EXPERIMENT AND RESULT EXPERIMENT SETTINGs Dataset: METR-LA (Los Angeles ), PEMS-BAY(San Francisco),and PEMSD7(M)(California) . Baselines: Non-STGNN: Historical Average (HA), LSTNet [1], STAEformer [2], and STID[3]. STGNN: STGCN [4], DCRNN [5], GWNet [6], MTGNN[7], AGCRN[8], GMAN[9], and ASTGCN[10]. [1] Lai, G., Chang, W. C., Yang, Y., & Liu, H. (2018, June). Modeling long-and short-term temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on research & development in information retrieval (pp. 95-104). [2] Liu, H., Dong, Z., Jiang, R., Deng, J., Deng, J., Chen, Q., & Song, X. (2023, October). Spatio -temporal adaptive embedding makes vanilla transformer sota for traffic forecasting. In Proceedings of the 32nd ACM international conference on information and knowledge management (pp. 4125-4129). [3] Shao, Z., Zhang, Z., Wang, F., Wei, W., & Xu, Y. (2022, October). Spatial-temporal identity: A simple yet effective baseline for multivariate time series forecasting. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 4454-4458). [4] Yu, B., Yin, H., & Zhu, Z. (2017). Spatio -temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875. [5] Li, Y., Yu, R., Shahabi , C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926. [6] Wu, Z., Pan, S., Long, G., Jiang, J., & Zhang, C. (2019). Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121. [7] Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., & Zhang, C. (2020, August). Connecting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 753-763). [8] Bai, L., Yao, L., Li, C., Wang, X., & Wang, C. (2020). Adaptive graph convolutional recurrent network for traffic forecasting. Advances in neural information processing systems, 33, 17804-17815. [9] Zheng, C., Fan, X., Wang, C., & Qi, J. (2020, April). Gman : A graph multi-attention network for traffic prediction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 01, pp. 1234-1241). [10] Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019, July). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 922-929). Measurement : Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE).