EXPERIMENT AND RESULT EXPERIMENT - BASELINE [1] Rozemberczki , B., Scherer, P., He, Y., Panagopoulos, G., Riedel, A., Astefanoaei , M., ... & Sarkar, R. (2021, October). Pytorch geometric temporal: Spatiotemporal signal processing with neural machine learning models. In Proceedings of the 30th ACM international conference on information & knowledge management (pp. 4564-4573).. 2061-2064).. [2] Yu, B., Yin, H., & Zhu, Z. (2017). Spatio -temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875.. [3] Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019, July). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 922-929) [4] Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., ... & Li, H. (2019). T- gcn : A temporal graph convolutional network for traffic prediction. IEEE transactions on intelligent transportation systems, 21(9), 3848-3858. [5] Seo , Y., Defferrard , M., Vandergheynst , P., & Bresson, X. (2018). Structured sequence modeling with graph convolutional recurrent networks. In Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part I 25 (pp. 362-373). Springer International Publishing. [6] Li, Y., Yu, R., Shahabi , C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926. [7] Bai, L., Yao, L., Li, C., Wang, X., & Wang, C. (2020). Adaptive graph convolutional recurrent network for traffic forecasting. Advances in neural information processing systems, 33, 17804-17815.