Geometric parameter of reciprocating engine
ThetopdeadcenterTDCofanenginerefersto
thecrankshaftbeinginapositionsuchthatө=0
0
.
ThevolumeatTDCisminimumandisoftencalled
theclearancevolumeV
c
Thebottomdeadcenter(BDC)referstothe
crankshaftbeingatө=180
0
,thevolumeatBDC
ismaximumandoftendenotedbyV
T
ThedifferencebetweentheV
TandV
cisthe
displacementvolumeV
d
3
Geometric parameter of reciprocating engine
Engine Capacity (V
e)
Where n-is number of cylinders
V
d-cylinder swept volume
Displacement Rate
Stroke V
S
Bore
V
S V
S V
S
TDC
BDC( )
=×=
4
2
B
nSnVV
de
π
For 4-Stroke Engine
Geometrical Properties of Reciprocating Engines
Compression ratio r,
or = 8 to 12 for SI engines and
or = 12 to 24 for CI engines;
Ratio of Cylinder bore to piston Stroke:
B/S=0.8to1.2forsmall-andmedium-size engines,
about0.5forlargeslow-speedCIengines;
5
Geometrical Properties of Reciprocating Engines
Ratio of Connecting rod length to crank radius:
R = 3 to 4 for small-and medium-size engines,
increasing to 5 to 9 for large slow-speed CI
engines.
Thestrokeandcrankradiusarerelatedby
a
l
R=
6
The cylinder volume V at any crank position
Thevolumeofthecylindercanbedetermineda s
functionofcrankangle(),fromthecompression
ratio,thestroke,boreandconnectingrodlength.
AtTDCthecrankshaftisatcrankangleof0
o
.
(Clearancevolume,V
c)
AtBDCthecrankangleisat180
o
.(Maximum
cylindervolume,V
T)
θ
7
The cylinder volume V at any crank position
Displacement volume = (Maximum -
minimum) cylinder volume
Thedisplacementvolumecanalsobe
representedasafunctionoftheboreand
stroke
Atagivencrankanglethevolumeisgivenby:
)(
4
2
θ
πx
B
VV
C+=
θ
8
The cylinder volume V at any crank position
Again using geometry, a relationship for x(ө)can
be developed:
The compression ratio becomes
Solving for V
cresults in:
( )
+−−+=
θθθcossin)(
2
1
222
aallax
θ
9
The cylinder volume V at any crank position
The cylinder volume at any crank angle becomes:
Since, a=S/2 and setting, , gives:
( )
+−−++
−
=
θθ
πcossin
41
2
1
222
2
aalla
B
r
V
V
D
+
−
−++
−
=
θθ
πcossin1
41
2
1
2
2
2
a
l
a
l
a
B
r
V
V
D
a
l
R=
( )
−−−++
−
=
2
1
22
sincos1
21θθRR
V
r
V
V
DD
Non-dimensionalformoftheabove
equationbecomes,
.
( )
−−−++
−
=
2
1
22
sincos1
2
1
1
1θθRR
rV
V
D
θ
10
The cylinder volume V at any crank position
11
−
−
+
−
−
−
=
θ
θ
2
2
sin
2
2
1
2
cos1
1
V
S
l
S
l
r
r
V
D
a
V
D
V
TDC
V
BDC
B
l
θ
IfcrankangleismeasuredfromBDCinCCW
direction
θ
Engine Performance Parameters
Theperformanceanengineisjudgedbyquantifyingits
efficiencies
Five important engine efficiencies are
Indicated thermal efficiency (η
ith) Indicated Power
Brake thermal efficiency(η
bth) Brake Power
Mechanical efficiency (η
m)
Volumetric efficiency (η
v)
Relative efficiency or Efficiency ratio (η
rel)
16
Engine Performance Parameters
Other Engine performance Parameters
Mean effective pressure (MEP or P
m)
Mean piston speed (s
p)
Specific power output (P
s)
Specific fuel consumption (sfc)
Inlet-valve Mach Index (Z)
Fuel-air or air-fuel ratio (F/A or AI F)
Calorific value of the fuel (CV)
17
The Energy Flow
The energy flow through the engine is expressed in 3
distinct terms
Indicated Power
Brake Power
Friction Power
18
The Energy Flow
Expansion Force
The Energy Flow
Indicated work
TheEnginecycleonaP-Vcoordinates,isoftencalledanindicator
diagram.
Theindicatedworkpercycle W
c,i
isobtainedbyintegratingaroundthe
curvetoobtaintheareaenclosedonthediagram
∫
=PdVW
ic,
21
Pump work
Thelowerloop,whichincludestheintakeandexhaustiscalledPumpwork
andabsorbsworkfromtheengine.
Wide-Open Throttle (WOT) Engine operated with throttle valve fully open
when maximum power and/or speed is desired.
