannuity:isaseriesofequalperiodicpaymentismadeat
theendofeachintervalorperiod.
✓Inthiscase,thelastpaymentdoesnotearninterest.
2)Annuitydue:isatypeofannuityforwhichapaymentismadeat
thebeginningofeachintervalorperiod.
❖AmountofAnnuity:Amountofanannuityisfuturevaluesofa
seriesofequalreceiptsorpayments(rents)madeatregulartime
intervalsandatthesamerateofinterestcompoundedeachtime
thereceiptsorpaymentsaremade.

5.4.1.FutureValueofanordinaryAnnuity
▪Anordinaryconsistsofaseriesofequalpaymentmadeattheendofeach
period.
▪Ifyoudeposit100Birrattheendofeachyearforthreeyearsinasaving
accountthatpays5percentperyear,howmuchwillyouhaveattheend
ofyearthree(n=3)?.
▪Toanswerthisquestion,youmustfindfuturevalueofanannuity(FVA
n
.)
▪Eachpaymenthastobecompoundedouttotheendofperiodn,andthe
sumofthecompoundedpaymentsgivesyouFVA
n
.
▪Thiscanbeshownbyusingthefollowingtimeline.
0 1 2 3
100Birr 100Birr 100Birr
105.00Birr=100(1.05)
1
110.25Birr=100(1.05)
2
FVA
3
=315.25Br.

FVA
n
=PMT(1+i)
0
+PMT(1+i)
1
+PMT(1+i)
2
+----+PMT(1+i)
n-1
•Inthisequationthefirstterm(i.e.PMT(1+i)
0
)isthecompounded
valueofthepaymentattheendoflastyear,oryearnofthe
annuitypayments;whilethelasttermintheequation(i.e.PMT
(1+i)
n-1
)isthecompoundedamountofthepaymentmadeatthe
endofyearone(n-1).
•Theaboveequationcanfurtherbesimplifiedto:
•Usingthisfuturevalueofanannuityequation,thefuturevalueofthe
100Birrdepositsmadeattheendofeachyearforthreeyearsatan
interestrateof5percentwouldbe:
FVA
3
=(100)




 −+
05.0
1)05.01(
3
=(100)(3.1525)=315.25Birr




 −+
i
i
n
1)1(
FVA
n= (PMT)
PMT = Per period payment amount

Example:Computetheamountofanordinaryannuityof16rentsof
Br.100at2%
Solution:
FVAn=Br.100( )
93.1863.
02.0
372786.0
100
02.0
1372786.1
02.0
102.01
16
Br=











 −
=




 −+

Exercise:
1.Find the value of an ordinary annuity after two years of
$1,500 invested semiannually at 4% annual interest?

5.4.2.Present(Discounted)valueofordinaryAnnuity:
•Supposethatyouareofferedtwoalternatives:
(1)athree-annuitywithpaymentof100Br.attheendofeachyear
overthecomingthreeyears,or(2)a:lump-sumpaymenttoday.
1)Youhavenoneedforthemoneyduringthenextthreeyears,soif
youaccepttheannuity,youwouldsimplydepositthepaymentsin
thesavingaccountatDashenBankthatpays5percentinterestrate
compoundedyearly.
2)SimilarlytheLump-Sumpaymentwouldbedepositedinthesame
accountasyoudon'thaveotheroption.
•HowlargeshouldtheLump-sumpaymenttodayinorderforitbe
equivalenttotheannuity?

Toanswerthisquestion,letusstart-upwiththeaidofthetimeline.
0 1 2 3
100 100 100
95.24
90.70
86.38
PVA
3
=272.32Br.
▪Thepresentvalueoftheseriesofpaymentsof100Birrforthreeyears
annuity,PVA
3
is272.32Birrasshownwiththehelpofthetimeline.
▪Thesameproblemcanbeexpressedbyusingmathematicalequation.
▪Thegeneralmathematicalequationthatcanbeusedtofindthe
presentvalueofanordinaryannuityisshownbelow:

()
n
i
PMT
i
PMT
i






+
+−−−−+





+
+





+ 1
1
1
1
1
1
21 













+
−−−−+





+
+





+
+





+
n
iiii 1
1
1
1
1
1
1
1
211 PVA
n
=(PMT)
SincePMTiscommonforallterms,theaboveequationcanbere-writtenas:
PVA
n
=(PMT)
Again the equation can berewritten as:
PVA
n
= (PMT) 













+

=
t
n
t i1
1
1 i
i
n
,)1(
1
1
+
− i
i
n−
+− )1(1
Thesummationterminthisequationiscalledthepresentvalueinterest
factorforanannuity(PVIFA)anditequivalentto: or











+






 +−

i
i
PMTor
i
i
nn
)1(
1
1
,
)1(1
PVA
n= (PMT)

▪Byusingthismathematicalequation,thepresentvalueofanannuity
oftheproblemunderconsiderationcanbecomputedasfollows.
▪Youaregivenanannuitypayment,PMTof100Birr,interestrate,5
percentcompoundedyearlyandanannuityperiod,nofthreeyears.
▪Substitutingthesevaluesintotheaboveequation,yougetthepresent
valueofanannuityof272.32Birr,whichwasthesameasthe
amountcomputedbysummingtheindividualdiscountedvaluedon
thetimeline.
PVA
3= (100) 











+






+−

05.0
)05.01(
1
1
)100(,
05.0
)05.01(1
3 n
or
=(100)(2.7232)
=272.32Birr

5.4.3.FuturevalueofAnnuityDue
▪Theamountofanannuitydue(orannuityinadvance)isthetotal
amountondeposit/paymentoneperiodafterthefinal
deposit/payment.
▪Similartoordinaryannuitiesexceptthatpayment/depositsaremade
atthebeginningofeachdeposit/paymentperiods.
Example.Ifthecooperativeunionsdeposit100Birrinterestof10%for
3years
Solution;FVA(Due)3=
=
=
=

5.4.4PresentvalueofOrdinaryAnnuity
•Presentvalueofordinaryannuityisthediscountedvalueofaseriesof
futurerentsonadateoneperiodbeforethefirstpayment/deposit.
▪Youaregivenanannuitypayment,PMTof100Birr,interestrate,10
percentcompoundedyearlyandanannuityperiod,nofthreeyears.
CalculatethePVA(DUE)n?
Solution:
PVA (DUE)n = Br. 273.55

5.4.5.PresentvalueofPerpetualAnnuity
▪Whenanannuityisexpectedtooccurindefinitely,itiscalled
perpetualannuity.
▪Perpetuityisastreamofequalpaymentsexpectedtocontinue
forever.
▪Thepresentvalueofperpetuityis:
PVP=
Payment =PMT
Interest rate k
Forexample,iftheinterestratewere12percent,perpetuityof$1,000a
yearwouldhaveapresentvalueof=$8,333.33.
PVp=Payment/Interestrate
=PMT/k
=$1,000/0.12
=Br.$8,333.33

Exercise:
1.What is the future value of an annuity due with an
annual payment of $1,000 for three years at 4% annual
interest? Find the total investment and the total interest
earned.
2.If you make six monthly payments of $50 to an annuity
due and receive 6% annual interest compounded
monthly, how much will you accumulate?

End of Chapter –Three
Thank You!!!