[2024] An Introduction to Functional Programming with Go [Y Combinator Remix].pdf

feyeleanor 35 views 117 slides Oct 07, 2024
Slide 1
Slide 1 of 156
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156

About This Presentation

A reworking of my 2019 GoLab Keynote on Functional Programming in Go, updated to embrace Go Generics.

Now with added Y Combinator goodness including the generically typed Y Combinator with automatic Memoisation, a world first in Go.

Don't settle for the rest - be baffled by the best :)

Code a...


Slide Content

AN
INTRODUCTION
TO
FUNCTIONAL PROGRAMMING
IN
GO [Y COMBINATOR REMIX]
ELEANOR MCHUGH

ELEANOR M
C
HUGH
@feyeleanor
MISAPPLIED PHYSICIST
EMBEDDED SYSTEMS
VIRTUAL MACHINES
P2P NETWORKING
DIGITAL IDENTITY
SECURE COMMS
JAVASCRIPT
RUBY
GO

OO makes code understandable by
encapsulating moving parts.
FP makes code understandable by
minimizing moving parts.
Michael Feathers
@mfeathers
AN INTRODUCTION TO FUNCTIONAL PROGRAMMING IN GO [Y COMBINATOR REMIX]

LEANPUB://GONOTEBOOK

FUNCTIONS
AS
PARADIGM

FUNCTIONS
AS
PARADIGM
A PURE FUNCTION

A PURE FUNCTION
package main
import "os"
func main() {
os.Exit(add(3, 4))
}
func add(x, y int) int {
return x + y
}
50.GO

A PURE FUNCTION
package main
import "os"
func main() {
os.Exit(add(3, 4))
}
func add(x, y int) int {
return x + y
}
50.GO

A PURE FUNCTION
package main
import "os"
func main() {
os.Exit(add(3, 4))
}
func add(x int, y int) int {
return x + y
}
50.GO

A PURE FUNCTION
package main
import "os"
func main() {
os.Exit(add(3, 4))
}
func add(x int, y int) int {
return x + y
}
50.GO

A PURE FUNCTION
package main
import "os"
func main() {
os.Exit(add(3, 4))
}
func add(x int, y int) int {
return x + y
}
50.GO

A PURE FUNCTION
func main() {
os.Exit(add(3, 4))
}
type Scalar interface {
int | int8 | int16 | int32 | int64 |
uint | uint8 | uint16 | uint32 | uint64 |
float32 | float64
}
func add[T Scalar](x, y T) T {
return x + y
}
51.GO

A PURE FUNCTION
func main() {
os.Exit(add(3, 4))
}
type Scalar interface {
int | int8 | int16 | int32 | int64 |
uint | uint8 | uint16 | uint32 | uint64 |
float32 | float64
}
func add[T Scalar](x, y T) T {
return x + y
}
51.GO

A PURE FUNCTION
func main() {
os.Exit(add(3, 4))
}
type Scalar interface {
int | int8 | int16 | int32 | int64 |
uint | uint8 | uint16 | uint32 | uint64 |
float32 | float64
}
func add[T Scalar](x, y T) T {
return x + y
}
51.GO

A PURE FUNCTION
package main
import "os"
import "strconv"
func main() {
x, _ := strconv.Atoi(os.Args[1])
y, _ := strconv.Atoi(os.Args[2])
os.Exit(add(x, y))
}
type Scalar interface {
int | int8 | int16 | int32 | int64 |
uint | uint8 | uint16 | uint32 | uint64 |
float32 | float64
}
func add[T Scalar](x, y T) T {
return x + y
}
52.GO

A PURE FUNCTION
package main
import "os"
import "strconv"
func main() {
x, _ := strconv.Atoi(os.Args[1])
y, _ := strconv.Atoi(os.Args[2])
os.Exit(add(x, y))
}
type Scalar interface {
int | int8 | int16 | int32 | int64 |
uint | uint8 | uint16 | uint32 | uint64 |
float32 | float64
}
func add[T Scalar](x, y T) T {
return x + y
}
52.GO

A PURE FUNCTION
package main
import "os"
import "strconv"
func main() {
x, _ := strconv.Atoi(os.Args[1])
y, _ := strconv.Atoi(os.Args[2])
os.Exit(add(x, y))
}
type Scalar interface {
int | int8 | int16 | int32 | int64 |
uint | uint8 | uint16 | uint32 | uint64 |
float32 | float64
}
func add[T Scalar](x, y T) T {
return x + y
}
52.GO

A PURE FUNCTION
func main() {
os.Exit(add(arg(0), arg(1)))
}
func arg(n int) (r int) {
r, _ = strconv.Atoi(os.Args[n + 1])
return
}
func add[T Scalar](x, y T) T {
return x + y
}
53.GO

A PURE FUNCTION
func main() {
os.Exit(add(arg(0), arg(1)))
}
func arg(n int) (r int) {
r, _ = strconv.Atoi(os.Args[n + 1])
return
}
func add[T Scalar](x, y T) T {
return x + y
}
53.GO

A PURE FUNCTION
func main() {
os.Exit(add(arg(0), arg(1)))
}
func arg(n int) (r int) {
r, _ = strconv.Atoi(os.Args[n + 1])
return
}
func add[T Scalar](x, y T) T {
return x + y
}
53.GO

A PURE FUNCTION
func main() {
os.Exit(add(arg(0), arg(1)))
}
func arg(n int) (r int) {
r, _ = strconv.Atoi(os.Args[n + 1])
return
}
func add[T Scalar](x, y T) T {
return x + y
}
53.GO

A PURE FUNCTION
func main() {
var sum int
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
sum = add(sum, x)
}
os.Exit(sum)
}
func add[T Scalar](x, y T) T {
return x + y
}
54.GO

A PURE FUNCTION
func main() {
var sum int
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
sum = add(sum, x)
}
os.Exit(sum)
}
func add[T Scalar](x, y T) T {
return x + y
}
54.GO

A PURE FUNCTION
func main() {
var sum int
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
sum = add(sum, x)
}
os.Exit(sum)
}
func add[T Scalar](x, y T) T {
return x + y
}
54.GO

