3-chapter-2.fgpdfffffgggggfsssfgggdfgfgggsd

TemesgenErena 65 views 72 slides Apr 27, 2024
Slide 1
Slide 1 of 72
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72

About This Presentation

Rrffgg


Slide Content

Performance and Operating
Characteristics of IC Engine
1

Geometric parameter of reciprocating engine
Theperformanceoftheinternalcombustion
engineischaracterizedwithseveralgeometric
andthermodynamicparameters

Thefollowinggeometricparametersareof
particularinterest:bore(B),connectingrodlength
(l),crankradius(a),stroke(S)andcrankangle
(ө)
Foranysinglecylinder,thecranksshaft,
connectingrod,piston,andheadassemblycanbe
representedbythemechanismshowntotheleft
2

Geometric parameter of reciprocating engine
ThetopdeadcenterTDCofanenginerefersto
thecrankshaftbeinginapositionsuchthatө=0
0
.
ThevolumeatTDCisminimumandisoftencalled
theclearancevolumeV
c

Thebottomdeadcenter(BDC)referstothe
crankshaftbeingatө=180
0
,thevolumeatBDC
ismaximumandoftendenotedbyV
T
ThedifferencebetweentheV
TandV
cisthe
displacementvolumeV
d
3

Geometric parameter of reciprocating engine
Engine Capacity (V
e)
Where n-is number of cylinders
V
d-cylinder swept volume
Displacement Rate
Stroke V
S
Bore
V
S V
S V
S
TDC
BDC( )








=×=
4
2
B
nSnVV
de
π
For 4-Stroke Engine

Geometrical Properties of Reciprocating Engines
Compression ratio r,
or = 8 to 12 for SI engines and
or = 12 to 24 for CI engines;
Ratio of Cylinder bore to piston Stroke:
B/S=0.8to1.2forsmall-andmedium-size engines,
about0.5forlargeslow-speedCIengines;
5

Geometrical Properties of Reciprocating Engines
Ratio of Connecting rod length to crank radius:
R = 3 to 4 for small-and medium-size engines,
increasing to 5 to 9 for large slow-speed CI
engines.
Thestrokeandcrankradiusarerelatedby
a
l
R=
6

The cylinder volume V at any crank position
Thevolumeofthecylindercanbedetermineda s
functionofcrankangle(),fromthecompression
ratio,thestroke,boreandconnectingrodlength.
AtTDCthecrankshaftisatcrankangleof0
o
.
(Clearancevolume,V
c)
AtBDCthecrankangleisat180
o
.(Maximum
cylindervolume,V
T)
θ
7

The cylinder volume V at any crank position
Displacement volume = (Maximum -
minimum) cylinder volume
Thedisplacementvolumecanalsobe
representedasafunctionoftheboreand
stroke
Atagivencrankanglethevolumeisgivenby:
)(
4
2
θ
πx
B
VV
C+=
θ
8

The cylinder volume V at any crank position
Again using geometry, a relationship for x(ө)can
be developed:
The compression ratio becomes
Solving for V
cresults in:
( )




+−−+=
θθθcossin)(
2
1
222
aallax
θ
9

The cylinder volume V at any crank position
The cylinder volume at any crank angle becomes:
Since, a=S/2 and setting, , gives:
( )










+−−++

=
θθ
πcossin
41
2
1
222
2
aalla
B
r
V
V
D




















+















−++

=
θθ
πcossin1
41
2
1
2
2
2
a
l
a
l
a
B
r
V
V
D
a
l
R=
( )




−−−++

=
2
1
22
sincos1
21θθRR
V
r
V
V
DD
Non-dimensionalformoftheabove
equationbecomes,
.
( )




−−−++

=
2
1
22
sincos1
2
1
1
1θθRR
rV
V
D
θ
10

The cylinder volume V at any crank position
11
















−





−





+




−
−






=
θ
θ
2
2
sin
2
2
1
2
cos1
1
V
S
l
S
l
r
r
V
D
a
V
D
V
TDC
V
BDC
B
l
θ
IfcrankangleismeasuredfromBDCinCCW
direction
θ

The cylinder volume V at any crank position
The cylinder volume at any crank angle becomes:
Since, a=S/2 and setting, , gives:
( )










+−−++

=
θθ
πcossin
41
2
1
222
2
aalla
B
r
V
V
D




















+















−++

=
θθ
πcossin1
41
2
1
2
2
2
a
l
a
l
a
B
r
V
V
D
a
l
R=
( )




