25700722037-(HM-HU601).pdf mechanical engineering

AnantaKumarNandi 19 views 20 slides Apr 24, 2024
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

Project


Slide Content

DEPARTMENT OF MECHANICAL ENGINEERING
TOPIC-(M|M|1):(∞|FCFS|∞)

NAME :ANANTA KUMAR NANDI

ROLL NO.:25700722037

REG. NO.:222570120277 OF 2022-23

SUBJECT :(OPERATIONS RESEARCH) {HM-HU601}

YEAR :3RD

SEM :6TH

INTRODUCTION-:

M/M/1 denotes a queueing system with one server and a Poisson distribution
for customer interarrival times and service times. The notation /FCFS
indicates that a first-come-first-served (FCFS) service discipline is being used,
which means that customers are served in the order in which they arrive.

Inthismodel,
1.
DistributionofarrivalisPoissonwitharrivalrateλ,
2.
DistributionofdepartureisPoissonwithservicerateμ(λ<μ),
3.
Distributionofinter-arrivaltimeisexponentialwithmean
arrivaltime(1/λ),
4.
Distributionofservicetimeisexponentialwithmeanservice
time(1/μ),
5.
Systemhassingleserver,
6.
Queuelengthisunrestricted,
7.
QueueDisciplineisfirstcomefirstserve.
MODEL -(M|M|1):(∞|FCFS|∞)

1.SteadyStateDistribution:
Thesteadystatedistributionforthemodelisobtainedunderfollowing
axioms:
Axiom1:Theno.ofarrivalsaswellasdeparturesinnon-overlapping
intervalsoftimearestatisticallyindependent.
Axiom2:Theprobabilitythatanarrivaloccurswithinaverysmalltime
intervalΔtisgivenby:
P
1
[Δt]=λΔt+o(Δt)
Axiom3:Theprobabilitythatandepartureoccurswithinaverysmalltime
intervalΔtisgivenby:
P
1
[Δt]= μΔt+o(Δt)
Axiom4:Theprobabilityofmorethanonearrivalsormorethanone
departuresduringtimeintervalΔtisnegligiblysmall,i.e.,o(Δt)
Axiom5:Thearrivalsanddeparturesarestatisticallyindependent.
CHARACTERISTICSOF(M|M|1):(∞|FCFS|∞)

LetP
n
[t]denotestheprobabilitythattherearencustomersinthesystemat
timet.
Let’sconsiderthecasewhenthereisatleastonecustomerinthesystemat
timet(n >0)
P
n
[t+Δt]
=P[ncustomersattimet,no arrivalandnodepartureduringΔt]
+P[(n–1)customersattimet,onearrivalandno departureduringΔt]
+P[(n+1)customersattimet,no arrivalandonedepartureduringΔt]
+P[ncustomersattimet,onearrivalandonedepartureduringΔt]+…
=P
n
[t].P[noarrivalduringΔt].P[nodepartureduringΔt]
+P
(n–1)
[t].P[onearrivalduringΔt].P[nodepartureduringΔt]
+P
(n+1)
[t].P[noarrivalduringΔt].P[onedepartureduringΔt]
+P
n
[t].P[onearrivalduringΔt].P[onedepartureduringΔt]+o(Δt)

Onsolving theequation,itwouldbeobtainedthat:
TakinglimitasΔt→0,itwouldbeobtainedthat:
Now,Applyingthesteadystateconditionitwould beobtainedthat:
0= –λP
0
+μP
1
(2)Or, P
1
=(λ/μ)P
0
=ρP
0
Now,puttingn=1inequation (1),itisobtainedthat:
P
2
=(1+ρ)P
1
–ρP
0
=(1+ρ)ρP
0
–ρP
0

2
P
0
(fromequation2)
(3)

Now,puttingn=2inequation (1),itisobtainedthat:
P
3
=(1+ρ)P
2
–ρP
1
=(1+ρ)ρ
2
P
0
–ρ
2
P
0
(Fromequation2and3)

3
P
0
LettherelationP
n

n
P
0
istrueforalln≤m,nowputtingn=mis
equation(1),itisobtainedthat:
P
(m+1)
=(1+ρ)P
m
–ρP
(m–1)
=(1+ρ)ρ
m
P
0
–ρ
m
P
0

(m+1)
P
0
Hence,bymathematicalinduction,P
n

n
P
0
,holdsforalln.
Itisalsoknownthatthetotalprobabilityalwaysbe1,i.e.,

Or, P
0
=(1–ρ)
Or, P
n
=(1–ρ)ρ
n
Itisthesteadystatedistribution,forthemodel(M|M|1):(∞|FCFS),which
givestheprobabilitythattherearencustomersinthesystemattimet.

