5 - Fuel Cell Thermodynamics - von Unwerth.pdf

sahacu 47 views 21 slides Jul 04, 2024
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

Shows the change of standard OCV when differing from
standard conditions
EN : Nernst voltage [V]
E0 : standard open cell voltage OCV [V]
R : universal gas constant (8,314 J/mol K)
T : thermodynamic temperature
z : number of electrons as per reaction equation
F : Faraday constant (F = e NA = 96485 C/...


Slide Content

Fuel Cell Thermodynamics
Prof. Dr.-Ing. Thomas von Unwerth Thomas

von

Unwerth
Department
Advanced Powertrains
Prof. Dr.-Ing. Thomas von Unwerth
11.07.2011 International Summer School - Izmir
1
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth

Content
Fuel cell thermodynamics • Calculation of fuel cell potentials • Efficiency calculations • Mass flow (hydrogen, air, water) • Comparision to ICE Carnot efficiency •
Polarization curve and voltage losses

Polarization

curve

and

voltage

losses
2
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth

Fuel Cell thermodynamics PEM reaction H
2
+ ½ 0
2
= H
2
O(H<0, exothermal)
Enthalpy H (germ. Enthalpie)
overall
fuel energy content
H = Heating value
lower heatin
g
value LHV
(g
erm. H
u
)
:
g
aseous reaction
p
roducts
,
LHV = 241
,
82 kJ/mol
g(g
u
)
gp,
,
higher heating value HHV (germ. H
O
): incl. Enthalpy of wa ter condensation, HHV = 285,83 kJ/mol
Gibbs free ener
gy
G
(g
erm. Freie Enthal
p
ie
)
gy (g p )
usable
fuel energy content
G = H – TS
G
0
(gaseous reaction products) = 228,57 kJ/mol
G
0
(incl. enthalpy of water condensation) = 237,13 kJ/mol
X
0
= standard conditions:
T=298K, p=1,013*10
5
Pa
3
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth
(Wertequelle: Kurzweil)

Schematic fuel cell polarization curve
E
H
Thermoneutral voltage
Entropy term
ics
Fz
H
E
H



0
0
ST
E
0
Standard OCV
Entropy

term
Difference to standard conditions
hermodynam
y
es for high
eat
Fz
G
E



0
0
Fz

E [V]
E
N
Nernst voltage
Activation overvoltage
th
heat
Anergy
eam processe
ture waste he

  
i
i N
i
a
zF
RT
E E

ln
0
A

voltage
E
Z
Cell voltage
Ohmic losses
Concentration overvoltage
cinetics
Downstre
temperat
C

i
RI


O
p
eration ran
g
e
energy
rgy
pg
electrical
Exer
4
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth
current I [A]

Thermodynamic efficiency
0
0
Reaction n
-

H
0
[kJ mol
-1
]
E
0
H
[V]
-

G
0
[kJ mol
-1
]
E
0
[V]
th
H
2
+1/2O
2
-
>H
2
O
li
2
286 0
1482
237 13
1 229
0829
H
2

+

1/2

O
2
>

H
2
O

li
q
2
286
,
0
1
,
482
237
,
13
1
,
229
0
,
829
H
2
+ 1/2 O
2
-> H
2
O
gas
2 241,8 1,253 228,6 1,185 0,946
CO + 1/2 O
2
-> CO
2
2 283,1 1,467 257,2 1,333 0,909
CH
3
OH + 1 1/2 O
2
->
6
726 6
1255
702 5
1 214
0967
CO
2
+ 2 H
2
O
liq
6
726
,
6
1
,
255
702
,
5
1
,
214
0
,
967
CH
4
+ 2 O
2
->
CO
2
+2H
2
O
8 802,4 1,039 800,9 1,038 0,999
CO
2
+

2

H
2
O

gas
5
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth

Chemical potential 
The chemical potential describes the Gibbs free enthalpy change of a
s
y
stem under variation of its com
p
osition.
G





yp
For > 0 the Gibbs free enthalpy increases with growing n.
The chemical
p
otential can be ex
p
ressed b
y
the activit
y
. Therein

0
means
Tp
n
,




0
ppyy

the standard potential at T=298K and p=1,013bar.
The activity a
i
of a substance i is link ed with the concentration c
i
of this
i i i
a
RT
ln
0




substance by the activity coefficient 
i. For ideal behaviour it is =1.
A
ctivity a
is dimensionless, for solid substances it is a=1.
for ideal gases:
i i i
c a



For ideal gases the activity a
i
is the ratio of partial pressure p
i
and standard
pressure p
0
=1,013bar.
Th h i l t ti l f id l i d ib bl f ti f it
0
p
p
a
i
i



Th
e c
h
em
ica
l po
t
en
ti
a
l o
f
an
id
ea
l gas
is
d
escr
ib
a
bl
e as a
f
unc
ti
on o
f

it
s
partial pressure.