A PURE FUNCTION
func main() {
var sum int
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
sum = add(sum, x)
}
os.Exit(sum)
}
func add[T Scalar](x, y T) T {
return x + y
}
54.GO

FUNCTIONS
AS
PARADIGM
FUNCTIONS WITH SIDE-EFFECTS

FUNCTIONS WITH SIDE-EFFECTS
func main() {
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
accumulate(x)
}
os.Exit(y)
}
var y int
func accumulate(x int) {
y += x
}
55.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
accumulate(x)
}
os.Exit(y)
}
var y int
func accumulate(x int) {
y += x
}
55.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
accumulate(x)
}
os.Exit(y)
}
var y int
func accumulate(x int) {
y += x
}
55.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
accumulate(x)
}
os.Exit(y)
}
var y int
func accumulate(x int) {
y += x
}
55.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
accumulate(x)
}
os.Exit(y)
}
var y int
func accumulate(x int) {
y += x
}
55.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a.Add(x)
}
os.Exit(int(a))
}
var a Accumulator
type Accumulator int
func (a *Accumulator) Add(y int) {
*a += Accumulator(y)
}
56.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a.Add(x)
}
os.Exit(int(a))
}
var a Accumulator
type Accumulator int
func (a *Accumulator) Add(y int) {
*a += Accumulator(y)
}
56.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a.Add(x)
}
os.Exit(int(a))
}
var a Accumulator
type Accumulator int
func (a *Accumulator) Add(y int) {
*a += Accumulator(y)
}
56.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a.Add(x)
}
os.Exit(int(a))
}
var a Accumulator
type Accumulator int
func (a *Accumulator) Add(y int) {
*a += Accumulator(y)
}
56.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a.Add(x)
}
os.Exit(int(a))
}
var a Accumulator
type Accumulator int
func (a Accumulator) Add(y int) {
a += Accumulator(y)
}
56.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
a := MakeAccumulator[int]()
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a(x)
}
os.Exit(a(0))
}
type Accumulator[T Scalar] func(T) T
func MakeAccumulator[T Scalar]() Accumulator[T] {
var y T
return func(x T) T {
y += x
return y
}
}
59.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
a := MakeAccumulator[int]()
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a(x)
}
os.Exit(a(0))
}
type Accumulator[T Scalar] func(T) T
func MakeAccumulator[T Scalar]() Accumulator[T] {
var y T
return func(x T) T {
y += x
return y
}
}
59.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
a := MakeAccumulator [int]()
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a(x)
}
os.Exit(a(0))
}
type Accumulator[T Scalar] func(T) T
func MakeAccumulator[T Scalar]() Accumulator[T] {
var y T
return func(x T) T {
y += x
return y
}
}
59.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
a := MakeAccumulator[int]()
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a(x)
}
os.Exit(a(0))
}
type Accumulator[T Scalar] func(T) T
func MakeAccumulator[T Scalar]() Accumulator[T] {
var y T
return func(x T) T {
y += x
return y
}
}
59.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
a := MakeAccumulator[int]()
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a(x)
}
os.Exit(a(0))
}
type Accumulator[T Scalar] func(T) T
func MakeAccumulator[T Scalar]() Accumulator[T] {
var y T
return func(x T) T {
y += x
return y
}
}
59.GO

FUNCTIONS WITH SIDE-EFFECTS
func main() {
a := MakeAccumulator[int]()
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a(x)
}
os.Exit(a(0))
}
type Accumulator[T Scalar] func(T) T
func MakeAccumulator[T Scalar]() Accumulator[T] {
var y T
return func(x T) T {
y += x
return y
}
}
59.GO

FUNCTIONS
AS
PARADIGM
FUNCTIONS AS OBJECTS

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a(x)
}
os.Exit(a.Int())
}
type Accumulator[T Scalar] func(T) T
func MakeAccumulator[T Scalar]() Accumulator[T] {
var y T
return func(x T) T {
y += x
return y
}
}
func (a Accumulator[T]) Int() int {
return int(a(0))
}
61.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a(x)
}
os.Exit(a.Int())
}
type Accumulator[T Scalar] func(T) T
func MakeAccumulator[T Scalar]() Accumulator[T] {
var y T
return func(x T) T {
y += x
return y
}
}
func (a Accumulator[T]) Int() int {
return int(a(0))
}
61.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for _, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a(x)
}
os.Exit(a.Int())
}
type Accumulator[T Scalar] func(T) T
func MakeAccumulator[T Scalar]() Accumulator[T] {
var y T
return func(x T) T {
y += x
return y
}
}
func (a Accumulator[T]) Int() int {
return int(a(0))
}
61.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
func MakeAccumulator[T Scalar](s ...T) (a Accumulator[T]) {
var y T
a = func(x T) T {
y += x
return y
}
for _, v := range s {
a.Add(v)
}
return
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Accumulator[T]:
a(x(0))
}
return a
}
63.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
func MakeAccumulator[T Scalar](s ...T) (a Accumulator[T]) {
var y T
a = func(x T) T {
y += x
return y
}
for _, v := range s {
a.Add(v)
}
return
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Accumulator[T]:
a(x(0))
}
return a
}
63.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
func MakeAccumulator[T Scalar](s ...T) (a Accumulator[T]) {
var y T
a = func(x T) T {
y += x
return y
}
for _, v := range s {
a.Add(v)
}
return
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Accumulator[T]:
a(x(0))
}
return a
}
63.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
func MakeAccumulator[T Scalar](s ...T) (a Accumulator[T]) {
var y T
a = func(x T) T {
y += x
return y
}
for _, v := range s {
a.Add(v)
}
return
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Accumulator[T]:
a(x(0))
}
return a
}
63.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
func MakeAccumulator[T Scalar](s ...T) (a Accumulator[T]) {
var y T
a = func(x T) T {
y += x
return y
}
for _, v := range s {
a.Add(v)
}
return
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Accumulator[T]:
a(x(0))
}
return a
}
63.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
func MakeAccumulator[T Scalar](s ...T) (a Accumulator[T]) {
var y T
a = func(x T) T {
y += x
return y
}
for _, v := range s {
a.Add(v)
}
return
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Accumulator[T]:
a(x(0))
}
return a
}
63.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
type Integer interface {
Int() int
}
func (a Accumulator[T]) Int() int {
return int(a(0))
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Integer:
a(T(x.Int()))
}
return a
}
64.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
type Integer interface {
Int() int
}
func (a Accumulator[T]) Int() int {
return int(a(0))
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Integer:
a(T(x.Int()))
}
return a
}
64.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
type Integer interface {
Int() int
}
func (a Accumulator[T]) Int() int {
return int(a(0))
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Integer:
a(T(x.Int()))
}
return a
}
64.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
type Integer interface {
Int() int
}
func (a Accumulator[T]) Int() int {
return int(a(0))
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Integer:
a(T(x.Int()))
}
return a
}
64.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
type Integer interface {
Int() int
}
func (a Accumulator[T]) Int() int {
return int(a(0))
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Integer:
a(T(x.Int()))
}
return a
}
64.GO

