ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 23, No. 4, August 2025: 1010-1019
1018
REFERENCES
[1] O. Johnell and J. A. Kanis, “An estimate of the worldwide prevalence and disability associated with osteoporotic fractures,”
Osteoporosis International, vol. 17, no. 12, pp. 1726–1733, Oct. 2006, doi: 10.1007/s00198-006-0172-4.
[2] H. Kato et al., “Identification of ENPP1 haploinsufficiency in patients with diffuse idiopathic skeletal hyperostosis and early‐onset
osteoporosis,” Journal of Bone and Mineral Research, vol. 37, no. 6, pp. 1125–1135, Dec. 2020, doi: 10.1002/jbmr.4550.
[3] I. M. Wani and S. Arora, “Computer-aided diagnosis systems for osteoporosis detection: a comprehensive survey,” Medical &
Biological Engineering & Computing, vol. 58, no. 9, pp. 1873–1917, Sep. 2020, doi: 10.1007/s11517-020-02171-3.
[4] H.-W. Chang, Y.-H. Chiu, H.-Y. Kao, C.-H. Yang, and W.-H. Ho, “Comparison of classification algorithms with wrapper-based
feature selection for predicting osteoporosis outcome based on genetic factors in a taiwanese women population,” International
Journal of Endocrinology, vol. 2013, pp. 1–8, 2013, doi: 10.1155/2013/850735.
[5] S. Gnudi, E. Sitta, and L. Lisi, “Relationship of body mass index with main limb fragility fractures in postmenopausal women,”
Journal of Bone and Mineral Metabolism, vol. 27, no. 4, pp. 479–484, Jul. 2009, doi: 10.1007/s00774-009-0056-8.
[6] J. Kanis et al., “A meta-analysis of previous fracture and subsequent fracture risk,” Bone, vol. 35, no. 2, pp. 375–382, Aug. 2004,
doi: 10.1016/j.bone.2004.03.024.
[7] H. P. Dimai, “Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and
Z-score, and reference databases,” Bone, vol. 104, pp. 39–43, Nov. 2017, doi: 10.1016/j.bone.2016.12.016.
[8] WHO, “Assessment of fracture risk and its application to screening for postmenopausal osteoporosis,” 1994.
[9] Y. Chen, Y. Guo, X. Zhang, Y. Mei, Y. Feng, and X. Zhang, “Bone susceptibility mapping with MRI is an alternative and reliable
biomarker of osteoporosis in postmenopausal women,” European Radiology, vol. 28, no. 12, pp. 5027–5034, Dec. 2018, doi:
10.1007/s00330-018-5419-x.
[10] A. D. Brett and J. K. Brown, “Quantitative computed tomography and opportunistic bone density screening by dual use of computed
tomography scans,” Journal of Orthopaedic Translation, vol. 3, no. 4, pp. 178–184, Oct. 2015, doi: 10.1016/j.jot.2015.08.006.
[11] E. W. Gregg et al., “The epidemiology of quantitative ultrasound: A review of the relationships with bone mass, osteoporosis and
fracture risk,” Osteoporosis International, vol. 7, no. 2, pp. 89–99, Mar. 1997, doi: 10.1007/BF01623682.
[12] M. Kalbhor, S. V. Shinde, and H. Jude, “Cervical cancer diagnosis based on cytology pap smear image classification using fractional
coefficient and machine learning classifiers,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 20,
no. 5, pp. 1091–1102, Oct. 2022, doi: 10.12928/telkomnika.v20i5.22440.
[13] M. Ibrahim, M. Louie, C. Modarres, and J. Paisley, “Global explanations of neural networks,” in Proceedings of the 2019
AAAI/ACM Conference on AI, Ethics, and Society, Jan. 2019, pp. 279–287. doi: 10.1145/3306618.3314230.
[14] O. Loyola-Gonzalez, “Black-box vs. White-box: understanding their advantages and weaknesses from a practical point of view,”
IEEE Access, vol. 7, pp. 154096–154113, 2019, doi: 10.1109/ACCESS.2019.2949286.
[15] S. Kajihara, S. Murakami, J. K. Tan, H. Kim, and T. Aoki, “Identify rheumatoid arthritis and osteoporosis from phalange CR images
based on image registration and ANN,” ICIC Express Letters., vol. 10, no. 10, pp. 2435–2440, 2016, doi:
10.24507/icicel.10.10.2435.
