Advanced Training Wastewater Treatment.ppt

MohammedHassan901292 143 views 133 slides May 06, 2024
Slide 1
Slide 1 of 133
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133

About This Presentation

Training of Wastewater treatment


Slide Content

Advanced Training On
Wastewater Treatment
TRAINING

GENERAL

What is Wastewater?

What is wastewater?
Origin:
Industrial
Sewage
Mixture of (pure) waterand contaminants:
Organicand Inorganic
Dissolvedand Undissolved(= suspended)
Easily biodegradableand Difficult biodegradable

Organic Inorganic
Carbohydrates = Sugars
Proteins
Oils & Fats
Fatty acids
Alcohol & solvents
Paper & Wood
Food Industry
Etc…
Sand & Gravel
Kieselguhr (brewery)
Clay
Minerals:
Ammonium
Phosphate
Chloride
Sulphate
Metals
Salt NaCl

Soluble Insoluble
Sugar
Alcohol
Salt
Nitrogen & Phosphorus
Compounds

Oils & Fats
Kieselguhr
Paper & Wood
Sand, Stones,
Plastic, …

Biodegradable Non Biodegradable
Sugars
Alcohols
Proteins
Fatty Acids

Sand, Stones, Plastic
Kieselguhr
Minerals
Recalcitrant Organic
Compounds

Wastewater
Characteristics

Raw Wastewater Parameters
pH, T°C
COD, BOD, BOD/COD (kg O
2/m³)
TSS (kg/m³)
Nutrients (N, P, micronutrients)
Flow Rate (m³/day)

pH
Degree of Acidity
pHwastewater=> pHbioreactorin range 6,5 –8,5
Extreme pH-values = Toxic
pH will change in bioreactor:
In anaerobic Treatment
-pH Degradation VFA, Ammonification
-pH Acidification, Nitrification, CO
2

CODChemical Oxygen Demand
Measure for TotalAmount Organic Contamination
Unit: mg O
2/L Chemical Oxidation
Oxidant: K
2Cr
2O
7
–OXIDATION
Organic matter + O
2-equivalents (k
2Cr
2O
7) CO
2
+ H
2O

BODBiochemical Oxygen Demand
Unit: mg O
2/L Biological Oxidation
Measure for Amount Biodegradable Contamination
Organic matter + O
2 CO
2+ H
2O
Oxidant: Bacteria –Inoculation
Micro-WWTP

BOD/COD
BOD/COD-ratio
Info Biodegradability
BOD/COD > 65 % Easily Biodegradable
BOD/COD < 50 % More Difficult Biodegradable
BOD vs. bCOD: Sludge Adaptation!

Total Suspended Solids (TSS)
TSS = Amount of Un-dissolved Matter (mg/l =
ppm)
Difficult Degradable
To Avoid:
Accumulation in Sludge
Increased Sludge Production

Nutrients
Macro-nutrients:
N, P
BOD/N/P = 100/5/1
Assimilative Removal = Biomass Incorporation
Micro-nutrients
Minerals: Ca, Mg, Na, Fe, K, …
Trace-elements: Co, Cu, Zn, Mn, …

Nitrogen
Kjeldahl-N: organic bound N + NH
4
+
-N
Ammonium-N (NH
4
+
-N) (mgN/l)
Nitrate-N (NO
3
-
-N) (mgN/l)
Nitrite-N (NO
2
-
-N) (mgN/l)
Total Nitrogen = KjN-N + NO
3
-
-N + NO
2
-
-N

Phosphorus
Total P (mgP/l) = organic bound P + PO
4
3—
P
Ortophosphate (PO
4
3-
-P) (mgP/l)

Inhabitant Equivalent
Originates from Municipal WWT
1 P.E.
Hydraulic load = 180 l/day
BOD-load = 54 g BOD = 300 mg O
2/l
COD-load = 135 g COD = 750 mg O
2/l
BOD/COD = 40%
SS-load = 63 g TSS = 350 mg/l
N-load = 9,9 g N = 55 mg N/l
P-load = 2 g P = 11 mg P/l

Wastewater Treatment
Mechanical
Biological
Physico-Chemical
Combinations

Wastewater Treatment
Mechanical (Pre-treatment)
Biological
Aerobic
•Anoxic Conditions for Nutrient Removal
Anaerobic
Physico-Chemical

Mechanical Pre-Treatment
Sedimentation (Primary Sludge)
Flotation (Oil & Fat)
Screening (coarse screen, fine screen)
Cyclone
Filtration

Mechanical Pre-Treatment
Screening (Coarse screen, Fine screen)
Mechanical Bar Screens Rotary Drum Screen

Mechanical Pre-Treatment
Flotation (Oil & Fat) (DAF, IGF,...)
DAF Units

Mechanical Pre-Treatment
Filtration (Media Filtration, Mechanical)
Hydrotech Drum
Filter
Hydrotech disc Filter