FUNCTIONS AS OBJECTS
func main() {
a := MakeAccumulator[int]()
for i, v := range os.Args[1:] {
x, _ := strconv.Atoi(v)
a = a.Add(x).Add(MakeAccumulator(i))
}
os.Exit(a.Int())
}
type Integer interface {
Int() int
}
func (a Accumulator[T]) Int() int {
return int(a(0))
}
func (a Accumulator[T]) Add(x any) Accumulator[T] {
switch x := x.(type) {
case T:
a(x)
case Integer:
a(T(x.Int()))
}
return a
}
64.GO

FUNCTIONS
IN
MATHEMATICS

FUNCTIONS
IN
MATHEMATICS
COMPUTING FACTORIALS

COMPUTING FACTORIALS

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
COMPUTING FACTORIALS

FUNCTIONS
IN
MATHEMATICS
ITERATING FACTORIALS

ITERATING FACTORIALS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
x, _ := strconv.Atoi(os.Args[1])
fmt.Printf("%v!: %v", x, Factorial(x))
}
type Integer interface {
int | int8 | int16 | int32 | int64 | uint | uint8 | uint16 | uint32 | uint64
}
func Factorial[T Integer](n T) (r T) {
r = 1
switch {
case n < 0:
panic(n)
case n > 0:
for ; n > 0; n-- {
r *= n
}
}
return
}
72.GO

ITERATING FACTORIALS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
x, _ := strconv.Atoi(os.Args[1])
fmt.Printf("%v!: %v", x, Factorial(x))
}
type Integer interface {
int | int8 | int16 | int32 | int64 | uint | uint8 | uint16 | uint32 | uint64
}
func Factorial[T Integer](n T) (r T) {
r = 1
switch {
case n < 0:
panic(n)
case n > 0:
for ; n > 0; n-- {
r *= n
}
}
return
}
72.GO

ITERATING FACTORIALS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
x, _ := strconv.Atoi(os.Args[1])
fmt.Printf("%v!: %v", x, Factorial(x))
}
type Integer interface {
int | int8 | int16 | int32 | int64 | uint | uint8 | uint16 | uint32 | uint64
}
func Factorial[T Integer](n T) (r T) {
r = 1
switch {
case n < 0:
panic(n)
case n > 0:
for ; n > 0; n-- {
r *= n
}
}
return
}
72.GO

ITERATING FACTORIALS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
x, _ := strconv.Atoi(os.Args[1])
fmt.Printf("%v!: %v", x, Factorial(x))
}
type Integer interface {
int | int8 | int16 | int32 | int64 | uint | uint8 | uint16 | uint32 | uint64
}
func Factorial[T Integer](n T) (r T) {
r = 1
switch {
case n < 0:
panic(n)
case n > 0:
for ; n > 0; n-- {
r *= n
}
}
return
}
72.GO

ITERATING FACTORIALS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
x, _ := strconv.Atoi(os.Args[1])
fmt.Printf("%v!: %v", x, Factorial(x))
}
type Integer interface {
int | int8 | int16 | int32 | int64 | uint | uint8 | uint16 | uint32 | uint64
}
func Factorial[T Integer](n T) (r T) {
r = 1
switch {
case n < 0:
panic(n)
case n > 0:
for ; n > 0; n-- {
r *= n
}
}
return
}
72.GO

ITERATING FACTORIALS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
x, _ := strconv.Atoi(os.Args[1])
fmt.Printf("%v!: %v", x, Factorial(x))
}
type Integer interface {
int | int8 | int16 | int32 | int64 | uint | uint8 | uint16 | uint32 | uint64
}
func Factorial[T Integer](n T) (r T) {
r = 1
switch {
case n < 0:
panic(n)
case n > 0:
for ; n > 0; n-- {
r *= n
}
}
return
}
72.GO

ITERATING FACTORIALS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
x, _ := strconv.Atoi(os.Args[1])
fmt.Printf("%v!: %v", x, Factorial(x))
}
type Integer interface {
int | int8 | int16 | int32 | int64 | uint | uint8 | uint16 | uint32 | uint64
}
func Factorial[T Integer](n T) (r T) {
r = 1
switch {
case n < 0:
panic(n)
case n > 0:
for ; n > 0; n-- {
r *= n
}
}
return
}
72.GO

ITERATING FACTORIALS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
x, _ := strconv.Atoi(os.Args[1])
fmt.Printf("%v!: %v", x, Factorial(x))
}
func Factorial[T Integer](n T) (r T) {
if n < 0 {
panic(n)
}
for r = 1; n > 0; n-- {
r *= n
}
return
}
73.GO

ITERATING FACTORIALS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
x, _ := strconv.Atoi(os.Args[1])
fmt.Printf("%v!: %v", x, Factorial(x))
}
func Factorial[T Integer](n T) (r T) {
if n < 0 {
panic(n)
}
for r = 1; n > 0; n-- {
r *= n
}
return
}
73.GO

ITERATING FACTORIALS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
x, _ := strconv.Atoi(os.Args[1])
fmt.Printf("%v!: %v", x, Factorial(x))
}
func Factorial[T Integer](n T) (r T) {
if n < 0 {
panic(n)
}
for r = 1; n > 0; n-- {
r *= n
}
return
}
73.GO