−−−++

=
2
1
22
sincos1
21θθRR
V
r
V
V
DD
Non-dimensionalformoftheabove
equationbecomes,
.
( )




−−−++

=
2
1
22
sincos1
2
1
1
1θθRR
rV
V
D
θ
12
Full throttle operation chemically correct mixture (Y=12.5)
Fuel C8H18 Speed 4000rpm
Tm 300k P1 1atm
Friction and heat transfer neglected Fuel vaporization neglect
Crank angleV
disp Pr Crank angle V
disp Pr
(deg) (cc) (bar) (cc) (bar)
360 636.6 1
0 636.6 1 375 629.8 1
15 629.8 1 390 609.4 1
30 609.4 1.1 405 575.3 1
45 575.3 1.2 420 528.1 1
60 528.1 1.3 435 469 1
75 469 1.5 450 400.4 1
90 400.4 1.9 465 326.4 1
105 326.4 2.5 480 252.8 1
120 252.8 3.6 495 186 1
135 186 5.6 510 132.5 1
150 132.5 9 525 98 1
165 98 13.7 540 86 1
180 86 16.5 540 86 1
180 86 98.2 555 98 1
195 98 81.9 570 132.5 1
210 132.5 53.6 585 186 1
225 186 33.4 600 252.8 1
240 252.8 21.7 615 326.5 1
255 326.5 15.2 630 400.4 1
270 400.4 11.4 645 469 1
285 469 9.1 660 528.1 1
300 528.1 7.7 675 575.3 1
315 575.3 6.9 690 609.4 1
330 609.4 6.3 705 629.8 1
345 629.8 6 720 636.6 1
360 636.6 6
0
20
40
60
80
100
120
0 100 200 300 400 500 600 700
volume (cc)
pressure (bar)

Engine Performance Parameters
Theperformanceoftheenginedependsoninter-relationshipbetween
powerdeveloped,speedandthespecificfuelconsumptionateach
operatingconditionwithintheusefulrangeofspeedandload.
PERFORMANCE
OF ENGINE
POWER
13

Engine performance
Internalcombustionengineshouldgenerallyoperatewithinauseful
rangeofspeed.
Someenginesaremadetorunatfixedspeedbymeansofaspeed
governorwhichisitsratedspeed

Ateachspeedwithintheusefulrange,thepoweroutputvariesandithas
amaximumusablevalue.
Thespecificfuelconsumptionvarieswithloadandspeed
14

Engine performance definition
AbsoluteRatedPower:Thehighestpowerwhichtheenginecould
developatsealevelwithnoarbitrarylimitationonspeed,fuel-airratio
orthrottleopening
Maximumratedpower:Thehighestpoweranengineisallowedto
developforshortperiodsofoperation.

Normalratedpower:Thehighestpoweranengineisallowedto
developincontinuousoperation.
Ratedspeed: Thecrankshaftrotationalspeedatwhichratedpoweris
developed
15

Engine Performance Parameters
Theperformanceanengineisjudgedbyquantifyingits
efficiencies
Five important engine efficiencies are
Indicated thermal efficiency (η
ith) Indicated Power
Brake thermal efficiency(η
bth) Brake Power
Mechanical efficiency (η
m)
Volumetric efficiency (η
v)
Relative efficiency or Efficiency ratio (η
rel)
16

Engine Performance Parameters
Other Engine performance Parameters
Mean effective pressure (MEP or P
m)
Mean piston speed (s
p)
Specific power output (P
s)
Specific fuel consumption (sfc)
Inlet-valve Mach Index (Z)
Fuel-air or air-fuel ratio (F/A or AI F)
Calorific value of the fuel (CV)
17

The Energy Flow
The energy flow through the engine is expressed in 3
distinct terms
Indicated Power
Brake Power

Friction Power
18

The Energy Flow
Expansion Force

The Energy Flow

Indicated work
TheEnginecycleonaP-Vcoordinates,isoftencalledanindicator
diagram.
Theindicatedworkpercycle W
c,i
isobtainedbyintegratingaroundthe
curvetoobtaintheareaenclosedonthediagram

=PdVW
ic,
21

Gross Indicated Work
Theupperloopoftheenginecycleoftheindicatordiagram,the
compressionandpowerstrokes,whereoutputworkisgeneratedis
calledthegrossindicatedwork.
CAW
igc
+=
,
22

Pump work
Thelowerloop,whichincludestheintakeandexhaustiscalledPumpwork
andabsorbsworkfromtheengine.