Pumpigcinetc
pumpWWW CBW
−=
+=
,,
Net indicated work is
23
Indicated Work at Part Throttle
AtWOTthepressureattheintakevalveisjustbelowatmospheric
pressure,howeveratpartthrottlethepressureismuchlowerthan
atmospheric
Thereforeatpartthrottlethe
pumpwork(areaB+C)can
besignificantcomparedto
grossindicatedwork(area
A+C)
24
Indicated Work with Supercharging/Turbocharged
Engineswithsuperchargersorturbochargerscanhaveintake
pressuresgreaterthantheexhaustpressure,givingapositivepump
work
( )( ) BAreaAAreaW
net +=
Superchargesincreasethenet
indicatedworkbutisaparasitic
loadsincetheyaredrivenbythe
crankshaft
25
Work during engine cycle
26
Indicated Power (ip) or (P
i)
Gross indicated work
p = imep (N/m
2
)
A (m
2
)
F= P.A (N)
L (m)
F (N)
Work(W)=F.L(Nm)
Time (t) = 60 / (N
e/k) (s)
Indicated power (P
i)
cylinder= W/t = F.L .N
e/(k*60) (W)
(P
i)
cylinder= (imep.A.L.N) / (n
R. 60)
(P
i)
engine = imep. (A.L.n) N) / (n
R. 60)
(P
i)
engine= [imep. V
e. N
)/ (n
R. 60)] (W)
a
b
c
n
R= 2 (four stroke)
n
R= 1 (two stoke)
n = number of cylinder
Indicated, brake and frictional power
Theindicatedpowerperenginecanalsobegivenintermsof
indicatedworkpercycle:
where N–crankshaft speed in rev/s
n
R -number of crank revolutions per cycle
= 2 for 4-stroke= 1 for 2-stroke
R
i
in
NW
n
P
××
=
29
Indicated, brake and frictional power
Thetermbrakepower,P
b,isusedtospecifythatthepowerismeasured
attheoutputshaft,thisistheusablepowerdeliveredbytheengineto
theload.
Partofthegrossindicatedworkpercycleorpowerisusedtoexpel
exhaustgasesandinductfreshcharge.
Anadditionalportionisusedtoovercomethefrictionofthebearings,
pistons,andothermechanicalcomponentsoftheengine,andtodrive
theengineaccessories.
30
Power flows in an engine
The power flow through the engine is expressed in 3
distinct terms
Indicated Power
Brake Power
Friction Power
31
fbig
PPP +=
g
Mechanical Efficiency
Theratioofthebrake(oruseful)powerdeliveredbytheengineto
theindicatedpoweriscalledthemechanicalefficiency.
Mechanicalefficiencydependsonthrottlepositionaswellasengine
designandenginespeed.
Typicalvaluesforamodernautomotiveengineatwideopenorfull
throttleare90percentatspeedsbelowabout30to40rev/s(1800
to2400rev/min),decreasingto75percentatmaximumrated
speed.
ig
f
ig
b
mP
P
P
P
−== 1
η
32
Power Speed Curve
Where:
P
ig= indicated power
P
b= brake power
P
f= friction power
33
fbigPPP +=
ig
f
ig
b
mP
P
P
P
−== 1
η
Mean effective pressure (mep)
MEPisafictitiouspressurethat,ifactedonthepistonduringtheentire
powerstroke,wouldproducethesameamountofnetworkasthat
producedduringtheactualcycle
Meaneffectivepressure(mep)istheworkdoneperunitdisplacement
volume.
mep=W/V
D
Thenetworkduringtheintakeandexhauststrokesis:
W
p,net=(P
i-P
e)
34
Mean effective pressure
Theworkperdisplacementvolumerequiredtopumptheworkingfluid
intoandoutoftheengineduringtheintakeandexhauststrokesis
termedasthepumpingwork(W
P)andthemeaneffectivepressureis
calledpumpingmeaneffectivepressure(PMEP)
W
P,net/V
D=pmep=(P
i-P
e)
Theindicatedmeaneffectivepressure(imep)isdefinedastheworkper
unitdisplacementvolumedonebythegasduringthecompressionand
expansionstroke.