2.Averagenumberofcustomersinthesystem:
AveragenumberofcustomersinthesystemaredenotedbyE(n).Itis
definedby:
Hencetheaveragenumberofcustomersinthesystemisρ/(1–ρ).

3.AveragequeueLength:
Thecustomersinthesysteminvolvethecustomersinqueueaswellasthe
customerwhoisattheservicecounter(server)andgettingservice.For
obtainingtheaveragequeuelengththecustomerattheserverisnotconsidered.
ItisdenotedbyE(m),anddefinedby:
Hencetheaveragequeuelengthisρ
2
/(1–ρ).

4.Probabilitythat thereareatleastkcustomersinthesystem:
Hencetheprobabilitythatthereareatleastkcustomersinthesystemisρ
k
.

5.Waitingtimedistribution:
Waitingtimeofthecustomerisacontinuousvariableexceptthatthereisa
nonzeroprobabilitythatuponarrivalthecustomerisservedimmediately,
i.e.,waitingtimeiszero.Thewaitingtimeisdenotedbywandthe
cumulativedensityfunctionofwaitingtimeisdenotedbyψ
w
(t).
Now,
Ψ
w
(0)=P[w=0]
= P[thereisnocustomerinthesystem]
=P
0
=(1–ρ)
Nowconsider,

Hencethewaitingtimedistributionisgivenby:
Theprobabilitydensity functionofwaitingtimeψ(t)isgiven by:

6.AverageWaitingtime:
Theaveragewaitingtimeistheaveragetimespentbyacustomerinthe
queue.ItisdenotedbyE[w]andgivenby:
Taking{–μ(1–ρ)t}= z,itisobtainedthat:
Hence,theaveragewaiting timeisρ/{μ(1–ρ)}.

7.ProbabilityDensityFunctionforthetimespentinthesystemby
customer:
Itisdenotedbyψ(t\t>0)and givenby:
Ψ(t\t>0)= ψ(t)/P(t>0)
=μρ(1–ρ)e
–μ(1–ρ)t
/1–(1–ρ)
=μ(1–ρ)e
–μ(1–ρ)t
Hence,thep.d.f.forthetimespentinthesystembycustomer is:
μ(1–ρ)e
–μ(1–ρ)t

8.Averagetimespentbythecustomerinthesystem:
Thetimespentbythecustomerinthesystemisdenotedbyv.Theaverage
timespentbythecustomerinthesystemisgiven by:
Taking{–μ(1–ρ)t}= z,itisobtainedthat:
HencetheAveragetimespentby thecustomer inthesystemis1/{μ(1–ρ).

9.Little’sFormula:
It was given by the John D.C. Little, That’s why it is termed as Little’s
formula.Itprovidestherelationbetweentheaveragewaitingtimeinthe
systemandaveragenumberofcustomersinthesystem.
Itisknownthat:
E[n]=λ/(μ–λ)and
E[v]=1/(μ–λ)
Whichgivesriseto therelation,
E[n]=λE[v]
Similarly itcanbeeasilyshownthat
E[m]=λE[w]

CONCLUSION-:

Using queuing theory, the bottleneck of the systems can be identified.
Scenario and software-based simulations provide solutions to the problem of
queues. The study is an application of Queuing Theory with a focus on
efficient resource utilization.

REFERENCES-:

edition;PearsonEducationInc.
3.
SwarupK.,GuptaP.K.&Manmohan;OperationsResearch;11
th
edition;
SultanChand&Sonspublication.
4.
SharmaS.D.,SharmaH.;OperationsResearch:Theory,Methodsand
Applications;15
th
edition;KedarNathRamNathPublishers.
1.
HillerS.H.,LiebermanG.J.;IntroductiontoOperations
Research;7
th
edition,McGrawHillPublications
2.
Taha,H.A.;OperationsResearch:AnIntroduction;8
th
Tags