AISC steel manual

2,174 views 300 slides May 16, 2023
Slide 1
Slide 1 of 2245
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204
Slide 205
205
Slide 206
206
Slide 207
207
Slide 208
208
Slide 209
209
Slide 210
210
Slide 211
211
Slide 212
212
Slide 213
213
Slide 214
214
Slide 215
215
Slide 216
216
Slide 217
217
Slide 218
218
Slide 219
219
Slide 220
220
Slide 221
221
Slide 222
222
Slide 223
223
Slide 224
224
Slide 225
225
Slide 226
226
Slide 227
227
Slide 228
228
Slide 229
229
Slide 230
230
Slide 231
231
Slide 232
232
Slide 233
233
Slide 234
234
Slide 235
235
Slide 236
236
Slide 237
237
Slide 238
238
Slide 239
239
Slide 240
240
Slide 241
241
Slide 242
242
Slide 243
243
Slide 244
244
Slide 245
245
Slide 246
246
Slide 247
247
Slide 248
248
Slide 249
249
Slide 250
250
Slide 251
251
Slide 252
252
Slide 253
253
Slide 254
254
Slide 255
255
Slide 256
256
Slide 257
257
Slide 258
258
Slide 259
259
Slide 260
260
Slide 261
261
Slide 262
262
Slide 263
263
Slide 264
264
Slide 265
265
Slide 266
266
Slide 267
267
Slide 268
268
Slide 269
269
Slide 270
270
Slide 271
271
Slide 272
272
Slide 273
273
Slide 274
274
Slide 275
275
Slide 276
276
Slide 277
277
Slide 278
278
Slide 279
279
Slide 280
280
Slide 281
281
Slide 282
282
Slide 283
283
Slide 284
284
Slide 285
285
Slide 286
286
Slide 287
287
Slide 288
288
Slide 289
289
Slide 290
290
Slide 291
291
Slide 292
292
Slide 293
293
Slide 294
294
Slide 295
295
Slide 296
296
Slide 297
297
Slide 298
298
Slide 299
299
Slide 300
300
Slide 301
301
Slide 302
302
Slide 303
303
Slide 304
304
Slide 305
305
Slide 306
306
Slide 307
307
Slide 308
308
Slide 309
309
Slide 310
310
Slide 311
311
Slide 312
312
Slide 313
313
Slide 314
314
Slide 315
315
Slide 316
316
Slide 317
317
Slide 318
318
Slide 319
319
Slide 320
320
Slide 321
321
Slide 322
322
Slide 323
323
Slide 324
324
Slide 325
325
Slide 326
326
Slide 327
327
Slide 328
328
Slide 329
329
Slide 330
330
Slide 331
331
Slide 332
332
Slide 333
333
Slide 334
334
Slide 335
335
Slide 336
336
Slide 337
337
Slide 338
338
Slide 339
339
Slide 340
340
Slide 341
341
Slide 342
342
Slide 343
343
Slide 344
344
Slide 345
345
Slide 346
346
Slide 347
347
Slide 348
348
Slide 349
349
Slide 350
350
Slide 351
351
Slide 352
352
Slide 353
353
Slide 354
354
Slide 355
355
Slide 356
356
Slide 357
357
Slide 358
358
Slide 359
359
Slide 360
360
Slide 361
361
Slide 362
362
Slide 363
363
Slide 364
364
Slide 365
365
Slide 366
366
Slide 367
367
Slide 368
368
Slide 369
369
Slide 370
370
Slide 371
371
Slide 372
372
Slide 373
373
Slide 374
374
Slide 375
375
Slide 376
376
Slide 377
377
Slide 378
378
Slide 379
379
Slide 380
380
Slide 381
381
Slide 382
382
Slide 383
383
Slide 384
384
Slide 385
385
Slide 386
386
Slide 387
387
Slide 388
388
Slide 389
389
Slide 390
390
Slide 391
391
Slide 392
392
Slide 393
393
Slide 394
394
Slide 395
395
Slide 396
396
Slide 397
397
Slide 398
398
Slide 399
399
Slide 400
400
Slide 401
401
Slide 402
402
Slide 403
403
Slide 404
404
Slide 405
405
Slide 406
406
Slide 407
407
Slide 408
408
Slide 409
409
Slide 410
410
Slide 411
411
Slide 412
412
Slide 413
413
Slide 414
414
Slide 415
415
Slide 416
416
Slide 417
417
Slide 418
418
Slide 419
419
Slide 420
420
Slide 421
421
Slide 422
422
Slide 423
423
Slide 424
424
Slide 425
425
Slide 426
426
Slide 427
427
Slide 428
428
Slide 429
429
Slide 430
430
Slide 431
431
Slide 432
432
Slide 433
433
Slide 434
434
Slide 435
435
Slide 436
436
Slide 437
437
Slide 438
438
Slide 439
439
Slide 440
440
Slide 441
441
Slide 442
442
Slide 443
443
Slide 444
444
Slide 445
445
Slide 446
446
Slide 447
447
Slide 448
448
Slide 449
449
Slide 450
450
Slide 451
451
Slide 452
452
Slide 453
453
Slide 454
454
Slide 455
455
Slide 456
456
Slide 457
457
Slide 458
458
Slide 459
459
Slide 460
460
Slide 461
461
Slide 462
462
Slide 463
463
Slide 464
464
Slide 465
465
Slide 466
466
Slide 467
467
Slide 468
468
Slide 469
469
Slide 470
470
Slide 471
471
Slide 472
472
Slide 473
473
Slide 474
474
Slide 475
475
Slide 476
476
Slide 477
477
Slide 478
478
Slide 479
479
Slide 480
480
Slide 481
481
Slide 482
482
Slide 483
483
Slide 484
484
Slide 485
485
Slide 486
486
Slide 487
487
Slide 488
488
Slide 489
489
Slide 490
490
Slide 491
491
Slide 492
492
Slide 493
493
Slide 494
494
Slide 495
495
Slide 496
496
Slide 497
497
Slide 498
498
Slide 499
499
Slide 500
500
Slide 501
501
Slide 502
502
Slide 503
503
Slide 504
504
Slide 505
505
Slide 506
506
Slide 507
507
Slide 508
508
Slide 509
509
Slide 510
510
Slide 511
511
Slide 512
512
Slide 513
513
Slide 514
514
Slide 515
515
Slide 516
516
Slide 517
517
Slide 518
518
Slide 519
519
Slide 520
520
Slide 521
521
Slide 522
522
Slide 523
523
Slide 524
524
Slide 525
525
Slide 526
526
Slide 527
527
Slide 528
528
Slide 529
529
Slide 530
530
Slide 531
531
Slide 532
532
Slide 533
533
Slide 534
534
Slide 535
535
Slide 536
536
Slide 537
537
Slide 538
538
Slide 539
539
Slide 540
540
Slide 541
541
Slide 542
542
Slide 543
543
Slide 544
544
Slide 545
545
Slide 546
546
Slide 547
547
Slide 548
548
Slide 549
549
Slide 550
550
Slide 551
551
Slide 552
552
Slide 553
553
Slide 554
554
Slide 555
555
Slide 556
556
Slide 557
557
Slide 558
558
Slide 559
559
Slide 560
560
Slide 561
561
Slide 562
562
Slide 563
563
Slide 564
564
Slide 565
565
Slide 566
566
Slide 567
567
Slide 568
568
Slide 569
569
Slide 570
570
Slide 571
571
Slide 572
572
Slide 573
573
Slide 574
574
Slide 575
575
Slide 576
576
Slide 577
577
Slide 578
578
Slide 579
579
Slide 580
580
Slide 581
581
Slide 582
582
Slide 583
583
Slide 584
584
Slide 585
585
Slide 586
586
Slide 587
587
Slide 588
588
Slide 589
589
Slide 590
590
Slide 591
591
Slide 592
592
Slide 593
593
Slide 594
594
Slide 595
595
Slide 596
596
Slide 597
597
Slide 598
598
Slide 599
599
Slide 600
600
Slide 601
601
Slide 602
602
Slide 603
603
Slide 604
604
Slide 605
605
Slide 606
606
Slide 607
607
Slide 608
608
Slide 609
609
Slide 610
610
Slide 611
611
Slide 612
612
Slide 613
613
Slide 614
614
Slide 615
615
Slide 616
616
Slide 617
617
Slide 618
618
Slide 619
619
Slide 620
620
Slide 621
621
Slide 622
622
Slide 623
623
Slide 624
624
Slide 625
625
Slide 626
626
Slide 627
627
Slide 628
628
Slide 629
629
Slide 630
630
Slide 631
631
Slide 632
632
Slide 633
633
Slide 634
634
Slide 635
635
Slide 636
636
Slide 637
637
Slide 638
638
Slide 639
639
Slide 640
640
Slide 641
641
Slide 642
642
Slide 643
643
Slide 644
644
Slide 645
645
Slide 646
646
Slide 647
647
Slide 648
648
Slide 649
649
Slide 650
650
Slide 651
651
Slide 652
652
Slide 653
653
Slide 654
654
Slide 655
655
Slide 656
656
Slide 657
657
Slide 658
658
Slide 659
659
Slide 660
660
Slide 661
661
Slide 662
662
Slide 663
663
Slide 664
664
Slide 665
665
Slide 666
666
Slide 667
667
Slide 668
668
Slide 669
669
Slide 670
670
Slide 671
671
Slide 672
672
Slide 673
673
Slide 674
674
Slide 675
675
Slide 676
676
Slide 677
677
Slide 678
678
Slide 679
679
Slide 680
680
Slide 681
681
Slide 682
682
Slide 683
683
Slide 684
684
Slide 685
685
Slide 686
686
Slide 687
687
Slide 688
688
Slide 689
689
Slide 690
690
Slide 691
691
Slide 692
692
Slide 693
693
Slide 694
694
Slide 695
695
Slide 696
696
Slide 697
697
Slide 698
698
Slide 699
699
Slide 700
700
Slide 701
701
Slide 702
702
Slide 703
703
Slide 704
704
Slide 705
705
Slide 706
706
Slide 707
707
Slide 708
708
Slide 709
709
Slide 710
710
Slide 711
711
Slide 712
712
Slide 713
713
Slide 714
714
Slide 715
715
Slide 716
716
Slide 717
717
Slide 718
718
Slide 719
719
Slide 720
720
Slide 721
721
Slide 722
722
Slide 723
723
Slide 724
724
Slide 725
725
Slide 726
726
Slide 727
727
Slide 728
728
Slide 729
729
Slide 730
730
Slide 731
731
Slide 732
732
Slide 733
733
Slide 734
734
Slide 735
735
Slide 736
736
Slide 737
737
Slide 738
738
Slide 739
739
Slide 740
740
Slide 741
741
Slide 742
742
Slide 743
743
Slide 744
744
Slide 745
745
Slide 746
746
Slide 747
747
Slide 748
748
Slide 749
749
Slide 750
750
Slide 751
751
Slide 752
752
Slide 753
753
Slide 754
754
Slide 755
755
Slide 756
756
Slide 757
757
Slide 758
758
Slide 759
759
Slide 760
760
Slide 761
761
Slide 762
762
Slide 763
763
Slide 764
764
Slide 765
765
Slide 766
766
Slide 767
767
Slide 768
768
Slide 769
769
Slide 770
770
Slide 771
771
Slide 772
772
Slide 773
773
Slide 774
774
Slide 775
775
Slide 776
776
Slide 777
777
Slide 778
778
Slide 779
779
Slide 780
780
Slide 781
781
Slide 782
782
Slide 783
783
Slide 784
784
Slide 785
785
Slide 786
786
Slide 787
787
Slide 788
788
Slide 789
789
Slide 790
790
Slide 791
791
Slide 792
792
Slide 793
793
Slide 794
794
Slide 795
795
Slide 796
796
Slide 797
797
Slide 798
798
Slide 799
799
Slide 800
800
Slide 801
801
Slide 802
802
Slide 803
803
Slide 804
804
Slide 805
805
Slide 806
806
Slide 807
807
Slide 808
808
Slide 809
809
Slide 810
810
Slide 811
811
Slide 812
812
Slide 813
813
Slide 814
814
Slide 815
815
Slide 816
816
Slide 817
817
Slide 818
818
Slide 819
819
Slide 820
820
Slide 821
821
Slide 822
822
Slide 823
823
Slide 824
824
Slide 825
825
Slide 826
826
Slide 827
827
Slide 828
828
Slide 829
829
Slide 830
830
Slide 831
831
Slide 832
832
Slide 833
833
Slide 834
834
Slide 835
835
Slide 836
836
Slide 837
837
Slide 838
838
Slide 839
839
Slide 840
840
Slide 841
841
Slide 842
842
Slide 843
843
Slide 844
844
Slide 845
845
Slide 846
846
Slide 847
847
Slide 848
848
Slide 849
849
Slide 850
850
Slide 851
851
Slide 852
852
Slide 853
853
Slide 854
854
Slide 855
855
Slide 856
856
Slide 857
857
Slide 858
858
Slide 859
859
Slide 860
860
Slide 861
861
Slide 862
862
Slide 863
863
Slide 864
864
Slide 865
865
Slide 866
866
Slide 867
867
Slide 868
868
Slide 869
869
Slide 870
870
Slide 871
871
Slide 872
872
Slide 873
873
Slide 874
874
Slide 875
875
Slide 876
876
Slide 877
877
Slide 878
878
Slide 879
879
Slide 880
880
Slide 881
881
Slide 882
882
Slide 883
883
Slide 884
884
Slide 885
885
Slide 886
886
Slide 887
887
Slide 888
888
Slide 889
889
Slide 890
890
Slide 891
891
Slide 892
892
Slide 893
893
Slide 894
894
Slide 895
895
Slide 896
896
Slide 897
897
Slide 898
898
Slide 899
899
Slide 900
900
Slide 901
901
Slide 902
902
Slide 903
903
Slide 904
904
Slide 905
905
Slide 906
906
Slide 907
907
Slide 908
908
Slide 909
909
Slide 910
910
Slide 911
911
Slide 912
912
Slide 913
913
Slide 914
914
Slide 915
915
Slide 916
916
Slide 917
917
Slide 918
918
Slide 919
919
Slide 920
920
Slide 921
921
Slide 922
922
Slide 923
923
Slide 924
924
Slide 925
925
Slide 926
926
Slide 927
927
Slide 928
928
Slide 929
929
Slide 930
930
Slide 931
931
Slide 932
932
Slide 933
933
Slide 934
934
Slide 935
935
Slide 936
936
Slide 937
937
Slide 938
938
Slide 939
939
Slide 940
940
Slide 941
941
Slide 942
942
Slide 943
943
Slide 944
944
Slide 945
945
Slide 946
946
Slide 947
947
Slide 948
948
Slide 949
949
Slide 950
950
Slide 951
951
Slide 952
952
Slide 953
953
Slide 954
954
Slide 955
955
Slide 956
956
Slide 957
957
Slide 958
958
Slide 959
959
Slide 960
960
Slide 961
961
Slide 962
962
Slide 963
963
Slide 964
964
Slide 965
965
Slide 966
966
Slide 967
967
Slide 968
968
Slide 969
969
Slide 970
970
Slide 971
971
Slide 972
972
Slide 973
973
Slide 974
974
Slide 975
975
Slide 976
976
Slide 977
977
Slide 978
978
Slide 979
979
Slide 980
980
Slide 981
981
Slide 982
982
Slide 983
983
Slide 984
984
Slide 985
985
Slide 986
986
Slide 987
987
Slide 988
988
Slide 989
989
Slide 990
990
Slide 991
991
Slide 992
992
Slide 993
993
Slide 994
994
Slide 995
995
Slide 996
996
Slide 997
997
Slide 998
998
Slide 999
999
Slide 1000
1000
Slide 1001
1001
Slide 1002
1002
Slide 1003
1003
Slide 1004
1004
Slide 1005
1005
Slide 1006
1006
Slide 1007
1007
Slide 1008
1008
Slide 1009
1009
Slide 1010
1010
Slide 1011
1011
Slide 1012
1012
Slide 1013
1013
Slide 1014
1014
Slide 1015
1015
Slide 1016
1016
Slide 1017
1017
Slide 1018
1018
Slide 1019
1019
Slide 1020
1020
Slide 1021
1021
Slide 1022
1022
Slide 1023
1023
Slide 1024
1024
Slide 1025
1025
Slide 1026
1026
Slide 1027
1027
Slide 1028
1028
Slide 1029
1029
Slide 1030
1030
Slide 1031
1031
Slide 1032
1032
Slide 1033
1033
Slide 1034
1034
Slide 1035
1035
Slide 1036
1036
Slide 1037
1037
Slide 1038
1038
Slide 1039
1039
Slide 1040
1040
Slide 1041
1041
Slide 1042
1042
Slide 1043
1043
Slide 1044
1044
Slide 1045
1045
Slide 1046
1046
Slide 1047
1047
Slide 1048
1048
Slide 1049
1049
Slide 1050
1050
Slide 1051
1051
Slide 1052
1052
Slide 1053
1053
Slide 1054
1054
Slide 1055
1055
Slide 1056
1056
Slide 1057
1057
Slide 1058
1058
Slide 1059
1059
Slide 1060
1060
Slide 1061
1061
Slide 1062
1062
Slide 1063
1063
Slide 1064
1064
Slide 1065
1065
Slide 1066
1066
Slide 1067
1067
Slide 1068
1068
Slide 1069
1069
Slide 1070
1070
Slide 1071
1071
Slide 1072
1072
Slide 1073
1073
Slide 1074
1074
Slide 1075
1075
Slide 1076
1076
Slide 1077
1077
Slide 1078
1078
Slide 1079
1079
Slide 1080
1080
Slide 1081
1081
Slide 1082
1082
Slide 1083
1083
Slide 1084
1084
Slide 1085
1085
Slide 1086
1086
Slide 1087
1087
Slide 1088
1088
Slide 1089
1089
Slide 1090
1090
Slide 1091
1091
Slide 1092
1092
Slide 1093
1093
Slide 1094
1094
Slide 1095
1095
Slide 1096
1096
Slide 1097
1097
Slide 1098
1098
Slide 1099
1099
Slide 1100
1100
Slide 1101
1101
Slide 1102
1102
Slide 1103
1103
Slide 1104
1104
Slide 1105
1105
Slide 1106
1106
Slide 1107
1107
Slide 1108
1108
Slide 1109
1109
Slide 1110
1110
Slide 1111
1111
Slide 1112
1112
Slide 1113
1113
Slide 1114
1114
Slide 1115
1115
Slide 1116
1116
Slide 1117
1117
Slide 1118
1118
Slide 1119
1119
Slide 1120
1120
Slide 1121
1121
Slide 1122
1122
Slide 1123
1123
Slide 1124
1124
Slide 1125
1125
Slide 1126
1126
Slide 1127
1127
Slide 1128
1128
Slide 1129
1129
Slide 1130
1130
Slide 1131
1131
Slide 1132
1132
Slide 1133
1133
Slide 1134
1134
Slide 1135
1135
Slide 1136
1136
Slide 1137
1137
Slide 1138
1138
Slide 1139
1139
Slide 1140
1140
Slide 1141
1141
Slide 1142
1142
Slide 1143
1143
Slide 1144
1144
Slide 1145
1145
Slide 1146
1146
Slide 1147
1147
Slide 1148
1148
Slide 1149
1149
Slide 1150
1150
Slide 1151
1151
Slide 1152
1152
Slide 1153
1153
Slide 1154
1154
Slide 1155
1155
Slide 1156
1156
Slide 1157
1157
Slide 1158
1158
Slide 1159
1159
Slide 1160
1160
Slide 1161
1161
Slide 1162
1162
Slide 1163
1163
Slide 1164
1164
Slide 1165
1165
Slide 1166
1166
Slide 1167
1167
Slide 1168
1168
Slide 1169
1169
Slide 1170
1170
Slide 1171
1171
Slide 1172
1172
Slide 1173
1173
Slide 1174
1174
Slide 1175
1175
Slide 1176
1176
Slide 1177
1177
Slide 1178
1178
Slide 1179
1179
Slide 1180
1180
Slide 1181
1181
Slide 1182
1182
Slide 1183
1183
Slide 1184
1184
Slide 1185
1185
Slide 1186
1186
Slide 1187
1187
Slide 1188
1188
Slide 1189
1189
Slide 1190
1190
Slide 1191
1191
Slide 1192
1192
Slide 1193
1193
Slide 1194
1194
Slide 1195
1195
Slide 1196
1196
Slide 1197
1197
Slide 1198
1198
Slide 1199
1199
Slide 1200
1200
Slide 1201
1201
Slide 1202
1202
Slide 1203
1203
Slide 1204
1204
Slide 1205
1205
Slide 1206
1206
Slide 1207
1207
Slide 1208
1208
Slide 1209
1209
Slide 1210
1210
Slide 1211
1211
Slide 1212
1212
Slide 1213
1213
Slide 1214
1214
Slide 1215
1215
Slide 1216
1216
Slide 1217
1217
Slide 1218
1218
Slide 1219
1219
Slide 1220
1220
Slide 1221
1221
Slide 1222
1222
Slide 1223
1223
Slide 1224
1224
Slide 1225
1225
Slide 1226
1226
Slide 1227
1227
Slide 1228
1228
Slide 1229
1229
Slide 1230
1230
Slide 1231
1231
Slide 1232
1232
Slide 1233
1233
Slide 1234
1234
Slide 1235
1235
Slide 1236
1236
Slide 1237
1237
Slide 1238
1238
Slide 1239
1239
Slide 1240
1240
Slide 1241
1241
Slide 1242
1242
Slide 1243
1243
Slide 1244
1244
Slide 1245
1245
Slide 1246
1246
Slide 1247
1247
Slide 1248
1248
Slide 1249
1249
Slide 1250
1250
Slide 1251
1251
Slide 1252
1252
Slide 1253
1253
Slide 1254
1254
Slide 1255
1255
Slide 1256
1256
Slide 1257
1257
Slide 1258
1258
Slide 1259
1259
Slide 1260
1260
Slide 1261
1261
Slide 1262
1262
Slide 1263
1263
Slide 1264
1264
Slide 1265
1265
Slide 1266
1266
Slide 1267
1267
Slide 1268
1268
Slide 1269
1269
Slide 1270
1270
Slide 1271
1271
Slide 1272
1272
Slide 1273
1273
Slide 1274
1274
Slide 1275
1275
Slide 1276
1276
Slide 1277
1277
Slide 1278
1278
Slide 1279
1279
Slide 1280
1280
Slide 1281
1281
Slide 1282
1282
Slide 1283
1283
Slide 1284
1284
Slide 1285
1285
Slide 1286
1286
Slide 1287
1287
Slide 1288
1288
Slide 1289
1289
Slide 1290
1290
Slide 1291
1291
Slide 1292
1292
Slide 1293
1293
Slide 1294
1294
Slide 1295
1295
Slide 1296
1296
Slide 1297
1297
Slide 1298
1298
Slide 1299
1299
Slide 1300
1300
Slide 1301
1301
Slide 1302
1302
Slide 1303
1303
Slide 1304
1304
Slide 1305
1305
Slide 1306
1306
Slide 1307
1307
Slide 1308
1308
Slide 1309
1309
Slide 1310
1310
Slide 1311
1311
Slide 1312
1312
Slide 1313
1313
Slide 1314
1314
Slide 1315
1315
Slide 1316
1316
Slide 1317
1317
Slide 1318
1318
Slide 1319
1319
Slide 1320
1320
Slide 1321
1321
Slide 1322
1322
Slide 1323
1323
Slide 1324
1324
Slide 1325
1325
Slide 1326
1326
Slide 1327
1327
Slide 1328
1328
Slide 1329
1329
Slide 1330
1330
Slide 1331
1331
Slide 1332
1332
Slide 1333
1333
Slide 1334
1334
Slide 1335
1335
Slide 1336
1336
Slide 1337
1337
Slide 1338
1338
Slide 1339
1339
Slide 1340
1340
Slide 1341
1341
Slide 1342
1342
Slide 1343
1343
Slide 1344
1344
Slide 1345
1345
Slide 1346
1346
Slide 1347
1347
Slide 1348
1348
Slide 1349
1349
Slide 1350
1350
Slide 1351
1351
Slide 1352
1352
Slide 1353
1353
Slide 1354
1354
Slide 1355
1355
Slide 1356
1356
Slide 1357
1357
Slide 1358
1358
Slide 1359
1359
Slide 1360
1360
Slide 1361
1361
Slide 1362
1362
Slide 1363
1363
Slide 1364
1364
Slide 1365
1365
Slide 1366
1366
Slide 1367
1367
Slide 1368
1368
Slide 1369
1369
Slide 1370
1370
Slide 1371
1371
Slide 1372
1372
Slide 1373
1373
Slide 1374
1374
Slide 1375
1375
Slide 1376
1376
Slide 1377
1377
Slide 1378
1378
Slide 1379
1379
Slide 1380
1380
Slide 1381
1381
Slide 1382
1382
Slide 1383
1383
Slide 1384
1384
Slide 1385
1385
Slide 1386
1386
Slide 1387
1387
Slide 1388
1388
Slide 1389
1389
Slide 1390
1390
Slide 1391
1391
Slide 1392
1392
Slide 1393
1393
Slide 1394
1394
Slide 1395
1395
Slide 1396
1396
Slide 1397
1397
Slide 1398
1398
Slide 1399
1399
Slide 1400
1400
Slide 1401
1401
Slide 1402
1402
Slide 1403
1403
Slide 1404
1404
Slide 1405
1405
Slide 1406
1406
Slide 1407
1407
Slide 1408
1408
Slide 1409
1409
Slide 1410
1410
Slide 1411
1411
Slide 1412
1412
Slide 1413
1413
Slide 1414
1414
Slide 1415
1415
Slide 1416
1416
Slide 1417
1417
Slide 1418
1418
Slide 1419
1419
Slide 1420
1420
Slide 1421
1421
Slide 1422
1422
Slide 1423
1423
Slide 1424
1424
Slide 1425
1425
Slide 1426
1426
Slide 1427
1427
Slide 1428
1428
Slide 1429
1429
Slide 1430
1430
Slide 1431
1431
Slide 1432
1432
Slide 1433
1433
Slide 1434
1434
Slide 1435
1435
Slide 1436
1436
Slide 1437
1437
Slide 1438
1438
Slide 1439
1439
Slide 1440
1440
Slide 1441
1441
Slide 1442
1442
Slide 1443
1443
Slide 1444
1444
Slide 1445
1445
Slide 1446
1446
Slide 1447
1447
Slide 1448
1448
Slide 1449
1449
Slide 1450
1450
Slide 1451
1451
Slide 1452
1452
Slide 1453
1453
Slide 1454
1454
Slide 1455
1455
Slide 1456
1456
Slide 1457
1457
Slide 1458
1458
Slide 1459
1459
Slide 1460
1460
Slide 1461
1461
Slide 1462
1462
Slide 1463
1463
Slide 1464
1464
Slide 1465
1465
Slide 1466
1466
Slide 1467
1467
Slide 1468
1468
Slide 1469
1469
Slide 1470
1470
Slide 1471
1471
Slide 1472
1472
Slide 1473
1473
Slide 1474
1474
Slide 1475
1475
Slide 1476
1476
Slide 1477
1477
Slide 1478
1478
Slide 1479
1479
Slide 1480
1480
Slide 1481
1481
Slide 1482
1482
Slide 1483
1483
Slide 1484
1484
Slide 1485
1485
Slide 1486
1486
Slide 1487
1487
Slide 1488
1488
Slide 1489
1489
Slide 1490
1490
Slide 1491
1491
Slide 1492
1492
Slide 1493
1493
Slide 1494
1494
Slide 1495
1495
Slide 1496
1496
Slide 1497
1497
Slide 1498
1498
Slide 1499
1499
Slide 1500
1500
Slide 1501
1501
Slide 1502
1502
Slide 1503
1503
Slide 1504
1504
Slide 1505
1505
Slide 1506
1506
Slide 1507
1507
Slide 1508
1508
Slide 1509
1509
Slide 1510
1510
Slide 1511
1511
Slide 1512
1512
Slide 1513
1513
Slide 1514
1514
Slide 1515
1515
Slide 1516
1516
Slide 1517
1517
Slide 1518
1518
Slide 1519
1519
Slide 1520
1520
Slide 1521
1521
Slide 1522
1522
Slide 1523
1523
Slide 1524
1524
Slide 1525
1525
Slide 1526
1526
Slide 1527
1527
Slide 1528
1528
Slide 1529
1529
Slide 1530
1530
Slide 1531
1531
Slide 1532
1532
Slide 1533
1533
Slide 1534
1534
Slide 1535
1535
Slide 1536
1536
Slide 1537
1537
Slide 1538
1538
Slide 1539
1539
Slide 1540
1540
Slide 1541
1541
Slide 1542
1542
Slide 1543
1543
Slide 1544
1544
Slide 1545
1545
Slide 1546
1546
Slide 1547
1547
Slide 1548
1548
Slide 1549
1549
Slide 1550
1550
Slide 1551
1551
Slide 1552
1552
Slide 1553
1553
Slide 1554
1554
Slide 1555
1555
Slide 1556
1556
Slide 1557
1557
Slide 1558
1558
Slide 1559
1559
Slide 1560
1560
Slide 1561
1561
Slide 1562
1562
Slide 1563
1563
Slide 1564
1564
Slide 1565
1565
Slide 1566
1566
Slide 1567
1567
Slide 1568
1568
Slide 1569
1569
Slide 1570
1570
Slide 1571
1571
Slide 1572
1572
Slide 1573
1573
Slide 1574
1574
Slide 1575
1575
Slide 1576
1576
Slide 1577
1577
Slide 1578
1578
Slide 1579
1579
Slide 1580
1580
Slide 1581
1581
Slide 1582
1582
Slide 1583
1583
Slide 1584
1584
Slide 1585
1585
Slide 1586
1586
Slide 1587
1587
Slide 1588
1588
Slide 1589
1589
Slide 1590
1590
Slide 1591
1591
Slide 1592
1592
Slide 1593
1593
Slide 1594
1594
Slide 1595
1595
Slide 1596
1596
Slide 1597
1597
Slide 1598
1598
Slide 1599
1599
Slide 1600
1600
Slide 1601
1601
Slide 1602
1602
Slide 1603
1603
Slide 1604
1604
Slide 1605
1605
Slide 1606
1606
Slide 1607
1607
Slide 1608
1608
Slide 1609
1609
Slide 1610
1610
Slide 1611
1611
Slide 1612
1612
Slide 1613
1613
Slide 1614
1614
Slide 1615
1615
Slide 1616
1616
Slide 1617
1617
Slide 1618
1618
Slide 1619
1619
Slide 1620
1620
Slide 1621
1621
Slide 1622
1622
Slide 1623
1623
Slide 1624
1624
Slide 1625
1625
Slide 1626
1626
Slide 1627
1627
Slide 1628
1628
Slide 1629
1629
Slide 1630
1630
Slide 1631
1631
Slide 1632
1632
Slide 1633
1633
Slide 1634
1634
Slide 1635
1635
Slide 1636
1636
Slide 1637
1637
Slide 1638
1638
Slide 1639
1639
Slide 1640
1640
Slide 1641
1641
Slide 1642
1642
Slide 1643
1643
Slide 1644
1644
Slide 1645
1645
Slide 1646
1646
Slide 1647
1647
Slide 1648
1648
Slide 1649
1649
Slide 1650
1650
Slide 1651
1651
Slide 1652
1652
Slide 1653
1653
Slide 1654
1654
Slide 1655
1655
Slide 1656
1656
Slide 1657
1657
Slide 1658
1658
Slide 1659
1659
Slide 1660
1660
Slide 1661
1661
Slide 1662
1662
Slide 1663
1663
Slide 1664
1664
Slide 1665
1665
Slide 1666
1666
Slide 1667
1667
Slide 1668
1668
Slide 1669
1669
Slide 1670
1670
Slide 1671
1671
Slide 1672
1672
Slide 1673
1673
Slide 1674
1674
Slide 1675
1675
Slide 1676
1676
Slide 1677
1677
Slide 1678
1678
Slide 1679
1679
Slide 1680
1680
Slide 1681
1681
Slide 1682
1682
Slide 1683
1683
Slide 1684
1684
Slide 1685
1685
Slide 1686
1686
Slide 1687
1687
Slide 1688
1688
Slide 1689
1689
Slide 1690
1690
Slide 1691
1691
Slide 1692
1692
Slide 1693
1693
Slide 1694
1694
Slide 1695
1695
Slide 1696
1696
Slide 1697
1697
Slide 1698
1698
Slide 1699
1699
Slide 1700
1700
Slide 1701
1701
Slide 1702
1702
Slide 1703
1703
Slide 1704
1704
Slide 1705
1705
Slide 1706
1706
Slide 1707
1707
Slide 1708
1708
Slide 1709
1709
Slide 1710
1710
Slide 1711
1711
Slide 1712
1712
Slide 1713
1713
Slide 1714
1714
Slide 1715
1715
Slide 1716
1716
Slide 1717
1717
Slide 1718
1718
Slide 1719
1719
Slide 1720
1720
Slide 1721
1721
Slide 1722
1722
Slide 1723
1723
Slide 1724
1724
Slide 1725
1725
Slide 1726
1726
Slide 1727
1727
Slide 1728
1728
Slide 1729
1729
Slide 1730
1730
Slide 1731
1731
Slide 1732
1732
Slide 1733
1733
Slide 1734
1734
Slide 1735
1735
Slide 1736
1736
Slide 1737
1737
Slide 1738
1738
Slide 1739
1739
Slide 1740
1740
Slide 1741
1741
Slide 1742
1742
Slide 1743
1743
Slide 1744
1744
Slide 1745
1745
Slide 1746
1746
Slide 1747
1747
Slide 1748
1748
Slide 1749
1749
Slide 1750
1750
Slide 1751
1751
Slide 1752
1752
Slide 1753
1753
Slide 1754
1754
Slide 1755
1755
Slide 1756
1756
Slide 1757
1757
Slide 1758
1758
Slide 1759
1759
Slide 1760
1760
Slide 1761
1761
Slide 1762
1762
Slide 1763
1763
Slide 1764
1764
Slide 1765
1765
Slide 1766
1766
Slide 1767
1767
Slide 1768
1768
Slide 1769
1769
Slide 1770
1770
Slide 1771
1771
Slide 1772
1772
Slide 1773
1773
Slide 1774
1774
Slide 1775
1775
Slide 1776
1776
Slide 1777
1777
Slide 1778
1778
Slide 1779
1779
Slide 1780
1780
Slide 1781
1781
Slide 1782
1782
Slide 1783
1783
Slide 1784
1784
Slide 1785
1785
Slide 1786
1786
Slide 1787
1787
Slide 1788
1788
Slide 1789
1789
Slide 1790
1790
Slide 1791
1791
Slide 1792
1792
Slide 1793
1793
Slide 1794
1794
Slide 1795
1795
Slide 1796
1796
Slide 1797
1797
Slide 1798
1798
Slide 1799
1799
Slide 1800
1800
Slide 1801
1801
Slide 1802
1802
Slide 1803
1803
Slide 1804
1804
Slide 1805
1805
Slide 1806
1806
Slide 1807
1807
Slide 1808
1808
Slide 1809
1809
Slide 1810
1810
Slide 1811
1811
Slide 1812
1812
Slide 1813
1813
Slide 1814
1814
Slide 1815
1815
Slide 1816
1816
Slide 1817
1817
Slide 1818
1818
Slide 1819
1819
Slide 1820
1820
Slide 1821
1821
Slide 1822
1822
Slide 1823
1823
Slide 1824
1824
Slide 1825
1825
Slide 1826
1826
Slide 1827
1827
Slide 1828
1828
Slide 1829
1829
Slide 1830
1830
Slide 1831
1831
Slide 1832
1832
Slide 1833
1833
Slide 1834
1834
Slide 1835
1835
Slide 1836
1836
Slide 1837
1837
Slide 1838
1838
Slide 1839
1839
Slide 1840
1840
Slide 1841
1841
Slide 1842
1842
Slide 1843
1843
Slide 1844
1844
Slide 1845
1845
Slide 1846
1846
Slide 1847
1847
Slide 1848
1848
Slide 1849
1849
Slide 1850
1850
Slide 1851
1851
Slide 1852
1852
Slide 1853
1853
Slide 1854
1854
Slide 1855
1855
Slide 1856
1856
Slide 1857
1857
Slide 1858
1858
Slide 1859
1859
Slide 1860
1860
Slide 1861
1861
Slide 1862
1862
Slide 1863
1863
Slide 1864
1864
Slide 1865
1865
Slide 1866
1866
Slide 1867
1867
Slide 1868
1868
Slide 1869
1869
Slide 1870
1870
Slide 1871
1871
Slide 1872
1872
Slide 1873
1873
Slide 1874
1874
Slide 1875
1875
Slide 1876
1876
Slide 1877
1877
Slide 1878
1878
Slide 1879
1879
Slide 1880
1880
Slide 1881
1881
Slide 1882
1882
Slide 1883
1883
Slide 1884
1884
Slide 1885
1885
Slide 1886
1886
Slide 1887
1887
Slide 1888
1888
Slide 1889
1889
Slide 1890
1890
Slide 1891
1891
Slide 1892
1892
Slide 1893
1893
Slide 1894
1894
Slide 1895
1895
Slide 1896
1896
Slide 1897
1897
Slide 1898
1898
Slide 1899
1899
Slide 1900
1900
Slide 1901
1901
Slide 1902
1902
Slide 1903
1903
Slide 1904
1904
Slide 1905
1905
Slide 1906
1906
Slide 1907
1907
Slide 1908
1908
Slide 1909
1909
Slide 1910
1910
Slide 1911
1911
Slide 1912
1912
Slide 1913
1913
Slide 1914
1914
Slide 1915
1915
Slide 1916
1916
Slide 1917
1917
Slide 1918
1918
Slide 1919
1919
Slide 1920
1920
Slide 1921
1921
Slide 1922
1922
Slide 1923
1923
Slide 1924
1924
Slide 1925
1925
Slide 1926
1926
Slide 1927
1927
Slide 1928
1928
Slide 1929
1929
Slide 1930
1930
Slide 1931
1931
Slide 1932
1932
Slide 1933
1933
Slide 1934
1934
Slide 1935
1935
Slide 1936
1936
Slide 1937
1937
Slide 1938
1938
Slide 1939
1939
Slide 1940
1940
Slide 1941
1941
Slide 1942
1942
Slide 1943
1943
Slide 1944
1944
Slide 1945
1945
Slide 1946
1946
Slide 1947
1947
Slide 1948
1948
Slide 1949
1949
Slide 1950
1950
Slide 1951
1951
Slide 1952
1952
Slide 1953
1953
Slide 1954
1954
Slide 1955
1955
Slide 1956
1956
Slide 1957
1957
Slide 1958
1958
Slide 1959
1959
Slide 1960
1960
Slide 1961
1961
Slide 1962
1962
Slide 1963
1963
Slide 1964
1964
Slide 1965
1965
Slide 1966
1966
Slide 1967
1967
Slide 1968
1968
Slide 1969
1969
Slide 1970
1970
Slide 1971
1971
Slide 1972
1972
Slide 1973
1973
Slide 1974
1974
Slide 1975
1975
Slide 1976
1976
Slide 1977
1977
Slide 1978
1978
Slide 1979
1979
Slide 1980
1980
Slide 1981
1981
Slide 1982
1982
Slide 1983
1983
Slide 1984
1984
Slide 1985
1985
Slide 1986
1986
Slide 1987
1987
Slide 1988
1988
Slide 1989
1989
Slide 1990
1990
Slide 1991
1991
Slide 1992
1992
Slide 1993
1993
Slide 1994
1994
Slide 1995
1995
Slide 1996
1996
Slide 1997
1997
Slide 1998
1998
Slide 1999
1999
Slide 2000
2000
Slide 2001
2001
Slide 2002
2002
Slide 2003
2003
Slide 2004
2004
Slide 2005
2005
Slide 2006
2006
Slide 2007
2007
Slide 2008
2008
Slide 2009
2009
Slide 2010
2010
Slide 2011
2011
Slide 2012
2012
Slide 2013
2013
Slide 2014
2014
Slide 2015
2015
Slide 2016
2016
Slide 2017
2017
Slide 2018
2018
Slide 2019
2019
Slide 2020
2020
Slide 2021
2021
Slide 2022
2022
Slide 2023
2023
Slide 2024
2024
Slide 2025
2025
Slide 2026
2026
Slide 2027
2027
Slide 2028
2028
Slide 2029
2029
Slide 2030
2030
Slide 2031
2031
Slide 2032
2032
Slide 2033
2033
Slide 2034
2034
Slide 2035
2035
Slide 2036
2036
Slide 2037
2037
Slide 2038
2038
Slide 2039
2039
Slide 2040
2040
Slide 2041
2041
Slide 2042
2042
Slide 2043
2043
Slide 2044
2044
Slide 2045
2045
Slide 2046
2046
Slide 2047
2047
Slide 2048
2048
Slide 2049
2049
Slide 2050
2050
Slide 2051
2051
Slide 2052
2052
Slide 2053
2053
Slide 2054
2054
Slide 2055
2055
Slide 2056
2056
Slide 2057
2057
Slide 2058
2058
Slide 2059
2059
Slide 2060
2060
Slide 2061
2061
Slide 2062
2062
Slide 2063
2063
Slide 2064
2064
Slide 2065
2065
Slide 2066
2066
Slide 2067
2067
Slide 2068
2068
Slide 2069
2069
Slide 2070
2070
Slide 2071
2071
Slide 2072
2072
Slide 2073
2073
Slide 2074
2074
Slide 2075
2075
Slide 2076
2076
Slide 2077
2077
Slide 2078
2078
Slide 2079
2079
Slide 2080
2080
Slide 2081
2081
Slide 2082
2082
Slide 2083
2083
Slide 2084
2084
Slide 2085
2085
Slide 2086
2086
Slide 2087
2087
Slide 2088
2088
Slide 2089
2089
Slide 2090
2090
Slide 2091
2091
Slide 2092
2092
Slide 2093
2093
Slide 2094
2094
Slide 2095
2095
Slide 2096
2096
Slide 2097
2097
Slide 2098
2098
Slide 2099
2099
Slide 2100
2100
Slide 2101
2101
Slide 2102
2102
Slide 2103
2103
Slide 2104
2104
Slide 2105
2105
Slide 2106
2106
Slide 2107
2107
Slide 2108
2108
Slide 2109
2109
Slide 2110
2110
Slide 2111
2111
Slide 2112
2112
Slide 2113
2113
Slide 2114
2114
Slide 2115
2115
Slide 2116
2116
Slide 2117
2117
Slide 2118
2118
Slide 2119
2119
Slide 2120
2120
Slide 2121
2121
Slide 2122
2122
Slide 2123
2123
Slide 2124
2124
Slide 2125
2125
Slide 2126
2126
Slide 2127
2127
Slide 2128
2128
Slide 2129
2129
Slide 2130
2130
Slide 2131
2131
Slide 2132
2132
Slide 2133
2133
Slide 2134
2134
Slide 2135
2135
Slide 2136
2136
Slide 2137
2137
Slide 2138
2138
Slide 2139
2139
Slide 2140
2140
Slide 2141
2141
Slide 2142
2142
Slide 2143
2143
Slide 2144
2144
Slide 2145
2145
Slide 2146
2146
Slide 2147
2147
Slide 2148
2148
Slide 2149
2149
Slide 2150
2150
Slide 2151
2151
Slide 2152
2152
Slide 2153
2153
Slide 2154
2154
Slide 2155
2155
Slide 2156
2156
Slide 2157
2157
Slide 2158
2158
Slide 2159
2159
Slide 2160
2160
Slide 2161
2161
Slide 2162
2162
Slide 2163
2163
Slide 2164
2164
Slide 2165
2165
Slide 2166
2166
Slide 2167
2167
Slide 2168
2168
Slide 2169
2169
Slide 2170
2170
Slide 2171
2171
Slide 2172
2172
Slide 2173
2173
Slide 2174
2174
Slide 2175
2175
Slide 2176
2176
Slide 2177
2177
Slide 2178
2178
Slide 2179
2179
Slide 2180
2180
Slide 2181
2181
Slide 2182
2182
Slide 2183
2183
Slide 2184
2184
Slide 2185
2185
Slide 2186
2186
Slide 2187
2187
Slide 2188
2188
Slide 2189
2189
Slide 2190
2190
Slide 2191
2191
Slide 2192
2192
Slide 2193
2193
Slide 2194
2194
Slide 2195
2195
Slide 2196
2196
Slide 2197
2197
Slide 2198
2198
Slide 2199
2199
Slide 2200
2200
Slide 2201
2201
Slide 2202
2202
Slide 2203
2203
Slide 2204
2204
Slide 2205
2205
Slide 2206
2206
Slide 2207
2207
Slide 2208
2208
Slide 2209
2209
Slide 2210
2210
Slide 2211
2211
Slide 2212
2212
Slide 2213
2213
Slide 2214
2214
Slide 2215
2215
Slide 2216
2216
Slide 2217
2217
Slide 2218
2218
Slide 2219
2219
Slide 2220
2220
Slide 2221
2221
Slide 2222
2222
Slide 2223
2223
Slide 2224
2224
Slide 2225
2225
Slide 2226
2226
Slide 2227
2227
Slide 2228
2228
Slide 2229
2229
Slide 2230
2230
Slide 2231
2231
Slide 2232
2232
Slide 2233
2233
Slide 2234
2234
Slide 2235
2235
Slide 2236
2236
Slide 2237
2237
Slide 2238
2238
Slide 2239
2239
Slide 2240
2240
Slide 2241
2241
Slide 2242
2242
Slide 2243
2243
Slide 2244
2244
Slide 2245
2245

About This Presentation

manual de calculo para estructuras en acero americanas


Slide Content

STEEL
CONSTRUCTION
MANUAL
AMERICAN INSTITUTE
OF
STEEL CONSTRUCTION
FOURTEENTH EDITION

1 Dimensions and Properties
2 General Design Considerations
3 Design of Flexural Members
4 Design of Compression Members
5 Design of Tension Members
6 Design of Members Subject to Combined Forces
7 Design Considerations for Bolts
|8 Design Considerations for Welds
9 Design of Connecting Elements

10 Design of Simple Shear Connections
11 Design t>f Partially Restrained Moment Connections
12 Design of Fully Restrained Moment Connections
13 Design of Bracing Connections and Truss Connections
14 Design of Beam Bearing Plates, Col. Base Plates, Anchor Rods, and Col. Splices
15 Design of Hanger Connections, Bracket Plates, and Crane-Rail Connections
16 Specifications and Codes
17 Miscellaneous Data and Mathematical Information
Index and General Nomenclature

AISC©2011
by
American Institute of Steel Construction
ISBN 1-56424-060-6
All rights reserved. This book or any part thereof
must not be reproduced in any form without the
written permission df the publisher.
The AISC logo is a registered trademark of AISC.
The information presented in this publication has been prepared in accordance with recog-
nized engineering principles and is for general information only. While it is believed to be
accurate, this information should not be used or relied upon for any specific application
without competent professional examination and verification of its accuracy, suitability, and
applicability by a licensed professional engineer, designer, or architect. The publication of
the material contained herein is not intended as a representation or warranty on the part of
the American Institute of Steel Constiuction or of any other person named herein, that this
information is suitable for any general or particular use or of freedom from infringement of
any patent or patents. Anyone making use of this information assumes all liability arising
from such use.
Caution must be exercised when relying upon other specifications and codes developed by
other bodies and incorporated by reference herein since such material may be modified or
amended from time to time subsequent to the printing of this edition. The Institute bears no
responsibility for such material other tlian to refer to it and incorporate it by reference at the
time of the initial publication of this edition.
Printed in the United States of America
First Printing: March 2011
Second Printing: February 2012
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FOREWORD
The American Institute of Steel Construction, founded in 1921, is the nonprofit technical
standards developer and trade organization for the fabricated structural steel industi-y in the
United States. AISC is headquartered in Chicago and has a long tradition of service to the
steel construction industry providing timely and reliable information.
The continuing financial support and active participation of Members in the engineering,
research and development activities of the Institute make possible the publishing of this
Steel Construction Manual. Those Members include the following: Full Members engaged
in the fabrication, production and sale of structural steel; Associate Members, who include
erectors, detailers, service consultants, software developers and steel product manufactor-
ers; Professional Members, who are structural or civil engineers and architects, including
architectural and engineering educators; Affiliate Members, who include general contrac-
tors, building inspectors and code officials; and Student Members,
The Institute's objective is to make strucmral steel the material of choice, by being the
leader in structural-steel-related technical and market-building activities, including specifi-
cation and code development, research, education, technical assistance, quality certification,
standardization and market development.
To accomplish this objective, the Institute publishes manuals, design guides and specifi-
cations. Best known and most widely used is the Steel Construction Manual, which holds a
highly respected position in engineering literature. The Manual is based on the Specification
for Structural Steel Buildings and the Code of Standard Practice for Steel Buildings and
Bridges. Both standards are included in the Manual for easy reference.
The Institute also publishes technical information and timely articles in its Engineering
Journal, Design Guide series. Modern Steel Construction magazine, and other design aids,
research reports and journal articles. Nearly all of the information AISC publishes is avail-
able for download from the AISC web site at www.aisc.org.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

PREFACE
This Manual is the 14th Edition of the AISC Steel Construction Manual,-which was first
published in 1927. It replaces the 13th Edition Manual originally published in 2005.
The following specifications, codes and standards are printed in Part 16 of this Manual:
• 2010 AISC Specification for Structural Steel Buildings
• 2009 RCSC Specification for Structural Joints Using High-Strength Bolts
• 2010 AISC Code of Standard Practice for Steel Buildings and Bridges
The following resources supplement the Manual and are available on the AISC web site
atwww.aisc.org;
• AISC Design Examples, which illustrate the application of tables and specification
provisions that are included in this Manual.
• AISC Shapes Database V14.0 and V14.0H.
• Background and supporting literature (references) for the AISC Steel Construction
Manual.
The following major changes and improvements have been made in this revision:
• All tabular information and discussions have been updated to comply with the 2010
Specification for Structural Buildings and the standards and other documents refer-
enced therein.
• Shape information has been updated to ASTM A6-09 throughout the Manual, includ-
ing a new HP shape series.
• Eccentrically loaded weld tables have been revised to indicate the strongest weld per-
mitted by the three methods listed in Chapter J of the specification and supplemented
to provide strengths for L-shaped welds loaded from either side.
• The procedure for the design of bracket plates in Part 15 has been revised.
• In Part 10, the procedure for the design of conventional single plate shear connections
has been revised to accommodate the increased bolt shear strengths of the 2010
Specification for Structural Steel Buildings.
• In Part 10, for extended single plate shear connections, information is provided to
determine if stiffening plates (stabilizers) are required.
In addition, many other improvements have been made throughout this Manual and the
number of accompanying design examples has been expanded.
By the AISC Committee on Manuals and Textbooks,
William A. Thornton, Chairman Edward M. Egan
• Mark V. Holland, Vice-chairman Marshall T. Fereell
Abbas Aminmansour Lanny J. Flynn
Charles J. Carter Patrick J. Fortney
Harry A. Cole Louis F. Geschwindner
Brad Davis W. Scott Goodrich
Robert O. Disque Christopher M. Hewitt
Bo Dowswell W. Steven Hofmeister
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Bill R. Lindley, II
Ronald L. Meng
Lany S. Muir
Thomas M. Murray
Charles R. Page
Davis G. Parsons, II
Rafael Sabelli
Clifford W. Schwinger
William N. Scott
William T. Segui
Victor Shneur
Marc L. Sorenson
Gary C. Violette
Michael A. West .
Ronald G. Yeager
Cynthia J. Duncan, Secretary
Tlie committee gratefully acknowledges the contributions made to this Manual by the
AISC Committee on Specifications and the following individuals: Leigh C. Arber, Areti
Carter, Janet T. Cummins, Amanuel Gebremeskel, Kurt Gustafson, Richard C. Kaehler,
Daniel J. Kaufman, Rostislav Kucher, Brent L. Leu, Margaret A. Matthew, Frederick J.
Palmer, Vijaykumar Patel, Elizabeth A. Rehwoldt, Thomas J. Schlafly, Zachary W. Stutts
and Sriramulu Vinnakota.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SCOPE
The specification requirements and other design recommendations and considerations sum-
marized in this Manual apply in general to tlie design and construction of steel buildings and
other structures.
The design of seismic force resisting systems also must meet the requirements in the
AISC Seismic Provisions for Structural Steel Buildings, except in the following cases for
which use of the AISC Seismic Provisions is not required;
• Buildings and other structures in seismic design category (SDC) A
• Buildings and other structures in SDC B or C with R = 3 systems [steel systems not
specifically detailed for seismic resistance per ASCE/SEI7 Table 12,2-1 (ASCE,2010)]
• Nonbuilding structiu-es similar to buildings with i? = 1 Va braced-frame systems or
R = 1 moment-frame systems; see ASCE/SEI 7 Table 15.4-1
• Nonbuilding structures not similar to buildings (see ASCE/SEI 7 Table 15.4-2), which
are designed to meet the requirements in other standards entirely
Conversely, use of the AISC Seismic Provisions is required in the following cases:
• Buildings and other structures in SDC B or C when one of the exemptions for steel
seismic force resisting systems above does not apply
• Buildings and other structures in SDC B or C that use composite seismic force resist-
ing systems (those containing composite steel-and-concrete members and those
composed of steel members in combination with reinforced concrete members)
• Buildings in SDC D, E or F
• Nonbuilding structures in SDC D, E or F when the exemption above does not apply
The AISC Seismic Design Manual provides guidance on the use of the AISC Seismic
Provisions.
The Manual consists of seventeen parts addressing various topics related to steel build-
ing design and construction. Part 1 provides the dimensions and properties for structural
products commonly used. For proper material specifications for these products, as well as
general specification requirements and other design considerations, see Part 2. For the
design of members, see Parts 3 through 6. For the design of connections, see Parts 7 through
15. For AISC Specifications and Codes, see Part 16. For other miscellaneous information,
see Part 17.
REFERENCE
ASCE (2010), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10,
American Society of Civil Engineers, Reston, VA.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-1
PART1
DIMENSIONS AND PROPERTIES
SCOPE 1-3
STRUCTURAL PRODUCTS 1-3
W-, M-, S- and HP-Shapes 1-3
Channels 1-4
Angles 1-4
Structural Tees (WT-, MT- and ST-Shapes) 1-5
Hollow Structural Sections (HSS) 1-5
Pipe 1-6
Double Angles 1-6
Double Channels 1-7
W-Shapes and S-Shapes with Cap Channels 1-7
Plate Products 1-8
Raised-Pattern Floor Plates .1-9
Crane Rails ...1-9
Other Structural Products 1-9
STANDARD MILL PRACTICES 1-9
H6t-Rolled Structural Shapes 1-9
Hollow Structural Sections 1-9
Pipe 1-10
Plate Products .. .• 1-10
PART I REFERENCES 1-11
TABLES OF DESIGN DIMENSIONS, DETAILING DIMENSIONS, AND AXIAL,
STRONG-AXIS FLEXURAL, AND WEAK-AXIS FLEXURAL PROPERTIES .... 1-12
Table 1-1. W-Shapes 1-12
Table 1-2. M-Shapes 1-30
Table 1-3. S-Shapes 1-32
Table 1-4. HP-Shapes : 1-34
Table 1-5. C-Shapes 1-36
Table 1-6. MC-Shapes 1-38
Table 1-7. Angles 1^2
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1

1-2
DIMENSIONS AND PROPERTIES
Table 1-7A. Workable Gages in Angle Legs 1-48
Table 1-7B. Compactness Criteria for Angles 1-49
Table 1-8. WT-Shapes 1-50
Table 1-9. MT-Shapes 1-70
Table 1-10. ST-Shapes 1-72
Table 1-11. Rectangular HSS 1-74
Table 1-12. Square HSS 1-92
Table 1-12A. Rectangular and Square HSS Compactness Criteria .........1-95
Table 1-13. Round HSS 1-96
Table 1-14. Pipe .1-101
Table 1-15. Double Angles • • .1-102
Table 1-16. 2C-Shapes • • - l-HO
Table 1-17. 2MC-Shapes 1-111
Table 1-18. Weights of Raised-Pattern Floor Plates 1-113
Table 1-19. W-Shapes with Cap Channels .1-114
Table 1-20. S-Shapes with Cap Channels 1-116
Table 1-21. Crane Rails ..1-118
Table 1-22. ASTM A6 Tolerances for W-Shapes and HP-Shapes 1-119
Table 1-23. ASTM A6 Tolerances for S-Shapes, M-Shapes and Channels 1-121
Table 1-24. ASTM A6 Tolerances for WT-, MT- and ST-Shapes 1-122
Table 1-25. ASTM A6 Tolerances for Angles, 3 in. and Larger 1-123
Table 1-26. ASTM A6 Tolerances for Angles, < 3 in. 1-124
Table 1-27. Tolerances for Rectangular and Square HSS ... ..1-125
Table 1-28. Tolerances for Round HSS and Pipe 1-126
Table 1-29. Rectangular Sheared Plates 1-127
AMERICAN INSTiTuTE, OF STEEL CONSTRUCTION

STRUCTURAL PRODUCTS 1-3
SCOPE
The dimensions and properties for structural products commonly used in steel building
design and construction are given in this Part. Although the dimensions and properties tab-
ulated in Part 1 reflect "commonly" used structural products, some of the shapes listed are
not commonly produced or stocked. These shapes are usually only produced to order, and
will likely be subject to mill production schedules and minimum order quantities. For avail-
ability of shapes, go to www,aisc.org. For torsional and flexural-torsional properties of
rolled shapes see AISC Design Guide 9, Torsional Analysis of Structural Steel Members
(Seaburg and Carter, 1997). For surface areas, box perimeters and areas, WID ratios and AID
ratios, see AISC Design Guide 19, Fire Resistance of Structural Steel Framing (Ruddy et al.,
2003).
STRUCTURAL PRODUCTS
W-, M-, S- and HP-Shapes
Four types of H-shaped (or I-shaped) members are covered in this Manual:
• W-shapes, which have essentially parallel inner and outer flange surfaces.
• M-shapes, which are H-shaped members that are not classified in ASTM A6 as W-, S-
or HP-shapes. M-shapes may have a sloped inside flange face or other cross-section
features that do not meet the criteria for W-, S- or HP-shapes.
• S-shapes (also known as American standard beams), which have a slope of approxi-
mately 16^/3% (2 on 12) on the inner flange surfaces.
• HP-shapes (also known as bearing piles), which are similar to W-shapes except their
webs and flanges are of equal thickness and the depth and flange width are nominally
equal for a given designation.
These shapes are designated by the mark W, M, S or HP, nominal depth (in.) and nomi-
nal weight (lb/ft). Fpr example, a W24x55 is a W-shape that is nominally 24 in. deep and
weighs 55 lb/ft.
The following dimensional and property information is given in this Manual for the W-,
M-, S- and HP-shapes covered in ASTM A6:
• Design dimensions, detailing dimensions, axial properties and flexural properties are
given in Tables 1-1,1-2, 1-3 and 1-4 for W-, M-, S- and HP-shapes, respectively.
• Sl-equivalent designations are given in Table 17-1 for W-shapes and in Table 17-2 for
M-, S- and HP-shapes.
Tabulated decimal values are appropriate for use in design calculations, whereas frac-
tional values are appropriate for use in detailing. All decimal and fractional values are
similar with one exception: Because of the variation in fillet sizes used in shape production,
the decimal value, kj^^, is conservatively presented based oil the smallest fillet used in pro-
duction, and the fractional value, kdet, is conservatively presented based on the largest fillet
used in production. For the definitions of the tabulated variables, refer to the Nomenclature
section at the back of this Manual.
When appropriate, this Manual presents tabulated values for the workable gage of a
section. The term workable gage refers to the gage for fasteners in the flange that provides
for entering and tightening clearances and edge distance and spacing requirements. When
AMERICAN iNSTrruTE OF STEEL CONSTRUCTION

1-4 DIMENSIONS AND PROPERTIES
the listed value is footnoted, the actual size, combination, and orientation of fastener
components should be compared with the geometry of the cross section to ensure compati-
bility. Other gages that provide for entering and tightening clearances and edge distance and
spacing requirements can also be used.
Channels
Two types of channels are covered in this Manual:
• C-shapes (also known as American standard channels), which have a slope of approx-
imately 16^/3% (2 on 12) on the inner flange surfaces.
• MC-shapes (also known as miscellaneous channels), which have a slope other than
16^/3% (2 on 12) on the inner flange surfaces.
These shapes are designated by the mark C or MC, nominal depth (in.) and nominal
weight (lb/ft). For example, a C12x25 is a C-shape that is nominally 12 in. deep and weighs
25 lb/ft.
The following dimensional and property information is given in this Manual for the chan-
nels covered in ASTM A6:
• Design dimensions, detailing dimensions, and axial, flexural and torsional properties
are given in Tables 1-5 and 1-6 for C- and MC-shapes, respectively.
• Sl-equivalent designations are given in Table 17-3.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual,
Angles
Angles (also known as L-shapes) have legs of equal thickness and either equal or unequal
leg sizes. Angles are designated by the mark L, leg sizes (in.) and thickness (in.). For exam-
ple, an L4X3XV2 is an angle with one 4-in. leg, one 3-in. leg, and '/2-in. thickness.
The following dimensional and property information is given in this Manual for the
angles covered in ASTM A6:
• Design dimensions, detailing dimensions, and axial, flexural and flexural-torsional
properties are given in Table 1-7. The effects of leg-to-leg and toe fillet radii have been
considered in the determination of these section properties. The value that is given in
Table 1 -7 is based on the largest perpendicular distance measured from the z-axis to the
center of the thickness at the tip of the angle toe(s) or heel. Additional properties of sin-
gle angles are provided in the digital shapes database available at www^isc.org. These
properties are used for calculations involving z and w principal axes. For unequal leg
angles, the database includes I, and values of 5 at the toe of the short leg, the heel, and
the toe of the long leg, for the iv and z principal axes. For equal leg angles, the database
includes /, and values of S at the toe of the leg and the heel, for w and z principal axes.
• Workable gages on angle legs are tabulated in Table 1-7A.
• Compactness criteria for angles are tabulated in Table 1-7B.
» Sl-equivalent designations are given in Table 17-4,
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual,
AMERKAN iNSTtTl/TE OF STEEL. CONSTRUCTION

STRUCTURAL PRODUCTS 1-5
Structural Tees (WT-, MT- and ST-Shapes)
Three types of structural tees are covered in this Manual:
• WT-shapes, which are made from W-shapes
• MT-shapes, which are made from M-shapes
• ST-shapes, which are made from S-shapes
These shapes are designated by the mark WT, MT or ST, nominal depth (in.) and nomi-
nal weight (lb/ft). WT~, MT- and ST-shapes are split (sheared or thermal-cut) from W-,
M- and S-shapes, respectively, and have half the nominal depth and weight of that shape.
For example, a WTl2x27.5 is a structural tee split from a W-shape (W24x55), is nomi-
nally 12 in. deep and weighs 27.5 Ib/ft. Although off-center splitting or splitting on two
lines can be obtained by special order, the resulting nonstandard shape is not covered in
this Manual.
The following dimensional and property information is given in this Manual for the struc-
tural tees cut from the W-, M- and S-shapes covered in ASTM A6:
• Design dimensions, detailing dimensions, and axial, flexural and torsional properties
are given in Tables 1-8,1-9 and 1-10 for WT-, MT- and ST-shapes, respectively.
• Sl-equivalent designations are given in Table 17-5 for WT-shapes and in Table 17-6 for
MT- and ST-shapes.
For the definitions of the tabulated variables, refer to the Nomenclatare section at the back
of this Manual.
Hollow Structural Sections (HSS)
Three types of HSS are covered in this Manual;
• Rectangular HSS, which have an essentially rectangular cross section, except for
rounded comers, and uniform wall thickness, except at the weld seam(s)
• Square HSS, which have an essentially square cross section, except for rounded cor-
ners, and uniform wall thickness, except at the weld seam(s)
• Round HSS, which have an essentially round cross section and uniform wall thickness,
except at the weld seam(s)
In each case, ASTM A500 covers only electric-resistance-welded (ERW) HSS with a max-
imum peripheiy of 64 in. The coverage of HSS in this Manual is similarly limited.
Rectangular HSS are designated by the mark HSS, overall outside dimensions (in.), and
wall thickness (in.), with all dimensions expressed as fractional numbers. For example,
an HSS10X10XV2 is nominally 10 in, by 10 in. with a V2-in. wall thickness. Round HSS are
designated by the term HSS, nominal outside diameter (in.), and wall thickness (in.) with
both dimensions expressed to three decimal places. For example, an HSSl0.000x0.500 is
nominally 10 in. in diameter with a '/2-in. nominal wall thickness.
Per AISC Specification Section B4.2, the wall thickness used in design, toes, is taken as
0.93 times the nominal wall thickness, tnom- The rationale for this requirement is explained
in the corresponding Specification Commentary Section B4.2.
In calculating the tabulated b/t and h/t ratios, the outside comer radii are taken as 15tdes
for rectangular and square HSS, per AISC Specification Section B4.1. In other tabulated
design dimensions, the comer radii are taken as ltdes- In the tabulated workable flat dimen-
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