Physico-Chemical
Iron Oxidation
Coagulation (Fe
3+
, Al
3+
, …)
Flocculation (polymer)
Adsorption (active carbon, zeolyte)
Precipitation (heavy metals, phosphate, hardness)
Stripping of NH
3or VOC
Ion exchange

Biological Treatment
Aerobic
Lagoon
Activated sludge systems
•Suspended Sludge
Biorotor, biofilter, MBBR
•Fixed Bed
Biological nutrient removal
•N/dN, P-accumulation
Anaerobic
UASB, CSTR, EGSB

Biological
Wastewater Treatment

Why Biological
Wastewater Treatment?
Produces a clear effluent, harmless for
the environment:
Removes organic compoundsfrom the
wastewater
Removes nutrients (eutrofication risk!)
like N and P (partially)
Economical most feasible

Organic Compounds
C
Negative effect of WW on surface water:
Oxygen demand raises
•Microbial growth
•Water organisms die due to O
2-deficiency!
Possibly toxic compounds

Eutrophication
N & P
Negative effect WW on surface water:
Nutrients (N & P) cause algae growth
(autotrophic: C-source = CO
2)
During night these algae consume O
2
Fishes and other water organisms die due
to O
2-deficiency!

Biological WWT
Removal organic contaminants by
bacterial metabolism:
Substrate (= C-source) is “uptaken”
End-products:
•CO
2(anaerobic: CO
2+ CH
4)
•H
2O
•Minerals
•Biomass

Bacterial Metabolism
Substrate degradation:
Catabolism or Dissimilation = Energy Production
Anabolism or Assimilation = Biomass growth
•C
•N, P & Micronutrients
•Energy
Survival
Reproduction

Bacterial Metabolism:
Schematic
End Products
CO2 + H2O + Minerals
Biomass
Proliferation + Reserves
Substrate
C + nutrients
Energy
Cell
Maintenance
Catabolism
Anabolism
Survival
Reproduction

Aerobic versus Anaerobic
Oxygen = final e

-acceptor
Molecular: O
2
Bound: NO
3
-
(= de-N)
Activated sludge (flocks)
Final e

-acceptor = no O!
Carbon (= fermentation)
CO
2
Granular sludge (UASB, EGSB)
Main difference: O
2

Aerobic versus Anaerobic
Advantages
No post-treatment:
•Low effluent COD
•Bio-N and -P removal
No heating:
•range = 0 -40 °C
Very robust process
Short start-up
Disadvantages
Post-treatment needed?
•COD-removal max. 85-90%
•No bio-N and -P removal
Heating needed?
•range = 25 -40 °C
More sensitive toxic
shocks
Relative long start-up

Aerobic versus Anaerobic
Disadvantages
Higher exploitation cost:
•Aeration energy
–1,1 kWh/kg bCOD
•Sludge disposal
–0,3 kg sludge/kg bCOD
Large footprint
•Relatively low V
b
•Sedimentation tank
No CH
4production
•No energy production
Advantages
Low exploitation cost:
•No aeration
–0,3 kWh/kg bCOD
•Sludge disposal
–0,05 kg sludge/kg bCOD
4 x smaller footprint!
•High V
b
•No sedimentation tank
CH
4production
•Energy source!

Energy Balance:
Schematic
Aerobic Anaerobic
Biochemical reactions with O
2as e
-
-acceptor:
More energy gain for biomass!!!
More sludge growth
No energy-rich end product

Aerobic
Wastewater Treatment

Design Parameters
Flow rate –Hydraulic Retention Time
Temperature 10
O
C –40
O
C
Organic loading (kg BOD or COD/day)
(kg BOD or COD/m³.day)
Sludge loading
(F/M: Food to micro-organisms)
(kg BOD or COD/kg DS or MLSS.day)
MCRT (days) Mean Cell Retention Time
= amount of sludge in reactor (kg)
daily amount of wasted sludge (kg/d)

Temperature 10
O
C –40
O
C
Nitrification / De-nitrification Rate. « mg
N/g MLVSS/hr »
Available MLVSS.
Reactors Volumes (Anoxic & Aeration).
Design parameters « Nutrient Removal

Aerobic WWT
In general:
Wastewater CO
2+ H
2O
Activated sludge Energy
For glucose:
5 C
6H
12O
6+ 30 O
230 CO
2+ 30 H
2O + energy
Micro-organisms use this energyfor:
Cell Processes/Cell Maintenance (Survival)
Biomass Growth (Reproduction)
Substrate Respiration = Oxidation of Substrate
Endogenous Respiration = Oxidation of Biomass Reserves
O
2

Fundamental Process Steps
Feeding + Aeration
Accumulation-Regeneration
•Reduce Filaments
Active Volume
Settling + Discharge
Passive Volume

Extra Process Steps
For biological nutrient removal:
N-removal
•deN in anoxic step
P-removal
•Alternation aerobic-anaerobic steps
For hybrid WWTP’s:
Settling Phase
•intermediate phase before discharge!
Rinse Phase
•sludge evacuation from effluent weir

