Aerogel and its composites: fabrication and properties13
functionalization. Efforts should be made to develop cost effective aerogels using natural,
synthetic materials, or by combination of both. Due to the wide fabrication and application
possibilities, the science of aerogels is expected to be a big boom for future technologies.
References
[1] A. Datt, N. Ndiege, S.C. Larsen, Development of porous nanomaterials for applications in drug delivery
and imaging, Nanomaterials for Biomedicine, 2012. ACS Symposium Series, vol. 1119.
[2] A. Bhaumik, Porous nanomaterials for energy, environment and biomedical applications, Mater. Sci.
Nanomater. 1 (2) (2017) e109.
[3] J.E. Amonette, J. Matyas, Functionalized silica aerogels for gas-phase purification, sensing, and catalysis:
A review, Microp. Mesop. Mat. 250 (2017) 100–119.
[4] N. Bheekhun, A. Talib, A. Rahim, M.R. Hassan, Aerogels in aerospace: an overview, Adv. Mater. Sci.
Eng. 2013 (2013) 406065.
[5] J. Fricke, T. Tillotson, Aerogels: production, characterization, and applications, Thin Solid Films 297
(1997) 212–223.
[6] S. Araby, A. Qiu, R. Wang, Z. Zhao, C.H. Wang, J. Ma, Aerogels based on carbon nanomaterials, J. Mater.
Sci. 51 (2016) 9157–9189.
[7] A.C. Pierre, History of aerogels, in: M. Aegerter, N. Leventis, M. Koebel (Eds.), Aerogels Handbook,
Advances in Sol-Gel Derived Materials TechnologiesSpringer, New York, NY, USA, 2011, pp. 3–18.
[8] L.A. Capadona, M.A.B. Meador, A. Alunni, E.F. Fabrizio, P. Vassilaras, N. Leventis, Flexible low-density
polymer crosslinked silica aerogels, Polymer 47 (2006) 5754–5761.
[9] C.T. Wang, S.H. Ro, Surface nature of nanoparticle gold/iron oxide aerogel catalysts, J. NonCryst. Sol-
ids 352 (2006) 35–43.
[10] Y. Bi, H. Ren, L. He, Y. Zhang, S. He, L. Zhang, Preparation and characterization of metallic copper-
based aerogel with the building block of nano-crystals, Mat. Lett. 139 (2015) 205–207.
[11] M. Najafpour, S. Salimi, S.E. Balaghi, M. Hołynska, T. Tomo, M.H. Sadr, et al. Nanostructured man -
ganese oxide on frozen smoke: a new water-oxidizing composite, Int. J. Hydrog. Ener. 41 (2016)
2466–2476.
[12] J.L. Gurav, I.K. Jung, H.H. Park, E.S. Kang, D.Y. Nadargi, Silica aerogel: Synthesis and applications, J.
Nanomater. 2010 (2010) 409310.
[13] S.J. Teichner, G.A. Nicolaon, M.A. Vicarini, G.E.E. Gardes, Inorganic oxide aerogels, Adv. Colloid In-
terface Sci. 5 (1976) 245–273.
[14] H. Tamon, T. Sone, M. Mikami, M. Okazaki, Preparation and characterization of silica–titania and
silica–alumina aerogels, J. Colloid Interface Sci. 188 (1997) 493–500.
[15] E. Barrios, D. Fox, Y.Y.L. Sip, R. Catarata, J.E. Calderon, N. Azim, et al. Nanomaterials in advanced,
high-performance aerogel composites: A review, Polymer (Basel) 11 (2019) 726.
[16] L. Zuo, Y. Zhang, L. Zhang, Y.E. Miao, W. Fan, T. Liu, Polymer/carbon-based hybrid aerogels: Prepara-
tion, properties and applications, Materials (Basel) 8 (2015) 6806–6848.
[17] W. Liu, A.K. Herrmann, N.C. Bigall, P. Rodriguez, D. Wen, M. Oezaslan, et al. Noble metal aerogels
synthesis, characterization, and application as electrocatalysts, Acc. Chem. Res. 48 (2015) 154–162.
[18] A. Benad, F. Jürries, B. Vetter, B. Klemmed, R. Hübner, C. Leyens, Mechanical properties of metal oxide
aerogels, Chem. Mater. 30 (2018) 145–152.
[19] S. Kistler, Coherent expanded-aerogels, J. Phys. Chem. 36 (1932) 52–64.
[20] P. Wagh, A. VRao, D. Haranath, Influence of molar ratios of precursor, solvent and water on physical
properties of citric acid catalyzed TEOS silica aerogels, Mat. Chem. Phys. 53 (1998) 41–47.
[21] H. Wang, Q. Fang, W. Gu, D. Du, Y. Lin, C. Zhu, Noble metal aerogels, ACS Appl. Mater. Interfaces 12
(2020) 52234–52250.
[22] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, Intermediate species on zirconia supported methanol
aerogel catalysts V. Adsorption of methanol, Appl. Catal. A Gen. 123 (1995) 89–110.
[23] M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, et al. Strong, transparent, multi -
functional, carbon nanotube sheets, Science 309 (2005) 1215–1219.