1-6 DIMENSIONS AND PROPERTIES
sions of rectangular (and square) HSS, the outside comer radii are taken as 2.25t„om- The
teiin workable flat refers to a reasonable flat width or depth of material for use in making
connections to HSS. The workable flat dimension is provided as a reflection of current
industry practice, although the tolerances of ASTM A500 allow a greater maximum comer
radius of 3t„a„.
The following dimensional and property information is given in this Manual for the HSS
covered in ASTM A500, A501, A618 or A847:
• Design dimensions, detailing dimensions, and axial, strong-axis flexural, weak-axis
flexural, torsional, and flexural-torsional properties are given in Tables 1-11 and 1-12
for rectangular and square HSS, respectively.
• Design dimensions, detailing dimensions, and axial, flexural and torsional properties
are given in Table 1-13 for round HSS.
• Sl-equivalent designations are given in Tables 17-7, 17-8 and 17-9 for rectangulcir,
square and round HSS, respectively.
• Compactness criteria of rectangular and square HSS Eire given in Table 1-12A.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
Pipe
Pipes have an essentially round cross section and uniform thickness, except at the weld
seam(s) for welded pipe.
Pipes up to and including NPS 12 are designated by the term Pipe, nominal diameter (in.)
and weight class (Std., x-Strong, xx-Strong). NPS stands for nominal pipe size. For exam-
ple, Pipe 5 Std. denotes a pipe with a 5-in. nominal diameter and a 0.258-in. wall thickness,
which coiTcsponds to the standard weight series. Pipes with wall thicknesses that do not
correspond to the foregoing weight classes are designated by the term Pipe, outside diame-
ter (in.), and wall thickness (in.) with both expressed to three decimal places. For example.
Pipe 14.000x0.375 and Pipe 5.563x0.500 are proper designations.
Per AISC Specification Section B4.2, the wall thickness used in design, t^es, is taken as
0.93 times the nominal wall thickness, tnom- The rationale for this requirement is explained
in the corresponding Specification Commentary Section B4.2.
The following dimensional and property information is given in this Manual for the pipes
covered in ASTM A53:
• Design dimensions, detaiUng dimensions, and axial, flexural and torsional properties
are given in Table I-14.
• Sl-equivalent designations are given in Table 17-10.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
Double Angles
Double angles (also known as 2L-shapes) are made with two angles that are interconnected
throiigh their back-to-back legs along the length of the member, either in contact for the full
length or separated by spacers at the points of interconnection.
AMERICAN INSTiTuTE, OF STEEL CONSTRUCTION

STRUCTURAL PRODUCTS 1-7
These shapes are designated by the mark 2L, the sizes and thickness of their legs (in.),
and their orientation when the angle legs are not of equal size (LLBB or SLBB).' For exam-
ple, a 2L4X3XV2 LLBB has two angles with one 4-in. leg and one 3-in. leg and tlie 4-in. legs
are back-to-back; a 2L4x3xV2 SLBB is similar, except the 3-in. legs are back-to-back. In
both cases, the legs are Vz-in. thick.
The following dimensional and property information is given in this Manual for the dou-
ble angles built-up from the angles covered in ASTM A6:
• Design dimensions, detailing dimensions, and axial, strong-axis flexural, weak-axis
flexural, torsional, and flexural-torsional properties are given in Table 1-15 for equal-
leg, LLBB and SLBB angles. In each case, angle separations of zero in., in. and
'/4 in. are covered. The effects of leg-to-leg and toe fillet radii have been considered in
the determination of these section properties. For workable gages on legs of angles, see
Table 1-7A.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
Double Channels
Double channels (also known as 2C- and 2MC-shapes) are made with two channels that are
interconnected through their back-to-back webs along the length of the member, either in
contact for the full length or separated by spacers at the points of interconnection.
These shapes are designated by tlie mark 2C or 2MC, nominal depth (in.), and nominal
weight per channel (lb/ft). For example, a 2C 12x25 is a double channel that consists of two
channels that are each nominally 12 in. deep and each weigh 25 lb/ft.
The following dimensional and property information is given in this Manual for the dou-
ble channels built-up from the channels covered in ASTM A6:
• Design dimensions, detaiUng dimensions, and axial, strong-axis flexural, and weak-
axis flexural properties are given in Tables 1-16 and 1-17 for 2C- and 2MC-shapes,
respectively. In each case, channel separations of zero, in. and '/4 in. are covered.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
W-Shapes and S-Shapes with Cap Channels
Common combined sections made with W- or S-shapes and channels (C- or MC-shapes) are
tabulated in this Manual. In either case, the channel web is interconnected to the W-shape
or S-shape top flange, respectively, with the flange toes down. The interconnection of the
two elements must be designed for the horizontal shear, q, where
. = ^ (M)
' LLBB stands for long legs back-to-back. SLBB stands for short legs back-to-back. Alternatively, the ori-
entations LLV and SLV, which stand for long legs vertital and short legs vertical, respectively, can be used.
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

1-8 DIMENSIONS AND PROPERTIES
where
I = moment of inertia of the combined cross section, in/
Q = first moment of the channel area about the neutral axis of the combined
cross section, in,^
V = vertical shear, kips
q - horizontal shear, kips/in.
The effects of other forces, such as crane horizontal and lateral forces, may dso require con-
sideration, when applicable.
The following dimensional and property information is given in this Manual for combined
sections built-up firom the W-shapes, S-shapes and cap channels covered in ASTM A6:
• Design dimensions, detailing dimensions, and axial, strong-axis flexural, and weak-
axis flexural properties of W-shapes with cap channels are given in Table 1-19.
• Design dimensions, detailing dimensions, and axial, strong-axis flexural, and weak-
axis flexural properties of S-shapes with cap channels are given in Table 1-20.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
Plate Products
Plate products may be ordered as sheet, strip or bar material. Sheet and strip are distinguished
from stractural bars and plates by their dimensional characteristics, as outlined in Table 2-3
and Table 2-5.
The historical classification system for structural bars and plates suggests that there is
only a physical difference between them based upon size and production procedure. In raw
form, flat stock has historically been classified as a bar if it is less than or equal to 8 in. wide
and as a plate if it is greater than 8 in. wide. Bars are rolled between horizontal and vertical
rolls and trimmed to length by shearing or thermal cutting on the ends only. Plates are gen-
erally produced using one of two methods;
1. Sheared plates are rolled between horizontal rolls and trimmed to width and length by
shearing or thermal cutting on the edges and ends; or
2. Stripped plates are sheared or thermal cut from wider sheared plates.
There is very little, if any, structural difference between plates and bars. Consequently, the
term plate is becoming a universally applied term today and a PL'/2 in.x4V2 in.xlft 3 in., for
example, might be fabricated from plate or bar stock.
For structural plates, the preferred practice is to specify thickness in Vi6-in. increments up
to '/8-in. thickness, Vs-in. increments over Vs-in. to 1-in. thickness, and 'A-in. increments
over 1-in. thickness. The current extreme width for sheared plates is 200 in. Because
mill practice regarding plate widths vaiy, individual mills should be consulted to determine
preferences.
For bars, the preferred practice is to specify width in 'U-in. increments, and thickness and
diameter in Vs-in. increments.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

STANDARD MILL PRACTICES 1-9
Raised-Pattern Floor Plates
Weights of raised-pattem floor plates are given in Table 1-18. Raised-pattern floor plates are
commonly available in widths up to 120 in. For larger plate widths, see literature available
from floor plate producers.
Crane Rails
Although crane rails are not listed as structural steel in the AISC Code of Standard Practice
Section 2.1, this information is provided because some fabricators may choose to provide
crane rails. Crane rails are designated by unit weight in lb/yard. Dimensions and properties
for the crane rails shown are given in Table 1-21. Crane rails can be either heat treated or
end hardened to reduce wear. For additional information or for profiles and properties of
crane rails not listed, manufacturer's catalogs should be consulted. For crane-rail connec-
tions, see Part 15.
Other Structural Products
The following other structural products are covered in this Manual as indicated:
• High-strength bolts, common bolts, washers, nuts and direct-tension-indicator washers
are covered in Part 7.
• Welding filler metals and fluxes are covered in Part 8.
• Forged steel structural hardware items, such as clevises, tumbuckles, sleeve nuts,
recessed-pin nuts, and cotter pins are covered in Part 15.
• Anchor rods and threaded rods are covered in Part 14.
STANDARD MILL PRACTICES
The production of structural products is subject to unavoidable variations relative to the the-
oretical dimensions and profiles, due to many factors, including roll wear, roll dressing
practices and temperature effects. Such variations are limited by the dimensional and pro-
file tolerances as summarized below.
Hot-Rolled Structural Shapes
Acceptable dimensional tolerances for hot-rolled structural shapes (W-, M-, S- and HP-
shapes), channels (C- and MC-shapes), and angles are given in ASTM A6 Section 12 and
summarized in Tables 1-22 through 1-26. Supplementary information, including permissi-
ble variations for sheet and strip and for other grades of steel, can also be found in literature
from steel plate producers and the Association of Iron and Steel Technology.
Hollow Structural Sections
Acceptable dimensional tolerances for HSS are given in ASTM A500 Section 11, A501
Section 12, A618 Section 8, or A847 Section 10, as applicable, and summarized in Tables
1-27 and 1-28, for rectangular and round HSS, respectively. Supplementary information
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-10 DIMENSIONS AND PROPERTIES
can also be found in literature from HSS producers and the Steel Tube Institute, such as
Recommended Methods to Check Dimensional Tolerances on Hollow Structural Sections
(HSS) Made to ASTM A500.
Pipe
Acceptable dimensional tolerances for pipes are given in ASTM A53 Section 10 and
summarized in Table 1-28. Supplementary information can also be found in literature
from pipe producers.
Plate Products
Acceptable dimensional tolerances for plate products are given in ASTM A6 Section 12
and summarized in Table 1-29. Note that plate thickness can be specified in inches or by
weight per square foot, and separate tolerances apply to each method. No decimal edge
thickness can be assured for plate specified by the latter method. Supplementary infor-
mation, including permissible variations for sheet and strip and for other grades of steel,
can also be found in literature from steel plate producers and the Association of Iron and
Steel Technology.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

PART 1 REFERENCES 1-11
PART 1 REFERENCES
Ruddy, J.L., Mario, J.P., loannides, S.A. and Alfawakhiri, F. (2003), Fire Resistance of
5//-«c?Mra/5/ee/Frammg, Design Guide 19, AISC, Chicago, IL.
Seaburg, P,A. and Carter, CJ. (1997), Torsional Analysis of Structural Steel Members,
Design Guide 9, AISC, Chicago, EL.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-12 DIMENSIONS AND PROPERTIES
d X-
tw~
. bf
Table 1-1
W-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Web Flange Distance
Shape
Area,
A
Depth,
d
Thickness,

t,
2
Width,
bf
Thicitness,
tt
k
T
Wort-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,

t,
2
Width,
bf
Thicitness,
tt
ktBS kmt
T
Wort-
able
Gage
Shape
in.2 in. in. in. in. in. in. in. in. in. in.
W44X335' 98.5 44.0 44 1.03 1 V2 15.9 16 1.77 1% 2.56 25/8 15/16 38% 51/2
x290= 85.4 43.6 43% 0.865 % Vn 15.8 15% 1.58 1%6 2.36 2^/16 IV4
x2e2' 77.2 43.3 43% 0,785 Vie 15.8 15% 1.42 IV16 2.20 2V4 1%6
xZiO''" 67.8 42.9 42% 0,710 'V16 % 15,8 15% 1.22 1% 2.01 2V16 1%6
moxe^s" 174 43.0 43 1.79 1"/16 15/16 16.7 16% 3.23 3V4 4,41 4V2 2Va 34 71/2
xSOS" 148 42.1 42 1.54 IV16 "/16 16.4 16% 2.76 2% 3.94 4 2
X431'' 127 41.3 41V4 1.34 1=/l6 "/16 16.2 I6V4 2,36 2% 3.54 35/8 1%
xsg?" 117 41,0 41 1.22 1V4 % 16.1 16V8 2.20 2%6 3.38 3V2 1"/l6
xST?" 110 40.6 405/8 1,16 1%6 % 16.1 16V8 2.05 2V16 3.23 35/16 1«/16
X362'' 106 40.6 4OV2 1,12 IVB 16.0 16 2.01 2 3.19 3V4 1%
x324 95.3 40.2 40V8 1.00 1 V2 15.9 15% 1.81 1i%e 2.99 3V« 11 V«
X297' 87.3 39.8 39% 0.930 15/16 1/2 15.8 15% 1.65 15/8 2.83 215/16 1"/16
x2ir 81,5 39.7 39% 0.830 «/ie V16 15.8 15% 1.58 13/16 2.76 2% 15/8
X249" 73.5 39.4 39% 0.750 % % 15.8 15% 1.42 1'/16 2.60 21V16 IS/16
x215'^ 63.5 39.0 39 0.650 % 5/16 15.8 15% 1.22 IV4 2.40 2V2 18/16
xwg" 58.8 38.7 38%: 0.650 % 5/te 15.8 15% 1.07 iVrs 2.25 25/16 19/18
'I f
W40X392'' 116 41.6 41% 1.42 1^/16 % 12.4 12% 2.52 2V2 3.70 3"/I6 115/16 34 7V2
xSSl" 97.7 40.8 40% 1.22 1V4 5/8 12.2 12V8 2.13 2V8 3.31 3% 1"/16
xSZ?" 95.9 40.8 40% 1.18 1%6 5/8 12.1 12V8 2.13 2V8 3.31 3% 11%6
x294 86.2 40.4 40% 1.06 IV16 Vn 12.0 12 1.93 1"/16 3.11 3%6 1%
x278 82.3 40.2 40V8 1.03 1 V2 12.0 12 1.81 1"/1S 2.99 3V16 1%
x264 77.4 40,0 40 0.960 V2 11.9 11% 1.73 1% 2.91 3 111/16
x235'= 69.1 39.7 39% 0.830 "/ie V16 11.9 11% 1.58 1%6 2.76 2% 15/e
X211' 62.1 39.4 39% 0.750 % % 11,8 11% 1.42 1%6 2.60 2iVtt
x183'^ 53.3 39.0 39 0.650 % 5/16 11.8 11% 1.20 1%6 2.38 2V2 1%6
X167' 49.3 38.6 38% 0.650 5/8 5/16 11.8 11% 1.03 1 2.21 25/16 19/16
....
43.8 38.2 38V4 0.630 % 5/16 11.8 11% 0.830 «/L6 2.01 2% 11/2
- Shape is slender for compression with F, = 50 ksi.
' Range thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3,lc.
'Shape does not meet the /?/(„ limit for shear in AISC Spec/feaf/on Section G2.1(a) with Fy=50 ksi.
AMERICAN INSTITUTE OF STEEL CONSTRI/CTJON

1-13 DIMENSIONS AND PROPERTIES
Table 1-1 (continued)
W-Shapes
Properties
W44-W40
Nom-
inal
Wt.
Compact
Section
Criteria
AxisX-X Axis Y-Y
TB ha
Torsional
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
AxisX-X Axis Y-Y
TB ha
J C«
Nom-
inal
Wt.
b,
2t,
A

1 S r Z 1 S r Z
TB ha
J C«
lb/ft
b,
2t,
A
t« in." in." in. in.' in." in.' in. in.3 in. in. in." in.«
335 4.50 38.0 31100 1410 17.8 1620 1200 150 3.49 236 4.24 42.2 74,7 535000
290 5.02 45.0 27000 1240 17.8 1410 1040 132 3.49 205 4.20 42.0 50:9 461000
262 5.57 49.6 24100 1110 17.7 1270 923 117 3,47 182 4.17 41.9 37,3 405000
230 6.45 54.8 20800 971 -17.5 1100 796 101 3.43 157 4.13 41.7 24,9 346000
593 2.58 19.1 50400 2340 17.0 2760 2520 302 3.80 481 4.63 39.8 445 997000
503 2.98 22.3 41600 1980 16.8 2320 2040 249 3.72 394 4.50 39.3 277 789000
431 3.44 25.5 34800 1690 16.6 1960 1690 208 3,65 328 4.41 38.9 177 638000
397 3.66 28.0 32000 1560 16.6 1800 1540 191 3,64 300 4.38 38.8 142 579000
372 3.93 29.5 29600 1460 16.5 1680 1420 177 3.60 277 4.33 38.6 116 528000
362 3.99 30.5 28900 1420 16.5 1640 1380 173 3.60 270 4.33 38.6 109 513000
324 4.40 34.2 25600 1280 16.4 1460 1220 153 3.58 239 4.27 38.4 79,4 448000
297 4.80 36.8 23200 1170 16.3 1330 1090 138 3.54 215 4.22 38.2 61,2 399000
277 5.03 41.2 21900 1100 16.4 1250 1040 132 3.58 204 4.25 38.1 51,5 379000
249 5.55 45.6 19600 993 16.3 1120 926 118 3.55 182 4.21 38.0 38,1 334000
215 6.45 52.6 16700 859 16.2 964 803 101 3.54 156 4.19 37.8 24,8 284000
199 7.39 52.6 14900 770 16.0 869 695 88.2 3.45 137 4.12 37.6 18,3 246000
392 2.45 24.1 29900 1440 16.1 1710 803 130 2.64 212 3.30 39.1 172 306000
331 2.86 28.0 24700 1210, 15.9 1430 644 106 2.57 172 3.21 38.7 105 241000
327 2.85 29.0 24500 1200 16.0 1410 640 105 2.58 170 3.21 38.7 103 239000
294 3.11 32.2 21900 1080 15.9 1270 562 93.5 2.55 150 3.16 38.5 76.6 208000
278 3.31 33.3 20500 1020 15.8 1190 521 87.1 2.52 140 3.13 38.4 65.0 192000
264 3.45 35,6 19400 971 15.8 1130 493 82.6 2,52 132 3.12 38.3 56.1 181000
235 3.77 41.2 17400 875 15.9 1010 444 74.6 2,54 118 3.11 38,1 41.3 161000
211 4.17 45.6 15500 786 15.8 906 390 66.1 2.51 105 3.07 38,0 30,4 141000
183 4.92 52.6 13200 675 15.7 774 331 56.0 2.49 88.3 3.04 37,8 19,3 118000
167 5.76 52.6 11600 600 15.3 693 283 47.9 2.40 76.0 2.98 37,6 14,0 99700
149 7.11 54.3 9800 513 15.0 598 229 38.8 2.29 62.2 2.89 37,4 9.36 80000
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-14 DIMENSIONS AND PROPERTIES
T. k! I*-
Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Web Flange Distance
Shape
Area,
A
Depth,
d
Thickness, u,
2
Width,
bi
Thiclcness,
tt
k
fri r
\Notk-
able
Gage
Shape
Area,
A
Depth,
d
Thickness, u,
2
Width,
bi
Thiclcness,
tt
kiet
fri r
\Notk-
able
Gage
Shape
in} in. in. in. in. in. in. in. in. In. in.
W36X652'' 192 41.1 41 1.97 2 1 17.6 17% 3.54 3%6 4.49 4"/ie 2%6 31% 71/2
xszg" 156 39.8 39% 1.61 1% "/16 17,2 17V4 2.91 215/w 3.86 43/16 2
X487'' 143 39.3 39% 1.50 IV2 % 17,1 17V8 2.68 211/16 3.63 4 1%
x44l" 130 38.9 38% 1.36 1% "/16 17.0 17 2.44 2%6 3.39 3% 1%
X395'' 116 38.4 38% 1.22 IV4 % 16,8 16% 2.20 2%6 3.15 3VI6 1»/16
x36l" 106 38.0 38 1.12 IVe Vie 16.7 16% 2.01 2 2.96 35/16 1%
x330 96.9 37.7 37% 1.02 1 Vi 16.6 165/8 1.85 1V8 2.80 31/8 1%
x302 89.0 37.3 37% 0.945 V2 16,7 165/8 t.68 I'Vie 2.63 3 111/16
82.9 37.1 37V8 0,885 % 716 16,6 165/8 1.57 1%6 2.52 2% l5/a
X262'' 77.2 36.9 3678 0,840 '3/16 16,6 16V2 1.44 17I6 2.39 2% 15/8
x247" 72.5 36.7 36% 0,800 "/16 716 16.5 I6V2 1.35: 1% 2.30 25/8 15/8
x231 = 68.2 36.5 36V2 0,760 % 16.5 I6V2 1.26 11/4 2.21 29/16 19/16
W36X256 75.3 37.4 37% 0,960 «/l6 V2 12.2 12V4 1,73 1% 2.48 2%. 15/16 321/8 51/2
x232'= 68.0 37.1 37V8 0,870 78 • 7/16; 12.1 12% 1,57 19/16 2.32 27I6 11/4
x210'= 61.9 36.7 36% 0,830 , 7I6 12.2 12V8 1,36 1% 2.11 25/16 11/4
X194' 57.0 36.5 36V2 0,765 % % 12.1 12V8 1.26 1V4 2.01 2%6 1%6
x182' 53.6 36.3 36% 0725 % % 12.1 12% 1.18 1%6 1.93 2% 1%6
x170' 50.0 36,2 36'/$ 0,680 "/16 % 12.0 12 1.10 iVs 1.85 2 1%6
x160' 47.0 36,0 36 0,650 % 5/16 12.0 12 1.02 1 1.77 115/16 1%
x150' 44,3 35,9 35% 0,625 % 5/16 12.0 12 0.940 15/16 1.69 1% 11/8
xiaS"'" 39.9 35.6 35V2 0,600 % 5/16 12.0 12 0.790 "/I6 1.54 111/16 1%
f
W33X387'' 114 36.0 36 1,26 IV4 % 16.2 I6V4 2.28 21/4 3.07 3%6 17I6 295/8 51/2
x354" 104 35.6 35V2 1,16 13/16 % 16.1 16% 2.09 21/16 2.88 215/16 1%
x318 93.7 35,2 35Vs 1,04 IV16 16.0 16 1.89 1% 2.68 2% 15/16
x291 85.6 34,8 34% 0,960 15/16 1/2 15.9 15% 1.73 1% 2.52 25/8 15/I6
x263 77.4 34.5 34V2 0,870 % 7I6 15.8 15% 1.57 lVie 2.36 2%6 11/4
x241' 71.1 34,2 34V8 0,830 W/16 7I6 15.9 15% 1,40 1% 2.19 21/4 11/4
x221' 65.3 33.9 33% 0,775 % % 15.8 15% 1,28 IV4 2.06 21/6 1%6
x201' 59.1 33.7 33% 0,715 IV16 % 15.7 15% 1.15 IVs 1.94 2 1%6
1 f
W33x169= 49.5 33,8 33% 0,670 IV16 % 11.5 11V2 1.22 11/4 1.92 2% 1%6 295/8 51/2
x152'^ 44.9 33.5 33V2 0,635 % 5/16 11.6 115/6 1.06 11/16 1.76 115/16 1%
x141' 41.5 33.3 33V4 0,605 % 5/16 11.5 llVz 0.960 15/16 1.66 11%6 iVs
x130'= 38.3 33.1 33V8 0,580 3/16 5/16 11.5 IIV2 0.855 % 1.56 1% 11/8
xllB'^'" 34.7 32.9 32% 0.550 «/l6 5/16 11.5 111/2 0,740 % 1.44 15/8 1%
1
y
' Shape is slender for compression with Fy = 50 ksi.
'' Range thicfcness greater than 2 in. Special requirements may apply per ABC Specification SeOionhiAc.
" Shape does not meet the hltx limit for shear in AISC Specification Section G2,1 (a) with /j, = 50 ksi.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-15 DIMENSIONS AND PROPERTIES
Table 1-1 (continued)
W-Shapes
Properties
W36-W33
Nom-
inal
Vift
Compact
Section
Criteria
Axis X-X AxisY-Y
ris h.
Torsional
Properties
Nom-
inal
Vift
Compact
Section
Criteria
Axis X-X AxisY-Y
ris h.
J
Nom-
inal
Vift
th
2t,
A
U
/ S r Z t S r Z
ris h.
J
ID/ft
th
2t,
A
U In." in.® in. in.' in." in.' in. in.3 in. in. in." in.«
652 2.48 16.3 50600 2460 16.2 2910 3230 367 4.10 581 4.96 37.6 593 1130000
529 2.96 19.9 39600 1990 16.0 2330 2490 289 4.00 454 4.80 36.9 327 846000
487 3.19 21.4 36000 1830 15.8 2130 2250 263 3.96 412 4.74 36,6 258 754000
441 3.48 23.6 32100 1650 • 15.7 1910 1990 235 3.92 368 4.69 36,5 194 661000
395 3.83 26.3 28500 1490 15,7 1710 1750 208 3,88 325 4.61 36,2 142 575000
361 4.16 28.6 25700 1350 15,6 1550 1570 188 3,85 293 4.58 36,0 109 509000
330 4.49 31.4 23300 1240 15.5 1410 1420 171 3,83 265 4,53 35,9 84.3 456000
302 4.96 33.9 21100 1130 15.4 1280 1300 156 3,82 241 4,53 35,6 64.3 412000
282 5.29 36.2 19600 1050 15.4 1190 1200 144 3,80 223 4,50 35,5 52.7 378000
262 5,75 38.2 17900 972 15.3 1100 1090 132 3.76 204 4,46 35,5 41.6 342000
247 6,11 40.1 16700 913 15.2 1030 1010 123 3.74 190 4.42 35,4 34.7 316000
231 6,54 42.2 15600 854 15.1 963 940 114 3,71 176 4.40 35,2 28.7 292000
256 3,53 33.8 16800 895 14.9 1040 528 86.5 2,65 137 3.24 35.7 52.9 168000
232 3.86 37.3 15000 809 14.8 936 468 77.2 2.62 122 3.21 35.5 39,6 148000
210 4.48 39.1' 13200 719 14.6 833 411 67.5 2,58 107 3.18 35.3 28,0 128000
194 4,81 42.4 12100 664 14.6 767 375 61.9 2.56 97,7 3.15 35.2 22.2 116000
182 5,12 44.8 11300 623 14.5 718 347 57.6 2.55 90,7 3.13 35.1 18.5 107000
170 5.47 47.7 10500 581 14,5 668 320 53,2 2.53 83.8 3.11 35.1 15.1 • 98500
160 5.88 49.9 9760 542 14.4 624 295: 49,1 2.50 77.3 3.09 35.0 12.4 90200
150 6.37 51.9 9040 504 • 14.3 581 270 45,1 2.47 70.9 3.06 35.0 10.1 82200
135 7.56 54.1 7800 439 14.0 509 225 37,7 2.38 59.7 . 2.99 34.8 7.00 68100
387 3.55 23,7 24300 1350 14.6 1560 1620 200 3.77 312 4.49 33.7 148 459000
354 3.85 25,7 22000 1240 14.5 1420 1460 181 3.74 282 4.44 33.5 115 408000
318 4.23 28,7 19500 1110 14.5 1270 1290 161 3.71 250 4.40 33.3 84.4 357000
291 4.60 31,0 17700 1020 14.4 1160 1160 146 3.68 226 4.34 33.1 65.1 319000
263 5.03 34,3 15900 919 14.3 1040 1040 131 3.66 202 4.31 32.9 48.7 281000
241 5.66 35,9 14200 831 14.1 940 933 118 3.62 182 4.29 32,8 36.2 251000
221 6.20 38,5 12900 759 14.1 857 840 106 3.59 164 4,25 32.6 27.8 224000
201 6.85 41,7 11600 686 14.0 773 749 95,2 3.56 147 4,21 32.6 20.8 198000
169 4.71 44,7 9290 549 13,7 629 310 53,9 2.50 84.4 3,03 32.6 17.7 82400
152 5.48 47,2 8160 487 13,5 559 273 47,2 2,47 73,9 3.01 32.4 12.4 71700
141 6.01 49.6 7450 .448 13.4 514 246 42.7 2,43 66,9 2.98 32,3 9.70 64400
130 6.73 51.7 6710' 406 13.2 467 218 37.9 2,39 59,5 2.94 3^2 7.37 56600
118 7.76 54.5 5900 359 13.0 415 187 32.6 2.32 51,3 2.89 32,2 5.30 48300
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-16 DIMENSIONS AND PROPERTIES
^ 1
t
d X--X
Y i
bf
Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area,
A
Depth,
rf
Web Flange Distance
Shape
Area,
A
Depth,
rf
Thickness,
U
u
2
Width,
bt
Thicicness,
tf
k
k, r
Work-
aliie
Gage
Shape
Area,
A
Depth,
rf
Thickness,
U
u
2
Width,
bt
Thicicness,
tf
kM
k, r
Work-
aliie
Gage
Shape
m} in. in. in. in. in. in. in. in. in. in.
WSOxSOl" 115 33.2 33V4 1,36 1% 'Vl6 15.6 155/8 2.44 27I6 3.23 3% IV2 26V2 5V2
xSSZ" 105 32.8 32% 1.24 1V4 % 15.5 I5V2 2.24 2V4 3.03 3Vs 17I6
X326'' 95.9 32.4 32% 1.14 lVs 8/16 15.4 15% 2.05 2VI6 2.84 2'5/16 1%
x292 86.0 32.0 32 1.02 1 Vz 15.3 15V4 1.85 1% 2.64 2% 15/16
x261 77.0 31.6 31% 0.930 Vz 15,2 15V6 1.65 15/a 2.44 2«/16 15/16
x235 89.3 31.3 31V4 0.830 "/16 7/16 15.1 15 1.50 IV2 2.29 2% IV4
x211 82.3 30.9 31 0.775 % % 15.1 15V8 1.32 15/16 2.10 2V4 13/16
x191' 56.1 30.7 30% 0.710 % 15.0 15 1.19 1%8 1.97 2VI6 1%8
x173' 50.9 30,4 30V2 0.655 % 5/16 15.0 15 1.07 IV18 1.85 2 IVB:
W30x148= 43.6 30.7 30% 0.650 % %6 10.5 IOV2 1.18 13/16 1.83 2V16 iVa 26V2 • 5V2
x132' 38.8 30.3 30V4 0.615 % 5/16 10.5 IOV2 1.00 1 1.65 1% iVs
x124' 36.5 30.2 30V8 0.585 3/16 %6 10.5 IOV2 0.930 '5/16 1.58 1"/16 IV8
x116' 34.2 30.0 30 0.565 5/18 10.5 IOV2 0.850 % 1.50 1% iVa
x108' 31.7 29.8 29% 0.545 3/16 5/16 10.5 IOV2 0.760 % 1.41 1"/16 iVa
x99' 29.0 29.7 29% 0.520 Vz V4 10.5 IOV2 0,670 "/16 1.32 13/16 IV16
. x90'^''' 26.3 29.5 29V2 0.470 Vl V4 10.4 10% 0.610 % 1,26 1% IV16
W27X539'' 159 32.5 32V2 1,97 2 1 15.3 I5V4 3.54 35/16 4,33; 4'/16 1"/16 235/s 5V2'
xses" 109 30.4 30% 1.38 1% 'Vl6 14.7 145/8 2.4S 2V2 3,27 3% IV2 5V2
xaae" 99.2 30.0 30 1.26 1V4 % 14.6 I4V2 2.28 2V4 3,07 3%6 1'/16
xSO?" 90.2 29.6 29% 1.16 13/16 % 14,4 14V2 2.09 2VI6 2.88 3 IV16
x281 83.1 29.3 29V4 1.06 1V16 3/16 14.4 14% 1.93 1's/ie 2.72 2"/I6 1%
x258 76.1 29.0 29 0.980: 1 % 14.3 141/4 1.77 1% 2.56 2"/16 15/16
x235 69,4 28.7 28% 0.910 «/l6 Vz 14.2 14V4 1.61 15/8 2.40 2V2 15/16
x217 -63.9 28,4 28% 0.830 "/16 7/16 14.1 14V8 1.50 1V2 2.29 2% IV4
x194 57.1 28,1 28V8 0.750 % % 14.0 14 1.34 15/16 2.13 2V4 1'/16
x178 52.5 27.8 27% 0.725 % % 14.1 14V8 1.19 13/16 1.98 2VI6 13/16
xiei"^ 47.6 27,6 27% 0,660 "/le % 14.0 14 1.08 IV16 1.87 2 13/16
x146'= 43.2 27.4 27% 0.605 % Vl6 14.0 14 0.975 1 1.76 1% IVs
1
W27x129' 37.8 27,6 27% 0.610 % 5/16 10.0 10 1.10 IVa 1.70 2 1% 235/8 5V2
x114'= 33.6 27.3 27V4 0.570 9/16 5/16 10.1 lOVe 0.930 «/l6 1,53 1"/,6 1V8
x102' 30.0 27.1 27% 0.515 Va V4 10.0 10 0.830 «/l6 1.43 1% IV16
x94' 27.6 26.9 26% 0.490 Vz V4 10.0 10 0.745 % 1.34 15/8 IV18
x84' 24.7 26.7 26% 0.460 7I6 V4 10.0 10 0.640 % 1.24 1^/16 IV16 T
" Shape is slender for compression with Fy - 50 l<si.
»The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility.
* Flange thicl<ness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
"Shape does not meet the Wfw limit for shear in AISC Specification Section G2.1(a) with /y=50ksi.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-17 DIMENSIONS AND PROPERTIES
Table 1-1 (continued)
W'Shapes
Properties
W30-W27
Nom-
inal
WL
Compact
Section
Criteria
Axis X-X AxisY-Y
fte ho
Torsional
Properties
Nom-
inal
WL
Compact
Section
Criteria
Axis X-X AxisY-Y
fte ho
J
Nom-
inal
WL
Hi
21,
A
U
/ S r Z / S r
fte ho
J
lb/ft
Hi
21,
A
U in." in.' in. in." in.5 in. in.' in. in. in." ln.=
391 3.19 19.7 20700 1250 13.4 1450 1550 198 3.67 310 4.37 30,8 173 366000
357 3.45 21.6 18700 1140 13.3 1320 1390 179 3,64 279 4.31 30,6 134 324000
326 3.75 23.4 16800 1040 13,2 1190 1240 162 3:60 252 4.26 30,4 103 287000
292 4.12 26.2 14900 930 13.2 1060 1100 144 3,58 223 4.22 30,2 75,2 250000
261 4.59 28,7 13100 829 13;i 943 959 127 3,53 196 4.16 30,0 54,1 215000 •
235 5.02 32.2 11700 748 13.0 847 855 114 3,51 175 4.13 29,8 40,3 190000
211 5.74 34.5 10300 665 12.9 751 757 100 3,49 155 4.11 29,6 28,4 166000
191 6.35 37,7 9200 600 12.8 675 673 89,5 3,46 138 4.06 29,5 21,0 146000
173 7.04 40.8 8230 541 12,7 607 598 79,8 3.42 123 4,03 29,3 15.6 129000
148 4.44 41.6 6680 436 12,4 500 227 43,3 2,28 68,0 2,77 29.5 14,5 49400
132 527. 43.9 5770 380 12.2 437 196 37,2 2,25 58,4 2,75 29,3 9,72 .42100
124 5.65 46.2 5360 355 12,1 408 181 34,4 2,23 54.0 2,73 29,3 7.99 38600
116 6.17 47.8 4930 329 12,0 378 164 31,3 2,19 49.2 2,70 29.2 6.43 34900
108 6.89 49.6 4470 299 11.9 346 146 27,9 2,15 43.9 2,67 29.0 4,99 30900
99 7.80 51.9 3990 269 11,7 312 128 24,5 2,10 38.6 2,62 29.0 3,77 26800
90 8.52 57.5 3610 245 11,7 283 115 22,1 2,09 34.7 2,60 28.9 2.84 24000
539 2.15 12.1 25600 1570 12,7 1890 2110 277 3,65 437 4,41 29.0: 496 443000
368 2.96 17,3 16200 1060 12,2 1240 1310 179 3,48 279 4,15 27,9 170 255000
336 3.19 18.9 14600 972 12,1 1130 1180' 162 3.45 252 4,10 27,7 131 - 226000
307 3.46 20.6 13100 887 12.0 1030 1050 146 3.41 227 4.04 27,5 101 199000
281 3.72 22.5 11900 814 12,0 936 953 133 3.39 206 4.00 27.4 79.5 178000
258 4.03 24.4 10800 745 11,9 852 859 120 3,36 187 3.96 27.2 61,6, 159000
235 4.41 26.2 9700 677 11,8 772 769 108 3,33 168 3,92 27.1 47,0 141000
217 4.71 28,7 8910 627 11,8 711 704 100 3.32 154 3,89 26.9 37,6 128000
194 5.24 31,8 7860 559 11.7 631 619 88,1 3,29 136 3.85 26.8 27,1 111000
178 5.92 32,9 7020 505 11.6 570 555 78.8 3,25 122 3,83 26,6 20.1 98400
161 6.49 36,1 6310 458 11.5 515 497 70,9 3,23 109 3.79 26,5 15,1 87300
146 7.16 39.4 5660 414 11.5 464 : 443 63,5 3,20 97.7 3,76 26,4 11,3 77200
129 4.55 39.7 4760 345 11.2 395 184 36,8 2.21 57.6 2,66 26,5 11,1 32500
114 5.41 42,5 4080 299 11.0 343 159 31.5 2,18 49.3 2,65 26,4 7,33 27600
102 6.03 47.1 3620 267 11.0 305 139 27,8 2.15 43,4 2,62 26,3 5.28 24000
94 6.70 49.5 3270 243 10.9 278 124 24,8 2.12 38.8 2,59 26,2 4,03 21300
84 7.78 52.7 2850 213 10,7 244 106 21,2 2,07 33.2 2,54 26,1 2,81 17900
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-18 DIMENSIONS AND PROPERTIES
Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Web Flange Distance
Shape
Area,
A
Depth,
d
Thickness, tw
2
Width,
b,
Thickness,
t,
k
R
Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness, tw
2
Width,
b,
Thickness,
t,
k^i
R
Work-
able
Gage
Shape
in. in. m. in. in. in. in. in. in. in.
W24X370'' 109 28.0 28 1,52 IV2 13.7 13% 2.72 2% 3.22 3% 1%6 20% 5V2
XSAS" 98.3 27.5 27V2 1.38 1% 'V16 13.5 13V2 2.48 2V2 2.98 3% 1%
XSOE" 89.7 27.1 27Vs 1.26 V/4 13.4 13% 2.28 2V4 2.78 3%6 IV16
X279'' 81,9 26.7 26% 1.16 1%6 % 13.3 I3V4 2.09 2VI6 2.59 3 IV16
x250 73.5 26.3 26% 1.04 IV16 %6 13.2 13Va 1.89 IVB 2.39 2«/I6 1%
x229 67.2 26.0 26 0.960 15/16 V2 13.1 ,13Vs 1.73 1% 2.23 25/8 15/,e
x207 60.7 25,7 25% 0.870 % V16 13.0 13 1.57 1%6 2.07 2V2 IV4
x192 56.5 25.5 25V2 0.810 "/16 '/16 13.0 13 1.46 1V16 1.96 2% IV4
x176 51.7 25.2 25% 0.750 % % 12.9 12V8 1.34 1%6 1.84 2V4 1%E
x162 47.8 25.0 25 0.705 "/16 % 13.0 13 1.22 IV4 1.72 2V8 1%e
x146 43.0 24.7 24% 0.650 % %6 12.9 12V8 1.09 IV16 1.59 2 IVa
x131 i38.6 24.5 ' 24V2 0.605 % %E 12.9 12V8 0.960 «/L6 1.46 IVs iVs
x117' 34.4 24.3 24V4 0.550 %6 %6 12.8 12% 0.850 VS 1.35 1% lVa
x104'^ 30.7 24.1 24 0.500 Vi V4 12.8 12% 0.750 % 1.25 1% IV16
W24x103'= 30.3 24.5 24V2 0,550 %6 V16 9.00 9 0.980^ 1 1.48 iVa iVa 20% 5V2
27.7 24.3 24V4 0,515 V? V4 9.07 9V8 0.875: Va 1.38 1% IV16
x84'^ 24.7 24.1 24V8 0.470 V2 V4 9.02 9 0.770 % 1.27 1"/L6 IV16
x76^ 22.4 23.9 23% 0.440 1/4 8.99 9 0.680 'Vie 1.18 1%6 IV16
x68' 20.1 23.7 23% 0.415 Vie V4 8.97 9 0.585 9/16 1.09 1V2 IV16 T
W24X62' 18.2 23.7 23% 0.430 Vie V4 7.04 7 • 0.590 9/(6 1.09 1V2 iVie 20% 3V28
16.2 23.6 23% 0.395 % %6 7.01 7 0.505 V2 1.01 IVie 1 20% 3V2S
W21x201 59.3 23.0 23 0.910 V2 12.6 125/8 1.63 15/8 2.13 2V2 15/16 18 5V2
x182 53.6 22.7 22% 0.830 "/16 Vie 12.5 12V2 1.48 1V2 1.98 2% IV4
x166 48.8 22.5 22V2 0.750 % % 12.4 12% 1.36 1% 1.86 2V4 1%6
x147 43.2 22.1 22 0.720 % % 12.5 12V2 1.15 1V8 1.65 2 1%6
x132 38.8 21.8 21% 0.650 % 5/16 12.4 12V2 1.04 lVie 1.54 1«/,6 IVS
x122 35.9 21.7 21 Vs 0,600 % 5/16 12.4 12% 0.960 1.46 1«/ie IVs
x111 32.6 21.5 21V2 0,550 %6 5/16 12.3 12% 0.875 Va 1.38 1% iVs
xlOI"^ 29.8 21.4 21% 0,500 Va V4 12.3 -12V4 0.800 "/16 1.30 1'VL6 1V16
I
Shape is slender for compression with Fy = 50 l<si.
The actual size, combination and orientation of fastener components should be compared vwth the geometry of the cross section
to ensure compatibility.
Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
' Shape does not meet the /)/(«, limit for shear in AISC Specification Section G2.1 (a) with Fy=50 ksi.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-19 DIMENSIONS AND PROPERTIES
Table 1-1 (continued)
W-Shapes
Pfoperties
W24-W21
Nom-
inal
Wt
Compact
Section
Criteria
AxisX-X AxisY-Y
/•ft he
Torsional
Properties
Nom-
inal
Wt
Compact
Section
Criteria
AxisX-X AxisY-Y
/•ft he
J
Nom-
inal
Wt
b,
it,
A
t.
1 S r Z / S r Z
/•ft he
J
lb/ft
b,
it,
A
t. m* in.' in. in.> in." in? in. in.' in. in. in." in.»
370 2.51 14.2 13400 957 11.1 1130 1160 170 3.27 267 3.92 25.3 201 186000
335 2.73 15.6 11900 864 11.0 1020 1030 152 3.23 238 3.86 25.0 152 161000
306 2.94 17.1 10700 789 10.9 922 919 137 3.20 214 3,81 24.8 117 142000
279 3.18 18.6 9600 718- : 10.8 835 823 124 3.17 193 3,76 24.6 90,5 125000
250 3.49 20.7 8490 644 10.7 744 724 110 3.14 171 3,71 24.4 66,6 108000
229 3.79 22.5 7650 588 10.7 675 651 99.4 3.11 154 •3,67 24.3 51,3 96100
207 4.14 24.8 6820 531 10.6 606 578 88.8 3.08 137 3,62 24.1 38,3 84100
192 4.43 26.6 6260 491 10.5 559 530 81.8 3.07 126 3.60 24.0 30,8 76300
176 4.81 28.7 5680 450 10.5 511 479 74.3 3,04 115 3,57 23.9 23,9 68400
162 5.31 30.6 5170 414 10.4 468 443 68.4 3.05 105 3,57 23.8 18,5 62600
146 5.92 33.2 4580 371 10.3 418 391 60.5 3.01 93.2 3,53 23.6 13.4 54600
131 6.70 35.6 4020 329 10.2 370 340 53.0 2.97 81.5 3,49 23.5 9.50 47100
117 7.53 39.2 3540 291 10.1 327 297 46.5 2.94 71.4 3,46 23.5 6.72 40800
104 8.50 43.1 3100 258 10.1 289 259 40.7 2.91 62,4 3,42 23.4 4,72 35200
103 4.59 39.2 3000 245 10.0 280 119 26.5 1.99 41.5 2,40 23.5 7,07 16600
94 5.18 41.9 2700 222 9.87 254 109 24.0 1.98 37.5 2,40 23.4 5,26 15000
84 5.86 45.9 2370 196 9.79 224 94.4 20.9 1.95 32.6 2.37 23.3 3,70 12800
76 6.61 49.0 2100 176 9.69 200 82.5 18.4 1.92 28.6 2.33 23,2 2.68 11100
68 7.66 52.0 1830 154 9.55 177 70.4 15.7 1.87 24.5 2.30 23,1 1.87 9430
62 5.97 50.1 1550 131 9.23 153 34.5 9.80 1.38 15.7 1.75 23.1 1.71 4620
55 6.94 54.6 1350 114 9.11 134 29.1 8.30 1.34 13.3 1.72 23,1 1.18 3870
201 3.86 20.6 5310 461 9.47 530 542 86.1 3.02 133 3.55 21.4 40.9 '62000
182 4.22 22.6 4730 417 9.40 476 , 483 77.2 3.00 119 3.51 21,2 30.7 54400
166 4.57 25.0 4280 380 9.36 432 435 70.0 2.99 108 3.48 21.1 23.6 48500
147 5.44 26.1 3630 329 9.17 373 376 60.1 2,95 92.6 3.46 21.0 15.4 41100
132 6.01 28.9 3220 295 9.12 333 333 53.5 2,93 82.3 3.43 20,8 11.3 36000
122 6.45 31,3 2960 273 9.09 307 305 49,2 2,92 75.6 3.40 20,7 8.98 32700
111 7.05 34.1 2670 249 9.05 279 274 44.5 2,90 68.2 3;37 20,6 6.83 29200
101 7.68 37.5 2420 227 9.02 253 248 40.3 2,89 , 61.7 3.35 20,6 5.21 26200
AMERICAN INSTITUTE OF STEEL CONSTRI/CTJON

1-20 DIMENSIONS AND PROPERTIES
^ 1-
t
d X-
/r—
-X
b
/ .
i
Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Web Flange Distance
Shape
Area,
A
Depth,
d
Thickness,
U
L
2
Width,
b,
Thickness,
tf
k
fe r
Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,
U
L
2
Width,
b,
Thickness,
tf
fe r
Work-
able
Gage
Shape
in/ in. in. in. in. in. in. in. in. in. in.
W21x93 27.3 21.6 215/8 0.580 :V16 %6 8.42 8% 0,930 «/ie 1.43 15/8 «/l6 18% 5V2
24.4 21.4 21% 0.515 Vz V4 8.36 8% 0.835 "/16 1.34 IV2 %
x73'^ 21.5 21.2 21V4 0.455 V16 V4 8.30 8V4 0.740 % 1.24 IV16 %
x68' 20.0 21.1 21 Vs 0.430 V16 V4 8.27 8V4 0.635 1V16 1.19 1% %
x62' 18.3 21.0 21 0.400 % %6 8.24 8V4 0.615 % 1,12 15/16 "/16
16.2 20.8 203/4 0.375 % %6 8.22 8V4 0.522 V2 1,02 1%6 "/I6
14.1 20.6 20% 0.350 .% %6 8,14 SVs 0.430 VK 0.930 iVs "/I6
W21X57' 16.7 21.1 21 0.405 % %6 6.56 6V2 0.650 % 1.15 1%6 "/16 18% 3V2,
x50= 14.7 20.8 20% 0.380 % %6 6.53 6V2 0.535 9/16' 1.04 IV4 "/,6
L L
13.0 20.7 20% 0.350 % %6 6.50 6V2 0.450 V16 0.950 1% "/,6 r r
W18X311'' 91.6 22.3 22% 1.52 IV2 % 12.0 12 2.74 2% 3.24 3^/16 1% 15V2 5V2
X283'' 83.3 21.9 21% 1.40 1% IV16 11.9 11% 2.50 2V2 3.00 3%6 15/16
X258'' 76.0 21.5 21V2 1.28 IV4 ,% 11.8 11% 2.30 25/16 2.70 3 IV4
X234'' 68.6 21.1 21 1.16 1%6 % 11.7 11% 2.11 2V8 2.51 2% 1%6
x211 62.3 20.7 20% 1.06 IV16 %6 11.6 IIV2 1.91 IW/16 2.31 29/16 1%6
x192 56.2 20.4 20% 0.960 V2 11.5 IIV2 1.75 1% 2.15 2VI6 1V8
x175 51.4 20.0 20 0.890 % V16 11.4 11% 1.59 19/16 1.99 2VI6 IV4 15V8
x158 46.3 19.7 19%: 0.810 V16 11.3 IIV4 1.44 IV16 1.84 2% IV4
x143 42.0 19.5 19V2 0.730 % % 11.2 111/4 1.32 IV16 1.72 2%6 1%6
x130 38.3 19.3 19V4 0.670 IV16 % 11.2 11% 1.20 1%6 1.60 2VI6 1%6
x119 35.1 19.0 19 0.655 % V16 11.3 IIV4 1.06 IVie 1.46 1'5/I6 1%e
x106 31.1 18.7 18% 0.590 9/16 %e 11.2 IIV4 0.940 "/16 1.34 l"/,6 1%
x97 28.5 18.6 18% 0.535 3/16 5/16 11.1 11V8 0.870 % 1.27 1% iVe
x86 25.3 18.4 18% 0.480 V2 % 11.1 IIVB 0.770 % 1.17 15/8 1V16
x76' 22.3 18.2 18V4 0.425 V16 V4 11.0 11 0.680 1.08 19/16 1V16
W18X71 20.9 18.5 I8V2 0.495 V2 V4 7.64 75/8 0.810 1%6 1.21 IV2 % '15V2 3V29
x65 19.1 18.4 18% 0.450 '/16 V4 7.59 7% 0.750 % 1.15 IV16 %
X60" 17.6 18.2 I8V4 0.415 '/16 V4 7.56 7V2 0.695 IV16 1.10 1% "/16
xSS'^ 16.2 18.1 18V8 0.390 % %6 7.53 7V2 0.630 % 1.03 15/16 "/16
xSO"^ 14.7 18.0 18 0.355 % %6 7.50 71/2 0.570 9/16 0.972 IV4 "/16
1 r
W18x46' 13.5 18.1 18 0.360 % %6 6.06 6 0.605 5/8 1.01 IV4 "/16 15V2 3V2S
x40= 11.8 17.9 17% 0.315 5/16 %6 6.02 6 0.525 V2 0.927 1%6 "/,6 J I 1
x35'= 10.3 17.7 17% 0.300 %6 %e 6.00 6 0.425 Vk 0.827 1% %
I R
' Shape is slender for compression with Fy- 50 l(si.
' Shape exceeds compact limit for flexure with 50 ksi.
' The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility,
'' Range thickness greater than 2 in. Special requirements may apply per AiSC Specification Section A3.1 c.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-21 DIMENSIONS AND PROPERTIES
Table 1-1 (continued)
W-Shapes
Properties
W21-W18
Nom-
inal
Wt
Compact
Section
Criteria
Axis X-X AxisY-Y
ho
Torsional
Properties
Nom-
inal
Wt
Compact
Section
Criteria
Axis X-X AxisY-Y
ho
J
Nom-
inal
Wt
b,
it,
h
U
/ S r / / S r Z
ho
J
lb/ft
b,
it,
h
U m* in.' in. in.^ in." in.' in. in.' in. in. in." in.»
93 4.53 32,3 2070 192 8,70 221 92.9 22,1 1,84 34,7 2,24 20,7 6,03 9940
83 5.00 36,4 1830 171 8,67 196 81.4 19,5 1,83 30,5 2,21 20,6 4,34 8630
73 5.60 41,2 1600 151 8,64 172 70.6 17,0 1,81 26,6 2,19 20,5 3,02 7410
68 6.04 43.6 1480 140 • 8,60 160 64,7 15,7 1,80 24,4 2,17 20,4 2,45 6760
62 6,70 46.9 1330. 127 8,54 144 57,5 14.0 1,77 21,7 2,15 20,4 1.83 5960
55 7.87 50,0 1140 110 8,40 126 48,4 11,8 1,73 18,4 2,11 20,3 1.24 4980
48 9.47 53,6 959 93,0 8,24 107 38,7 9,52 1.66 14,9 2,05 20,2 0.803 3950
57 5.04 46,3 1170 111 8,36 129 30,6 9,35 1,35 . 14,8 1,68 20,5 1.77 3190
50 6.10 49,4 984 94.5 8,18 110 24,9 7.64 1,30 12,2 1.64 20,3 1,14 2570
44 7.22 53,6 843 81,6 8,06 95.4 20,7 6,37 1,26 10,2 1.60 20,3 , 0,770 2110
311 2.19 10.4 6970 624 8,72 754 795 132 2,95 207 3.53 19,6 176 76200
283 2.38 11,3 6170 565 8,61 676 704 118 2.91 185 3.47 19,4 134 65900
258 2.56 12,5 5510 514 8,53 611 628 107 2,88 166 3.42 19,2 103 57600
234 2.76 13,8 4900 466 , 8,44 549 558 95,8 2,85 149 3.37 19,0 78,7 50100
211 3.02: 15,1 4330 419 8,35 490 493 85,3 2,82 132 3,32 18,8 58,6 43400
192 3.27 16,7 3870 380 8,28 442 440 76,8 2,79 119 3,28 18,7 44,7 38000
175 3.58 18,0 3450 344 8,20 398 391 68.8 2,76 106 3,24 18,4 33.8 33300
158 3.92 19,8, 3060 310 8,12 356 347 .61.4 2,74 94.8 3.20 18,3 25,2 29000
143 4.25 22,0 2750 282 8,09 322 311 55.5 2,72 85,4 3.17 18,2 19,2 25700
130 4.65 23,9 2460 256 8,03 290 278 49.9 2,70 76,7 3.13 18,1 14,5 22700
119 5.31 24.5 2190 231 7,90 262 253 44.9, 2,69 69,1 3.13 17.9 10,6. 20300
106 5.96 27.2 1910 204 7,84 230 220 39,4 2,66 60,5 3.10 17,8, 7,48' 17400
97 6.41 30.0 1750 1® 7,82 211, 201 36,1 2,65 55,3 3.08 17,7 5,86 ' 15800
86 7.20 33,4 1530 166 7.77 186 175 31,6 2,63 48,4 3.05 17,6 4,10 13600
76 8.11 37,8 1330 146 7,73 163 152 27,6 2,61 42,2 3.02 17.5 2,83 11700
71 4.71 32,4 1170 127 7,50 146 60,3 15,8 1,70 24,7 2.05 17,7 3,49 4700
65 5.06 35,7 1070 117 7,49 133 54,8 14,4 1,69 22,5 2,03 17,7 2,73 4240
60 5.44 38,7 984 108 7,47 123 50,1 • 13.3 1,68 20,6 2,02 17,5 2,17 3850
55 5.98 41,1 890 98,3 7,41 112 44,9 11,9 1,67 18,5 2,00 17,5 1,66 3430
50 6.57 45,2 800 88,9 7,38 101 40,1 10.7 1,65 16,6 1,98 17.4 1,24 3040
46 5.01 44,6 712 78,8 7,25 90.7 22,5 7.43 1,29 11,7 1,58 17.5 1.22 1720
40 5,73 50,9 612 68,4 7,21 78.4 19,1 6,35 1,27 10,0 1.56 17,4 0.810 1440
35 7.06 53,5 510 57.6 7.04 66.5 15,3 5,12 1,22 8,06 1,51 17.3 0.506 1140
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-22 DIMENSIONS AND PROPERTIES
Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Web Flange Distance
Shape
Area,
A
Depth,
d
Thickness,
2
Width,
b,
Thiclcness,
ti
k
r
Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,
2
Width,
b,
Thiclcness,
ti
kiet
r
Work-
able
Gage
Shape
in. in. in. in. in. in. in. in. in. in.
W16X100 29.4 17.0 17 0.585 %6 5/16 10,4 10% 0.985 1 1,39 17/e 1V8 13V4 5V2
x89 26.2 16.8 16% 0.525 V2 % 10.4 10% 0.875 % 1.28 1% IV16
x77 22;6 16.5 I6V2 0.455 Vk V4 10.3 IOV4 0.760 % 1.16 15/8 IV16
x67' 19.6 16.3 16% 0.395 % %6 10.2 IOV4 0.665 'V16 1.07 1%6 1
W16x57 16.8 16.4 16% 0.430 '/16 V4 7.12 7V8 0.715 "/16 1.12 1%. 7/8 135/a 3V2a
x50' 14.7 16.3 I6V4 0.380 % 3/16 7.07 7% 0.630 5/8 1,03 15/16 W/16
13.3 16.1 16V8 0.345 % %6 7.04 7 0.565 '/ie 0.967 IV4 '3/16
x40= 11.8 16.0 16 0.305 =/ie %6 7.00 7 0.505 1/2 0.907 1%6 "/I6
x36= 10.6 15.9 15% 0.295 5/16 %6 6.99 7 0.430 7/16 0.832 IVe %
W16X31' 9.13 15.9 15% 0.275 1/4 Vs 5.53 5V2 0.440 7I6 0.842 1V8 % 135/8 3V2
7.68 15.7 15% 0.250 V4 V8 5.50 51/2 0.345 % 0.747 1V16 % 135/8 3V2
W14x730" 215 22.4 22% 3.07 3VI6 1^/16 17.9 17% 4.91 4"/t6 5.51 6^/16 2% 10 3-7V2-3'
xses" 196 21.6 21% 2.83 2"/i6 1'/l6 17.7 175/8 4.52 41/2 5.12 5"/I6 25/8 3-7V2-3'
xeos" 178 20.9 20% 2.60 2% 15/16 17.4 17% 4.16 4%6 4.76 57/16 2V2 3-7%-3
x550" 162 20.2 2OV4 2.38 2% 1%6 17.2 171/4 3.82 3<%6 4.42 5V8 , 2%
xSOO" 147 19.6 19% 2.19 2%6 1% 17.0 17 3,50 3V2 4.10 4"/I6 25/16
X455'' 134 19.0 19 2.02 2 1 16.8 16% 3,21 3%6 3.81 4V2 2V4
x426'^ 125 18.7 18% 1.88 1% W/16 16.7 16% 3,04 3VI6 3.63 46/16 2V8
xsas" 117 18.3 I8V4 1.77 1% % 16,6 16% 2.85 2% 3.44 41/8 2V8
X370'' 109 17.9 17% 1.66^ IIV16 "/16 16.5 I6V2 2.66 2"/16 3.26 3'5/ie 2VI6
. X342'' 101 17.5 17V2 1.54 1%6 16.4 16% 2.47 2V2 3.07 3% 2
X311'' 91.4 17.1 17V8 1.41 17I6 % 16.2 I6V4 2.26 2V4 2.86 3%6 115/16
X283'' 83.3 16.7 16% 1.29 15/16 IV16 16.1 16V8 2.07 2VI6 2.67 3% 1%
x257 75.6 16.4 16% 1.18 1%6 % 16.0 16 1.89 1% 2.49 33/16 1"/16
x233 68.5 16.0 16 1.07 IV16 S/16 15.9 15% 1.72 1% 2.32 3 1%
x211 62.0 15.7 15% 0.980 1 V2 15.8 15% 1.56 1%6 2.16 27/8 I'Vie
x193 56.8 15.5 I5V2 0.890 % V16 15.7 15% 1.44 17/16 2,04 2% 1"/16
x176 51.8 15.2 I5V4 0.830 »/l6 7/16 15.7 155/8 1.31 15/16 1.91 25/8 15/8
x159 46.7 15.0 15 0.745 % % 15.6 155/8 1.19 1%6 1,79 2V2 1%6
x145 42.7 14,8 14% 0.680 IV16 % 15.5 15V2 1.09 IV16 1.69 2% 1^/16
Shape is slender for compression witli F,-SO l<si.
s Tlie actuai size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility.
" Flange thici^ness greater than 2 in. Special requirements may apply per AISC SpecificetHon Section A3.1c.
• Shape does not meet the hitw limit for shear in AISC Specification Section G2.1 (a) with Fy = 50 ksi.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-23 DIMENSIONS AND PROPERTIES
Table 1-1 (continued)
W-Shapes
Properties
W16-W14
nom-
inal
Wt.
Compact
Section
Criteria
AxisX-X Axis Y-Y
rts ho
Torsional
Properties
nom-
inal
Wt.
Compact
Section
Criteria
AxisX-X Axis Y-Y
rts ho
J C„
nom-
inal
Wt.
b,
2t,
A