Nutrient Removal
Biological:
Nitrogen: N-deN
Phosphorus: Phosphate Accumulating Bacteria
Physico-Chemical:
Phosphorus: Precipitation of Al-/Fe-phosphates

Nitrification -Denitrification
Nitrification:
NH
4
+
+ 2 O
2 NO
3

+ H
2O + 2 H
+
Nitrosomonas & Nitrobacter: Autotrophs
Aeration
Denitrification (heterotrophs):
NO
3

+ 5 e-+ 6 H
+
½ N
2+ 3 H
2O
CH
2O + H
2O CO
2+ 4 e-+ 4 H
+
No O
2=No Aeration!!!
Easy biodegradable COD: Feeding + Mixing
Atmosphere

Phosphate Accumulat. Organism
PAO
Acinetobacter Species
Phosphate Release
+ C-uptake
Phosphate Uptake
+ C-metabolism
Net
P-uptake

Phosphate Accumulat. Organism
PAO

Phosphate Accumulat. Organism
PAO

Phosphate Accumulat. Organism
PAO
Following conditions affect the growth of PAO & Bio-P:
•High retention time and longer non aerated zones. Max retention time is
around 1 hour and sludge age of max. 1.5 –2 days (based on MLSS
concentration).
•High Temperature (> 28
O
C).
•Low TKN.
•Low BOD (VFA source). BOD to TP ratio is 20:1 or 7-10 mg/l of VFA are
required per 1 mg of phosphorus removed by bio-P.
•Low pH in aerobic zone (Keep pH > 7.2).
•Secondary release of phosphorus (i.e inside clarifiers) due to high RT.
•Minimize free O
2& NO
3recycle to anaerobic zone.

Phosphate Accumulat. Organism
PAO

Microbiology of
Activated Sludge

Activated Sludge Parameters
Aerobic sludge:
Bacteria
Water
Protozoa, Metazoa, Fungi
Inorganic matter
Sludge concentration: MLSS (g/L), DM (g/L), Ash-%
Settling Capacity: Imhoff Cone
SV (ml/l) Sludge Volume
SVI (ml/g) Sludge Volume Index = SV/MLSS

Activated sludge
99% Water
Particles (non bacterial)
Microbiology (= Active Component!!!)

Microbiology
Bacteria
Pseudomonas, Escherichia, Flavobacterium, …
Sludge Flocks
Filaments
Higher (= Predator or Indicator) Organisms
Protozoa (ciliates, flagellates, amoeba, …)
Metazoa (rotifers, worms, …)
Fungi and Yeasts

Flocks vs. filaments
Substrate gradient (place time)
Accumulation
Regeneration (“starvation phase”)
Sufficient D.O.
Sufficient Substrate

Flocks vs. Filaments

Higher Organisms
Amoeba
“Grazing” Worm

Process Control
Optimal Circumstances for Activated Sludge

Process Control
Feeding
Oxygen
pH
Nutrients
T°C
Toxicity

Feeding
Respect Design Load
Organic Load (kg COD/day): Design Aeration System
Hydraulic Load (m³/day): Design Sedimentation Tank
Overload Removal efficiency
Organic Overload
•Failure Aeration -Odour Nuisance
Hydraulic Overload
•Insufficient Pump Capacity
•Upflow Velocity Settler -Sludge Wash-Out

Oxygen
Aeration for O
2-Input + Mixing
Min. D.O. = 1 mg O
2/L
O
2-deficiency:
Removal Efficiency
Sludge Bulking (filaments)

Fine Bubble Aeration
Blowers
Aeration Disc
Distribution
System

Surface Aeration
Settling
Aeration

pH
pH activated sludge in range 6,5 -8,5
Effluent-pH

Nutrients
Check Effluent
Shortage => N-and/or P-dosage
N > 2 mg/L
P > 1 mg/L

T°C
Mesophilic: 5 –40 °C
Determines Biodegradation Rate
Avoid: > 40 °C

TemperatureMesophilic temperature-activity correlation
0 10 20 30 40 50
Temperature
Biodegradation rate

Toxicity
f(concentration)
To Avoid:
Extreme pH-values
Heavy Metals
Detergents (Cationic)
Solvents
Halogens
Strong Oxidants

Formulas for Activated
Sludge Processes

Formulas for Activated Sludge
Processes
Active Volume (m
3
)
HRT = hours
Volumetric Load: Vb = kg COD/m³*day
Sludge Load: Sb = kg COD/kg MLSS*day
Removal Efficiency in % (COD, BOD, N, P, …)
MCRT = days
Surface Load = m/h

Formulas for Activated Sludge
Processes
Active Volume (m³):
Active Volume => Total Volume / Sedimentation Volume
Aerated Volume!
HRT (hours):
.
Time Span H2O-molecule is Present in Bioreactor 

 hourmQin
mVtotal
hoursHRT

³

Formulas for Activated Sludge
Processes
Vb (kg COD/m³*day):
.
Organic day load (kg COD/day) = Qin (m³/day) x CODin (kg COD/m³)
Sb (kg COD/kg MLSS*day):
. 
 