FUNCTIONS
IN
MATHEMATICS
PAINFUL EXCEPTIONS

PAINFUL EXCEPTIONS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
for _, v := range os.Args[1:] {
if x, e := strconv.Atoi(v); e == nil {
fmt.Printf("%v!: %v", x, Factorial(x))
} else {
panic(v)
}
}
}
func Factorial[T Integer](n T) (r T) {
if n < 0 {
panic(n)
}
for r = 1; n > 0; n-- {
r *= n
}
return
}
74.GO

PAINFUL EXCEPTIONS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
for _, v := range os.Args[1:] {
if x, e := strconv.Atoi(v); e == nil {
fmt.Printf("%v!: %v", x, Factorial(x))
} else {
panic(v)
}
}
}
func Factorial[T Integer](n T) (r T) {
if n < 0 {
panic(n)
}
for r = 1; n > 0; n-- {
r *= n
}
return
}
74.GO

PAINFUL EXCEPTIONS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
for _, v := range os.Args[1:] {
if x, e := strconv.Atoi(v); e == nil {
fmt.Printf("%v!: %v", x, Factorial(x))
} else {
panic(v)
}
}
}
func Factorial[T Integer](n T) (r T) {
if n < 0 {
panic(n)
}
for r = 1; n > 0; n-- {
r *= n
}
return
}
74.GO

PAINFUL EXCEPTIONS
func main() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
for _, v := range os.Args[1:] {
if x, e := strconv.Atoi(v); e == nil {
fmt.Printf("%v!: %v", x, Factorial(x))
} else {
panic(v)
}
}
}
func Factorial[T Integer](n T) (r T) {
if n < 0 {
panic(n)
}
for r = 1; n > 0; n-- {
r *= n
}
return
}
74.GO

PAINFUL EXCEPTIONS
func main() {
for _, v := range os.Args[1:] {
defer func() {
if x := recover(); x != nil {
Println("no factorial")
}
}()
if x, e := strconv.Atoi(v); e == nil {
Printf("%v!: %v", x, Factorial(x))
} else {
panic(v)
}
}
}
func Factorial[T Integer](n T) (r T) {
if n < 0 {
panic(n)
}
for r = 1; n > 0; n-- {
r *= n
}
return
}
75.GO

PAINFUL EXCEPTIONS
func main() {
for _, v := range os.Args[1:] {
defer func() {
if x := recover(); x != nil {
Println("no factorial")
}
}()
if x, e := strconv.Atoi(v); e == nil {
Printf("%v!: %v", x, Factorial(x))
} else {
panic(v)
}
}
}
func Factorial[T Integer](n T) (r T) {
if n < 0 {
panic(n)
}
for r = 1; n > 0; n-- {
r *= n
}
return
}
75.GO

PAINFUL EXCEPTIONS
func main() {
for _, v := range os.Args[1:] {
defer func() {
if x := recover(); x != nil {
Println("no factorial")
}
}()
if x, e := strconv.Atoi(v); e == nil {
Printf("%v!: %v", x, Factorial(x))
} else {
panic(v)
}
}
}
func Factorial[T Integer](n T) (r T) {
if n < 0 {
panic(n)
}
for r = 1; n > 0; n-- {
r *= n
}
return
}
75.GO

PAINFUL EXCEPTIONS
func main() {
for _, v := range os.Args[1:] {
func() {
defer func() {
if x := recover(); x != nil {
fmt.Println("no factorial")
}
}()
if x, e := strconv.Atoi(v); e == nil {
fmt.Printf("%v!: %v", x, Factorial(x))
} else {
panic(v)
}
}()
}
}
func Factorial[T Integer](n T) (r T) {
if n < 0 {
panic(n)
}
for r = 1; n > 0; n-- {
r *= n
}
return
}
76.GO

FUNCTIONS
IN
MATHEMATICS
HIGHER ORDER FUNCTIONS

HIGHER ORDER FUNCTIONS
func main() {
var errors int
computeFactorial := ForValidValues(
func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
},
func() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
errors++
}
})
for _, v := range os.Args[1:] {
computeFactorial(v)
}
os.Exit(errors)
}
func ForValidValues[T Integer](f func(T), e func()) func(string) {
return func(v string) {
defer e()
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
79.GO

HIGHER ORDER FUNCTIONS
func main() {
var errors int
computeFactorial := ForValidValues(
func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
},
func() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
errors++
}
})
for _, v := range os.Args[1:] {
computeFactorial(v)
}
os.Exit(errors)
}
func ForValidValues[T Integer](f func(T), e func()) func(string) {
return func(v string) {
defer e()
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
79.GO

HIGHER ORDER FUNCTIONS
func main() {
var errors int
computeFactorial := ForValidValues(
func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
},
func() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
errors++
}
})
for _, v := range os.Args[1:] {
computeFactorial(v)
}
os.Exit(errors)
}
func ForValidValues[T Integer](f func(T), e func()) func(string) {
return func(v string) {
defer e()
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
79.GO

HIGHER ORDER FUNCTIONS
func main() {
var errors int
computeFactorial := ForValidValues(
func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
},
func() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
errors++
}
})
for _, v := range os.Args[1:] {
computeFactorial(v)
}
os.Exit(errors)
}
func ForValidValues[T Integer](f func(T), e func()) func(string) {
return func(v string) {
defer e()
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
79.GO

HIGHER ORDER FUNCTIONS
func main() {
var errors int
computeFactorial := ForValidValues(
func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
},
func() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
errors++
}
})
for _, v := range os.Args[1:] {
computeFactorial(v)
}
os.Exit(errors)
}
func ForValidValues[T Integer](f func(T), e func()) func(string) {
return func(v string) {
defer e()
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
79.GO

FUNCTIONS
IN
MATHEMATICS
CURRYING AND COMBINATORS

CURRYING

CURRYING AND COMBINATORS
func main() {
printErrors := IfPanics(PrintErrorMessage)
for _, v := range os.Args[1:] {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
}
}
func ValidInteger[T Integer](v string, f func(i T)) func() {
return func() {
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
func IfPanics(e func()) func(func()) {
return func(f func()) {
defer e()
f()
}
}
func PrintErrorMessage() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
}
}
82.GO