/ 5 r Z / S r Z
rts ho
J C„
Ib/tt
b,
2t,
A
/» in." in.' in. in.=' in." ln.3 in. in.3 in. in. in." in.®
100 5.29 24.3 1490 175 7.10 198 186 35.7 2.51 54,9 2.92 16.0 7.73 11900
89 5.92 27.0 1300 155 7.05 175 163 31.4 2.49 48.1 2.88 15.9 5.45 10200
77 6.77 31.2 1110 134 7.00 150 138 26.9 2.47 41,1 2,85 15,7 3.57 8590
67 7.70 35.9 954 117- 6.96 130 119 23.2 2.46 35,5 2,82 15.6 2.39 7300
57 4.98 33.0 758 92.2 6.72 105 43.1 12.1 1.60 18,9 1,92 15.7 2.22 2660
50 5.61 37.4 659 81.0 6.68 92.0 37.2 10.5 1.59 16,3 1,89 15.7 1.52 ,2270
45 6.23 41.1 586 72.7 6.65 82.3 32.8 9.34 1.57 14,5 1.87 15.5 1.11 1990
40 6.93 46.5 518 64.7 6.63 73.0 28.9 8.25 1.57 12,7 1.86 15.5 0,794 1730
36 8.12 48.1 448 56.5 6.51 64.0 24.5 7.00 1.52 10,8 1.83 15.5 0.545 1460
31 6.28 51.6 375 47.2 6.41 54.0 12.4 4.49 1.17 7.03 1.42 15.5 0.461 739
26 7.97 56.8 301 38.4 6.26 44.2 9.59 3.49 1.12 5.48 1.38 15.4 0,262 565
730 1.82 3.71 14300 1280 8.17 1660 4720 527 4.69 816 5,68 17,5 1450 3&000
665 1.95 4.03 12400 1150 7.98 1480 4170 472 4.62 730 5,57 17.1 1120 305000
605 2.09 4.39 10800 1040 7,80 1320 3680 423 4.55 652 5.44 16.7 869 258000
550 2.25 4.79 9430 931 7.63 1180 3250 378 4.49 583 5.35 16.4 669 219000
500 2.43 5.21 8210 838 7,48 1050 2880 339 4.43 522 5.26 16.1 514 187000
455 2.62 5.66 7190 756 7.33 936 2560 304 4.38 468 5.17 15.8 395 160000
426 2.75 6.08 6600 706 7,26 869 2360 283 4,34 434 5.11 15.7 331 144000
398 2.92 6.44 6000 656 7,16 801 2170 262 4,31 402 5.05 15.5 273 129000
370 3.10 6.89 5440 607 7,07 736 1990 241 4,27 370 5.00 15.2 222 116000
342 3.31 7.41 4900 558 6,98 672 1810 221 4,24 338 4.95 15.0 178 1O3(J0O
311 3.59 8.09 4330 506 6.88 603 1610 199 4.20 304 4.87 14.8 136 89100
283 3.89 8.84 3840 459 6,79 542 1440 179 4.17 274 4,80 14.6 104 77700
257 4.23 9.71 3400 415 6,71 487 1290 161 4.13 246 4,75 14.5 79,1 67800
233 4,62 10.7 3010 375 6.63 436 1150 145 4,10 221 4,69 14.3 59,5 59000
211 5.06 11.6 2660 338 6,55 390 1030 130 4.07 198 4,64' 14.1 44,6 51500
193 5.45 12.8 2400 310 6.50 355 931 119 4.05 180 4,59 14.1 34.8 45900
176 5.97 13.7 2140 281 6.43 320 838 107 4.02 163 4,55 13.9 26,5 40500
159 6.54 15.3 1900 254 6.38 287 748 96.2 4.00 146 4.51 13.8 19.7 35600
145 7.11 16.8 1710 232 6.33 260 677 87.3 3,98 133 4.47 13.7 15.2 31700
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-24 DIMENSIONS AND PROPERTIES
d X-
tw-
-J
Jl
Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Web Flange Distance
Shape
Area,
A
Depth,
d
Thickness,
,2
Width,
b,
Thicl<ness,
tf
k
ki r
Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,
,2
Width,
b,
Thicl<ness,
tf
kM
ki r
Work-
able
Gage
Shape
in.2 in. in. in. in. in. in. in. in. in. in.
W14X132 38.8 14.7 14% 0.645 % =/l6 14.7 14% 1.03 1 1.63 25/16 1^/16 10 51/2
x120 35.3 14.5 14V2 0.590 VK 5/16 14.7 14% 0.940 '5/16 1.54 21/4 11/2
x109 32.0 14.3 14% 0.525 V2 V4 14.6 145/8 0,860 % 1.46 23/16 11/2
x99' 29.1 14.2 14V8 0.485 V2 V4 14.6 145/8 0.780 3/4 1.38 21/16 1%6
x90' 26.5 14.0 14 0.440 '/16 Vi 14.5 141/2 0,710 'V16 1.31 2 1'/16 T
W14x82 -24.0 14.3 14V4 0.510 % V4 10.1 10V6 0.855 % 1.45 111/16 11/(6 10% 51/2
x74 21.8 14.2 14V8 0.450 Vk Vi 10.1 IOVB 0.785 1.38 15/8 11/16
x68 20.0 14.0 14 0.415 %6 Vi 10.0 10 0.720 3/4 1.31 1%6 II/16
. :X61 17.9 13.9 13% 0.375 % 3/16 10.0 10 0.645 % 1.24 11/2 1 T
W14x53 15.6 13.9 13% 0.370 % 3/16 8.06 8 0.660 "/16 1.25 11/2 1 10% 51/2
1 x48 14.1 13.8 13% 0.340 %6 %6 8.03 8 0.595 5/8 1.19 1'/16 1
L L
x43' 12.6 13.7 13% 0.305 8.00 8 0.530 V2 1.12 13/8 1 R
1
R
W14x38<^ 11.2 14.1 14V8 0.310 V16 %6 6.77 6% 0.515 V2 0.915 1% 13/16 115/s 31/2!!
x34' 10.0 14.0 14 0.285 •V16 %6 6.75 6% 0.455 '/16 0.855 13/16 3/4
L
31/2
x30': 8.85 13.8 13% 0.270 1/4 Va 6.73 63/4 0.385 3/8 0.785 iVs 3/4 R 31/2
W14x26' 7.69 1.3.9 13% 0.255 ' 1/4' Va 5.03 5 0.420 V-16 0.820 1% % 115/8 23/4S
x22"= 6.49 13.7 13% 0.230 % % 5.00 5, 0.335 5/16 0.735 IV16 % 115/8 23/4®
1^12x336" 98.9 16.8 16% 1.78 1% % 13.4 133/a 2.96 215/16 3.55 3% 111/16 91/a 51/2
xSOS" 89.5 16.3 16% 1.63 iVs 13.2 13V4 2.71 2"/I6 3.30 35/8 l5/e
x279'i 81.9 15.9 15V8 1.53 IV2 % 13.1 13V8 2.47 2V2 3.07 33/8 15/8
X252'' 74.1 15.4 15% 1.40 1% 13.0 13 2.25 2V4 2.85 31/8 11/2
X230'' 67.7 15.1 15 1.29 IV16 'V16 12.9 12% 2.07 2Vi6 2,67 215/16 11/2
x210 61.8 14.7 14% 1.18 1%6 % 12.8 123/4 1.90 1% 2.50 2'3/I6 1%6
x190 56.0 14.4 14% 1.06 IV16 12.7 125/8 1.74 13/4 2.33 25/8 13/8
x170 50.0 14.0 14 0.960 . 1/2 12.6 12% 1.56 IVie 2.16 2'/I6 15/16
x152 44.7 13.7 13% 0.870 % 12.5 I2V2 1.40 13/6 2.00 25/16 IV4
x136 39.9 13.4 13% 0.790 "/16 '/16 12.4 123/8 1.25 IV4 1.85 21/8 11/4
x120 35.2 13.1 13V8 0.710 'V16 % 12.3 123/8 1.11 1V8 1.70 2 13/16
x106 31.2 12.9 12% 0.610 % V16 12.2 12V4 0.990 1 1.59 1% IVB
x96 28.2 12.7 12% 0.550 5/16 %6 12.2 12V8 0.900 % 1.50 113/16 1%
x87 25.6 12.5 I2V2 0.515 V2 V4 12.1 12V8 0,810 13/16 1.41 111/16 iVie
x79 23.2 12.4 12% 0.470 V2 1/4 12.1 12% 0.735 3/4 1.33 15/8 II/16
x72 21.1 12.3 I2V4 0.430 '/le V4 12.0 12 0.670 11/16 1.27 18/16 1-1/16
x65' 19.1 12.1 12V8 0.390 % 3/16 12.0 12 0.605 % 1.20 11/2 1
Shape is slender for compression witli Fy = 50 ksi.
' Shape exceeds compact limit for flexure witii /y=50 ksi,
' The actual size, combination and orientation of fastener connponents should be compared with the geometry of the cross section
to ensure compatibility.
" Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3,1 c.
AMERICAN INSTITUTE OF STEEL CONSTRI/CTJON

1-25 DIMENSIONS AND PROPERTIES
Table 1-1 (continued)
W-Shapes
Properties
W14-W12
Norn-
iHgl
Compact Torsional
Norn-
iHgl
Section AxisX-X Axis Y-Y
hr
Properties
Criteria
'IS "0
Wi tiU
bf A / S r Z / S r Z
J C„
lb/ft 2t, U in." in.^ in. in.' in." in.' in. in.= in. in. in." in.6
132 7.15 17,7 1530 209 6.28 234 548 74.5 3.76 113 4,23 13.7 12.3 25500
120 7.80 19.3 1380 190 6,24 212 495 67.5 3.74 102 4,20 13.6 9.37 22700
109 8.49 21.7 1240 173 6,22 192 447 61,2 3.73 92,7 4,17 13.4 7.12 20200
99 9.34 23.5 1110 157- 6,17 173 402 55,2 3.71 83.6 4,14 13.4 5.37 18000
90 10.2 25.9 999 143 6,14 157 362 49,9 3,70 75.6 4,10 13.3 4.06 16000
82 5.92 22.4 881 123 6.05 139 148 29.3 2,48 44.8 2,85 13.4 5.07 6710
74 6.41 25,4 795 112 6.04 126 134 26,6 2,48 40.5 2.83 13.4, 3.87 5990
68 6.97 27,5 722 103 6.01 115 121 24.2 2,46 36.9 2.80 13.3 3.01 5380
61 7.75 30.4 640 92,1 5,98 102 107 21.5 2,45 32.8 2.78 13.3 2.19 4710
53 6.11 30.9 541 77.8 5,89 87.1 57.7 14,3 1,92 22.0 2.22 13.2 1.94 2540
48 6.75 33.6 484 70.2 5.85 78.4 51,4 12.8 1,91 19.6 2.20 13.2 1.45 2240
43 7.54 37.4 428 62,6 5.82 69.6 45,2 11.3 1,89 17.3 2.18 13.2 1.05 ,1950
38 6.57 39.6 385 54,6, 5,87 61.5 26,7 7.88 1,55 12.1 1.82 13.6 0.798 1230
34 7.41 43.1 340 48,6 5,83 54.6 23,3 6,91 1,53 10.6 1,80 13.5 0.569 1070
30 8.74 45.4 291 42,0 5,73 47.3 19,6 5.82 1,49 8.99 1.77 13.4 0.380 887
26 5.98 48.1 245 35.3 5,65 40.2 8.91 3.55 1,08 5.54 1.30 13.5 0.358 405
22 7.46 53.3 199 29.0 5,54 33.2 7,00 2.80 1,04 4.39 1.27 13.4 0.208 314
336 2.26i 5.47 4060 483 6,41 603 il90 177 3.47 274 4.13 13.8 243 57000
305 2.45 5.98 3550 435 6,29 537 1050 159 3.42 244 4.05 13.6 185 48600
279 2.66 6.35 3110 393 6,16 481 937 143 3.38 220 4.00 13.4 143 42000
252 2.89 6.96 2720 353 6.06 428 828 127 3.34 196 3.93 13.2 108 35800
230 3.11 7.56 2420 321 5,97 386 742 115 3,31 177 3.87 13.0 83.8 31200
210 3.37 8.23 2140 292 5,89 348 664 104 3,28 159 3.81 12.8 64.7 27200
190 3.65 9.16 1890 263 5.82 311 589 93.0 3,25 143 3.77 12.7 48.8 23600
170 4.03 10.1 1650 235 5.74 275 517 82,3 3,22 126 3.70 12.4 35.6 20100
152 4.46 11.2 1430 209 5.66 243 454 72.8 3.19 111 3.66 12.3 25.8 17200
136 4.96 12.3 1240 186 5.58 214 398 64,2 3,16 98.0 3.61 12.2 18.5 14700
120 5.57 13.7 1070 163 5,51 186 345 56,0 3,13 85.4 3.56 12.0 12.9 12400
106 6.17 15.9 933 145 5,47 164 301 49,3 3,11 75.1 3.52 11.9 9.13 10700
96 6.76 17.7 833 131 5,44 147 270 44.4 3,09 67.5 3.49 11.8 6.85 9410
87 7.48 18.9 740 118 5,38 132 241 39,7 3,07 60.4 3.46 11.7 5.10 8270
79 8.22 20.7 662 107 5,34 119 216 35.8 3,05 54.3 3.43 11.7 3.84 7330
72 8.99 22.6 597 97.4 5,31 108 195 32.4 3,04 49,2 3.41 11.6 2.93 6540
65 9.92 24.9 533 87.9 5,28 96.8 174 29.1 3,02 44,1 3.38 11.5 2.18 5780
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-26 DIMENSIONS AND PROPERTIES
t
d X-
tw—
-X

Y
t
Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Web Flange Distance
Shape
Area,
A
Depth,
d
Thickness,
U

2
Width,
bf
Thickness,
ti
k
ki r
Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,
U

2
Width,
bf
Thickness,
ti
kiet
ki r
Work-
able
Gage
Shape
in.2 in. in. in. in. in. in. in. in. in. in.
W12x58 17.0 12.2 12V4 0.360 % 3/16 10.0 10 0,640 % 1,24 IV2 15/16 91/4 51/2
x53 15.6 12.1 12 0.345 % 3/16 10,0 10 0,575 S/16 1,18 I'/s -15/16 91/4 51/2-
W12x50 14.6 12.2 12V4 0.370 % 3/16 8.08 8V8 0,640 % 1,14 IV2 15/16 91/4 51/2
x45 , 13.1 12.1 12 0.335 =/l6 3/16 8.05 8 0.575 S/16 1,08 13/8 15/16
i L
x40 11.7 11.9 12 0.295 5/16 3/16 8.01 8 0.515 V2 1,02 13/8 %
1
r 1
r
W12x35= 10.3 12.5 I2V2 0.300 5/16 3/16 6.56 6V2 0.520 Vs 0,820 13/16 3/4 lOVs 31/2
x30' 8.79 12.3 12% 0.260 V4 Vs 6.52 6V2 0.440 0,740 iVa 3/4
L 1
x26'^ 7.65 12.2 I2V4 0.230 V4 Vs 6.49 6V2 0.380 % 0,680 IV16 3/4
1
r
1
r
W12x22= 6.48 12.3 12V4 0.260 1/4 Vs 4.03 4 0,425 V16 0,725 5/a 103/8 21/4 =
• x19= 5.57 12.2 12Va 0.235 V4 Vs 4.01 4 0,350 3/8 0.650 % «/l6
4.71 12.0 12 0.220 1/4 Va 3.99 4 0,265 V4 0.565 <3/16 V16
4.16 11.9 11% 0.200 3/16 % 3.97 4 0,225 V4 0.525 3/4 S/16
W10X112 32.9 11.4 11% 0.755 % 3/8 10.4 t03/a 1,25 IV4 1.75 115/16 1 71/2 51/2
xlOO 29.3 11.1 11 Vs 0.680 'V16 3/8 10.3 103/8 1,12 IVa 1,62 113/16 1
x88 26,0 10.8 10% 0,605 % 5/16 10.3 IOV4 0.990 1 1,49 1'Vl6 15/16
x77 22.7 10.6 10% 0.530 V2 V4 10.2 IOV4 0,870 % 1,37 19/16 %
x68 . 19.9 10.4 10% 0.470 V2 V4 10.1 IOVB 0.770 3/4 1,27 IV16 Va
x60 17.7. 10.2 .IOV4 0.420 7I6 V4 10.1 lOVa 0.680 'V16 1,18 13/8. 13/16
x54 15.8 10.1 lOVs 0.370 % 3/16 10.0 10 0,615 % 1.12 15/16 13/16
x49 14.4 10.0 10 0.340 V16 3/16 10,0 10 0,560 ®/l6 1,06 IV4 13/16
W10x45 13.3 10.1 lOVs 0.350 % 3/16 8.02 8 0,620 % 1,12 15/16 13/16 71/2 51/2
x39 11.5 9.92 9% 0.315 V16 3/16 7.99 8 0,530 V2 1,03 13/16 13/16
L 1 1
x33 9.71 9.73 9% 0.290 5/16 3/16 7.96 8 0,435 V16 0,935 IVa 3/4 r i r
W10X30 8.84 10.5 IOV2 0.300 5/16 3/16 5.81 53/4 0,510 Vz 0.810 IVa 11/16 81/4 23/4«
x26 7.61 10.3 10% 0.260 1/4 Va 5.77 53/4 0,440 Vk 0.740 IV16 11/16
J L i L
x22= 6.49 10.2 lOVs 0.240 V4 Va 5.75 53/4 0,360 3/8 0.660 «/l6 % i r i r
W10X19 5,62 10.2 IOV4 0.250 1/4 Va 4.02 4 0,395 3/8 0.695 15/16 5/8 83/8 21/48
xl?"^ 4,99 10.1 lOVs 0.240 V4 Va 4.01 4 0.330 5/16 0.630 % V16
xlS"^ 4.41 9.99 10 0.230 V4 Va 4,00 4 0,270 V4 0.570 "/,6 9/16
3.54 9.87 9% 0.190 3/16 Va 3,96 4 0,210 3/16 0.510 3/4 S/16
•Shape is slender for compression with /y = 50 lei.
Shape exceeds compact limit for flexure with /y= 50 ksi.
' The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility.
Shape does not meet the hlt^ limit for shear in AISC Specification Section G2.1 (a) with ^=50 ksi.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-27 DIMENSIONS AND PROPERTIES
Table 1-1 (continued)
W-Shapes
Properties
W12-W10
Nom-
inal
Wt.
Compact
Section
Criteria
AxisX-X AxisY-Y
rts h„
Torsional
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
AxisX-X AxisY-Y
rts h„
J
Nom-
inal
Wt.
b,
2t,
ft
U,
1 S r Z 1 S r Z
rts h„
J
lb/ft
b,
2t,
ft
U, in." in.' in. in? in." in.' in. in.' in. in. in." in.8
58 7.82 27.0 475 78.0 5.28 86.4 107 21.4 2.51 32.5 2.81 11,6 2.10 3570
53 8.69 28.1 425 70.6 5.23 77.9 95.8 19.2 2.4B 29.1 2.79 11,5 1.58 3160
50 6.31 26.8 391 64.2 5.18 71.9 56.3 13.9 1.96 21.3 2.25 11.6 1.71 1880
45 7.00 29.6 348 57.7- 5.15 64.2 50.0 12.4 1.95 19.0 2.23 11.5 1,26 1650
40 7.77 33.6 307 51.5 5.13 57.0 44.1 11.0 1.94 16.8 2.21 11.4 0:906 1440
35 6.31 36.2 285 45.6 5.25 51.2 24.5 7.47 1.54 11.5 1.79 12.0 0.741 879
30 7.41 41.8 238 38.6 5.21 43.1 20.3 ' 6.24 1.52 9.56 1.77 11.9 0.457 720
26 8.54 47.2 204 33.4 5.17 37.2 17.3 5.34 1.51 8.17 1,75 11.8 0.300 607
22 4.74 41.8 156 25,4 4.91 29.3 4:66 2.31 0.848 3.66 1.04 11.9 0.293 164
19 5.72 46.2 130 21.3 4.82 24.7 3.76 1.88 0.822 2.98 1.02 11.9 0,180 131
16 7.53 49.4 103 17.1 4.67 20.1 2.82 1.41 0.773 2.26 0.983 11.7 0.103 96,9
14 8.82 54.3 88.6 14.9 4.62 17.4 2.36 1.19 0.753 1.90 0.961 11.7 0,0704 80,4
112 4.17 10.4 716 126 4.66 147 236 45.3 268 69.2 3.08 10.2 15,1 6020
100 4.62 11.6 623 112 4.60 130 207 40.0 2.65 61.0 3.04 10.0 10,9 ,5150
88 5.18: 13.0 534 98.5 4.54 113 179 34.8 2.63 53.1 2.99 9.81 7,53 4330
77 5.86 14.8 455 85.9 4.49 97.6 154 30.1 2.60 45.9 2.95 9.73 5,11 3630
68 6.58 16.7 394 75.7 4.44 85.3 134 26.4 2.59 40.1 2,92 9.63 3,56 3100
60 7.41 18.7 341 66.7 4.39 74.6 116 23.0 2.57 35.0 288 9.52 2,48 2640
54 8.15 21.2 303 60.0 4.37 66.6 103 20.6 2.56 31.3 2.85 9.49 1,82 2320
49 8.93 23.1 272 54.6 4.35 60.4 93.4 18.7 2.54 28.3 2.84 9.44 1,39 2070
45 6.47 22.5 248 49.1 4.32 54.9 53.4 13.3 2.01 20.3 2.27 9.48 1,51 1200
39 7.53 25.0 209 42.1 4.27 46.8 45.0 11.3 1.98 17.2 2.24 9.39 0.976 992
33 9.15 27.1 171 35.0 4.19 38.8 36.6 9.20 1.94 14.0 2.20 9.30 0.583 791
30 5.70 29,5 170 32.4 4.38 36.6 16.7 5.75 1.37 8.84 1.60 10.0 0.622 414
26 6.56 34.0 144 27.9 4.35 31.3 14.1 4.89 1.36 7.50 1.58 9.86 0.402 345
22 7.99 36.9 118 23.2 4.27 26.0 11.4 3.97 1.33 6.10 1.55 9.84 0.239 275
19 5.09 35.4 96.3 18.8 4.14 21.6 4.29 2.14 0.874 3.35 1.06 9.81 0.233 104
17 6.08 36.9 81.9 16.2 4.05 18.7 3.56 1.78 0.845 2.80 1,04 9.77 0.156 85.1
15 7.41 38.5 68.9 13.8 3.95 16.0 2.89 1.45 0.810 2.30 1,01 9.72 0.104 68,3
12 9.43 46.6 53.8 10.9 3.90 12.6 2.18 1.10 0.785 1.74 0,983 9.66 0,0547 50.9
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-28 DIMENSIONS AND PROPERTIES
kl iil-
Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area,
A
Depth,
a
Web Flange Distance
Shape
Area,
A
Depth,
a
Thickness,
2
Width,
b,
Thiclcness,
ff
k
Ar, r
Worl(-
abie
Gage
Shape
Area,
A
Depth,
a
Thickness,
2
Width,
b,
Thiclcness,
ff
kies
Ar, r
Worl(-
abie
Gage
Shape
in^ in. in. in. in. in. in. in. in. in. in.
W8x67 19.7 9.00 9 0.570 3/16 V16 8.28 81/4 0.935 15/16 1.33 15/6 15/16: 53/4 51/2
x58 17.1 8.75 8% 0.510 Vz V4 8.22 81/4 0.810 13/18 1.20 11/2 % '
x48 14.1 8.50 8V2 0.400 % 3/16 8.11 81/8 0.685 11/16 1.08 13/8 13/16
x40 11.7 8.25 8V4 0.360 % 3/16 8.07 eVa 0.560 S/16 0.954 IV4 13/16.
x35 1,0.3 8.12 m 0.310 5/16 3/16 8.02 8 0.495 1/2 0.889 13/ie 13/16:
X31' 9.13 8.00 8 0.285 5/16 3/16 8.00 8 0.435 V16 0.829 11/8 3/4
W8x28 8,25 8.06 8 0.285 5/16 3/16 6.54 61/2 0.465 V16 0.859 «/l6 5/8 61/8 4
x24. 7.08 7.93 7% 0.245 1/4 Vs 6.50 61/2 0.400 3/8 0.794 % S/16 61/8 4
W8x21 6.16 8.28 8V4 0.250 V4 Vs 5.27 51/4 0.400 .3/8 0.700 % 9/16 61/2 23/4'
x18 5.26 8.14 8Va 0.230 V4 1/6 5.25 51/4 0.330 5/16 0.630 13/16 9/16 61/2 23/4'
W8x15 4.44 8.11 eVa 0.245 V4 1/8 4.02 4 0.315 5/16 0.615 13/16 9/16 61/2 21/49
x13 3.84 7.99 8 0.230 V4 Vs 4.00 4 0.255 1/4 0.555 3/4 3/16
t t
xlO"'' 2.96 7.89 7% 0.170 3/16 '/8 3.94 4 0.205: 3/16 0.505 "/16 1/2 1 r,. 1 r-
W6x25 7.34 6.38 6% 0.320 V16 3/16 6.08 61/8 0.455 V16 0.705 15/16 3/16 41/2 31/2
x20 5.87 6:20 6V4 0.260 V4 1/8 6.02 6 0.365 3/8 0.615 % 3/16
1 L 1
x15' 4.43 5.99 6 0.230 V4 1/8 5.99 6 0.260 1/4 0.510 3/4 5/16 i r •i r
W6x16 4.74 6.28 6V4 0.260 V4 1/8 4.03 4 0.405 3/8 0.655 % 5/16 41/2 21/48
x12 3.55 6.03 6 0.230 V4 1/8 4.00 4 0.280 1/4 0.530 3/4 5/16
x9' 2.68 ,5.90 5% 0.170 1/8 3.94 4 0.215 3/16 0.465 11/16 1/2
x8.5' 2.52 5.83 5% 0.170 3/16 1/8 3.94 4 0.195 3/16 0.445 11/16 1/2
W5x19 5.56 5.15 5V8 0.270 1/4 1/8 5.03 5 0.430 7I6 0.730 13/16 V16 ,31/2 23/49
x16 4.71 5.01 5 0.240 V4 1/8 5.00 5 0.360 3/8 0.660 3/4 ^16 31/2 23/4S
W4X13 3.83 4.16 4V8 0.280 V4 1/8 4.06 4 0.345 3/8 0.595 3/4 1/2 25/8 21/49
' Shape is slender for compression witii F, = 50
'Shape exceeds compact limit for flexure witfi /j, = 50 ksi.
Tlie actual size, combination and orientation
to ensure compatibility.
siiould be compared witii the geometry of ttie cross section
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-29 DIMENSIONS AND PROPERTIES
Table 1-1 (continued)
W-Shapes
Properties
W8-W4
Nom-
inal
Wt.
Compact
Section
Criteria
Axis X-X Axis Y-Y
rs h.
Torsional
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
Axis X-X Axis Y-Y
rs h.
J
Nom-
inal
Wt.
fir
2tf
A / S r Z / S r Z
rs h.
J
lb/ft
fir
2tf
A
in." in.3 In. in.' in." in.' in. in.' in. in. in." in,®
67 4.43 11.1 272 60.4 3.72 70.1 88.6 21.4 2,12 32.7 2.43 8.07 5.05 1440
58 5.07 12.4 228 52.0 3.65 59.8 75.1 18,3 2.10 27.9 2.39 7.94! 3.33 1180
48 5.92 15.9 184 43,2 3.61 49.0 60.9 15,0 2.08 22.9 2.35 7.82: 1,96 931
40 7.21 17.6 146 35.5. 3.53 39.8 49,1 12,2 2,04 18.5 2.31 7.69: 1,12 726
35 8.10 20.5 127 31.2 3.51 34.7 '42,6 10,6 2,03 16.1 2.28 7.63 0.769 619
31 9.19 22.3 110 27.5 3.47 30.4 37,1 9,27 2,02 14.1 2.26 7.57 0.536 530
28 7.03 22.3 98.0 24.3 3.45 27.2 21,7 6,63 1.62 10,1 1.84 7.60 0,537 312
24 8.12 25.9 82.7 20.9 3.42 23.1 18,3 5,63 1.61 8,57 1.81 7.53 0,346 259
21 6.59 27.5 75.3 18.2 3.49 20.4 9,77 3,71 1,26 5,69 1.46 7.88 0,282 152
18 7.95 29.9 61.9 15.2 3.43 17.0 7.97 3,04 1,23 4,66 1.43 7.81 0,172 122
15 6.37 28.1 48.0 11.8 3.29 13.6 3.41 1,70 0,876 2,67 1.06 7.80 0,137 51.8
13 7.84 29,9 39.6 9.91 3.21 11.4 2.73 1,37 0.843 2,15 1.03 7.74 0,0871 40.8
10 9.61 40.5 30.8 7.81 ,3.22 8.87 2.09 1,06 0.841 1.66 1.01 7.69 0,0426 30.9
25 6.68 15,5 53.4 16.7 2.70 18.9 17.1 5,61 1.52 8.56 1.74 5.93 0.461 150
20 8.25 19.1 41.4 13.4 2.66 14,9 13.3 4,41 1.50 6,72 1.70 5.84 0,240 113
15 11.5 21.6 29.1 9.72 2.56 10.8 9.32 3,11 1.45 4,75 1.66 5.73 0.101 76,5
16 4.98 19.1 32.1 10.2 2.60 11.7 4.43 2,20 0.967 3,39 1.13 5.88 0.223" 38,2
12 7.14 21.6 22.1 7.31 2.49 8.30 2.99 1.50 0.918 2,32 1,08 5.75 0.0903 24,7
9 9.16 29.2 16.4 5.56 2.47: 6.23 2.20 1.11 0.905 1,72 1.06 5.69 0.0405 17.7
8.5 10.1 29.1 14.9 5.10 2.43 5.73 1.99 1.01 0.890 1.56 1,05 5.64: 0.0333 15.8
19 5,85 13.7 26.3 10.2 2.17 11.6 9.13 3.63 1.28 5.53 1,45 4.72 0.316 50.9
16 6.94 15.4 21.4 8.55 2.13 9.63 7.51 3.00 1.26 4.58 1,43 4.65 0.192 40.6
13 5.88 10.6 11.3 5.46 1.72 6.28 3.86 1.90 1,00 2.92 1,16 3.82 0.151 14,0
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-30 DIMENSIONS AND PROPERTIES
tf—2
r^ i
X-~x
tir—
Table 1-2
M-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Web Flange Distance
Shape
Area,
A
Depth,
d
Thickness, t«
2
Width,
bt
Thicicness,
tf
k *1 r
Workable
Gage
Shape
in.2 in. in. in. in. in. in. in. in. in.
M12.5x12.4''" 3.63 12.5 12V2 0.155 Vs Vl6 3.75 33/4 0.228 1/4 8/16 3/e 113/e — '
xll.B''" 3.40 12.5 121/2 0.155 Vs Vl6 3.50 31/2 0.211 3/16 9/16 3/e 113/e
Ml 2x11.8' 3.47 12.0 12 0.177 3/16 Vs 3.07 3V8 0.225 1/4 9/16 3/e 10%

xlO.8' 3.18 12.0 12 0.160 3/16 Vs 3.07 SVs 0.210 3/16 9/16 3/e 10%
Ml 2x10''" 2.95 12.0 12 0.149 Vs Vl6 3.25 3V4 0.180 3/16 Vz 3/e 11 ' —
MIOxS'^ 2.65 10.0 10 0.157 3/16 Vb 2.69 23/4 0.206 3/16 9/16 3/8 8% —
xB'^ 2.37 9.95 10 0.141 Vs Vl6 2.69 23/4 0.182 3/16 9/16 3/8 8V8
M10x7.5'='' 2.22 9.99 10 0.130 Vs V16 2.69 23/4 0.173 3/16 V16 =/l6 9V8 —
M8x6.5= 1.92 8.00 8 0.135 Vs 1/16 2.28 21/4 0.189 3/16 3/16 3/8 6%

x6.2= 1.82 8.00 8 0.129 Vs 1/16 2.28 2V4 0.177 3/16 V16 71/8 — •
M6x4.4'= 1.29 6.00 6 0.114 Vs Vl6 1.84 1% 0.171 3/16 3/8 V4 5V4 —
1.09 5,92 5% 0.0980 Vs Vl6 2.00 2 0.129 Vs =/l« 1/4 51/4 —
M5X18.9' 5.56 5,00 5 0.316 Vl6 3/16 5.00 5 0.416. 7/16 '3/,6 V2 33/e 23/49
M4x6' 1.75 3,80 3% 0.130 Vs V16 3.80 33/4 0.160 3/16 V2 3/8 23/4
— •
X4.08 1.27 4,00 4 0.115 1/8 Vl6 2.25 2Vi 0.170 3/16 9/16 3/8 2% —
X3.45 1,01 4,00 4 0.0920 Vl6 Vl6 2.25 2V4 0.130 Vs V2 3/8 3 —
x3.2 1.01 4,00: 4 0.0920 Vl6 1/16 2.25 2V4 0.130 Vs V2 3/8 3 —
M3x2.9 0.914 3,00: 3 0.0900 V,6 1/l6 2.25 2V4 0.130 Vs V2 3/8 2
' Shape is slender for compression witli fy= 36 ksi.
' Sliape exceeds compact limit for flexure with Fy- 36 ksi.
•The actual size, combinatton and orientation of fastener components should be compared with the geometry of
the cross section to ensure compatibility.
'Shape has tapered flanges while other IVI-shapes have parallel flange surfaces.
• Shape does not meet the /j/fi, limit for shear in AISC Specification Section G2.t (b)(i) with Fy=35 ksi.
— Indicates flange is too narrow to establish a worltable gage.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-31 DIMENSIONS AND PROPERTIES
Table 1-2 (continued)
M-Shapes
Properties
M-SHAPES
Nom-
inal
Wt.
Compact
Section
Criteria
AxisX-X Axis Y-Y
rts ho J
SA
Torsional
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
AxisX-X Axis Y-Y
rts ho J
SA J c„
Nom-
inal
Wt.
bf
2t,
A
V
/ S r Z / S r Z
rts ho J
SA J c„
Ib/tt
bf
2t,
A
V in." •m? in. in? in." in.=' in. ? in. in.
J
SA
in." in,®
12.4 8.22 74.8 89,3 14.2 4.96 16.5 2.01 1.07 0.744 1.68 0.933 12.3 0.000283 0.0493 76.0
11.6 8.29 74.8 80.3 12.8 4.86 15.0 1.51 0.864 0.667 1.37 0.852 12.3 0.000263 0.0414 57.1
11.8 6.81 62.5 72.2 12.0 4.56 14,3 1,09 0.709 0.559: 1.15 0.731 11.8 0.000355 0,0500 37.7
10.8 7.30 69.2 66.7 11.1 4.58 13,2 1,01 0.661 0.564; 1.07 0.732 11.8 0.000300 0.0393 35.0
10 9.03 74,7 61.7 10.3 4.57 12,2 1,03 o!636 0.592; 1.02 0.768 11.8 0.000240 0.0292 35.9
9 6.53 58.4 39.0 7,79 3.83 9,22 0,672 0.500 0.503 0.809 0.650 979 0.000411 0.0314 16.1
8 7.39 65.0 34.6 6,95 3.82 8,20 0.593 0.441 0.500 0.711 0.646 9.77 0.000328 0.0224 14.2
7.5 7.77 71.0 33.0 6,60 3.85 7,77 0.562 0.418 0.503 0.670 0.646 9.82 0.000289 0.0187 13.5
6.5 6.03 53.8 18.5 4,63 3.11 5,43 0.376 0.329 0.443 0.529 0.563 7.81 0.000509 0.0184 5,73
6.2 6.44 56.5 17.6 4,39 3.10 5,15 0.352 0.308 0.439 0.495 0.560 7.82 0.000455 0.0156 5.38
4.4 5.39 47.0 7.23 2.41 2.36 2,80 0.180 0.195 0,372 0.311 0.467 5.83 0.000707 0.00990 1.53
3.7 7.75 54.7 5.96 2.01 2:34 2.33 0,173 0.173 0,398 0.273 0.499 5.79 0.000459 0.00530 1.45
18.9 6.01 11.2 24.2 9.67 2.08 11,1 8,70 3.48 1,25 5.33 1.44 4.58 0.00709 0.313 45.7
6 11.9 22.0 4.72 2.48 1.64 2,74 1,47 0.771 0.915 1.18 1.04 3.64 0.00208 0.0184 4,87
4.08 6.62 26.4 3.53 1.77 1.67 2,00 0,325 0.289 0.506 0.453 0.593 3.83 0.00218 0.0147 1,19
3.45 8.65 33.9 2.86 1.43 1.68 1,60 0,248 0.221 0.496 0.346 0.580 3.87 0.00148 0.00820 0.930
3.2 8.65 33.9 2.86 1.43 1.68 1.60 0.248 0.221 0.496 0.346 0.580 3,87 0.00148 0.00820 0,930
2.9 8.65 23.6 1,50 1.00 1.28 1.12 0.248 0.221 0.521 0,344 0.597 2,87 0.00275 0.00790 0,511
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-32 DIMENSIONS AND PROPERTIES
Y
!
d X X T
tw-
• '

I ^
Y i \k
J>f
Table 1-3
S-Shapes
Dimensions
Shape
Area,
A
Depth,
a
Web Flange Distance
Shape
Area,
A
Depth,
a
Thickness,
t„ 2
Width,
bf
Thickness,
t,
/f r
Workable
Gage
Shape
in.' in. in. in. in. in. in. in. in.
824x121 35.5 24.5 24V2 0.800 "/,6 7I6 8.05 8 1.09 IV16 2 201/2 4
x106 31.1 24.5 24V2 0.620 % 5/16 7.87 7% 1.09 IV16 2 201/2 4
824x100 29.3 24.0 24 0.745 % % 7.25 71/4 0.870 Vs 13/4. 201/2 4
x90 26.5 24.0 24 0.625 5/8 5/16 7.13 71/8 0.870 % 13/4 201/2 4 :
x80 23.5 24.0 24 0.500 V2 1/4 7.00 7 0.870 % 13/4 . 201/2 4
820x96 28.2 20.3 20V4 0.800 7I6 7.20 71/4 0.920 15/16 13/4 163/4 4
x86 25.3 20.3 ,20V-i 0.660 11/16 % 7.06 7 0.920 15/16 13/4 163/4 4
820x75 22.0 20.0 20 0.635 % 5/16 6.39 53/8 0.795 13/16 15/8 163/4 31/28
x66 , 19.4 20.0 20 0.505 Vz 1/4 6.26 6V4 0.795 13/16 15/8 163/4 31/28
818x70 20.5 18.0 18 0.711 'Vie % 6.25 61/4 0.691 11/16 11/2 15 31/2'
x54.7 16.0 18.0 18 0.461 '/16 1/4 ' 6.00 6 0.691 11/16 11/2 15 3V2«
515x50 14.7 15.0 , 15 0,550 9/16 Vl6 5.64 55/8 0.622 5/8 13/8 121/4 31/29
x42,9 12.6 15.0 15 0.411 Vl6 1/4 5.50 51/2 0.622 5/8 1% 121/4 3I/2S
512x50 14.7 12.0 12 0.687 'V(6 % 5.48 5V2 0.659 11/16 1=716 ^ 91/8 3S
x40,8 11.9 12.0 ' 12 0,462 7I6 1/4 5.25 51/4 0,659 11/16 17I6 91/8 39
512x35 10.2 12.0 12 0.428 Vn 1/4 ' 5.08. 51/8 0.544 3/16 13/16 95/8 39
, X31.8 9.31 12.0 12 0.350 % 5.00 5 0,544 . 5/16 13/16 95/8 39
810x35 , 10.3 10.0 10 0.594 5/8 5/16 4.94 5 0,491
1/2
iVs 73/4 23/49
x25.4 7.45 10.0 10 0.311 5/16 3/16 4.66 45/8 0,491 1/2 iVs 73/4 23/48
38x23 6.76 8.00 8 0.441 7I6 1/4 4.17 41/8 0.425 V16 1 6 21/49
x18.4 5.40 8.00 8 0.271 Vi 1/8 4.00 4 0,425 V16 1 6 21/48
36x17.25 5.05 6.00 6 0.465 7I6 1/4 3.57 35/8 0.359 3/8 13/16 43/8

X12.5 3.66 6.00 6 0.232 V4 VB 3.33 3% 0.359 3/6 13/16 43/8 —
85x10 2.93 5.00 5 0.214 3/16 1/8 3.00 3 0.326 5/16 3/4 31/2 —
84x9.5 2.79 4.00 4 0.326 Vl6 3/16 2.80 23/4 0.293 5/16 3/4 21/2

x7.7 2.26 4.00 4 0.193 Vl6 1/8 2.66 25/8 0.293 5/16 3/4 21/2 —
83x7.5 2.20 3.00 3 0.349 % 3/16 2.51 21/2 0.260 1/4 5/8 13/4

x5.7 1.66 3.00 3 0.170 3/16 1/8 2.33 23/8 0.260 1/4 5/8 13/4

'The actual size, combination and orientation of fastener components stiould be compared with the geometry of the
cross section to ensure compatibility.
- Indicates flange is too narrow to establish a workable gage.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-33 DIMENSIONS AND PROPERTIES
Table 1-3 (continued)
S-Shapes
Properties
S-SHAPES
Nom-
inal
WL
Compact
Section
Criteria
Axis X-X Axis Y-Y
ho
Torsional
Properties
Nom-
inal
WL
Compact
Section
Criteria
Axis X-X Axis Y-Y
ho
J Cyff
Nom-
inal
WL
b,
zt,
ft_

. / S r Z / S r 2
ho
J Cyff
lb/ft
b,
zt,
ft_
t« in/ in.' in. in.3 in." in.' in. in.' in. in. in."
121 3.69 25.9 3160 258 9.43 306 83.0 20.6 1.53 36.3 1.94 23.4 12.8 11400
106 3.61 33.4 2940 240 9.71 279 76.8 19,5 1.57 33.4 1.93 23.4 10.1 10500
100 4.16 27.8 2380 199 9,01 239 47.4 13,1 1,27 24.0 1.66 23.1 7.59 6350
90 4.09 33.1 2250 187 9,21 222 44.7 12,5 1,30 22.4 1.66 23.1 6.05 5980
80 4.02 41.4 2100 175 9,47 204 42.0 12,0 1.34 20.8 1,67 23.1 4.89 5620
96 3.91 21.1 1670 165 7,71 198 49.9 13,9 1.33 24.9 1,71 19.4 8.40 4690
86 3.84 25.6 1570 155 7,89 183 46.6 13,2 1,36 23.1 1,71 19.4 6.65 4370
75 4.02 26,6 1280 128 7,62 152 29.5 9,25 1,16 16.7 1,49 19.2 4.59 2720
66 3.93 33.5 1190 119 7,83 139 27.5 8,78 1,19 15.4 1,49 19.2 3.58 2530
70 4.52 21.5 923 103 6,70 124 24.0 7,69 1,08 14.3 1,42 17.3 4.10 1800
54.7 4.34 33.2 801 89.0 7,07 104 20.7 6.91 1,14 12.1 1,42 17.3 2.33 1550
50 4.53 22.7 485 64.7 5,75 77.0 15.6 5.53 1,03 10.0 1,32 14.4 2.12 805
42.9 4,42 30.4 446 59.4 5,95 69.2 14,3 5.19 1,06 9.08 1,31 14.4 1.54 737
50 4.16 13.7 303 50.6 4,55 60.9 15.6 5.69 1.03 10,3 1.32 11.3 2.77 501
40.8 3.98 20.6 270 45.1 4,76 52.7 13.5 5.13 1.06 8.86 1.30 11.3 1.69 433
35 4.67 23.1 228 38.1 4,72 44.6 9.84 3.88 0.980 6.80 1,22 11.5 1,05 323
31.8 4,60 28.3 217 36.2 4,83 41.8 9.33 3.73 1.00 6.44 1,21 11,5 0,878 306
35 5,03 13.4. 147 29.4 3,78 35.4 8.30 3.36 0.899 6.19 1,16 9.51 1.29 188
25.4 4.75 25.6 123 24.6 4,07 28.3 6.73 2.89 0.950 4.99 1,14, 9.51 0.603 152.
23 4.91 14.1 64.7 16.2 3,09 19.2 4.27 2.05 0.795 3.67 0,999 7.58 0,550 61.2
18.4 4.71 22.9 57.5 14.4 3,26 16.5 3.69 1.84 0.827 3.18 0,985 7.58 0,335 52.9
17.25 4.97 9.67 26,2 8.74 2,28 10.5 2.29 1.28 0.673 2.35 0,859 5.64 0,371 18.2
12.5 4.64 19.4 22.0 7.34 2,45 8.45 1.80 1.08 0.702 1.86 0,831 5.64 0,167 14.3
10 4.61 16.8 12.3 4.90 2,05 5.66 1.19 0.795 0.638 1.37 0,754 4.67 0,114 6.52
9.5 4.77 8.33 6.76 3,38 1,56 4.04 0.887 0.635 0.564 1.13 0,698 3.71 0,120 3.05
7.7 4.54 14.1 6.05 3.03 1,64 3.50 0.748 0.562 0.576 0.970 0,676 3,71 0,0732 2.57
7.5 4.83 5.38 2.91 1,94 1,15 2.35 0.578 0.461 0.513 0.821 0,638 2,74 0,0896 1.08
5.7 4.48 11.0 2.50 1,67 1,23 1.94 0.447 0.383 0.518 0.656 0,605 2,74 0,0433 0.838
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-34 DIMENSIONS AND PROPERTIES
Table 1-4
HP-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Web Flange Distance
Shape
Area,
A
Depth,
d
Thickness, tw
2
Width,
b,
Thicicness,
tf
k fe r
Woricable
Gage
Shape
in.2 in. in. in. in. in. in. in. in. in.
HP18x204 60.2 18.3 I8V4 1.13 iVa 18.1 ISVa 1.13 1% 25/16 1% 131/2 71/2
x181 53.2 18.0 18 1.00 1 1/2 18.0 18 1.00 1 2%6 111/16
x157' 46.2 17.7 17% 0.870 % V16 17,9 17% 0,870 % 2Vi6 15/8
x135' 39.9 17.5 17'/? 0.750 % % 17,8 17% 0,750 % . 115/16 1%6
: T
HP16x183 54.1 16.5 16Vj 1.13 lVs Vis 16,3 161/2 1,13 1V8 25/16 1% 11% 51/2
x162 47.7 16,3 I6V4 1.00 1 1/2 16.1 161/8 1.00 1 2%6 111/16
x141 41.7 16.0 16 0.875 % V16 16.0 16 0.875 % 21/16 15/8
X121' 35.8 15.8 15% 0.750 % % 15.9 15% 0.750 % 115/16 1^/16
X101' 29,9 15.5 151/2 0.625 % 5/16 15.8 15% 0.625 % 11%6 IV2
25.8 15.3 15% 0.540 9/16 5/16 15.7 I511/16 0.540 9/16 1% 1^/16
HP14X117' 34,4 14.2 141/4 0.805 "/16 '/I6 14.9 14% 0.805 "/16 11/2 11/16 111/4 51/2
x102' 30.1 14.0 14 0.705 'V16 % 14.8 14% 0,705 11/16 1% 1
x89' 26,1 13.8 13% 0.615 % V16 14.7 14% 0,615 5/8 15/16 15/16
x73'='' 21.4 13.6 13% 0.505 1/2 1/4 14.6 145/8 0,505 1/2 IV16 % f
HP1ZX84 24.6 12.3 12'/4 0.685 "/16 % 12.3 I2V4 0,685 11/16 1% 1 91/2 51/2
x74' 21.8 12.1 nvt 0,605 % 5/16 12,2 I2V4 0,610 5/8 15/16 15/16
x63' 18.4 11.9 12 0,515 V2 1/4 12.1 121/8 0,515 1/2 11/4 %
X53''' 15.5 11.8 11% 0,435 7/16 1/4 12.0 12 0,435 Vw 11/8 %
• ) t
HP10x57 16.7 9.99 10 0,565 5/16 10.2 101/4 0,565 9/16 11/4 15/16 71/2 51/2
x42' 12.4 9.70 9% 0,415 '/16 1/4 10.1 lOVs 0,420 7/I6 11/8 1%6 71/2 5%
HP8x36^ 10.6 8.02 8 0.445 '/16 1/4 8.16 81/8 0,445 Vk IVa % 5% 51/2
= Shape is slender for compression with Fy= 50 ksi.
• Shape exceeds compact limit for flexure with /j, = 50 ksi.
AMERICAN INSTITUTE OF STEEL CONSTRI/CTJON

1-35 DIMENSIONS AND PROPERTIES
Table 1-4 (continued)
HP-Shapes
Properties
HP-SHAPES
Nom-
inal
Wt
Compact
Section Axis X-X Axis Y-Y
rfc. Ac
Torsional
Properties
Nom-
inal
Wt
Criteria
rfc. Ac J
J
Nom-
inal
Wt
b, A / S r Z / S r Z
J
lb/ft 2t, f». in/ in.^ in. in.3 in." m? in. in.' in. in. in." in.«
204 8.01 12.1 3480 380 7.60 433 1120 124 4.31 191 5.03 17.2 0.00451 29.5 82500
181 9.00 13.6 3020 336 7.53 379 974 108 4.28 167 4.96 17.0 0.00362 20.7 70400
157 10.3 15.6 2570 290 7.46 327 833 93.1 4.25 143 4,92 16.8 0.00285 13.9 59000
135 11.9 18.2 2200 251 7,43 281 706 79.3 4.21 122 4.85 16.8 0.00216 9.12 49500
183 7.21 10.5 2510 304 6.81 349 818 100 3.89 156 4.54 15.4 0,00576 26.9 48300
162 8.05 11.9" 2190 269 6.78 306 697 86.6 3.82 134 4.45 15.3 0,00457 18.8 40800
141 9.14 13.6 1870 234 6.70 264 599 74.9 3.79 116 4.40 15.1 0,00365 12.9 34300
121 10.6 15.9 1590 201 6.66 226 504 63.4 3.75 97.6 4.34 15.1 0,00275 8.35 28500
101 12.6 19.0 1300 168 6.59 187 412 52.2 3.71 80.1 4.27 14.9 0,00203 5.07 22800
88 14.5 22.0 1110 145 6.56 161 349 44;5 3.68 68.2 4.21 14.8 0,00161 3.45 19000
117 9.25 14.2 1220 172 5.96 194 443 59.5 3.59 91.4 4.15 13.4 0,00348 8.02 19900
102 10.5 16.2 1050 150 5.92 169 380 51.4 3.56 78.8 4.10 13.3 0,00270 5.39 16800
89 11.9 18.5 904 131 5.88 146 326 44.3 3.53 67.7 4.05 13.2 0,00207 3.59 14200
73 14.4 22.6 729 107 5.84 118 261 35.8 3.49 54.6 4.00 13.1 0.00143 2.01 11200
84 8.97 14.2 650 106 5.14 120 213 34.6 2.94 53.2 3.41 11.6 0.00345 4.24 7140
74 10.0 16.1 569 93.8 5,11 105 186 30.4 2.92 46.6 3.38 11.5 0.00276 2.98 6160
63 11.8 18.9 472 79.1 5.06 88.3 153 25.3 2.88 38.7 3.33 11.4 0.00202 1.83 5000
53 13.8 22.3 393 66.7 5.03 74.0 127 21.1 2.86 32.2 3.29 11.4 0.00148 1.12 4080
.57 9.03 13.9 294 58.8 4.18 66.5 101 19.7 2.45 30.3 2.84 9.43 0,00355 1.97 2240
42 12.0 18.9 210 43.4 4.13 48.3 71.7 14.2 2.41 21.8 2.77 9.28 0.00202 0.813 1540
36 9.16 14.2 119 29.8 3.36 33.6 40.3 9.88 1.95 15.2 2.26 7.58 0.00341 0.770 578
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-36 DIMENSIONS AND PROPERTIES
/ Y
x-t-1—X
d
Table 1-5
C-Shapes
t .d
Dimensions
PNA
Shape
Area,
A
Depth,
d
Web Flange Distance
rts
Shape
Area,
A
Depth,
d
Thickness, u,
2
Width,
b,
Average
Thickness,
tf
k r
Work-
able
Gage
rts
Shape
in} in. in. in. in. in. in. in. in. in. in.
CI 5x50 14.7 15,0 15 0.716 'Vl6 3/8 3,72 35/4 0.650 5/e 17I6 121/8 21/4 1.17 14,4
x40 11.8 15.0 15 0,520 V2 1/4 3,52 31/2 0.650 5/8 1'/16 121/8 2 1.15 14,4
X33.9 10.0 15,0 15 0,400 % 3/16 3.40 35/s 0,650 5/8 iVie 121/8 2 1.13 14,4
CI 2x30 8.81 12.0 12 0,510 Vz 1/4 3.17 31/e 0,501 1/2 11/8 93/4 15/48 1.01 ii,'5
x25 7.34 12.0 12 0,387 % 3/16 3.05 3 0,501 1/2 11/8 93/4 15/40 1.00 11,5
X20.7 6.08 12.0 12 0,282 5/16 5/16 2.94 3 0,501 1/2 11/8 95/4 13/48 0,983 11,5
010x30 8.81 10.0 10 0,673 11/16 5/8 3.03 3 0,436 '/16 8 15/48 0,924 9,56
x25 7.35 10.0 10 0,526 Vz 1/4' 2.89 2% : 0.436 V16 1 8 15/4S 0,911 9,56
x20 5.87 10.0 10 0,379 % 3/16 2.74 23/4 0,436 V16 8 11/28 0,894 9,56
X15.3 4.48 10.0 10 0.240 1/4 1/8 2,60 25/8 0,436 V16 1 8 11/2S 0,868 9,56
09x20 5.87 9.00, 9 0.448 '/16 1/4 2,65 25/8 0.413 V16 • 1 7 .. 11/28 0,850 8,59
x15 4.40 9.00 9 0.285 5/16 3/16 2,49 21/2 0.413 Vie 1 7 15/aO 0,825 8,59
X13.4 3.94 9.00 9 0.233 V4 1/8 2,43 25/8 0,413 V16 1 , 7 15/88 0,814 8,59
08x18.75 5.51 8,00 8 0.487 V2 1/4 2,53 21/2 0,390 3/8. 15/16 61/8 11/28 0,800 7,61
X13.75 4.03 8.00 8 0.303 5/16 5/16 2,34 23/8 0,390 5/8 15/16 61/8 15/88 0,774 7,61
xll.5. 3.37 8.00 , ,8 0,220 V4 1/8.. 2,26 21/4 0,390 3/8 15/16 61/8 15/88 0,756 7,61
C7x14.75 4.33 7.00 7 0,419 '/16 1/4 2,30 21/4 0,366 5/8 % 51/4 ll/4« 0,738 6,63
X12.25 3.59 7,00 7 0,314 5/16 5/16 2,19 21/4 0,366 3/8 % 51/4 11/48 0,722 6,63
x9.8 2.87 7'OQ 7 0,210 5/16 1/8 2.09 21/8. 0,366 5/8 % 51/4 11/4« 0,698 6,63
C6x13 3.82 6,00 6 0,437 '/16 1/4 2.16 21/8 0.343 5/16 13/16^ 45/a 15/8® 0,689 5,66
xlO.5 3.07 6.00 6 0,314 5/16 5/16 2.03 2 0,343 5/16 13/16 45/8 11/88 0,669 5:66
x8.2 2.39 6.00 6 0,200 3/16 1/8 1.92 1% 0.343 5/16 15/16 45/8 11/88 0,643 5,66
C5x9 2.64 5.00 5 0,325 5/16 5/16 1.89 1% 0.320 5/16 5/4 31/2 11/88 0,616 4,68
x6.7 1.97 5.00 5 0,190 5/16 1/8 1.75 13/4 0.320 5/16 5/4 31/2 — 0,584 4,68
C4x7.25 2.13 4.00 4 0,321 5/16 5/16 1.72 13/4 0.296 5/16 5/4 21/2 1® 0,563 3,70
X6.25 1.77 4.00 4 0,247 1/4 1/8 1.65 15/4 0.272 5/16 5/4 2V2 — 0,546 3,73
x5.4 1,58 4.00 4 0,184 5/16
1/8
1.58 15/8 0.296 5/16 5/4 21/2 — 0.528 3,70
x4.5 1.38 4.00 4 0,125 1/8 1/16 1.58 15/8 0.296 5/16 5/4 21/2 — 0,524 3,70
C3x6 1.76 3.00 3 0,356 3/8 5/16 1.60 15/8 0.273 1/4 11/16 15/8

0,519 2,73
x5 1.47 3.00 3 0,258 1/4 Va 1.50 IV2 0.273 1/4 11/16 15/8 — 0.496 2,73
x4.1 1.20 3.00 3 0,170 3/16 1/8 1.41 15/8 0.273 1/4 'I/16 15/8 — 0,469 2,73
x3.5 1.09 3.00 3 0,132 1/6 1/16 1.37 15/8 0.273 1/4 11/16 15/8 — 0.456 2,73
»The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
- Indicates flange is too narrow to establish a workable gage.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-37
mm>
Table 1-5 (continued)
C-Shapes
Properties mm.
-
C-SHAPES
Nom- Shear
Torsional Properties
inal Ctr,
AXIS *-X AXIS Y-Y
J Ck To
H Wt Bo
/ s r z / S r X 7
H
lb/ft in. in/ •m? in. In? in." in.3 in. in. in.' in. in." in.® in.
50 0.583 404 53.8 5.24 68.5 11.0 3,77 0,865 0.799 8,14 0.490 2,65 492 5.49 0.937
40 0.767 348 46.5 5.43 57.5 9.17 3,34 0,883 0,778 6,84 0,392 1.45 410 5.71 0.927
33.9 0.896 315 42.0 5.61 50.8 8,07 3,09 0,901 0,788 6,19 0,332 1.01 358 5.94 0.920
30 0.618 162 27.0 4.29 33.8 5,12 2,05 0,762 0,674 4,32 0,367 0.861 151 4.54 0.919
25 0.746 144 24.0 4.43 29.4 4,45 1,87 0,779 0,674 3,82 0.306 0.538 130 4.72 0.909
20.7 0.870 129 21.5 4.61 25.6 3,86 1,72 0,797 0,698 3,47 0.253 0.369 112 4.93 0.899
30 0.368 103 20.7 3.43 26.7 3,93 1,65 0,668 0,649 3,78 0.441 1.22 79,5 3.63 0.921
25 0.494 91.1 18.2 3.52 23.1 3,34 1,47 0,675 0,617 3,18 0.367 0.687 68,3 3.76 0.912
20 0.636 78.9 15,8 3.67 19.4 2,80 1.31 0,690 0,606 2,70 0.294 0.368 56,9 3.93 0.900
15.3 0.796 67.3 13,5 3.88 15.9 2,27 1.15 0,711 0.634 2,34 0.224 0.209 45.5 4.19 0.884
20 0.515 60.9 13,5 3.22 16.9 2,41 1.17 0,640 0.583 2,46 0.326 0.427 39.4 3.46 0.899
15 0.681 51.0 11.3 3.40 13.6 1,91 1.01 0,659 0.586 2,04 0.245 0.208 31.0 3.69 0.882
13.4 0.742 47.8 10.6 3.48 12,6 1,75 0.954 0.666 0.601 1,94 0.219 0168 28.2 3.79 0.875
18,75 0.431 43.9 11,0 2.82 13.9 1,97 1,01 0,598 0.565 2,17 0.344 0.434 25.1 3.05 0.894
13.75 0.604 36.1 9.02 2.99 11.0 1,52 0,848 0,613 0.554 1,73 0.252 0.186 19.2 3.26 0.874
11.5 0.697 32.5 8.14 3.11 9.63 1.31 0.775 0,623 0.572 1,57 0.211 0,130 16.5 3.41 0.862
14.75 0.441 27.2 7,78 2.51 9.75 1,37 0,772 0,561 0,532 1,63 0.309 0,267 13.1 2.75 0.875
12.25 0.538 24.2 6,92 2.59 8.46 1,16 0,696 0,568 0,525 1,42 0.257 0,161 11,2 2.86 0.862
9.8 0.647 21.2 6.07 2.72 7,19 0,957 0,617 0,578 0,541 1,26 0.205 0,0996 9.15 3.02 0.845
13 0.380 17,3 5.78 2.13 7.29 1.05 0,638 0,524 0.514 1,35 0.318 0,237 7.19 2.37 0.858
10.5 0.486 15.1 5,04 2.22 6,18 0.860 0,561 0,529 0,500 1,14 0.256 0.128 5,91 2.48 0,842
8.2 0.599 13.1 4.35 2.34 5.16 0.687 0,488 0,536 0,512 0,987 0.199 0.0736 4,70 2.65 0,824
9 0.427 8,89 3,56 1.84 4.39 0.624 0,444 0.486 0,478 0,913 0.264 0.109 2,93 2.10 0,815
6.7 0.552 7.48 2.99 1.95 3.55 0.470 0,372 0,489 0,484 0.757 0.215 0.0549 2.22 2.26 0,790
7.25 0.386 4.58 2.29 1.47 2,84 0.425 0,337 0,447 0,459 0.695 0.266 0.0817 1,24 1.75 0.767
6.25 0.434 4.00 2.00 1.50 2,43 0.345 0,284 0,441 0,435 0.569 0.221 0.0487 1,03 1.79 0,764
5.4 0.501 3.85 1,92 1.56 2,29 0.312 0,277 0,444 0,457 0.565 0.231 0.0399 0,921 1.88 0,742
4.5 0.587 3.65 1,83 1.63 2.12 0.289 0,265 0,457 0,493 0.531 0.321 0.0322 0,871 2.01 0.710
6 0.322 2.07 1.38 1.09 1,74 0,300 0,263 0,413 0,455 0.543 0.294 0.0725 0,462 1.40 0.690
5 0.392 1.85 1.23 1.12 1,52 0,241 0,228 0,405 0,439 0.464 0.245 0.0425 0,379 1.45 0,673
4.1 0.461 1.65 1.10 1,18 1,32 0,191 0,196 0.398 0.437 0.399 0.262 0,0269 0,307 1.53 0.655
3.5 0.493 1.57 1.04 1.20 1,24 0,169 0,182 0,394 0,443 0.364 0.296 0,0226 0.276 1.57 0.646
I
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-38 DIMENSIONS AND PROPERTIES
1 r
• X"^
t
•t J 1 t
U
Table 1-6
MC-Shapes
Dimensions
PNA
Shape
Area,
A
Depth,
d
Web Flange Distance
rts ho
Shape
Area,
A
Depth,
d
Thickness,

u,
2
Width,
bf
Average
Thickness,
tf
k T
Work-
able
Gage
rts ho
Shape
in.2 in. in. in. in. in. in. in. in. in. in.
MCI 8x58 17.1 18.0 18 0.700 'V16 3/e 4.20 4V4 0.625 5/8 1'/l6 151/8 2V2 1.35 17.4
X51.9 15.3 18.0 18 0,600 5/8 5/ie 4.10 4V8 0.625 S/8 IV16 1.35 17.4
X45.8 13.5 18.0 18 0,500 V2 V4. 4.00 4 0.625 5/e iVie ^ 1.34 17.4
x42,7 12.6 18.0 18 0,450 Vk V4 3.95 4 0.625 % 1'/l6 1.34 17.4
MC13x50 14,7 13.0 13 0,787 4.41 43/8 0.610 % IV16 IOVb 2V2 1,41 12.4
x40 11.7 13.0 13 0,560 5/ie 4.19 4V8 0.610 5/8 IV16 1.38 12.4
x35 10.3 13.0 13 0.447 V4 4.07 4V8 0.610 % 1^16 1,35 12.4
X31.8 9.35 13.0 13 0.375 % 3/16 4.00 4 0.610 % 1V16
1 f 1 f
1.34 12.4
MCI 2x50 14.7 12.0 12 0.835 V16 4.14 4V8 0.700 <Vl6 1=/16 93/8 2V2 1.37 11.3
x45 13.2 12.0 12 0,710 ?Vl6 % 4.01 4 0.700 "/I6 15/16 1.35 11.3
x40 11.8 12.0 12 0,590 9/16 =/l6 3.89 3% 0.700 'V16 15/16 1,33 11.3
x35 10,3 12.0 12 0.465 Vl6 V4 3.77 33/4 0.700 15/16
'1
1.30 11.3
x31 9.12 12.0 12 0,370 3/8 3/16 3.67 3% 0.700 'V16 15/16
T
21/4 1.28 11.3
MCI 2x14.3 4,18 12.0 12 0.250 V4 Vs 2.12 2V8 0.313 =/l6 3/4 10V2 IV4' 0.672 11.7
MCI 2x10.6= 3.10 12.0 12 0.190 3/16 Vs 1.50 1V2 0.309 5/16 ; 3/4 10V2 0.478 11.7
MCI 0x41.1 12.1 10.0 10 0.796 "/,6 Vl6 4-32 0.575 9/16 IS/16 73/8 2V29 1.44 9.43
X33.6 9.87 10.0 10 0.575 3/16 5/I6 4.10 4V8 0.575 9/16 IS/16 73/8 2V28 1.40 9.43
X28.5 8.37 10,0 10 0.425 '/16 V4 3.95 4 0.575 9/16 15/16 73/8 2V29 1.36 9.43
MC10x25 7.34 10.0 10 0.380 % 3/16 3.41 33/8 0.575 9/ie 15/16 73/8
23 1.17 9.43
x22 6.45 10.0 10 0.290 5/16 3/16 3.32 33/8 0.575 9/16 15/16 73/8
28
1.14 9.43
MCI 0x8.4' 2.46 10.0 10 0.170 3/16 Ve 1.50 IV2 0.280 V4 3/4 8V2 0.486 9.72
1.95 10.0 10 0.152 V8 VI6 1.17 1V8 0.202 3/16 3/16 8% 0.363 9.80
MC9X25.4 7.47 9.00 9 0.450 Vie" V4 3.50 3% 0.550 9/16 IV4 6'/2
29
1.20 8.45
X23.9 7.02 9.00 9 0.400 3/8 3/16 3.45 31/2 0.550 3/16 IV4 6V2 2« 1.18 8.45
MC8X22.8 6.70 8.00 8 0.427 Vie V4 3.50 3V2 0.525 V2 13/16 55/8 29
1.20 7.48
X21.4 6.28 8,00 8 0.375 3/8 3/16 3.45 31/2 0.S25 V2 13/16 55/8
29
1.18 7.48
MC8x20 5.87 8,00 8 0.400 % 3.03 3 0,500 V2 1V8 53/4
29
1.03 7,50
X18.7 5.50 8.00 8 0.353 % 3/16 2.98 3 0.500 V2 1V8 53/4
29
1.02 7.50
MC8x8.5 2.50 8.00 8 0.179 3/16 V8 1.87 1% 0.311 =/l6 13/16 6-V8 iVsO 0.624 7,69
° Shape is slender for compression with F, = 36 ksi.
s The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
- Indicates flange is too narrow to establish a workable gage.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-39 DIMENSIONS AND PROPERTIES
Table 1-6 (continued)
MC-Shapes
Properties
M018-MC8
Noiii'- Shear
Torsional Properties
inal Ctr,
AXIS IrK AXIS T-T
Wt Bo
J Cyv
Wt Bo
/ S r / / S r X Z Xf H
Ib/ff in. fn.« in? in. In? in." in.' in. in. •m? in. in." in.6 in.
58 0.695 675 75.0 6.29 95.4 17.6 5:28 1.02 0.862 10.7, 0.474 2,81 1070 6.56 0.944
51,9 0.797 627 69.6 6.41 87.3 16.3 5.02 1.03 0.858 9.86 0.424 2.03 985 6.70 0.939
45.8 0.909 578 64.2 6.55 79.2 14.9 4.77 1.05 0.866 9.14 0.374 1.45 897 6,87 0.933
42.7 0.969 554 61.5 6.64 75.1 14.3 4.64 1.07 0.877 8.82 0.349 1.23 852 6.97 0,930
50 0.815 314 48.3 4.62 60.8 16.4 4.77 1.06 0.974 10.2 0,566 2.96 558 5.07 0.875
40 1.03 273 41.9 4.82 51.2 13.7 4.24 1.08 0.963 8.66 0.452 1.55 462 5.32 0.859
35 1.16 252 38.8 4.95 46.5 12.3 3.97 1.09 0.980 8.04 0,396 1.13 412 5.50 0.849
31.8 1.24 239 36.7 S.05 43.4 11.4 3.79 1.10 1.00 7.69 0.360 0.937 380 5.64 0.842
50 0.741 269 44.9 4.28 56.5 17.4 5.64 1.09 1.05 10.9 0.613 3.23 411 4.77 0.859
45 0.844 251 41.9 4.36 52.0 15.8 5.30 1.09 1.04 10.1 0.550 2.33 373 4.88 0.851
40 0.952 234 39.0 4.46 47.7 14.2 4.98 1.10 1.04 9.31 0.490 1.69 336 5,01 0.842
35 1.07 216 36.0 4.59 43.2 12.6 4.64 1.11 1.05 8.62 0.428 1.24 297 5.18 0.831
31 1.17 202 33.7 4.71 39.7 11.3 4.37 1.11 1.08 8.15 0.425 1.00 267 5.34 0.822
14.3 0.435 76.1 12.7 4.27 15.9 1.00 0.574 0.489 0.377 1.21 0.174 0.117 32.8 4.37 0.965
10.6 0.284 55.3 9.22 4.22 11.6 0.378 0.307 0.349 0.269 0.635 0.129 0.0596 11.7 4.27 0.983
41.1 0.864 157 31.5 3.61 39.3 15.7 4.85 1.14 1.09 9.49 0.604 2.26 269 4.26 0.790
33.6 1.06 139 27.8 3.75 33.7 13.1 4.35 1.15 1.09 8.28 0,494 1.20 224 4.47 0.770
28.5 1.21 126 25.3 3.89 30.0 11.3 3.99 1.16 1.12 7.59 0,419 0.791 193 4.68 0.752
25 1.03 110 22.0 3.87 26.2 7.25 2.96 0.993 0.953 5.65 0.367 0.638 124 4.46 0.803
22 1.12 102 20.5 3.99 23.9 6.40 2.75 0.997 0.990 5.29 0.467 0.510 110 4.62 0.791
8.4 0.332 31.9 6.39 3.61 7.92 0.326 0.268 0.364 0.284 0.548 0.123 0.0413 7.00 3.68 0.972
6.5 0.182 22.9 4.59 3.43 5.90 0.133 0.137 0.262 0.194 0.284 0.0975 0.0191 2.76 3.46 0.988
25.4 0.986 87.9 19.5 3.43 23.5 7.57 2.99 1.01 0.970 5.70 0.415 0.691 104 4.08 0.770
23.9 1.04 84.9 18.9 3.48 22.5 7.14 2.89 1.01 0.981 5.51 0.390 0.599 98.0 4.15 0.763
22.8 1.04 63.8 15.9 3.09 19.1 7.01 2.81 1.02 1.01 5.37 0.419 0.572 75.2 3.84 0.715
21.4 1.09 61.5 15.4 3.13 18.2 6.58 2.71 1.02 1.02 5.18 0.452 0.495 70.8 3.91 0.707
20 0.843 54.4 13.6 3.04 16.4 4.42 2.02 0.867 0.840 3.86 0.367 0.441 47,8 3.58 0.779
18.7 0.889 52.4 13.1 3.09 15.6 4.15 1.95 0.868 0.849 3.72 0.344 0.380 45.0 3.65 0.773
8.5 0.542 23.3 5.82 3.05 6.95 0.624 0.431 0.500 0,428 0.875 0.156 0.0587 8.21 3.24 0.910
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-51 DIMENSIONS AND PROPERTIES
x-t
IL
u
PNA
Table 1-6 (continued)
MC-Shapes
Dimensions
Shape
Area,
A
in.2
Depth,
d
in.
Web
Thickness,
in. in.
Range
Width,
bf
in.
Average
Thickness,
U
in.
Distance
in.
Work-
able
Gage
in.
ho
in.
MC7X22.7
X19.1
MC6x18
X15.3
MC6X16.3
X15.1
MC6X12
MC6x7
x6.5
MC4X13.8
MC3x7.1
6.67
5.61
5.29
4.49
4,79
4.44
3.53
2.09
1.95
4.03
2.11
7.00
7.00
6.00
6.00
6,00
6.00
6.00
6.00
6.00
4,00
3,00
0.503
0.352
0.379
0.340
0.375
0.316
0.310
0.179
0.155
0.500
0.312
3.60
3.45
3.50
3.50
3.00
2.94
2.50
1.88
1.85
2.50
1.94
3%
3V2
3V2
3Vz
3
3
2V2
1%
1%
2V2
2
0.500
0.500
0.475
0.385
0.475
0.475
0.375
0.291
0.291
0.500
0.351
iVs
IVB
IV16
%
IV16
1V,6
%
%
3/4
«/l6
43/4
4%
3%
4V4
3%
S'/e
41/4
4V2
41/2
2
13/8
2S
28