Wide-Open Throttle (WOT) Engine operated with throttle valve fully open
when maximum power and/or speed is desired.
Pumpigcinetc
pumpWWW CBW
−=
+=
,,
Net indicated work is
23

Indicated Work at Part Throttle
AtWOTthepressureattheintakevalveisjustbelowatmospheric
pressure,howeveratpartthrottlethepressureismuchlowerthan
atmospheric
Thereforeatpartthrottlethe
pumpwork(areaB+C)can
besignificantcomparedto
grossindicatedwork(area
A+C)
24

Indicated Work with Supercharging/Turbocharged
Engineswithsuperchargersorturbochargerscanhaveintake
pressuresgreaterthantheexhaustpressure,givingapositivepump
work
( )( ) BAreaAAreaW
net +=
Superchargesincreasethenet
indicatedworkbutisaparasitic
loadsincetheyaredrivenbythe
crankshaft
25

Work during engine cycle
26

Indicated Power (ip) or (P
i)
Gross indicated work

p = imep (N/m
2
)
A (m
2
)
F= P.A (N)
L (m)
F (N)
Work(W)=F.L(Nm)
Time (t) = 60 / (N
e/k) (s)
Indicated power (P
i)
cylinder= W/t = F.L .N
e/(k*60) (W)
(P
i)
cylinder= (imep.A.L.N) / (n
R. 60)
(P
i)
engine = imep. (A.L.n) N) / (n
R. 60)
(P
i)
engine= [imep. V
e. N
)/ (n
R. 60)] (W)
a
b
c
n
R= 2 (four stroke)
n
R= 1 (two stoke)
n = number of cylinder

Indicated, brake and frictional power
Theindicatedpowerperenginecanalsobegivenintermsof
indicatedworkpercycle:
where N–crankshaft speed in rev/s
n
R -number of crank revolutions per cycle
= 2 for 4-stroke= 1 for 2-stroke
R
i
in
NW
n
P
××
=
29

Indicated, brake and frictional power
Thetermbrakepower,P
b,isusedtospecifythatthepowerismeasured
attheoutputshaft,thisistheusablepowerdeliveredbytheengineto
theload.
Partofthegrossindicatedworkpercycleorpowerisusedtoexpel
exhaustgasesandinductfreshcharge.

Anadditionalportionisusedtoovercomethefrictionofthebearings,
pistons,andothermechanicalcomponentsoftheengine,andtodrive
theengineaccessories.
30

Power flows in an engine
The power flow through the engine is expressed in 3
distinct terms
Indicated Power
Brake Power

Friction Power
31
fbig
PPP +=
g

Mechanical Efficiency
Theratioofthebrake(oruseful)powerdeliveredbytheengineto
theindicatedpoweriscalledthemechanicalefficiency.
Mechanicalefficiencydependsonthrottlepositionaswellasengine
designandenginespeed.
Typicalvaluesforamodernautomotiveengineatwideopenorfull
throttleare90percentatspeedsbelowabout30to40rev/s(1800
to2400rev/min),decreasingto75percentatmaximumrated
speed.
ig
f
ig
b
mP
P
P
P
−== 1
η
32

Power Speed Curve
Where:
P
ig= indicated power
P
b= brake power
P
f= friction power
33
fbigPPP +=
ig
f
ig
b
mP
P
P
P
−== 1
η

Mean effective pressure (mep)
MEPisafictitiouspressurethat,ifactedonthepistonduringtheentire
powerstroke,wouldproducethesameamountofnetworkasthat
producedduringtheactualcycle
Meaneffectivepressure(mep)istheworkdoneperunitdisplacement
volume.
mep=W/V
D

Thenetworkduringtheintakeandexhauststrokesis:
W
p,net=(P
i-P
e)
34

Mean effective pressure
Theworkperdisplacementvolumerequiredtopumptheworkingfluid
intoandoutoftheengineduringtheintakeandexhauststrokesis
termedasthepumpingwork(W
P)andthemeaneffectivepressureis
calledpumpingmeaneffectivepressure(PMEP)
W
P,net/V
D=pmep=(P
i-P
e)
Theindicatedmeaneffectivepressure(imep)isdefinedastheworkper
unitdisplacementvolumedonebythegasduringthecompressionand
expansionstroke.
imep=W
i/V
D
Thenetindicatedmeaneffectivepressureforthewholecycle,
imep
net=imep-pmep
35

Mean effective pressure
mep = W/V
D
n
Ris the number of crank revolutions for each power stroke per
cylinder
N
nP
W
R

