5-ME242_LA_5.pdfasdasdasdasdasdasdasdasda

grabarakas 0 views 14 slides Oct 10, 2025
Slide 1
Slide 1 of 14
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14

About This Presentation

asdasd


Slide Content

ME 242
Applied Mathematics for
Engineers
Linear Algebra –V
(Orthogonal and Similar matrices,
Similarity transformation, Diagonalization)
Prof.Dr. H. SeçilARTEM

ME242 Applied Mathematics for Engineers
A real square matrix [A] is called
Symmetricif transposition leaves it unchanged
Skew-symmetriciftranspositiongivesthenegativeof[A]
[A]
T =[A]
[A]
T = -[A]
Symmetric, Skew-symmetric and Orthogonal Matrices
Orthogonaliftranspositiongivestheinverseof[A] [A]
T =[A]
-1
•The eigenvaluesofarealsymmetricmatrixarereal
•The eigenvaluesofarealskew-symmetricmatrixarepureimaginaryorzero
•The eigenvalues of an orthogonal matrix are real or complex conjugates in pairs and have
absolute value 1.

ME242 Applied Mathematics for Engineers
Orthogonal Transformations are transformations
[y]=[A][x] where [A]is an orthogonal matrix
Ex: Plane rotation through an angle is an orthogonal transformation
y=
cos−sin
sincos
x
1
x
2
Invariance of Inner Product
An orthogonal transformation preserves the value of the inner product of vectors [a] and [b] in ??????
??????
,
defined by
[a] . [b] =[�]
??????
[�]= [�
1….�
??????]
�
1

�
??????
An orthogonal transformation also preserves the length or norm of any vector [a] in ??????
??????
[�]= �.[�]=[�]
??????
[�]

ME242 Applied Mathematics for Engineers
Orthonormality of column and row vectors
A real square matrix is orthogonal if and only if its column vectors
[�]
1,…..,[�]
??????(and also its row vectors) form an orthonormal system, that is,
[�]
�.[�]
�= [�]
�
??????
[�]
�=
0�??????�≠�
1�??????�=�
•The determinant of an orthogonal matrix has the value +1 or -1
•The eigenvalues of an orthogonal matrix are real or complex conjugates in pairs
and have absolute value 1.
??????=
2/31/32/3
−2/32/31/3
1/32/3−2/3
=[�]
1[�]
2[�]
3
Ex:Is the following matrix orthogonal?
[�]
1.[�]
2=2/3−2/31/3
1/3
2/3
2/3
= 0
All possible product of vectors are satisfied;
hence, [A] matrix is an orthogonal matrix

SimilarMatrices,SimilarityTransformationandDiagonalization
Twosquarematrices[A]and[B]ofthesamesizenarecalledsimilar
ifthereexitsanon-singularmatrix[P]ofsizensuchthat
thematrix[B]isobtainedbymeansofaso-calledsimilaritytransformationdefinedas
[B]=[P]
-1 [A][P]or[P][B]=[A][P]or[A]=[P][B][P]
-1
oralternatively
[B]=[Q][A][Q]
-1
or[B][Q]=[Q][A]or[A]=[Q]
-1 [B][Q]
where
[Q]=[P]
-1
ME242 Applied Mathematics for Engineers

Ex:Determinewhetherthefollowing[A]and [B]matricesare similarornot.
The similaritytransformation requiresthat[P][B]=[A][P]
Define[P]as
p
112p
122p
21
p
112p
212p
22
2p
122p
22
p
12p
22
00

=
00

12 20
 
14 23
[A] [B]

p
12
p
22
[P]
p
21
p
11
[A][P]
p
22
2p
11
4p
21
p
12
31
01p
122
p
222p
21
p
11
[P][B] 


ME242 Applied Mathematics for Engineers

Thisgivesthese fourequationsinfourunknowns
p
11
p
11
-2p
12-2p
21=0
-2p
21-2p
22= 0
2p
12-2p
22= 0
p
12-p
22=0
Define,arbitrarily,p
22=c
1andp
21=c
2,then
[P]becomesnon-singularwhen c
10 and 2c
1–c
2.
Hence,[A]and [B]matricesaresimilar.

2c
12c
2c
1
c
1
[P]
c
2
whose determinantisfound asdet[P]=c
1(2c
1+c
2)
ME242 Applied Mathematics for Engineers

Ex: Determinewhetherthefollowing[A]and [B]matricesare similarornot.
ME242 Applied Mathematics for Engineers
The similaritytransformation requiresthat [P][B]=[A][P]
whose solution isfound asp
22 =0,p
12 =0,p
11 =p
21 =c≠0to give
[P]issingular (since det[P]=0)
whatevercis.
Hence,[A]and [B]matricesarenot
similar.