28
1W
1%8
iVz®
1.23
1.19
1.20
1.20
1.03
1.01
0.856
0.638
0.631
0.851
0.657
6.50
6.50
5,53
5.62
5.53
5.53
5.63
5.71
5.71
3.50
2.65
«The actual size, combination and orientation of fastener components siiould be compared with the geometry of the
cross section to ensure compatibility.
- Indicates flange is too nan-ow to establish a workable gage.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-41 DIMENSIONS AND PROPERTIES
Table 1-6 (continued)
MC-Shapes
Properties
IVIC7-MC3
Nom-
inal
Wt.
Shear
Ctr,
So
Axis X-X Axis Y-Y
*P
Torsional Properties
lb/ft in. in." in.' in." in.=' in. in.' in. in." in.» in.
22.7
19.1
18
15.3
16.3
15.1
12
7
6.5
13.8
7.1
1,01
1.15
1.17
1.16
0.930
0.982
0.725
0.583
0.612
0.643
0.574
47.4
43.1
29.7
25.3
26,0
24.9
18.7
11.4
11.0
8.85
2.72
13.5
12.3
9.89
8.44
8.66
8.30
6,24
3.81
3,66
4:43
1,81
2,67
2.77
2.37
2.38
2.33
2.37
2.30
2.34
2.38
1.48
1.14
16.4
14.5
11.7
9.91
10.4
9.83
7.47
4.50
4.28
5.53
2.24
7.24
6.06
5.88
4.91
3.77
3.46
1,85
0,603
0,565
2,13
0,666
2,83
2.55
2.47
2,01
1,82
1,73
1,03
0,439
0,422
1,29
0.518
1.04
1.04
1.05
1,05
0,887
0,883
0,724
0,537
0,539
0,727
0,562
1.04
1,08
1,12
1.05
0,927
0,940
0.704
0,501
0.513
0.849
0.653
5.38
4.85
4,68
3,85
3,47
3,30
1,97
0,865
0,836
2,40
0.998
0,477
0,579
0,644
0,511
0,465
0,543
0,294
0,174
0,191
0,508
0,414
0,625
0.407
0.379
0.223
0.336
0.285
0.155
0.0464
0,0412
0,373
0,0928
58.3
49,3
34,6 '
30.0
22.1
20,5
11.3 .
4,00
3,75
4,84
0,915
3,53
3,70
3.46
3.41
3.11
3,18
2,80
2,63
2,68
2,23
1,76
0.659
0.638
0.563
0.579
0,643
0.634
0,740
0,830
0,824
0,550
0,516
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-42 DIMENSIONS AND PROPERTIES
f Y
zHt
PNA
yp
-PNA
Table t-7
Angles
Properties
Shape
WT.
Area,
A
Axis X-X
Flexural-Torsional
Properties
Shape
WT.
Area,
A / S r
7 Z Yp
Flexural-Torsional
Properties
Shape
WT.
Area,
A / S r
7 Z Yp J C„ z
Shape
in. lb/ft in.^ in." in? in. in. in.' in. in." in.» in.
L8X8X1V8 1% 56.9 16.8 98.1 17,5 2,41 2.40 31.6 1.05 7.13 32.5 4.29
XL 1% 51.0 15.1 89,1 15,8 2.43 2,36 28,5 0.944 5.08 23.4 4.32
x% 1V2 45.0 13.3 79.7 14,0 2.45 2,31 25,3 0.831 3.46 16.1 4.36
x% 1% 38.9 11.5 69.9 12,2 2.46 2,26 22.0 0,719 2.21 10.4 4.39
xVs IV4 32.7 9.69 59.6 10,3 2.48 2,21 18.6 0.606 1.30 6.16 4.42
X8/I6 13/16 29.6 8.77 54.2 9.33 2.49 2,19 16.8 0.548 0.961 4.55 4.43
xVz 26.4 7.84 48.8 8.36 2.49 2,17 15.1 0,490 0.683 3.23 4.45
L8x6x1 IV2 44.2 13.1 80.9 15.1 2.49 2.65 27.3 1.45 4.34 16.3 3.88
x% 1% 39.1 11.5 72.4 13,4 2.50 2,60 24.3 1.43 2.96 11.3 3.92
X5/4 IV4 33.8 9.99 63.5 11,7 2.52 2.55 21.1 1.34 1.90 7.28 , 3.95
X5/8 1V8 28.5 8.41 54.2 9,86 2.54 2.50 17,9 1.27 1.12 4.33 3.98
x'/w IV16 25.7 7.61 49.4 8.94 2.55 2.48 16.2 1.24 0,823 3.20 3.99
xVz 1 23.0 6.80 44.4 8.01 2.55 2.46 14.6 1.20 0.584 2.28 4.01
x'/l6 15/16 20.2 5.99 39.3 7.06 2.56 2.43 12.9 1.15 0,396 1.55 4.02
L8x4x1 IV2 37.4 11.1 69.7 14.0 2.51 3.03 24.3 2.45 3,68 12.9 3.75
x% 1% 33.1 9.79 62.6 12.5 2.53 2.99 21.7 2.41 2,51 8.89 3.78
X3/4 1'/4 28.7 8.49 55.0 10.9 2.55 2.94 18.9 2.34 1,61 5.75 3.80
x5/e 1V8 24.2 7.16 47.0 9.20 2.56 2.89 16.1 2,27 0,955 3.42 3.83
IV16 21.9 6.49 42.9 8.34 2.57 2.86 14.6 2,23 0.704 2.53 3.84
xV2 1 19.6 5.80 38.6 7.48 2.58 2.84 13.1 2.20 0.501 1.80 3.86
X'/16 17.2 5.11 34.2 6.59 2.59 ' 2.81 11.6 2,16 0.340 1.22 3.87
L7X4X3/4 IV4 26.2 7.74 37.8 8.39 2.21 2.50 14.8 1.84 1.47 3.97 3.31
X5/8 1V8 22.1 6.50 32,4 7.12 2.23 2.45 12,5 1.80 0.868 2.37 3.34
xVz 1 17.9 5.26 26.6 5.79 2.25 2.40 10.2 1.74 0.456 1.25 3,37
X'/16 «/l6 15.7 4.63 23,6 5.11 2,26 2.38 9.03 1.71 0.310 0.851 3.38
X% % 13.6 4.00 20,5 4.42 2.27 2.35 7.81 1.67 0.198 0.544 3.40
L6x6x1 IV2 37.4 11.0 35,4 8.55 1,79 1.86 15.4 0.917 3.68 9.24 3.18
x% 1% 33.1 g.75 31,9 7.61 1,81 1.81 13.7 0.813 2,51 6.41 3.21
X3/4 IV4 28.7 8.46 28,1 6.64 1,82 1.77 11.9 0.705 1,61 4,17 3.24
X5/8 1V8 24.2 7.13 24.1 5,64 1.84 1.72 10.1 0.594 0,955 2.50 3.28
X®/L6 IV16 21.9 6.45 22.0 5.12 1,85 1.70 9.18 0.538 0,704 1.85 3.29
xVz 1 19.6 5.77 19.9 4,59 1,86 1.67 8.22 0.481 0,501 1.32 3.31
X'/16 «/l6 17.2 5.08 17.6 4.06 1,86 1.65 7.25 0.423 0.340 0,899 3.32
X5/8 % 14.9 4.38 15.4 3.51 1,87 1.62 6.27 0.365 0.218 0,575 3.34
X5/I6 '3/16 12.4 3.67 13,0 2.95 1.88 1,60 5.26 0.306 0.129 0,338 3.35
Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1 -7B.
AMERKAN INSTITUTE OF STEEL CONSTRUCTION

1-43 DIMENSIONS AND PROPERTIES
Table 1-7 (continued)
Angles
Properties
L8-L6
Shape
Axis Y-Y AxisZ-Z 0.
Shape / S r X Xp / S r Tan
a ksi
Shape
in." in.' in. in. in.' in. in." in? in.
Tan
a ksi
L8X8X1V8 98.1 17.5 2.41 2.40 31.6 1.05 40.9 12,0 1.56 1,00 1.00
x1 89.1 15.8 2.43 2.36 28.5 0.944 36,8 11,0 1.56 1.00 1.00
yJk 79.7 14.0 2.45 2.31 25.3 0.831 32,7 10.0 1.57 1.00 1.00
>?h 69.9 12.2 • 2.46 2.26 22.0 0.719 28,5 8.90 1.57 1.00 1.00
X5/8 59.8 10.3 2.48 2.21 18.6 0.606 24.2 7.72 1.58 1.00 0.997
X'/16 54.2 9.33 2.49 2.19 16.8 0.548 22,0 7.09 1.58 1.00 0.959
XV2 48.8 8.36 2.49 2.17 15.1 0.490 19,7 6.44 1.59 1:00 0.912
L8x6x1 38.8 8.92 1.72 1.65 16.2 0.819 21,3 7.60 ,1.28 0.542 1.00
x% 34.9 7.94 1.74 1,60 14.4 0.719 18.9 6.71 1.28 0.546 1.00
X3/4 30.8 6.92 1.75 1.56 12.5 0.624 16,5 5.82 1.29 0.550 1.00
X5/8 26.4 5.88 1.77 1.51 10.5 0.526 141 491 1.29 0.554 0,997
x3/f6 24.1 5.34 1.78 1.49 ,9.52 0,476 12.8 4.45 1.30 0.556 0,959
XV2 21.7 4.79 1.79 1.46 8.52 0.425 11.5 3.98 1.30 0.557 0.912
X'/16 19.3 4.23 ,1.80 1.44 7.50 0,374 10.2 3.51 1.31 0.559 0.850
L8x4x1 11.6 ' 3.94 1.03 1.04 7.73 0.694 7.87 3.48 0.844 , 0.247 1.00
x% 10.5 3.51 1.04 0.997 6.77 0.612 7.01 3.06 0.846 0.252 1.00
X3/4 9.37 1 3.07 1.05 0.949 5.82 0.531 6.13 2.65 0.850 0.257 1.00
x% 8.11 2.62 1.06 0.902 4.86 0.448 5.24 2.24 0.856 0.262 0.997
7.44 2.38 1.07 0.878 4.39 0.406 4.79 2.03 0.859 0.264 0.959
xVz 6.75 2.15 . 1.08 0.854 3.91 0.363 4.32 1.82 0.863 0.266 0.912
x'/ie 6.03 1.90 '1.09 0.829 3.42 0.319 3.84 1.61 0.867 0.268 0.850
L7X4X3/4 9.00 3.01 1.08 1.00 5.60 0.553 5.64 2.57 0.855 0.324 1.00
x% 7.79 2.56 1.10 0.958 4.69 0.464 4.80 2.16 0.860 0,329 1.00
xV2 6.48 2.10 1.11 0.910 3.77 0.376 3.95 1.76 0,866 0.334 0.965
xVK 5.79 1.86 1.12 0.886 3.31 0.331 3.50 1.55 0.869 0.337 0.912
x% 5.06 1.61 1.12 0.861 2.84 0.286 3.05 1.34 0.873 0.339' 0.840
L6x6x1 35.4 8.55 1.79 1.86 15.4 0.917 15.0 5.70 1.17 1.00 1.00
x% 31.9 7.61 1.81 1.81 13.7 0.813 13.3 5.18 1.17 1.00 1.00
X3/4 28.1 6.64 1.82 1.77 11.9 0.705 11.6 4.63 1.17 1.00 1.00
X% 24.1 5.64 1.84 1.72 10.1 0.594 9,83 4.04 1.17 1.00 1.00
X9/16 22.0 5.12 1.85 1.70 9.18 0.538 8.94 3,73 1.18 1.00 1.00
XV2 19.9 4.59 1.86 1.67 8.22 0.481 8.04 3,40 1.18 1.00 1.00
X'/I6 17.6 4.06 1.86 1.65 7,25 0,423 7.11 3.05 1.18 1.00 0.973
X% 15.4 3.51 1.87 1.62 6.27 0.365 6,17 2.69 1.19 1.00 0.912
X=/l6 13.0 2.95 1.88 1.60 5.26 0.306 5,20 2.30 1.19 1.00 0.826
Note: For workable gages, refer to Table 1-7A. For compactness, criteria, refer to Table 1-7B.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-44 DIMENSIONS AND PROPERTIES
5 Y
-PNA
PNA
Table 1-7 (continued)
Angles
Properties
Shape
/ir wt.
Area,
A
AxisX-X
Flexural-Toraional
Properties
Shape
/ir wt.
Area,
A
/ S r y Z h
Flexural-Toraional
Properties
Shape
/ir wt.
Area,
A
/ S r y Z h J To Shape
in. Ib/tt in.2 in." in.' in. in. in.' in. in." in.« in.
L6x4x% 1% 27.2 8.00 27.7 7.13 1.86 2.12 12.7 1.43 2.03 4.04 2.82
X3/4 1V4 23.6 6.94 24.5 6.23 1.88 2.07 11.1 1.37 1.31 2.64 2.85
x5/s 1V8 20.0 5.86 21.0 5.29 1.89 2.03 9.44 1.31 0.775 1.59 2.88
x^i/ie 1V16 18.1 5.31 19.2 4,81 1.90 2.00 8.59 1.28 0.572 1.18 2.90
xV2 1 16.2 4.75 17.3 4,31 1.91 1.98 7.71 1.25 0.407 0.843 2.91
xVi6 14.3 4.18 15.4 3,81 1.92 1.95 6.81 1.22 0.276 0.575 2.93
x% % 12,3 3.61 13,4 3.30 1.93 1.93 5.89 1.19 0.177 0.369 2.94
X5/I6 "/16 10.3 3.03 11.4 2.77 1.94 1.90 4.96 1.15 0.104 0.217 2.96
L6X3V2XV2 1 15.3 4.50 16.6 4:23 1.92 2.07 7.49 1.50 0.386 0,779 2.88
x% % 11.7 3.44 12.9 3.23 1.93 2.02 5.74 1.41 0.168 0.341 2,90
xS/l6 "/16 9.80 2.89 10,9 2.72 1.94 2.00 4.84 1.38 0.0990 0.201 2.92
L5x5x% 13/8 27.2 8.00 17.8 5,16 1.49 1.56 9.31 0.800 2.07 3.53 2.64
X3/4 1V4 23.6 6.98 15,7 4,52 1.50 1.52 8.14 0.698 1.33 2.32 2.67
xVs iVs 20.0 5.90 13,6 3,85 1.52 1.47 6.93 0.590 0.792 1.40 2.70
xV2 1 16.2 4.79 11.3 3.15 1.53 1.42 5.66 0,479 0.417 0.744 2.73
-xVK '5/16 14.3 ; 4,22 10.0 2.78 1.54 1.40 5.00 0,422' 0.284 0.508 2.74
% 12.3 3.65 8.76 2.41 1.55 1.37 4.33 0.365 0.183 0.327 2.76
xS/l6 «/l6 10.3 3.07 7.44 2.04 1.56 1.35 3.65 0.307 0.108 0.193 2.77
L5X3V2X3/4 1.3/16 19.8 5.85 13,9 4,26 1.55 1,74 7.60 1.10 1,09 1.52 2.36
1V16 16.8 4.93 12.0 3.63 1,56 1.69 6.50 1.06 0.651 0.918 2.39
xV2 13.6 4.00 10.0 2.97 1.58 1.65 5,33 1.00 0,343 0.491 2.42
X3/8 "/16 10.4 3.05 7.75 2,28 1,59 1.60 4:09 0.933 0.150 0.217 2.45
X5/I6 8.70 2.56 6.58 1.92 1.60 1.57 3,45 0.904 0.0883 0.128 2.47
xVa 7.00 2.07 5.36 1,55 1.61 1.55 2.78 0.860 0.0464 0.0670 2.48
L5X3XV2 'Vl6 12.8 3.75 9.43 2.89 1.58 1.74 5.12 1.25 0.322 0.444 2.38
x'/l6 % 11.3 3.31 8.41 2.56 1.59 1.72 4.53 1.22 0.220 0.304 2.39
x% 9.80 2.86 7.35 2.22 1.60 1.69 3.93 1.19 0.141 0.196 2.41
8.20 2,41 6.24 1.87 1.61 1.67 3.32 1.14 0.0832 0.116 2.42
xV4 "/16 6.60 1.94 5.09 1.51 1.62 1.64 2.68 1.12 0.0438 0.0606 2.43
L4x4x% iVs 18.5 5.44 7.62 2.79 1.18 1.27 5.02 0.680 1.02 1,12 2.10
x% 1 15.7 4.61 6.62 2.38 1.20 1.22 4.28 0.576 0.610 0.680 2.13
xVz % 12.8 3.75 5.52 1.96 1.21 1.18 3.50 0.469 0.322 0.366 2.16
xVK 11.3 3.30 4.93 1,73 1.22 1.15 3.10 0.413 0.220 0.252 2.18
X3/8 9.80 2.86 4.32 1.50 1,23 1.13 2.69 0.358 0.141 0,162 2.19
xVl6 'Vl6 8,20 2.40 3.67 1,27 1.24 1.11 2.26 0,300 0,0832 0,0963 2.21
xV4 % 6.60 1.93 3,00 1,03 1,25 1,08 1.82 0.241 0.0438 0,0505 2.22
Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-45 DIMENSIONS AND PROPERTIES
Table 1-7 (continued)
Angles
Properties
L6-L4
Shape
AxisY-Y Axis Z-Z
Shape / S r * Z Xp / S r Tan
a
Fy=:3B
ksi
Shape
in.' in.=' in. in. m? in. in." ln.» in.
Tan
a
Fy=:3B
ksi
L6x4x% 9.70 3.37 1.10 1.12 6.26 0.667 5.82 2.91 0.854 0.421 1.00
X3/4 8.63 2.95 1.12 1,07 5,42 0.578 5.08 2.51 0.856 0.428 1.00
xVs 7.48 2.52 1.13 1.03 4.56 0.488 4.32 2.12 0.859 0,435 1.00
X^/LB 6.86 2.29- 1.14 1.00 4.13 0.443 3.94 1.92 0.861 0.438 1,00
xVs 6.22 , 2.06 1,14 0.981 3.69 0,396 3.55 1.72 0,864 0,440 1.00
xVK 5.56 1.83 1.15 0.957 3.24 0.348 3,14 1,51 0.867 0.443 0.973
X3/8 4.86 1.58 1.16 0.933 2.79 0.301 2.73 1,31 0.870 0.446 0.912
xVie 4.13 1.34 1.17 0,908 2.33 0.253 2.31 1,10 . 0.874 0.449 0,826
L6X3V2XV2 4.24 1.59 0.968 0,829 2.88 0.375 2.58 1.34 0.756 0,343 1,00
.x% 3.33 1.22 0.984 0.781 2.18 0,287 2.00 1.02 0.763 0.349 0,912
xVie 2.84 1.03 0,991 0.756 1.82 0.241 1.70 0,859 0.767 0.352 0,826
L5x5x% 17.8 5.16 1,49 1.56 9.31 0.800 7.56 3.43 0.971 1.00 1.00
15.7 4.52 1.50 1.52 8,14 0,698 6.59 3.08 0.972 1.00 1,00
13.6 3.85 1,52 1,47 6,93 0.590 5,61 2,70 0.975 1.00 1,00
xV2 11.3 3.15 1.53 1,42 5,66 0.479 4.60 2.29 0.980 1.00 1.00
xVn 10.0 2.78 1.54 1,40 5.00 0,422 4,08 , 2.06 0.983 1,00 1.00
x% 8.76 2,41 1.55 1.37 4,33 0.365 3,55 1.83 0.986 1.00 0.983
X5/16 7.44 2.04 1.56 1,35 3.65 0.307 3.01 1,58 0.990 1,00 0.912
L5X3V2X3/4 5.52 2.20 0.974 0.993 4.07 0,585 3.22 1,90 0.744 0,464 1.00
x% 4.80 1.88 0.987 0.947 3.43 0.493 2.74 1.60 0.746 0.472 1.00
xV2 4.02 1.55 1.00 0,901 2.79 .0,400 2.25 1.29 0.750 0.479 1.00
x% 3.15 1.19 1.02 0.854 2.12 0,305 1.74 0,985 0.755 0;485 0.983
X=/16 2.69 1.01 1.02 0,829 1,77 0.256 1.47 0.827 0.758 0.489 0,912
xV4 2.20 0.816 1.03 0.804 1.42 0,207 1.19 0,667 0.761 0,491 0.804
L5X3XV2 2.55 1.13 0.824 0.746 2.08 0.375 1.55 0.953 0.642 0.357 1.00
2.29 1.00 0.831 0,722 1.82 0.331 1.37 0.840 0.644 0,361 1.00
x% 2.01 0.874 , 0.838 0.698 1.57 0.286 1.20 0.726 0.646 0.364 0.983
X5/16 1.72 0.739 0.846 0.673 1,31 0.241 1.01 0.610 0.649 0,368 0.912
xV4 1.41 0.600 0.853 0.648 1,05 0.194 0.825 0.491 0.652 0,371 0.804
L4X4X3/4 7.62 2.79 1,18 1.27 5.02 0,680 3.25 1.81 0.774 1,00 1.00
x% 6.62 2.38 1.20 1,22 4.28 0.576 2,76 1.59 0.774 1.00 1.00
xV2 5.52 1.96 1,21 1.18 3.50 0,469 2,25 1.35 0.776 1.00 1,00
X7I6 4.93 1.73 1.22 1.15 3.10 0.413 2.00 1.22 0.777 1.00 1.00
x% 4.32 1.50 1.23 1.13 2.69 0.358 1.73 1.08 0.779 1.00 1,00
xVl6 3.67 1.27 1,24 1.11 2.26 0.300 1.46 0.936 0.781 1.00 0.997
xV4 3.00 1.03 1,25 1.08 1.82 0,241 1.18 0.776 0.783 1.00 0,912
Note; For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B,
AMERICAN INSTITUTE OF STEEL CONSTRI/CTJON

1-46 DIMENSIONS AND PROPERTIES
1
'P-J
T
-PNA
rp
PNA
Table 1-7 (continued)
Angles
Properties
Shape
wt.
Area,
A
AxisX-X
Flexural-Torsional
Properties
Shape
wt.
Area,
A
/ S r y
7 yp
Flexural-Torsional
Properties
Shape
wt.
Area,
A
/ S r y
7 yp J OfV fo
Shape
in. lb/ft in." in.' in. in. in.' in. in." in.' in.
L4X3V2XV2 Vs 11.9 3.50 5.30 1.92 1.23 1.24 3.46 0.500 0,301 0.302 2.03
x% 3/4 9.10 2.68 4.15 1.48 1.25 1.20 2.66 0.427 0,132 0.134 2.06
X5/I6 'Vie 7.70 2.25 3.53 1.25 1.25 1.17 2.24 0.400 0,0782 0.0798 2.08
XV4 % 6.20 1.82 2.89 1.01 1.26 1.14 1.81 0.360 0,0412 0.0419 2.09
L4X3X5/8 1 13.6 3.99 6.01 2.28 1.23 1.37 4.08 0.808 0,529 0.472 1.91
xV2 % 11.1 3.25 5.02 1.87 1.24 1.32 3.36 0.750 0.281 0.255 1.94
X3/8 8.50 2.49 3.94 1.44 1.26 1.27 2.60 0.680 0.123 0.114 1.97
X5/I6 "/16 7.20 2.09 3.36 1.22 1.27 1.25 2.19 0.656 0.0731 0.0676 1.98
x'A % 5.80 1.69 2.75 0.988 1.27 1.22 1.77 0.620 0.0386 0.0356 1.99
L3V2X3V2XV2 % 11.1 3.25 3.63 148 1.05 1.05 2.66 0.464 0.281 0.238 1.87
X'/16 '3/16 9.80 2.89 3.25 1.32 1.06 1.03 2.36 0.413 0.192 0.164 1.89
x3/e 8.50 2.50 2.86 1.15 1.07 1.00 2.06 0.357 0.123 0.106 1.90
X5/I6 'Vl6 7.20 2.10 2.44 0.969' 1.08 0.979 1.74 0.300 0.0731 0,0634 1,92
xV4 % 5.80 1.70 2.00 0.787 1.09 0.954 1.41 0.243 0.0386 0.0334 1,93
L3V2X3XV2 % 10.2 3.02 3.45 1.45 1.07 1.12 2.61 0.480 0.260 0.191 1.75
x'/ie '3/16 aio 2.67 3.10 1.29 1.08 1.09 2.32 0.449 0.178 0,132 1.76
X3/8 3/4 7.90 2.32 2.73 1.12 1.09 1.07 2.03 0.407 0.114 0.0858 1.78
X5/16 'Vl6 6.60 1.95 2.33 0.951 1.09 1.05 1.72 0.380 0.0680 0.0512 1.79
X'A 5/6 5.40 1.58 1.92 0.773 1.10 1.02 1.39 0.340 0.0360 0.0270 1.80
L3V2X2V2XV2 % 9.40 2.77 3.24 1.41 1.08 1.20 2.52 0730 0.234 0.159 1.66
X3/8 3/4 7.20 2.12 2.56 1.09 1.10 1.15 1.96 0.673 0.103 0,0714 1.69
X=/16 1V16 6.10 1.79 2.20 0.925 1.11 1.13 1.67 0.636 0.0611 0.0426 1.71
xV4 Vs 4.90 1.45 1.81 0.753 1.12 1.10 1.36 0.600 0.0322 0.0225 1.72
L3X3XV2 % 9.40 2.76 2.20 1.06 0.895 0.929 1.91 0.460 0.230 0.144 1.59
XVK '3/16 8.30 2.43 1.98 0.946 0.903 0.907 1.70 0.405 0.157 0.100 1.60
x% 3/4 7.20 2.11 1.75 0.825 0.910 0.884 1.48 0.352 0.101 0.0652 1.62
X5/16 "/16 6.10 1.78 1.50 0.699 0.918 0.860 1.26 0.297 0.0597 0.0390 1.64
xV4 5/8- 4.90 1.44 1.23 0.569 0.926 0.836 1.02 0.240 0.0313 0.0206 1.65
X3/I6 9/16 3.71 1.09 0.948 0.433 0.933 0,812 0,774 0.182 0.0136 0.00899 1.67
IZxZVzxVi % 8.50 2.50 2.07 1.03 0.910 0.995 1.86 0.500 0.213 0.112 1.46
xVK '3/16 7,60 2.22 1.87 0.921 0.917 0.972 1.66 0.463 0.146 0.0777 1.48
x3/e 3A 6.60 1.93 1.65 0.803 0.924 0.949 1.45 0.427 0.0943 0.0507 1.49
xVie "/16 5;60 1.63 1.41 0.681 0.932 0.925 1.23 0.392 0.0560 0.0304 1.51
xV4 5/8 4.50 1.32 1.16 0.555 0.940 0.900 1.000 0.360 0.0296 0.0161 1.52
X3/,6 9/16 3.39 1.00 0.899 0.423 0.947 0.874 0.761 0,333 0.0130 0.00705 1.54
Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-47 DIMENSIONS AND PROPERTIES
Table 1-7 (continued)
Angles
Properties
L4-L3
Shape
Axis Y-Y AxisZ-Z a,
Shape / S r X Z Xp / S r Tan
a
FY = 36
ksi
Shape
in." ifl.3 in. in. •m? in. in.^ •m? in.
Tan
a
FY = 36
ksi
. L4X3V2XV2 3.76 1.50 1.04 0.994 2.69 0.438 1.80 1.17 0.716
0.750 1.00
2.96 1.16 1.05 0.947 2.06 0.335 1.38 0.938 0.719 0.755 1.00
X=/16 2.52 0.980 1.06 0.923 1.74 0.281 1.17 0.811 0.721 0.757 0.997
xV4 2.07 0.794 1.07 0.897 1.40 0.228 0.950 0.653 0.723 0.759 0.912
L4X3X5/8 2.85 1.34 0.845 0.867 2.45 0.499 1.59 1.13 0.631 0.534 1.00
xV2 2.40 1.10 0.858 0.822 1.99 0.406 1.30 0.927 . 0.633 0.542 1.00
x% 1.89 0.851 0.873 0.775 1.52 0.311 1.01 0.705 0.636 0.551 1.00
xS/ie 1.62 0.721 0.880 0.750 1.28 0.261 0.851 0.591 0.638 0.554 0.997
xV4 1.33 . 0.585 0.887 0.725 1.03 0.211 0.691 0.476 0.639 0.558 0.912
L3V2X3V2XV2 3.63 1.48 1.05 1.05 2.66 0.464 1.51 1.01 0.679 1.00 1.00
X7I6 3.25 1.32 1.06 1.03 2.36 0.413 1,34 0.920 0.681 1.00 1.00
X3/8 2.86 1.15 1.07 1.00 2.06 0.357 1,17 0.821 0.683 1.00 1.00
X5/I6 2.44 0.969 1.08 0.979 1.74 0.300 0.989 0.714 0.685 1.00 1.00
xV4 2.00 0.787 • 1.09 0.954 1.41 0.243 0,807 0.598 0.688 1.00 0.965
L3V2X3XV2 2.32 1.09 0.877 ,0.869 1.97 0.431 1.15 0.851 0.618 0.713 1.00
X'/16 2.09 0.971 0.885 0.846 1.75 0.381 1.03 • 0.774 0.620 0.717 1.00
y?h 1.84 0.847 0.892 0,823 1.52 0.331 0.895 0.692 0.622 0.720 1.00
X5/I6 1.58 0.718 0.900 0.798 1.28 0.279 0.761 0.602 0.624 0.722 1.00
XVA 1.30 0.585 0.908 0.773 1.04 0.226 0.623 0.487 0.628 0.725 0.965
L3V2X2V2XV2 1.36 0.756 0.701 0.701 1.39 0.396 0.782 0.649 0.532 0.485 1.00
X3/8 1.09 0.589 0.716 0.655 ,1.07 0.303 0.608 0.496 0.535 0.495 1.00
X5/I6 0.937 0.501 0.723 0.632 0.90Q 0.256 0.518 0.419 0.538 0.500 1.00
xVi 0.775 0.410 0.731 0.607 0.728 0.207 0.425 0.340 0.541 0.504 0.965
L3X3XV2 2.20 1.06 0.895 0.929 1.91 0.460 0.924 0.703 0.580 1.00 1.00
X'/16 1.98 0.946 0.903 0.907 1.70" 0.405 0.819 0.639 0.580 1.00 1,00
X% 1.75 0.825 0.910 0.884 1.48 0.352 0.712 0.570 0.581 1.00 1.00
X5/I6 1,50 0.699 0.918 0.860 1.26 0.297 0.603 0.496 0.583 1.00 1.00
xV4 1.23 0.569 0.926 0.836 1.02 0.240 0.491 0.415 0.585 1.00 1.00
X3/I6 0.948 0.433 0.933 0.812 0.774 0.182 0.374 0.326 0.586 1.00 0.912
L3X2V2XV2 1.29 0.736 0.718 0.746 1.34 0.417 0.666 0.568 0.516 0.666 1.00
. X7I6 1.17 0.656 0.724 0.724 1.19 0.370 0.591 0.517 0,516 0.671 1.00
X3/8 1.03 0.573 0.731 0.701 1.03 0.322 0.514 0.463 0.517 0.675 1.00
x^/te 0.888 0.487 0.739 0.677 0.873 0.272 0.437 0.404 0.518 0.679 1.00
xV4 0.734 0.397 0.746 0.653 0.707 0.220 0.356 0.327 0.520 0.683 1.00
x^ln 0.568 0.303 0.753 0.627 0.536 0.167 0.272 0.247 0.521 0.687 0.912
Note: For wottable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-48 DIMENSIONS AND PROPERTIES
a
X-i
/
"H'
T
PNA
Table 1 -7 (continued)
Angles
Properties
Shape
<C WT.
Area,
A
AxisX-X
Flexural-Torsional
Properties
Shape
<C WT.
Area,
A
/ 5 r
Y Z Vp
Flexural-Torsional
Properties
Shape
<C WT.
Area,
A
/ 5 r
Y Z Vp J to
Shape
in. lb/ft in.^ in." in.=' in. in. in.' in. in." in,« in.
L3X2XV2 7.70 2.26 1.92 1,00 0.922 1.08 1.78 0.740 0,192 0.0908 1,39
X3/8 'VL6 5.90 1.75 1.54 0,779 0,937 1.03 1.39 0.667 0.0855 0.0413 1,42
X5/16 % 5.00 ,1.48 1.32 0.662 0,945 1.01 1.19 0.632 0.0510 0.0248 1,43
XV4 3/16 4,10 1.20 1.09 0.541 0.953 0.980 0.969 0.600 0.0270 0.0132 1,45
XVL6 Y2 3.07 0.917 0.847 0,414 0.961 0.952 0.743 0.555 0.0119 0.00576 1,46
L2V2X2V2>^/2 3/4 7.70 2.26 1.22 0,716 0.735 0.803 1.29 0.452 0.188 0.0791 1,30
% 5.90 1.73 0.972 0,558 0.749 0.758 1.01 0.346 0.0833 0.0362 1.33
X5/I6 3/IE 5.00 1.46 0.837 0.474 0.756 0.735 0.853 0.292 0.0495 0.0218 1,35
xVa V2 4.10 1.19 0.692 0.387 0.764 0.711 0.695 0.238 0.0261 0.0116 1.36
X^IE VL6 3.07 0.901 0.535 0,295 0.771 0.687 0.529 0.180 0.0114 0.00510 1.38
L2V2X2X3/8 % 5.30 1.55 0.914 0,546 0.766 0.826 0.982 0.433 0,0746 0.0268 1,22
X5/I6 4.50 1.32 0.790 0,465 0.774 0.803 0.839 0.388 0,0444 0.0162 1,23
xV4 VS 3.62 1,07 0.656 0.381 0.782 0.779 0.688 0.360 0.0235 0.00868 1,25
Vl6 2.75 0.818 0.511 0.293 0.790 0.754 0.529 0.319 0,0103 0,00382 1,26
L2V2X1V2XV4 V2 3.19 0,947 0,594 0.364 0.792 0.866 0.644 0.606 0,0209 0,00694 1.19
X3/I6 2.44 0,724 0,464 0.280 0.801 0.839 0.497 0,569 0,00921 0,00306 1.20
L2x2x% % 4.70 1.37 0,476 0.348 0.591 0.632 0.629 0.343 0,0658 0,0174 1,05
X5/16 5/16 3.92 1.16 0,414 0.298 0.598 0.609 0.537 0.290 0.0393 0,0106 1.06
xV4 V2 3.19 0.944 0,346 0.244 0.605 0.586 0.440 0.236 0.0209 0,00572 1.08
X3/16 Vie 2.44 0.722 0.271 0.188 0.612 0.561 0.338 0.181 0.00921 0,00254 1.09
xVs 3/s 1.65 0.491 0,189 0.129 0.620 0.534 , 0.230 0.123 0.00293 0,000789 1.10
Table 1-7A
Workable Gages in Angle Legs, in.
- 3
Leg 8 7 6 5 4 3V2 3 2V2 2 1'/4 IV2 1% IV4 1
mjj 1
s,
1 1
g
91
92
4V2
3
3
4
2V2
3
3V2
2V4
2Vi
3
2
1%
2V2 2 1% 1% 1'/8 1 % % % %
Note: Other gages are permitted to suit specific requirements subject to clearances and edge distance limitations.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-49 DIMENSIONS AND PROPERTIES
Table 1-7 (continued)
Angles
Properties
L3-L2
AxisY-Y AxisZ-Z Qs
Shape
/ F S r X Z
*P
/ 5 r Tan f,=36
a ksi
in." in.' in. in. in.3 in. in." io.^ in.
a ksi
L3X2XV2 0.667 0.470 0.543 0.580 0.887 0.377 0.409 0.411 0.425 0.413 1,00
X3/8 0.539 0.368 0.555 0.535 0.679 0.292 0.318 0.313 0.426 0.426 1.00
X5/I6 0.467 0.314 0.562 0.511 0.572 0.247 0.271 0.264 0,428 0.432 1.00
XV4 0.390 0,258- 0.569 0.487 0.463 0.200 0.223 0.214 0.431 0.437 1.00
XVIE 0.305 0.198 0.577 0.462 0.351 0.153 0.173 0.163 0.435, 0.442 0912
L2V2X2V2XV2 1.22 0.716 Q.735 0.803 1.29 0452 0.521 0.459 0,481 1.00 1.00
x% R 0.972 0.558 0.749 0.758 1.01 0.346 0.400 0.373 0.481 1.00 1.00
X5/I6 0:837 ,0.474 0.756 0.735 0.853 0.292 0.339 0.326 0.481 1.00 1.00
^ xV4 0.692 0.387 , 0.764 0.711 0.695 0.238 0.275 0.274 0.482 1.00 1.00
XVIE 0.535 0.295 0.771 0.687 0.529 0.180 0.210 0.216 0.482 1.00 0.983
L2V2X2X% 0.513 0.361 0.574 0.578 0.657 0.310 0.273 0.295 0.419 0.612 1.00
X5/IE 0.446 0.309 0.581 0.555 0.557 0.264 0.233 0.260 0.420 0.618 1.00
XV4 0.372 0.253 0.589 0.532 0.454 0.214 0.191 0.213 0.423 0.624 1.00
X3/IE 0.292 0.195 0.597 0.508 0.347 0.164 0.149 0.163 0.426 0.628 0.983
L2V2XIV2XV4, 0.160 0.142 0.411 0.372 0.261 0.189 0.0975 0.119 0.321 0.354 1.00
X3/I6 0.126 0.110 0.418, 0.347 0.198 0.145 0.0760 0.0914 0.324 0.360 0.983
L2x2x% 0.476 0.348 0.591 0.632 0.629 0.343 0.203 0.227 0.386 1,00 1.00
X5/IE 0.414 0.298 0.598 0.609 0.537 0.290 0.173 0.200 0.386 1,00 1.00
XV4 0.346 0.244 0.605 0.586 0.440 0.236 0.141 0.171 0.387 1,00 1.00
XVM 0.271 0.188 0.612 0.561 0.338 0.181 0.109 0.137 0.389 1,00 1.00
xVs 0.189 0.129 0.620 0.534 0.230 0.123 0.0751 0.0994 0.391 1,00 . 0.912
Table 1-7B
Compactness Criteria for Angles
Compression Flexure Compression Flexure
4
nonslender compact noncompact
f
nonslender compact noncompact
I
up to up to up to
I
up to up to up to
Width of angle leg, in. Width of angle leg, in.
IVs i J i 5

'/16 5 6 8
1
— % 4 5 8
%

Vl6 4 4 8
3/4
— VA 3 3V2 6
5/8

Vl6 2 21/2 4 ,
5/16
r —
V8 IV2 1^/2 3
V2 f
7
8
Note: Compaclness criteria given for F,=36 ksi. C, = 1.0 for all angles.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-50 DIMENSIONS AND PROPERTIES
A.
T. 1 Jw
Table 1-8
WT-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Stem Flange Distance
Shape
Area,
A
Depth,
d
Thickness,
2
Area
Width,
b,
Thickness,
tf
k
Wot1(-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,
2
Area
Width,
b,
Thickness,
tf
Wot1(-
able
Gage
Shape
in.^ in. in. in. in.^ in. in. in. in. in.
WT22X167.5' 49.2 22.0 22 1.03 1 V2 22.6 15.9 16 1.77 1% 2.56 2% 51/2
x145<^ 42.6 21.8 21% 0.865 % '/16 18.9 15.8 15% 1.58 19/16 2.36 2'/I6
38.5 21.7 21% 0.785 "/16 '/16 17.0 15.8 153/4 1.42 17/16 2^20 21/4
xllS"^'* 33.9 21.5 21V2 0.710 "/16 % 15.2 15.8 15% 1.22 11/4 2.01 2VI6 Y
WT20X296.5'' 87.2 21.5 21V2 1.79 1"/16 '5/16 38.5 16.7 16% 3.23 31/4 4.41 41/2 71/2
X251.5'' 74.0 21.0 21 1.54 1®/l6 "/16 32.3 16.4 16% 2.76 2% 3.94 4
X215.5'' 63.3 20.6 205/8 1.34 1^/16 11/16 27.6 16.2 161/4 2.36 2% 3.54 35/8
X198.5'' 58.3 20.5 2OV2 1.22 IV4 % 25.0 16.1 161/8 2.20 23/16 3.38 31/2
xiae" 54.7 20.3 20% 1.16 13/16 % 23.6 16.1 ,161/8' 2.05 2VI6 3.23 35/16
xlSI'^'" 53.2 20.3 2OV4 1.12 iVs 8/16 22.7 16.0 16 2.01. 2 3.19 31/4
x162' 47.7 20.1 20V8 1.00 1 1/2 20.1 15.9 15% 1.81 11%6. 2.99 31/16
x148.5'= 43.6 19.9 19V8 0.930 '5/16 1/2 18.5 15.8 15% 1.65 1% 2.83 215/16
x138.5'= 40.7 19.8 19% 0.830 '/16 16.5 15.8 1578 1.58 1%6 2.76 2%
X124.5' 36.7 19.7 19% 0.750 % % 14.8 15.8 15% 1.42 1%6 2.60 211/16
X107.5''*' 31.8 19.5 19'/! 0.650 % 5/16 12.7 15.8 15% 1.22 11/4 2.40 21/2
29.2 19.3 19% 0.650 % 5/16 12.6 15.8 15% 1.07 : 11/16 2.25 25/16
^20x196" 57.8 20.8 20% 1.42 % 29.4 12.4 12% 2.52 21/2 3.70 31%6 71/2
xISM" 48.8 20.4 20% 1.22 iVl % 24.9 12.2 121/e 2.13 2% 3.31 3%
X163.5'' 47.9 20.4 20% 1.18 I'/M % 24.1 ' 12.1 12% 2.13 21/8 3.31 3%
x147'= 43.1 20.2 20% 1.06 11/16 9/16 21.4 12.0 12 1.93' 115/16 3.11 3%6
x139' 41.0 20.1. 20V8 1.03 1 1/2 20.6 12.0 12 1.81: 11%6 2.99 31/16
x132= 38.7 20.0 20 0.960 «/l6 1/2 19.2 11.9 11% 1.73 1% 2.91 3
x117.5'^ 34.6 19.8 19% 0.830 '3/16 V16 16.6 11.9 11% 1.58 1^/16 2.76 2%
x105.5'= 31.1 19.7 19% 0.750 % % 14.8 11.8 11% 1.42 1%6 2.60 211/16
x91.5''« , 26.7 19.5 19V2 0.650 % V16 12.7 11.8 11% 1.20 1%6 2.38 21/2
x83.5'=''' 24.5 19.3 19% 0.650 % 5/16 12.5 11.8 11% 1.03 1 2.21 25/16
X74.5'''' 21.9 19.1 19V8 0.630 % 5/16 12.0 11.8 11% 0.830 13/16 2.01 21/8:
' Shape is slender for compression with = 50 ksi.
' Flange thickness greater ttian 2 in. Special requirements may apply per AISC Specification Section A3.1 c.
'Shear strength controlled by buckling effects (CV < 1.0) with fy = 50 ksi.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-51 DIMENSIONS AND PROPERTIES
Table 1-8 (continued)
WT-Shapes
Properties
WT22-WT20
Nom-
inal
Wt.
Compact
Section
Criteria
Axis X-X AxisY-Y
Qs
Torsional
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
Axis X-X AxisY-Y
ksi
J
Nom-
inal
Wt.
b,
2ti
d
^
/ S r y / yp / S r /
ksi
J
lb/ft
b,
2ti
d
^
in." in.' in. in. in.2 in. in." in.' in. in.'
ksi
in." in.'
167.5 4.50 21.4 2170 131 6.63 5,53 234 1.54 600 75.2 3.49 118 0,824 37.2 438
145 5.02 25.2 1830 111 6.54 5.26 196 1.35 521 65,9 3.49 102 0,630 25.4 275
131 5.57 27.6 1640 99.4 6,53 5.19 176 1.22 462 58,6 3.47 90.9 0,525 18.6 200
115 6.45 ,30.3 1440 88.6 6.53 5,17 157 1.07 398 50.5 3.43 78,3 0.436 12.4 139
296.5 2,58 12.0 3310 209 6,16 5.66 379 2.61 1260 151 3.80 240 1.00 221 2340
251.5 2.98 13.6 2730 174 6.07 5,38 314 2.25 1020 124 3.72 197 1.00 138 1400
215.5 3.44 15.4 2290 148 6.01 5.18 266 1.95 843 104 3.65 164 1.00 88.2 881
198.5 3.66 16.8 2070 134 5.96 5.03 240 1.81 771 95.7 3.63 150 1.00 70.6 . 677
186 3.93 17.5 1930 126 5.95 4.98 225 1.70 709 88.3 3.60 138 1.00 ,57.7 558
181 3.99 18.1 1870 122 5.92 4,91 217 1,66 691 86.3 3.60 135 0.991 54.2 511
162 4.40 20.1 1650 108 5.88 4,77 192 1,50 609 76.6 3.57 119 0.890, 39,6 362
148.5 4.80 21.4 1500 98.9 5.87 4,71 176 1,38 546 69.0 3.54 107 0.824 30.5 279
138.51 5.03 23.9 1360 88.6 5.78 4,50 157 1,29 522 65.9 3.58 102 0.697 25.7 218
124.5 5.55 26.3 1210 79.4 5.75 4.41 140 1.16 463 58.8 3.55 9Q,8 0.579 19.0 158
107.5 6.45 30,0 1030 68.0 5.71. 4.28 120 1.01 398 50,5 3.54 77.8 0.445 12.4 101
99.5 7.39 29.7 988 66.5 5.81 4.47 117 0.929 347 44.1 3.45 68,2 0.454 9.12 83,5
196 2.45 14.6 2270 153 6.27 5.94 275 2.33 401 64,9 2.64 106 1.00 85,4 796
165.5 2.86 16.7 1880 128 6.21 5.74 231 2,00 322 52.9 2.57 85,7 1.00 52,5 484
163.5 2.85 17.3 1840 125 6.19 5.66 224 1.98 320 52.7 2.58 85.0 1.00 51,4 449
147 3.11, 19.1 1630 ril 6.14 5.51 199 1.80 281 46.7 2.55 75.0 0.940 38,2 322
139 3.31 19.5 1550 106 6.14 5.51 191 1.71 261 43.5 2.52 69.9 , 0.920 32,4 282
132 3.45 20.8 1450 99.2 6.11 5.41 178 1.63 246 41.3 2.52 66,0 0,854 27.9 233
117.5 3.77 23.9 1260 85.7 6.04 5.17 153 1.45 222 37.3 2.54 59,0 0,697 20,6 156
105.5 4.17 26.3 1120 76.7 6.01 5.08 137 1.31 195 33.0 2.51 52,1 0,579 15.2 113
91.5 4.92 •30.0 955 65.7 5.98 4.97 117 1.13 165 28.0 2,49 44.0 0.445 9,65 71,2
83.5 5,76 29.7 899 63.7 6.05 5.19 115 1.10 141 23.9 2,40 37,8 0.454 6,99 62.9
74.5 7.11 30.3 815 59.7 6,10 5.45 108 1,72 114 19.4 2,29 30.9 0.436 4,66 51.9
4
I
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

1-52 DIMENSIONS AND PROPERTIES 1-52
Table 1-8 (continued)
WT-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Stem Flange Distance
Shape
Area,
A
Depth,
d
Thickness,

u
2
Area
Width,
b,
Thicicness,
tf
k Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,

u
2
Area
Width,
b,
Thicicness,
tf
frrfet
Work-
able
Gage
Shape
in." in. in. in. in.^' in. in. in. in. in.
WT18x326" 96.2 20,5 20V2 1,97 2 1 40.4 17.6 175/a 3,54 39/16 4.49: 415/16 7V2
X264.5'' 77,8 19,9 19% 1,61 1% "/16 32.0 17.2 17V4 2,91 215/16 3,86; 43/16
X243.5'' 71.7 19,7 19% 1,50 IV2 % 29.5 17.1 17V8 2,68 211/16 3,63 4
X220.5'' 64.9 19.4 193/e 1.36 1% "/« 26.4 17.0 17 2,44 2%6 3,39 3%
xigr-S" 58.1 19,2 19V4 1.22 IV4 % 23.4 16.8 16% 2,20 2%6 3,15 3%6
X180.5'' 53.0 19,0 19 1.12 IVB %6 21.3 16.7 16% 2.01 2 2,96 35/16
x165' 48.4 18.8 18% 1,02 1 % 19.2 16.6 165/8 1.85 1% 2.80 3%
x151' 44.5 18,7 18% 0,945 15/16 V2 17,6 16.7 165/8 1.68 111/16, 2,63 3
x14f 41.5 18,6 I8V2 0,885 % V16 16,4 16.6 165/8 1.57 19/16 2,52 2%
x131' 38.5 18.4 18% 0.840 '/16 15,5 16,6 I6V2 1.44 1%6 2,39 2%
X123.5' 36.3 18,3 18% 0,800 "/16 14,7 16.5 I6V2 1.35 1% 2,30 25/8
xllS.S"^ 34.1 18,2 I8V4 0,760 % % 13,9 16.5 I6V2 1.26 1% 2,21 29/16
WT18x128'= 37.6 18,7 18% 0,960 '5/16 Vz 18,0 12.2 12% 1.73 1% 2,48 25/e 5%
x116'= 34.0 18,6 I8V2 0,870 % %6 16,1 12.1 12V8 1,57 1%6 2,32 2%6
xlOS"^ 30.9 18,3 18% 0,830 "/16 7I6 15,2 12,2 12Ve 1.36 1% 2,11 25/16
x97= 28.5 18,2 I8V4 0,765 % % 14,0 12,1 12V8 1,26 11/4 2,01 2%6
. 26.8 18,2 ISVs 0,725 % % 13,2 12,1 12V8 1,18 1%6 1.93 21/e
x85' 25.0 18,1 ISVs 0,680 'V16 % 12,3 12,0 12 1.10 iVs 1,85 2
x80'^ 23.5 18,0 18 0,650 % 5/16 11,7 12,0 12 . 1,02 1 1.77 115/16
x75'= 22.1 17.9 17% 0,625 % 5/16 11,2 12,0 12 0,940 «/l6 1.69 1%
19.9 17.8 17% 0,600 % 5/16 10,7 12,0 12 0,790 1%6 1,54 111/16
WT16.5x193.5'' 57.0 18.0 18 1,26 IV4 % 22,6 16,2 I6V4 2,28 2% 3.07 33/I6 51/2
X177'' 52.1 17,8 17% 1.16 15/16 % 20,6 16,1 leVs 2,09 2V16 2.88 215/16
x159 46.8 17.6 17% 1.04 IV16 18.3 16.0 16 1,89 1% 2.68 2%
X145.5' 42.8 17,4 17% 0.960 «/l6 V2 16,7 15,9 15% 1.73 1% 2.52 25/8
xiai.S"^ 38.7 17,3 171/4 0.870 % VK 15,0 15,8 15% 1,57 1%6 2.36 2%6
X120.5'' 35.6 17,1 17V8 0.830 «/,6 7I6 14,2 15,9 15% 1.40 1% 2.19 2%
x110.5'= 32.6 17,0 17 0.775 % % 13,1 15,8 15% 1,28 1% 2.06 21/8
xlOO.S"^ 29,7 16,8 16% 0.715 'V16 % 12.0 15,7 15% 1.15 1% 1.94 2
• Shape is slender for compression witli Fy = 50 Icsi.
'Flange tliickness greater than 2 in. Special requirements may apply per AISC Spec/fcafron Section A3.1c,
' Shear strength controlled by buckling effects (C,< 1.0) with 50 ksi.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-53
Table 1-8 (continued)
WT-Shapes
Properties
WT18-WT16.5
Nom-
inal
Wt.
Compact
Section
Criteria
Axis X-X Axis Y-Y
Os
Torsional
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
Axis X-X Axis Y-Y
/y=50
ksi
J
Nom-
inal
Wt.
bf
it,
rf
L
/ S f y Z yp / S r Z
/y=50
ksi
J
lb/ft
bf
it,
rf
L
in." inJ in. in. in.' in. in." in.' in. in.'
/y=50
ksi
in." in.®
326 2.48 10.4 3160 208 5.74 5.35 383 2.73 1610 .184 4,10 290 1,00 295 3070
264,5 2.96 12.4 2440 164 5.60 4.96 298 2.26 1240 145 4.00 227 1,00 163 1600
243.5 3.19 13.1 2220 150 &.57 4.84, 272 2.10 1120 131 3.96 206 1:00 . 128 1250
220.5 3.48 14.3 1980 134 5.52 4:69 242 1.91 997 117 3.92 184 1.00 96.6 914
197.5 3.83 15.7 1740 11-9 5.47 4.53 213 1.73 877 104 3.88 162 1.00 70,7 652
180.5 4.16 17.0 1570 107 5.43 4.42 192 1.59 786 94.0 3.85 146 1,00 54,1 491
165 4.49 18.4 1410 97.0 5.39 4.30 173 1.46 711 85.5 3.83 132 0,976 42,0 372
151 4.96 19.8 1280 88.8 5.37 4.22 158 1.33 648 77.8 3.82 120 0.905 32,1 285
141 5.29 21.0 1190 82,6 5:36 4.16 146 1.25 599 72.2 3.80 112 0.844 26,3 231
131 5.75 21,9 1110 77.5 5.36 4.14 137 1.16 545 65.8 3.76 102 0.799 , 20,8 185
123.5 6.11 22.9 1040 73.3 5.36 4.12 129 1.10 507 61.4 3.74 94.8 0.748 17.3 155
115.5 6.54 23.9 978 69.1 5.36 4.10 122 1.03 470 57.0 3.71 88.0 0.697 14,3 129
128 3.53 19.5 1210 87.4 5,66 4.92 156 1.54 264 43.2 2.65 68.5 0.920 26,4 205
116 3.86 21.4 1080 78.5 5.63 4.82 140 1.40 234 38.6 2.62 60.9 0.824 19.7 151
105 4.48 22,0 985 73.1 5.65 4.87 131 1,27 206 33.8 2.58 53.4 0.794. 13.9 119
97 4.81 23,8 901 67.0 5.62 4.80 120 1.18 187 30.9 2.56 48.8 0.702 11.1 92.7
91 5,12 25,1 845 63,1 5.62 4,77 113 1,11 174 28.8 2.55 45.3 0.635 9.20 77.6
85 5.47 26,6 786 58,9 5.61 4,73 105 1.04 160 26.6 2.53 41.8 0.566 7.51 63.2
80 5.88 27.7 ,740 55,8 5.61 4.74 100 0.980 147 ' 24.6 2.50 38.6 0.522 6.17 53.6
75 6.37 28.6 698 53.1 5.62 4.78 95.5 0,923 135 22.5 2.47 35.4 0.489 5.04 46.0
67.5 .7.56 29.7 637 49.7 5.66 4.96 9o:i 1,23 113 18.9 2.38 29.8 0.454 3.48 37.3
193.5 3.55 14.3 1460 107 5.07 4.27 193 1,76 810 100 3.77 156 1.00 73.9 615
177 3.85 15.3 1320 96.8 5.03 4.15 174 1,62 729 90.6 3.74 141 1.00 57.1 468
159 4.23 16.9 1160 85.8 4.99 4.02 154 1.46 645 80,7 3.71 125 1.00 42,1 335
145.5 4.60 18.1 1060 78.3 4.96 3.93 140 1.35 581 73,1 3.68 113 0.991 32.5 256
131.5 5.03 19.9 943 70.2 4.93 3.83 125 1.23 517 65,5 3.65 101 0.900 24.3 188
120.5 5.66 20.6 872 65.8 4.96 3.84 116 1.12 466 58,8 3.62 90.8 0.864 18.0 146
110.5 6.20 21.9 799 60.8 4.95 3,81 107 1.03 420 53,2 3.59 82.1 0.799 13.9 113
100.5 6.85 23.5 725 55.5 4.95 3.77 97.8 0.940 375 , 47,6 3.56 73.3 0.718 10.4 84.9
I
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-54 DIMENSIONS AND PROPERTIES 1-54
bf
IL
Ix-y---
- ->PNA
1/ Jw
Table 1-8 (continued)
WT-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Stem Flange Distance
Shape
Area,
A
Depth,
d
Thickness,
t« 2
Area
Width,
bf
Thiclcness,
tf
k Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,
t« 2
Area
Width,
bf
Thiclcness,
tf
kde) kdet
Work-
able
Gage
Shape
in} in. in. in. in.2 in. in. in. in. in.
WT16.5x84.5" 24.7 16.9 16'/8 0.670 'Vte % 11.3 11.5 111/2 1.22 11/4 1.92 21/8 51/2
xye-^ 22.5 16.7 16% 0.635 % %6 10.6 11.6 115/8 1.06 11/16 1.76 115/16
xTO.S"^ 20.7 16.7 16% 0.605 .% %6 10.1 11.5 111/2 0.960 15/16 1.66 1"/16
x65' 19.1 16.5 I6V2 0.580 %6 9.60 11.5 111/2 0.855 % 1.56 1%
xSQ*^'' 17:4 16.4 16% 0.550 S/16 5/16 9.04 11,5 111/2 0.740 % 1.44 15/8 , T
WTISxigS.S" 57.6 16,6 16% 1.36 1% 11/16 22.6 15.6 155/8 2.44 2^16 3.23 3% 51/2
X178.5'' 52.5 16,4 16% 1.24 IV4 % 20.3 15.5 151/2 2.24 21/4 3.03 31/8
xies" 48.0 16,2 I6V4 1.14 iVs S/16 18.5 15.4 15% 2.05 21/16 2.84 21%6
X146 43.0 16.0 16 1.02 1 1/2 16.3 15.3 151/4 1.85 1% 2.64 2%
XI 30.5 38.5 15,8 15% 0.930 «/l6 1/2 14.7 15.2 151/8 1.65 15/8 2.44 2%6
X117.5" 34.7 15,7 15% 0.830 "/16 VK 13.0 15.1 15 1.50 11/2 2.29 2% i
x105.5'^ 31.1 15.5 I5V2 0.775 % % 12.0 15.1 151/8 1.32 15/16 2.10 21/4
X95.5' 28.0 15,3 15% 0.710 'V16 % 10.9 15.0 15 1.19 1%6 1.97 2V16
X86.5' 25.4 15,2 15V4 0.655 % 5/16 10.0 15.0 15 1.07 11/16 1.85 2
WT15X74' 21.8 15,3 ' 15% 0.650 % 5/16 10.0 10.5 101/2 1.18 1%6 1.83 21/16 51/2
19.5 15,2 15Va 0.615 % 5/16 9.32 10.5 101/2 1.00 1 1.65 1%
18.2 15.1 15V8 0.585 8/16 5/16 8.82 10.5 101/2 0,930 15/16 1.58 Il'/16
x58'^ 17.1 15.0: 15 0.565 8/16 5/16 8.48 10.5 101/2 0,850 % 1.50 1%
x54<^ 15.9 149 14% 0.545 9/16 5/16 8.13 10.5 101/2 0.760 % 1.41 111/16
x49.5'^ 14.5 14.8 14% 0.520 V2 1/4 7.71 10.5 101/2 0,670 11/16 1.32 19/16
13.2 14.8 14% 0.470 V2 1/4 6.94 10.4 10% 0.610 % 1.26 11/2
WT13.5x269.5" 79.3 16.3 I6V4 1.97 2 1 32.0 15.3 151/4 3.54 3%6 4.33 AVk 51/2=
XI84'' 54.2 15.2 151/4 1.38 1% 11/16 21.0 14.7 145/a 2.48 21/2 3.27 3% 51/2
X168'' 49.5 15.0 15 1.26 IV4 % 18.9 14.6 141/2 2.28 21/4 3.07 33/16
X153.5'' 45.2 14,8 14% 1.16 1%6 % 17.2 14.4 141/2 2.09 21/16 2.88 3
X140.5 41.5 14.6 14% 1.06 IV16 S/16 15.5 14.4 14% 1.93 115/16 2.72 21%6
x129 38.1 14,5 I4V2 0.980 1 1/2 14.2 14.3 141/4 1.77 1% 2.56 211/16
X117.5 34.7 14.3 14% 0.910 15/16 1/2 13.0 142 141/4 1,61 l5/e 2.40 21/2
X108.5 32.0 14,2 I4V4 0.830 «/« VK 11.8 141 141/8 1.50 11/2 2.29 2%
X97" 28.6 14,1 14 0.750 % % 10.5 14.0 14 1.34 15/16 2.13 2V4
x89' 26,3 13,9 13% 0.725 % % 10.1 141 141/8 1.19 1%6 1.98 2Vi6
X80.5' 23.8 13.8 13% 0.660 11/16 % 9.10 14.0 14 1.08 11/16 1,87 2
x73' 21.6 13.7 13% 0.605 % 5/16 8.28 14.0 14 0.975 1 1.76 1%
f
• Shape is slender for compression with F,= 50 ksi.
' T/10 actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
Range thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
Shear strength controlled by buckling effects (C, < 1.0) with Fy = 50 ksi.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-55
Table 1-8 (continued)
WT-Shapes
Properties
WT16.5-WT13.5
Nom-
inat
Wt
Compact
Section
Criteria
Axis X-X Axis Y-Y
Os
Torsional
Properties
Nom-
inat
Wt
Compact
Section
Criteria
Axis X-X Axis Y-Y
ksl
J c„
Nom-
inat
Wt
bi
it.
d
U,
/ S r y Z Vp 1 S r /
ksl
J c„
lb/ft
bi
it.
d
U, in." in.3 in. in. in.' in. in." in.' in. in.'
ksl
in." m.'
84.5 4.71 25.2 649 51.1 5,12 4,21 90.8 1.08 155 27.0 2.50 42.1 0.630 8.81 55.4
76 5.48 26.3 592 47.4 5.14 4,26 84.5 0.967 136 23.6 2.47 36.9 0.579 6.16 43,0
70.5 6.01 27.6 552 44.7 5.15 •4.29 79.8 0.901 123 21.3 2.43 33.4 0.525 4,84 35.4
65 6.73 28.4 513 42.1 5.18 4.36 75.6 0.832 109 18.9 2.38 29.7 0.496 3,67 29.3
59 7.76 29.8 469 39.2 5.20 4,47 70.8 0.882 93.5 16.3 2.32 25.6 0.451 2,64 23.4
195.5 3.19 12.2 1220 96.9 4.61 4,00 177 1.85 774 99.2 3.67 155 1.00 86,3 636
178.5 3.45 13.2 1090 87.2 4.56 3,87 159 1.70 693 89.6 3.64 140 1.00 66,6 478
163 3.75 14.2 981 78.8 4.52 3,76 143 1.56 622 81.0 3.60 126 1.00 51,2 361
146 4.12 15.7 861 69.6 4,48 3,82 125 1.41 549 71.9 3.58 111 1.00 37.5 257
130.5 4.59 17.0 765 62.4 4,46 3.54 112 1.27 480 63.3 3.53 97.9 1.00 26.9 184
117.5 5.02 18.9 674 55.1 4.41 3.41 98.2 1.15 427 56.8 3.51 87.5 0.951 20.1 133
105.5 5.74 20.0 610 50.5 4.43 3.39 89,5 1.03 378 50.1 3.49 77.2 0.895 14.1 96.4
95.5 6.35 21.5 549 45.7 4.42 3.34 80.8 0.935 336, 44.7 3.46 68.9 0.819 10,5 71,2
88.5 7.01 23.2 497 41.7 4.42 3.31 73.5 0.851 299 39.9 3.42 61.4 0.733 7,78 53.0
74 4.44 23.5 466 40.6 4.63 3.84 72.2 1.04 114 21.7 2.28 33.9 0.718 7.24 37,8
66 5.27 24.7 421 37.4 4.66 3.90 66.8 0.921 98,0 18.6 2.25 29.2 0.657 4.85 28,5
62 5.65 25.8 396 35.3 4.68 3.90 63.1 0.867 90,4 17.2 2.23 27.0 0.601 3.98 23,9
58 6.17 26.5 373 33.7 4,67 3.94 60.4 0.815 82,1 15.6 2.19 24.6 0.570 3.21 20,5
54 6.89 27.3 349 32.0 4,69 4.01 57.7 0.757 73.0 13.9 2.15 21.9 0.537 2.49 17.3
49.5 7.80 28.5 322 30.0 4.71 4.09 54.4 0,912 • 63.9 12.2 2.10 19.3 0.493 1.88 14,3
45 8.52 31.5 290 27.1 4.69 4.04 49.0 0.835 57.3 11.0 2.09 17.3 0.403. 1.41 10.5
269.5 2.15 8.30 1530 128 4.39 4.34 242 2.60 1060 138 3.65 218 1.00 247 1740
184 2.96 11.0 939 81.7 4.16 3.71 151 1.85 655 89.3 3.48 140 1.00 84.5 532
168 3.19 11.9 839 73.4 4.12 3.58 135 1.70 587 80.8 3.45 126 1.00 65.4 401
153.5 3.46 12.8 753 66.4 4.08 3.47 121 1.56 527 72.9 3.41 113 1.00 50.5 304
140.5 3.72 13.8 677 59.9 4.04 3.35 109 1.44 477 66.4 3.39 103 1.00 39.6 232
129 4.03 14.8 613 54.7 4.02 3.27 98.9 1.33 430 60.2 3.36 93.3 1.00 30.7 178
117.5 4.41 15.7 556 50.0 4.00 3.20 89.9 1.22 384 54.2 3.33 83.8 1.00 23.4 135
108.5 4.71 17.1 502 45.2 3.96 3.10 81.1 1.13 352 49.9 3.32 77.0 1.00 18.8 105
97 5.24 18.8 444 40.3 3.94 3.02 71.8 1.02 309 44.1 3.29 67.8 0.956 13.5 74,3
89 5.92 19.2 414 38.2 3.97 3.04 67.7 0.932 278 39.4 3.25 60.8 0.935 10.0 57,7
80.5 6.49 20.9 372 34.4 3,95 2.98 60.8 0.849 248 35,4 3,23 54.5 '0.849 7.53 42.7
73 7.16 22.6 336 31.2 3,95 2.94 55.0 0.772 222 31.7 3,20 48.8 0.763 5.62 31.7
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-56 DIMENSIONS AND PROPERTIES 1-56
Table 1-8 (continued)
WT-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Stem Flange Distance
Shape
Area,
A
Depth,
d
Thickness,