=
NV
nP
mep
D

×
=
36

Indicated and brake Mean effective Pressure
For SI unit
Mean effective pressure can also be expressed in terms of
torque
Indicated power gives indicated mean effective pressure:
)()(
106)(
)(
3
4
2
rpmNmV
nkWP
mNmep
D
R
×
×××
=
)(
)(2
)(
3
2
mV
nNmT
mNmep
D
R
×

)()(
106)(
)(
3
4
2
rpmNmV
nkWP
mNimep
D
Ri
×
×××
=
[]W
NmTrpmN
P
60
)()(2 ×
=
π
37

)()(
10
6)(
)(
3
4
2
rpmNmV
nkWP
mNbmep
D
Rb
×
×××
=
38
Brake mean effective pressure

Engine Torque T
e-Torque and crankshaft angle
Workisalsoaccomplishedwhenthe
torqueisappliedthroughanangle.

Distance
Where:
θrxy=
θθTFrxyFW ===.
()π2TW
revolutionper
=
()ωπTtTtWP === 2
60
2N
π
ω
=
39

Engine Brake Torque T
e
Brake mean effective pressure can also be expressed in terms of
torque
Where:
N= Engine speed (rpm)
V
D= engine Displacement capacity (m
3
)
n
R= 2, for 4-stroke engines
1, for 2-stroke engines
()()
()kW
rpmNNmTTN
TP
ee
eb
955060
2 ×
=
×
=×=
π
ω
)(
).(2
)(
3
2
mV
nmNT
mNbmep
D
Re
×

R
D
e
n
mVmNbmep
mNT
×
×
=π2
)()(
).(
32
40

Engine Torque T
e
oThereisadirectrelationship
betweenBMEPandtorqueoutput.
oThetorquecurvewithenginerpmis
identicaltothebmepcurve,with
differentvalues.
41

42
Thereisamaximuminthebrakepowerversus
enginespeedcalledtheratedbrakepower
(RBP).
Athigherspeedsbrakepowerdecreasesas
frictionpowerbecomessignificantcompared
totheindicatedpower
Thereisamaximuminthetorqueversus
speedcalledmaximumbraketorque
(MBT).
Braketorquedropsoff:
•atlowerspeedsdotoheatlosses
•athigherspeedsitbecomesmoredifficult
toingestafullchargeofair.
Max brake torque
1 kW = 1.341 hp
Rated brake power
Power and Torque versus Engine Speed at WOT
figb
PPP −=

Mean Piston Speed
Animportantcharacteristicspeedisthemeanpistonspeed
Where:Sisthestrokeand
Nistherotationalspeedofthecrankshaft.
Resistancetogasflowintotheengineorstressesduetotheinertia
ofthemovingpistonlimitthemaximummeanpistonspeedto
withintherange8to15m/s.
pS
pS
NSSp2=
43

Specific Power
Specificpoweroutputofanengineisdefinedasthepower
outputperunitpistonarea.
Itisameasureoftheenginedesigner’ssuccessinusingthe
availablepistonarearegardlessofcylindersize.
P
b
A
P
SPpowerspecific =,
)1012(
,
5
××
×
=
R
p
n
Sbmep
SPpowerspecific
44
)()(
10
6)(
)(
3
4
2
rpmNmV
nkWP
mNbmep
D
Rb
×
×××
=

Specific Fuel Consumption (sfc)
sfcshowshowmuchfuelisconsumedbyanenginetodoacertainamount
ofwork.
Specific fuel consumption represents the massor volume of fuel an engine
consumes per hour while it produces 1 kW of power.
It depends on
Engine size
Operation load
Engine design

Specific fuel consumption is given in kilograms of fuel per
kilowatt-hour.
45

Specific fuel consumption and efficiency
Specific fuel consumption (sfc) isfuel flow rate per unit power output.
It measures how efficiently an engine is using the fuel supplied to
produce work:
Brake power gives brake specific fuel consumption:
Indicated power gives indicated specific fuel consumption:
P
m
sfc
f

=
)(
)/(
)/(
kWP
sgm
Jmgsfc
f

=
)(
)/(
)./(
kWP
hgm
hkWgsfc
f

=
b
f
P
m
bsfc

=
Pi
m
isfc
f

=
46

Brake Specific Fuel Consumption vsEngine Size
Brakespecificfuelconsumptiongenerallydecreaseswith
enginesize,beingbest(lowest)forverylargeengines.
Onereasonforthisisless
heatlossduetothehigher
volumetosurfacearearatio
ofthecombustionchamberin
largeengines.
Alsolargeenginesoperate
atlowerspeedswhich
reducefrictionlosses.
47