[16] K. Hatano, S. Murakami, H. Lu, J. K. Tan, H. Kim, and T. Aoki, “Classification of osteoporosis from phalanges CR images based
on DCNN,” in 2017 17th International Conference on Control, Automation and Systems (ICCAS), IEEE, 2017, pp. 1593–1596, doi:
10.23919/ICCAS.2017.8204241.
[17] S. M. N. Fathima, R. Tamilselvi, M. P. Beham, and D. Sabarinathan, “Diagnosis of osteoporosis using modified U-net architecture
with attention unit in DEXA and X-ray images,” Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and
Therapeutics, vol. 28, no. 5, pp. 953–973, Sep. 2020, doi: 10.3233/XST-200692.
[18] B. Zhang et al., “Deep learning of lumbar spine X-ray for osteopenia and osteoporosis screening: A multicenter retrospective cohort
study,” Bone, vol. 140, Nov. 2020, doi: 10.1016/j.bone.2020.115561.
[19] N. Tecle, J. Teitel, M. R. Morris, N. Sani, D. Mitten, and W. C. Hammert, “Convolutional neural network for second metacarpal
radiographic osteoporosis screening,” The Journal of Hand Surgery, vol. 45, no. 3, pp. 175–181, Mar. 2020, doi:
10.1016/j.jhsa.2019.11.019.
[20] C.-S. Ho et al., “Application of deep learning neural network in predicting bone mineral density from plain X-ray radiography,”
Archives of Osteoporosis, vol. 16, no. 1, Dec. 2021, doi: 10.1007/s11657-021-00985-8.
[21] StevePython, “Osteoporosis Knee Xray Dataset,” 2021. https://www.kaggle.com/datasets/stevepython/osteoporosis-knee-xray-
dataset
[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Advances in
neural information processing systems, pp. 1–9, 2012.
[23] H. Chung, S. J. Lee, and J. G. Park, “Deep neural network using trainable activation functions,” in 2016 International Joint
Conference on Neural Networks (IJCNN), Jul. 2016, pp. 348–352. doi: 10.1109/IJCNN.2016.7727219.
[24] A. W. Sugiyarto, A. M. Abadi, and S. Sumarna, “Classification of heart disease based on PCG signal using CNN,” TELKOMNIKA
(Telecommunication Computing Electronics and Control), vol. 19, no. 5, pp. 1697–1706, Oct. 2021, doi:
10.12928/telkomnika.v19i5.20486.
[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998, doi: 10.1109/5.726791.
[26] K. Suzuki, “Overview of deep learning in medical imaging,” Radiological Physics and Technology, vol. 10, no. 3, pp. 257–273,
Sep. 2017, doi: 10.1007/s12194-017-0406-5.
[27] S. Jain and A. O. Salau, “An image feature selection approach for dimensionality reduction based on kNN and SVM for AkT
proteins,” Cogent Engineering, vol. 6, no. 1, Jan. 2019, doi: 10.1080/23311916.2019.1599537.
[28] M. A. A. Alobaidy, Z. M. Yosif, and A. M. Alkababchi, “Age-dependent palm print recognition using convolutional neural
network,” Revue d'Intelligence Artificielle., vol. 37, no. 3, pp. 795-800, 2023.
[29] K. G. Kim, “Book review: Deep learning,” Healthcare Informatics Research, vol. 22, no. 4, pp. 351–354, 2016, doi:
10.4258/hir.2016.22.4.351.
[30] M. J. Mohammed, E. A. Mohammed, and M. S. Jarjees, “Recognition of multifont English electronic prescribing based on
convolution neural network algorithm,” Bio-Algorithms and Med-Systems, vol. 16, no. 3, Sep. 2020, doi: 10.1515/bams-2020-0021.
[31] I. Pacal, D. Karaboga, A. Basturk, B. Akay, and U. Nalbantoglu, “A comprehensive review of deep learning in colon cancer,”
Computers in Biology and Medicine, vol. 126, Nov. 2020, doi: 10.1016/j.compbiomed.2020.104003.
[32] A. Zafar et al., “A comparison of pooling methods for convolutional neural networks,” Applied Sciences, vol. 12, no. 17, Aug. 2022,
doi: 10.3390/app12178643.
[33] L. O. Lyra, A. E. Fabris, and J. B. Florindo, “A multilevel pooling scheme in convolutional neural networks for texture image