2
Area
Width,
bt
Thiclcness,
tf
*
Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,


2
Area
Width,
bt
Thiclcness,
tf
Work-
able
Gage
Shape
in.2 in. in. in. in.2 in. in. in. in. in.
Wn3.5x64.5f 18.9 13.8 1378 0.610 % 8.43 10.0 10 i.io 1% 1.70 2 ' 5%
x57' 16.8 13.6 13% 0.570 3/16 5/16 7.78 10,1 lOVs 0.930 15/16 1.53 1"/16
x5r 15.0 13.5 13V2 0,515 1/2 V4 6.98 10.0 10 0.830 "/16 1.43 1%
x47' 13.8 13.5 13V2 0,490 Va •V4 6,60 10.0 10 0.745 % 1;34 1%
xAZ" 12.4 13,4 13%- 0,460 Vi 6.14 10.0 10 0.640 % 1.24 1'/16
(
WT12x185'' 54.5 14,0 14 1,52 iVz % 21.3 13.7 13% 2.72 2% 3.22 35/8 51/2
xier-s" 49,1 13,8 13% 1,38 1% 'Vl6 19.0 13.5 13% 2.48 2V2 2,98 3%
X1S3'' 44,9 13,6 13% 1.26 1V4 % 17.1 13.4 13% 2.28 21/4 2.78 3%6
xiag-s" 41,0 13,4 13% 1.16 13/16 % 15.5 13,3 131/4 2.09 21/16 2,59 3
x125 36.8 13.2 13V8 1.04 lVl6 ®/l6 13.7 13,2 13% 1.89 1% 2,39 2"/I6
X114.5 33.6 13,0 13 0.960 1/2 12.5 13.1 13% 1.73 1% 2,23 25/8
X103.5 30.3 12,9 12% 0.870 % 7I6 11.2 13.0 13 1.57 1^/16 2.07 2%
x96 28.2 12.7 12% 0.810 Vn 10.3 13,0 13 1.46 IV16 1.96 2%
x88 25,8 12.6 12% 0.750 % % 9.47 12.9 12% 1.34 15/16 1.84 2%
x81 23.9 12.5 127? 0.705 "/16 % 8.81 13,0 13 1.22 11/4 1.72 2%
X73' 21.5 12.4 12% 0.650 % %6 8.04 12,9 12% 1.09 IV16 1.59 2
xes.s"^ 19,3 12.2 12V4 0.605 % 5/16 7.41 12.9 12% 0.960 15/ie 1.46 1%
x58.5^ 17,2 12,1 12V8 0.550 5/16 6.67 12.8 12% 0.850 % 1.35 1%
x52' 15,3 12,0 12 0.500 V2 1/4 6.02 12,8 12% 0,750 % 1.25 1%
WT12x51.5'^ 15.1 12.3 12V4 0.550 ®/l6 =/l6 6.75 9.00 9 0.980 1 1.48 1% 51/2
x47'= 13.8 12.2 12V8 0,515 V2 1/4 6.26 9,07 91/8 0.875 % 1.38 1%
L
x42' 12,4 12,1 12 0,470 V2 1/4 5.66 9.02 9 0,770 % 1.27 111/18
1
r
X38' 11.2 12.0 12 0,440 VK 1/4 5.26 8,99 9 0.680 11/16 1.18 I'/ie 51/2®
x34' 10,0 11,9 11% 0,415 Vw 1/4 4,92 8,97 9 0.585 S/16 1.09 11/2 51/2'
WT12x3f 9.11 11.9 11% 0,430 '/16 1/4 5,10 7,04' 7 0,590 9/16 1.09 11/2 31/2
8.10 11.8 11% 0,395 % %6 4.66 7.01 7 0.505 % 1.01 IV16 3%
' Shape is slender for compression with Fy-50 ksi.
' The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
" Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
' Shear strensth controlled by buckling effects {C, <1.0) with F, - 50 ksi.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-57
Table 1-8 (continued)
WT-Shapes
Properties
• WT13.5-WT12
Nom-
inal
Wt.
Compact
Section
Criteria
AxisX-X Axis Y-Y
Qs
Torsional
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
AxisX-X Axis Y-Y
ksi
J
Nom-
inal
Wt.
b,
2tt
d
U,
/ S r y Z yp / S f Z
ksi
J
lb/ft
b,
2tt
d
U, •m." •m? in. in. in? in. in." in.' in. m?
ksi
in* in.®
64.5 4.55 22.6 323 31.0 4.13 3.39 55,1 0,945 92,2 18.4 2.21 28.8 0.763 5,55 24.0
57 5.41 23.9 289 28.3 4.15 3,42 50,4 0.832 79.3 15.8 2,18 24.6 0.697 3,65 17.5
51 6.03 26.2 258 25.3 4.14 3.37 45,0 0.750 69,6 13.9 2.15 21.7 0.583 2,63 12.6
47 6.70 27.6 239 23.8 4.16 3.41 42.4 0.692 62.0 12.4 2,12 19.4 0,525- 2.01 10.2
42 7.78 29.1 216 21.9 4.18 3.48 39.2 0,621 52.8 10.6 2,07 16.6 0,473 1.40 7.79
185 2.51 9.20 779 74.7 3.78 3.57 140 1.99 581 85.1 3,27 133 1.00 100 553
167.5 2.73 10.0 686 66.3 3.73 3.42 123 1.82 513 75.9 3.23 119 1.00 75.6 405
153 2.94 10.8 611 59.4 3.69 3.29 110 1.67 460 68,6 3.20 107 1.00 58.4 305
139.5 3.18 11.6 546 53.6 3.65 3.18 98.8 1.54 412 61.9 3.17 96.3 1.00 45.1 230
125 3.49 12.7 478 47.2 3.61 3.05 86.5 1.39 362 54.9 3.14 85.2 1.00 33.2 165
1t4.5 3.79 13.5 431 42.9 3.58 2.96 78.1 1,28 326 49.7 3.11 77.0 1.00 25.5 125
103.5 4.14 14.8 382 38.3 3.55 2.87 69.3 1.17 289 44.4 3.08 68.6 1.00 19,1 91.3
96 4.43 15.7 350 35.2 3.53 2.80 63.5 1.09 265 40.9 3.07 63.1 1.00 15,3 72.5
88 4.81 16.8 319 32.2 3.51 2.74 57.8 1.00 240 37.2 3.04: 57.3 1.00 11,9 55.8
81 5.31 17.7 293 29.9 3.50 2.70 53.3 0.921 221 34.2 3.05 52.6 1.00 9,22 43.8
73 5.92 19.1 264 27.2 3.50 2.66 48.2 0.833 195 30.3 3.01 46.6 0.940 6,70 31.9
65.5 6.70 20.2 238 24.8 3.52 2.65 43.9 0.750 170 26.5 2.97 407 0,885 4.74 23.1
58.5 7.53 22.0 212 22.3 3.51 2.62 39.2 0.672 149 23.2 2.94 35.7 0.794 3,35 16.4
52 8.50 24.0 189 20.0 3.51 2.59 35.1 0.600 130 20.3 2.91 31.2 0.692 2,35 11.6
51.5 4.59 22.4 204 22.0 3.67 3.01 39.2 0.841 59.7 13.3 1.99 20.7 0,773 3,53 12.3
47 5.18 23.7 186 20.3 3.67 2.99 36.1 0.764 54.5 120 1.98 18.7 0,707 2,62 9.57
42 5.86 25.7 166 18.3 3.67 2.97 32.5 0.685 47.2 10.5 1.95 16.3 0,606 1,84 6.90
38 6.61 27.3 151 16.9 3.68 3,00 30.1 0.622 41.3 9.18 1.92 14.3 0,537 1,34 5,30
34 7.66 28.7 137 15.6 3.70 3,06 27.9 0.560 35,2- 7.85 1.87 12,3 0,486 0.932 4,08
31 5.97 27.7 131 15.6 3.79 3,46 28,4 1,28 17,2 4.90 1.38 7.85 0,522 0,850 3.92
27.5 6.94 29.9 117 14.1 3.80 3,50 25,6 1,53 14.5 4.15 1,34 6.65 0,448 0.588 2.93
i
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-58 DIMENSIONS AND PROPERTIES 1-58
Table 1-8 (continued)
WT-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Stem Flange Distance
Shape
Area,
A
Depth,
d
Thickness,
U 2
Area
Width,
b,
Thickness,
t,
k
Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,
U 2
Area
Width,
b,
Thickness,
t,
kies kiet
Work-
able
Gage
Shape
in.2 in. in. in. in} in. in. in. in. in.
WT10.5x100.5 29.6 11.5 111/2 0.910 "/16 V2 10,5 12,6 125/8 1,63 1% 2.13 272. 572
x91 26.8 11.4 11% 0.830 "/16 VK 9,43 12,5 I2V2 1,48 iVz 1.98 2%
x83 24.4 11,2 11V4 0,750 % % 8.43 12,4 12% 1,36 1% 1.86 2V4
X73.5 21,6 11.0 11 0.720 % % 7.94 12,5 12V2 1.15 IVB 1.65. 2
x66 19.4 10,9 10% 0,650 % 5/16 7,09 12,4 12V2 1.04 IV16 1.54 115/16
x61 17.9 10.8 10% 0,600 % 5/16 6,50 12,4 12% 0.960 «/l6 1.46 1«/16
X55.5' 16.3 10.8 10% 0,550 %6 5/16 5,92 12,3 12% 0.875 78 1.38 1%
X50.5'' 14.9 10.7 10% 0,500 Vz Vi 5.34 12,3 12V4 0.800 "/16 1.30 II7I6
WT10.5x46,5^ 13.7 10.8 10% 0,580 3/16 =/l6 6.27 8,42 8% 0.930 "/16 1.43 15/8 572
x41.5^ 12.2 10.7 10% 0,515 1/2 V4 5.52 8,36 8% 0.835 «/,6 1.34 IV2
x36.5'= 10.7 10.6 10% 0,455 VK Vi 4.83 8,30 8V4 0.740 % 1.24, 17I6
x34' 10.0 10.6 10% 0,430 VIS . V4 4.54 8,27 8V4 0.685 "/is 1.19 1%
x31'^ 9.13 10.5 IOV2 0.400 % %6 4.20 8,24 8V4 0.615 % 1.12 15/16
x27,5'^ 8:10 10.4 10% 0,375 % %6 3.90 8,22 8V4 0.522 V2 1.02 1%6
7.07 10.3 IOV4 0.350 % . %6 3,61 8,14 8Va 0.430 //16 0.930 1V8
WT10.5X28.5' 8.37 10.5 IOV2 0.405 % %6 4.26 6,56 6V2 0.650 5/8 1.15 15/16 31/8
. x25' 7.36 10,4 10% 0.380 % 3/16 3,96 6,53 6V2 0.535 %6 1.04 174 31/28
6.49 10.3 10% 0.350 % 3,62 6,50 6V2 0.450 716 0.950 178 31/28
^•9x155.5" 45.8 11.2 llVa 1.52 IV2 % 17,0 12,0 12 2.74 2% 3.24 37i6 57j
x.141.5" 41.7 10.9 107a 1.40 1% "/le 15,3 11,9 11% 2.50 2V2 3.00 3%6
xiag" 38.0 10.7 10^/4 1,28 IV4 % 13,7 11,8 11% 2.30 25/16 2.70 3
X117'' 34.3 10.5 IOV2 1,16 1%6 % 12,2 11,7 115/8 2.11 2V8 2.51 2%
X105.5 31.2 10.3 10% 1,06 IV16 %6 11,0 11,6 IIV2 1.91 1«/16 2.31 2%6
x96 28.1 10.2 10V8 0,960 V2 9,77 11,5 111/2 1.75 1% 2.15 2VI6
X67.5 25.7 10.0 10 0,890 78 Vw 8,92 11.4 11% 1.59 1.99 2'/I6
x79 23.2 9.86 9% 0,810 "/16 '/16 7,99 11,3 IIV4 1.44 IV16 1.84 2%
x71,5 21.0 9.75 9% 0,730 % % 7,11 11.2 IIV4 1.32 15/16 1.72 2%6
x65 19.2 9.63 9% 0,670 I'/ie % 6,45 11.2 IIV8 1.20 1%6 1.60 27I6
x59.5 17.6 9.49 9V2 0.655 % 5/16 6,21 11,3 IIV4 1.06 IV16 1.46
115/16
x53 15.6 9.37 9% 0.590 %6 5/16 5,53 11,2 IIV4 0.940 1.34 11%6
X48.5 14.2 9.30 9V4 0.535 3/16 6/16 4,97 11,1 llVa 0.870 % 1.27 1%
12.7 9.20 9V4 0,480 V2 V4 4,41 11,1 11V8 0.770 % 1.17 1%
x38'= 11.1 9.11 gVs 0,425 '/16 Vi 3,87 11,0 11 0.680 "/W 1.08 19/16
" Shape is slender for compression Willi Fy = 50 l<si.
' Shape exceeds compact limit for flexure with Fy= 50 ksi.
' The actual size, combinatioti and orientation of fastener components should be compared with the geometrv of the
cross section to ensure compatibility.
* Flange thicl<ness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
»Shear strength controlled by buckling effects (Ci,< 1.0) with 50 ksi.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-59
Table 1-8 (continued)
WT-Shapes
Properties
WT10.5-WT9
Norn-
inal
Compact
Oc
Torsional
Norn-
inal
Section AxisX-X Axis Y-Y Properties
inai
Criteria
Wt C C/1 f f*
Wt
A d 1 S r
y Z yp 1 S r Z
ry=50
ksi
J
lb/ft
2t,
in." in? in. in. in? in. in." in.' in. in.' in." in,®
100.5 3.86 12.6 285 31.9 3.10 2,57 58.6 1,18 271 43.1 3.02 66.5 1,00 20.4 85.4
91 4.22 13.7 253 28.5 3.07 2.48 52.1 1,07 241 38.6 3.00 59.5 1.00 15.3 63.0
83 4,57 14.9 226 25.5 3.04 2.39 46.3 0,983 217 35.0 2.99 53.9 1,00 11.8 47.3
73.5 5.44 15.3 204 23.7 3.08 2.39 42.4 0,864 188 30.0 2.95 46.3 1.00 7.69 32.5
66 6.01 16.8 181 21.1 3.06 2.33 37.6 0,780 166 26.7 2.93 41.1 1.00 5.62 23.4
61 6.45 18.0 166 19.3 3.04 2.28 34.3 0,724 152 24.6 2.91 37,8 1.00 4,47 18-.4
55.5 7.05 19,6 150 17.5 3.03 2.23 31.0 0,662 137 22.2 2.90 34,1 0.915 3,40 13.8
50.5 7.68 21,4 135 15.8 3.01 2.18 27.9 0,605 124 20.2 2-89- ,30,8 0.824 2,60 10.4
46.5 4.53 18.6 144 17.9 3.25 2.74 31.8 0,812 46.4 11.0 1.84 17,3 0.9q6 3,01 9.33
41.5 5.00 20.8 127 15.7 3,22 2.66 28.0 0.728 40.7 9.74 1.83 15,2 0.854 2,16 6.50
36.5 5.60 23.3 110 13.8 3.21 2.60 24.4 0.647 35.3 8,51 1.81 13,3 0.728 1,51 4.42
34 6.04 24.7 103 12.9 3.20 2.59 22.9 0.606 32.4 7.83 1.80 12,2 0.657 1,22 3.62
31 6.70 26.3 93.8 11.9 3.21 2.58 21.1 0.554 28.7 6.97 1.77 10,9 0.579 0.913 2.78
27.5 7.87 27.7 84.4 10.9 3.23 2.64 19.4 0.493 24.2 5.89 1.73 9.18 0.522 0.617 2.08
24 9.47 29.4 74.9 9.90 3.26 2.74 17.8 0.459 19.4 4.76 1.66 7.44 0.463 0.400 1.52
28.5 5.04 25.9 90.4 11.8 3.29 2.85 21.2 0.638 15.3 4.67 1.35 7.40 0.597 0.884 2.50
25 6.10 27.4 80,3 10.7 3,30 2.93 19.4 0.771 12.5 3.82 1.30 6.08 0.533 0.570 1.89
22 7.22 29.4 71.1 9.68 3.31 2.98 17.6 1.06 10.3 3.18 1.26 5.07 0.463 0.383 1.40
155.5 2.19 7.37 383 46,6 2.89 2.93 90.6 1.91 398 66.2 Z95 104 1.00 87.2 339
141.5 2.38 7.79 337 41,5 2.85 2.80 80.2 1.75 352 59.2 2.91 92.5 1.00 66,5 251
129 2.56 8.36 298 37,0 2.80 2.68 71.0 1.61 314 53.4 2.88 83.1 1.00 51.1 189
117 2.76 9.05 261 32.7 2.75 2.55 62.4 1.48 279 47.9 2.85 74.4 1.00 39.1 140
105.5 3,02 9.72 229 29,1 2.72 2.44 55.0 1.34 246 42.7 2.82 66.1 1.00 29.1 102
96 3.27 10.6 202 25.8 2.68 2.34 48.5 1.23 220 38.4 2.79 59.4 1.00 22.3 75.7
87.5 3,58 11.2 181 23.4 2.66 2.26 43.6- 1.13 196 34.4 2.76 53.1 1.00 16.8 56.5
79 3,92 12.2 160 20.8 2.63 2.17 38.5 1.02 174 30.7 2.74 47.4 1.00 12.5 41.2
71.5 4,25 13.4 142 18.5 2.60 2.09 34.0 0.937 156 27.7 2.72 42.7 1.00 9.58 30.7
65 4.65 14.4 127 16-7 2.58 Z02 30,5 0.856 139 24.9 2.70 38.3 1.00 7.23 22,8
59.5 5.31 14.5 119 15.9 2.60 2.03 28,7 0.778 126 22.5 2.69 34.5 1.00 5.30 17,4
53 5.96 15.9 104 14.1 2.59 1.97 25,2 0.695 110 19.7 2.66 30.2 1.00 3.73 12,1
48.5 641 17.4 93.8 12.7 2.56 1.91 22,6 0.640 100 18.0 2.65 27.6 1.00 2.92 9,29
43 7.20 19.2 82.4 11.2 2.55 1.86 19,9 0,570 87.6 15.8 2.63 24,2 0.935 2.04 6,42
38 8.11 21.4 71.8 9.83 2.54 1.80 17,3 0.505 176.2 13.8 2.61 21,1 0.824 1.41 4,37
i
i
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-^0
DIMENSIONS AND PROPERTIES 1-71
Table 1 -8 (continued)
WT-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Stem Flange Distance
Shape
Area,
A
Depth,
d
Thickness,
2
Area
Width,
b,
Thicl<ness,
ti
<c
Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,
2
Area
Width,
b,
Thicl<ness,
ti
kte kdet
Work-
able
Gage
Shape
in? in. in. in. in. in. ijn^ in. in.
wrgxas-s"^ 10.4 9.24 9V4 0.495 '/2 V4 4,57 7.64 7% 0,810 '3/16 1.21 Vk 3V23
x32.5= . 9.55 9.18 , gVa 0.450 V16 V4 4.13 7.59 73/B 0.750 3/4 1.15 1V16
8.82 9.12 gVa 0.415 Vv 'A 3.78 7.56 7% 0.695 'V16 1.10 13/8
8.10 9.06 9 0.390 3/8 3/16 3.53 7.53 Vh 0.630 % 1.03 1^/16
7.34 9.00 9 0.355 % V16 3.19 7.50 •Pk 0.570 s/ie 0.972 IV4 T
Wr9x23'^ 6.77 9.03 9 0.360 % 3/16 3.25 6.06 6 0.605 % 1.01 IV4
x20' 5.88 8.95 9 0.315 5/16 3/16 2.82 6.02 6 0.525 Va 0.927 13/16 •i L
xU.S''" 5.15 8.85, 8% 0.300 V16 3/16 2,66 6.00 6 0.425 V16 0.827 iVa } r
wrsxso 14.7 8.49 8V2 0.585 V16 4.96 10.4 103/a 0.985 1 1,39 1% 5>h
X44.5 13.1 8.38^ m 0.525 Va 1/4 4,40 10.4 103/8 0.875 % 1.26 13/4
11.3 8.26 8V4 0.455 '/16 1/4 3,76 10,3 IOV4 0.760 3/4 1.16 16/8
x33.5'= 9.81 8.17 8V8 0.395 3/6 3/ie 3,23 10,2 IOV4 0.665 "/16 1.07 19/16 T
m8xZ8.5' 8.39 8.22 8V4 0.430 Vw Vi 3,53 7,12 7V8 0.715 ^Vl6 1,12 13/8 3V23
X25' 7.37 8.13 8Vfl 0.380 3/8 3/16 3.09 7.07 71/8 0.630 % 1.03 1^/16
L
X22.5' 6.63 8.07 sVfi 0.345 3/8 3/16 2.78 7.04 7 0.565 0,967 IV4 r
x20'= 5.89 8.01 8 0.305 5/16 3/16 2.44 7.00 7 0.505 V2 0,907 13/16 3V2
xie" 5.29 7.93 7% 0.295 V.6 3/16 2.34 6.99 7 0.430 Vis 0.832 iVs ZVi
WT8x15.5'= 4.56 7.94 8 0.275 V4 Vs 2.18 5.53 51/2 0.440 V16 0.842 iVs 3V2
3.84 7.85 7% 0.250 V4 Vs 1.96 5,50 5V2 0.345 3/8 0.747 IV16 3V2
' Shape is slender for compression witii 5,= 50 ksi.
' The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
'Shear strength controlled by buckling effects (C,< 1.0) with /y = 50 ksi.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-61
Table 1-8 (continued)
WT-Shapes
Properties
WT9-WT8
Nom-
inal
Wt.
Compact
Section Axis X-X Axis Y-Y
Qs
Torsional
Properties
Nom-
inal
Wt.
Criteria
/y=50
ksi
J 0...
Nom-
inal
Wt.
bt d / 5 r y Z yp / S r Z
/y=50
ksi
WW
lb/ft
2t, U,
in." in.^ in. in. in.' in. in." in.^ in. in.^
/y=50
ksi
in." in.®
35.5 4.71 18.7 78.2 11.2 2.74 2.26 20.0 0.683 30.1 7.89 1.70 12.3 0.961 1.74 3.96
32.5 5.06 20.4 70.7 10.1 2.72 2.20 18.0 0.629 27.4 7:22 1.69 11.2 0.875 1.36 3.01
30 5.44 22.0 64.7 9.29 2.71 2.16 16.5 0.583 25.0 6.63 1.68 10,3 0.794 1.08 2,35
27.5 5.98 23.2 59.5 8,63 2.71 2.16 15.3 0.538 22.5 5.97 1.67 9,26 0.733 0.830 1.84
25 6.57 25.4 53.5 7.79 2.70 2.12 13.8 0.489 20.0 5.35 1.65 8.28 0.620 0.619 1.36
23 5.01 25.1 52.1 7,77 2.77 2.33 13.9 0.558 11.3 3.71 1,29 5.84 0.635 0.609 1.20
20 5.73 28.4 44.8 6,73 2.76 2.29 12.0 0.489 9.55 3.17 1.27 4.97 0.496 0.404 0.788
17.5 7.06 29.5 40.1 6,21 2.79 2.39 11.2 0.450 7.67 2.56 1.22 4.02 0.460 0.252 0.598
50 5.29 14.5 76.8 11,4 2.28 1.76 20.7 0.706 93.1 17.9 2.51 27.4 1.00 3.85 10.4
44.5 5.92 16.0 67.2 10.1 2.27 1.70 18,1 0.631 81.3 15.7 2.49 24.0 1.00 2.72 7.19
38.5 6.77 18.2 56,9 8,59 2.24 1.63 15.3 0.549 69.2 13.4 2.47 20.5 0,986 1.78 4.61
33.5 7.70 20.7 48.6 7.36 2.22 1.56 13.0 0.481 59.5 11.6 2.46 17.7 0.859 1.19 3.01
28.5 4.98 19.1 48.7 7.77 2.41 1.94 13.8 0.589 21.6 6.06 1.60 9.42 0,940 1.10 1.99
25 5.61 21.4 42.3 6.78 2.40 1.89 12.0 0.521 18.6 5.26 1.59 8.15 0.824 0.760 1.34
22.5 6.23 23.4 37.8 .6.10 2.39 1.86 10.8 0.471 16.4 4.67 1.57 7.22 0,723 0.555 0.974
20 6.93 26.3 33.1 5.35 2.37 1,81 9,43 0.421 14.4 4.12 1,56 6.36 0.579 0.396 0.673
18 8.12 26.9 30.6 5.05 2.41 1.88 .8.93 0.378 12.2 3.50 1.52 5.42 0.553 0.272 0.516
15.5 6.28 28.9 27.5 4.64 2.45 2.02 8.27 0.413 6.20 2.24 1.17 3.51 0.479 0.230 0,366
13 7.97 31.4 23.5 4.09 2.47 2.09 7.36 0.372 4.79 1.74 1.12 2.73 0.406 0.130 0,243
i
i
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-62
DIMENSIONS AND PROPERTIES 1-62
Table 1-8 (continued)
WT-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Stem Flange Distance
Shape
Area,
A
Depth,
d
Thickness,

2
Area
Width,
bt
Thiclcness,
U
k
Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,

2
Area
Width,
bt
Thiclcness,
U
Kles
Work-
able
Gage
Shape
in.2 in. in. in. in.2 in. in. in. in. in.
wTTxaes" 107 11.2 IIV4 3.07 3Vt6 19/16 34.4 17.9 17% 4.91 4«/I6 5,51 63/16 71/2'
X332.5'' 97.8 10.8 10% 2.83 2«/|6 1'/16 30.6 17.7 175/6 4.52 4V2 5.12 •513/16 71/2'
xsoa.s" 89.0 10.5, IOV2 2.60 25/8 15/16 27.1 17.4 173/8 4.16 43/16 4.76 57I6 71/2
X275'' 80.9 10.1 10V8 2.38 2% 13/16 24.1 17.2 17V4 3.82 3"/I6 4.42 51/8
x250" 73.5 9.80 9% 2.19 23/16 1V8 21.5 17.0 17 3.50 3V2 4.10 413/16
x227.5^ 66.9 9.51 91/2 2.02 2 1 19.2 16.8 16%, 3.21 33/16 3.81 41/2
x213" , 62.7 9.34 9% 1.88 1% '5/16 17.5 16,7 16% 3.04 3VI6 3.63 45/16
xigg" 58.4 9.15 9V8 1.77 1% % 16.2 16,6 165/8 2.85 2% 3.44 41/8
xiss" 54.4 8.96 9 1.66 111/16 "/16 14.8 16.5 I6V2 2.66 2'Vie 3.26 3I5/I6
-xiri" 50.3 8.77 8% 1.54 1^/16 . «/i6 13.5 16.4 163/8 2.47 2V2 3.07 33/4
xlSS-S" 45.7 8.56 8V2 1.41 17I6 3/4 12.1 16.2 I6V4 2.26 2V4 2.86 39/I6
X141.5'' 41.6 8.37 8% 1.29 1=/16 'V16 10.8 16.1 16V8 2.07 2VI6 2.67 33/8
X128.5 37.8 8.19 8V4 1.18 I'/tt 5/8 9.62 16.0 16 1,89 1% 2.49, 33/I6
X116.5 34.2 8.02 8 1.07 IV16 ®/l6 8.58 15.9 15% i.72 13/4 2.32 3
X105.5 31.0 7,86 7% 0.980 1 V2 7.70 15:8 153/4 1,56 1^/16 2.16 2%
X96.5 28.4 . 7.74 7% 0.890 % Vw 6.89 15.7 153/4 1.44 1716 2.04 23/4
x88 25.9 7.61 7% 0.830 «/,6 '/16 6.32 15.7 155/8 1,31 15/16 1.91 25/8
X79.5 23.4 7.49 71/2 0.745 3/8 5.58 15.6 155/8 1.19 13/16 1.79 21/2
X72.5 21.3 7.39 7% 0.680 'V16 3/8 5.03 15.5 I5V2 1.09 IV16 1.69 23/8
WT7x66 19.4 7.33 7% 0.645 5/8 5/16 4.73 14.7 143/4 1.03 1 1.63 25/16 51/2
x60 17.7 7.24 71/4 0.590 S/16 5/16 4.27 14.7 145/8 0.940 15/16 1.54 21/4
x54,5 16.0 7.16 71/8 0.525 V2 1/4 3.76 14,6 145/8 0.860 % 1.46 23/16
X49.5' 14.6 7.08 71/8 0.485 V2 V4 3.43 14.6 145/8 0.780
3/4
1.38 21/16
x45' 13.2 7.01 7 0.440 '/16 V4 3.08 14.5 I4V2 0.710 11/16 1.31 2 T
WT7x41 12.0 7.16 7V8 0.510 V2
. 1/4
3.65 10.1 lOVs 0.855 % 1.45 111/16 51/2
x37 10,9 7.09 7V8 0.450 '/16 V4 3.19 10.1 IOVb 0.785 13/16 1.38 15/8
x34 10.0 7.02 7 0.415 V4 2.91 10.0 10 0.720
3/4
1.31 1^/16
xSO.S'^ 8.96 6.95 7 0.375 % 3/16 2.60 10.0 ,10 0.645 5/8 1.24 11/2
1
Wr7x26.5'^ 7.80 6.96 7. 0.370 % 3/16 2.58 8.06 8 0.660 11/16 1.25 11/2 51/2
x24' 7.07 6.90 678 0.340 5/16 3/16 2.34 8.03 8 0.595 5/8 1.19 1'/16 L
6.31 6.83 6% 0.305 5/16 3/16 2.08 8.00 8 0.530 1/2 1.12 13/8 r
' Shape is slender for compression witli Fy = 50 ksi.
'Shape exceeds compact limit for flexure with />=50 ksi.
9 The actual size, comhination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
" Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-63
Table 1-8 (continued)
WT-Shapes
Properties
WT7
Nom-
inal
Wt
Compact
Section Axis X-X AxIsY-Y
Qs
Torsional
Properties
Nom-
inal
Wt
Criteria
f,= 50
ksl
1
Nom-
inal
Wt
b, d 1 S f y Z yp 1 S f Z
f,= 50
ksl
J
lb/ft
it, U,
in." in. in. in.' in. in." in.' in. in.'
f,= 50
ksl
in." in."
365 1.82 3,65 739 95.4 2.62 3.47 211 3.00 2360 264 4.69 408 1.00 714 • 5250
332.5 1.95 3,82 622 82.1 2.52 3.25 182 2.77 2080 236 4.62 365 1.00 555 3920
302.5 2.09 4,04 524 70.6" 2.43 3.05 157 2.55 1840 211 . 4.55 326 1.00 430 2930
275 2.25 4.24 442 60.9 2.34 2.85 136 2.35 1630 189 4.49 292 1.00 331 2180
250 2.43 4.47 375 52.7 2.26 2.67 117 2.16 1440 169 4.43 261 1.00 254 1620.
227.5 2.62 4.71 321 45.9 2.19 2.51 102 1.99 1280 152 4.38 234 1.00 196 1210
213 2.75 4.97 287 41.4 2.14 2.40 91.7 1.88 1180 141 4.34 217 1.00 164 991
199 2.92 5.17 257 37.6 2.10 2.30 82.9 1.76 1090 131 4.31 201 1.00 135 801
185 3.10 5.40 229 33.9 2.05 2.19 74.4 1.65 994 121 4.27 185 1.00 110 640
171 3.31 5.69 203 30.4 2.01 2.09 66.2 1.54 903 110 4.24 169 1.00 88.3 502
155.5 3.59 6.07 176 26.7 1,96 1.97 57.7 1.41 807 99.4 4.20 152 1.00 67.5 375
141.5 3.89 6.49 153 23.5 1,92 1.86 50.4 1.29 722 89.7 4.17 137 1.00 51.8 281
128.5 4.23 6.94 133 20.7 1,88 1.75 43.9 1.18 645 80,7 4.13 123 1.00 39.3 209
116.5 4.62 7.50 116 18.2 1,84 1.65 38.2 1.08 576 72.5 4.10 110 1.00 29.6 154
105.5 5.06 8.02 102 16.2 1,81 1.57 33.4 0.980 513 65.0 4.07 98.9 1.00 22.2 113
96.5 5.45 8.70 89.8 14.4 1,78 1.49 29.4 0.903 466 59.3 4.05 90.1 1.00 17.3 87.2 •
88 5.97 9.17 80.5 13.0 1,76 1.43 26.3 0.827 419 53.5 4.02 81.3 1.00 13.2 65.2
79.5 6.54 10.1 70.2 11.4 1.73 1.35 22.8 0.751 374 48.1 4.00 73.0 1.00 9.84 47.9
72.5 7.11 10.9 62.5 10.2 1,71 1.29 20.2 0.688 338 43.7 3.98 66.2 1.00 7.56 36.3
66 7.15 11.4 57.8 9.57 1.73 1.29 18.6 0.658 274 37.2 3.76 56.5 1.00 6.13 26.6
60 7.80 12.3 51.7 8.61 1.71 1.24 16.5 0.602 247 33,7 3.74 51.2 1.00 4.67, 20.0
54.5 8.49 13.6 45.3 7.56 1.68 1.17 14.4 0.548 223 30.6 3.73 46.3 1.00 3.55 15,0
49.5 9.34 14.6 40.9 6.88 1.67 1.14 12.9 0.500 201 27.6 3.71 41.8 1.00 2.68 11.1
45 10.2 15.9 36.5 6.16 1.66 1.09 11.5 0.456 181 25.0 3.70 37.8 1.00 2.03 8.31
41 5,92 14.0 41.2 7.14 1.85 1.39 13.2 0.593 74.1 14.6 2.48 22.4 1.00 2.53 5.63
37 6.41 15.8 36.0 6.25 1.82 1.32 11.5 0.541 66.9 13.3 2.48 20.2 1.00 1.93 4.19
34 6.97 16.9 32,6 5.69 1.81 1.29 10.4 0.498 60.7 12.1 2.46 18.4 1.00 1.50 3.21
30.5 7,75 18.5 28,9 5.07 1.80 1.25 9.15 0.448 53.7 10.7 2.45 16.4 0.971 1.09 2.29
26.5 6.11 18.8 27,6 4.94 1.88 1.38 8.87 0.484 28.8 7.15 1.92 11.0 0.956 0.967 1.46
24 6,75 20.3 24,9 4.49 1.88 1.35 8.00 0.440 25.7 6.40 1.91 9.80 0.880 0.723 1.07
21.5 7,54 22.4 21,9 3.98 1.86 1.31 7.05 0.395 22.6 5.65 1.89 8.64 0.773 0.522 0.751
i
i
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-64 DIMENSIONS AND PROPERTIES 1-64
Table 1-8 (continued)
WT-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Stem Flange Distance
Shape
Area,
A
Depth,
d
Thickness,
2
Area
Width,
bf
Thickness,
tf
k
Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,
2
Area
Width,
bf
Thickness,
tf
kdes
Work-
able
Gage
Shape
in} in. in. in. in.2 in. in. in. in. in.
Vin7x19'= 5.58 7.05 7 0.310 =/l6 '/m 2.19 6.77 63/4 0.515 . 1/2 0.915 11/4 31/2'
5.00 6.99 7 0.285 3/16 1.99 6.75 53/4: 0.455 '/16 0.855 13/16 31/2
x15' 4.42 6.92 6% 0.270 V4 VB . 1.87 6.73, 63/4 0.385 3/8 0.785 1V6 31/2
Wnx13' 3.85 6.96 7 0.255 V4 Vs 1.77 5.03 5 0.420 7/16' 0.820 iVe 23/40
3.25 6.87 6% 0.230 1/4 Vs 1.58 5.00 5 0.335 5/16 0.735 II/16 23/48
wrexies" 49.5 8.41 8% 1.78 1% % 14.9 13.4 133/s 2.96 215/16 3.55 3% 51/2
x152,5'' 44.7 8.16 8V8 1.63 1% 13.3 13.2 131/4 2.71 211/16 3.30 35/8
X139.5" 41.0 7.93 778 1.53 IV2 % 12.1 13.1 131/8 2.47 21/2 3.07 33/e
X126'' 37.1 7.71 7% 1.40 1% 1V16 10.7 13.0 13 2.25 21/4 2.85 31/8
XHS"" 33.8 7.53 Ph 1.29 15/,6 'V16 9.67 12.9 12% 2.07 21/16 2.67 215/16
• x105 30.9 7:36 7% 1.18 1^/16 % 8.68 12.8 123/4 1.90 1%. 2.50 213/16
x95 28.0 7.19 71/4 1.06 IV16 3/16 7.62 12.7 125/e 1.74 13/4 2.33 25/8
x85 25.0 7.02: .7 0.960 15/16 1/2 6.73 12.6 125/e 1.56 19/16 2.16 2VK
x76 22.4 6.86 6% 0.870 78 Vk 5.96 12.5 121/2 1.40 13/8 2.00 25/16
x68 20.0 6.71 6% 0,790 '/16 5.30 12.4 123/8 1.25 11/4 1.85 21/e
x60 17.6 6.56 6V2 0.710 IV16 % 4.66 12,3 123/8 1.11 1V8 1.70 2
x53 15.6 6.45 6V2 0.610 % 5/16 3.93 12.2 121/4 0.990 1 1.59 1%
x48 14.1 6.36 6% 0.550 9/16 5/16 3.50 12,2 121/8 0.900 % 1.50 113/16
X43.5 12.8 6.27 6V4 0.515 1/2 V4 3.23 12.1 I2V8 0.810 13/16 1.41 111/16
X39.5 11.6 6.19 6V4 0.470 V2 V4 2.91 12.1 121/8 0.735 3/4 1.33 15/8
x36 10.6 6.13 6V8 0.430 V16 V4 2.63 12.0 12 0.670 11/16 1.27 19/16
X32.5' 9.54 6.06 6 0.390 % 3/16 2.36 12.0 12 0.605 5/8 1.20 11/2
Wr6x29 8.52 6.10 6VB 0.360 % 3/16 2.19 10.0 10 0.640 5/8 1.24 II/2 51/2
X26.5 7.78 6.03 6 0.345 % 3/16 2.08 10.0 10 0.575 9/16 1.18 13/8 51/2
WT6x25 7.30 6.10 6Ve 0.370 % 3/16 2.26 8.08 81/8 0.640 5/8 1.14 11/2 51/2
X22.5 6.56 6.03 6 0.335 5/16 3/16 2.02 8.05 8 0.575 3/16 1.08 13/8
L
x20'^ 5.84 5.97 6 0.295 =/l6 3/16 1.76 8.01 8 0.515 1/2 1.02 l3/e 1 r
Wr6x17,5' 5.17 6.25 «V4 0.300 V16 3/16 1.88 6.56 61/2 0.520 1/2 0.820 13/16 31/2
x15' 4.40 6.17 6V8 0.260 V4 VB 1.60 6.52 6V2 0,440 7/16 0.740 11/8
L-
x13' 3.82 6.11 6Ve 0.230 1/4 Vs 1.41 6,49 61/2 0.380 3/8 0.680 iVlB r
«Shape is slender for compression with F, = 50 ksi.
' Shape exceeds compact limit for flexure with Ff - 50 l<LSi.
»The actual size, combination and orientation of fastener components should be compared wiUi the geometry of the
cross section to ensure compatibility.
'' Flange thicl<ness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
• Shear strength controlled by buckling effects {Cv < 1.0) with Fy=50 ksi.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-65
Table 1-8 (continued)
WT-Shapes
Properties
WT7-WT6
Nom-
inal
Wt.
Compact
Section
Criteria
Axis X-X Axis Y-Y
0.
Torsional
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
Axis X-X Axis Y-Y
FY=m
ksi
J
Nom-
inal
Wt.
Zt,
£
tw
/ S r /
Z yp / S r Z
FY=m
ksi
J
lb/ft
Zt,
£
tw
in." in.3 in. in. in.3 in; in." in.' in. in.'
FY=m
ksi
in." in.s
19 6.57 ni 23.3 4.22 2,04 1.54 7.45 0.412 13.3 3.94 1.55 6,07 0,758 0,398 0.554
17 7,41 24.5 20.9 3.83 2,04 1.53 6.74 0,371 11.6 3.45 1.53 5,32 0,667 0,284 0,400
15 8.74 25,6 19.0 3.55 2,07 1.58 6.25 0,329 9.79 ^91 1.49 4,49 0,611 0,190 0,287
13 5.98 27,3 17.3 3.31 2,12 1,72 5.89 0,383 4.45 1.77 1,08 2,76 0.537 0,179 0,207
11 7.46 29,9 14.8 2.91 2,14 1,76 5,20 0,325 3.50 1.40 1,04 2,19 0.448 0,104 0,134
168 2.26 4,72 190 31.2 1,96 2.31 68,4 1,84 593 88.6 3,47 137 1.00 120 481
152.5 2.45 5,01 162 27.0 1,90 2,16 59,1 1.69 525 79.3 3.42 122 1.00 92,0 ; 356
139.5 2.66 5,18 141 24.1 1,86 2.05 51,9 1.56 469 71.3 3:38 110 1.00 70,9 ,267
126 2.89 5,51 121 20,9 1,81 1.92 44,8 1.42 414 63.6 3,34 97,9 1.00 53,5 195
115 3.11 5.84 106 18,5 1,77 1.82 39.4 1.31 371 57.5 3,31 88.4 1.00 41.6 148
105 3.37 6.24 92.1 16.4 1.73 1.72 34,5 1.21 332 51.9 3,28 79.7 1.00 32.1 112
95 3.65 6,78 79.0 14.2 1,68 1.62 29.8 1.10 295 46.5 3,25 71.2 1.00 24.3 82,1
85 4.03 7.31 67.8 12.3 : 1,65 1.52 25.6 0.994 259 41.2 3,22 62.9 1.00 17.7 58,3
76 4.46 7,89 58.5 10.8 1,62 1.43 22,0 0.896 227 36.4 3,19 55.6 1.00 ,12,8 41,3
68 4.96 8,49 50,6 9.46 1.59 1.35 19,0 0.805 199 32.1 3,16 48.9 1.00 9,21 28,9
60 5,57 9,24 43,4 8.22 1.57 1.28 16.2 0.716 172 28,0 3,13 42.7 1.00 6,42 19,7
53 6.17 10.6 36.3 6,92 1,53 1.19 13.6 0.637 151 24,7 3,11 37,5 1.00 4,55 13,6
48 6,76 11,6 32.0 6,12 1,51 1.13 11.9 0.580 135 22.2 3,09 33,7 1.00 3,42 10,1
43,5 7.48 12,2 28.9 5.60 1,50 1,10 10.7 0.527 120 19.9 3,07 30,2 1.00 2,54 7.34
39.5 8.22 13.2 25.8 5.03 1,49 1,06 9.49 0.480 108 17.9 3.05 27,1 1.00 1.91 5.43
36 8.99 14,3 23,2 4.54 1.48 1,02 8.48 0.439 97.5 16.2 3.04 24,6 1.00 1.46 4.07
32,5 9.92 15,5 20,6 4,06 1.47 0,985 7.50 0.398 87.2 14.5 3.02 22,0 1.00 1.09 2,97
29 7.82 16,9 19,1 3,76 1.50 1,03 6.97 0.426 53.5 10.7 2.51 16,2 1.00 1.05 2,08
26.5 8.69 17.5 17,7 3,54 1.51 1,02 6.46 0.389 47.9 9.58 2.48 14,5 1.00 0.788 1.53
25 6.31 16.5 18,7 3,79 1.60 1.17 6.88 0.452 28.2 6.97 1.96 10,6 1.00 0.855 1,23
22.5 7.00 18.0 16,6 3,39 1.59 1,13 6,10 0.408 25.0 6.21 1,95 9,47 1.00 0.627 0.885
20 7.77 20.2 14,4 2,95 1.57 1.09 5,28 0.365 22.0 5.50 1,94 8,38 0.885 0.452 0,620
17.5 6.31 20.8 16,0 3,23 1.76 1.30 5,71 0.394 12.2 3.73 1,54 5,73 0.854 0.369 0,437
15 7.41 23.7 13.5 2,75 1.75 1.27 4,83 0.337 10.2 3.12 1,52 4,78 0.707 0.228 0,267
13 8.54 26.6 11.7 2,40 1.75 1.25 4,20 0.295 8.66 2.67 1,51 4,08 0,566 0.150 0,174
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-66 DIMENSIONS AND PROPERTIES 1-66
Table 1-8 (continued)
WT-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Stem Flange Distance
Shape
Area,
A
Depth,
d
Thickness,
tw T
Area
Width,
b,
Thicliness,
tf
fr Work-
able
Gage
Shape
Area,
A
Depth,
d
Thickness,
tw T
Area
Width,
b,
Thicliness,
tf
frites KM,
Work-
able
Gage
Shape
in.2 in. in. in. in.2 in. in. in. in. ; in.
WT6x1.r 3.24 6.16 evs 0.260 V4 V8 1.60 4.03 4 0.425 V16 0.725 «/l6 2V4'
x9,5' 2.79 6.08 6V8 0.235 V4 V8 1.43 4.01 4 0,350 3/8 0.650 %
x8' 2.36 6.00 6 0,220 V4 V8 1.32 3.99 4 0,265 V4 0.565 "/16
2.08 5.96 6 0,200 Vn V8 1.19 3.97 4 0.225 V4 0.525 3/4
WT5x56 16.5 5.68 55/8 0.755 % % 4.29 10.4 103/8 1.25 1V4 1.75 1«/16 51/2
x50 14,7 5.55 5V2 0,680 "/16 % 3.77 10.3 103/B 1.12 IVB 1.62 113/16
x44 13.0 5.42 5% 0.605 S/6 5/16 3.28 10.3 IOV4 0.990 1 1.49 111/16
X38.5 11,3 5.30 5V4 0.530 V2 V4 2.81 10.2 IOV4 0.870 % 1.37 1^/16
x34 10,0 5.20 5V4 0.470 Vz V4 2.44 10.1 lOVs 0.770 3/4 1.27 1'/16
x30 8.84 5.11 5VB 0.420 7/16 V4 2.15 10.1 10V8 0.680 'V16 1.18 13/8
x27 7,90 5.05 5 0.370 % 3/16 1.87 10.0 10 0.615 % 1.12 1=/16
X24.5 7,21 4.99 5 0.340 5/16 3/16 1.70 10.0 10' 0.560 9/16 1.06 IV4
WT5X22.5 6,63 5.05 5 ^ 0.350 % 3/16 1.77 8.02 8 0.620 5/8 1.12 1^/16
X19.5 5.73 4.96 5 0,315 5/16 3/16 1.56 7.99 8 0.530 V2 1.03 13/16
X16.5 4,85 4.87 4% 0:290 =/l6 3/16 1.41 7.96 8 0.435 V16 0.935 1V8
WT5x15 4.42 5.24 51/4 0.300 =/l6 3/16 1.57 5.81 53/4 0.510 Vz 0.810 11/8 23/4"
x13' 3.81 5.17 5V8 0.260 1/4 Vs 1.34 5.77 53/4 0.440 '/16 0.740 11/16
L
x11' 3.24 5.09 5V8 0.240 1/4 Vs 1.22 5.75 53/4 0.360 3/8 0.660 15/16 r
WT5X9.5' 2.81 5.12 5V8 0.250 1/4 m 1.28 4.02 4 0.395 3/8 0.695 IV16 21/49
x8.5' 2.50 5.06 5 0.240 V4 % 1.21 4.01 4 0,330 5/16 0.630 %
x7.5' 2.21 5.00 5 0.230 Vi Vs 1.15 4.00 4 0.270 V4 0.570 13/16
1.77 4.94 478 0.190 3/16 Ve 0.938 3.96 4 0.210 3/16 0.510 3/4
WT4X33.5 9,84 4.50 4V2 0.570 3/16 5/16 2.57 8.28 8V4 0.935 «/l6 1.33 1% 51/2
x29 8,54 4.38 4% 0.510 Vz V4 2.23 8.22 8V4 0.810 13/16 1.20 11/2
x24 7,05 4.25 4V4 0.400 % 3/16 1.70 8.11 8V6 0.685 'V16 1.08 13/8
x20 5,87 4.13 4V8 0.360 % 3/16 1.49 8.07 8V8 0,560 ®/l6 0.954 11/4
X17.5 5,14 4.06 4 0,310 5/16 3/16 1.26 8.02 8 0.495 V2 0.889 13/16
X15.5' 4.56 4.00 4 0,285 .3/16 1.14 8.00 8 0.435 '/16 0.829 1V8
f
WT4x14 4.12 4,03 4 0,285 5/16 3/16 1.15 6.54 6V2 0.465 V16 0.859 15/16 31/2
x12 3.54 3.97 4 0,245 V4 V8 0.971 6.50 6Vz 0.400
3/8
0.794 78 31/2
' Shape is slender for compression with Fy = 50 ksi.
' Sliape exceeds compact limit for flexure with F,-50 ksi.
' The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility,
' Shear strength controlled by buckling effects {Cr< 1.0) with 50 ksi.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-67
Table 1 -8 (continued)
WT-Shapes
Properties
WT6-WT4
Nom-
inal
Wt
Compact
Section
Ctfteria
Axis X-X Axis Y-Y
a.
Torsional
Properties
Nom-
inal
Wt
Compact
Section
Ctfteria
Axis X-X Axis Y-Y
ksi
J
Nom-
inal
Wt
bf
2t<
d
U,
/ S r y Z yj / S r Z
ksi
J
Ib/ft
bf
2t<
d
U,
in.^ in. in. in.' in. in.^ in» in. in.'
ksi
in." in,«
11 4.74 23.7 11.7 2,59 1,90 1.63 4,63 0.402 2.33 1,15 0.847 1.83 0.707 0.146 0,137
9.5 5.72 25.9 10,1 2,28 1,90 1,65 4,11 0.348 1.88 0,939 0.821 1.49 0.597 0.0899 0.0934
8 7.53 27.3 8,70 2,04 1,92 1,74 3,72 0.639 1.41 0.706 0.773 1.13 0.537 0.0511 0.0678
7 8.82 29.8 7,67 1,83 1,92 1,76 3,32 0.760 1.18 0.593 0.753 0.947 0.451 0.0350 0.0493
56 4.17 7.52 28,6 6,40 1,32 1,21 13,4 0.791 118 22.6 2.67 34.6 1.00 7.50 16.9
50 4.62 8.16 24,5 5,56 1,29 1,13 11,4 0.711 103 20.0 2.65 30.5. 1.00 5.41 11.9
44 5.18 8.96 20.8 4,77 1.27 1,06 9.65 0.631 89.3 17.4 2.63: 26.5 1.00 3.75 8.02
38.5 5,86 10.0 17.4 4,05 1.24 0.990 8,06 0.555 76.8 15.1 2.60 22.9 1.00 2.55 5.31
34 6.58 11.1 14.9 3,49 1.22 0.932 6,85 0.493 66.7 13.2 2.58 20.0 1.00 1.78 3.62
30 7.41; 12.2 12.9 3.04 1,21 0.884 5,87 0.438 58,1 11.5 2.57 17.5 1.00 1.23 2.46
27 8.15 13.6 11.1 2.64 1.19 0.836 5,05 0.395 51,7 10.3 2.56 15.6 1.00 0,909 1.78
24.5 8.93 14.7 10.0 2.39 1.18 0.807 4,52 0,361 46,7 9.34 2.54 14.1 1.00 0.693 1.33
22.5 6.47 14.4 10.2 2.47 1.24 0.907 4,65 0.413 26,7 6.65 2.01 10.1 1.00 0.753 0.981
19.5 7.53 15.7 8.84 2.16 1.24 0.876 3.99 0.359 22,5 5.64 1.98 8.57 ,1.00 0.487 0.616
16.5 9.15 16.8 7.71 1.93 1.26 0.869: 3.48 0.305 18.3 4.60 1.94 7.00 1.00 0.291 0.356
15 5.70 17.5 9.28 2.24 1.45 1.10 4,01 0.380 8.35 2.87 1.37 4.41 1.00 0.310 0.273
13 6.56 19.9 7.86 1.91 1.44 1.06 3,39 0.330 7.05 2.44 1.36 3.75 0.900 0.201 0.173
11 7.99 21.2 6.88 1.72 1.46 1.07 3.02 0.282 5.71 1.99 1.33 3.05 0.834 0.119 0.107
9.5 5.09 20.5 6.68 1.74 1,54 1.28 3.10 0.349 2.15 1.07 0.874 1.67 0.870 0.116 0.0796
8.5 6.08 21.1 6.06 1.62 1.56 1.32 2.90 0.311 1.78 0.887 0.844 1.40 0.839 0.0776 0.0610
7.5 7.41 21.7 5.45 1.50 1,57 1.37 2.71 0.305 1.45 0.723 0.810 1.15 0.809 0.0518 0.0475
6 9.43 26.0 4.35 1.22 1,57 1,36 2.20 0.322 1.09 0,551 0.785 0.869 0.592 0.0272 0.0255
33.5 4,43 7.89 10.9 3,05 1,05 0,936 6.29 0.594 44.3 10,7 2.12 16.3 1.00 2.51 3.56
29 5.07 8.59 9.12 2,61 1.03 0,874 5.25 0.520 37.5 9,13 2.10 13.9 1.00 1.66 2,28
24 5.92 10.6 6.85 1,97 0.986 0,777 3.94 0.435 30.5 7,51 2.08 11.4 1.00 0.977 1.30
20 7.21 11,5 5.73 1,69 0.988 0,735 3.25 0.364 24.5 6,08 2.04 9.24 1.00 0.558 0,715
17,5 8.10 13.1 4,82 1.43 0.968 0,688 2.71 0.321 21.3 5,31 2.03 8.05 1.00 0.384 0,480
15.5 9,19 14.0 4,28 1,28 0.969 0,668 2.39 0.285 18.5 4,64 2.02 7.03 1.00 0.267. 0,327
14 7.03 14.1 4,23 1,28 1.01 0,734 2.38 0.315 10,8 3,31 1.62 5.04 1.00 0,268 0,230
12 8.12 16.2 3,53 1,08 0.999 0,695 1.98 0.272 9,14 2,81 1.61 4.28 1.00 0,173 0.144
I
I
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-68 DIMENSIONS AND PROPERTIES 1-68
Table 1-8 (continued)
WT-Shapes
Dimensions
Shape
Area,
A
in;
Depth,
d
Stem
Thickness,