CURRYING AND COMBINATORS
func main() {
printErrors := IfPanics(PrintErrorMessage)
for _, v := range os.Args[1:] {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
}
}
func ValidInteger[T Integer](v string, f func(i T)) func() {
return func() {
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
func IfPanics(e func()) func(func()) {
return func(f func()) {
defer e()
f()
}
}
func PrintErrorMessage() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
}
}
82.GO

CURRYING AND COMBINATORS
func main() {
printErrors := IfPanics(PrintErrorMessage)
for _, v := range os.Args[1:] {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
}
}
func ValidInteger[T Integer](v string, f func(i T)) func() {
return func() {
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
func IfPanics(e func()) func(func()) {
return func(f func()) {
defer e()
f()
}
}
func PrintErrorMessage() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
}
}
82.GO

CURRYING AND COMBINATORS
func main() {
printErrors := IfPanics(PrintErrorMessage)
for _, v := range os.Args[1:] {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
}
}
func ValidInteger[T Integer](v string, f func(i T)) func() {
return func() {
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
func IfPanics(e func()) func(func()) {
return func(f func()) {
defer e()
f()
}
}
func PrintErrorMessage() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
}
}
82.GO

CURRYING AND COMBINATORS
func main() {
printErrors := IfPanics(PrintErrorMessage)
for _, v := range os.Args[1:] {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
}
}
func ValidInteger[T Integer](v string, f func(i T)) func() {
return func() {
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
func IfPanics(e func()) func(func()) {
return func(f func()) {
defer e()
f()
}
}
func PrintErrorMessage() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
}
}
82.GO

CURRYING AND COMBINATORS
func main() {
printErrors := IfPanics(PrintErrorMessage)
for _, v := range os.Args[1:] {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
}
}
func ValidInteger[T Integer](v string, f func(i T)) func() {
return func() {
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
func IfPanics(e func()) func(func()) {
return func(f func()) {
defer e()
f()
}
}
func PrintErrorMessage() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
}
}
82.GO

CURRYING AND COMBINATORS
func main() {
printErrors := IfPanics(PrintErrorMessage)
for _, v := range os.Args[1:] {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
}
}
func ValidInteger[T Integer](v string, f func(i T)) func() {
return func() {
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
func IfPanics(e func()) func(func()) {
return func(f func()) {
defer e()
f()
}
}
func PrintErrorMessage() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
}
}
82.GO

CURRYING AND COMBINATORS
func main() {
printErrors := IfPanics(PrintErrorMessage)
for _, v := range os.Args[1:] {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
}
}
func ValidInteger[T Integer](v string, f func(i T)) func() {
return func() {
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
func IfPanics(e func()) func(func()) {
return func(f func()) {
defer e()
f()
}
}
func PrintErrorMessage() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
}
}
82.GO

CURRYING AND COMBINATORS
func main() {
printErrors := IfPanics(PrintErrorMessage)
for _, v := range os.Args[1:] {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
}
}
func ValidInteger[T Integer](v string, f func(i T)) func() {
return func() {
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
func IfPanics(e func()) func(func()) {
return func(f func()) {
defer e()
f()
}
}
func PrintErrorMessage() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
}
}
82.GO

CURRYING AND COMBINATORS
func main() {
printErrors := IfPanics(PrintErrorMessage)
for _, v := range os.Args[1:] {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
}
}
func ValidInteger[T Integer](v string, f func(i T)) func() {
return func() {
if x, e := strconv.Atoi(v); e == nil {
f(T(x))
} else {
panic(v)
}
}
}
func IfPanics(e func()) func(func()) {
return func(f func()) {
defer e()
f()
}
}
func PrintErrorMessage() {
if x := recover(); x != nil {
fmt.Printf("no defined value for %v", x)
}
}
82.GO

FUNCTIONS
IN
MATHEMATICS
RECURSION

RECURSION
package main
func main() {
main()
}
83.GO

RECURSION
package main
func main() {
main()
}
83.GO

RECURSION
package main
func main() {
main()
}
83.GO

RECURSION
package main
func main() {
defer func() {
recover()
}
main()
}
84.GO

RECURSION
var limit int
func init() {
if x, e := strconv.Atoi(os.Args[1]); e == nil {
limit = x
}
}
func main() {
limit--
if limit > 0 {
main()
}
}
85.GO

RECURSION
var limit int
func init() {
if x, e := strconv.Atoi(os.Args[1]); e == nil {
limit = x
}
}
func main() {
limit--
if limit > 0 {
main()
}
}
85.GO

RECURSION
var limit int
func init() {
if x, e := strconv.Atoi(os.Args[1]); e == nil {
limit = x
}
}
func main() {
limit--
if limit > 0 {
main()
}
}
85.GO

RECURSION
var limit int
func init() {
if x, e := strconv.Atoi(os.Args[1]); e == nil {
limit = x
}
}
func main() {
limit--
if limit > 0 {
main()
}
}
85.GO

RECURSION

RECURSION

RECURSION

RECURSION
func main() {
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
})
}
func Each[T any](s []T, f func(T)) {
if len(s) > 0 {
f(s[0])
Each(s[1:], f)
}
}
func Factorial[T Integer](n T) (r T) {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * Factorial(n-1)
}
return
}
91.GO

RECURSION
func main() {
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
})
}
func Each[T any](s []T, f func(T)) {
if len(s) > 0 {
f(s[0])
Each(s[1:], f)
}
}
func Factorial[T Integer](n T) (r T) {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * Factorial(n-1)
}
return
}
91.GO

RECURSION
func main() {
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
})
}
func Each[T any](s []T, f func(T)) {
if len(s) > 0 {
f(s[0])
Each(s[1:], f)
}
}
func Factorial[T Integer](n T) (r T) {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * Factorial(n-1)
}
return
}
91.GO

RECURSION
func main() {
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
})
}
func Each[T any](s []T, f func(T)) {
if len(s) > 0 {
f(s[0])
Each(s[1:], f)
}
}
func Factorial[T Integer](n T) (r T) {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * Factorial(n-1)
}
return
}
91.GO