 
0
0
ln
p
p
RT
i
i i
 
6
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth

Nernst equation

  
i
i N
i
a
zF
RT
E E

ln
0
i
Shows the change of standard OCV when differing from
standard conditions
E
N
: Nernst voltage [V]
E
0
: standard open cell voltage OCV [V] R
:
universal gas constant (
8
314
J/mol K)
R
:
universal

gas

constant

(
8
,
314

J/mol

K)
T : thermodynamic temperature z : number of electrons as per reaction equation F
:
Faraday constant (F = e N
=
96485
C/mol)
F
:
Faraday

constant

(F

=

e

N
A
=

96485

C/mol)
a
i
: activity (a
i
=

i
c
i
;

i
= 1 for diluted gases
a
i
= c
i
= p
i/p
0
for ideal gases)
bfl ti(tihi tft)

i
: num
b
er o
f
mo
les as per reac
ti
on
(
s
t
o
ic
hi
ome
t
ry
f
ac
t
or
)
thermodynamic sign rule:
products – educts (reactants)
7
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth
exponential: products / educts (n is negative for educts)

Nernst equation for various cell reactions
Reaction Nernst equation Fuel cell
AFC, PEFC, PAFC,
SOFC
OH O H
2 2 2
2
1 


1
0
2
ln
2
OH
N
p
F
RT
E E 
SOFC
2
2 2
2
1CO O CO 


2
2 2
2
O H
p p
F



2
1
0
2
ln
2
CO
N
p
p
p
F
RT
E E 
DMFC
2
O
H
CO
O OH CH
2 3
2
2
3

 


2
2
2
O CO
p
p
F



2
3
0
2
ln
6
CO
N
p
a
p
F
RT
E E 
(w/ a
H20
=1)
MCFC
O
H
CO
2 2
2

) (2 2 2
2
1
Kathode
CO
O
H
CO O H

  


) (2 2
2
1
0
ln
2
Anode
CO
O
H
CO OH
N
p
p
p
p p
F
RT
E E



 


2
2 3
6
O OH CH
p
a
F

) (2 2
A
node
CO
O
H



) (2 2 2Kathode
CO
O
H
p
p
p
8
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth

Thermoneutral voltage and standard potential (OCV) as a function of temperature at
p
i
=
1
,
013
bar
1.31.4
as

a

function

of

temperature

at

p
i

1
,
013
bar
1
1.1
1.2
1.3
E
0
E
H
0.8
0.9
1
enzial [V]
0.5 0.6
0.7
tandardpote
Standardpotenzial Heizwertspannung
020.3
0.4
S
t
0
0.1
0
.
2
0
100
200
300
400
500
600
700
800
900
1000
9
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth 0
100
200
300
400
500
600
700
800
900
1000
Temperatur [°C]

Nernst voltage E
N
= f(T) for various pressures p
i
1.31.4
1
1.1
1.2
1.3 070.8
0.9
1
nnung [V]
0.5
0.6
0
.
7
Nernstspan
pH2=1bar; pO2=1bar; pH2O=1bar pH2=0,5bar; pO2=0,2bar; pH2O=0,5bar pH2
=
0 8bar; pO2
=
0 2bar; pH2O
=
02bar
0.2
0.3
0.4
N
pH2 0
,
8bar;

pO2 0
,
2bar;

pH2O 0
,
2bar
0
0.1
0 100 200 300 400 500 600 700 800 900 1000
10
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth
Temperatur [°C]

Fuel cell cinetics (voltage losses)
type of
overvoltage
cause Influencing variables technical scopes
of influence
regime
activation - Limited velocit
y
of -
p
artici
p
atin
g
-hi
g
her workin
g
- low current
overvoltage
(activation
polarization)
y
charge transfer at phase boundary bw. electr./ionic conductor
-
occurs at each
ppg reactands
- elektrolyte
- elektrodes
- temperature
gg
temperature
- elektrode material
- elektrode texture
densitiy
- non-linear to
current density
-
occurs

at

each

electrochem.
reaction
concentration
-
Too slow mass
-
underconcentrated
-
porous or thinner
-
high current
concentration

overvoltage
(concentration
polarization)
Too

slow

mass

transport to or from
the electrodes
underconcentrated reactands
- porosity of elektrodes
- current density
porous

or

thinner

elektrodes
- Lower current density
for prevention of local
shortage with
reaktants lower
high

current

density
- non-linear to
current density
reaktants
,
lower

depletion
Ohmic losses
(ohmic polarization)
- Conductivity
process inside
material
- Ohmic resistance:
elektrolyte,
elektrodes
- use of materials with
high conductivity
-
temperature
increase
- medium current
density
-
linear
to current
material
elektrodes
,
interconnector,
(assembly layers)
temperature
increase

(ceramic, ionic
conductor, molten salts)
linear

to

current

density
r
eac
ti
o
n
o
v
e
rv
o
lt
age


n
o
n
su
ffi
c
ie
nt r
eac
ti
o
n r
a
t
e

o
f
o
n
e
r
eac
ti
o
n
s
t
ep
in
s
ide

coup
led
r
ea
kti
o
n
s;

p
r
ese
nt
a
t
a
ll
a
r
eas

o
f
11
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth
eac o o e o age
o su c e eac o a e o o e eac o s ep s de coup ed ea o s; p ese a a a eas o
polarization curve; increases with curr ent density; difficult to differentia te from concentration overvoltage
reference: W.Vielstich – Electrochemistry)