in. in.
Area
in.-^
Flange
Width,
b,
in.
Thiclcness,
//
in.
Distance
kies kdet
in.
Worl<-
abie
Gage
in.
WT4X10.5
x9
WT4x7.5
x6.5
WT3X12.5
xlO
x7.5'
WT3x8
x6
x4.5'
X4.25'
WT2.5x9.5
x8
WT2x6.5
3.08
2.63
2.22
1.92
1.48
3.67
2.94
2.21
2.37
1.78
1.34
1,26
2.78
2.35
1.91
4.14
4.07
4.06
4.00
3.95
3.19
3.10
3.00
3.14
3.02
2.95
2.92
2.58
2.51
2.08
4'/8
4V8
4
4
4
3V4
3Va
3
3V8
3
3
2%
2%
2'/?
2V8
0.250
0.230
0,245
0.230
0.170
0.320
0.260
0.230
0.260
0.230
0.170
0.170
0.270
0.240
0.280
V4
V4
V4
1/4
3/16
=/.6
1/4
1/4
1/4
1/4
3/16
Vie
1/4
1/4
1/4
1.04
0.936
0.99:
0.919
0.671
1.02
0.806
0.689
0.816
0.693
0.502
0.496
0.695
0.601
0.582
5.27
5.25
4.02
4.00
3.94
6.08
6.02
5.99
4.03:
4.00
3.94
3.94,
5.03
5.00
4.06
51/4
51/4
4
4
4
eVs
6
6
4
4
4
4
5
5
0.400
0.330
0.315
0.255
0.205
0.455
0.365
0.260
0.405
0.280
0.215
0.195
0.430
0.360
0.345
V16
5/16
1/4
3/e
1/4
3/a
1/4
3/16
V16
V16
0.700
0.630
0.615
0.555
0.505
0.705
0.615
0.510
0.655
0.530
0.465
0.445
0.730
0.660
0.595
%
13/16
13/16
3/4
11/16
15/16
%
3/4
%
3/4
11/16
iVie
13/16
3/4
3/4
23/4"
23/4S
21/49
31/2
2V48
23/4
23/4
21/4
' Shape Is slender for compression with Fy= 50 l(si.
' Shape exceeds compact limit for flexure with Fy- 50 ksi.
' The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-69
Table 1-8 (continued)
WT-Shapes
Properties
WT4-WT2
Nomr
inal
Wt
Compact
Section Axis X-X Axis Y-Y
Qs
Torsional
Properties Nomr
inal
Wt
Criteria
F,=50
ksi
/
Nomr
inal
Wt
b,
2t,
d / S r y Z yp / S r Z
F,=50
ksi
lb/ft
b,
2t, U in.' in.» in. in. in.3 in. in.' in.' in. in?
F,=50
ksi
in." in.®
10.5 6.59 16.6 3.90 1.18 1.12 0.831 2,11 0,292 4.88 1.85 1.26 2.84 1.00 0.141 0.0916
9 7.95 17.7 3.41 1.05 1.14 0.834 1,86 0,251 3.98 1.52 1.23 2.33 1.00 0.0855 0.0562
7.5 6.37 16.6 3.28 1.07 1.22 0.998 1.91 0,276 1.70 0,849 0.876 1.33 1.00 0.0679 0.0382
6.5 7.84 17.4 2.89 0.974 1,23 1.03 1.74 0,240 1.36 0,682 0,843 1.07 1.00 0,0433 0,0269
5 9.61 23.2 2.15 0.717 1.20 0,953 1.27 0,188 1.05 0,531 0:840 0.826 0.733 0.0212 0.0114
12.5 6.68 10.0 2.29 0.886 0.789 0.610 1.68 0,302 8.53 2,81 1,52 4.28 1.00 0.229 0.171
10 8.25 11,9 1.76 0.693 0.774 0,560 1.29 0.244 6.64 2.21 1,50 3.36 1.00 0.120 0.0858
7.5 11.5 13.0 1.41 0.577 0.797 0.558 1.03 0.185 4.66 1.56 1.45 2.37 1.00 0.0504 0.0342
8 4.98 12.1 1.69 0.685 0.844 0,676 1.25 0.294 2.21 1.10 0,966 1.69 1.00 0.111 • 0.0426
6 7.14 13.1 1.32 •0.564 0.862 0,677 1.01 0.222 1.50 0.748 0.918 1.16 1.00 0.0449 0.0178
4.5 9.16 17.4 0.950 0.408 0.842 0,623 0.720 0.170 1.10 0.557 0,905 0.856 1.00 0.0202 0.00736
4.25 10.1 17.2 0.905 0.397 0:«48 0.637 0.700 0.160 0.995 0.505 0,890 0.778 1.00 0.0166 0.00620
9.5 5.85 9.56 1.01 0.485 0.604 0.487 0.970 0.276 4.56 1.81 1,28 2.76 1,00 0.157 0.0775
8 6.94 10.5 0.845 0.413 0.599 0.458 0.801 0.235 3.75 1.50 1,26 2.28 1.00 0.0958 0.0453
6.5 5.88 7.43 0.526 0.321 0.524 0,440 0,616 0.236 1.93 0.950 1,00 1.46 1.00 0.0750 0.0233
i
i
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-70 DIMENSIONS AND PROPERTIES 1-70
Table 1-9
MT-Shapes
Dimensions
Shape
Area,
A
m.2
Depth,
d
in.
Stem
Thickness,
in.
Area
in.2
Flange
Width,
bt
in.
Thickness,
tf
in.
Distance
in.
Woi1<-
abie
Gage
in.
MT6.25X6.2"
MTexS.g"^
xS'^'"
MT5x4.5'^
xS.!"^
MT3x2,2'=
X1.85'
MT2.5x9,45'
MT2X3'
1.82
170
1,74
1,59
1.48
1.33/
1.19
1.11
0.959
0.911
0.647
0.545
2,78
0,875
6.27
6.25
6.00
5.99
5.99
5.00
4.98
5.00
4.00
4.00
3.00
2.96
2,50
1.90
6V4
6V4
6
6
6
5
5
4
4
3
3
2V2
1%
0.155
0.155
0.177
0.160
0.149
0.157
0.141
0.130
0.135
0.129
0.114
0.0980
0.316:
0.130
0.971
0,969
1.06
0.958
0.892
0.785
0.701
0.649
0.540
0.516
0.342
0.290
0.790
0.247
3.75
3.50
3.07
3.07
3.25
2.69
2.69
2.69
2.28
2.28
1.84
2.00
5.00
3.80
33/4
3V2
3V8
3V8
.3V4
23/4
2%
25/4
2V4
2V4
1%
2
5
33/4
0.228
0.211
0.225
0.210
0.180
0.206
0.182
0.173
0.189
0.177
0.171
0.129
0.416
0.160
Vi
3/16
Vi
3/16
3/16
3/16
3/16
3/16
3/16
3/16
3/16
Vt
Vw
3/16,
5/16
3/16
Vz
5/16:
®/l6
'/16
^/16
'/16
3/8
=/l6
'3/16
V2 .
23/49
' Shape is slender for compression with fy = 36 ksi.
' Shape exceeds compact limit for flexure with Fy= 36 ksi.
0 The actuaf size, combination and orientation of fastener components should be compared with the geometrv of the
cross section to ensure compatibility.
" This shape has tapered flanges while all other MT-shapes have parallel flange surfaces.
• Sliape does not meet the /;/?»• limit for shear in AISC Spsdfication Section G2.1(a) with ^=36 ksi.
— Indicates flange is too narrow to establish a workable gage.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-71
Table 1-9 (continued)
MT-Shapes
Properties
MT-SHAPES
«
i
Nom-
inal
Wt.
lb/ft
Compact
Section
Criteria
AxisX-X
in." in.^ in. in. in.'
yp
in.
Axis Y-Y
in." in.3 in. in.'
Qs
f„=36
ksi
Torsional
Properties
in."
6.2
5.8
5.9
5.4
5
4.5
4
3.75
3.25
3.1
2.2
1.85
9.45
3
8.22
8.29
6.82
7.31
9.03
6.53
7.39
7.77
6.03
6.44
5.38
7.75
6.01
11.9
40.4
40.3
33.9
37.4
40.2
31.8
35.3
38.4
29.6
3i.O
26.3
30.2
7.91
14.6
7.29
6.94
6.61
6,03
5.62
3.47
3.08
2.91
1.57
1.50
0.579
0.483
1.05
0.208
1.61
1.57
1.61
1.46
1.36
1.00
0.894
0.836
0.558
0.533
0,268
0.226
0,528
0.133
2.01
2.03
1.96
1.95
1.96
1.62
1.62
1.63
1.29
1.29
0.949
0.945
0.617
0.493
1.74
1,84
1.89
1.86
1.86
1.54
1.52
1.51
1.18
1,18
0.841
0,827
0.512
0.341
2.92
2.86
2.89
2.63
2.45
1.81
1.61
1.51
1.01
0.967
0.483
0.409
1.03
0.241
0.372
0.808
1.13
1.05
1.08
0.808
0.809
0.759
0.472
0.497
0.190
0.174
0.276
0.112
1.00
0.756
0.543
0.506
0.517
0.336
0.296
0.281
0.188
0,176
0,0897
0,0863
4,35
0,732
0,536
0,432
0,354
0.330
0,318
0,250
0,220
0,209
0,165
0,154
0,0973
0,0863
1,74
0.385
0.746
0.669
0.561
0.566
0.594
0.505
0.502
0.505
0.444
0.441
0.374
0.400
1.26
0.926
0.839
0.684
0.575
0.532
0.509
0.403
0.354
0.334
0.264
0.247
0.155
0.136
2.66
0.588
0.341
0.342
0.484
0.397
0.344
0.550
0.446
0,377
0,634
0,578
0,778
0,609
1,00
1,00
0,0246
0,0206
0,0249
0,0196
0.0145
0.0156
0,0112
0,00932
0,00917
0,00778
0,00494
0,00265
0,156
0,00919
0,0284
0,0268
0.0337
0.0250
0.0202
0,0138
0,00989
0,00792
0,00463
0,00403
0,00124
0,000754
0,0732
0,00193
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-72 DIMENSIONS AND PROPERTIES 1-72
i
A-
PNA
-tw
Table 1-tO
ST-Shapes
Dimensions
Shape
Area,
A
Depth,
d
stem Flange Distance
Shape
Area,
A
Depth,
d
Thickness,
h.
2
Area
Width,
b,
Thiclcness,
t,
k
Woriobie
Gage
Shape
in.' in. in. in. in.^' in. in. in. in.
ST12x60.5 17.8 12.3 12V4 0.800 "/fS 7/16 9.80 8.05 8 1.09 IV16 2 4
x53 15.6 12.3 12V4 0.620 5/8 5/16 7.60 7.87 77/8 1,09 IV16 2 4
ST12X50 14.7 . 12.0 12 0,745 3/4 3/8 8.94 7.25 7V4 0,870 7/8 13/4 4
x45 13,2 12.0 12 0.625 5/8 5/16 7.50 7.13 7V8 0.870 7/8 13/4 4
x40' 11.7 12.0 12 • 0.500 V2 V4 6.00 7.00 7 0.870 7/8 13/4 4
ST10X48 14.1 10.2 LOVS 0.800 '3/16 7/16 8,12 7.20 7V4 0.920 15/16 13/4 4
x43 12.7 10.2 LOVS 0.660 "/16 3/8 6.70 7.06 7 0,920 15/16 13/4 4
ST10x37.5 11.0 10.0 10 0,635 5/8 5/16 6.35 6,39 63/8 0,795 13/16 15/8 31/29
x33 9,70 10.0 10 0.505 V2 V4 5.05 6.26 6V4 0,795 13/16 15/8 31/28
ST9X35 10.3 9.00 9 0.711 "he 3/8 6,40 6.25 6V4 0,691 11/16 11/2 31/2'
X27.35 8.02 9.00 9 0,461 7/16 Vi 4,15 6.00 6 0,691 11/16 11/2 31/2=
ST7.5X25 7.34 7.50 7V2 0,550 3/16 5/16 4,13 5,64 55/8 0,622 5/8 13/8 31/2'
X21.45 6.30 7.50 7V2 0.411 7I6 V4 3,08 5.50 5V2 0,622 5/8 13/8 31/2' .
ST6x25 7.33 6.00 6 0.687 IV16 3/8 4.12 5,48 5V2 0,659 11/16 17/16 39
X20.4 5.96 6.00 6 0,462 '/16 V4 2,77 5,25 5V4 0,659 11/16 17/16 39
ST6X17.5 5.12 6.00 6 0.428 V16 V4 2,57 5,08 51/8 0,544 3/16 13/16 39
X15.9 4.65 6,00 6 0,350 % 3/16 2.10 5,00 5 0,544 3/16 13/16 39
ST5x17.5 5.14 5,00 5 0,594 5/8 5/16 2.97 4.94 5 0,491 1/2 11/8 23/49
X12.7 3.72 5,00 5 0,311 5/16 3/16 1,56 4.66 45/8 0.491 1/2 11/8 23/49
ST4X11.5 3.38 4,00 4 0,441 7/16 VA 1,76 4.17 4V8 0.425 7/16 1 21/49
x9.2 2.70 4.00 4 0,271 V4 1/8 1,08 4.00 4 0.425 7/16 1
21/49
ST3X8.6 2.53 3.00 3 0,465 7/16 V4 1,40 3.57 35/8 0,359 3/8 13/16
X6.25 1.83 3.00 3 0.232 V4 VS 0.696 3,33 33/8 0,359 3/8 13/16
ST2.5X5 1.46 2,50 2V2 0.214 V16 V8 0.535 3,00 3 0,326 5/16 3/4 —
ST2X4.75 1.40 2.00 2 0.326 5/16 3/16 0.652 2,80 23/4 0,293 5/16 3/4
X3.85 1,13 2.00 2 0.193 3/16 V8 0.386 2,66 25/8 0,293 5/16 3/4 —
ST1,5x3.75 1.10 1.50 IV2 0.349 % 3/16 0.524 2,51 2V2 0,260 1/4 5/8
X2.85 0.830 1.50 0.170 3/16 V8 0.255 2,33 23/8 0,260 1/4 5/8 —
' Shape is slender for compression witti /y = 36 ksi
9 The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compafbility.
— Indicates flange is too narrow to establish a workable gage.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-73
Table 1-10 (continued)
ST-Shapes
Properties T
ST-SHAPES
Nom-
inal
Compact
Section
Criteria
Axis X-X AxisY-Y
Qs
Torsional
Properties
Wt
b, a / S r y Z yp / S r Z J Cw
lb/ft
zt, u,
in.^ in,^ in. in. in.' in. in." in.' in. in.'
ksi
in." in.
60.5
53
3.69
3.61
15.4
19.8
259
216
30.1
24.1
3.82
3.72
3,63
3,28
54,5
43,3
1.26
1.02
41,5
38,4
10.3
9.76
1.53
1.57
18,1
16.7
1.00
1.00
6.38
5.05
27.5
15.0
50
45
40
4.17
4.10
4.02
16.1
19.2
24.0
215
190
162
26.3 .
22.6
18.6
3.83
3.79
3.72
3,84
3,60
3,30
47.5
41,1
33.6
2,16
1.42
0.909
23,7
22,3
21.0
6.55
6.27
6.00
1.27
1.30
1,34
12.0
11.2
10.4
1.00
1.00
0.876
3.76
3.01
2.44
19.5
12.1
6.94
48
43
3.91
3.84
12.7
15.4
143
124
20.3
17,2
3.18
3.13
3,13
2,91
36,9
31,1
1,35
0,972
25.0
23.3
6.93
6.59
1,33
1.36
12.5
11.6 .
1.00
1.00
4.16
3.30
15.0
9.17
37.5
33
4.02
3.94
15.7
19.8
109
92.9
15.8
12.9
3.15
3.10
3,07
2,81
28,6
23,4
1,34
0,841
14.8.
13,7
4.62
4.39
1.16
1.19
8.36
7.70
1.00
'1.00
2.28
1,78
7.21
4.02
35
27,35
4.52
4.34
12.7
19.5
84.5
62.3
14,0
9,60
2.87
2.79
2,94
2,51
25,1
17.3
1,78
0.737
12,0
10,4
3.84
3.45
1.08
1.14
7.17
6.06
1.00
1.00
2,02
1,16
703
2.26
25
21.45
4,53
4.42
13.6
18.2
40.5
32.9
7,72
5,99
2.35
2.29
2,25
2,01
14,0
10,8
0,826
0.605
7.79
7,13
2.76
2.59
1.03
1.06
4.99
4.54
1.00
1.00
•1.05
0:765
2.02
0.995
25
20.4
4.17
3.98
8.73
13.0
25.1
18.9
6,04
4.27
1.85
1.78
1,84
1,58
11.0
7.71
0.758
0.577
7,79
6,74
2.84
2.57
1.03
1.06
5.16
4.43
1.00
1.00
1.36
0.842
1.97
0.787
17.5
15.9
4.67
4.60
14.0
17.1
17.2
14,8
3,95
3,30
1.83
1.78
1.65
1.51
7.12
5,94
0.543
0.480
4,92
4,66
1.94
1.87
0.980
1.00
3.40
3.22
1,00
1,00
0.524
0.438
0.556
0.364
17.5
12.7
5.03
4.75
8.42
16.1
12.5
7.79
3,62
2,05
1.56
1.45
1.56
1.20
6,58
3,70
0.673
0.403
4,15
3,36
1.68
1.44
0.899
0.950
3.10-
2.49
1,00
1,00
0.633
0.300
0.725
0.173
11.5
9.2
4.91
4.71
9.07
14.8
5.00
3,49
1,76
1,14
1.22
1,14
1.15
0.942
3.19
2.07
0.439
0.336
2,13
1.84
,1.02
0.922
0.795
0.827
1.84
1.59
1,00
1,00
0.271
0.167
0,168
0,0642
8.6
6.25
4.97
4.64
6.45
12.9
2,12
1.26
1,02
0.547
0,915
0,831
0.915
0.692
1.85
1.01
0,394
0,271
1.14
0.901
0.642
0.541
0.673
0.702
1.17
0.930
1,00
1,00
0.181
0.0830
0.0772
0.0197
5 4.60 11.7 0,671. 0,348 0,677 0.570 0.650 0,239 0.597 0.398 0,638 0.686 1.00 0.0568 0.01000
4.75
3.85
4.78
4.54
6.13
10.4
0,462
0,307
0,319
0,198
0,575
0,522
0.553
0,448
0.592
0.381
0,250
0,204
0.444
0.374
0.317
0.281
0,564
0,576
0.565
0.485
1.00
1.00
0.0590
0.0364
0.00995
0.00457
3.75
2.85
483
4,48
4.30
8.82
0,200
0,114
0,187
0,0970
0,426
0,370
0,432
0,329
0,351
0.196
0,219
0.171
0.289
0.223
0.230
0.192
0,513
0,518
0.411
0.328
1.00
1.00
0.0432
0.0216
0.00496
0.00189
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-74 DIMENSIONS AND PROPERTIES 1-74
Table 1-11
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness, f
Nominal
Wt.
Area,
A b/t h/t
AxisX-X
Shape
Design
Wall
Thick-
ness, f
Nominal
Wt.
Area,
A b/t h/t
1 S r Z
Shape
in. lb/ft in.2
b/t h/t
in." in.' in. •m?
HSS20X12x5/8 0.581 127.37 35.0 17.7 31.4 1880 188 7.33 230
XV2 0.465 103.30 28.3 22.8 40.0 1550 155 7.39 188
x% 0.349 78.52 21.5 31,4 54.3 1200 120 7.45 144
X5/|6 0.291 65.87 18.1 38.2 65.7 1010 101 7:48 122
HSS20x8x% 0.581 110.36 30.3 10.8 31.4 . 1440 144 6.89 185
XV2 0.465 89.68 24.6 14.2 40.0 1190 119 6.96 152
X% 0.349 68.31 18.7 19,9 54.3 926 92.6 7.03 117
X=/16 0.291 57.36 15.7 24.5 65,7 786 78.6 7,07 98,6
HSS20X4XV2 0.465 76.07 20.9 5.60 40,0 838 83.8 6,33 115
X3/8 0.349 58.10 16.0 8.46 54,3 657 65.7 6.42 89,3
X5/I6 0.291 48.86 13.4 10.7 65,7 560 56.0, 6.46 75,6
XV4 0.233 39.43 10.8 142 82.8 458 45,8 6.50 61.5
HSS18><6x% 0.581 93.34 25.7 7.33 28.0 923 103 6.00 135
XV2 0.465 76.07 20.9 9.90 35.7 770 85:6 6.07 112
x% 0.349 58.10 16.0 14.2 48.6 602 66.9 6.15 86.4
X=/16 0.291 48.86 13.4 17.6 58.9 513 57.0 6.18 73.1
xV4 0.233 39.43 10,8 22.8 74,3 419 46.5 6.22 59,4
HSS16x12x% 0.581 110.36 30.3 17.7 24.5 1090 136 6.00 165
xVs 0.465 89.68 24.6 22.8 31.4 904 113 6.06 135
x% 0.349 68.31 18.7 31.4 42.8 702 87.7 6.12 104
X5/I6 0.291 57.36 15.7 38.2 52.0 595 74.4 6.15 87.7,
HSS16x8x5/8 0.581 93.34 25.7 10.8 24,5 815 102 5.64 129
XV2 0.465 76.07 20.9 14.2 31.4 679 84.9 5.70 106
X% 0.349 58.10 16.0 19.9 42.8 531 66.3 5.77 82.1
X=/16 0.291 48.86 13.4 24.5 52.0 451 56.4 5.80 69,4
XV4 0.233 39.43 10.8 31.3 65.7 368 46.1 5.83 56,4
HSS16x4x^/8 • 0,581 76.33 21.0 3.88 24.5 539 67.3 5.06 92.9
xV2 0.465 62.46 17.2 5.60 31.4 455 56.9 5.15 77.3
x% 0.349 47.90 13.2 8.46 42.8 360 45.0 5.23 60,2
X5/I6 0.291 40.35 11.1 10.7 52.0 308 38.5 5.27 51,1
XV4 0.233 32.63 8.96 14.2 65,7 253 31.6 5.31 41.7
X3/I6 0.174 24.73 6.76 20.0 89.0 193 24.2 5,35 31.7
Note: For compactness criteria, refer to Table 1-12A.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-75
Table 1^11 (continued)
Rectangular HSS
Dimensions and Properties
HSS20-HSS16
Shape
Axis Y-Y Workable Flat Torsion
Surface
Area Shape
( S r Z Depth Width J C
Surface
Area Shape
in." in.3 in. in.3 in. in. in." in? ftVn
HSS20x12x5/e 851 142 4.930: 162 173/16 93/16 1890 257 5,17
XV2 705 117 4.99 132 17% 9% 1540 209 5.20
x% 547 91.1 5.04 102 I8V16 105/16 1180 160 5,23
X=/l6 , 464 77.3 5.07 85.8 18% 105/8 997 134 5,25
HSS20X8X5/8 338 84.6 3.34 96.4 I73/16 5%5 916 167 4,50
XV2 283 70.8 3.39 79.5 17% 5% 757 137 4,53
X% 222 55.6 3.44 61.5 18^/16 65/16 586 105 4,57
XS/16 189 47.4 3.47 52.0 18% 65/8 496 88,3 4,58
HSS20X4XV2 58.7 29.3 1.68 34.0 173/4

195 63.8 3,87
x3/fl 47.6 23.8 1.73 26.8 18^/16 25/16 156 49.9 3,90
X5/I6 41.2 20.6 1.75 22.9 18% 25/8 134 42,4 3,92
xV4 34.3 17.1 1.78 18.7 18% 278 111 34.7 3,93
HSS18x6x5/e 158, 52.7 2.48 61.0 153/16 3%6 462 109 3.83
xV2 134 44.6 2.53 50.7 15% 3% 387 89.9 3.87
x% 106 35.5 2.58 39.5 165/16 45/16 302 , 69,5 3,90
X5/I6 91.3 30.4 2.61 33.5 16=/I6 4%6 257 58,7 3.92
XV4 75.1 25,0 2.63 27.3 16% 4% 210 47,7 3.93
HSS16x12x5/8 700 117 4.80 135 133/16 9%6 1370 204 4.50
xV2 581 96.8 4.86 111 13% 9% 1120 166 . 4.53
x% 452 75.3 4.91 85.5 14=/I6 105/16 862 127 4.57
X5/I6 384 64.0 4.94 72.2 14% 10% 727 107 4.58
HSS16X8X=/8 274 68.6 3.27 79.2 13%6 5%6 681 132 3.83
xVa 230 57.6 3.32 65.5 13% 5% 563 108 3,87
x% 181 45,3 3.37 50.8 14%6 65/16 436. 83,4 3,90
X5/I6 155 38.7 3.40 43.0 14% 65/8 369 70.4 3,92
xV4 127 31.7 3.42 35.0 14% 6% 300 57.0 3,93
HSS16X4X=/8 54.1 27.0 1.60 32.5 13'/I6

174 60.5 3,17
xV2 47.0 23.5 1.65 27.4 13% — 150 50.7 3.20
x% 38.3 19.1 1.71 21.7 145/16 25/16 120 39.7 3.23
33.2 16.6 1.73 18.5 145/8 2% 103 33,8 3,25
xVi 27.7 13.8 1.76 15.2 14% 2% 85.2 27.6 3,27
y?l\B 21.5 10.8 1.78 11.7 15%6 3%6 65.5 21.1 3,28
— Indicates flat depth or width is too small to establish a workable flat.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-76 DIMENSIONS AND PROPERTIES 1-76
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness, t
Nominal
Wt.
Area,
A b/t h/t
Axis X-X
Shape
Design
Wall
Thick-
ness, t
Nominal
Wt.
Area,
A b/t h/t
1 S r Z
Shape
in. lb/ft in}
b/t h/t
in." in.' in. •m?
HSS14x10x5/8 0.561 93,34 25.7 14.2 21.1 687 98.2 5.17 120
xV2 0.465 76.07 20.9 18.5 : 27.1 573 8118 5.23 98.8
X3/8 0.349 58,10 16.0 25.7 37.1 447 63.9 5.29 76.3
xVl6 0.291 48.86 13.4 31.4 45.1 380 54.3 5.32 64.6
XV4 0.233 39.43 10.8 39.9 57.1 310 44.3 5.35 52.4
HSS14x6x5/8 0.581 76.33 21.0 7.33 21.1 478 68.3 4.77 88.7
xV2 0.465 62.46 17.2 9.90 27.1 402 57.4 4.84 73.6
x% 0.349 47.90 13.2 14.2 37.1 317 45.3 4.91 57.3
X6/I6 0.291 40.35 11.1 17.6 45.1 271 38.7 4.94 48,6
xVt 0.233 32.63 8.96 22.8 57.1 222 31.7 4.98 39.6
xVl6 0.174 24.73 6.76 31.5 77.5 170 24.3 5.01 30.1
HSS14x4x5/6 0.581 67.82 18.7 3.88 21.1 373 53.3 4.47 73.1
xV2 0.465 55.66 15.3 5.60 27.1 317 45.3 ,4.55 61.0
x% 0.349 42.79 11.8 8.46 37.1 252 36.0 4.63 47.8
X5/16 0.291 36.10 9.92 10.7' 45.1 216 30.9 4,67 40.6
xV4 0.233 29.23 8.03 14.2 57.1 178 25.4 4.71 33.2
X3/16 0.174 22,18 6.06 20.0 77.5 137 19.5 4.74 25.3
HSS12X10XV2 0.465 69.27 19,0 18.5 22.8 395 65.9 4.56 78.8
x% 0.349 53.00 14,6 25.7 31.4 310 51.6 4.61 61.1
xVl6 0.291 44.60 12,2 31.4 38.2 264 44.0 4.64 51.7
xV4 0.233 36.03 9.90 39.9 48.5 216 36.0 4.67 42.1 •
HSS12x8x% 0.581 76,33 21,0 10.8 17.7 397 66.1 4.34 82.1
xV2 0.465 62.46 17.2 14.2 22.8 333 55.6 4.41 68.1
X3/8 0.349 47.90 13.2 19.9 31.4 262 43.7 4.47 53.0
xVie 0.291 40.35 11.1 24,5 38.2 224 37.4 4.50 44.9
XV4 0.233 32,63 8.96 31.3 46.5 184 30.6 4.53 36.6
X3/I6 0.174 24.73 6.76 43.0 66.0 140 23.4 4.56 27.8
HSS12x6x5/8 0.581 67.82 18.7 7.33 17.7 321 53.4 4.14 68.8
xV2 0.465 55.66 15.3 9.90 22.8 271 45.2 4.21 57.4
xVt 0.349 42.79 11.8 14.2 31.4 215 35.9 4.28 44.8
X5/I6 0.291 36.10 9.92 17.6 38.2 184 30.7 4.31 38,1
XV4 0.233 29.23 8.03 22.8 48.5 151 25.2 4.34 31.1
X3/16 0.174 22.18 6.06 31.5 66.0 116 19.4 4.38 23.7
Note: For compactness criteria, refer to Table 1-12A.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-77
Table i-11 (continued)
Rectangular HSS
Dimensions and Properties
HSS14-HSS12
Shape
Axis Y-y WorlMble Flat Torsion
Surface
Area Shape
1 S r Z Depth Width J C
Surface
Area Shape
in." in.' in. in? in. in. in." n'ln
HSS14x10x5/8 407 81.5 3.98 95.1 115/16 73/16 832 146 3,83
xVz 341 . 68.1 4,04 78,5 113/4 73/4. 685 120 3.87
X3/8 267 53.4 4,09 60,7 125/«, 85/16 528 91.8 3.90
x^/ie 227 45.5 4.12 51.4 12^/16 89/16 446 77.4 3,92
XV4 186 37.2 4,14 41.8 12% 8% 362 62.6 3,93
HSS14x6x5/8 124 41.2 2.43 48.4 113/16 3%6 334 83.7 3,17
xVz 105 35.1 2,48 40.4 11% 3% 279 69.3 3,20
x% 84.1 28.0 2,53 31.6 125/16 45/16 219 53.7 3,23
X5/I6 72,3 24.1 2,55 26.9 129/16 49/16 186 45.5 3,25
xV4 59.6 19.9 2,58 22,0 12% 4% 152 36.9 - 3,27
,X3/I6 45.9 15.3 2,61 16,7 13^/16 , 53/1,6 116 28,0 3.28
HSS14x4x5/8 47.2 23.6 1,59 28,5 IIV4 148 52.6 . 2,83
xVz 41.2 20.6 1,64 24,1 11% — 127 44.1 2,87
X3/8 33.6 k.8 1,69 19,1 I2V4 2V4 102 34.6 2,90
X5/I6 29.2 14.6 1,72 16,4 125/8 25/8 87.7 29.5 2.92
xV4 24,4 12.2 1.74 13;5 12% 2% 72.4 24.1 2.93
X3/I6 19.0 9.48 1.77 10,3 131/8 • 3V8 55.8 18.4 2.95
HSS12X10XV2 298 59.7 3.96 69,6 9% 73/4 545 102 3.53
x% 234 46.9 4,01 54,0 105/16 85/16 421 ^ 78.3 3.57
X5/I6 200 40.0 4.04 45.7 109/16 89/16 356 66.1 3,58
XV4 164 32.7 4.07 37.2 10% 8% 289 53.5 3,60
HSS1 2X8X5/8 210 52,5 3,16 61.9 93/16 53/16 454 97.7 3,17
xVz 178 44,4 51,5 9% 53/4 377 80.4 3,20
140 35,1 3,27 40.1 105/16 65/16 293 62,1 3.23
X5/I6 120 30,1 3.29 34,1 10^/16 69/16 248 52.4 3.25
XV4 98,8 24,7 3,32 27,8 10% 6% 202 42,5 3.27
75,7 18.9 3,35 21,1 IIV8 7V8 153 32.2 3.28
HSS12x6x5/8 107 35,5 2.39 42,1 9%6 33/16 271 71,1 2,83
xVa 91.1 30,4 2,44 : 35.2 9% 33/4 227 59,0 2.87
x% 72.9 24.3 2,49 27.7 105/16 45/16 178 45,8 2.90
X5/I6 62.8 20.9 2.52 23.6 109/16 49/16 152 38,8 2,92
xVi 51.9 17.3 2.54 19.3 10% 4%. 124 31,6 2,93
40.0 13.3 2.57 14.7 11%6 53/16 94.6 24,0 2,95
— Indicates flat depth or width is too small to establish a workable flat.
i
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-78 DIMENSIONS AND PROPERTIES
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness, t
Nominal
Wt
Area,
A b/t M
Axis X-X
Shape
Design
Wall
Thick-
ness, t
Nominal
Wt
Area,
A b/t M
/ S r Z
Shape
in. lb/ft
b/t M
in." in? in. in.'
HSS12x4x% 0.581 59.32 16.4 3.88 17,7 245 40.8 3.87 55,5
xVz 0.465 48.85 13.5 5.60 22.8 210 34.9 3,95 46,7
x% 0.349 37.69 10.4 8.46 31,4 168 28,0 4,02 36,7
X5/I6 0.291 31.84 8.76 10.7 38.2 144 24.1 4,06 31.3
xV4 0.233 25.82 7.10 14,2 48.5 119 19,9 4.10 25.6
X3/I6 0.174 19.63 5.37 20,0 66.0 91,8 15,3 4.13 19.6
HSS12X3V2X% 0.349 36.41 10.0 7,03 31.4 156 26,0 3,94 34.7
xVie 0.291 30.78 8.46 9,03 38.2 134 22.4 3,98 29.6
HSS12x3x5/16 0.291 29.72 8.17 7,31 38.2 124 20.7 3.90 27.9
xV4 0.233 24.12 6.63 9,88 48,5 103 17,2 3,94 22.9
xVie 0.174 18,35 5.02 14,2 66,0 79.6 13,3 3,98 17.5
HSS12X2X=/I6 0.291 27.59 7.59 3.87 38,2 104 17,4 3.71 24.5
XV4 0.233 , 22.42 6.17 5.58 48,5 : 86,9 14.5 3,75 20.1
xVie 0.174 17.08 4.67 8.49 66,0 67,4 11.2 3,80 15.5
HSS10x8x5/8 0.581 67.82 18.7 10.8 14,2 253 50.5 3.68 62.2
XV2 0.465 55.66 15.3 14.2 18,5 214 42,7 3,73 51.9
X3/8 0.349 42.79 11,8 19.9 25.7 169 33,9 3.79 40,5
xVl6 0.291 36.10 9.92 24.5 31,4 145 29,0 3,82 34.4
XV4 0.233 29.23 8,03 31.3 39,9 119 23,8 3.85 28,1
X3/16 0.174 22.18 6,06 43.0 54.5 91,4 18,3 3,88 21.4
HSS10x6x% 0.581 59.32 16.4 7,33 14.2 201 40,2 3.50 51.3
xV2 0.465 48.85 13.5 9.90 18,5 171 34,3 3,57 43,0
x3/e 0.349 37.69 10.4 14.2 25,7 137 27,4 3,63 33,8
X5/16 0.31 31.84 8.76 17,6 31,4 118 23,5 3,66 28.8
xV4 0.233 25.82 7.10 22,8 39.9 96,9 19,4 3.69 23.6
x'/ie 0.174 19.63 5,37 31,5 54.5 74.6 14,9 3,73 18.0
HSS10x5x% 0.349 35.13 9,67 11,3 25.7 120 24,1 3,53 30.4
X5/I6 0.291 29.72 8,17 14,2 31.4 104 20,8 3.56 26.0
xVs 0.233 24.12 6.63 18,5 39,9 85,8 17,2 3.60 21.3
X3/1S 0.174 18.35 5.02 25.7 54,5 66,2 13.2 3.63 16,3
Note; For compactness criteria, refer to Table 1 -12A.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-79
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
HSS12-HSS10
- Indicates flat depth or width is too small to establish a workable flat.
Shape
Axis Y-Y Worlobie Flat Tdrsion
Surface
Area Shape
I S r Z Deptii Width J C
Surface
Area Shape
in." in.' in. in.' in. in. in.^ in.3 ftVft
HSS12x4x5/8 40.4 20.2 1,57 24,5 93/16 — 122 44.6 2.50
xVz 35.3 17.7 1.62 20,9 m — 105 37.5 2,53
x% 28.9 14.5 1.67 16.6 105/16 25/16 84.1- 29.5 2,57
X5/I6 25.2 12.6 1J0 14,2 105/8 25/8 72.4 25.2 2,58
^ xV4 21.0 10.5 1.72 11,7 10% 2% 59.8 20.6 2.60
X3/I6 16.4 8,20 1.75 9,00 11^/16 33/16 46.1 15.7 2.62
HSS12X3V2X% 21.3 12,2 1.46 14,0 105/16 — 64.7 25.5 2.48
X'/16 18.6 10,6 1,48 12,1 105/8 — 56.0 21.8 2.50
HSS12x3x5/16 13.1 8.73 1.27 10,0 105/8
— 41.3 18.4, 2.42
XV4 11.1 7.38 , 1,29 8,28 10% — 34.5 15.1 2.43
X3/I6 8.72 5.81 1.32 6,40 •113/16 23/16 26.8 11.6 2.45
.HSS12x2x5/16 5.10 5.10 0.820 6.05 10% 17.6 11.6 2,25
XV4 4.41 4.41 • 0.845 5,08 10% — 15.1 9,64 2,27
X3/I6 3.55 3.55 0.872 3,97 113/16 • — 12.0. 7.49 2,28
HSS10x8x5/8 178 44:5 3,09 53.3 73/16 53/16 346 80,4 2.83
XVs 151 37,8 3,14 44,5 73/4 53/4 288 66,4 2.87
X3/6 120 30,0 3,19 34,8 85/16 65/16 224 51.4 2,90
: X5/I6 103 257 3.22 29,6 8% 65/8 190 43.5 2.92
'XV4 84.7 21.2 3,25 24.2 8%' 6% 155 35.3 2.93
X3/I6 65.1 16,3 3,28 18.4 9V16 73/16 118 26.7 2.95
HSS10x6x5/s 89.4 29,8 2.34 35.8 73/16 33/16 209 58.6 2.50-
xVs 76,8 25,6 2.39 30.1 73/4 33/4 176 48.7 2.53
xVe 61.8 20,6 2.44 23.7 85/16 45/16 139 37.9 2,57
X5/I6 53.3 17,8 2.47 20.2 8% 45/6 118 32.2 2.58
xV4 44.1 14.7 2.49 16.6 8% 4% 96.7 26.2 2.60
X3/I6 34.1 11,4 2,52 12.7 93/16 53/16 73.8 19.9 2.62
HSS10x5x% 40.6 16,2 2,05 18.7 85/16 35/16 100 31.2 2.40
X5/I6 35.2 14,1 2.07 16.0 85/8 35/8 86.0 26.5 2.42
xV4 29.3 11,7 2.10 13.2 8% 3% 70.7 21,6 2.43
X3/I6 22.7 9,09 2,13 10.1 93/16 43/16 54.1 16.5 2.45
I
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-80 DIMENSIONS AND PROPERTIES 1-80
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness, t
Nominal
Wt
Area,
A b/t h/t
AxisX-X
Shape
Design
Wall
Thick-
ness, t
Nominal
Wt
Area,
A b/t h/t
1 S t 7
Shape
in. Ib/n in.^
b/t h/t
HiiT" in.' in. in.'
HSS10x4x% 0.581 50.81 14,0 3.88 14.2 149 29.9 3.26 40.3
xVz 0.465 42.05 11.6 5.60 18.5 129 25.8 3.34 34.1
XVB 0.349 32.58 8,97 8.46 25.7 104 20.8 3.41 27.0
xVie 0.291 27.59 7,59 10.7 31.4 90.1 18.0 3^44 23.1
xVi 0.233 22.42 6,17 14.2 39.9 74.7 14.9 3.48 19.0
X3/16 0,174 17.08 4,67 20.0 54.5 57.8 11.6 3,52 14.6
xVs 0.116 11.56 3,16 31.5 83.2 39.8 7.97 3.55 10.0
HS510X3V2XV2 0.465 40.34 11,1 4.53 18.5 118: 23.7 3,26 31.9
XVB 0.349 31.31 8.62 7.03 25.7 96.1 19.2 3.34 25.3
X5/I6 0.291 26.53 7.30 9.03 31.4 83.2 16.6 3.38 21.7
xV4 ^ 0.233 21.57 5.93 12.0 39.9 69.1 13.8 3.41 17.9
y?l\& 0.174 16.44 4.50 17.1 54.5 53.6 10.7 3.45 13.7
xVs 0.116 11.13 3.04 27.2 83.2 37.0 7.40 3.49 9.37
HSS10x3x% 0.349 30.03 8.27 5.60 25.7 88.0 17.6 3.26 23.7
X=/16 0.291 25.46 7.01 7.31 31.4 76.3 15.3 3.30 20.3
xV4 0.233 20.72 5.70 9.88 39.9 63.6 12,7 3.34 16.7
X3/I6 0.174 15.80 4.32 14.2 54.5 49.4 9.87 3.38 12.8
XVB 0.116 10.71 2.93 22.9 83.2 34.2 6.83 3.42 8.80
HSS10x2x% 0.349 27.48 7.58 2.73 25.7 71.7 14.3 3.08 20.3
X=/16 0.291 23.34 6.43 3.87 31.4 62.6 12.5 3.12 17.5
XV4 0.233 19.02 5.24 5.58 39.9 52.5 10.5 3.17 14.4
x'yie 0.174 14.53 3.98 8.49 54.5 41.0 8.19 3.21 11.1
xVs 0.116 9.86 2.70 14,2 83.2 28.5 5.70 3.25 7.65
HSSgx7x5/8 0.581 59.32 16.4 9.05 12.5 174 38.7 3.26 48.3
x'/2 0.465 48.85 13.5 12.1 16.4 149 33.0 3.32 40.5
X3/8 0.349 37.69 10.4 17.1 22.8 119 26.4 3.38 31.8
xVl6 0.291 31.84 8.76 21.1 27.9 102 22.6 3.41 27.1
XV4 0.233 25.82 7.10 27.0 35.6 84.1 18.7 3.44 22.2
x'/l6 0.174 19,63 5.37 37.2 48.7 64.7 14.4 3.47 16.9
Note: For compactness criteria, refer to Table 1 -12A,
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-81
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
HSS10-HSS9
Shape
Axis Y-Y Workable Flat Torsion
Surface
Area Shape
/ 5 r Z Depth Width J c
Surface
Area Shape
in." in. in.3 in. in. in." in.' ftVft
HSS10x4x% 33.5 16.8 1.54 20.6 73/16 — 95.7 36.7 2.17
xVs 29.5 14.7 . 1.59 17.6 7% — 82.6 31.0 2.20
x% 24.3 12.1 1.64 14.0 8=/16 2=/16 66.5 24.4 2,23
X5/I6 21.2 10.6 1.67 12.1 8% 2% 57.3 20.9 2,25
xV4 17.7 8.87 1.70 10.0 8% 2% 47.4 17.1 2,27
13.9 6.93 1.72 7.66 9^/16 33/16 36.5 13.1 2,28
xVa 9.65 4.83 1.75 5,26 97I6 3VI6 25.1 8.90 2,30
HSS10X3VZXV2 21.4 12.2 1.39 14,7 73/4

63.2 26.5 2,12
x% 17.8 10,2 1.44 11,8 8=/16 — 51.5 21.1 2,15
X=/16 15.6 8.92 1.46 10,2 8% — 44.6 18.0 2,17
xV4 13.1 7.51 1.49 8,45 8% 37.0 14.8 2.18
X3/16 10.3 5.89 1.51 6,52 93/16 2IV16 28.6 11.4 2,20
; XVs 7.22 4.12 1,54 4,48 97I6 2*5/16 19.8 7.75 2,22
HSS10x3x% 12.4 8.28 1.22 9,73 85/16
— 37.8 17.7 2,07
X5/I6 11.0 7.30 1.25 8,42 8=/E

33.0 15.2 2,08 •
XV4 9.28 6.19 1.28 6.99 878 — 27.6 12.5 • 2,10
X^/K 7.33 4.89 1.30 5,41 93/16 23/16 21.5 ; 9.64 2,12
xVs 5.16 3.44 1.33 .3,74 97I6 27I6 14.9 6.61 2.13
HSS10x2x% 4.70 4.70 0.787 5,76 85/16

15.9 11,0 1.90
X5/,6 4.24 4.24 0.812 5.06 8% — 14.2 9,56 1,92
xV4 3.67 3.67 0.838 4.26 8% — 12.2 7.99 1,93
X3/I6 2.97 2.97 0.864 3.34 93/16 _
. 9.74 6.22 1.95
xVe 2.14 2.14 0.890 2,33 9VI6 — 6.90. 4,31 1,97
HSS9X7X5/8 117 33.5 2.68 40,5 63/16 43/16 235 62.0 2,50
xV2 100 28.7 2.73 34,0 6^/4 43/4 197 51.5 2,53
x% 80.4 23.0 2.78 26.7 75/16 55/16 154 40,0 2,57
X^/lB 69.2 19.8 2.81 22.8 75/8 55/8 131 33,9 2,58
xVi 57.2 16.i3 2.84 18.7 7% 5% 107 27,6 2,60
X3/I6 44.1 12.6 2.87 14.3 83/16 63/16 81.7 20,9 2.62
- Indicates flat depth or width is too small to establish a worlable flat.
I
i
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-82
DIMENSIONS AND PROPERTIES 1-82
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness, f
Nominal
Wt,
Area,
A b/t h/t
AxisX-X
Shape
Design
Wall
Thick-
ness, f
Nominal
Wt,
Area,
A b/t h/t
1 S r Z
Shape
in. lb/ft in.'
b/t h/t
in." in? in. in.'
HSS9X5X5/8 0.581 50.81 14.0 5.61 12.5 133 29,6 3.08 38.5
xVz 0.465 42.05 11.6 7.75 16.4 115 25.5 3.14 32.5
x% 0,349 32,58 8.97 11.3 22.8 92.5 20.5 3.21 25.7
xVie 0.291 27.59 7.59 14.2 27.9 79.8 17.7 3.24 22.0
xV4 0.233 22.42 6.17 18.5 35.6 66.1 14.7 3,27 18.1
xVl6 0,174 17,08 4.67 25.7 48.7 51,1 11.4 3.31 13.8
HSS9X3XV2 0,465 35.24 9.74 3.45 16.4 80,8 18.0 2.88 24.6
x% 0,349 27.48 7.58 5.60 22.8 66.3 14.7 2.96 19.7
XV16 0.291 23,34 6.43 7.31 27.9 57.7 12.8 3.00 16.9
xVi, 0.233 19.02 5.24 9.88 35,6 48.2 10.7 3.04 14.0
X3/16 • 0.174 14.53 3.98 14.2 48.7 37,6 8.35 3.07 10.8
HSS8X6X5/8 0.581 50,81 14.0 7.33 10.8 114 28^5 2.85 36.1
xVz 0.465 42,05 11.6 9.90 14,2 98,2 24.6 2.91 30.5
x% 0.349 32.58 8.97 14.2 19.?
79.1 19.8 2.97 24.1
xVie 0.291 27.59 7.59 17.6 24.5 68.3 17,1 3.00 20.6
XV4 0.233 22.42 6.17 22.8 31.3 56.6 14.2 3.03 16.9
X3/I6 0.174 17,08 4.67 31.5 43:0 43.7 10.9 3.06 13.0
HSS8X4X5/8 0.581 42,30 11.7 3.88 10.8 82.0 20.5 2.64 27.4
xVz 0,465 35.24 9.74 5.60 14.2 71.8 17.9 2.71 23.5
x% 0.349 27.48 7.58 8.46 19.9 58.7 14.7 2.78 18.8
XV16 0.291 23.34 6.43 10.7 24.5 51.0 12.8 2.82 16.1
xV4 0.233 19.02 5.24 14.2 31.3 42.5 10.6 2.85 13.3
XA/I6 0.174 14.53 3.98 20.0 43.0 33.1 8.27 2,88 10.2
xVs 0.116 9.86 2.70 31.5 66.0 22.9 5.73 2.92 7.02
HSS8X3XV2 0.465 31,84 8.81 3.45 14.2 58.6 14,6 2.58 20.0
x% 0.349 24,93 6,88 5,60 19.9 48.5 12.1 2.65 16.1
X®/16 0,291 21.21 5.85 7.31 24.5 42.4 10.6 2,69 13.9
XV4 0,233 17.32 4.77 9.88 31.3 35.5 8.88 2.73 11.5
X3/I6 0.174 13.25 3,63 14.2 43.0 27.8 6,94 2.77 8.87
xVs 0.116 9.01 2,46 22.9 66,0 19.3 4.83 2,80 6.11
Note: For compactness criteria, refer to Table 1 -12A.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-83
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
HSS9-HSS8
Shape
AxisY-Y Worl<al)le Flat Torsion
Surface
Area Shape
/ S r Z Deptli, Width J C
Surface
Area Shape
in." in.' in. in.3 in. in. in." in.3 ft^/ft
HSS9x5x% 52.0 20.8 1.92 25.3 63/16 23/16 128 42.5 2.17
xVz 45.2 18.1 1,97 21.5 6% : 23/4 109 35.6 2.20
x% 36.8 14.7 2.03. 17.1 75/16 35/16 86.9 27.^ 2.23
X5/I6 32.0 12.8 2.05 14.6 7% 35/8 74.4 23.8 2.25
xV4 26.6 10.6 2.08 12.0 7% 3% 61.2 19.4 2.27
X3/I6 20.7 8.28 2.10 9.25 83/16 43/16 46.9 14.8 2.28
HSS9X3XV2 , 13.2 8.81 1.17 10.8 63/4 — 40.0 19.7 1.87
X3/8 11.2 7.45 1.21 8.80 75/16 — 33.1 15.8 1.90
xVl6 9.88 6.59 1.24 7.63 75/8 — 28.9 13.6 1.92
XV4 8.38 5.59 1:27 6.35 7%

24.2 11.3 1.93
X3/I6 6.64 4.42 1.29 4.92 83/16 23/16 18.9 8.66 1.95
HSS8X6X5/8 72.3 24.1 2.27 29.5 53/16 33/16 150 46.0 2.17
xVz 62.5 .20.8 , 2.32 24.9 53/4 33/4 127 38.4 2.20
x% 50.6 16.9 2,38 19.8 65/16 45/16 100 30.0 2.23
X5/16 43.8 14.6 2,40 16.9 6% 45/8 85.8 25.5 2.25
xV4 36.4 12.1 2.43 13.9 6% 4% 70.3 20.8 2.27
X3/I6 28.2 9.39 2,46 10.7 73/16 ; 53/16 53.7 15.8 2.28
HSS8x4x% 26.6 13.3 1,51 16.6 53/16 — 70.3 28.7 1,83
xV2 23.6 11.8 1.56 14.3 53/4 — 61.1 24.4 1.87
X3/8 19.6 9.80 1.61 11.5 65/16 25/16 49.3 19.3 1,90
X5/I6 17.2 8.58 1.63 9.91 65/8 25/8 42.6 16.5 1.92
XV4 14.4 7.21 1.66 8.20 6% 2% 35.3 13.6 1.93
xVl6 11.3 5.65 1.69 6.33 73/,6 33/16 27.2 10.4 1,95
xVs 7.90 3.95 1.71 4.36 7VI6 3VI6 18.7 7.10 1,97
HSS8X3XV2 11.7 7.81 1.15 9.64 53/4 — 34.3 17.4 1,70
X3/8 10.0 6.63 1.20 7.88 65/16 — 28.5 14.0 1.73
xVl6 8.81 5.87 1.23 6.84 65/8 — 24.9 12.1 1,75
XV4 7.49 4.99 1.25 5.70 6% _
20.8 10.0 1.77
xVl6 5.94 3.96 1.28 4.43 73/16 23/16 16.2 7.68 1.78
xVa 4.20 2.80 1.31 3.07 7'/I6 2VI6 11.3 5.27 1.80
— Indicates flat depth or width is too small to establish a workable flat.
1
I
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-84 DIMENSIONS AND PROPERTIES 1-84
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
niick-
ness, f
Nominal
Wt
Area,
A M h/f
Axis X-X
Shape
Design
Wall
niick-
ness, f
Nominal
Wt
Area,
A M h/f
1 S r
Shape
in. lb/ft in.2
M h/f
in.' in.3 in. •m?
HSS8X2X3/S 0,349 22.37 6,18 2.73 19.9 38,2 9.56 2.49 13.4
X5/I6 0.291 19.08 5.26 3.87 24.5 33.7 8.43 2.53 11.6
XV4 0.233 15.62 4.30 5.58 31.3 28.5 7.12 2.57 9.68
0.174 11.97 3.28 8.49 43.0 22.4 5.61 2.61 7.51
XVB 0.116 8.16 2.23 14.2 66.0 15.7 3.93 2.65 5,19
HSS7X5XV2 0.465 35.24 9.74 7,75 12.1 60.6 17.3 2.50 21.9
x% 0.349 27.48 7.58 11.3 17.1 49.5 14.1 2,56 17.5
xVl6 0.291 23.34 6.43 14.2 21.1 43.0 12.3 2,59 15.0
XV4 0.233 19.02 5.24 18,5 27.0 35.9 10.2 2,62 12.4
X3/I6 0,174 14.53 3.98 25,7 37.2 27.9 7.96 2.65 9,52
XV8 0,116 9.86 2.70 40,1 57.3 .19.3 5.52 2.68 6,53
HSS7X4XV2 0,465 31.84 8.81 5,60 12.1 50.7 14.5 2.40 18,8
x% 0,349 24,93 6.88 8.46 17.1 41.8 11.9 2.46 15.1
x5/ie 0.291 21.21 5.85 10,7 21.1 36.5 10.4 2.50 13.1
xV4 0.233 17.32 4.77 14.2 27.0 30.5 8.72 2.53 10.8
X3/16 0.174 13.25 3.63 20.0 37.2 23.8 6.81 2.56 8.33
xVs 0.116 9.01 2.46 31.5 57.3 16.6 4.73 2.59 5.73
HSS7X3XV2 0.465 28.43 7.88 3.45 12.1 40.7 11.6 2.27 15.8
X3/8 0.349 22,37 6.18 5,60 17.1 34.1 9.73 2,35 12.8
X«/l6 0.291 19.08 5.26 7.31 21.1 29.9 8.54 2.38 11.1
xV4 0.233 15.62 4,30 9.88 27.0 25.2 7.19 2.42 9.22
X3/I6 0.174 11.97 3.28 14.2 37.2 19.8 5.65 2.45 7,14
XVB 0,116 8.16 2.23 22.9 57.3 13.8 3.95 2.49 4.93
HSS7X2XV4 0.233 13.91 3,84 5.58 27.0 19.8 5.67 2.27 7.64
X3/16 0.174 10.70 2.93 8.49 37.2 15.7 4.49 2.31 5.95
xVs 0.116 7.31 2.00 14.2 57.3 11.1 3.16 2,35 4.13
HSS6X5XV2 0.465 31.84 8.81 7.75 9,90 41.1 13.7 2.16 17.2
x% 0.349 24.93 6.88 11.3 14.2 33.9 11,3 2.22 13.8
0.291 21.21 5.85 14.2 17.6 29.6 9.85 2,25 11.9
xV4 0.233 17.32 4.77 18.5 22.8 24.7 8.25 2.28 9.87
X3/16 0.174 13.25 3.63 25.7 31.5 19.3 6.44 2.31 7.62
xVs 0.116 9.01 2.46 40.1 48.7 13.4 4.48 2.34 5.24
Note: For compactness criteria, refer to Table 1-12A.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-96
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
HSS8-HSS6
AxisY-Y Workable Flat Torsion
Surface
Shape
t S r Z Depth Width J C
Area
in." in.' in. in.' in. in. in." in.' ftVft
HSS8X2X3/8 3.73 3.73 0.777 4.61 6^/16 — 12.1 •8,65 1.57
x^/ie 3.38 3.38 0.802 4.06 6% 10.9 7.57. 1.58
XV4 2,94 2.94 0:827 3.43 6% — 9,36 6.35 1.60
X3/I6 2.39 2.39 0.853 2.70 73/IE — 7.48 4.95 1.62
xVa 1.72 1.72 0.879 1.90 7716 — 5.30 3.44 1,63
HSS7X5XV2 35.6 14.2 1.91 17.3 4% 2% 75.8 27.2 1,87
x% 29.3 11.7 1.97 13.8 55/16 •35/16 60.6 21.4 1,90
X5/I6 25.5 10.2 1.99 11.9 5% 3% 52.1 18.3 1.92
XV4 21.3 8.53 2.02 9.83 5% 3% 42.9 15.0 1.93
X'/16 16.6 6.65 2.05 7.57 6'/I6 4VI6 32.9 11.4 1.95
XVB 11.6 4.63 2.07 5.20 6V16 4VI6 22.5 7.79 1.97
HSS7X4XV2 20.7 10.4 1.53 12.6 4% —
50.5 21.1 . 1.70
X3/B 17;3 ,8.63 1.58 10.2 55/16 25/16 41,0 16.8 1.73
xVl6 15.2 7.58 1.61 8.83 5% 25/8 35,4 14.4 1.75
xV4 12.8 6.38 1.64 7.33 5% 2% . 29,3 11.8 1.77
xVie 10.0 5.02 1.66 5.67 6V8 31/8 22,7 9.07 1,78
xVs 7.03 3.51 1.69 3.91 6'/I6 3'/I6 15,6 6.20 1,80
HSS7X3XV2 10.2 6.80 1.14 8.46 4% 28.6 15.0 1.53
X3/8 8.71 5.81 1.19 6.95 55/16 — • 23,9 12.1 1.57
X=/l6 7.74 5.16 1.21 6.05 5% — 20.9 10.5 1.58
XV4 6.60 4.40 1.24 5.06 5% — 17.5 8.68 1.60
X2/I6 5.24 . 3.50 1.26 3,94 63/16 23/16 13.7 6.69 1.62
xVs 3.71 2.48 1.29 2.73 6^16 2'/I6 9.48 4.60 1.63
HSS7X2X^/4 2.58 2.58 0.819 3,02 5%

7,95 5.52 1.43
X3/I6 2.10 2.10 0.845 2,39 63/16 — 6.35 4,32 1.45
xVs 1.52 1.52 0.871 1,68 6'/ie — 4.51 3,00 1.47
HSS6x5x% 30.8 12.3 1.87 15.2 3% 2% 59,8 23.0 1.70
X3/8 25.5 10.2 1.92 12.2 4=/I6 35/16 48.1 18,2 1.73
X5/I6 22.3 8.91 1.95 10.5 45/8 35/8 41,4 15,6 1.75
x'A 18.7 7.47 1.98 8.72 4% 3% 34.2 12,8 1.77
X3/I6 14.6 5.84 2.01 6.73 53/16 43/16 26.3 9,76 1.78
XVB 10.2 4.07 2.03 4.63 5716 4716 18,0 6.66 1.80
- Indicates flat depth or width is too small to establish a workable flat.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-86 DIMENSIONS AND PROPERTIES 1-86
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness, t
Nominal
Wt
Area,
A b/t M
Axis X-X
Shape
Design
Wall
Thick-
ness, t
Nominal
Wt
Area,
A b/t M
/ S r Z
Shape
in. lb/ft in.2
b/t M
in." m? in. in.'
HSS6X4XV2 0.465 28.43 7.88 5.60 9.90 34.0 11.3 2.08 14.6
x% 0.349. 22.37 6.18 8.46 14.2 28.3 9.43 2.14 11.9
x5/I6 0.291 19.08 5.26 10.7 17.6 24.8 8.27 2,17 10.3
xV4 0.233 15.62 4.30 14,2 22.8 20.9 6.96 2.20 8.53
X3/I6 0.174 11.97 3.28 20.0 31.5 16,4 5.46 2.23 6.60
xVs 0.116 8.16 2.23 31.5 48.7 11.4 3.81 2.26 4.56
HSS6X3XV2 0.465 25.03 6.95 3.45 9.90 . 26.8 8.95 1.97 12.1
x% 0,349 19.82 5.48 5.60 14.2 22.7 7.57 2.04 9.90
0.291 16.96 4.68 7.31 17.6 20.1 6.69 2.07 8,61
xV4 0.233 13.91 3.84 9.88 22.8 17.0 5.66 2.10 7.19
0.174 10.70 2.93 14.2 31.5 13.4 4.47 2.14 5.59
xVil 0.116 7.31 2.00 22.9 48.7 9.43 3.14 2.17 3.87
HSS6x2x% 0.349 17.27 4.78 2.73 14.2 17.1 5.71 1.89 7.93
X5/I6 0.291 14.83 4.10 3.87 17.6 15.3 5.11 1,93 6.95
x'A 0.233 12.21 3.37 5.58 22.8 13.1 4.37 1.97 5.84
x'/l6 0.174 9.42 2.58 8.49 31.5 10.5 3.49 2.01 4.58
xVs 0.116 6.46 1.77 14.2 48.7 7.42 2.47 2.05 3.19
HSS5X4XV2 0.465 25.03 6.95 5.60 7.75 21.2 8.49 1.75 : 10.9
x% 0.349 19.82 5.48 8.46 11.3 17.9 7.17 1.81 8.96
X5/16 0.291 16.96 4.68 10.7 14,2 15.8 6.32 1.84 7.79
XV4 0.233 13.91 3.84 14.2 18.5 13.4 5.35 1.87 6.49
X3/16 0.174 10.70 2.93 20.0 25.7 10.6 4.22 1.90 5.05
xVs 0,116 7.31 2.00 31.5 40.1 7.42 2.97 1.93 3.50
HSS5X3XV2 0.465 21.63 6.02 3.45 7.75 16.4 6.57 1.65 8.83
x% 0.349 17,27 4.78 5.60 11.3 14.1 5.65 1.72 7.34
xVie 0.291 14.83 4.10 7.31 14.2 12.6 5.03 1,75 6.42
xV4 0.233 12.21 3.37 9.88 18.5 10.7 4.29 1.78 5.38
X'/16 0.174 9.42 2,58 14.2 25.7 8.53 3.41 1.82 4,21
xVs 0.116 6,46 1,77 22.9 40,1 6.03 2.41 1.85 2.93
Note: For compactness criteria, refer to Table 1-12A.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES
1-87
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
HSS6-HSS5
Shape
AxisY-Y Worltable Rat Torsion
Surface
Area
Shape
/ S r Z Depth Width J C
Surface
Area
Shape
in." m? in. ? in. in. in." in.3 nyn
HSS6X4XV2 17.8 8.89 1.50 11.0 3% — 40.3 17.8 1.53
x% 14.9 7.47 1.55 8.94 45/16 25/16 32.8 14.2 1.57
X5/I6 13.2 6.58 1.58 7.75 4% 25/e 28.4 12.2 1.58
xV4 11.1 •5.56 1.61 6.45 4% 2% 23.6 10.1 1.60
x3/ie 8.76 4.38 1.63 5.00 53/16 3'/I6 18.2 7.74 1.62
xVe 6.15 3.08 1.66 3.46 5VI6 37ie 12.6 5.30 1.63
HSS6X3XV2 8.69 5.79 1.12. 7.28 3% — 23.1 12.7 1,37
x% 7.48 4.99 1.17 6.03 45/16 — 19.3 10.3 1,40
xVl6 6.67 4.45 1.19 5.27 4% 16.9 8.91 1,42
XV4 5,70 3.80 1.22 4,41 4% — 14.2 7.39 1.43
X3/16 4.55 3.03 1.25 3.45 5=1/16 23/16 11,1 5.71 1.45
xVa 3.23 2.15 1.27 2.40 5VI6 2716 7.73 3,93 1.47
HSS6x2x% 2.77 2.77 0.760 3.46 45/16 — 8.42 6,35 1,23
X5/I6 2.52 i52 0.785 3.07 45/8 — 7.60 5,58 1.25
XV4 2.21 2.21 0.810 2.61 4% 6.55 4,70 1.27
x3/I6 1.80 i.80 0.836 2.07 53/16 5.24 3.68 1.28
xVb 1.31 1.31 0,861 1.46 5Vi6 — 3.72 2.57 1.30
HSS5x4XV2 14.9 7.43 1.46 9.35 2%