imep=W
i/V
D
Thenetindicatedmeaneffectivepressureforthewholecycle,
imep
net=imep-pmep
35
Mean effective pressure
mep = W/V
D
n
Ris the number of crank revolutions for each power stroke per
cylinder
N
nP
W
R
i×
=
NV
nP
mep
D
R×
×
=
36
Indicated and brake Mean effective Pressure
For SI unit
Mean effective pressure can also be expressed in terms of
torque
Indicated power gives indicated mean effective pressure:
)()(
106)(
)(
3
4
2
rpmNmV
nkWP
mNmep
D
R
×
×××
=
)(
)(2
)(
3
2
mV
nNmT
mNmep
D
R
×
=π
)()(
106)(
)(
3
4
2
rpmNmV
nkWP
mNimep
D
Ri
×
×××
=
[]W
NmTrpmN
P
60
)()(2 ×
=
π
37
)()(
10
6)(
)(
3
4
2
rpmNmV
nkWP
mNbmep
D
Rb
×
×××
=
38
Brake mean effective pressure
Engine Brake Torque T
e
Brake mean effective pressure can also be expressed in terms of
torque
Where:
N= Engine speed (rpm)
V
D= engine Displacement capacity (m
3
)
n
R= 2, for 4-stroke engines
1, for 2-stroke engines
()()
()kW
rpmNNmTTN
TP
ee
eb
955060
2 ×
=
×
=×=
π
ω
)(
).(2
)(
3
2
mV
nmNT
mNbmep
D
Re
×
=π
R
D
e
n
mVmNbmep
mNT
×
×
=π2
)()(
).(
32
40
Engine Torque T
e
oThereisadirectrelationship
betweenBMEPandtorqueoutput.
oThetorquecurvewithenginerpmis
identicaltothebmepcurve,with
differentvalues.
41
42
Thereisamaximuminthebrakepowerversus
enginespeedcalledtheratedbrakepower
(RBP).
Athigherspeedsbrakepowerdecreasesas
frictionpowerbecomessignificantcompared
totheindicatedpower
Thereisamaximuminthetorqueversus
speedcalledmaximumbraketorque
(MBT).
Braketorquedropsoff:
•atlowerspeedsdotoheatlosses
•athigherspeedsitbecomesmoredifficult
toingestafullchargeofair.
Max brake torque
1 kW = 1.341 hp
Rated brake power
Power and Torque versus Engine Speed at WOT
figb
PPP −=
Specific Power
Specificpoweroutputofanengineisdefinedasthepower
outputperunitpistonarea.
Itisameasureoftheenginedesigner’ssuccessinusingthe
availablepistonarearegardlessofcylindersize.
P
b
A
P
SPpowerspecific =,
)1012(
,
5
××
×
=
R
p
n
Sbmep
SPpowerspecific
44
)()(
10
6)(
)(
3
4
2
rpmNmV
nkWP
mNbmep
D
Rb
×
×××
=
Specific Fuel Consumption (sfc)
sfcshowshowmuchfuelisconsumedbyanenginetodoacertainamount
ofwork.
Specific fuel consumption represents the massor volume of fuel an engine
consumes per hour while it produces 1 kW of power.
It depends on
Engine size
Operation load
Engine design
Specific fuel consumption is given in kilograms of fuel per
kilowatt-hour.
45
Specific fuel consumption and efficiency
Specific fuel consumption (sfc) isfuel flow rate per unit power output.
It measures how efficiently an engine is using the fuel supplied to
produce work:
Brake power gives brake specific fuel consumption:
Indicated power gives indicated specific fuel consumption:
P
m
sfc
f
=
)(
)/(
)/(
kWP
sgm
Jmgsfc
f
=
)(
)/(
)./(
kWP
hgm
hkWgsfc
f
=
b
f
P
m
bsfc
=
Pi
m
isfc
f
=
46
Engine Thermal Efficiencies
Thetimeforcombustioninthecylinderisveryshortsonotallthefuel
maybeconsumedorlocaltemperaturesmaynotfavorcombustion
Asmallfractionofthefuelmaynotreactandexitswiththeexhaust
gas
The combustion efficiency is defined as:
Where Q
in = heat added by combustion per cycle
m
f = mass of fuel added to cylinder per cycleQ
HV= heating value of the fuel (chemical energy per unit mass)
HVf
in
C
Qm
Q
inputheatltheoretica
inputheatactual
==
η
49
Energy flow
50
Indicated thermal efficiency ( η
ith)
Indicated thermal efficiency (η
ith)
istheratioofenergyintheindicatedpower,P
i,tothe
inputfuelenergyinappropriateunits
CHVf
i
in
ii
ithQm
P
Q
P
cycleperinputheatofrate
Pη
η
===
Indicatedthermalefficienciesaretypically50%to60%
andbrakethermalefficienciesareusuallyabout30%
51
Brake Thermal Efficiency(η
bth)
Is the ratio of energy in the brake power P
bto the input
fuel energy in appropriate units
CHVf
b
in
bb
bthQm
P
Q
P
cycleperinputheatofrate
Pη
η
===
52
Thermal efficiency
CHV
bthQbsfcηη
1
=
P
m
sfc
f
=
CHV
ith
Qisfcη
η
1
=
or
From specific fuel consumption
53
CHVf
i
in
ii
ithQm
P
Q
P
cycleperinputheatofrate
Pη
η
===
Fuel conversion efficiency
Fuel conversion efficiency is defined as:
Thus thermal efficiency may be defined as:
C
f
t
η
η
η
=
HVHVfHVf
C
f
QsfcQm
P
Qm
W
cycleperinputHeatTheortical
cycleperWork 1
====
η
54
Air-Fuel Ratio and Fuel-Air Ratio
Therelativeproportionsofthefuelandairintheengine
cylinderareveryimportantfromthestandpointof
combustionandtheefficiencyoftheengine.