Fuel Cell efficiencies
0
0
H
th
EE


thermodynamic efficiency
Hydrogen:

=
94
%
H
E
Hydrogen:

th
=

94
%
Methane :
th
= 99%
CO :
th
= 91%
0
EE
Z
E


voltage (potential) efficiency
E
E
0
H
Z
E th Z
EE
  
  
cell efficiency / charge efficiency
12
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth

Relevance of cell efficiency
0Z
E
th
Z
E
 




cell efficienc
y

/
char
g
e efficienc
y
Target values for PEFC-development (as PNGV*):
– power density 600mW/cm²
hd /i
ti
0H
E
th
Z
E



y
gy

h
y
d
rogen
/
a
ir
-opera
ti
on
– power variant: 600 mV @ 1000mA 

= 48%
– efficiency variant: 800 mV @ 750mA 

= 64%
NG2000: 292 cm² cell area
G
²
13
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth
(*PNGV: Partnership for new generation vehicles, U.S.)
N
G
3000: 596 cm
²
cell area

Wirkungsgrad –von der Zelle zum Stapel
Utilizationof fuel within fuel cell (dt : Gasnutzung)
M
(dt
.
:

Gasnutzung)
M: molar mass [g/mol]
m: mass flow [g/s]
F:
Faraday
-
constant
[C/mol=As/mol]
ein
ges
ein
B
G
umgesetzt BG
t
m
I
zF
M
m
m
u
 


 
,
,
F:

Faraday
-
constant

[C/mol=As/mol]
ein
ein
G
,
Stack efficiency (incl. utilization)
overall cell efficiency relative to gas input
(
cell efficienc
y
*utilization
)
t Z St
u




(y) Faraday efficiency alternative to cell efficiency includes
I
I


alternative

to

cell

efficiency
,
includes

utilization, easier to measure
n
I: mole flow [mol/s]
I
I
n zF


14
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth

Thermoneutral voltage, standard potential and thermodynamic efficiency
(p
i=
1
,
013
bar)
efficiency

(p
i
1
,
013

bar)
1.3
1.4
1
1.1 1.2
E
0
E
H
0.8
0.9
1
tenzial [V]
0.5
0.6
0.7
tandardpo
t
Standardpotenzial Heizwertspannung thermodynamischer Wirkungsgrad

th
0.20.3
0.4
S 0
0.1
0.2
0
100
200
300
400
500
600
700
800
900
1000
15
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth 0
100
200
300
400
500
600
700
800
900
1000
Temperatur [°C]

Comparison with Carnot efficiency
09
1
070.80
.
9
V]

th
0.60
.
7
tenzial [V

C
0.4
0.5
andardpo
0.2 0.3
Sta
thermodynamischer Wirkungsgrad Carnotwirkun
g
s
g
rad
(
25°C
)
0
0.1
0
100
200
300
400
500
600
700
800
900
1000
gg ( )
16
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth 0
100
200
300
400
500
600
700
800
900
1000
Temperatur [°C]

Characteristic curve and heat production
Better characteristic curve:
Rd f l t
17
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth
-
R
e
d
uces
f
ue
l cos
t
s
- Reduces heat production simplified cooling

Comparison of energy flows
+
Wasserstoff-Energie-
Hydrogen energy
35%
Einsatz
Hydrogen energy
in
p
ut
input Diesel energy
input
p
50%
33%
Waste heat exhaust
Waste heat
5%50%
33%
Waste heat cooler
Friction, intercooler
Mech
Mech
Waste heat exhaust
cooler
Mech
.
work
Mech
.
work
18
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth
45% 33%

Typical polarization curves of different fuel cells different

fuel

cells
e ell voltage Ce
Current density
19
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth
(Quelle: K.Krischer, TU München)

Some selected substancial correlations Faraday‘s law
Transported charge by Ions = z
.e
Transported charge pro Mole = N
A
.
z
.ez: valency [-]
e: elementar
y
char
g
e
e
.
N
A
= F [C/mol]
Electric charge:
yg
N
A
: Avogadro constant
F: Faraday constant e=
1
6022
10
-
19
C
Electric

charge:
Q = n
.
Z
.
E
.
N
A
= n
.
Z
.
F = I
.
T
e

=

1
,
6022
.
10
-
19
C
N
A
= 6,023*10^23 mol
-1
F = 96485 C/mol
Elektrochemical converted mass of
substances m:
I: elektric current [A]
t: time [s]
Q: electr. charge [C]
M:
m
olar mass
[g/mol]
Faradaygesetz
M
F
tI M
FQ
m





M:

m
olar

mass

[g/mol]
N: amount of substance [mol]
m: mass of substance [g]
20
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth
z
F
z
F

Fuel Cell thermodynamics
Thank you for your attention!
21
Advanced Powertrains – Prof. Dr.-Ing. T. von Unwerth
Tags