30.3 14.5 1.37
x% 12.6 6.30 1.52 7.67 35/ie 25/16 24.9 11.7 1.40
X®/l6 11.1 5.57 1,54 6.67 35/8 25/a 21.7 10.1 1.42
XV4 9.46 4,73 1.57 5.57 3% 2% 18.0 8,32 1.43
xVie 7.48 3.74 1,60 4.34 43/16 3V16 14.0 6,41 1.45
xV8 5.27 2,64 1,62 3.01 47/16 3Vi6 9.66 4,39 1,47
HSS5x3XV2 7.18 4.78 1.09 6.10 2%
— 17.6 10.3 1,20
6.25 4.16 1.14 5.10 35/16 — 14,9 8.44 1,23
xVie 5.60 3.73 1.17 4.48 35/8 — 13,1 7.33 1,25
XV4 4.81 3,21 1.19 3.77 3% _
11.0 6.10 1.27
x'/ie 3.85 2.57 1.22 2.96 4'/i6 2Vi6 8.64 4.73 1.28
xVs 2.75 1.83 1.25 2.07 47I6 27i6 6.02 3.26 1.30
— Indicates flat depth or width is too small to establish a workable flat.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-8
DIMENSIONS AND PROPERTIES 1-99
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wail
Thicic-
ness, t
Nominal
Wt.
Area,
A b/t h/t
Axis X-X
Shape
Design
Wail
Thicic-
ness, t
Nominal
Wt.
Area,
A b/t h/t
/ S r Z
Shape
in. Ib/n ia}
b/t h/t
in." in.' in. in.'
HSS5X2V2XV4 0.233 11.36 3.14 7.73 18.5 9.40 3.76 1.73 4.83
X3/I6 0.174 8,78 2.41 11.4 25.7 7,51 3.01 1.77 3.79
xVa 0.116 6,03 1,65 18.6 40,1 5.34 2.14 1.80 2.65
HSS5x2x% 0,349 14.72 4.09 2.73 11.3 10,4 4.14 1.59 5.71
X5/16 0,291 12.70 3.52 3.87 14.2 : 9.35 3.74 1.63 5.05
XV4 0.233 10.51 2.91 5.58 18.5 8.08 3.23 1.67 4.27
X3/16 0.174 8.15 2.24 8.49 25.7 • 6.50 2.60 1.70 3.37
XVB 0.116 5.61 1,54 14.2 40.1 ^ 4.65 1.86 1.74 2.37
HSS4x3x% 0.349 14.72 4.09 5.60 8.46 7.93 3.97 1.39 5.12
xVl6 0.291 , 12.70 3.52 7.31 10.7 7.14 3.57 1.42 4.51
xVo 0.233 10.51, 2.91 9.88 14.2 6.15 3.07 1.45 3.81
X'/L6 0.174 8.15 2.24 14.2 20.0 4.93^ 2.47 • 1.49 3,00
xVa 0.116 5.61 1.54 22.9 31.5 3.52 1.76 1.52 2,11
HSS4X2V2X% 0.349 13.44 3.74 4.16 8.46 6.77 3.38 1.35 4.48
X5/I6 0.291 11.64 3.23 5.59 10.7 6.13 3.07 1.38 3.97
XV4 0.233 9.66 2.67 . 7.73 14.2 5,32 2.66 1,41 3.38
X3/16 0.174 7.51 2.06 11.4 20.0 4.30 2.15 1,44 2.67
xVe 0.116 5.18 1.42 : 18.6 31 ;5 3.09 1,54 1,47 . 1.88
. HSS4x2x% 0.349 12.17 3.39 2.73 8.46 5.60 2.80 > 1,29 3.84
X5/I6 0,291 10.58 2.94 3.87 10.7 5.13 2.56 1,32 3.43
XV4 • 0,233 8.81 2.44 5.58 14,2 4.49 2.25 1,36 2.94
X3/I6 0.174 6.87 1.89 8.49 20.0 3.66 1.83 1.39 2.34
xVa 0.116 4.75 1.30 14.2 31,5 2.65 1.32 1.43 1.66
HSS3V2x2Vzx3/E 0.349 12.17 3.39 4.16 7,03 4.75 2.72 1.18 3.59
X=/L6 0.291 10.58 2.94 5.59 9.03 4.34 2.48 1.22 3.20
xV4 0.233 8.81 2.44 7.73 12.0 3.79 2,17 1.25 2.74
y?hf, 0.174 6.87 1.89 11.4 17.1 3.09 1,76 1.28 2.18
xVa 0.116 4.75 1.30 18.6 27.2 2.23 1.28 1.31 1.54
HSS3V2X2XV4 0.233 7.96 2.21 5.58 12.0 3.17 1.81 1.20 2.36
X3/I6 0.174 6.23 1.71 8.49 17.1 2.61 1.49 1.23 1.89
xVa 0.116 4.33 1.19 14.2 27.2 1.90 1.09 1.27 1,34
Note: For compactness criteria, refer to Table 1 -12A.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-89
Table t'-H (continued)
Rectangular HSS
Dimensions and Properties
HSS5-HSS3V2
Shape
Axis Y-Y Workable Flat Torsion
Surface
Area Shape
/ S r Z Depth Width J C
Surface
Area Shape
in." in.' in. in.3 in. in. in." in.' ftVft
HSS5X2V2XV4 3.13 2.50 0.999 2.95 3% — 7.93 4.99 1.18
X3/I6 2.53 2.03 1.02 2.33 43/16 — 6.26 3.89 1.20
xVe 1.82 1.46 1.05 1.64 47I6 — • 4.40 2,70 1.22
HSS5x2x% 2.28 2.28 0.748 2.88 3^16
— 6.61 5.20 1.07
xS/,6 2.10 2.10 0.772 2.57 3% —• 5.99 4.59 1.08
xV4 1.84 1.84 0.797 2.20 3% — ' 5.17 3:88 1.10
X3/I6 1.51 1.51 0.823 1.75 4^16 4.15 3.05 1.12
xVs 1.10 1.10 0.848 1.24 4'/I6 — 2.95 2.13 1.13
HSS4x3x% 5.01 3.34 1.11 4.18 2=/I6
— 10.6 6.59 1.07
X=/l6 4.52 3.02 1.13 3.69 2=/8 — 9.41 5.75 1.08
xV4 3.91 2.61 1.16 3.12 278 — 7.96 4.81 1.10
3.16 2.10 1.19 2.46 3^16 6.26 3.74 1,12
xVs 2.27 ,, 1.51 1.21 1.73 37I6 — 4.38 2.59 1.13
HSS4X2V2X% 3.17 2.54 0.922 3.20 2VI6 7.57 5.32 0.983
X5/I6 2.89 2.32 0.947 2.85 2% — 6.77 4.67 1.00
xV4 2.53 2.02 0.973 2.43 2% — 5.78 3.93 1.02
xVie 2.06 1.65 0.999 1.93 3V8 — 4'59 3.08 1.03
XVB 1.49 1.19 1.03 1.36 3'/16 — 3.23 2.14 1,05
HSS4x2x% 1.80 1.80 0.729 2.31 2=/16

4.83 4.04 0.900
X=/16 1.67 1.67 0.754 2.08 2% — 4.40 3.59 0,917
xV4 1.48 1.48 0.779 1.79 2Vs — 3.82 3.05 0,933
X3/16 1.22 1.22 0.804 1.43 3^/16 — 3.08 2.41 0,950
xVe 0.898 0.898 0.830 1.02 3'/I6 — 2.20 1.69 0,967
HSS3V2X2V2X3/8 2.77 2.21 0.904 2.82
— — 6.16 4.57 0.900
xV,6 2.54 2.03 0.930 2.52 2Ve — 5.53 4,03 0.917
xV4 2.23 1.78 0.956 2.16 2% — 4.75 3,40 0,933
xVl6 1.82 1.46 0.983 1.72 2'VI6 — 3.78 2,67 0,950
XVB 1.33 1.06 1.01 1.22 2«/I6 — 2.67 1.87 0,967
HSS3V2X2XV4 1.30 1.30 0.766 1.58 2%
— 3.16 2.64 0.850
X3/I6 1.08 , 1.08 0.792 1.27 21VI6 —- 2.55 2,09 0.867
xVe 0.795 0.795 0.818 0.912 2'VI6 1.83 1.47 0.883
—Indicates fiat depth or width is too small to establish a workable flat.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-90 DIMENSIONS AND PROPERTIES 1-90
Table 1-11 (continued)
Rectangular HSS
Dinnensions and Properties
Shape
Design
Wall
Thick-
ness, t
Nominal
Wt.
Area,
A b/t h/t
Axis X-X
Shape
Design
Wall
Thick-
ness, t
Nominal
Wt.
Area,
A b/t h/t
1 S r Z
Shape
in. lb/ft in?
b/t h/t
in." in.3 in. in?
HSS3V2X1V2XV4 0.233 7.11 1.97 3.44 J 2.0 2.55 1.46 1:14 1.98
X3/I6 0.174 5.59 1.54 5.62 17:1 2.12 1.21 1.17 1.60
xVs 0.116 3.90 1.07 9.93 27.2 1.57 0.896 1.21 1.15
HSS3X2V2X5/I6 0.291 9.51 2.64 5.59 7.31 2.92 1.94 1.05 2.51
xV4 0.233 7.96 2,21 7.73 9.88 2.57 1.72 1.08 2.16
X3/I6 0.174 6.23 1.71 11.4 14.2 2.11 1.41 1.11 1.73
. XVB 0.116 4.33 1.19 18.6 22.9 1.54 1.03 1.14 1.23
HSS3X2X5/I6 0.291 8.45 2.35 3.87 7.31 2.38 1.59 1.01- 2.11
xV4 0.233 7.11 1.97 5.58 9.88 2.13 1.42 1.04 1,83
X3/I6 0.174 5.59 1.54 8.49 14.2 1.77 1.18 1.07 1.48
XVB 0.116 3.90 1.07 14.2 22.9 1.30 0.867 1.10 1.06
HSS3X1V2XV4 0.233 6.26 1,74 3.44 9.88 1.68 1.12 0.982 1.51
0.174 4.96 1.37 5.62 14.2 1.42 0.945 1.02 1.24
xVs 0.116 3.48 0.956 9.93 22.9 1.06 0.706 1.05 0.895
HSS3X1X3/I6 0.174 4.32 1.19 2.75 14.2 1.07 0.713 0.947 0.989
xVa .. 0.116 3.05 0,840 5.62 22.9 0,817 0.545 0.987 0.728
HSS2V2X2XV4 0.233 6.26 1.74 5.58 7.73 1.33 1.06 0.874 1.37
xVl6 0.174 4.96 1.37 8.49 1,1,4 1.12 0.894 0.904 1.12
XVB 0.116 3.48 0.956 14.2 18.6 , 0.833 0.667 ,0.934 0.809
HSS2V2XIV2XV4 0,233 5.41 1.51 3.44 7.73 1.03 0.822 0.826 1.11
0.174 4.32 1.19 5.62 11.4 0.882 0.705 0.860 0.915
xVs 0.116 3.05 0.840 9.93 18.6 0.668 0.535 0.892 0.671
HSS2V2X1X3/,6 0.174 3,68 1.02 2.75 11.4 0.646 0.517 0.796 0.713
XVB 0.116 2.63 0.724 5.62 18.6 0.503 0.403 0.834 0.532
HSS2V4X2X'/,6 0.174 4.64 1.28 8.49 9.93 0.859 0.764 0.819 0.952
XVB 0.116 3.27 0.898 14.2 16.4 0.646 0.574 0.848 0.693
HSS2X1VJX3/I6 0.174 3.68 1.02 5.62 8.49 0.495 0.495 0.697 0.639
XVB 0.116 2.63 0.724 9.93 14,2 0.383 0.383 0.728 0.475
HSS2X1X3/I6 0.174 3.04 0.845 2.75 8.49 0.350 0.350 0.643 0.480
xVe 0.116 2.20 0.608 5.62 14.2 0.280 0.280 0.679 0.366
Note: For compactness criteria, refer to Table 1 -12A.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-91
Table 1-11 (continued)
Rectangular HSS
Dinnensions and Properties
HSS3V2-HSS2
Shape
Axis Y-Y Workable Flat Torsion
Surface
Area Shape
1 S r Z Deptli Width J C
Surface
Area Shape
in." in? in. in.' in. in. in." in? ftVft
HSS3V2X1VZXV4 0.638 0.851 0.569 1.06 23/A — 1.79 1,88 : 0.767
X3/I6 0.544 0.725 0.594 0.867 211/16 1.49 1.51 0.784
xVs 0.411 0.548 0.619 0.630 . 215/16 — 1.09 1.08 0.800
HSS3X2V2X5/I6 2.18 1.74 0.908 2.20

4.34 3.39 0.833
xV4 1.93 1.54 0.935 1.90 — 3.74 2.87 0.850
xVie 1.59 1,27 0.963 1.52 23/16 — 3,00 2.27 0.867
xVs. 1.16 0.931 0.990 1.09 27I6 — 2.13 1.59 0.883
HSS3X2X5/I6 1.24 1.24 0.725 1.58 — — 2.87 2,60 0.750
xV4 1.11 1.11 0.751 1.38 — — 2,52 2.23 0.767
X3/16 0.932 0.932 0.778 1.12 23/16 — 2.05 , 1.78 0.784
xVa 0.692 0.692 0.B04 0,803 2''/I6 — 1.47 1.25 , 0.800
HSS3X1V2XV4 0.543 0.725 0.559 0.911 1%
— 1.44. 1.58 0.683
X3/16 0.467 0.622 0.584 0.752 2^/16 — 1.21 1.28 0.700
xVa 0.355 0.474 0.610 0.550 2716 — 0.886 0.920 0.717
HSS3X1X3/I6 0.173 0.345 0.380 0.432 23/16
— 0.526 0.792 0.617
xVe 0.138 0.276 0.405 0,325 2716 — 0.408 0.585 0.633
HSS2V2X2XV4 0.930 0.930 0.731 1,17
— •— 1.90 1.82 0.683
X3/16 0.786 0.786 0.758 0.956 — ^ —, 1.55 1.46 0.700
xVa 0.589 0.589 0.785 0.694 — . 1.12 1.04 0.717
HSS2V2X1VZXV4 0.449 0.599 0.546 0.764 _ • —
1.10 1.29 0.600
xVie 0.390 0.520 0.572 0,636 — — 0.929 1.05 0.617
XVB 0.300 0.399 0.597 0,469 — — 0.687 0.759 0.633
HSS2V2X1X3/I6 0.143 0.285 0.374 0.360 _ _ 0.412 0.648 0.534
xVa 0.115 0.230 0.399 0.274 — — 0.322 0.483 0.550
HSS2V4X2X3/I6 0.713 0.713 0.747 0,877
— —
1.32 1.30 0.659
xVs 0.538 0.538 0.774 0.639 — — 0.957 0.927 0.675
HSS2X1V2X3/I6 , 0.313 0.417 0.554 0.521
— — 0.664 0.822 0.534
XVB 0.244 0.325 0,581 0.389 — — 0.496 0.599 0.550
HSS2X1X3/I6 0.112 0.225 0.365 0.288
— — 0.301 0.505 0.450
xVa 0.0922 0.184 0.390 0.223 0.238 0.380 0.467
- Indicates flat depth or width is too small to establish a wortable flat.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-92 DIMENSIONS AND PROPERTIES 1-92
HSS16-HSS8
Table 1-12
Square HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
/
Nom-
inal
Wt.
Area,
A b/t m
/ S r Z
Worl<-
able
Flat
Torsion Sur-
face
Area
Shape
Design
Wall
Thick-
ness,
/
Nom-
inal
Wt.
Area,
A b/t m
/ S r Z
Worl<-
able
Flat J C
Sur-
face
Area
Shape
in. lb/ft in^
b/t m
in.' in.^ in. In.' in. in." in.' ft%
HSS16x16x% 0.581 127.37 35.0 24.5 24,5 1370 171 • 6,25 200 133/16 2170 276 5,17
xVz 0.465 103,30 28.3 31,4 31,4 1130 141 6,31 164 13% 1770 224 5.20
x% 0.349 78.52 21.5 42,8 42,8 873 109 6,37 126 145/16 1350 171 5.23
X5/I6 0.291 65.87 18,1 52,0 52,0 739 92.3 6,39 106 145/8 1140 144 5,25
HSS14x14x% 0.581 110.36 30.3 21,1 21,1 897 128 5.44 151 11^/16 1430 208 4,50
xVa 0.465 89,68 24,6 27,1 27,1 743 106 5.49 124 11% 1170 170 4,53
x% 0.349 68,31 18,7 37,1 37,1 577 82.5 5.55 95.4 125/16 900 130 4.57
X®/l6 0.291 57.36 15,7 45,1 45,1 490 69.9 5,58 80.5 125/8 759 109 4,58
HSS12x12x% 0.581 93.34 25.7 17.7 17.7 548 91.4 4,62 109 93/16 885 151 3,83
xVa 0,465 76,07 20.9 22.8 22.8 457 76.2 4,68 89.6 9% 728 123 3,87
0.349 58.10 16.0 31.4 31.4 357 59.5 4,73 69,2 105/16 561 94.6 3,90
xVie 0,291 48.86 13.4 38.2 38.2 304 50,7 4,76 58.6 105/8 474 79.7 3.92
XV4 0.233 39.43 10.8 48.5 48.5 248 41,4 4.79 47.6 10% 384 64.5 3,93
0.174 29.84 8.15 66.0 66.0 189 31.5 4.82 36.0 113/16 290 48,6 3,95
HSS10x10x5/8 0.581 76.33 21.0 14,2 14.2 304 60.8 3.80 73,2 73/16 498 102 3,17
xVz 0.465 62.46 17.2 18:5 18.5 256 51,2 3.86 60,7 73/4 412 84,2 3,20
x% 0.349 47,90 13.2 25,7 25.7 202 40,4 3,92 47.2 85/16 320 64,8 3.23
X5/I6 0.291 40.35 11.1 31,4 31,4 172 34,5 3,94 40.1 85/fi 271 54,8 3:25
XV4 0.233 32.63 8,96 39,9 39.9 141 28,3 3,97 32.7 8% 220 44,4 3.27
X3/I6 0.174 24.73 6,76 54,5 54.5 108 21,6 4.00 24.8 93/16 167 33.6 3.28
HSS9x9x5/e 0.581 67.82 18,7 12,5 12.5 216 47,9 3.40 58.1 63/16 356 81,6 2.83
xVz 0,465 55.66 15.3 16.4 16.4 183 40.6 3.45 48,4 63/4 296 67,4 2.87
x% 0,349 42.79 11.8 22.8 22.8 145 32.2 3.51 37,8 75/16 231 52,1 2.90
xVm 0,291 36,10 9.92 27.9 27.9 124 27.6 3.54 32.1 75/8 196 44,0 2.92
xV4 0,233 29.23 8,03 35:6 35.6 102 22.7 3.56 26.2 7% 159 35,8 2.93
0,174 22.18 6.06 48.7 48,7 78,2 17.4 3.59 20.0 83/16 121 27.1 2.95
xVs 0.116 14.96 4.09 74.6 74,6 53,5 11.9 3.62 13.6 8V16 82.0 18,3 2.97
HSS8X8X5/8 0.581 59.32 16,4 10.8 10,8 146 36.5 2.99 44.7 53/16 244 63.2 2.50
xVz 0.465 48.85 13,5 14.2 14.2 125 31.2 3.04 37.5 53/4 204 52.4 2.53
x% 0.349 37,69 10,4 19.9 19,9 100 24.9 3.10 29.4 65/16 160 40,7 2.57
X=/16 0.291 31,84 8,76 24.5 24.5 85.6 21.4 3.13 25.1 65/8 136 34.5 2,58
xV4 0.233 25,82 7,10 31,3 31.3 70,7 17.7 3.15 20,5 6% 111 28.1 2.60
xVl6 0.174 19,63 5,37 43,0 43,0 54.4 13,6 3.18 15,7 73/ie 84.5 21.3 2,62
xV8 0.116 13.26 3.62 66.0 66,0 37.4 9,34 3.21 10.7 7'/I6 57.3 14.4 2,63
Note; For compactness criteria, refer to Table 1 -12A.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-93
Table 1-12 (continued)
Square HSS
Dimensions and Properties
HSS7-HSS4V2
Shape
Design
Wall
Thick-
ness,
t
Nom-
inal
Wt
Area,
A b/t h/t
/ S r Z
Work-
able
Flat
Torsion
Sur-
face
Area
Shape
Design
Wall
Thick-
ness,
t
Nom-
inal
Wt
Area,
A b/t h/t
/ S r Z
Work-
able
Flat J C
Sur-
face
Area
Shape
in. Ib/ft in^
b/t h/t
in." in.' in. m? in. in.^ in.' ftVft
HSS7X7X5/8 0.581 50.81 14.0 9.05 9.05 93.4 26.7 2.58 33.1 45/16 158 47.1 2.17
XV2 0.465 42.05 11.6 12.1 12.1 80.5 23.0 2.63 27.9 4% •133 39.3 2.20
x% 0.349 32.58 8.97 17.1 17.1 65,0 18.6 2.69 22.1 55/16 105 30.7 2,23
. x^/ie 0.291 27.59 '7.59 21.1 21.1 56.1 16.0 2.72 18.9 55/8 89.7 26,1 2.25
XV4 0.233 22.42 6.17 27.0 27.0 46.5 13.3 2.75 15,5 5% 73,5 21,3 2,27
. X3/I6 0.174 17.08 4.67 37.2 37.2 36.0 10.3 2,77 11,9 63/16 56,1 16,2 2.28
xVs 0.116 11.56 3.16 57.3 57.3 24,8 7.09 2.80 8,13 6'/I6 38.2 11,0 2.30
HSS6X6X5/8 0.581 42,30 11.7 7.33 7.33 55.2 18.4 2.17 23,2 33/16 94,9 33,4 1,83
. XV2 0.465 35.24 9.74 9.90 9.90 48.3 16.1 2.23 19.8 3% 81.1 28.1 1,87
x^/s 0,349 27.48 7.58 14.2 14.2 39.5 13.2 2.28 15.8 45/16 64.6 22.1 1.90
X=/l6 0.291 23.34 6.43 17.6 17.6 34.3 11.4 2.31 13.6 45/8 55,4 18.9 1,92
. XV4 0.233 19,02 5.24: 22.8 22.8 28,6 9.54 2.34 11.2 4'/e 45,6 15.4 1,93
X3/I6 0.174 14.53 3.98' 31,5 31.5 22.3 7.42^ 2.37 8.63 53/16 35,0 11.8 1.95
xVa 0.116 9,86 2.70 48,7 48.7 15,5 5.15 2.39 5.92 5'/I6 23,9 8.03 1.97
HSS5V2X5V2X% 0.349 24,93 6.881 12,8 12.8 29.7 10.8 2.08 13.1 3"/I6 49,0 18.4 1.73
X5/16 0.291 21.21 5,85 15.9 15.9 25.9 9.43 2.11 11.3 41/8 42.2 15.7 1.75
xV4 0.233 17.32 4.77 20.6 20.6 21.7 7.90 2.13 9.32 4% 34.8 12.9 1,77
0.174 13.25 3,63 28.6 28.6 17.0 6.17 2.16 7.19 4'VI6 26.7 9.85 1.78
xVa 0.116 9.01 2.46 44.4 44,4 11.8 4.30 2,19 4.95 415/16 18.3 6.72 1.80
HSS5X5XV2 0.465 28.43 7.88 7.75 7,75 26.0 10.4 1.82 13.1 2% 44.6 18.7 1.53
x% 0.349 22.37 6.18 11,3 11,3 21.7 8.68 1,87 10.6 35/16 36.1 14.9 1.57
X5/I6 0.291 19.08 5.26 14.2 14.2 19.0 7.62 1.90 9.16 35/8 31.2 12.8 1.58
xV4 0.233 15.62 4,30 18.5 18,5 16.0 6.41 1,93 7.61 3% 25.8 10.5 1,60
X3/I6 0.174 11,97 3.28 25.7 25.7 12.6 5.03 1,96 5.89 43/16 19,9 8.08 1,62.
xVe 0.116 8.16 2,23 40.1 40,1 8,80 3.52 1,99 4.07 4VI6 13.7 5.53 1.63
HSS4V2X4V2XV2 0.465 25.03 6.95 6.68 6.68 18.1 8.03 1.61 10.2 21/4 31.3 14.8 1.37
0.349 19.82 5.48 9,89 9.89 15.3 6.79 1,67 8,36 2"/I6 25.7 11.9 1.40
X5/I6 0,291 16.96 4.68 12.5 12.5 13,5 6.00 1.70 7.27 3V8 22.3 10.2 1.42
XV4 0.233 13.91 3.84 16.3 16.3 11.4 5.08 1.73 6.06 33/8 18.5 8.44 1.43
x3/I6 0.174 10.70 2.93 22.9 22.9 9.02 4.01 1.75 4.71 311/16 14.4 6.49 1.45
xVb 0,116 7.31 2.00 35.8 35.8 6.35 2.82 1.78 3.27 3«/I6 9.92 4.45 1.47
Note: For compactness criteria, refer to Tat)Ie 1-12A.
AMERICAN INSTITUTE OF STEEL CONSTRUCRTON

1-94 DIMENSIONS AND PROPERTIES
HSS4-HSS2
Table 1-12 (continued)
Square HSS
Dimensions and Properties
Shape
Design
Wall
•Piick-
ness,
f
Nom-
inal
Wt
Area,
A b/t h/t
1 S r Z
Work-
able
Flat
Torsion
Sur-
face
Area
Shape
Design
Wall
•Piick-
ness,
f
Nom-
inal
Wt
Area,
A b/t h/t
1 S r Z
Work-
able
Flat J C
Sur-
face
Area
Shape
in. ll]/ft in.2
b/t h/t
in." in.3 in. in. in." in.^ ft=/ft
HSS4X4XV2 0.465 21.63 6.02 5.60 5.60 11.9 5.97 1.41 7.70 — 21.0 11.2 1.20
x% 0.349 17.27 4.78 8.46 8.46 10.3 ^ 5.13 ,1.47 6.39 25/iu 17.5 9.14 1.23
x^/ie 0.291 14.83 4.10 10.7 10.7 9.14 4.57 1.49 5.59 2% 15.3 7.91 1.25
.xV4 0.233 12.21 3.37 14.2 14.2 7.80 3.90 1.52 4.69 2% 12.8 6.56 1.27
0.174 9.42 2.58 20.0 20.0 6.21 3.10 1.55 3.67 3^/16 10.0 5.07 1.28
xVs 0.116 6.46 1.77 31.5 31.5. 4.40 2.20 i:58 2,56 3^/16 6,91 3.49 1.30
HSS3V2X3V2X% 0.349 14,72 4.09 7,03 7.03 6.49 3.71 1.26 4,69

11.2, 6.77 1.07
X5/I6 0.291 12.70 3.52 9.03 9,03 5.84 3.34 1.29 4.14 2V8 9.89 5.90 1.08
xV4 0.233 10.51 2.91 12,0 12.0 5.04 2.88 1,32 3.50 2% 8,35 4.92 1.10
X3/I6 0.174 8.15 2.24 17.1 17.1 4.05 2.31 1,35 2.76 2'VI6 6,58 3.83 1.12
xVs 0.116 5.61 1.54 27.2 27,2 2.90 1.66 1.37 1.93 • 215/16 4,58 2.85 1.13
HSS3x3x% 0.349 12.17 3.39 5.60 5.60 3.78 2.52 1.06 3.25
— 6,64 4.74 0.900
X=/L6 0,291 10.58 2.94 7.31 7.31 3.45 2.30 1.08 2.90 5.94 4.18 0.917
XV4 0.233 8.81 2.44 9.88 9.88 3.02 2,01 ,1.11 2,48 — . 5,08 3.52 0.933
xVn 0.174 6.87 1.89 14:2 14.2 2.46 1,64 1.14 1.97 2^/16 4,03 2.76 0.950
xVa 0.116 4.75 1.30 22.9 22.9 1.78 1,19 1.17 1.40 2VI6 2,84 1.92 0.967
HSS2V2X2V2X5A6 0.291 8.45 2.35 5.59 5.59 1.82 1.46 0.880 i.88 , — 3,20 2.74 0.750
XV4 0,233 7.11 1.97 7.73 7.73 1.63 1.30 0.908 1.63

2,79 2.35 0.767
0.174 5.59 1.54 11.4 11.4 1,35 1.08 0.937 1.32 2.25 1.86 0.784
xVa 0.116 3.90 1.07 18.6 18.6 0.998 0.799 0.965 0.947 . — • 1.61 1.31 0.800
HSS2V4X2V4XV4 0.233 6.26 1.74 6.66 6.66 1.13 1.01 0.806 1.28

1,96 1.85 0.683
x3/ie 0.174 4.96 1.37 9.93 9.93 0.953 0.847 0.835 1.04 1.60 1.48 0.700
xVa 0,116 3.48 0.956 16.4 16.4 0.712 0.633 0.863 0,755 1.15 1.05 0.717
HSS2X2XV4 0,233 5.41 1.51 5.58 5.58 0.747 0.747 0.704 0.964

1.31 1.41 0,600
xVw 0,174 4.32 1.19 8.49 8.49 0.641 0.641 0.733 0.797 1.09 1.14 0,617
xVs 0.116 3.05 0.840 14.2 14.2 0.486 0.486 0.761 0.584 0.796 0.817 0,633
Note; For compactness criteria, refer to Table 1-12A.
Indicates flat depth or width is too small to establish a workable flat.
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-95
Table 1-12A
Rectangular and
Square HSS
Compactness Criteria
Compactness Criteria for Rectangular and Square HSS
Nominal
Compression Flexure Shear
Wall
nonslender compact compact C^=1.0
Thickness, In.
up to up to up to up to
Flange Width, in. Flange Width, in. Web Height, in. Web Height, in.
% 20 18 20 20
V2 16 14 20 20
% 12 10 20 20
5/16 10 9 18 18 "
V4 8 7 14 14
3/16 6 5 10 10
Vs 4 3V2 7 7
Note: Compactness criteria given for ^=46 l(si.
I
I
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-96 DIMENSIONS AND PROPERTIES
o
HSS20-HSS10
Table 1-13
Round HSS
Dimensions and Properties
Shape
Design
Wall
THIck-
ness, t
Nom-
inal
Wt.
Area,
A DIt
/ S r Z
Torsion
Shape
Design
Wall
THIck-
ness, t
Nom-
inal
Wt.
Area,
A DIt
/ S r Z
J C
In. lb/ft in,2 in." in.' in. in.' in." m.'
HSS20X0.500 0.465 104.00 28.5 43.0 1360 136 6,91 177 2720 272
xO.375' 0.349 78,67 21.5 57.3 1040 104 6,95 135 2080 208
HSS18x0.500 0.465 93.54 25.6 38.7 985 109 6,20 143 1970 219
xO.375' 0.349 70.66 19.4 51.6 754 83,8 6.24 109 1510 168
HSS16x0.625 0,581 103.00 28.1 27.5 838 105 5,46 138 1680 209
xO.500 0.465 82.85 22.7 34.4 685 85,7 5,49 112 1370 171
x0,438 0,407 72.87 19.9 39,3 606 75,8 5.51 99.0 1210 152
xO.375 0,349 62.64 17.2 45,8 526 65,7 5.53 85.5 1050 131
xO.312' 0,291 52.32 14.4 55,0 443 55,4 5.55 71.8 886 111
x0.250f 0,233 42.09 11.5 68,7 359 44.8 5.58 57.9 717 89.7
HSS14x0,625 0,581 89.36 24.5 24,1 552 78.9 4.75 105 1100 158
xO.500 0,465 72.16 19.8 30,1 453 64.8 4.79 85.2 907 130
xO.375 0.349 54,62 15.0 40,1 349 49.8 4.83 65.1 698 100
xO.312 0.291 45.65 12.5 48,1 295 42.1 4.85 54.7 589 84.2
XO.250': 0.233 36,75 10.1 60,1 239 34,1 4.87 44.2 478 68.2
HSS12.750x0.500 0.465 65,48 17.9 27,4 339 53,2 4.35 70.2 678 106
xO.375 0.349 49.61 13,6 36,5 262 41,0 4.39 53.7 523 82.1
xO.250' 0.233 33.41 9.16 54,7 180 28,2 4.43 36.5 359 56.3
HSS10.750x0.500 0.465 54.79 15,0 23,1 199 37,0 3.64 49.2 398 74.1
xO.375 0,349 41.59 11.4 30.8 154 28.7 3.68 37.8 309 57.4
xO.250 0,233 28,06 7,70 46,1 106 19.8 3.72 25.8 213 39.6
HSS10x0.625 0,581 62.64 17.2 17,2 191 38.3 3.34 51,6 383 76.6
xO.500 0.465 50,78 13.9 21,5 159 31.7 3.38 42.3 317 63.5
xO.375 0,349 38.58 10.6 28,7 123 24.7 3.41 32.5 247 49.3
xO.312 0,291 32.31 8.88 34,4 105 20.9 3.43 27.4 209 41.9
X0.Z50 0.233 26.06 7.15 42,9 85.3 17,1 3.45 22.2 171 34.1
xO.188' 0,174 19.72 5.37 57.5 64.8 13,0 3.47 16,8 130 25.9
'Shape exceeds compact limit for flexure with fj, = 42 ksi.
AMERKAN iNSTfTUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-97
Table 1-13 (continued)
Round HSS
Dimensions and Properties o
HSS9.625-
HSS6.875
Shape
Design
Wall
Thick-
ness, t
Nom-
inal
Wt
Area,
A D/t
/ S r Z
Torsion
Shape
Design
Wall
Thick-
ness, t
Nom-
inal
Wt
Area,
A D/t
/ S r Z
J C
Shape
in. lb/ft in.2
D/t
in." in.' in. •m? in." in.3
HSS9.625x0.500 0.465 48.77 13.4 20.7 141 29.2 3.24 39.0 281 58.5
xO.375 0.349 37.08 10.2 27.6 110 22.8 3.28 30.0 219 45.5
xO.312 0.291 31.06 8.53 33.1 93.0 19.3 3.30 25.4 186 38.7
xO.250 0.233 25.06 6.87 41.3 75.9 15.8 3.32 20.6 152 31.5
xO.188' 0.174 18.97 5.17 55.3 57.7 12.0 3.34 15.5 115 24.0
HSS8.625x0.625 0.581 53.45 14.7 14.8 119 27.7 2.85 37.7 239 55.4
xO.500 0.465 43.43 119 18.5 100 23.1 2.89 31.0 199 46.2
xO.375 0.349 33.07 9.07 24.7 77.8 18.0 2.93 23.9 156 36.1
xO.322 0.300 28.58 7.85 28.8 68.1 15.8 2.95 20.8 136 31.6
xO.250 0.233 22.38 6.1.4 37.0 54.1 12.5 2.97 16.4 108 25.1
xO.188' 0.174 16.96 4.62 49.6 41.3 9.57 2.99 12.4 82.5 19.1
HSS7.625x0.375 0.349 29.06 7.98 21.8 52.9 13.9 2.58 18.5 106 27.8
xO.328 0.305 25.59 7.01 25.0 47.1 12.3 2.59 16.4 94.1 24.7
HSS7.500x0.500 0.465 37.42 10.3 16.1 63.9 17.0 2.49 23.0 128 34.1
xO.375 0.349 28.56 7.84 21.5 50.2 13,4 2.53 17.9 100 26.8
xO.312 0.291 23.97 6.59 25.8 42.9 11.4 2.55 15.1 85.8 22.9
xO.250 0.233 19.38 5.32 32? 35.2 9.37 2.57 12.3 70.3 18.7
xO.188 0.174 1 14.70 4.00 43.1 26.9 7.17 2.59 9.34 53.8 14.3
HSS7x0.500 0.465 34.74 9.55 15.1 51.2 14.6 2.32 19,9 102 29.3
xO.375 0.349 26.56 7.29 20.1 40.4 11.6 2.35 15.5 80.9 23.1
xO.312 0.291 22.31 6.13 24.1 34.6 9.88 2.37 13.1 69.1 19.8
xO.250 0.233 18.04 4.95 30.0 28.4 8.11 2.39 10.7 56.8 16.2
xO.188 0.174 13.69 3.73 40.2 21.7 6.21 2.41 8.11 43,5 12.4
xO.125' 0.116 9.19 2.51 60.3 14.9 4,25 2.43 5.50 29,7 8.49
HSS6.875xO.500 0.465 34.07 9.36 14.8 48.3 14.1 2.27 19.1 96,7 28.1
xO.375 0.349 26.06 7.16 19.7 38.2 11.1 2,31 14.9 76,4 22.2
xO.312 0.291 21.89 6.02 23.6 32.7 9.51 2.33 12.6 65,4 19.0
xO.250 0.233 17.71 4.86 29.5 26.8 7.81 2.35 10.3 53,7 15.6
xO.188 0.174 13.44 3.66 39.5 20.6 5.99 2.37 7.81 41.1 12.0
' Shape exceeds compact limit for flexure witii fj,=42 ksi.
i
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

1-98 DIMENSIONS AND PROPERTIES 1-98
o
HSS6.625-
HSS5
Table 1-13 (continued)
Round HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness, t
Nom-
inal
Wl.
Area,
A V/t
/ S r Z
Totsion
Shape
Design
Wall
Thick-
ness, t
Nom-
inal
Wl.
Area,
A V/t
/ S r Z
J C
Shape
in. lb/ft in.'
V/t
in.' in.' in. in.^ in." in.'
HSS6.625x0.500 0.465 32.74 9.00 14.2 42.9 13,0 2,18 17.7 • 85.9 25,9
xO.432 0.402 28.60 7.86 16.5 38.2 11.5 2,20 15.6 76.4 23,1
xO.375 0.349 25.06 6.88 19.0 34.0 10.3 2.22 13.8 68.0 20.5
xO.312 0.291 21,06 5.79 22.8 29.1 8.79 2.24 11,7 58.2 17,6
xO.280 0.260 18.99 5.20 25.5 26.4 7.96 2:25 10,5 52,7 15,9
xO.250 0.233 17.04 4.68 28.4 23.9 7.22 2.26 9,52 47,9 14,4
xO.188 0.174 12.94 3.53 38.1 18.4 5.54 2.28 7,24 36.7 11.1
xO.125' 0.116 8.69 2.37 57.1 12.6 3.79 2.30 4,92 25:1 7.59
HSS6x0.500 0.465 29.40 8.09 12.9 31.2 10.4 1.96 14,3 62,4 20.8
xO.375 0.349 22.55 6.20 17.2 24,8 8.28 2.00 11,2 49.7 16.6
x0,312 0,291 18.97 5.22 20.6 21,3 7.11 2.02 9,49 42,6 14.2
xO.280 0,260 17.12 4.69 23.1 19,3 6.45 2.03 8,57 38,7 12.9
xO.250 0.233 15,37 4.22 25.8 17,6 i86 2,04 7,75 35,2 11,7
xO.188 0.174 11,68 3.18 34.5 13:5 4,51 2,06 5.91 27,0 9.02
x0.125« 0.116 7,85 2.14 51.7 9,28 3,09 2,08 4,02 18,6 6.19
HSS5.563x0.500 0.465 27,06 7.45 12.0 24,4 8,77 1,81 12,1 48,8 17.5
xO.375 0.349 20.80 5.72 15.9 19,5 . 7,02 1,85 9,50 39,0 14.0
xO.258 0.240 14.63 4.01 23.2 14.2 5.12 1,88 6,80 28,5 10.2
xO.188 0.174 10.80 2.95 32,0 10.7 3.85 1,91 5.05 21,4 7.70
xO.134 0.124 7.78 2.12 44.9 7.84 2,82 1,92 3.67 15,7 5.64
HSS5.500x0.500 0.465 26.73 7,36 11,8 23.5 8,55 1.79 11.8 47,0 17,1
xO.375 0.349 20.55 5,65 ,15.8 18.8 6.84 1.83 9,27 37,6 13,7
xO.258 0.240 14.46 3,97 22,9 13.7 5.00 1.86 6,64 27,5 10,0
HSS5X0.500 0.465 24.05 6.62 10.8 17.2 6.88 1.61 9,60 34.4 13.8
xO.375 0.349 18.54 5.10 14.3 13.9 5.55 1.65 7,56 27.7 11,1
xO.312 0.291 15.64 4.30 17.2 12.0 4.79 1.67 6,46 24.0 9,58
xO.258 0.240 13.08 3,59 20.8 10.2 4.08 1.69 5,44 20.4 8,15
xO.250 0.233 12.69 3,49 21.5 9,94 3.97 1.69 5,30 19.9 7,95
xO.188 0.174 9.67 2.64 28.7 7,69 3.08 .1.71 4,05 15.4 6,15
xO.125 0.116 6.51 1.78 43.1 5,31 2.12 1.73 2,77 10.6 4,25
' Shape exceeds compact limit for flexure with 42 ksi.
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-99
Table 1-13 (continued)
Round HSS
Dimensions and Properties o
HSS4.500-
HSS2.500
Shape
Design
Wall
Thick-
ness, t
Nom-
inal
Wt
Area,
A D/t
/ S r Z
Torsion
Shape
Design
Wall
Thick-
ness, t
Nom-
inal
Wt
Area,
A D/t
/ S r Z
J C
Shape
in. lb/ft m}
D/t
in," in.' in. in? in," •m?
HSS4.500x0.375 0.349 16.54 4.55 12.9 9.87 4.39 1.47 6.03 19.7 8,78
xO.337 0.313 15.00 4.12 14,4 9.07 4.03 1.48 5.50 18.1 8,06
xO.237 0.220 10.80 2.96 20.5 6.79 3.02 1.52 4,03 13.6 6,04
xO.188 0.174 8.67 2.36 25.9 5.54 2.46 1.53 , 3,26 11.1 4,93
xO.125 0.116 5.85 1.60 38.8 3.84 ; 1.71 1.55 2.23 7.68 3,41
HSS4X0.313 0.291 12.34 3.39 13.7 5.87 2.93 1.32 4.01 11.7 ,5,87
xO.250 0.233 10.00 2.76 17.2 4.91 2.45 1.33 3.31 9.82 4,91
xO.237 0.220 9.53 2.61 18.2 4.68 2.34 1.34 3.15 9.36 4,68
xO.226 0.210 9.12 2.50 19.0 4.50 2.25 1.34 3.02 9.01 4,50
xO.220 0.205 8.89 2.44 19.5 4.41 2.21 1,34 2.96 8.83 4,41
xO.188 0.174 7.66 2.09 23.0 3.83 1.92 1.35 2.55 7,67 3,83
xO.125 0.116 5.18 1.42 34,5 2.67 1.34 1.37 1.75 5.34 . 2,67
HSS3.500x0.313 0.291 10.66 2.93 12.0 3.81 2.18 1.14 3.00 7,61 4,35
xO.300 0.279 10.26 2.82 12.5 3.69 2.11 1.14 2.90 7,38 4,22
xO.250 0.233 8.69 2.39 15.0 3.21 1.83 1.16 2.49 6,41 3,66
xO.216 0.201 7.58 2.08 , 17,4 2.84 1.63 1.17 2.19 5,69 3,25
xO.203 0.189 7.15 1.97 18,5 2.70 1.54 1.17 2.07 5,41 3,09
xO.188 0.174 6.66 1.82 20,1 2.52 1.44 1.18 1.93 5,04 2,88
xO.125 0.116 4.51 1.23 30.2 1.77 1.01 1.20 1.33 3,53 2,02
HSS3X0.250 0.233 7.35 2.03 12.9 1.95 1.30 0.982 1.79 3,90 2,60
xO.216 0.201 6.43 1.77 14.9 1.74 1.16 0.992 1,58 3,48 2,32
xO.203 0.189 6.07 1.67 15.9 1.66 1.10 0.996 1.50 3,31 2,21
xO.188 0.174 5.65 1.54 17.2 1.55 1.03 1.00 1.39 3,10 2,06
x0,152 0.141 4.63 1.27 21.3 1.30 0.865 1.01 1.15 2,59 1,73
xO.134 0.124 4.11 1.12 24.2 1.16 0.774 1.02 1.03 2,32 1,55
xO.125 0.116 3.84 1.05 25.9 1.09 0.730 1.02 0.965 2,19 1,46
HSS2.875x0.250 0.233 7.02 1.93 12.3 1.70 1.18 0.938 1.63 3,40 2,37
xO.203 0.189 5.80 1.59 15.2 1.45 1.01 0.952 1.37 2,89 2.01
xO.188 0,174 5.40 1.48 16.5 1.35 0.941 0.957 1.27 2,70 1.88
xO.125 0.116 3.67 1.01 24.8 0.958 0.667 0.976 0.884 1,92 1.33
HSS2.500x0.250 0.233 6.01 1.66 10.7 1.08 0.862 0.806 1.20 2,15 1.72
xO.188 0.174 4.65 1.27 14.4 0.865 0,692 0.825 0.943 1,73 1.38
xO.125 0.116 3.17 0.869 21.6 0.619 0,495 0.844 0.660 1,24 0.990
AMERICAN INSTITUTE OF STEEL, CONSTRUCTION

1-100 DIMENSIONS AND PROPERTIES
o
HSS2.375-
HSS1.660
Table 1-13 (continued)
Round HSS
Dimensions and Properties
Shape
Design
Wail
Tiiicic-
ness,t
in.
Nom-
inal
WL
lb/ft
Area,
A
in^
DIt
in." in,' in. in.'
Torsion
in." in.^
HSS2.375x0.250
x0,218
xO.188
xO.154
xO.125
HSS1.900x0.188
xO.145
xO.120
HSS1.660x0,140
0.233
0.203
0.174
0.143
0.116
0.174
0.135
0.111
0.130
5.68
5.03
4.40
3.66
3.01
3,44
2.72
2.28
2,27
1.57
1.39
1,20
1,00
0.823
0,943
0.749
0,624
0.625
10.2
11.7
13.6
16.6
20.5
10.9
14.1
17.1
1^8
0.910
0.824
0.733
0.627
0.527
0.355
0.293
0.251
0:i84
0.766
0.694
0.617
0.528
0.443
0.374
0.309
0.264
0.222
0.762
0.771
0.781
0.791
0.800
0.613
0,626
0,634
0,543
1.07
0.960
0.845
•0.713
0.592
0.520
0.421
0.356
0.305
1,82
1.65
1.47
1.25
1.05
0,710
0.586
0.501
0.368
1.53
1.39
1.23
1.06
0.887
0,747
0.617
0.527
0.444
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-101
Shape
Table 1-14
Pipe
Dimensions and Properties o
PIPE
Nom-
inal
WL
lb/ft
Dimensions
Outside
Dia-
meter
in.
Inside
Dia-
meter
in.
Nominal
Wall
Thick-
ness
in.
Design
Wall
Thick-
ness
in.
Area
in.'
D/t
in." in.' in. in." in.'
Standard Weight (Std.)
Pipe 12 Std. 49.6 12.8 12.0 0.375 0.349 13,7 36.5 262 41.0 4.39 523 53.7
Pipe 10 Std. 40.5 10.8 10.0 0:365 0.340 11,5 31.6 151 28.1 3.68 302 36.9
Pipe 8 Std. 28.6 a63 • 7.98 0.322 0.300 7,85 28.8 68.1 15.8 2.95 136 20.8
Pipe 6 Std. 19.0 6.63 6.07 0.280 0.261 5,20. 25.4 26.5 7.99 2.25 52.9 10.6
Pipe 5 Std. 14.6 5.56 5.05 0.258 0,241 4,01 23.1 14.3 5.14 1.88 28.6 6.83
Pipe 4 Std. 10.8 4.50 4.03 0.237 0,221 2.96 20.4 6.82 3.03 1.51 13.6 4.05
Pipe 3V2 Std. 9.12 4.00 3.55 0,226 0,211 2.50 19.0 4.52 2.26 1.34 9.04 3.03
Pipe 3 Std. 7.58 3,50 3.07 0,216 0,201 2.07 17.4 2.85 1.63 1.17 5.69 2.19
Pipe 2V2 Std. 5.80 2.88 2.47 0,203 0.189 1.61 15.2 1.45 1.01 0.952 2.89 1.37
Pipe 2 Std. 3.66 2.38 2.07 0.154 0.143 1.02 16.6 0.627 0.528 0.791 1.25 0.713
Pipe iVz Std. 2.72 1.90 1.61 0.145 0.135 0.749 14.1 0.293 0.309 0.626 0.586 0.421
Pipe 1^4 Std. 2.27 1.66 1.38 0.140 0.130 0.625 12.8 0.184 0.222 0.543 0.368 0.305
Pipe 1 Std. 1.68 1.32 1.05 0.133 0.124 0,469 10.6 0.0830 0.126 0.423 0.166 . 0.177
Pipe'A Std. 1.13 1.05 . 0.824 0.113 0.105 0,312 10.0 0.0350 0.0671 0.336 0.0700 0.0942
Pipe 'ft Std. 0.850 0.840 0.622 0.109 0.101 0.234 8.32 0.0160; 0.0388 0.264 0.0320 0.0555
Extra Strong (x-Strong)
Pipe 12 x-Strong 65.5 12.8 11.8 0.500 0.465 17.5 27.4 339 53.2 4.35 678 70.2
Pipe 10 x-Strong 54.8 10.8 9.75 0,500 0.465 15.1 23.1 199 37,0 3.64 398 49.2
Pipe 8 x-Strong 43.4 8.63 7.63 0,500 0.465 11.9 18.5 100 23,1 2.89 199 31.0
Pipe 6 x-Strong 28.6 6.63 5.76 0.432 0.403 7.83: 16.4 38.3 11,6 2.20 76.6 15.6
Pipe 5 x-Strong 20.8 5.56 4.81 0.375 0.349 5.73 15.9 19.5 7:02 1.85 39.0 9.50
Pipe 4 x-Strong 15.0 4.50 3.83 0.337 0.315 4.14 14.3 9.12 4.05 1.48 18.2 5.53
Pipe3V2x-Strbng 12.5 4.00 3.36 0.318 0.296 3.43 13.5 5.94 2.97 1.31 11.9 4.07
Pipe3x-Strwig 10.3 3.50 2.90 0.300 0.280 2.83 12.5 3.70 2.11 1.14 7.40 2.91
Pipe 2V2 x-Strong 7.67 2.B8 2.32 0.276 0.257 2.10 11.2 1.83 1.27 0.930 3.66 1.77
Pipe 2 x-Strong 5.03 2.38 1.94 0.218 0.204 1.40 11.7 0.827 0.696 0.771 1.65 0.964
Pipe iVz x-Strong 3.63 1.90 1.50 0.200 0.186 1.00 10.2 0,372 0.392 0.610 0.744 0.549
Pipe 1V4 x-Strong 3.00 1.66 1.28 0.191 0.178 0.837 9.33 0.231 0.278 0.528 0.462 0.393
Pipe 1 x-Strong 2.17 1.32 0.957 0.179 0.166 0.602 7.92 0.101 0.154 0.410 0,202 0.221
Pipe x-Strong 1.48 1.05 0.742 0.154 0.143 0.407 7.34 0,0430 0.0818 0.325 0.0860 0,119
Pipe V2 x-Strong 1,09 0.840 0.546 0.147 0.137 0.303 6,13 0.0190 0.0462 0.253 0.0380 0,0686
Double-Extra Strong (xx-Strong)
Pipe 8 xx-Strong 72.5 8.63 6.88 0,875 0.816 20.0 10.6 154 35.8 2.78 308 49.9
Pipe 6 xx-Strong 53.2 6.63 4.90 0,864 0.805 14.7 8.23 63.5 19.2 2.08 127 27.4
Pipe 5 xx-Strong 38,6 5.56 4.06 0,750 0.699 10.7 7.96 32.2 11.6 1.74 64.4 15.7
Pipe 4 xx-Strong 27.6 4,50 3.15 0.674 0,628 7.66 7.17 14.7 6.53 1.39 29.4 9.50
Pipe 3 xx-Strong 18.6 3.50 2.30 0.600 0,559 5.17 6.26 5.79 3.31 1.06 11.6 4.89
Pipe 2V2 xx-Strong 13.7 2,88 1.77 0.552 0,514 3.83 5.59 2.78 1.94 0.854 5.56 2.91
Pipe 2 xx-Strong 9.04 2.38 1.50 0,436 0.406 2.51 5.85 1.27 1.07 0.711 2.54 1.60
i
I
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

1-102
DIMENSIONS AND PROPERTIES
Li
Y
LLBB
Table 1-15
Double Angles
Properties Y
SLBB
Shape
Area
Axis Y-Y LLBB SLBB
Shape
Area
Radius of Gyration a.
r.
Qs
Shape
Area
LLBB SLBB
Angles
in
Angles
Sepa-
rated
r.
Angles
in
Angles
Sepa-
rated
Shape
Area
Separation, s, in. Separation, $, in.
Angles
in
Angles
Sepa-
rated
r.
Angles
in
Angles
Sepa-
rated
Shape
in.2 0 3/8 3/4 0 3/8 5/4
Contact
Angles
Sepa-
rated
in.
Contact
Angles
Sepa-
rated
in.
2L8X8X1V8 33.6 3.41 3.54 3.68 3.41 3.54 3,68 1.00 1.00 2.41 . 1.00 1.00 2.41
x1 30.2 3,39 3.52 3.66 3.39 3.52 3.66 1.00 1.00 2.43 1.00 1.00 2.43
x% 26.6 3.36 3,50 3.63 3.36 3.50 3.63 1.00 1.00 2,45 1.00 1.00 2.45
xV4 23.0 3.34 3.47 3.61 3.34 3.47 3;61 1.00 1.00 2,46 1.00 1.00 2.46
x% 19.4 3.32 3.45 3.58 3.32 3.45 3.58 1.00 0.997 2,48 1,00 0.997 2.48
x3/I6 17,5 3.31 3.44 3.57 3.31 3.44 3.57 1.00 0.959 2,49 1.00 0.959 2.49
xV2 15.7 3.30 3.43 3.56 3.30 3,43 3.56 0,998 0.912 2,49 0.998 0.912 2.49
2L8x6x1 26.2 2.39 2.52 2.66 3.63 3,77 3.91 1.00 1.00 2.49 1.00 1.00 1.72
x% 23.0 2.37 2.50 2.63 3.61 3.75 3.89 1.00 1.00 2.50 1.00 1.00 1.74
X3/4 20.0 2.35 2.47 2.61 3.59 3.72 3.86 1.00 1.00 2.52 1.00 1.00 1.75
X% 16.8 2.33 2.45 2.59 3.57 3.70 3.84 1.00 0.997 2.54 1,00 0.997 1.77
X'/16 15.2 2.32 2.44 2.58 3.55 3.69 3.83 1.00 0.959 2.55 1.00 0.959 1.78
XV2 13.6 2.31 2.43 2.56 3,54 3.68 3.81 1.00 0.912 2,55 0.998 0.912 1.79
X'/16 12.0 2.30 2.42 2,55 3.53 3.66 3.80 1.00 0.850 2.56 0.938 0.850 1.80
2L8x4x1 22.2 1,46 1.60 1.75 3.94 4.08 4.23 1,00 , 1.00 2,51 1.00 1.00 1.03
x% 19.6 1.44 1.57 1.72 3.91 4.06 4.21 1.00 1.00 2.53 ^ 1.00 1.00 1.04
x% 17.0 1.42 1.55 1,69 3.89 4.03 4.18 1.00 1.00 2.55 1.00 1.00 1.05
x% 14.3 1,39 1.52 1.66 3.86 4.00 4.15 1.00 0.997 2.56 1.00 0.997 1.06
x'/ie 13.0 1.38 1.51 1.65 3.85 3.99 4.13 1.00 0.959 2.57 1.00 0.959 1.07
xVs 11.6 1.38 1.50 1.63 3.83 3.97 4,12 1.00, 0.912 2.58 0.998 0.912 1.08
XV16 10.2 1.37 1.49 1.62 3.82 3.96 4,10 1,00 0.850 2.59 0.938 0.850 1.09
2L7x4x% 15.5 1.48 1.61 1.75 3.34 3.48 3,63 1.00 1.00 2.21 1.00 1.00 1.08
X5/8 13.0 1.45 1.58 1.73 3.31 3.46 3,60 1.00 1.00 2.23 1.00 1.00 1.10
xVa 10.5 1.44 1.56 1.70 3.29 3.43 3.57 1.00 0.965 2.25 1.00 0.965 1.11
x'/l6 9.26 1.43 1.55 1.68 3.28 3.42 3.56 1.00 0.912 2.26 0.998^ 0.912 1.12
8.00 1.42 1.54 1.67 3.26 3.40 3.54 1.00 0.840 2.27 0.928 0.840 1.12
2L6x6x1 22.0 2.58 2.72 2.86 2.58 2.72 2.86 1.00 1.00 1.79 1.00 1.00 1.79
•x% 19.5 2.56 2.70 2.84 2.56 2.70 2.84 1.00 1.00 1.81 1.00 1.00 1,81
X3/4 16.9 2.54 2,67 2.81: 2.54 2.67 2.81 1.00 1.00 1.82 1.00 1.00 1,82
x^/a 14.3 2.52 2.65 2.79 2.52 2.65 2.79 1.00 1.00 1.84 1.00 1.00 1,84
X«/16 12.9 2.51 2.64 2,78 2.51 2.64 2.78 1.00 1.00 1,85 1.00 1.00 1,85
xV2 11,5 2.50 2.63 2,76 2.50 2.63 2.76 1.00 1.00 1,86 1.00 1.00 1.86
10.2 2.49 2.62 2,75 2.49 2.62 2.75 1.00 0.973 1.86 1.00 0.973 1.86
xVs 8.76 2.48 2.60 2.74 2.48 2.60 2.74 0.998 0,912 1.87 0.998 0.912 1.87
xVre 7.34 2.47 2.59 2.72 2.47 2.59 2.72 0.914 0.826 1.88 0.914 0.826 1.88
Note: For compactness criteria, refer to Table 1-7B.'
AMERICAN INSTITUTE OF STEEL CoNSTRUcrtoN