Property 2:
Similar matrices
have thesame characteristicpolynomial
•thesame characteristicequation
•thesame eigenvalues
•thesame trace
•thesame determinant
•thesame rank
*Notethattheconverse maynotalwaysbe true
ME242 Applied Mathematics for Engineers
Some propertiesofmatrix similarity
Property 1:Matrixsimilarityisan equivalencerelation
•Anysquare matrix[A]issimilartoitself Reflexive
•Ifthematrix[B]issimilarto a matrix[A],then[A]issimilarto[B]Symmetric
•If[C]issimilarto[B]and [B]to[A],then[C]issimilarto [A] Transitive
Thispropertymayalso bestatedas:The characteristic
polynomial,characteristic equation,eigenvalues,trace,
determinant,and rankofamatrixisinvariantunder
similaritytransformation.

Theorem:Considertwomatrices[A]and[B]ofthesamesizenwithn-distinct
eigenvalues;iftheireigenvaluesarethesameset,thenthesetwomatricesare
similartoeachother,otherwisetheyarenotsimilar.
Ex:Determinewhetherthefollowing[A]and[B]matricesaresimilarornot.
Since [A]and[B]have thesame eigenvalues,λ
1=2andλ
2=3,theyaresimilar.
det{[A]-λ[I]}=
1λ2
14λ
2λ0
23λ
=(1-λ)(4-λ)-(2)(-1)=λ
2-5λ+6=(λ-2)(λ-3)
det{[B]-λ[I]}= =(2-λ)(3-λ)-(-2)(0)=(λ-2)(λ-3)
12 20
 
14
[A]
23
[B]
ME242 Applied Mathematics for Engineers

Ex: Determinetheeigenvectorsofthefollowing matrices:
Notethat[A]and [B]aresimilarwithcommon eigenvaluesλ
1=2andλ
2=3.
Theeigenvectorsof[A]canbe foundas
Since the
transformation
matrixbetween
[A]and [B]is
known as
12 20
 
14 23
[A] [B]
[Aλ
1[I[x
1 [x
1
1
2


2x
210
x1 2x10

142x211
122 1

[Aλ
2[I[x
2 [x
2
1
1

1x
220
2x10

143x221
The eigenvectors
of[B]arefound as
2

x1132
1

11
[P]
0

11
10

1
-1
11
[P]
-1

0

012
121

1

1
[y][P][x]
1 1
-1

0 11
0111
[y]
2[P]
-1
[x]
2
1
Property 3:
If[x]isaneigenvectorofamatrix[A]and,furthermore,[B]=[P]
-1 [A][P],then[P]
-1 [x]isan
eigenvectorofmatrix[B].

Diagonalization
Ofspecialinterestamongvariousformsofsimilarmatricesisthediagonalform
whichhasitseigenvalueslocatedinthemaindiagonal whilealloffdiagonal
elementsarezero.
Inthiscase,the specialtransformationmatrix[T]toyield[D]=[T]
-1[A][T]isgivenby
[T]={[x]
1¦[x]
2¦…¦[x]
n}
where[x]
i isthe i
theigenvectorof[A]associated withitsi
theigenvalue 
i.
[D
0


λ
100

λ
20



00λ
n


ME242 Applied Mathematics for Engineers
[D

Whenthematrix[A]possessesdistincteigenvalues,sincealleigenvectorswillbe
linearlyindependent,theresultingtransformationmatrix[T]hastobenon-singular,
whichwillensureaproperdiagonalizationprocess.
Ex:Diagonalizethefollowingmatrix:
Apropertransformationmatrixis
-1/37/6

0-1/

2


-1/31/31/3



1/2
-1/6

1

3

131

02

11
[T]
1



1

3

131
2
1
1
[x][x]}

0

[T]{[x]
1
2 31
Diagonalization gives

1

1

112
[A]

12
1


0
Recallthat
λ
1=-1,λ
2=1,λ
3=2

3


1



1


1



2

3

0


1

[x]

1
,[x],[x]
321
32100
2 1

12002
0


6



0

1/3-1
-1/2

0
-1/37/6-1
0
1/3
1-1/3

12131-1/6
2 23



1/2
1 111

0
1
2

1/30
-1/

1
-1/37/61

0
-1/31/3
[T]
1
[A][T]

1/2
-1/6
ME242 Applied Mathematics for Engineers
( [ D]=[T]
-1[A][T])

Ex: Determine[A]
5and [A]
-1forthe followingmatrix:
[A=
12

-1
4

 
Theorem:Forsquarematrix[A],ifa transformationmatrix[T]existssuchthat
If[A]isnon-singular,the resultisalso true foranynegativeinteger;inparticular
Recallthatλ
1=2,λ
2=3and 
1
1
,[x]

1
2
[x]
21
[A
5
[T[D
5
[T
1

2132011179422
   
45422112431110

2120
5
21
1
1

11

03
1
[A
1
[T[D
1
[T
1
 
1/3
1/6

21/6
0112/3

1/31
211/2

110

0
1
21
1
1

31

212
110
ME242 Applied Mathematics for Engineers
[D]=[T]
-1[A][T] then
[A
1
[T[D
1
[T
1
[A
k
[T[D
k
[T
1
for any positive k