  ³/)(³
/__
*)(/
mkgSSVMLmVactive
daykgCODLoadDayOrganic
daySSVkgMLkgCODSb

  
 
³
/__
*³/
mVactive
daykgCODLoadDayOrganic
daymkgCODVb 

Formulas for Activated Sludge
Processes
Removal Efficiency (%):
COD, BOD, N, P, …
Correlation amount X Enters WWTP vs. amount X Discharged
X-removal efficiency (%) = (X
influent-X
effluent)/X
influent
MCRT (days):
Residence Time Sludge in Bioreactor
.
  
   ³/_/³__
³/³
mkgsludgeDMwasteddaymFlowWasteSludge
mkgDMreactormVtotal
daysMCRT


Formulas for Activated Sludge
Processes  )
*08.0(
**
()1(*/
d
20)(T1-
20)(T








TRC
YK
BOD
TSS
YkgBODkgSSYobs
Sludge Production Observed Yield
Where;
: 1.07 (Temp. Coefficient)
Y : Assumed Yield, Normally 0.6 kg DS/kg BOD removed
K
d , T
-1
: Endogenous decaycoefficient = 0.072
TRC, d : Mean Cell Residence Time (Sludge Age)
T,
O
C : Actual Water Temperature
T.S.S., ppm : Total Suspended Solids at the inlet of Bio-Reactor
BOD, ppm : Biological Oxygen Demand
Sludge Production (kg/day)= Sludge Production Observed Yield X BOD removed
Sludge Production (kg/day)= WAS (kg/day)

Formulas for Activated Sludge
Processes
Rule of Thum.
Return Activated Sludge (RAS) = 0.5 to 1.5 Q
inf(m
3
/hr)
Calculation Formula:
Q
RAS= Q
inf* C / (C
r–C)
Cr : Sludge Concentration at the Bottom of the Clarifier.
C : MLSS Concentration in Aeration Tank
Q
inf: Inlet Flow Rate (it may include other flows beside the
raw water flow)
* Mass Balance is a Must for Correct Calculations.
Sludge Recirculation Rates

Formulas for Activated Sludge
Processes
Oxygen Demand BOD, T, Vol., CRT, MLVSS
A) Sustrate Respiration = 0.6 kg O
2/kg BOD * BOD load Removed
B) Endogenous Respiration = (0.0528 kg O
2/kg MLVSS/day)*Vol.*MLVSS*

(T-20)
where = 1.024
Oxygen Calculations in Extd. Aerat. & Low Loaded systems

Actual Oxygen Requirment “A.O.R”= Sub. Resp. + End. Resp.
S.O.T.R = (1/) * [C
s/ ((P(mmHg)/760)*(51.6/(31.6+T))* * (C
s-C
actual))] *

(20-T)
* A.O.R * k
1
Formulas for Activated Sludge
Processes
 : 0.65 (Fine Air Diffusers) -0.95 (Surface Aeration)
 : 0.95
Water Level : in m
T : 20 °C
C
actual : 1.0 to 2.0 mgO
2/L
C
20 : 9.07 mg O
2/l "Standard"
H.R.T : in hours
k
1 : 1.0 (Function of HRT > 18 hrthen K
1= 1)
 : 1.024
Atmospheric Pressure : 760 mm Hg Standard
Atmospheric Pressure : 1013 mbar Standard
Atmospheric Pressure on site: 760 mm Hg Standard

Formulas for Activated Sludge
Processes
Air Required for Aeration = (S.O.T.R) / (Air Oxygen Content) / (S.O.T.E)
Air Oxygen Content = 0.23 kg O
2/m
3
air @ Standard Conditions
S.O.T.E = Supplier Curve / Data Sheet
Note:
-S.O.T.E is a function of water height

Formulas for Activated Sludge
Processes

Formulas for Activated Sludge
Processes

Formulas for Activated Sludge
Processes
Surface Load (m/h)
Design Sedimentation Tank
Minimum Settling Velocity Sludge Flock
.
 
²_

/
mSurfaceSettling
hmQout
hmVs  Effluent
denitrification
Influent
Aeration tank
sludge recirculation waste sludge
Upflow
Velocity

Trouble Shooting
WWTP Operation

Trouble Shooting -Influent
pH
bioreactorOut of Range Acid/Caustic Dosing
Overload Influent Flow
Nutrient Shortage N-and/or P-source

Trouble Shooting -Effluent
Increase Effluent-COD and/or -BOD
Biodegradability
Overload or Oxygen Deficit
Nutrient Deficit
TSS => Surface Load
=> Sludge Wasting
=> Sludge Bulking (filaments)
=> TSS influent
Intoxication (pH, H.M., oil, …)

