Biomass gasification is a mature technology pathway that uses a controlled process involving heat, steam, and oxygen to convert biomass to hydrogen and other products, without combustion.
BIOMASS PRODUCTION IN INDIA
Source of Biomass Estimated Quantity(MT)
Agriculture / agro-industrial 439.4
Sugarcane tops and trash 84.0
Roadside growths 10.7
Forest residues 157.2
Growth on Wastelands 27.1
Agro forestry waste 9.1
Dung live stock 267.7
Poultry droppings 4.8
Total 1000
RENEWABLE ENERGY -POTENTIAL AND UTILIZATION
(POWER GENERATION)
Sources/Systems Potential Harnessed (MW)
Biomass power 19,500 302.50
Cogeneration 10,000 692.00
Gasifiers 146.00
Wind power 45,000 7850.00
Small hydro power 15,000 2015.00
Waste to energy 1,700 560.00
Solar PV 2.75
Total 7% of total electricity installations in
India amounting to MW
11,150.00
1.Grate
2.Throat
3.Airnozzle/airdistributionsystem
4.Ashremovalsystem/ashremovalport
5.Gasoutlet
6.Ignitionport
7.Biomassfeedingport
8.Hopper
COMPONENTS OF THE GASIFIER
•The significant factor that influences the process of gasification is
the equivalence ratio, Φ which is defined as
Air or oxygen in process
•Φ = ---------------------------------------------------------------------
Stoichiometric air needed for complete combustion
It can be noted that it requires 6.26 kg of air to burn 1 kg of dry
wood,
(144/23 = 6.26)
COMBUSTION
C H
1.4O
0.6 + 1.05(O
2+ 3.76 N
2) CO
2+ 0.7 H
2O + 3.95 N
2
Mass : 23 144.1 44 12.6 110.5
GASIFICATION
C H
1.4O
0.6+ 0.35 O
2 0.4 CO + 0.6 H
2+ 0.4 CO
2 + 0.1 H
2O + 0.2 C
EQUIVALENCE RATIO
FACTORS INFLUENCING THE PERFORMANCE OF
GASIFIER
Fuel Qualities that affect gasifier performance are
• Energy content
• Fuel grain or pellet size and uniformity
• Bulk weight or calorie value per volume
• Tar content
• Moisture content
• Dust tendency
• Ash and slag tendency
• Reaction response
• Equivalence ratio
THERMO-CHEMICAL REACTIONS OCCURRING IN
GASIFICATION
COMBUSTION/OXIDATION ZONE
•combustion reaction -exothermic reaction -
theoretical oxidation temperature -1450
0
C
C + O
2= CO
2(+ 393 MJ/kg mole)
2H
2+ O
2= 2H
2O (-242 MJ/kg mole)
SEQUENCE OF REACTIONS IN A
DOWNDRAFT GASIFIER
Air +
Water
Fuel
Drying Zone 65°C
Tar formation,
steam formation 230°C
oxidation zone + 1100°C
H
2O (Moisture H
2O
(Steam)
C
xH
yO
zVolatile gas and
liquid
C + O
2= CO
2+ 406 KJ/g.
mols
Primary reduction zone 825°C
Secondary reduction zone
Solid residue and gas 540°C
C +H
2O = CO + H
2+ 131.4 kJ / g. mole
C+2H
2O= CO
2+2H
2+78.75 kJ /g. mole
C + CO
2= 2CO –172.6 kJ/g. mole
C + CO
2= 2CO –172.6 kJ/g. mole
CO
2+ H
2= CO + H
2O –412 kJ/g. mole
2 CO = CO
2+ C
4O
2
- - - - 16.15-
5CH
4
08.1704.9404.7504.7512.4000.75
6C
2
H
6
00.4300.2600.2500.2512.30-
Sl.NoGasesWood Corn
cob
Barley
straw
Tree
pruning
Rice
straw
Peat
1CO
2
09.7010.9013.7013.7008.4015.30
2CO 23.9020.9018.8018.8015.3016.15
3H
2
16.3013.4016.4016.4026.1012.30
GAS COMPOSITION OF VARIOUS BIOMASS
MATERIALS ON GASIFICATION (% by Volume)
PROCESS OF GASIFICATION
CONVERSION OF BIOMASS INTO PRODUCER GAS
VOLUMETRIC COMPOSISTION OF PRODUCER GAS
PRODUCER GAS COMPOSITION
Gas MJ % Contribution
CO 12.6 20.5 [2.58]
Hydrogen 12.8 17 [2.18]
Methane 39.8 2 [0.79]
