EXPERIMENT AND RESULT EXPERIMENT SETTINGs Dataset: COVID-19 data and mobility data in US. Baselines: Spatial-Temporal GNN: STGCN [1], A3TGCN [2], GConvGRU [3], ACTS[4], and MPNNLSTM[5]. Deep Learning: GNND[6] and SpaceTimeFormer [7] . [1] Yu, B., Yin, H., & Zhu, Z. (2017). Spatio -temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875. [2] Bai, J., Zhu, J., Song, Y., Zhao, L., Hou, Z., Du, R., & Li, H. (2021). A3t-gcn: Attention temporal graph convolutional network for traffic forecasting. ISPRS International Journal of Geo-Information, 10(7), 485. [3] Seo, Y., Defferrard , M., Vandergheynst , P., & Bresson, X. (2018). Structured sequence modeling with graph convolutional recurrent networks. In Neural Information Processing: 25th International Conference, ICONIP 2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part I 25 (pp. 362-373). Springer International Publishing. [4] Jin, X., Wang, Y. X., & Yan, X. (2021). Inter-series attention model for COVID-19 forecasting. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 495-503). Society for Industrial and Applied Mathematics. [5] Panagopoulos, G., Nikolentzos , G., & Vazirgiannis , M. (2021, May). Transfer graph neural networks for pandemic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 6, pp. 4838-4845). [6] Sesti , N., Garau -Luis, J. J., Crawley, E., & Cameron, B. (2021). Integrating LSTMS and GNNS for covid-19 forecasting. arXiv preprint arXiv:2108.10052. [7] Grigsby, J., Wang, Z., Nguyen, N., & Qi, Y. (2021). Long-range transformers for dynamic spatiotemporal forecasting. arXiv preprint arXiv:2109.12218. Measurement : Mean Absolute Percentage Error (MAPE) and the Weight Absolute Percentage Error (WAPE)