Trouble Shooting –Activated Sludge
Sludge Concentration
Degree of Activity
Settling Capacity
Range 3 –6 g/L (3,000 –6,000 mg/L)
•< 3 Stop wasting + Cause
SV/SVI
Prevention Better than Healing!
SVI > 200 ml/g
More Wasting-Longer Settling Phase-Chlorination???
Value (80 –120 ml/g) up to 150 ml/g

Trouble Shooting –Activated Sludge
D.O. ±0 mg O2/l Reduce Feed Flow
Cause?
•overload
•oil/fat
•sludge concentration too high
•failure aeration system

Aerobic WWTP’s
Lagoon
Biorotor
Biotower/Biofilter
Activated Sludge System
Suspended Growth

Reactor Configurations:
Activated Sludge Systems
Conventional Systems
Batch Reactors (Non-Continuous)
SBR
Hybrid Systems
LUCAS
UNI-TANK
Membrane BioReactor
Submerged MBR
Cross-Flow MBR
Sedimentation
Membrane
Filtration

Reactor Configurations:
Activated Sludge Systems
Plug-Flow
Oxidation Ditch/Carousel
Completely Mixed
Unitank
Lucas
®

Conventional
Systems
Hybrid
Systems

Conventional SystemsSupernatant
Aerated sludge
Influent
Waste sludge
Sedimented sludge
Sludge recycle
Effluent
Sedimentation tankAeration tank

Conventional Systems
Fundamental Process Steps Separated in Time:
Separate Bioreactor plug-flow, oxidation ditch, …
Separate Settling Tank: High Footprint
Continuous Influent & Effluent Flow
Constant Water Level (Overflow Weir)
Accumulation-Regeneration: Selector, Reactor Design
Control-In-Place: Limited Flexibility
Sludge Recycle

Conventional Systems
Plug-Flow
Settlers
Plug-Flow
Buffer
Tank

Aerators
Propellor
Mixers
Oxidation Ditch
Sand/Fat
Removal
Oxidation
Ditch
Selector
Clarifiers
Thickener
Drying Beds

Overview Oxidation Ditch
Selector
Retour Sludge
Propellor
Mixers
Surface
Aeration

SBR
1 Tank Reactor.
No Settling Tank.
Cyclic Operation
‘Aeration’ & ‘Sedimentation’ separated in time
Control In Time.
Variable Volume.
DEFINETION
Equence Batch reactor in which influent, effluent or both are fed to
the biological system in batches with time intervals.

SBR Advantages
No Sedimentation Tank
Compact System = Small Footprint
Process Flexibility: “Control-in-Time”
Adjustable Phase Length
Possible Continuous Influent & Effluent Flow
No Need for Sludge Recycle
Substrate Gradient by Time
Accumulation-Regeneration
Flock Formers Favored by Integrated selector effect
Modular Design
Reliable and Robust Treatment System

Sequential Batch Reactors
Influent
Effluent
Aerobic Filling
Accumulation
Aerobic React
Regeneration
Decanting
PHASE 1
PHASE 2
PHASE 3

Cyclic Operation
Feed & Aeration (Accumolation). >>>> “F + A”
Feed & Mixing (Accumolation) >> if Nit/De-nit is present. >> “F + M”
Aeration (Regeneration). >>>> “A”
Settling. >>>> “S”
Rinse. >>>> “R”
Decanting >>>> “D”
Sludge Waste >>>> “WAS”
Idle >>>> “Id”

Cyclic Operation
Single cycle or more can be appllied to SBR system.
1 Cycle 2 Cycles 3 Cycles 4 Cycles
F + A 12 –18 hr 6 –8 hr 2 –5 hr 1 –3 hr
A 4 –10 hr 2 –4 hr 1 –4 hr 1 –3 hr
S ½ –1 hr ½ –1 hr ½ hr ½ hr
R 3 –5 min. 3 –5 min. 3 –5 min. 3 –5 min.
D 1 –1½ hr 1 –1½ hr 1 –1½ hr 1 hr
WAS ½ –1 hr ½ –1 hr ½ hr ½ hr
Id 10 –15 min.10 –15 min.5 –10 min.3 –7 min.
24 hr 12 hr 8 hr 6 hr

Multiple SBREffluent
A A
A
Decantationphase
Aerobic phase
MLSS is aerated
Influent
Aerobic phase
MLSS is fed/aerated
ToB
ToB
FromCFromC
PHASE 1
PHASE 2PHASE 3 Effluent
B
B
B
Decantationphase
Aerobic phase
MLSS is aerated
Influent
Aerobic phase
MLSS is fed/aerated
ToC
ToC
FromA
FromA
PHASE 3
PHASE 1
PHASE 2 Effluent
C
C C
Decantationphase
Aerobic phase
MLSS is aerated
Influent
Aerobic phase
MLSS is fed/aerated
ToAToA
FromB
FromB
PHASE 3
PHASE 1
PHASE 2

