EXPERIMENT AND RESULT EXPERIMENT SETTINGs Dataset: China’s stock market: CSI100 and CSI300 index. Baselines: Deep Learning: MLP, LSTM, and Transformer [1]. Graph methods: GCN, GAT, RGCN[2], HAN[3], HGT[4], EvolveGCN [5], HTGNN[6]. [1] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. [2] Schlichtkrull , M., Kipf , T. N., Bloem, P., Van Den Berg, R., Titov, I., & Welling, M. (2018). Modeling relational data with graph convolutional networks. In The semantic web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15 (pp. 593-607). Springer International Publishing. [3] Han, Y., Kim, J., & Enke , D. (2023). A machine learning trading system for the stock market based on N-period Min-Max labeling using XGBoost . Expert Systems with Applications, 211, 118581. [4] Hu, Z., Dong, Y., Wang, K., & Sun, Y. (2020, April). Heterogeneous graph transformer. In Proceedings of the web conference 2020 (pp. 2704-2710). [5] Pareja, A., Domeniconi , G., Chen, J., Ma, T., Suzumura , T., Kanezashi , H., ... & Leiserson , C. (2020, April). Evolvegcn : Evolving graph convolutional networks for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 04, pp. 5363-5370). [6] Fan, Y., Ju, M., Zhang, C., & Ye, Y. (2022). Heterogeneous temporal graph neural network. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM) (pp. 657-665). Society for Industrial and Applied Mathematics. Measurement : Information Coefficient (IC): overall ranking performance. Information Ratio (IR): divides the excess return of a portfolio by its tracking error. Cumulative Return (CR): accumulated portfolio return based on the prediction score. Precision@K : whether the excess returns of TopK stocks outperform the benchmark index.