RECURSION
func main() {
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, Factorial(i))
}))
})
}
func Each[T any](s []T, f func(T)) {
if len(s) > 0 {
f(s[0])
Each(s[1:], f)
}
}
func Factorial[T Integer](n T) (r T) {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * Factorial(n-1)
}
return
}
91.GO

RECURSION
func main() {
f := MakeFactorial[int]()
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, f(i))
}))
})
}
func MakeFactorial[T Integer]() (f func(T) T) {
c := make(Cache[T])
return func(n T) (r T) {
if r = c[n]; r == 0 {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * f(n-1)
}
c[n] = r
c.Dump()
}
return
}
}
type Cache[T Integer] map[T]T
func (c Cache[T]) Dump() {
for k, v := range c {
fmt.Printf("c[%v] = %v", k, v)
}
}
95.GO

RECURSION
func main() {
f := MakeFactorial[int]()
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, f(i))
}))
})
}
func MakeFactorial[T Integer]() (f func(T) T) {
c := make(Cache[T])
return func(n T) (r T) {
if r = c[n]; r == 0 {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * f(n-1)
}
c[n] = r
c.Dump()
}
return
}
}
type Cache[T Integer] map[T]T
func (c Cache[T]) Dump() {
for k, v := range c {
fmt.Printf("c[%v] = %v", k, v)
}
}
95.GO

RECURSION
func main() {
f := MakeFactorial[int]()
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, f(i))
}))
})
}
func MakeFactorial[T Integer]() (f func(T) T) {
c := make(Cache[T])
return func(n T) (r T) {
if r = c[n]; r == 0 {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * f(n-1)
}
c[n] = r
c.Dump()
}
return
}
}
type Cache[T Integer] map[T]T
func (c Cache[T]) Dump() {
for k, v := range c {
fmt.Printf("c[%v] = %v", k, v)
}
}
95.GO

RECURSION
func main() {
f := MakeFactorial[int]()
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, f(i))
}))
})
}
func MakeFactorial[T Integer]() (f func(T) T) {
c := make(Cache[T])
return func(n T) (r T) {
if r = c[n]; r == 0 {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * f(n-1)
}
c[n] = r
c.Dump()
}
return
}
}
type Cache[T Integer] map[T]T
func (c Cache[T]) Dump() {
for k, v := range c {
fmt.Printf("c[%v] = %v", k, v)
}
}
95.GO

RECURSION
func main() {
f := MakeFactorial[int]()
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, f(i))
}))
})
}
func MakeFactorial[T Integer]() (f func(T) T) {
c := make(Cache[T])
return func(n T) (r T) {
if r = c[n]; r == 0 {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * f(n-1)
}
c[n] = r
c.Dump()
}
return
}
}
type Cache[T Integer] map[T]T
func (c Cache[T]) Dump() {
for k, v := range c {
fmt.Printf("c[%v] = %v", k, v)
}
}
95.GO

RECURSION
func main() {
f := MakeFactorial[int]()
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, f(i))
}))
})
}
func MakeFactorial[T Integer]() (f func(T) T) {
c := make(Cache[T])
return func(n T) (r T) {
if r = c[n]; r == 0 {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * f(n-1)
}
c[n] = r
c.Dump()
}
return
}
}
type Cache[T Integer] map[T]T
func (c Cache[T]) Dump() {
for k, v := range c {
fmt.Printf("c[%v] = %v", k, v)
}
}
95.GO

RECURSION
func main() {
f := MakeFactorial[int]()
printErrors := IfPanics(PrintErrorMessage)
Each(os.Args[1:], func(v string) {
printErrors(
ValidInteger(v, func(i int) {
fmt.Printf("%v!: %v", i, f(i))
}))
})
}
func MakeFactorial[T Integer]() (f func(T) T) {
c := make(Cache[T])
return func(n T) (r T) {
if r = c[n]; r == 0 {
switch {
case n < 0:
panic(n)
case n == 0:
r = 1
default:
r = n * f(n-1)
}
c[n] = r
c.Dump()
}
return
}
}
type Cache[T Integer] map[T]T
func (c Cache[T]) Dump() {
for k, v := range c {
fmt.Printf("c[%v] = %v", k, v)
}
}
95.GO

FUNCTIONS
IN
MATHEMATICS
THE Y COMBINATOR

THE Y COMBINATOR
so given f(x) = x2 - 3x + 4
f(2) = 2 is a fixed point
meaning that calculating f for a value returns that value unchanged

THE Y COMBINATOR
Y g = (λf.(λx.f (x x)) (λx.f (x x))) g
= (λx.g (x x)) (λx.g (x x))
= g ((λx.g (x x)) (λx.g (x x)))
= g (Y g)
in untyped lambda calculus every function has a fixed point
(this is not the general case in mathematics)
this Y combinator creates recursive functions
from anonymous functions (func values in Go)

THE Y COMBINATOR
// Y = ->f.(->x.f(x x))(->x.f(x x))
func Y(g func(any) any) func(any) any {
return func(f any) func(any) any {
return f.(func(any) any)(f).(func(any) any)
}(func(f any) any {
return g(func(x any) any {
return f.(func(any) any)(f).(func(any) any)(x)
})
})
}
func main() {
factorial := Y(func(g any) any {
return func(n any) (r any) {
if n, ok := n.(int); ok {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g.(func(any) any)(n-1).(int)
}
panic(n)
}
})
os.Exit(factorial(5).(int))
}
101.GO

THE Y COMBINATOR
// Y = ->f.(->x.f(x x))(->x.f(x x))
func Y(g func(any) any) func(any) any {
return func(f any) func(any) any {
return f.(func(any) any)(f).(func(any) any)
}(func(f any) any {
return g(func(x any) any {
return f.(func(any) any)(f).(func(any) any)(x)
})
})
}
func main() {
factorial := Y(func(g any) any {
return func(n any) (r any) {
if n, ok := n.(int); ok {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g.(func(any) any)(n-1).(int)
}
panic(n)
}
})
os.Exit(factorial(5).(int))
}
101.GO