Excess Sludge
Treatment
Wasting
Thickening
Stabilisation
Dewatering

Thickening & Stabilisation
Thickening: Gravitary Volume Reduction
Stabilisation: Mass Reduction
Aerobic: Aeration (endogenous respiration)
Anaerobic:Sludge Digesters (fermentation)
Thickening & Aerobic Stabilisation can be
Combined in 1 Single Tank (time control)

Dewatering
Thickening Drum 5% DM
Filter Press 15-25% DM
Chamber
Belt
Centrifuge 20-25% DM

Chamber Filter Press

Centrifuge: Principle
Sedimentation
Sedimentation +
Centrifugal Force
Sedimentation + Centrifugal Force +
Continuos Discharge of Sludge Cake

Centrifuge

Centrifuge

Case Study
JUBAIL EXPORT REFINERYSTP

CASE STUDY
Jubail Export Refinery STP
Project Name: JERP
Location : Jubail
Client : CCE
Capacity : 10,000 m
3
/day
Water Source: Labours’ Camp
System : Extd. Aeration

CASE STUDY
Jubail Export Refinery STP
Influent/Effluent Charachteristics in mg/l
- Influent Load kg/d Effluent
-BOD : 350 3,500 <10
-COD : 800 8,000 <50
-TSS : 400 4,000 <10
-TKN : 60 600 10*
-P : 20 200 -----
-Alkalinity: 250* 2,500 -----
* Assumed Figure

CASE STUDY
Jubail Export Refinery STP
Design Parameters:
BOD Load = (350 mg/l) * (10,000 m
3
/day) / 1000
= 3,500 kg/day
TSS = 4,000 kg/day
TKN = 600 kg/day
P = 200kg/day
Alkalinity= 2,500 kg/day

CASE STUDY
Jubail Export Refinery STP
Sludge Design Parameters in Extd Aerat. & Low Loaded Systems:
MLSS = 3 g/l (3,000 mg/l)
MLVSS= 2.25 g/l (2,250 mg/l)
MLVSS/MLSS Ratio = 75%
Volume Load = 0.35 -0.40 kg BOD/m
3
/day
(0.3 –0.5 kg BOD/m
3
/day)
Volume Design Parameters:

CASE STUDY
Jubail Export Refinery STP
Design Formulas:
Calculated Volume = BOD Load / Volume Load
= (3,500 kg/day) / (0.35 kg BOD/m
3
/day)
= 10,000 m
3
F/M Ratio = BOD load / (Volume * MLVSS)
= (3,500 kg/day) / (10,000 m
3
* 2.25 kg/m
3
)
= 0.15 d
-1
(0.08 –0.2 d
-1
)
Retention Time = Volume / Flow
= (10,000 m
3
) / (416 m
3
/hr)
= 24 hr (18 –36 hr)

CASE STUDY
Jubail Export Refinery STP
Simulating Different Design Parameters:
Chosen Volume =7,000 m
3
F/M Ratio = BOD load / (Volume * MLVSS)
= (3,500 kg/day) / (7,000 m
3
* 2.25 kg/m
3
)
= 0.22 d
-1
(0.08 –0.2 d
-1
)
Retention Time = Volume / Flow
= (7,000 m
3
) / (416 m
3
/hr)
= 16.8 hr (18 –36 hr)

CASE STUDY
Jubail Export Refinery STP
Sludge Production in Extd Aeration & Low Loaded Systems:
Sludge Production BOD, TSS, T, Vol., CRT, MLSS
Rule of Thumb.
No Pre-Treatment >> Sludge Yield = 0.9 kg DS/kg BOD remov.
Pre-Treatment >> Sludge Yield = 0.6 –0.7 kg DS/kg BOD remov.
Notes:
-Coarse screening & Equalization are not Considered as
pretreatment steps.
-Pre-treatment (grit removal, primary clarification, multiflow,...)

CASE STUDY
Jubail Export Refinery STP
Sludge Production in Extd Aeration & Low Loaded Systems:
Sludge Production (WAS*):
= (0.9 kg DS/kg BOD remov.) *(3,500 kg BOD/day)
= 3,150 kg DS/day.
Sludge Concentration = 5.5 g/l (at the bottom of the clarifier)
Sludge Capcity = (3,150 kg DS/day)/(5.5 kg/m
3
) = 572.7 m
3
/day
WAS = 23.8 m
3
/hr 24 m
3
/hr
* WAS = Waste Activated Sludge

CASE STUDY
Jubail Export Refinery STP
Sludge Recirculation Rates:
Rule of Thum.
Return Activated Sludge (RAS) = 1 to 1.5 Q
inf(m
3
/hr)
Calculation Formula:
Q
RAS= Q
inf* C / (C
r–C)
Cr : Sludge Concentration at the Bottom of the Clarifier.
C : MLSS Concentration in Aeration Tank
Q
inf: Inlet Flow Rate (it may include other flows beside the
raw water flow)
* Mass Balance is a Must for Correct Calculations.