Ethane 70.4 0.1 [0.07]
Ethylene 64 0.1 [0.06]
Nitrogen 49.2 [0]
CO
2 11.2 [0]
Heating Value 5.68
BIOMASS SUITABLE FOR GASIFICATION
Biomass Fuels
•Fuel wood
•Agriculture stalk
•Coconut shells
•Briquettes of several residues
•Mustard stalk
•Cashew-nut shells
GASIFIER
DESIGN OF DOWN DRAFT GASIFIER
•Diameter of the throat
•Diameter of tube
•Diameter of air inlets (tuyers)
•Velocity of entering air
(I)Fuelconsumption(q)q=
Where:
q= fuelconsumption,kg/h
P=engineoutput,kW
=overallefficiency,i.e.(GasificationefficiencyXEngine
combustionefficiency)
H
w
=lowerheatingvalueofbiomass,kJ/kg
(II)Quantityofgasproduced,Q=
Where:
=gasificationefficiency
q =fuelconsumption,kg/h
H
w
&H
g
=lowercalorificvaluesofbiomassandproducergasin
kJ/kgandkJ/Nm
3
(III)Volumeofreactor,V=
Where:
t= timeofoperation
S
p
=pileddensityofbiomass,kg/m
3wtotH
P
3600 o g
wc
H
Hq c p
S
qt
DETERMINATION OF VARIOUS PARAMETERS OF
THROATLESS GASIFIER
Rateoffuelconsumption,kg/h
(IV)Arearequired,A=-----------------------------------------
Specificgasificationrate,kg/hm
2
Diameterofthereactor,D=
(V)Heightofthereactor,h =4/
A 2
4
D
V
DETERMINATION OF VARIOUS PARAMETERS OF
THROATLESS GASIFIER
Parameters,whichinfluencesthegratedesign,are:
(i)Rateofashremoval
(ii)Superficialgasvelocityandflowfield
(iii)Sizedistributionofthechar
(iv)Bulkdensityofthechar
(v)Constructionandcostmaintenance
Theareaofgratemaybecalculatedbyfollowingformula:
Where,
A=gratearea,m
2
q=biomassconsumption,kg/h
SGR=specificgasificationrateofbiomass,kg/h-m
2
Thediameterofgrate:A
q
SGR
D
A
4
Type of throat Average capacity (SGR),
kg/h-m
2
100 kW
thT V S SRICHAKRA, MADURAI
BIOMASS GASIFIER –COCONUT SHELL
DOSA BURNER –KNIFE TYPE
T V S SRICHAKRA, MADURAI
SAMBAR & RASAM PREPARATION
Circular Burner
T V S SRICHAKRA, MADURAI
UTILIZATION OF PRODUCER GAS
PRODUCER GAS
THERMAL AND POWER OPTIONS
Bagavathy Biopower Ltd, Mettupalayam, Coimbatore
MAKE : Cummins supplied by M/s Powerica, Bangalore
(modified as 100 % producer gas engine)
CAPACITY FOR NATURAL GAS : 144 kW derated to 110 kwe
ALTERNATOR : 180 kVA
POWER FACTOR : 0.8
Biomass Drying Arrangement
using exhaust gas of the engine
at
M/s Bagavathy Biopower Ltd,
Mettupalayam, Coimbatore
District
Capacity
1.6 tons at a time
Duration
7 hours
Gas Temperature
350 –400C
GASIFIERS-ELECTRICAL (9 KW)
Odanthurai Panchayat, Coimbatore District
M/s ArasiHi-Tech BiopowerLtd., Sultanpet, Coimbatore District
MAKE: Cummins supplied by M/s Powerica, Bangalore
TYPE: GTA 1710 G ( Natural Gas Engine ) ( No of Engines : 5 )
modified as 100 % producer gas engine
RATING COST: 256 kW
ALTERNATOR : 320 kVA
POWER FACTOR : 0.8
Thisgasifiercanoperatewithwide
varietyoffuelscomparedtoanup
draftoradowndraftgasifier
Highgasexittemperature,higher
gasvelocityatthegasexit
PoorCO
2reductionarecertain
characteristicsofthistypeofgasifier
Thistypeofgasifierhasbeenused
forgasificationofcoal
Reaction zones in a cross draft gasifier
CROSS DRAFT GASIFIER
FLUIDIZED BED GASIFICATION
Definition
Afluidizationbedisachamberwithaperforatedfloor
havingpressurizedairflowingverticallywhereaparticle
mediumusuallysand,iscontained.Thepressurizedand
flowingairhelpsthemediumallowingittoactasafluid