THE Y COMBINATOR
// Y = ->f.(->x.f(x x))(->x.f(x x))
func Y(g func(any) any) func(any) any {
return func(f any) func(any) any {
return f.(func(any) any)(f).(func(any) any)
}(func(f any) any {
return g(func(x any) any {
return f.(func(any) any)(f).(func(any) any)(x)
})
})
}
func main() {
factorial := Y(func(g any) any {
return func(n any) (r any) {
if n, ok := n.(int); ok {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g.(func(any) any)(n-1).(int)
}
panic(n)
}
})
os.Exit(factorial(5).(int))
}
101.GO

THE Y COMBINATOR
// Y = ->f.(->x.f(x x))(->x.f(x x))
func Y(g func(any) any) func(any) any {
return func(f any) func(any) any {
return f.(func(any) any)(f).(func(any) any)
}(func(f any) any {
return g(func(x any) any {
return f.(func(any) any)(f).(func(any) any)(x)
})
})
}
func main() {
factorial := Y(func(g any) any {
return func(n any) (r any) {
if n, ok := n.(int); ok {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g.(func(any) any)(n-1).(int)
}
panic(n)
}
})
os.Exit(factorial(5).(int))
}
101.GO

THE Y COMBINATOR
// Y = ->f.(->x.f(x x))(->x.f(x x))
func Y(g func(any) any) func(any) any {
return func(f any) func(any) any {
return f.(func(any) any)(f).(func(any) any)
}(func(f any) any {
return g(func(x any) any {
return f.(func(any) any)(f).(func(any) any)(x)
})
})
}
func main() {
factorial := Y(func(g any) any {
return func(n any) (r any) {
if n, ok := n.(int); ok {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g.(func(any) any)(n-1).(int)
}
panic(n)
}
})
os.Exit(factorial(5).(int))
}
101.GO

THE Y COMBINATOR
type Function func(any) any
func Recurse(f any) Function {
return f.(func(any) any)(f).(func(any) any)
}
func Y(g Function) Function {
return Recurse(
func(f any) any {
return g(func(x any) any {
return Recurse(f)(x)
})
})
}
102.GO

THE Y COMBINATOR
type Function func(any) any
func Recurse(f any) Function {
return f.(func(any) any)(f).(func(any) any)
}
func Y(g Function) Function {
return Recurse(
func(f any) any {
return g(func(x any) any {
return Recurse(f)(x)
})
})
}
102.GO

THE Y COMBINATOR
type Function func(any) any
func Recurse(f any) Function {
return f.(func(any) any)(f).(func(any) any)
}
func Y(g Function) Function {
return Recurse(
func(f any) any {
return g(func(x any) any {
return Recurse(f)(x)
})
})
}
102.GO

THE Y COMBINATOR
Y g = (λf.(λx.f (x x)) (λx.f (x x))) g
= (λx.g (x x)) (λx.g (x x))
= g ((λx.g (x x)) (λx.g (x x)))
= g (Y g)
in untyped lambda calculus every function has a fixed point
(this is not the general case in mathematics)

THE Y COMBINATOR
type Function func(any) any
type Transformer func(Function) Function
func Recurse(f Function) Function {
return f(f).(Function)
}
func Y(g Transformer) Function {
return Recurse(
func(f any) any {
return g(func(x any) any {
return Recurse(f.(Function))(x)
})
})
}
func main() {
factorial := Y(func(g Function) Function {
return func(n any) any {
if n, ok := n.(int); ok {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g(n-1).(int)
}
panic(n)
}
})
os.Exit(factorial(5).(int))
}
103.GO

THE Y COMBINATOR
type Function func(any) any
type Transformer func(Function) Function
func Recurse(f Function) Function {
return f(f).(Function)
}
func Y(g Transformer) Function {
return Recurse(
func(f any) any {
return g(func(x any) any {
return Recurse(f.(Function))(x)
})
})
}
func main() {
factorial := Y(func(g Function) Function {
return func(n any) any {
if n, ok := n.(int); ok {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g(n-1).(int)
}
panic(n)
}
})
os.Exit(factorial(5).(int))
}
103.GO

THE Y COMBINATOR
type Function func(any) any
type Transformer func(Function) Function
func Recurse(f Function) Function {
return f(f).(Function)
}
func Y(g Transformer) Function {
return Recurse(
func(f any) any {
return g(func(x any) any {
return Recurse(f.(Function))(x)
})
})
}
func main() {
factorial := Y(func(g Function) Function {
return func(n any) any {
if n, ok := n.(int); ok {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g(n-1).(int)
}
panic(n)
}
})
os.Exit(factorial(5).(int))
}
103.GO

THE Y COMBINATOR
type Function func(any) any
type Transformer func(Function) Function
func Recurse(f Function) Function {
return f(f).(Function)
}
func Y(g Transformer) Function {
return Recurse(
func(f any) any {
return g(func(x any) any {
return Recurse(f.(Function))(x)
})
})
}
func main() {
factorial := Y(func(g Function) Function {
return func(n any) any {
if n, ok := n.(int); ok {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g(n-1).(int)
}
panic(n)
}
})
os.Exit(factorial(5).(int))
}
103.GO

THE Y COMBINATOR
type Function func(any) any
type Transformer func(Function) Function
func Recurse(f Function) Function {
return f(f).(Function)
}
func Y(g Transformer) Function {
return Recurse(
func(f any) any {
return g(func(x any) any {
return Recurse(f.(Function))(x)
})
})
}
func main() {
factorial := Y(func(g Function) Function {
return func(n any) any {
if n, ok := n.(int); ok {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g(n-1).(int)
}
panic(n)
}
})
os.Exit(factorial(5).(int))
}
103.GO

THE Y COMBINATOR
type Function func(any) any
type Transformer func(Function) Function
type Recursive func(Recursive) Function
func (r Recursive) Apply(f Transformer) Function {
return f(r(r))
}
func Y(f Transformer) Function {
g := func(r Recursive) Function {
return func(x any) any {
return r.Apply(f)(x)
}
}
return g(g)
}
104.GO