CASE STUDY
Jubail Export Refinery STP
Sludge Recirculation Rates:
Q
RAS= Q
inf* C / (C
r–C)
Q
RAS= (416 m
3
/hr) * (3 g/l) / (5.5 g/l –3 g/l)
= 499 m
3
/hr
Q
RAS= 1.2* Q
inf
% Re-circulation= 120%
Total Sludge in Sludge Draw-off Pipe = RAS + WAS
= 499 m
3
/hr + 24 m
3
/hr = 523 m
3
/hr
3 Duty Pumps each 185 m
3
/hr (RAS + WAS)

CASE STUDY
Jubail Export Refinery STP
Oxygen Calculations in Extd. Aerat. & Low Loaded systems:
Oxygen Demand BOD, T, Vol., CRT, MLVSS
A) Sustrate Respiration = 0.6kg O
2/kg BOD * BOD load Removed
=(0.6kg O
2/kg BOD) * (3,500 kg BOD/day) = 2,100 kg O
2/day
B) Endogenous Respiration = (0.1 kg O
2/kg MLVSS/day)*Vol.*MLVSS
= (0.1 kg O
2/Kg MLVSS/day)*(10,000 m
3
)*(2.25 kg MLVSS/m
3
)
= 2,250 kg O
2/day
C) Nitrification Respiration = (4.57 kg O
2/kg TKN) * (TKNload)
= (4.57 kg O
2/kg TKN)*(32.5 mg/l * 10,000 m
3
/day/1000)
= 1,485 kg O
2/day
TKN = TKN
inf–TKN
eff–Assim.TKN = 60 –10 –0.05 BOD

Actual Oxygen Requirment “A.O.R”=
Sub. Resp. + End. Resp. + Nitrif. Resp. –Denitrif. Resp.
A.O.R = 2,100 + 2,250 + 1,485 = 5,835 kg O
2/day
Correction Factor (C.F.)
Based on water salinity, type of wastewater, temp., water
height in aeration tanks, alklinity, retention time and altitude
this correction factor can be determined.
As rule of thum.
CASE STUDY
Jubail Export Refinery STP
Oxygen Calculations in Extd. Aerat. & Low Loaded systems:
Surface Aeration >>> 1.5
Air Diffusing System >>> 2

CASE STUDY
Jubail Export Refinery STP
Oxygen Calculations in Extd. Aerat. & Low Loaded systems:
A.O.R = 2,100 + 2,250 + 1,485 = 5,835 kg O
2/day
Saturation Oxygen Transfer Rate = S.O.T.R = A.O.R * C.F.
S.O.T.R = 5,835 kg O2/day * 1.5 = 8,752 kg O
2/day= 364 kg O
2/hr
Aerator Efficiency:
-High Speed >> 1.5 –1.8 kw/kg O
2/hr (floating or fixed)
-Low Speed >> 1.8 –2.2 kw/kg O
2/hr (floating or fixed)
Aeration Power= (364 kg O
2/hr) / (1.5 kw/kg O
2/hr)= 243 kw
Total Aerators No. = 8 Aerators
Aerator Power = 243 kw / 8 aerators = 30 kw/aeartor
Mixing Power = 30 kw/aerator * 30% extra = 39 kw/aerator
Based on the Market AvailabilityNearest Aerator was 45 kw.

CASE STUDY
Jubail Export Refinery STPInfluent/Effluent COD
0.00
50.00
100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00
500.00
550.00
600.00
650.00
700.00
750.00
800.00
850.00
900.00
950.00
1,000.00
1,050.00
1,100.00
1,150.00
1,200.00
1,250.00
1,300.00
1,350.00
1,400.00
1,450.00
1,500.00
1,550.00
1,600.00
1,650.00
1,700.00
1,750.00
1/1/20111/11/20111/21/20111/31/20112/10/20112/20/20113/2/20113/12/20113/22/20114/1/20114/11/20114/21/20115/1/20115/11/20115/21/20115/31/20116/10/20116/20/20116/30/2011
mg/l
Inlet / OutletCOD
mg/l

CASE STUDY
Jubail Export Refinery STPInfluent/Effluent TSS
0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00
110.00
120.00
130.00
140.00
150.00
160.00
170.00
180.00
190.00
200.00
210.00
220.00
230.00
240.00
250.00
260.00
270.00
280.00
290.00
300.00
310.00
320.00
330.00
340.00
350.00
360.00
370.00
380.00
390.00
400.00
1/1/20111/11/20111/21/20111/31/20112/10/20112/20/20113/2/20113/12/20113/22/20114/1/20114/11/20114/21/20115/1/20115/11/20115/21/20115/31/20116/10/20116/20/20116/30/2011
mg/l
Inlet / OutletTSS
mg/l

