AIartificial intelligence topic ppt.pptx

jeber59887 11 views 47 slides Jun 20, 2024
Slide 1
Slide 1 of 47
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47

About This Presentation

Ai


Slide Content

Artificial Intelligence An Overview 1

2

Traditional AI Problem solving Searching 3

Machine Learning Machine learning involves the development of algorithms that learn patterns and relationships from data to make predictions or decisions. 4

5

Regression Classification Clustering Dimensionality Reduction 6

Algorithms Linear Regression Logistic Regression Polynomial Regression Support Vector Regression Decision Tree Regression 7 Logistic Regression Support Vector Machines K-Nearest Neighbours Kernel SVM Naïve Bayes Decision Tree Classification Random Forest Classification

Validate the model Data set (100%) For Training(70%) For Testing(30%) 8

Regression 9

Classification 10

Clustering 11 https://www.javatpoint.com/clustering-in-machine-learning

Dimensionality Reduction 12

13

14

Rein- Forcement Learning Needs human validation 15

Deep Learning 16 Deep learning is a subset of machine learning that focuses on using artificial neural networks with multiple layers to learn hierarchical representations of data .

Biological Brain 17 By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=28761830

18 http://commons.wikimedia.org/wiki/File:Cajal_actx_inter.jpg#mediaviewer/File:Cajal_actx_inter.jpg

Artificial Neural Networks 19

Convolutional Neural networks 20

Architecture of CNNs Convolutional Layers Pooling Layers Fully Connected Layers 21

Kernels 22

pooling 23

Fully connected layers 24

25

26

Generative adversial networks GANs algorithmic architectures that use two neural networks called a  Generator  and a  Discriminator 27

Architecture of GANs 28

Recurrent Neural Networks Used for speech recognition, voice recognition, time series prediction, and  natural language processing. 29

DeepFace DeepID FaceNet VGGNET RESNET SIAMESE NET Triplet NET 30

Digital Image Processing Edge Detection Morphology Thresholding 31

Edge Detection Canny edge detector Sobel Marr- Hildreth Robert 32

33

. 34

35

36

Morphology Erosion Dilation Opening Closing Boundary extraction Hole filling 37

38

39

40

Natural Language Processing 41 Text Analytics and Mining Conversational Agents

42

43

Computational Genomics 44 DNA RNA PROTEINS

45

References World Health Organization—Cancer. Available online:  https://www.who.int/news-room/fact-sheets/detail/cancer.  (accessed on 5 November 2019). Priya , V.V. An Efficient Segmentation Approach for Brain Tumor Detection in MRI.  Indian J. Sci. Technol.   2016 ,  9 , 1–6. [ Google Scholar ] Cancer Treatments Centers of America—Brain Cancer Types. Available online:  https://www.cancercenter.com/cancer-types/brain-cancer/types  (accessed on 30 November 2019). American Association of Neurological Surgeons—Classification of Brain Tumours . Available online:  https://www.aans.org/en/Media/Classifications-of-Brain-Tumors  (accessed on 30 November 2019). DeAngelis , L.M. Brain Tumors.  New Engl. J. Med.   2001 ,  344 , 114–123. [ Google Scholar ] [ CrossRef ][ Green Version ] Louis, D.N.; Perry, A.; Reifenberger , G.; Von Deimling , A.; Figarella-Branger , M.; Cavenee , W.K.; Ohgaki , H.; Wiestler , O.D.; Kleihues , P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary.  Acta Neuropathol .   2016 ,  131 , 803–820. [ Google Scholar ] [ CrossRef ][ Green Version ] Afshar , P.; Plataniotis , K.N.; Mohammadi , A. Capsule Networks for Brain Tumor Classification Based on MRI Images and Coarse Tumor Boundaries. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1368–1372. [ Google Scholar ] Byrne, J.; Dwivedi , R.; Minks, D. Tumours of the brain. In  Nicholson T ( ed ) Recommendations Cross Sectional Imaging Cancer Management , 2nd ed.; Royal College of Radiologists: London, UK, 2014; pp. 1–20. Available online:  https://www.rcr.ac.uk/publication/recommendations-cross-sectional-imaging-cancer-management-second-edition  (accessed on 5 November 2019). Center for Biomedical Image Computing & Analytics (CBICA). Available online:  http://braintumorsegmentation.org/  (accessed on 5 November 2019). Mlynarski , P.; Delingette , H.; Criminisi , A.; Ayache , N. Deep learning with mixed supervision for brain tumor segmentation.  J. Med Imaging   2019 ,  6 , 034002. [ Google Scholar ] [ CrossRef ] Amin , J.; Sharif, M.; Yasmin , M.; Fernandes , S.L. Big data analysis for brain tumor detection: Deep convolutional neural networks.  Futur . Gener . Comput . Syst.   2018 ,  87 , 290–297. [ Google Scholar ] [ CrossRef ] Amin , J.; Sharif, M.; Raza , M.; Yasmin , M. Detection of Brain Tumor based on Features Fusion and Machine Learning.  J. Ambient. Intell . Humaniz . Comput .   2018 , 1–17. [ Google Scholar ] [ CrossRef ] Usman , K.; Rajpoot , K. Brain tumor classification from multi-modality MRI using wavelets and machine learning.  Pattern Anal. Appl.   2017 ,  20 , 871–881. [ Google Scholar ] [ CrossRef ][ Green Version ] 46

Thank You 47
Tags