Air-Fuelratio(AF)orFuel-Airratio(FA)areusedto
describethemixtureratioofthecharge.
55
Air-Fuel Ratio and Fuel-Air Ratio
ForSIenginehydrocarbonfuel:
IdealorStoichiometricAFisabout15:1(14.7:1)
Combustionpossibleintherangeof6:1to25:1
ForCIenginehydrocarbonfuel:
IdealorStoichiometricAFisalsoabout15(14.7:1)
Combustionpossibleintherangeof18:1to70:1
Volumetric efficiency CI ( )
Thevolumetricefficiencyisusedtomeasuretheeffectivenessofan
engine'sinductionprocess.
Volumetricefficiencyisusuallyusedwithfour-strokecycleengines
whichhaveadistinctinductionprocess.
Itisdefinedasthevolumeflowrateofairintotheintakesystem
dividedbytherateatwhichvolumeisdisplacedbythepiston:
Where:m
aisthemassofairinductedintothecylinderpercycle.
NV
m
V
m
Dia
a
Dia
a
V
,,
2
ρρ
η
==
V
η
60
Volumetric Efficiency SI (η
v)
Where number of intake strokes per
minutes
n=N/2 for 4-S Engines
n= N for 2-S Engines
N= speed of engine in rpm
N V
)m(2
dia,
a
vρ
η
fm+
=
•
61
Volumetric efficiency
Typicalvaluesofvolumetricefficiencyforanengineatwide-open
throttle(WOT)areintherange75%to90%,goingdownto
muchlowervaluesasthethrottleisclosed.
Can be measured:
At the inlet port
Intake of the engine
Any suitable location in the intake manifold
If measured at the intake of the engine, it is also called the
overall volumetric efficiency.
62
Volumetric Efficiency (η
v)
Volumetric efficiency depends upon
throttle opening and engine speed
induction and exhaust system layout,
port size and
valve timing and opening duration.
High volumetric efficiency increases engine power.
Volumetric Efficiency can be greater than one where Super charger
or turbocharger fitted
Turbo charging is capable of increasing volumetric efficiency up to 50%.
63
Volumetric Efficiency
ntDisplacemeEngine
EnginetheEnteringAir
η
V
=
64
Engine Specific Weight and Specific Volume
Engineweightandbulkvolumeforagivenratedpowerare
importantinmanyapplications.Twoparametersusefulfor
comparingtheseattributesformoneenginetoanotherare:
Theseparametersindicatetheeffectivenesswithwhichtheengine
designerhasusedtheenginematerialsandpackagedtheengine
components.
powerrated
Weightengine
WeightSpecific =
powerrated
volumeengine
volumeSpecific =
65
Brake Torque and Power measurement
Dynamometersareusedtomeasuretorqueandpowerovertheengine
operatingrangesofspeedandload.
Dynamometersusevariousmethodstoabsorbtheenergyoutputofthe
engine,allofwhicheventuallyendsupasheat.
Somedynamometersabsorbenergyinamechanicalfrictionbrake,
hydraulicfluidandmagneticfield
Dynamometer vs. Engine Setup
TheEngineisclampedonatestbedandtheshaftisconnectedtothe
dynamometerrotor.
Therotoriscoupledelectromagnetically,hydraulicallyorby
mechanicalfrictiontoastator
Thetorqueexertedonthestatorwiththerotorturningismeasured
bybalancingthestatorwithweights,springsorpneumaticmeans.
Load cell
Force F
Stator
Rotor
b
N
Brake Torque and Power
Workisdefinedastheproductofaforceandthedistancethroughwhich
thepointofapplicationoftheforcemoves
Whenthedriveshaftoftheengineturnsthroughonerevolution,any
pointontheperipheryoftherigidlyattachedrotermovesthrougha
distanceofequalto
Duringthismovementafrictionforce,f,isactingonthestator.
Thefrictionforce,f,isthusactingthroughthedistance and
producingawork
Brake Torque and Power
Work during one revolution = Distance * f
= *f
Thetorque,r*f,producedbythedriveshaftisopposedbyaturning
momentequaltotheproductofthelengthofthemomentarmband
theforceFmeasuredbythescale
T=r*f=F*b
Workduringonerevolution= Fb
Power=Work/Time=FbN/60