Brake Specific Fuel Consumption vsEngine Speed
Brakespecificfuelconsumptiondecreasesasenginespeed
increases,reachesaminimum,andthenincreasesathigh
speeds.
Fuelconsumptionincreasesat
highspeedsbecauseofgreater
frictionlosses.
Atlowenginespeed,thelonger
timepercycleallowsmoreheat
lossandfuelconsumptiongoes
up.
48

Engine Thermal Efficiencies
Thetimeforcombustioninthecylinderisveryshortsonotallthefuel
maybeconsumedorlocaltemperaturesmaynotfavorcombustion

Asmallfractionofthefuelmaynotreactandexitswiththeexhaust
gas
The combustion efficiency is defined as:
Where Q
in = heat added by combustion per cycle
m
f = mass of fuel added to cylinder per cycleQ
HV= heating value of the fuel (chemical energy per unit mass)
HVf
in
C
Qm
Q
inputheatltheoretica
inputheatactual
==
η
49

Energy flow
50

Indicated thermal efficiency ( η
ith)
Indicated thermal efficiency (η
ith)
istheratioofenergyintheindicatedpower,P
i,tothe
inputfuelenergyinappropriateunits
CHVf
i
in
ii
ithQm
P
Q
P
cycleperinputheatofrate

η
===
Indicatedthermalefficienciesaretypically50%to60%
andbrakethermalefficienciesareusuallyabout30%
51

Brake Thermal Efficiency(η
bth)
Is the ratio of energy in the brake power P
bto the input
fuel energy in appropriate units
CHVf
b
in
bb
bthQm
P
Q
P
cycleperinputheatofrate

η
===
52

Thermal efficiency
CHV
bthQbsfcηη
1
=
P
m
sfc
f

=
CHV
ith
Qisfcη
η
1
=
or
From specific fuel consumption
53
CHVf
i
in
ii
ithQm
P
Q
P
cycleperinputheatofrate

η
===

Fuel conversion efficiency
Fuel conversion efficiency is defined as:
Thus thermal efficiency may be defined as:
C
f
t
η
η
η
=
HVHVfHVf
C
f
QsfcQm
P
Qm
W
cycleperinputHeatTheortical
cycleperWork 1
====

η
54

Air-Fuel Ratio and Fuel-Air Ratio
Therelativeproportionsofthefuelandairintheengine
cylinderareveryimportantfromthestandpointof
combustionandtheefficiencyoftheengine.

Air-Fuelratio(AF)orFuel-Airratio(FA)areusedto
describethemixtureratioofthecharge.
55

Air-Fuel Ratio and Fuel-Air Ratio
ForSIenginehydrocarbonfuel:
IdealorStoichiometricAFisabout15:1(14.7:1)
Combustionpossibleintherangeof6:1to25:1
ForCIenginehydrocarbonfuel:
IdealorStoichiometricAFisalsoabout15(14.7:1)
Combustionpossibleintherangeof18:1to70:1

Fuel-Air (F/A)or Air-Fuel Ratio (A/F)
IntheSIenginethefuel-airratiopracticallyremainsaconstant
overawiderangeofoperation.
InCIenginesatagivenspeedtheairflowdoesnotvarywith
load;itisthefuelflowthatvariesdirectlywithload.
Therefore,thetermfuel-airratioisgenerallyusedinsteadof
air-fuelratio.

Fuel-Air (F/A)or Air-Fuel Ratio (A/F)
Amixturethatcontainsjustenoughairforcompletecombustionofall
thefuelinthemixtureiscalledachemicallycorrectorstoichiometric
fuel-airratio.
Amixturehavingmorefuelthanthatinachemicallycorrectmixtureis
termedasrichmixtureand
amixturethatcontainslessfuel(orexcessair)iscalledaleanmixture.
Theratioofactualfuel-airratiotostoichiometricfuel-airratioiscalled
equivalenceratioandisdenotedby
Φ=1 Stoichiometric
Φ>1 RichMixture
Φ<1 LeanMixture










=
ratioairfueltricStoichiome
ratioAirfuelActual
φ

Equivalent ratio & Relative A/F ratio

Volumetric efficiency CI ( )
Thevolumetricefficiencyisusedtomeasuretheeffectivenessofan
engine'sinductionprocess.
Volumetricefficiencyisusuallyusedwithfour-strokecycleengines
whichhaveadistinctinductionprocess.

