G.Bianchi, G.Neglia, V.Mancuso
Message MessageSwitching Switching Mail delivery
G.Bianchi, G.Neglia, V.Mancuso
Packet PacketSwitching Switching
Router C
Router B
Router F
Router D
Internet routing
Router E
A
G
G.Bianchi, G.Neglia, V.Mancuso
Space Space Division DivisionSwitching Switching
((forforCircuit CircuitSwitching Switching))
ÎSpatial mapping of inputs and outputs
ÖUsed primarily in analog switching systems
Space
I
1
I
n
.
.
.
. . .
O
1
O
m
G.Bianchi, G.Neglia, V.Mancuso
Time Time Division DivisionMultiplexing Multiplexing
time
8 bits
Link: 64 kbps
Sourcerate: 64 kbps
125 μs
time
Link: 256 kbps
time
Link: 256 kbps
Control information inserted for framing – result: 4x64 > 256!
(frequence sampling = 8kHz)
G.Bianchi, G.Neglia, V.Mancuso
Circuit CircuitSwitching Switching(i)(i)
switch
switch
time #1 #2 …#8#1 #2 …#8
frame
TDM
slot
ctrl
…
TDM link
Time DivisionMultiplexing
G.Bianchi, G.Neglia, V.Mancuso
Example Exampleof of bursty burstytraffic traffic
(ON/OFF voice (ON/OFF voice flows flows))
On (activity) period
OFF period
VOICE SOURCE MODEL forconversation(Brady):
averageON duration(talkspurt): 1 second
averageOFF duration(silence): 1.35 seconds
ion) packetizat (before %55.42
35.11
1
=
+
=
+
=
OFF ON
ON
T T
T
activity
Efficiency= utilization% = sourceactivity
G.Bianchi, G.Neglia, V.Mancuso
Message MessagevsvsPacket PacketSwitching Switching
ÎMessage Switching
ÖOne single datagram
message header
header
overhead
+
=
message
header
header
packet
packet
packet
p
header
header
header
ÎPacket Switching
ÖMessagechoppedin smallpackets
ÖEachpacketincludesheader
Ælike postal letters! Each must have
a specified destination data
message header n
header n
overhead
size packet
message
n
+ ⋅
⋅
=
⎥
⎥
⎤
⎢
⎢
⎡
=
_
Messageswitchingoverheadlowerthanpacketswitching
G.Bianchi, G.Neglia, V.Mancuso
Message MessagevsvsPacket PacketSwitching Switching
ÎMessage Switching
ÖOne single datagram
Æeither received or lost
ÆOne single network path
message
header
header
packet
packet
packet
p
header
header
header
ÎPacket Switching
ÖMany packets generated by a same
node and belonging to a same
destination
Æmay take different paths (and
packets received out of order –
need sequence)
ÆMay lose/corrupt a subset (what
happens on the message
consistency?)
Messageswitching: higherreliability, lowercomplexity
Butsometimesmessageswitchingnotpossible
(e.g. forrealtime sourcessuchasvoice)
G.Bianchi, G.Neglia, V.Mancuso
Message Message//packet packetSwitching Switchingvsvs
circuit circuitswitching switching
router
router
mesg/pack
header
Router:
-reads header(destinationaddress)
-selectsoutput path
ÎAdvantages
ÖTransmissionresourcesusedonlywhenneeded(data available)
ÖNo signalling needed
ÎDisadvantages
ÖOverhead
ÖInefficient routing fabrics (needs to select output per each packet)
ÖProcessing time at routers (routing table lookup)
ÖQueueingat routers
G.Bianchi, G.Neglia, V.MancusoTx delay
B/C
Link Linkdelay delaycomputation computation
Router
ÎTransmission delay:
ÎC [bit/s] = link rate
ÎB [bit] = packet size
Îtransmission delay = B/C [sec]
ÎExample:
Î512 bytes packet
Î64 kbps link
Îtransmission delay = 512*8/64000 = 64ms
ÎPropagation delay – constant depending on
ÎLink length
ÎElectromagnetig waves propagation speed in
considered media
Î200 km/s for copper links
Î300 km/s in air
Îother delays neglected
ÎQueueingdelay
ÎProcessingdelay
time
sender
time
receiver
Tx delay
B/C
Prop
delay
ÎDelay components:
ÆProcessing delay
ÆTransmission delay
ÆQueueing delay
ÆPropagation delay
G.Bianchi, G.Neglia, V.Mancuso
Statistical Statisticalmuxmuxanalysis analysis
ÎVerycomplex, whenqueueing
considered
ÖInvolvesqueueingtheory
ÖInvolvestraffictime correlationstatistics
ÎVeryeasy, in the (worstcase = conservative)
assumptionof unbufferedsystem
ÖIn practice, burstsizelong withrespecttobuffer size
ÎDependsonlyon activityfactorρ
High corr
Lowcorr
G.Bianchi, G.Neglia, V.Mancuso
Statistical Statisticalmuxmuxanalysis analysis(i)(i)
unbuffered unbufferedmodel model
N trafficsources; Homogeneous, sameactivityfactor ρ
Sourcerate = 1; Linkcapacity= C
TDM: N must
be <= C Packet: N may be> C
()
kN k
k
N
−
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=) 1( active usly simultaneo sources k Prob
ρ ρ
number of active sources probability
0 32.77%
1 40.96%
2 20.48%
35.12%
40.64%
50.03%
Example: N=5; eachhaving20% activity
Averageload= 5*0.2 = 1
But C=1 appears insufficient…
G.Bianchi, G.Neglia, V.Mancuso
kN k
C
k
kN k
N
Ck
overflow
k
N
k
N
P
−
=
−
+=
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−=
= −
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
∑
∑
) 1( 1
) 1(
0
1
ρ ρ
ρ ρ
Statistical Statisticalmuxmuxanalysis analysis((iiii))
unbuffered unbufferedmodel model
ÎOverflow probability
ÖProbability that, at a given instant of time (random), the link load is
greater than the link capacity
ÖImplies packet loss ifbuffer=0
Example: N=5;
eachhaving20% activity;
link capacity overflow prob
0 67.23%
1 26.27%
25.79%
30.67%
40.03%
50.00%
G.Bianchi, G.Neglia, V.Mancuso
Statistical Statisticalmuxmuxanalysis analysis((iiiiii))
unbuffered unbufferedmodel model
ÎPacket loss probability
ÖNumberof lostpacketsover
numberof offeredpackets
ÎOffered packets
ÖN * average number of offered
packets per source = N * ρ
ÎLost packets:
ÖIf k <= C active sources, no
packetloss
ÖIfk > C, k-C lostpackets
Îhence
) (
1
1
) 1(
1
) 1( ) (
overflow
N
Ck
kN k
N
Ck
kN k
loss
P
N
C
k
N
k
N
N
k
N
Ck
P
ρ
ρ ρ
ρ
ρ
ρ ρ
− −
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
=
−
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
=
∑
∑
+=
−
+=
−
k or C p(k) k*p(k) overflow(C)loss(C)
0 32.77% 067.23%100.00%
1 40.96% 0.409626.27%32.77%
2 20.48% 0.40965.79%6.50%
3 5.12% 0.15360.67%0.70%
4 0.64% 0.02560.03%0.03%
5 0.03% 0.00160.00%0.00%
Example: N=5; eachhaving20% activity;
N
ρ
= 1