CASE STUDY
Jubail Export Refinery STPInfluent TSS / Influent COD
0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
900.00
1,000.00
1,100.00
1,200.00
1,300.00
1,400.00
1,500.00
1,600.00
1,700.00
1,800.00
1/1/20111/11/20111/21/20111/31/20112/10/20112/20/20113/2/20113/12/20113/22/20114/1/20114/11/20114/21/20115/1/20115/11/20115/21/20115/31/20116/10/20116/20/20116/30/2011
mg/l
mg/l
Inlet TSS / Inlet COD

CASE STUDY
Jubail Export Refinery STP
mg/lEffluent TSS / Effluent COD
0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00
1/1/20111/11/20111/21/20111/31/20112/10/20112/20/20113/2/20113/12/20113/22/20114/1/20114/11/20114/21/20115/1/20115/11/20115/21/20115/31/20116/10/20116/20/20116/30/2011
mg/l
Outlet TSS/ Outlet COD

CASE STUDY
Jubail Export Refinery STP
kg/kg MLVSS/dF/MLSS - "BOD" "COD"
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
1/1/20111/11/20111/21/20111/31/20112/10/20112/20/20113/2/20113/12/20113/22/20114/1/20114/11/20114/21/20115/1/20115/11/20115/21/20115/31/20116/10/20116/20/20116/30/2011
kg/kg MLVSS/d
F/M BOD / F/M COD

CASE STUDY
Jubail Export Refinery STPInfluent NH
3 / Effluent NH
3
0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
1/1/20111/11/20111/21/20111/31/20112/10/20112/20/20113/2/20113/12/20113/22/20114/1/20114/11/20114/21/20115/1/20115/11/20115/21/20115/31/20116/10/20116/20/20116/30/2011
mg/l
mg/l
Inlet NH4 / Outlet NH4

CASE STUDY
Jubail Export Refinery STPNitrification Rate
0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
0.51
0.18
0.32
0.28
0.31
1.08
1.01
0.88
0.69
0.83
0.80
0.64
0.61
0.49
0.00
0.20
0.40
0.60
0.80
1.00
1.20
12/8/2010 12/28/2010 1/17/2011 2/6/2011 2/26/2011 3/18/2011 4/7/2011 4/27/2011 5/17/2011 6/6/2011 6/26/2011 7/16/2011
mg N/g MLVSS/hr
mg N/g MLVSS/hr
Nitrification Rate

Pre-Treatment Design
Key Factors

CASE STUDY
Jubail Export Refinery STP
Pre-Treatment Design Key Factors:
1. Hourly Peak Flow
Hourly Peak Flow m
3
/hr. = Avg. m
3
/hr x Peak Factor
Avg. Flow : 10,000 m
3
/day >>>> 416.6 m
3
/hr
Peak Factor: 2
Peak Flow = (416.6 m
3
/hr) x (2) = 833 m
3
/hr
Why Peak Flow is Important?
>>> To determine the sizing of the following:
-Screening Channels and Screens,
-Equalization Tank HRT, Volume and Air Required.
-Grit Removal Units Volume and Surface Loads (not existing)
-Primary Clarifiers Area and Rising Velocities, (not existing)
-................etc

CASE STUDY
Jubail Export Refinery STP
Pre-Treatment Design Key Factors:
2. Total Suspended Solids Load
TSS Loads = (TSS in mg/l) X (Peak Flow m
3
/hr) / 1000 = kg/hr
Why TSS LOAD is Important?
>>> To determine the sizing of the following:
-Types of Screens (Bar, Coarse, Fine)
-Equalization Tank Aeration Type (Diffused Air, Surface Aeration,....etc)
-Grit Removal Units Volume and Surface Loads to determine Grit/TSS
ratio (N/A)
-Primary Clarifiers Type (wiht coag/flocc., with or without lamella
settlers, dense sludge recirculation,.....etc), (N/A)
-Primary Clarifiers Area and Solid Rate, (N/A)
-................etc

CASE STUDY
Jubail Export Refinery STP
Pre-Treatment Design Key Factors:
3. Fat, Oil & Grease (F.O.G)
F.O.G. Loads = (F.O.G in mg/l) X (Peak Flow m
3
/hr) / 1000 = kg/hr
Why F.O.G TYPE & LOAD are Important?
>>> To determine the following:
-Higher F.O.G Loads Require F.O.G Removal System. (N/A)
-Types of F.O.G Removal System (DAF, Static Floatation,...etc)(N/A)
-Equalization Tank Aeration Type (Diffused Air, Surface Aeration,....etc)
-Primary Clarifiers Type (wiht acidific./coag/flocc., with or without lamella
settlers, dense sludge recirculation,.....etc), (N/A)
-Primary Clarifiers Area and Solid Rate, (N/A)
-................etc

CASE STUDY
Jubail Export Refinery STP
4-Type of Suspended Solids.
5-Temperature (max. 40
O
C) >>>>> Material Selection (Industrial Waste)
6-pH >>>>> Material Selection (Industrial Waste)
N/A: Indicates that the specified unit or application does not exist in this case
study plant.
Pre-Treatment Design Key Factors:
Tags