Chapter 8: Statistical Inference: Estimation for Single Populations 2
CHAPTER TEACHING STRATEGY
Chapter 8 is the student's introduction to interval estimation and
estimation of sample size. In this chapter, the concept of point estimate is
discussed along with the notion that as each sample changes in all likelihood so
will the point estimate. From this, the student can see that an interval estimate
may be more usable as a one-time proposition than the point estimate. The
confidence interval formulas for large sample means and proportions can be
presented as mere algebraic manipulations of formulas developed in chapter 7
from the Central Limit Theorem.
It is very important that students begin to understand the difference
between mean and proportions. Means can be generated by averaging some sort
of measurable item such as age, sales, volume, test score, etc. Proportions are
computed by counting the number of items containing a characteristic of interest
out of the total number of items. Examples might be proportion of people
carrying a VISA card, proportion of items that are defective, proportion of market
purchasing brand A. In addition, students can begin to see that sometimes single
samples are taken and analyzed; but that other times, two samples are taken in
order to compare two brands, two techniques, two conditions, male/female, etc.
In an effort to understand the impact of variables on confidence intervals,
it may be useful to ask the students what would happen to a confidence interval if
the sample size is varied or the confidence is increased or decreased. Such
consideration helps the student see in a different light the items that make up a
confidence interval. The student can see that increasing the sample size, reduces
the width of the confidence interval all other things being constant or that it
increases confidence if other things are held constant. Business students probably
understand that increasing sample size costs more and thus there are trade-offs in
the research set-up.
In addition, it is probably worthwhile to have some discussion with
students regarding the meaning of confidence, say 95%. The idea is presented in
the chapter that if 100 samples are randomly taken from a population and 95%
confidence intervals are computed on each sample, that 95%(100) or 95 intervals
should contain the parameter of estimation and approximately 5 will not. In most
cases, only one confidence interval is computed, not 100, so the 95% confidence
puts the odds in the researcher's favor. It should be pointed out, however, that the
confidence interval computed may not contain the parameter of interest.
This chapter introduces the student to the t distribution to estimate
population means when
s is unknown. Emphasize that this
applies only when the population is normally distributed. The student will
observe that the t formula is essentially the same as the z formula and that it is the
table that is different. When the population is normally distributed and
s is
known, the z formula can be used even for small samples.