Itisdefinedasthevolumeflowrateofairintotheintakesystem
dividedbytherateatwhichvolumeisdisplacedbythepiston:
Where:m
aisthemassofairinductedintothecylinderpercycle.
NV
m
V
m
Dia
a
Dia
a
V
,,
2
ρρ
η

==
V
η
60

Volumetric Efficiency SI (η
v)
Where number of intake strokes per
minutes
n=N/2 for 4-S Engines
n= N for 2-S Engines
N= speed of engine in rpm
N V
)m(2
dia,
a

η
fm+
=

61

Volumetric efficiency
Typicalvaluesofvolumetricefficiencyforanengineatwide-open
throttle(WOT)areintherange75%to90%,goingdownto
muchlowervaluesasthethrottleisclosed.
Can be measured:
At the inlet port
Intake of the engine
Any suitable location in the intake manifold

If measured at the intake of the engine, it is also called the
overall volumetric efficiency.
62

Volumetric Efficiency (η
v)
Volumetric efficiency depends upon
throttle opening and engine speed
induction and exhaust system layout,
port size and
valve timing and opening duration.
High volumetric efficiency increases engine power.
Volumetric Efficiency can be greater than one where Super charger
or turbocharger fitted
Turbo charging is capable of increasing volumetric efficiency up to 50%.
63

Volumetric Efficiency
ntDisplacemeEngine
EnginetheEnteringAir
η
V
=
64

Engine Specific Weight and Specific Volume
Engineweightandbulkvolumeforagivenratedpowerare
importantinmanyapplications.Twoparametersusefulfor
comparingtheseattributesformoneenginetoanotherare:
Theseparametersindicatetheeffectivenesswithwhichtheengine
designerhasusedtheenginematerialsandpackagedtheengine
components.
powerrated
Weightengine
WeightSpecific =
powerrated
volumeengine
volumeSpecific =
65

Calorific Value (CV)
Calorificvalueofafuelisthethermalenergyreleasedperunit
quantityofthefuelwhenthefuelisburnedcompletelyandthe
productsofcombustionarecooledbacktotheinitialtemperature
ofthecombustiblemixture
Othertermsusedforthecalorificvalueareheatingvalueand
heatofCombustion.
Whentheproductsofcombustionarecooledto25°Cpractically
allthewatervapourresultingfromthecombustionprocessis
condensed.

Calorific Value (CV)
WhenH
2Oisinproductsiscondensedtoliquidadditionalheatis
realizedandthetotalheatliberatediscalledHigherCalorificValue
(HCV)
whenH
2Ointheproductsisinthevaporformheatisnotremoved
thiscalorificvalueiscallediscalledLowercalorificValues(LCV)
L.C.V.=H.C.V.–(MassofH
2O*2454.1)inkJ

Engine Performance Curves
1.I
mep
2.B
mepand torque
3.Indicated power
4.Brake power
5.Indicated thermal efficiency
6.Brake thermal efficiency
7.Specific fuel consumption

Brake Torque and Power measurement
Dynamometersareusedtomeasuretorqueandpowerovertheengine
operatingrangesofspeedandload.
Dynamometersusevariousmethodstoabsorbtheenergyoutputofthe
engine,allofwhicheventuallyendsupasheat.
Somedynamometersabsorbenergyinamechanicalfrictionbrake,
hydraulicfluidandmagneticfield

Dynamometer vs. Engine Setup
TheEngineisclampedonatestbedandtheshaftisconnectedtothe
dynamometerrotor.

Therotoriscoupledelectromagnetically,hydraulicallyorby
mechanicalfrictiontoastator
Thetorqueexertedonthestatorwiththerotorturningismeasured
bybalancingthestatorwithweights,springsorpneumaticmeans.
Load cell
Force F
Stator
Rotor
b
N

Brake Torque and Power
Workisdefinedastheproductofaforceandthedistancethroughwhich
thepointofapplicationoftheforcemoves
Whenthedriveshaftoftheengineturnsthroughonerevolution,any
pointontheperipheryoftherigidlyattachedrotermovesthrougha
distanceofequalto
Duringthismovementafrictionforce,f,isactingonthestator.
Thefrictionforce,f,isthusactingthroughthedistance and
producingawork

Brake Torque and Power
Work during one revolution = Distance * f
= *f
Thetorque,r*f,producedbythedriveshaftisopposedbyaturning
momentequaltotheproductofthelengthofthemomentarmband
theforceFmeasuredbythescale
T=r*f=F*b
Workduringonerevolution= Fb
Power=Work/Time=FbN/60
Tags