References ( Contd.) [19] B. Dhivyabharathi , B. Anil Kumar, Lelitha Vanajakshi , "Real time bus arrival time prediction system under Indian traffic condition", 2016 IEEE International Conference on Intelligent Transportation Engineering (ICITE), pp.18 - 22, 2016. [20] Tianqi Chen, Carlos Guestrin , " XGBoost : A Scalable Tree Boosting System", KDD ’16, August 13-17, 2016, San Francisco, CA, USA, Pages 785-794, 2016. [21] Ferran Diego, Fred A. Hamprecht ,"Structured Regression Gradient Boosting", 2016 IEEE Conference on Computer Vision and Pattern Recognition, pages 1459-1467 , 2016. [22] Muthukrishnan R, Rohini R, "LASSO: A Feature Selection Technique In Predictive Modeling For Machine Learning", 2016 IEEE International Conf. on Advances in Computer Applications (ICACA), pages 18-20, 2016 . [23] Gabriel B. Kalejaiye , Henrique R. Orefice , Teogenes A. Moura, "Poster Abstract : Frugal Crowd Sensing for Bus Arrival Time Prediction in Developing Regions", 2017 IEEE Second International Conference on Internet-of-Things Design and Implementation ( IoTDI ), pp. 355 - 356, 2017. [24] Xiaobo Liu, Zhentao Liu1, Guangjun Wang1, Zhihua Cai , Harry Zhang , ”Ensemble Transfer Learning Algorithm”, Special section on adv. data analytics for large-scale complex data environments, pp 2389-2396, 2017 . [25 ] Michael Stone, “New York City Bus Data”, live data recorded fron NYC buses, ( version 4) , Available [Online] https:// www.kaggle.com/stoney71/new-york-city-transport-statistics , accessed on 5 May 2018. ME Stage 2 Seminar By Ninad V Gaikwad 92