THE Y COMBINATOR
type Function func(any) any
type Transformer func(Function) Function
type Recursive func(Recursive) Function
func (r Recursive) Apply(f Transformer) Function {
return f(r(r))
}
func Y(f Transformer) Function {
g := func(r Recursive) Function {
return func(x any) any {
return r.Apply(f)(x)
}
}
return g(g)
}
104.GO

THE Y COMBINATOR
type Function func(any) any
type Transformer func(Function) Function
type Recursive func(Recursive) Function
func (r Recursive) Apply(f Transformer) Function {
return f(r(r))
}
func Y(f Transformer) Function {
g := func(r Recursive) Function {
return func(x any) any {
return r.Apply(f)(x)
}
}
return g(g)
}
104.GO

THE Y COMBINATOR
type Function func(any) any
type Transformer func(Function) Function
type Recursive func(Recursive) Function
func (r Recursive) Apply(f Transformer) Function {
return f(r(r))
}
func Y(f Transformer) Function {
g := func(r Recursive) Function {
return func(x any) any {
return r.Apply(f)(x)
}
}
return g(g)
}
104.GO

THE Y COMBINATOR
type Function func(any) any
type Transformer func(Function) Function
type Recursive func(Recursive) Function
func (r Recursive) Apply(f Transformer) Function {
return f(r(r))
}
func Y(f Transformer) Function {
g := func(r Recursive) Function {
return func(x any) any {
return r.Apply(f)(x)
}
}
return g(g)
}
104.GO

THE Y COMBINATOR
type Function func(any) any
type Transformer func(Function) Function
type Recursive func(Recursive) Function
func (r Recursive) Apply(f Transformer) Function {
return f(r(r))
}
func Y(f Transformer) Function {
g := func(r Recursive) Function {
return func(x any) any {
return r.Apply(f)(x)
}
}
return g(g)
}
104.GO

THE Y COMBINATOR
type Function[T any] func(T) T
type Transformer[T any] func(Function[T]) Function[T]
type Recursive[T any] func(Recursive[T]) Function[T]
func (r Recursive[T]) Apply(f Transformer[T]) Function[T] {
return f(r(r))
}
func Y[T any](f Transformer[T]) Function[T] {
g := func(r Recursive[T]) Function[T] {
return func(x T) T {
return r.Apply(f)(x)
}
}
return g(g)
}
func main() {
factorial := Y(func(g Function[int]) Function[int] {
return func(n int) int {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g(n-1)
}
})
os.Exit(factorial(5))
}
105.GO

THE Y COMBINATOR
type Function[T any] func(T) T
type Transformer[T any] func(Function[T]) Function[T]
type Recursive[T any] func(Recursive[T]) Function[T]
func (r Recursive[T]) Apply(f Transformer[T]) Function[T] {
return f(r(r))
}
func Y[T any](f Transformer[T]) Function[T] {
g := func(r Recursive[T]) Function[T] {
return func(x T) T {
return r.Apply(f)(x)
}
}
return g(g)
}
func main() {
factorial := Y(func(g Function[int]) Function[int] {
return func(n int) int {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g(n-1)
}
})
os.Exit(factorial(5))
}
105.GO

THE Y COMBINATOR
func Y[T comparable](f Transformer[T]) Function[T] {
memo := make(map[T]T)
g := func(r Recursive[T]) Function[T] {
return func(x T) T {
if _, ok := memo[x]; !ok {
memo[x] = r.Apply(f)(x)
fmt.Printf("Y: setting memo[%v] = %v", x, memo[x])
}
return memo[x]
}
}
return g(g)
}
func main() {
factorial := Y(func(g Function[int]) Function[int] {
return func(n int) int {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g(n-1)
}
})
fmt.Printf("%v! = %v", 7, factorial(7))
fmt.Printf("%v! = %v", 8, factorial(8))
fmt.Printf("%v! = %v", 5, factorial(5))
}
106.GO

THE Y COMBINATOR
func Y[T comparable](f Transformer[T]) Function[T] {
memo := make(map[T]T)
g := func(r Recursive[T]) Function[T] {
return func(x T) T {
if _, ok := memo[x]; !ok {
memo[x] = r.Apply(f)(x)
fmt.Printf("Y: setting memo[%v] = %v", x, memo[x])
}
return memo[x]
}
}
return g(g)
}
func main() {
factorial := Y(func(g Function[int]) Function[int] {
return func(n int) int {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g(n-1)
}
})
fmt.Printf("%v! = %v", 7, factorial(7))
fmt.Printf("%v! = %v", 8, factorial(8))
fmt.Printf("%v! = %v", 5, factorial(5))
}
106.GO

THE Y COMBINATOR
func Y[T comparable](f Transformer[T]) Function[T] {
memo := make(map[T]T)
g := func(r Recursive[T]) Function[T] {
return func(x T) T {
if _, ok := memo[x]; !ok {
memo[x] = r.Apply(f)(x)
fmt.Printf("Y: setting memo[%v] = %v", x, memo[x])
}
return memo[x]
}
}
return g(g)
}
func main() {
factorial := Y(func(g Function[int]) Function[int] {
return func(n int) int {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g(n-1)
}
})
fmt.Printf("%v! = %v", 7, factorial(7))
fmt.Printf("%v! = %v", 8, factorial(8))
fmt.Printf("%v! = %v", 5, factorial(5))
}
106.GO

THE Y COMBINATOR
func Y[T comparable](f Transformer[T]) Function[T] {
memo := make(map[T]T)
g := func(r Recursive[T]) Function[T] {
return func(x T) T {
if _, ok := memo[x]; !ok {
memo[x] = r.Apply(f)(x)
fmt.Printf("Y: setting memo[%v] = %v", x, memo[x])
}
return memo[x]
}
}
return g(g)
}
func main() {
factorial := Y(func(g Function[int]) Function[int] {
return func(n int) int {
switch {
case n < 0:
panic(n)
case n < 2:
return 1
}
return n * g(n-1)
}
})
fmt.Printf("%v! = %v", 7, factorial(7))
fmt.Printf("%v! = %v", 8, factorial(8))
fmt.Printf("%v! = %v", 5, factorial(5))
}
106.GO

SHOW
ME
MORE

LEANPUB://GONOTEBOOK SLIDESHAREGITHUB