EXPERIMENT AND RESULT EXPERIMENT SETTINGs Dataset: Geographical Cellular Traffic in Hsinchu, Taiwan. Baselines: Deep Learning: Temporal Convolution (TCN). STGNN: Graph WaveNet ( GWNet )[1], MTGNN [2], Gman [3], MPNet [4], DMGCN [5] and ESG[6]. [1] Wu, Z., Pan, S., Long, G., Jiang, J., & Zhang, C. (2019). Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121. [2] Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., & Zhang, C. (2020, August). Connecting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 753-763). [3] Zheng, C., Fan, X., Wang, C., & Qi, J. (2020, April). Gman : A graph multi-attention network for traffic prediction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 01, pp. 1234-1241). [4] Lin, C. Y., Su, H. T., Tung, S. L., & Hsu, W. H. (2021, October). Multivariate and propagation graph attention network for spatial-temporal prediction with outdoor cellular traffic. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (pp. 3248-3252). [5] Han, L., Du, B., Sun, L., Fu, Y., Lv , Y., & Xiong, H. (2021, August). Dynamic and multi-faceted spatio -temporal deep learning for traffic speed forecasting. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 547-555). [6] Ye, J., Liu, Z., Du, B., Sun, L., Li, W., Fu, Y., & Xiong, H. (2022, August). Learning the evolutionary and multi-scale graph structure for multivariate time series forecasting. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining (pp. 2296-2306). Measurement : Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE).