EXPERIMENT AND RESULT EXPERIMENT SETTINGs Dataset: PEMS08, METR-LA, NYC Taxi, and NYC Citi Bike. Baselines: STGNN: STGCN[1], GWN[2], TGCN[3], MTGNN[4], MSDR[5], STMGCN[6], CCRNN[7], STSGCN[8], STFGNN[9], ASTGCN[10], STWA[11], and STGODE[12]. [1] Yu, B., Yin, H., & Zhu, Z. (2017). Spatio -temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875. [2] Wu, Z., Pan, S., Long, G., Jiang, J., & Zhang, C. (2019). Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121. [3] Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., ... & Li, H. (2019). T-GCN: A temporal graph convolutional network for traffic prediction. IEEE transactions on intelligent transportation systems, 21(9), 3848-3858. [4] Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., & Zhang, C. (2020, August). Connecting the dots: Multivariate time series forecasting with graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 753-763). [5] Liu, D., Wang, J., Shang, S., & Han, P. (2022, August). Msdr : Multi-step dependency relation networks for spatial temporal forecasting. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining (pp. 1042-1050). [6] Geng , X., Li, Y., Wang, L., Zhang, L., Yang, Q., Ye, J., & Liu, Y. (2019, July). Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 3656-3663). [7] Ye, J., Sun, L., Du, B., Fu, Y., & Xiong, H. (2021, May). Coupled layer-wise graph convolution for transportation demand prediction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 5, pp. 4617-4625). [8] Song, C., Lin, Y., Guo, S., & Wan, H. (2020, April). Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 01, pp. 914-921). [9] Li, M., & Zhu, Z. (2021, May). Spatial-temporal fusion graph neural networks for traffic flow forecasting. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 5, pp. 4189-4196). [10] Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019, July). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 922-929). [11] Cirstea, R. G., Yang, B., Guo, C., Kieu, T., & Pan, S. (2022, May). Towards spatio -temporal aware traffic time series forecasting. In 2022 IEEE 38th International Conference on Data Engineering (ICDE) (pp. 2900-2913). IEEE. [12] Fang, Z., Long, Q., Song, G., & Xie, K. (2021, August). Spatial-temporal graph ode networks for traffic flow forecasting. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 364-373). Measurement : Mean absolute error (MAE), Root Mean Square Error (RMSE) and Mean Average Percentage Error (MAPE).