DIMENSIONS AND PROPERTIES 1-103
Table 1-15 (continued)
Double Angles
Properties 2L8-2L6
Shape
Flexural-Torsional Properties
Single Angle
Properties
Shape
Long Legs Vertical Short Legs Vertical
Single Angle
Properties
Shape Back to Back of Angles, in. Back to Backof Angles, in.
Area,
A
Shape
0 3/8 3/4 0 3/4
Area,
A
Shape
Ji H K H r„ H to H rc H fc H in.^ in.
2L8X8X1V6 •4:56 0.837 4.66 0.844 4.77 0.851 4,56 0.837 4.66 0.844 4.77 0.851 16.8 1.56
x1 4,56 0.834 4.66 0.841 4.77 0.848 4.56 0,834 4.66 0.841 4.77 0.848 15.1 1.56
x% 4.56 0.831 4.66 0.838 4.76 0.845 4.56 0,831 4,66 0.838 4.76 0.845 13.3 1.57
y?k 4.56 0.829 4.66 0.836 4.76 0.843 4,56 0,829 4.66 0.836 4.76 0.843 11.5 1.57
x5/6 4.56 0.826 4.66 0.833 4.76 0.840 4.56 0,826 4.66 0.833 4.76 0.840 9.69 1.58
XS/16 4.56 0.825 4.65 0.832 4.75 0.839 4.56 0.825: 4.65 0.832 4.75 0.839 8,77 1.58
xVz 4.56 0.824 4.65 0.831 4.75 0.837 4.56 0.824' 4.65 0.831 4.75 0.837 7.84 1.59
2L8x6xt 4.06 0.721 4,14 0.732 4.23 0.742 4.18 0.924 4.30 0.929 4.43 0.933 13.1 1.28
x% 4.07 0.718 4.14 0.728 4.23 0,739 4.17 0.922 4.29 0.926 4.42 0.930 11.5 1.28
: X3/4 4.07 0.714 4,15 0.725 4.23 0,735 4.17 0.919 4.28 0.924 4.40 0.928 9.99 1.29
X% 4.08 0.712 ,4,16 0,722 4.24 0,732 4.16 0.917 4.27 0.921 4.39 0.926 8.41 1.29
XS/16 4.09 6.710 4.16 0.720 4.24 0,731 4.15 0.916 4.27 0.920 4.39 0.924 7.61 1.30
xVa 4.09 0.709 4.16 0.719 4.24 0,729 •4.15 0.915 4.26 0.919 4.38 0.923 6.80 1.30
x'/ie 4.09 0.708: 4.16 0.718 4.24 0,728 4.15 0.913 4.26 0.918 4.38 0.922 5.99 1.31
2L8x4x1 3.86 0.568 3.91 0.580 3.97 0.594 4.11 0.983 4.25 0.984 4.39 0.985 11,1 0.844
x% 3.87 0.566 3.92 0.577 3.98 0.590 4.09 0.981 4.22 0.982 4.37 0.984 9.79 0.846
3.88 0'564 3.93 0.575 3.99 0.587 4.07 0.980 4.20 0.981 4.35 0.983 8.49 0.850
x% 3.89 0.562 3.94 0.573 3.99 0.585 4.05 0.979 4.18 0.980 4.32 0.981 7.16 0.856
xS/16 3.90 0.562 3.94 0.572 4.00 0.584 4.04 0.978 4.17 0.980 4.31 0.981 6.49 0,859
XV2 3.90 0.561 3,95 0.571 4.00 0.583 4.03 0.978 4.16 0.979 4.30 0,980 5.80 0,863
XV16 3.91 0.561 3.95 0.571 4.00 0.582 4.02 0,977 4.15 0.978 4.29 0,980 5.11 0.867
2L7x4x% 3.41 0.611 3.47 0.624 3.53 0.639 3.57 0.969 3.70 0.971 3.84 0,973 7.74 0.855
X5/8 3.42 0.608 3.47 0.621 3.54 0,635 3.55 0.967 3.68 0.969 3.82 0.971 6.50 0.860
xVs 3.43 0.606 3.48 0.618 3.55 0,632 3.53 0.965 3.66 0.968 3.80 0.970 5.26 0.866
XV16 3.43 0.605 3.49 0.617 3.55 0.630 3.53 0.964 3.66 0.967 3.79 0.969 4.63 0.869
y?k 3.44 0.605 3.49 0.616 3.55 0.629 3.52 0.963 3.65 0.966 3.78 0,968 4.00 0,873
2L6x6x1 3.42 0.843 3.53 0.852 3.64 0.861 3.42 0.843 3.53 0.852 3.64 0.861 11.0 1.17
xVa 3.42 0.839 3.53 0.848 3.63 0,857 3.42 0.839 3.53 0,848 3.63 0.857 9.75 1.17
3.42 0.835 3.52 0.844 3.63 0.853 3.42 0.835 3.52 0,844 3.63 0.853 8.46 1.17
x% 3.42 0.831 3.52 0.840 3.62 0.849 3.42 0.831 3.52 0,840 3.62 0.849 7.13 1.17
X3/I6 3.42 0,829 3.52 0.838 3.62 0.847 3.42 0.829 3.52 0.838 3.62 0.847 6.45 1.18
xVs 3.42 0.827 3.52 0.836 3.62 0.846 3.42 0.827 3.52 0.836 3.62 0.846 5.77 1.18
xVl6 3.42 0.826 3.52 0.835 3.62 0.844 3.42 0.826 3.52 0.835 3.62 0.844 5.08 1.18
x% 3.42 0.824 3.51 0.833 3.61 0.842 3.42 0.824 3.51 0.833 3.61 0.842 4.38 1.19
X5/I6 3.42 0.823 3.51 0.832 3.61 0.841 3.42 0.823 3.51 0.832 3.61 0.841 3.67 1.19
Note; For compactness criteria, refer to Table 1-7B.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-104 DIMENSIONS AND PROPERTIES
Table 1-15 (continued)
Double Angles
Properties
Shape
Area
Axis*-* LLBB SLBB
Shape
Area
Radius of Gyration 0, £
r. Shape
Area
LLB6 SLBB
Angles
in
Angles
Sepa-
rated
Angles
in
Angles
Sepa-
rated
r. Shape
Area
Separation, s, in. Separation, s, in.
Angles
in
Angles
Sepa-
rated
Angles
in
Angles
Sepa-
rated
r. Shape
in^ 0 3/8 '/4 0 3/8 3/4
Contact
Angles
Sepa-
rated
in.
Contact
Angles
Sepa-
rated
in.
2L6x4x% 16.0 1.57 1.71 1.86 2.82 2.96 3.11 1.00 1.00 1.86 1.00 1.00 1.10
X3/4 13.9 1.55 1.68 1.83 2.80 2.94 3.08 1.00 1.00 1.88 1.00 1.00 1.12
X5/6 11.7 1.53 1.66 1.80 2.77 2.91 3.06 1.00 1.00 1.89 1.00 1.00 1.13
xS/ie 10.6 1.52 1.65 1.79 2.76 2.90 3.04 1,00 1.00 1.90 1.00 1.00 1.14
XV2 9.50 1.51 1.64 1.77 2.75 2.89 3.03 1,00 1.00 1.91 1.00 1.00 1.14
X'/16 8.36 1.50 1.62 1.76 2.74 2.88 3.02 I,OO: 0.973 1.92 1.00 0.973 1.15
X3/8 7.22 1.49 1.61 1,75 2,73 2.86 3.00 1,00, 0.912 1.93 0.998 0.912 1.16
X5/I6 6.06 1.48. 1.60 1.74 2.72 2.85 2.99 1.00 0.826 1.94 0.914 0.826 1.17
2L6X3V2XV2 9.00 1.27 1.40 1.54 2.82 Z96 3.11 1.00 1.00 1.92 1.00 1.00 0.968
x% 6.88 1.26 1.38 1.52 2.80 2.94 3.08 1.00 0.912 1.93 0.998 0.912 0.984
, -xVie 5.78 1.25 1.37 1.50 2.78 2.92 3.06 1.00 0.826 1.94 0.914 0.826 0.991
. 2L5x5x% 16.0 2.16 2.30 2.44 2.16 2.30 2,44 1.00 1.00 1.49 1.00 1.00 1.49
X3/4 14.0 2.13 2.27 2.41 2,13 2.27 2,41 1.00 1.00 1.50 1.00 1.00 1.50
X% 11.8 2.11 2.25 2.39 2,11 2,25 2,39 1.00 1.00 1.52 1.00 1.00 1.52
xVz 9.58 2.09 2.22 2.36 2.09 2.22 2,36 1.00 1.00 1.53 1.00 1.00 1.53
X'/16 8.44 2.08 2.21 2.35 2.08 2.21 2,35 1.00 1.00 1.54 1.00 1.00 1.54
X3/6 ' 7.30 2.07 2.20 2.34 2.07 2.20 2,34 1.00 0.983 1.55 1.00 0.983 1.55
x5/ie 6,14 2.06 2.19 2.32 2.06 2.19 2,32 0.998 0.912 1.56 0.998 0.912 1.56
2L5X3V2X3/4 11.7 1.39 1.53 1.68 2.33 2.47 2,62 1.00 1.00 1.55 1.00 1.00 0.974
yPh 9.86 1.37 1.50 1.65 2.30 2.45 2,59 1.00 1,00 1,56 1.00 1.00 0.987
xVz 8.00 1.35 1.48 1,62 2.28 2.42 2,57 1.00 1,00 1,58 1.00 1,00 1.00
x% 6.10 1.33 1.46 1.59 2.26 2.39 2,54 1.00 0,983 1,59 1.00 0,983 1.02
X5/16 5.12 1.32 1.44 1.58 2.25 2,38 2.52 1.00 0.912 1,60 0.998 0,912 1.02
xV4 4.14 1.31 1.43 1.57 2.23 2.37 2.51 1.00 0.804 1.61 0,894 0,804 1.03
2L5X3XV2 7.50 1.11 1.24 1.39 2.35 2.50 2.64 1.00 1.00 1.58 1.00 1,00 0.824
xVl6 6.62 1.10 1.23 1.38 2.34 2.48 2.63 1.00 1.00 1.59 1,00 1,00 0.831
x% 5.72 1.09 1.22 1.36 2.33 2.47 2.62 1.00 0983 1.60 1,00 0983 0.838
X5/I6 4.82 1.08 1.21 1.35 2.32 2.46 2.60 1.00 0.912 1.61 0.998 0,912 0.846
xVi 3.88 1.07 1.19 1.33 2.30 2.44 2.58 1.00 0.804 1.62 0.894 0.804 0.853
Note; For compactness criteria, refer to Table 1-7B.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-105
Table 1-15 (continued)
Double Angles
Properties 2L6-2L5
Shape
Flexural-Torsional Properties
Single Angle
Properties
Shape
Long Legs Vertical Short Legs Vertical
Single Angle
Properties
Shape Back to Back of Angles, in. Back to Back of Angles, in. Area,
A
0
Shape
0 '/e . 3/4 0 3/8
3/4
Area,
A
0
Shape
fi H 7„ H rc W to H r. H H in.2 in.
2L6x4x7/e 2.96 0.678 3.04 0.694 3.12 0.710 3.10 0.952 3.23 0.956 3.37 0.959 8.00 0.854
X3/4 2.97 0.673 3.04 0.688 3.12 0.705 3.09 0.949 3.22 0.953 3.35 0,957 6.94 0.856
X5/8 2.98 0,669 3.05 0.684 3.13 0.700 3.08 0.946 3.21 0.950 3.34 0.954 5,86 0.859
XS/16 2.98 0.667 3.05 0.682 3.13 0.697 3.07 0.945 3.20 0.949 3.33 0.953 5.31 0.861
XV2 2.99 0.665 3.05 0.679 3.13- 0,695 3.07 0.943 3.19 0.948 3.32 0,952 4.75 0.864
xVK 2.99 0.663 3.06 0.678 3.13 0,693 3.06 0.942 3,19 0.946 3.31 0.950 4.18 0.867
X% 2.99 0.662 3.06 0,676 3.13 0.691 3.06 0.940 3.18 0.945 3.31 0.949 3.61 0.870
X5/I6 3.00 0.661 3.06 0.674 3.13 0,689 3.05 0.939 3.17 0.944 3.30 0,948 3.03 0,874
2L6X3V2XV2 2.94 0.615 2.99 0.630 3.06 0,646 3.04 0.964 3,17 0,967 3.31 0,969 4.50 0,756
x% 2.95 0,613 3.00 0.627 3.07 0,642 3.02 0.962 3,15 0.965 3.29 0.967 3.44 0,763
X5/I6 2.95 0.612 3.00 0.625 3.07 0,641 3.02 0.960 3.14 0.964 3.28 0.966 2.89 0,767
2L5x5x% 2.85 0.845 2.96 0.856 3.07 0.866 2.85 0.845 2.96 0.856 3.07 0,866 8.00 0,971
X3/4 2.85 0.840 2.95 0.851 3.06 0.861 2.85 0.840 2,95 0.851 3.06 0.861 6.98 0,972
X% 2.85 0.835 2.95 0.846 3.06 0.857 2,85 0.835 2,95 0.846 3.06 0.857 5.90 0,975
xVz 2.85 0.830 2.94 0.842 3.05 0.852 2.85 0.830 2.94 0.842 3.05 0.852 4.79 0,980
X'/16 2.85 0.828 2.94 0.839 3.05 0.850 2,85 0.828 2.94 0.839 3.05 0.850 4.22 0,983
X% 2.84 0.826 2.94 0.838 3.04 0.848 2,84 0.826 2.94 0.838 3.04 0.848 3.65 0,986
X=/16 2,84 0.825 2.94 0.836 3.04 0.847 2,84 0.825 2.94 0,836 3.04 0.847 3.07 0,990
2L5X3V2X3/4 2.49 0.699 2.57 0.717 2.66 0.736 2.60 0.943 2.73 0.949 2.86 0.953 5.85 0,744
yPk 2.49 0.693 2.57 0.711 2.66 0,730 2.59 0.940 2.71 0.945 2.85 0.950 4.93 0.746
xVz 2.50 0.688 2.58 0.705 2.66 0.724 2.58 0.936 2.70 0,942 2.83 0.947 4.00 0,750
x% 2.51 0.683 2.58 0,700 2.66 0,718 2.56 0.933 2.69 0,938 2.81 0.944 3.05 0.755
/S/lB 2.51 0,682 2.58 0.698 2.66 0.716 2,56 0.931 2.68 0.937 2.81 0.942 2,56 0,758
xV4 2.52 0.680 2.58 0.696 2.66 0.714 2.55 0.929 2.67 0,935 2.80 0.941 2,07 0,761
2L5X3XV2 2.44 0,628 2.51 0.646 2,58 0.667 2.54 0.962 2.68 0.966 2,81 0,969 3,75 0.642
X7/I6 2.45 0,626 2.51 0.644 2,58 0.664 2.54 0.961 2.67 0,964 2,80 0.968 3,31 0.644
X% 2.45 0,624 2.51 0.642 2.59 0,661 2.53 0,959 2.66 0,963 2,79 0,967 2,86 0.646
2.46 0.623 2.52 0,640 2.59 0.659 2.52 0.958 2.65 0,962 2.78 0.965 2.41 0.649
XV4 2.46 0.622 2.52 0.638 2.59 0,657 2.51 0.957 2.64 0,961 2.77 0.964 1.94 0,652
Note: For compactness criteria, refer to Table 1-7B.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-106 DIMENSIONS AND PROPERTIES
X-
-Jp
Y
LLBB
Table 1-15 (continued)
Double Angles
Properties
SLBB
Shape
Area
Axis Y-Y UBB SLBB
Shape
Area
Radius of Gyration Os Os
Shape
Area
aBB SLBB
Angles
in
Angles
Sepa-
rated
Angles
in
Angles
Sepa-
rated
Shape
Area
Separation, s, in. Separation, s, in.
Angles
in
Angles
Sepa-
rated
Angles
in
Angles
Sepa-
rated
Shape
in.2 0 3/8 3/4 0 3/8 3/4
tontact
Angles
Sepa-
rated
in.
bontacl
Angles
Sepa-
rated
in.
214x4x3/4 10.9 1.73 1.88 2.03 1.73 1.88 2.03 1.00 1.00 1.18 1.00 1.00 1.18
X=/8 9.22 1.71 1.85 2.00 1.71 1.85 2.00 1.00 1.00 1.20 1.00 1.00 1.20
xVz 7.50 1.69 1.83 1.97 1.69 1.83 1.97 1.00 1.00 1.21 1.00 1.00 1.21
XV16 6.60 1.68 1.81 1.96 1.68 1.81 1.96 1.00 1.00 1.22 1.00 1.00 1.22
x% 5.72 1.67 1.80 1.94 1.67 1.80. 1.94 1.00 1.00 1.23 1.00 1.00 1.23
X5/I6 4.80 1.66 1.79 1.93 1.66 1.79 1.93 1.00 0.997 1.24 1.00 0.997 1.24
XV4 3.86 1.65 1.78 1.91 1.65 1.78 1.91 0.998 0.912 1,25 0.998 0.912 1.?5
2L4X3V2XV2 7.00 1,44 1.57 i.72 1.75 1.89 2.03 1.00 1.00 1,23 1.00 1.00 1.04
>?h 5.36 1.42 1.55 1.69 1.73 1.86 2.00 1.00 1.00 1.25 1.00 1.00 1.05
X5/I6 4.50 1.40 1.53 1.68 1.72 1.85 1.99 1.00 0.997 1.25 1.00 0.997 1.06
xV4 3.64 1.39 1.52 1.66 1.70 1.83 1,97 1.00 0.912 1.26 0,998 0.912 1.07
214x3x5/8 7.98 1.21 1.35 1.50 1.84 1.98 2.13 1.00 1.00 1.23 1.00 1.00 0.845
xV2 6.50 1.19 1.32 1.47 1.81 1.95 2.10 1.00 1.00 1.24 1.00 1,00 0.858
x% 4.98 1.17 1.30 1.44 1.79 1.93 2.07 1.00 1.00 1.26 1.00 1.00 0.873
X5/I6 4.18 1.16 1.29 1.43 1.78 1.91 2.06 1.00 0.997 1.27 1.00 0.997 0.880
XV4 3.38 1:15 1.27 1.41 1.76 1.90 2.04 1.00 0.912 1.27 0.998 0.912 0.887
2L3%X3V2XV2 6.50 1.49 1.63 1.77 1.49 1.63 1.77 1.00 1.00 1.05 1.00 1.00 1.05
X?/l6 5.78 1.48 1.61 1.76 1.48 1.61 1.76 1.00 1.00 1.06 1.00 1.00 1.06
x3/e 5.00 1.47 1.60 1.74 1.47 1.60 1.74 1.00 1.00 1.07 1.00 1.00 1.07
X5/I6 4.20 1.46 1.59 1.73 1.46 1.59 1.73 1.00 1.00 1.08 1,00 1.00 1.08
xV4 3.40 1.44 1.57 1.72 1.44 1.57 1.72 1.00 0.965 1.09 1.00 0.965 1.09
2L3V2X3XV2 6.04 1.23 1.37 1.52 1.55 1.69 1.84 1.00 1.00 1.07 1.00 1.00 0.877
XVIE 5.34 1,22 1.36 1.51 1.54 1.67 1.82 1.00 1,00 1.08 1.00 1.00 0,885
x% 4.64 1.21 1.35 1.49 1.52 1.66 1.81 1.00 1.00 1.09 1.00 1.00 0.892
X5/I6 3.90 1.20 1.33 1.48 1.51 1.65 1.79 1.00 1,00 1.09 1.00 1.00 0.900
XV4 3.16 1.19 1.32 1.46 1.50 1.63 1.78 1.00 0.965 1.10 1.00 0.965 0.908
2L3V2X2V2XV2 5.54 0.992 1,13 1.28 1.62 1.76 1.91 1.00 1.00 1.08 1.00 1.00 0.701
x% 4.24 0.970 1.11 1.25 1.59 1.73 1.88 1.00 1.00 1.10 1.00 1.00 0,716
X5/16 3.58 0.960 1,09 1.24 1.58 1.72 1.87 1.00 1.00 1.11 1.00 1.00 0,723
x'A 2.90 0.950 1.08 1.22 1.57 1.70 1.85 1.00 0.965 1.12 1.00 0.965 0.731
Note: For compactness criteria, refer to Table 1-7B.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-107
Table 1-15 (continued)
Double Angles
Properties 2L4-2L3V2
Note: For compactness criteria, refer to Table 1-7B.
Shape
Flexural-Torsional Properties
Single Angle
Properties
Shape
Long Legs Vertical Short Legs Vertical
Single Angle
Properties
Shape Back to Back of Angles, in. Back to Back of Angles, in.
Area,
A
rz
Shape
0 3/a 3/4 0 3/8 3/4
Area,
A
rz
Shape
re H ra H H 7o H ro H r. H in.2 in.
2L4X4X3/4 2.28 0.847 2.39 0.861 2.51 0.874 2.28 0.847 2.39 0.861 2.51 0.874 5,44 0.774
X5/8 2.28 0.841 2.39 0.854 2.50 0.868 2.28 0.841 2.39 0.854 2.50 0.868 4,61 0.774
XV2 2.28 0.834 2,35 0.848 2.49 0,862 2,28 0.834 2.38 0.848 2.49 0.862 3.75 0.776
X7I6 2.28 0.832 2.38 0,846 2.49 0.859 2.28 0.832 2.38 0.846 2.49 0.859 3.30 0.777
X% 2.28 0.829 2.38 0.843 2.49 0,856 2.28 0.829 2.38 0.843 2.49 0.856 2.86 0,779
2,28 0.826 2.37 0,840 2,48 0.854 2.28 0.826 2.37 0.840 2.48 0.854 2.40 0.781
XV4 2.28 0.824 2,37 0.838 2,48 0.851 2.28 0.824 2.37 0.838 2.48 0.851 1,93 0.783
2L4X3V2XV2 2.14 0.784 2,23 0.802 2.33 0.819 2.16 0,882 2.28 0.893 2.40 0.904 3,50 0,716
X3/8 2.14 0.778 2.23 0.795 2.33 0.813 2.16 0.876 2.27 0.888 2.39 0,899 2,68 0,719
X5/I6 2.14 .0.775 2.23 0.792 2.33 0.810 2.16 0.874 2.26 0.885 2,38 0.896 2.25 0.721
XV4 2.14 0.773 2.22 0,790 2.32 0.807 2.15 0,871 2,26 0.883 2,37 0.894 1.82 0.723
2UX3X=/8 2.02 0.728 2.11 0.750 2.21 0.773 2,10 0.930 2,22 0.938 2.36 0.945 3,99 0.631
XV2 2.02 0.721 2.11 0,743 2.20 0.765 2.09 0.925 2.21 0.933 2.34 0.940 3,25 0.633
x% 2.03 0.715 2.11 0.736 2.20 0.757 2.08 0.920 2.20 0.928 2.32 0.936 2,49 0.636
X5/I6 2.03 0.712 2.11 0.733 2,20 0.754 2.07 0,918 2.19 0.926 2,32 0.934 2.09 0.638
XV4 2.03 0.710 2.11 0.730 2.20 0.751 2.06 0.915 2.18 0.924 2,31 0.932 1.69 0.639
2L3V2X3V2XV2 1.99 0,838 2.10 0.854 2.21 0.869 1.99 0.838 2.10 0,854 2.21 0.869 3.25 0.679
X^/,6 1.99 0.835 2.09 0.851 2.21 0.866 1.99 0.835 2,09 0,851 2.21 0.866 2.89 0,681
. x% 1.99 0.832 2.09 0.848 2.20 0.863 1.99 0,832 2.09 0,848 2.20 0.863 2.50 0.683
X5/I6 1.99 0.829 2.09 0.845 2.20 0.860 1.99 0.829 2,09 0.845 2.20 0.860 2.10 0.685
XV4 1.99 0.826 2.08 0.842 2.19 0.857 1.99 0,826 2,08 0.842 2.19 0.857 1.70 0.688
2L3V2X3XV2 1.85 0.780 1.94 0.801 2,05 0.822 1.88 0.892 2.00 0.904 2.13 0.915 3.02 0,618
x'/ie 1.85 0.776 1.94 0.797 2,05 0,818 1,88 0.889 1.99 0.901 2,12 0.912 2.67 0.620
x% 1.85 0.773 1.94 0.794 2,05 0.814 1.88 0.885 1.99 0.898 2,11 0.910 2.32 0.622
XVIE 1.85 0.770 1.94 0.790 2,04 0.811 1,87 0.883 1.98 0.895 2.11 0,907 1.95 0,624
x'A 1.85 0.767 1.94 0.787 2.04 0.807 1,87 0.880 1.98 0.893 2,10 0.905 1.58 0,628
2L3V2X2V2XV2 1.75 0,706 1.83 0.732 1.93 0.759 1,82 0.938 1.95 0.946 2.08 0.953 2.77 0,532
x^/s 1.75 0.698 1,83 0.724 1.93 0.750 1.81 0.933 1.93 0.941 2.07 0.949 2.12 0,535
X=/16 1.76 0.695 1.83 0.720 1.92 0.746 1.80 0.930 1,92 0.939 2.06 0.947 1,79 0.538
xV4 1.76 0.693 1.83 0.717 1,92 0,742 1.80 0.928 1,92 0.937 2,05 0.944 1,45 0.541
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-108 DIMENSIONS AND PROPERTIES
Table 1-15 (continued)
Double Angles
Properties
SLBB
Shape
Aiea
AxisY-Y LLBB SLBB
Shape
Aiea
Radius of Gyration Qs
r,
in.
Qs
fx Shape
Aiea
LLBB SLBB
Angles
in
Contact
Angles
Sepa-
rated
r,
in.
Angles
in
Contact
Angles
Sepa-
rated
fx Shape
Aiea
Separation, s, in. Separation, s, in.
Angles
in
Contact
Angles
Sepa-
rated
r,
in.
Angles
in
Contact
Angles
Sepa-
rated
fx Shape
in.' 0 '/a 3/4 0 3/8 3/4
Angles
in
Contact
Angles
Sepa-
rated
r,
in.
Angles
in
Contact
Angles
Sepa-
rated
in.
2L3X3XV2 5.52 1.29 1.43 1.58 1.29 1.43 1.58 1.00 1.00 0,895 1.00 1,00 0.895
yJhs 4.86 1.28 1.42 1.57 1.28 1.42 1.57 1.00. 1.00 0,903 1.00 1.00 0.903
x% 4.22 1.27 1.41 1.55 1.27 1.41 1.55 1.00 1.00 . 0,910 1.00 1.00 0.910
X5/16 3.56 1.26 1.39 1.54 1.26 1.39 1.54 1.00 1.00 0,918 1.00 1.00 0.918
xV4 2.88 1.25 1.38 1.52 1.25 1.38 1.52 1.00 1.00 0,926 1.00 1.00 0.926
X3/I6 2.18 1.24 1.37 1.51 1.24 1.37 1.51 0.998 0.912 0,933 0,998 0.912 0.933
2L3X2V2XV2 5.00 1.04 1.18 1.33 1.35 1.49 1.64 1.00 1.00 0,910 1.00 1.00 0.718
xVl6 4.44 1.02 1.16 1.32 1.34 1.48 1.63 1.00 1.00 0.917 1,00 1.00 0.724
X3/8 3.86 1.01 1.15 1.30 1.32 1.46 1.61 1,00 1,00 0.924 1.00 1.00 0.731
X5/I6 3.26 1.00 1.14 1.29 1.31 1.45 1.60 1.00 1.00 0.932 1.00 1,00 0.739
xV4 2.64 0.991 1.12 1.27 1.30 1.44 1.58 1.00 1.00 0.940 1.00 1.00 0.746
2.00 0.980 1.11 1.25 1.29 1.42 1.57 1.00 0.912 0.947 0.998 0.912 0.753
2L3X2XV2 4.52 0.795 0.940 1.10 1.42 1.56 1.72 1.00 1.00 0.922 1.00 1.00 0.543
X3/8 3.50 0.771 0.911 1.07 1.39 1.54 1.69 1.00 1,00 0.937 1.00 1.00 0.555
xVie 2.96 0.760 0.897 1.05 1.38 1.52 1.67 1.00 1,00 0.945 1.00 1.00 0.562
xVA 2.40 0.749 0.883 1.03 1.37 1.51 1.66 1.00 1,00 0.953 1.00 1.00 0.569
X3/16 1.83 0.739 0.869 1.02 1.35 1.49 1.64 1.00 0.912 0.961 0.998 0.912 0.577
2L2V2X2V2XV2 4.52 1.09 1.23 1.39 1.09 1.23 1.39 1.00 1.00 0.735 1.00 1.00 0.735
x% 3.46 1.07 1.21 1.36 1.07 1.21 1.36 1.00 1.00 0.749 1.00 1.00 0.749
xVl6 2.92 1.05 1.19 1.34 1.05 1.19 1.34 1.00 1.00 0.756 1.00 1.00 0.756
xV4 2.38 1.04 1.18 1.33 1.04 1.18 1.33 1.00 1.00 0.764 1.00 1.00 0.764
1.80 1.03 1.17 1.31 1.03 1.17 1.31 1.00 0.983 0.771 1.00 0.983 0.771
2L2V2X2X% 3.10 0.815 0.957 1.11 1.13 1.27 1,42 1.00 1.00 0.766 1.00 1.00 0,574
X5/I6 2.64 0.804 0.943 1.10 1.12 1.26 1.41 1.00 1.00 0.774 1.00 1.00 0,581
xV4 2.14 0.794 0.930 1.08 1.10 1.24 1.39 1.00 1.00 0.782 1.00 1.00 0,589
X3/I6 1.64 0.784 0.916 1.07 1.09 1.23 1.38 1.00 0.983 0.790 1.00 0.983 0.597
2L2V2X1V2XV4 1.89 0.554 0.694 0.852 1.17 1.32 1.47 1.00 1.00 0.792 1.00 1.00 0.411
X3/I6 1.45 0.543 0.679 0.834 1.16 1.30 1.45 1.00 0.983 0.801 1.00 0,983 0.418
2L2x2x% 2.74 0.865 1.01 1.17 0.865 1.01 1.17 1.00 1.00 0.591 1.00 1.00 0.591
X5/I6 2.32 0.853 0.996 1.15 0.853 0.996 1.15 1.00 1.00 0.598 1,00 1.00 0.598
xV4 1.89 0.842 0.982 1.14 0.842 0.982 1.14 1.00 1,00 0.605 1.00 1.00 0.605
X3/I6 1.44 0.831 0.967 1.12 0.831 0.967 1.12 1.00 1.00 0.612 1,00 1.00 0.612
xVo 0.982 0.818 0.951 1.10 0.818 0.951 1.10 0.998 0.912 0.620 0,998 0.912 0.620
Note: For compactness criteria, refer to Table 1-7B.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-109
Table 1-15 (continued)
Double Angles
Properties 2L3-2L2
Shape
Flexural-Torsional Properties
Single Angle
Properties
Shape
Long Legs Vertical Short Legs Vertical
Single Angle
Properties
Shape Back to Back of Angles, in. Back to Back of Angles, in. Area,
A
tz
Shape
0 '/8 3/4 0 5/8 5/4
Area,
A
tz
Shape
H To H r.
H z H H r„ H in.^ in.
2L3X3XV2 1.71 0.842 1.82 0,861 1,94 0,878 1.71 0.842 1,82 0,861 1,94 0,878 2.76. 0.580
X7/I6 1.71 0.838 1.82 0,857 1,94 0,874 1.71 0,838 1,82 .0,857: T,94 0,874 2.43 0.580
1.71 0.834 T.81 0,853 1.93 0,870 1.71 0,834 1,81. 0,853 1,93 0,870 2.11 0,581
X6/I6 .1.71 0.830 1.81 0,849 1.93 0,866 1.71 0,830 1,81 0,849 1,93 0,866 1.78 0,583
xVi 1.71 0.827 1.81 0,845 1.92 0,863 1.71 0,827 1,81 0,845 1,92 1.44 0,585
X3/I6 1.71 0.823 1.80 0,842 1.91 0,859 1,71 0,823 1,80 0,842: 1,91 0,859 1.09 0,586
2L3X2V2XV2 1.57 0.774 1.66 0,800 1.78 0,824 1,61 0,905 1,73 0,918, 1,86 0,929 2.50 0,516
X7/I6 1.57 0.769 1.66 0,795 1.77 0,819 1,60 0,901 1,72 0,914' 1,85 0,926 2.22 0.516
x% 1.57 0.764 1.66 0,790 1.77 0,815 1.60 0.897 1,72 0,911 1.85 0,923 1.93 0,517
X5/I6 1.57 0.760 1.66 0,785 1.76 0,810 1.59 0.893 1,71 0,907 1.84 0,920 1.63 0,518
XV4 1.57 0.756 1.66 0,781 1.76 0,806 1,59 0.890 1,70 0.904 1.83 0:917 1.32 0,520
xVK 1.57 0,753; 1.65 0,778 1.75 0,802 1,58 0.887, 1,70 0,901: 1.82 0,914 1.00 0.521
2L3X2XV2 1.47 0.684 1.55 0.717 1.66 0,751 1,55 0.955 1,69 0,962 1.83 0,968 2.26 0,425
x% 1.48 0.675 1.55 0,707 1.65 0,739 1.54 0,949 1,67 0,957 1.81 0,963 1.75 0,426
x5/tt 1.48 0.671 1.56 0,702 1.65 0,734 1.53 0,946 1,66 0,954 1.80 0,961 1.48 0.428
XV4 1.48 0.668 1.56 0,698 1.65 0,730 1.52 0,944 1,65 0,952, 1.79 0,959 1.20 0.431
X3/I6 1.49 0.666 1.55: 0,695 1.64 0,726 1.52 0,941 1,64 0,950 1.78 0,957 0.917 0.435
21272X272X1/2 1.43 0.850 1.54 0,8-71 1.67 0.890 1,43 0,850 1,54 0.871 ,1.67 0,890 2.26 0.481
x% 1.42 0.839 1.53 0,861 1.65 0,881 1,42 0,839 1,53 0,861 1.65 0.881 1.73 0.481
X'/IS 1.42 0.834 1.53 0,856 1.65 0,876 1,42 0,834 1.53 0,856. 1.65 0.876 1.46 0.481
xV4 1.42 0.829 1.52 0.852 1.64 0,872 1,42 0,829 1,52 0,852 1.64 0.872 1.19 0.482
1.42 0.825 1.52 0,847 1.63 0.868 1.42 0,825 1.52 0,847; 1.63 0.868 0.901 0,482
2L2V2X2X3/8 1.29 0.754 1.38 0.786 1.49 0.817 1.32 0,913 1,45 0,927 1.59 0.939 1,55 0,419
X5/I6 1.29 0.748 1,38 0.781 1.49 0.812 1.32 0,909 1,44 0,923 1,58 0.936 1,32 0,420
xVi 1.29 0.744 1,38 0.775 1.49 0.806 1,32 0,904 1,43 0,920 1,57 0.933 1,07 0,423
X3/16 1,29 0.740 1,38 0.771 1,48 0.801 1.31 0,901 1,43 0,916 1,56 0.929 0,818 0,426
2L2V2X1V2XV4 1.22 0.630 1,2? 0.669 1,38 0.712 1.27 0,962 1,40 0.969 1,55 0.975 0,947 0:321
X3/I6 1.22 0.627 1.29 0,665 1,38 0.706 1.26 0,959 1,39 0,967 1,53 0.973 0,724 0,324
2L2X2X2/8 1.14 0.847 1,25 0,874 1.38 0.897 1.14 0,847 1,25 0,874 1,38 0.897 1,37 0,386
xVl6 1.14 0.841 1,25 0.868 1,37 0.891 1.14 0,841 1,25 0,868 1,37 0.891 1,16 0,386
xV4 1.13 0.835 1,24 0.862 1,37 0.886 1.13 0,835 1,24 0,862 1,37 0.886 0,944 0,387
X3/I6 1,13. 0.830 1,24 0.857 1,36 0.882 1.13 0,830 1,24 0,857 1,36 0.882 0,722 0,389
xVs 1.13 0.826 1,23 0.853 1,35 0.877 1.13 0,826 123 0,853 1,35 0.877 0,491 0,391
Note: For compactness criteria, refer to Table 1-7B.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-110 DIMENSIONS AND PROPERTIES
Table 1-16
2C-Shapes
Properties -i-
2C-SHAPES
Shape
Area,
A
Axis y-Y Axis
X-X
Shape
Area,
A
Separation, 5, in.
Axis
X-X
Shape
Area,
A
0 3/8
3/4
r.
Shape
Area,
A
/ S r Z / S r Z / S r Z
r.
Shape
in.^ in." ? in. in? in." in.3 in. in.' in." in.3 in. in.' in.
2C15X50 29.4 40.7 11,0 1.18 23.5 50.5 12.9 1.31 29.0 62.4 15.3 1.46 34.5. 5.24
x40 23.6 32,6 9,25 1.18 18.4 40.2 10.9 1,31 22.8 49.6 12.7 1.45 27.2 5.43
X33.9 20,0 28.5 8.38 1.20 15.8 35.1 9.78 1.33 19.5 43.1 11.4 1.47 23.3 5.61
2C12X30 17,6 18.2 5.75 1.02 11.9 23.3 6.94 1,15 15.2 29.6 8.36 1.30 18.5 4.29
x25 14.7 15.6 5.11 1.03 9.89 19.8 6.12 1,16 12.6 25.0 7.32 1.31 15,4 4.43
X20.7 12,2 13.6 4.64 1.06 8.49 17.2 5,51 1,19 10.8 21.7 6.55 1.34 13,0 4.61
2C10X30 17,6 15,3 5.04 0.931 11.4 20.2 6.27 1.07 14.7 26.3 7.73 1.22 18.0 3.43
x2S 14,7 12.3 4.25 0.914 9.06 16.2 5.27 1.05 11.8 21.1 6.48 1.20 14.6 3.52
x20 11,7 9.91 3.62 0.918 7.11 13.0 4,44 1.05 9,32 16.9 5.43 1.20 11.5 3.67
X15.3 8,96 8.14 3.13 0.953 5.68 10.6 3,80 1.09 7,36 13.7 4.59 1.23 9.04 3.88
2C9x20 11,7 8.80 3.32 0.866 6.84 11.8 4,15 1.00 9.05 15.6 5.15 1.15 11.2 3.22
x15 8.80 6.86 2.76 0.882 5.17 9.10 3.41 1.02 6.82 12.0 4.19 1.17 8.48 3.40
X13.4 7.88 6.34 2.61 0.897 4.74 8,39 3.20 1.03 6.21 11.0 3.92 1.18 7.69 3.48
2C8x18.75 11,0 7.46 2.95 0.823 6.23 10.2 3.75 0.962 8.29 13.7 4.71 1.11 10.4 2.82
X13.75 8.06 5.51 2.35 0.826 4.48 7,47 2.95 0.962 5.99 10.0 3.68 111 7.51 2.99
xll.5 6.74 4.82 2.13 0.846 3.86 6,50 2.66 0,982 5.12 8.66 3.29 1.13 6.38 3,11
2C7X14.75 8.66 5.18 2.25 0.773 4.61 7.21 2.90 0.912 6.23 9.85 3.68 1.07 7.85 2.51
X12.25 7.18 4.30 1.96 0.773 3.78 5,97 2.51 0.911 5.13 8.14 3.17 1.06 6.48 2.59
x9.8 5.74 3.59 1.72 0.791 3.11 4.95 2,17 0.929 4.18 6.72 2.73 1.08 5.26 2.72
2C6x13 7.64 4.11 1.91 0.734 3.92 5.85 2.50 0.876 5.35 8.13 3.21 1.03 6.77 2.13
X10.5 6,14 3.26 1.60 0.728 3.08 4.63 2.08 0.867 4.24 6.43 2.67 1.02 5.39 2.22
x8.2 4,78 2.63 1.37 0.741 2.45 3.72 1.76 0.881 3.34 5.14 2.24 1.04 4.24 2.34
2C5x9 5,28 2.45 1.30 0.682 2.52 3.59 1.73 0.824 3.51 5.09 2.25 0.982 4.50 1.84
. x6.7 3,94 1.86 1.06 0.688 1.91 2.71 1.40 0.831 2.65 3.84 1.81 0.989 3.83 1.95
2C4X7.25 4,26 1.75 1.02 0.641 1.96 2.63 1.38 0.786 2.75 3.81 1.82 0.946 3.55 1.47
X6.25 3,54 1.36 0.824 0.620 1.54 2.06 1.12 0.763 2.20 3.01 1.49 0.922 2.87 1.50
x5.4 3,16 1.29 0,812 0.637 1.44 1.94 1.10 0.783 2.04 2,82 1.44 0.943 2.63 1,56
x4.5 2.76 1.25 0,789 0.673 1.36 1.86 1.05 0.820 1.88 2,66 1.36 0,981 2.40 1.63
2C3x6 3.52 1.33 0,833 0.614 1.60 2.06 1.15 0.764 2.26 3,03 1.54 0.927 2.92 1.09
x5 2.94 1.05 0,699 0.597 1.29 1.63 0.969 0.746 1.84 Z43 1.30 0,909 2.39 1.12
x4.1 2.40 0,842 0,597 0.591 1.05 1.32 0,827 0.741 1.50 1.97 1.10 0,905 1.95 1.18
x3.5 2.18 0,766 0,558 0.593 0.966 1.20 0,772 0.743 1.37 1.80 1.03 0.908 1.78 1.20
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-111
—X
Table 1-17
2MC-Shapes
Properties
2MC18-2MC7
Shape
Area,
A
Axis y-Y Axis
X-X
Shape
Area,
A
Separation, s, In.
Axis
X-X
Shape
Area,
A
0 3/8 '/4
tx
Shape
Area,
A
/ S r z: / S r Z / S r Z
tx
Shape
in} in." in.3 in. in.^ in." in? in. in.3 in," in.^ in. in.' in.
2iyiC18x58 34.2 60.6 14.4 1.33 29.5 72.8 16.6 1.46 35.9 87.5 19.1 1.60 42.3 6,29
X51.9 30.6 55.0 13.4 1.34 26.3 65.9 15.4 1.47 32.0 79,0 17,6 1.61 37.7 6.41
X45.8 27.0 50.1 12.5 • 1.36 23.4 59.8 14.3 1.49 28.4 71,4 16.3 1.63 33.5 6.55
X42.7 25.2 47.8 12.1 1.38 22,1 57.0 13.8 1.51 26.8 67,9 15.7 1.64 31.6 6.64
2MC13x50 29.4 60.7 13.8 1.44 28,6 72.5 15.8 1.57 34,1 86.3 18,0 1.71 39.7 4.62
x40 23.4 49.1 11.7 1.45 22.7 58.4 13.4 1.58 27,2 69,4 15.2 1.72 31.6 4,82
• x35 20.6 44.3 10.9 1.47 20.2 52.6 12.3 1.60 24,1 62,3 14.0 1,74 27.9 4.95
x31,8 18.7 41.5 10.4 1.49 18.7 49.2 11.7 1.62 22,2 58,2 13.3 1.76 25.7 5.05
2IVIC12X50 29.4 67.2 16.2 1.51 30.9 79.8 18.5 1:65 36,4 94.5 20,9 1.79 41.9 4.28
x45 26.4 59.9 14.9 1.51 27.5 71.1 16.9 1.64 32,4 84.1 19,2 1.79 37.4 4.36
x40 23.6 53.7 13.8 1.51 24.5 63.7 15.6 1.65 29,0 75.3 17.7 1.79 33.4 4.46
x35 20.6 48.0 12.7 1.53 21.6 56.8 14.4 1.66 25,5 67.1 16,2 1.81 29.4 4.59
x31 18.2 44.0 12.0 1.55 19.7 52.1 13.5 1.69 23,1 61.4 15,2 1.83 26.5 4,71
2MC12x14.3 8.36 3.19 1.50 0.618 3.15 4.66 2.02 0.747 4,72 6.73 2.70 0.897 6.29 4,27
2MC12x10.6= 6.20 1.21 0.804 0.441 1.67 2.05 1.21 0.575 2,83 3.33 1.78 0.733 3.99 4,22
2MC10x41.1 24.2 60.0 13.9 1.58 26.4 70.7 15.7 1.71 30.9 83.1 17.7 1.85 35.5 3,61
X33.6 19.7 49.5 12.1 1.58 21.5 58.2 13.6 1.72 25.2 68.3 15.3 1.86 28.9 3,75
X28.5 16.7 43.5 11.0 1.61 18.7 51.1 12.3 1.75 21.9 59.8 13.8 1.89 25.0 3.89
2MC10X25 14.7 27.8 8.18 1.38 14.0 33.6 9,36 1.51 16.8 40.4 10.7 1.66 19.5 3.87
x22 12.9 25.4 7.67 1.40 12.8 30.7 8,76 1.54 15.2 36.8 10.0 1.69 17.6 3.99
2IVIC10x8.4'^ 4.92 1.05 0.700 0.462 1.40 1,75 1.03 0.596 2.32 2.79 1.49 0.753 3.24, 3.61
xfi.S' 3.90 0.414 0.354 0.326 0.757 0,835 0.615 0.463 1.49 1.53 0,990 0.626 2.22 3.43
2IVIC9x25,4 14.9 29.2 8.34 1.40 14.5 35.2 9.53 1.53 173 42.2 10,9 1.68 20.1 3.43
X23.9 14.0 27.8 8.05 1.41 13.8 33.4 9.19 1.54 16.4 40.1 10.5 1.69 19.0 3.48
2IVIC8.X22.8 13.4 27.7 7.91 1.44 13.5 33.2 9.01 1.58 16.0 39.7 10.2 1.72 18.6 3.09
X21.4 12.6 26.3 7.63 1.45 12.8 31.6 8.68 1.59 15.2 37.7 9.86 1,73 17.5 3.13
2MC8X20 11.7 17.1 5.66 1.21 9.88 21.2 6.61 1.34 12.1 26.2 7.70 1.49 14.3 3.04
X18.7 11.0 16.2 5.45 1.21 9.34 20.1 6.35 1.35 11.4 24.8 7.39 1.50 13.5 3.09
2IVIC8X8.5 5.00 2.16 1.15 0.658 2.14 3.14 1.52 0.793 3.08 4.47 1.99 0.946 , 4.02 3.05
2IVIC7X22.7 13.3 29.0 8.06 1.47 13.9 34.7 9.16 1.61 16.4 41.3 10.4 1.76 18.9 2.67
X19.1 11.2 25.1 7,27 1.50 12.1 30.0 8.25 1.64 14.2 35,7 9.34 1.78 16.3 2.77
Shape is slender for compression with Fy=36 ksi.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-112
DIMENSIONS AND PROPERTIES
Table 1-17 (continued)
2MC-Shapes
Properties
X—
2MC6-2MC3
Shape
Area,
A
in/
AxisY-Y
Separation, s, in.
in." in." in. in.' in." in. in.3
3/4
in." in.3 in. in.^
Axis
X-X
2MC6X18
x15:3
2MC6X16.3
X15.1
2MC6X12
2MC6x7
x6.5
2MC4X13.8
2MC3X7.1
10.6
8M
9.58
8,88
7.06
4.18
3.90
8.06
4.22
25.0
19.7
15.8
14.8
7.21
2.25
2.15
10.1
3.13
7.13
5.63
5.26
5.02
2.89
1.20
1.16
4.03
1.62
1.54
1.48
lis
1.29 ^
1.01
0.734
0.744
1.12
0.862
11.8
9.43
8.88
8.35
4.97
2.09
2.00
6.84
2.76
29.8
23.6
19.4
18.2
9.32
3.19
3.04
12.9
4.31
8.07
6.39
6.10
5.82
3.47
1.55
1.49
4.81
2.03
1.68
1.62
1.42
1.43
1.15
0.873
0.883
1.27
1.01
13.8
11.1
10.7
10.0
6.29
2.88
2.73
8.35
3.55
35.3
28.1
23.8
22.3
11.9
4.41
4.20
16.3
5.79
9.11
7.24
7.05
6.71
4.15
1.96
1.89
5.68
2.50
1.83
1.77
1.58
1.58
1.30
1.03
1.04
1.42
1.17
15.8'
12.8
12.5
11.7
7.62
3.66
3.46
9.87
4.34
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-113
Table 1-18
Weights of Raised-Pattern
Floor Plates
i
i
Gauge No.
Wt,
Ib/ft^
Nominal
Thickness,
in.
Wt.,
Ib/ft^
Nominal
Thickness,
in.
Wt,
Ib/ft^
18 2.40 VB 6.16 V2 21,5
16 3.00 3/16 8.71 S/16 24.0
14 3.75 V4 11.3 % 26,6
13 4.50 Vl6 13.8 % 31.7
12 5.25 % 16.4 % 36.8
Vk 18.9 1 41.9
Note: Thickness is measured near the edge of tlie plate, exclusive of raised pattern.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-114 DIMENSIONS AND PROPERTIES
HM
yp
Table 1-19
W-Shapes with
Cap Channels
Properties
W-Shape Channel
Total
Wt.
Total
Area
Axis X-X
W-Shape Channel
Total
Wt.
Total
Area 1 r W-Shape Channel
lb/ft in." in.3 in.' in.
W36x150 MC18x42.7 193 56.8 12000 553 831 14,6
C15x33.9 184 54.2 11500 546 764 14.6
W33x141 MC18x42.7 184 54.1 10000 490 750 13.6
CI 5x33.9 175 51,5 9580 484 689 13.6
W33X118 MC18x42,7 161 47.2 8280 400 656 13,2
C15x33.9 152 44.6 7900 395 596 13,3
W30X116 MCI 8x42.7 159 46,8 6900 365 598 12,1
C15x33.9 150 44,1 6590 360 544 12.2
W30x99 IV1C18x42.7 142 41,6 5830 304 533 11,8
CI 5x33.9 133 39,0 5550 300 481 11,9
W27X94 CI 5x33.9 128 37,8 4530 268 435 11,0
W27x84 C15x33.9 118 34,7 4050 237 403 10,8
W24x84 C15x33.9 118 34,7 3340 217 367 9,82
CI 2x20.7 105 30.8 3030 211 302 9,92
W24X68 CI 5x33.9 102 30,0 2710 173 321 9,51
012x20.7 88.7 26,1 2440 168 258 9,67
W21X68 015x33.9 102 30,0 2180 156 287 8.52
CI 2x20.7 88.7 26,1 1970 152 232 8.67
W21x62 CI 5x33.9 95.9 28,2 2000 142 272 8.41
CI 2x20.7 82.7 24,3 1800 138 218 8.59
W18x50 CI 5x33.9 83,9 24,6 1250 100 211 7.12
CI 2x20.7 70,7 20,7 1120 97.3 166 7.35
W16X36 CI 5x33.9 89.9 20,5 748 64.5 160 6.04
CI 2x20.7 56.7 16,6 670 62.8 123 6.34
W14x30 CI 2x20,7 50.7 14.9 447 46,7 98,1 5.47
CI 0x15.3 45.3 13.3 420 46,0 84,5 5,61
W12X26 CI 2x20.7 46.7 13.7 318- 36,8 82.1 4,81
CI 0x15.3 41.3 12.1 299 36,3 70,5 4,96
Note: Ck)mpactness criteria not addressed in ttiis table.
AMEriC AN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-115
Table 1-19 (continued)
W-Shapes with
Cap Channels
Properties
W-Shape Channel
AxisX-X Axis Y-Y
W-Shape Channel Yi Z Vp ~ / S r Z W-Shape Channel
in. in. in.3 in. in." in.' in. •m?
W36x150 MC18x42,7 21.8 14,5 738 28,0 824 91.5 3.81 146
C15x33.9 21.1 15,1 716 25.9 584 . 77.9 3.28 122
W33X141 MC18x42.7 20.4 13,3 652 27.0 800 88.9 3.85 142
CI 5x33.9 • 19.8 13,9 635 24.9 561 74.8 3.30 118
W33x118 MCI 8x42.7 20.7 12.6 544 27.8 741 82,3 3.96 126
CI 5x33.9 20.0 13,3 529 25.5 502 66,9 3.35 102
W30x116 MCI 8x42.7 18.9 11,5 492 26.1 718 79,8 3,92 124
C15x33.9 18.3 12,1 480 : 23.8 479 63,8 3.29 100
W30x99 MC18x42.7 19.2 10,9 412 26.4 682 75,8 4,05 114
CI 5x33.9 18.5 11,5 408 24.4 442 59,0 3.37 89.4
W27x94 C15x33.9 16.9 10,4 357 23.6 439 58,5 3,41 89.6
W27x84 CI 5x33.9 17.1 10,0 316 23.9 420 56,0 3,48 83.9
W24x84 CI 5x33.9 15.4 9.10 286 21.6 409 54,5 3,43 83.4
C12x20.7 14.3 10.0 275 18.5 223 37,2 2.69 58,2
W24x68 C15x33.9 15.7 8.46 232 21.7 385 51.3 3.58 75,3
C12x20.7 14.5 9.49 224 19.2 199 33.2 2.76 50.1
W21x68 CI 5x33.9 13.9 7.59 207 19.3 379 50.6 3.56 75.1
CI 2x20.7 12.9 8.49 200 17.6 194 32.3 2.72 50.0
W21x62 C15x33.9 14.1 7.33 189 19.4 372 49.6 3.63 72.5
C12x20.7 13.0 8.26 183 18.1 186 31.1 2.77 47.3
W18X50 CI 5x33.9 12.5 5.92 133 16.9 354 47.3 3.79 67.3
CI 2x20.7 11.5 6.76 127 16.1 169 28.2 2.85 42.2
W16x36 CI 5x33.9 11.6 4.67 86.8 15.2 339 45,2 4.06 61.6
C12x20.7 10.7 5.47 83.2 14,6 153 25,6 3.04 36.4
W14X30 CI 2x20.7 9.57 4.55 62.0 12.9 149 24.8 3.16 34.6
CI 0x15.3 9.11 4.97 60.3 12.6 86.8 17.4 2.55 24.9
W12x26 CI 2x20,7 8,63 3.87 48.2 11.6 146 24.4 3.27 33.7
CI 0x15.3 8.22 4.24 47.0 11.3 84.5 16.9 2.64 24.1
Note: Compactness criteria not addressed in ttiis table.
AMERICAN INSTITUTE .OF STEEL CONSTRUCTION

1-114 DIMENSIONS AND PROPERTIES
PNA
Table 1-20
S-Shapes with
Cap Channels
Properties
S-Shape Channel
Total
Wt
lb/ft
Total
Area
in.^
Axis X-X
±
yi
in.' in.
S24x80
S20x66
815x42.9
512x31.8
810x25.4
CI 2x20.7
C10x15.3
CI 2x20,7
CI 0x15.3
CI 0x15.3
C8X11.5
CI 0x15.3
C8X11.5
CI 0x15.3
C8X11.5
101
95.3
86.7
81.3
58.2
54.4
47.1
43.3
40.7
36.9
29.5
27.9
25.5
23.9
17.1
16.0
13.8
12.7
11.9
10.8
2750
2610
1620
1530
615
583
314
297
185
175
191
188
132
129
65.7
64.7
40.2
39.6
27.5
27.1
278
252
202
181
105
93.9
71.2
63.0
52.7
46.3
9.66
9.67
7.97
8,00
6.00
6.04
4,77
4,84
3,94
4,02
Note: Compactness criteria not addressed in this table.
AMERIC AN INSTITUTE OF STEEL CONSTRUCTION

1-114 DIMENSIONS AND PROPERTIES
Table 1-20 (continued)
S-Shapes with
Cap Channels
Properties
S-Shape
524x80
520x66
515x42.9
812x31.8
810x25.4
Channel
CI 2x20.7
CI 0x15.3
CI 2x20.7
CI 0x15.3
CI 0x15.3
08x11.5
CI 0x15.3
CBxII.S
CI 0x15.3
C8X11.5
Axis X-X
yi
in.
14.4
13.9
12.3
11.8
9.37
9.01
7.82
7.50
6,73
6.45
in.
9.90
10.4
7.99
8.44
5.87
6.21
4.42
4,72
3.51
3,77
256
246
180
173
87.6
86.5
54.0
52.4
37.2
36.1
Vk
in.
18.1
16.5
16.0
14,4
12,8
11.6
10,6
10.3
9.03
8.82
Axis Y-Y
in."
171
109
156
94.7
81,5
46.8
76.5
41.8
73.9
39.2
in.'*
28,5
21.8
26.1
18.9
16,3
11.7
15,3
10,5
14.8
9.81
in.
2.41
1.98
2.48
1.99
2.18
1.71
2.36
1.82
2.49
1,90
Note: Compactness criteria not addressed in this table.
•m?
46,4
36.8
41.0
31.3
25.0
18.7
22.3
16.1
20.9
14.6
i
i
AMERIC AN INSTITUTE OF STEEL CONSTRUCTION

1-114 DIMENSIONS AND PROPERTIES
Table 1-21
Crane Rails
Dimensions and Properties
_c ,
ctrsTj I
ASCE CRANE RAILS
ASTM PROFILE 104
ASTM PROFILE 135
ASTM PROFILE 171 ASTM PROFILE 175
Base Head Web Axis X-X
LU i
wt f
CSL
<0
S
M
wt
s-
A a
m fl c f t A fl
1
/ •a
S
X s
y
O
lb/yd In. in. in. in. la in. in. in. in. in. in.^ in.i in,3 in.3 in.
30 3V8 3Ve "/32 'V64 1'Vl6 12 21/64 1»/32 12 3.00 4.10 2.55 — —
E 40 3V2 vym 3V2 % '/32 1% 12 1%4 12 3.94 6.54 3.59 3.89 1.68
50 3% 123/32 3% 'Vie V4 2V8 12 Vie 21/16 12 4.90 10.1 5.10 — 1.88
u 60 4V4 1 "6/128 4V4 «/64 9/32 2% 12 31/64 2"/64 12 5.93 14.6 6.64 7.12 2.05
a 70 4% 23/64 45/A "/16 %2 2VI6 12 35/64 21%2 12 6.81 19.7 8.19 8.87 2.22
80 5 23/16 5 % 19/64 2V2. 12 35/64 2% 12 7.86 26.4 10,1 11.1 2,38
s
85 5'/I6 2"/64 5^/16 57/64 19/64 29/16 12 9/16 23/4 12 8,33 30.1 11.1 12.2 2.47
C/I
100 63/-1 265/128 5^/4 3V32 5/16 2% 12 9/16 25/64 12 9.84 44.0 14.6 16.1 2.73
S
104 5 Z'/IE 5 IV16 Vz 2V2 12 1 2'/I6 3Va 10.3 29.8 10.7 13.5 2.21
CD
C 135 5% 2"/3Z 53/16 IV16 «/32 3VI6 14 11/4 213/16 12 13.3 50.8 17.3 18.1 2.81
s 171 6 25/B 6 IV4 VB 4.3 Flat 11/4 23/4 Vert 16,8 73.4 24.5 24.4 3.01
§ 175 6 2^1/32 6 19/64 V2 4V4 18 11/2 3%4 Vert, 17,1 70.5 23.4 23.6 2.98
AMERIC AN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-119
Table 1-22
ASTM A6 Tolerances for W-Shapes
and HP-Shapes
Permissible Cross-Sectional Variations
Nominal
Depth, in.
A
Depth at Web Centerline, in.
B
Flange Width, in.
r+ r
Flanges Out
of Square,
Max. in.
E'
Web Off
Center, in.
c;Max.
Depth at any
Cross-Section
over Theoretical
Depth, in.
Nominal
Depth, in.
Over Under Over Under
r+ r
Flanges Out
of Square,
Max. in.
E'
Web Off
Center, in.
c;Max.
Depth at any
Cross-Section
over Theoretical
Depth, in.
To12,incl. v. Va
y,
V, V,
Over 12 Ve Ve '/16 V4
Permissible Variations in Length
Nominal Depth", in.
Variations from Specified Length for Lengths Given, in.
Nominal Depth", in. 30 ft and Under Over 30 ft Nominal Depth", in.
Over Under Over Under
Beams 24 In. and under %
% plus Vi6 for each additional
5 ft or fraction thereof
. V.
Beams over 24 in.
All columns

V2 plus V16 for each additional 5 ft or
fraction thereof
Mill Straightness Tolerances"
Sizes
Flange width equal to
or greater than 6 in.
Range width less
than 6 in.
Certain sections with a
flange width approx.
equal to depth &
specified on order
as columns'*
Length
All
All
45 ft and under
Over 45 ft
Permissible Variation in Straightness, in.
Camlrer
Vs in.X
(total length, ft)
10
Vpin ,,(fa'tellength,ft)
10
VaIn.X
(total length, ft)
,, . tota ength,ft)
1/8 in. X ^ with % in. max.
10
% in. + Va In X (total length, ft-45)
10
Other Permissible Rolling Variations
Area and Weight
Ends Dut of Square
-2.5 to +3.0% from the theoretical cross-sectional area or the specified nominal weight®
V64 in., per in. of depth, or of flange width if it is greater than the depth
" Variation of ^hs in. max. for sections over 426 lb/ft.
' For shapes specified in the order for use as bearing piles, the permitted variations are plus 5 in. and minus 0 in.
' The tolerances herein are tal<en from ASTM A6 and apply to the straightness of members received from the rolling mill, measured
as illustrated in Figure 1-1.
" Applies only to W8x31and heavier, W10x49 and heavier, W12x65 and heavier, W14x90 and heavier, HP8x36, HP10x57, HP12x74
and heavier, and HP14x102 and heavier. If other sections are specified on the order as columns, the tolerance will be subject to
negotiation with the manufacUirer.
® For shapes with a nominal weight 2100 lb/ft, the permitted variation is +2.5% from the theoretical or specified amount.
I
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

1-114 DIMENSIONS AND PROPERTIES
Camber - - Sweep
Horizontal surface
W-Shapes S-and M-Shapes
-Sweep
Horizontal surface
Channels Angles Tees
Fig. 1-1. Positions for measuring straightness.
AMERIC AN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-115
Table 1-23
ASTM A6 Tolerances for S-Shapes,
M-Shapes and Channels
T':
*Back of square and centerline of web to be parallel when measuring "out-of-square"
Permissible Cross-Sectional Variations
Shape
Nominal
Depth, in.
A'
Depth, in.
B
Flange Width, in.
T+r'
Flanges Out
of Square,
per in. of B, in.
E
Web Off
Nominal
Depth, in.
Over Under Over Under
T+r'
Flanges Out
of Square,
per in. of B, in. Center, in.
3 to 7, incl. % VB
S shapes and
M shapes
Over 7 to 14,
incl.
VA
V32
S shapes and
M shapes
Over 14 to 24,
Incl.
• %
3 to 7, incl. VA VE
Channels
Over 7 to 14,
Incl. VB %2
-
Over 14
• VB VB •
Permissible Variations In Length
Shape
All
Variations from Specified Uengtti for Lengtlis Given'', in.
5 to 10 ft,
excl.
lOtoZOft,
exd.
iVz
20 to 30 ft,
incl.
Over 30 to
40 ft, incl.
2V4
Over 40 to
65 ft, incl.
2%
Over 65 ft
IVIill Straiglitness Tolerances"
Camber
Sweep
Va in.
, (total length, ft)
Due to the extreme variations in flexibility of these shapes, permitted variations for sweep are
subject to negotiation between the manufacturer and purchaser for the individual sections
involved.
Otiier Permissible Rolling Variations
Area and Weight
Ends Out of Square
-2.5 to +3.0% from the theoretical cross-sectional area or the specified nominal weighf
S-Shapes, M-Shapes and Channels '/64 in., per in. of depth
— Indicates that there is no requirement.
® A is measured at center line of web for S-shapes and M-shapes and at back of web for channels.
" r+ r applies when flanges of channels are toed in or out.
' The permitted variation under the specified length is 0 in. for ail lengths. There ate no requirements for lengths over 65 ft.
" The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill,
measured as illustrated in Figure 1-1.
' For shapes with a nominal weight > 100 lb/ft, the permitted variation is +2.5% from the theoretical or specified amount
i
I
AMERICAN INSTITUTE .OF STEEL CONSTRUCTION

1-114 DIMENSIONS AND PROPERTIES
Table 1-24
ASTM A6 Tolerances for WT-,
MT- and ST-Shapes
Permissible Variations in Depth
Dimension A may be approximately one-half beam depth or any dimension resulting from off-center splitting or
splitting on two lines, as specified In the order.
Specified Deptli, A in. Variations in Depth A Over and Under
To6,excl.
6to16,excl.
16 to 20, excl.
20to24,excl.
24 and over
Ve
3/16
V4
- - 5/,6
The above variations in depths of tees include the permissible variations In depth for the beams before splitting
iVIill Straightness Tolerances^
Camber and Sweep Vsin.xi!BMLM
t)
Other Permissible Rolling Variations
Other permissible variations in cross section as well as permissible variations in length, area, weight,
ends out-of-square, and sweep forWTs will correspond to those of the beam before splitting.
- Indicates that there is no requirement
® The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill,
measured as illustrated in figure 1 -T, For tolerance oh induced camber and sweep, see AISC Code of Standard Practice
Section 6.4,4.
AMERIC AN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-115
Table 1-25
ASTM A6 Tolerances for Angles,
3 in. and Larger
5 to 10 ft, excl.
1
Camber
Sweep
Area and Weigiit
B
B
Permissible Cross-Sectional Variations
Shape
Nominal Leg
Size^ in.
B
Leg Size, in.
T
Out of Square
per in. of B, in.
Shape
Nominal Leg
Size^ in.
Over Under
3/128"
Angles
3 to 4, incl. Va 3/128"
Angles Over 4 to 6, incl. Va Vs
3/128"
Angles
Over 6 V16 Va
3/128"
Permissible Variations in Length
Variations Over Specified Lengtli for Lengths Given^ in.
10 to 20 ft, excl. 20 to 30 ft, inci. Over 30 to 40 ft, incl. Over 40 to 65 ft, inci,
IV2. 1% 2V4 2%
Mill Straightness Tolerances"
Vb in. X
(total lengtli, ft)
, applied to either leg
Due to the extreme variations in flexibility of these shapes, peraiitted variations for s«(eep are subject
to negotiation betvi/een the manufacturer and purchaser tor the individual sections Involved.
Other PemiissiUe RoHing Variations
Ends Out of Square
-2.5 to +3.0% from the theoretical cross-sectional area or the specified nominal «(eight
B in. per in. of leg length, or 1 Vt, Variations based
on the longer leg of unequal angle.
For unequal leg angles, longer leg determines classification.
in.perin. = LV2°
' The permitted variation under the specified lengtlvls 0 in. for all lengths. There are no requirements for lengttis over 65 ft.
' The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured
as illustrated In Rgure1-1.
i
i
AMERICAN INSTITUTE .OF STEEL CONSTRUCTION

1-114 DIMENSIONS AND PROPERTIES
Table 1-26
ASTM A6 Tolerances for Angles,
<3 in.
permissible Cross-Sectional Variations
Specified Leg
Size', in.
Variations in Thickness for Thicl(nesses Given,
Over and Under, in.
B
Leg Size,
Over and Under,
in.
T
Out of Square
per Indi of B,
in.
Specified Leg
Size', in.
and Under Over to Va incl. Over'/a
B
Leg Size,
Over and Under,
in.
T
Out of Square
per Indi of B,
in.
1 and Under 0.008 0.010 — V32
Over 1 to 2, Incl. 0.010 0.010 0.012
Over 2 to 3, excl. 0.012 0.015 0.015 Via
Permissible Variations in Length
Section
Variations Over Specified Lengtli for Lengths Given®, in.
StolOfl,
excl.
10 to 20 ft,
excl.
ZOtoSOft,
ind.
Over 30 to 40 ft,
incl.
40 to 65 ft,
ind.
All bar-size angles 1V2 Z'/2
Mill Straightness Tolerances"
Camber V4 In. In any 5 ft, orIn. x applied to either leg
5
Sweep
Due to the extreme variations In flexibility of these shapes, permitted variations for sweep are
subject to negotiation between the manufacturer and purchaser for the Individual sections involved.
Otiier Permissible Rolling Variations
Ends Out of
Square
'/,2e In. per In. of leg length, or 1 Vj", Variations based on
ttie longer leg of unequal angle.
— Indicates ttiat there Is no requirement,
' For unequal angles, longer leg determines classification.
''^/i28ln.perln. = lV2°
The permitted variation under the specified length is 0 in. for all lengths. There are no requirements for lengths over 65 ft.
The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill,
measured as illustrated In Figure 1 -1.
AMERIC AN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-125
Table 1-27
Tolerances for Rectangular
and Square HSS
ASTM A500, ASTM A501, ASTM A618 and ASTM A847
Outside Dimensions
Length
Wall Thickness
Weight
Mass
Straightness
Squareness of Sides
Radius of Corners
TV/ist
The outside dimensions, measured across the flats at positions at least 2 In. from either end, shall not
vary from the specified dimensions by more than the applicable amount given In the following table:
Largest Outside Dimension
Across Fiats, in.
2V2 and under
Over 2'/2 to 3V2, incl.
Over SVztoSVz, incl.
Over 5Vz
Permissible Variation Over and
Under Specified Dimensions''', in.
0.020.
0.025
0,030
HSS are commonly produced in random lengths, in multiple lengths, and in specific lengths. When specific
lengths are ordered for HSS, the length tolerances shall be in accordance with the following table:
Length tolerance for specific lengths, in.
22 ft and under
Over
V2
Under
V4
Over 22 ft'
Over Under
Vi
ASTM A500 and ASTM A847 only: The tolerance for wall thickness exclusive of the weld area shall be
plus and minus 10% of the nominal wail thickness specified. The wail thickness Is to be measured at
the center of the flat.
ASTM A501 only; The weight of HSS, as specified in ASTM A501 Tables 3 and 4, shall not be less than
the specified value by more than 3.5%.
ASTM A618 only: The mass shall not be less than the ^ecified value by more than 3.5%.,
The permissible variation for straightness shall be Va in. times the number of ft of total length divided by 5.
Adjacent sides may deviate from 90° by a tolerance of ± 2° maximum.
The radius of any outside corner of the section shall not exceed 3 times the specified wall thickness''.
The tolerances for twist with respect to axial alignment of the section shall be as siiown in the
following table:
Specified Dimension of Longer Side, In.
iVa and under
OverlV2to2V2, incl.
Over 2V2 to 4, incl.
Over 4 to 6, incl.
Over 6 to 8, incl.
Over 8
Maximum Tvirist per 3 ft of length, in.
0.050
0.062
0.075
0.087
0.100
0,112
Twist shall be determined by holding one end of tiie HSS down on a flat surface plate, measuring the
height that each corner on the bottom side of the tubing extends above the surface plate near the
opposite end of the HSS, and calculating the difference in the measured heights of such comers®.
^The respective outside dimension tolerances Include the allowances for convexity and concavity.
' ASTM A500 and ASTM A847 HSS only: The tolerances given are for the large flat dimension only. For HSS having a ratio of outside
large to small flat dimension less than 1.5, the tolerance on the small flat dimesion shall be identical to those given. For HSS
having a ratio of outside large to small flat dimension in the range of 1.5 to 3.0 inclusive, the tolerance on the small flat dimesion
shall be 1.5 times those given. For HSS having a ratio of outside large to small flat dimension greater than 3.0, the tolerance on
the small: flat dimension shall be 2.0 times those given.
' This value is 0.01 times the large flat dimension. ASTM A501 only: Over 5V2 to 10 incl., this value is 0.01 times large flat
dimension; over 10, this value is 0.02 times tiie large flat dimension.
" ASTM A501 HSS only: The radius of any outside corner must not exceed 3 times the calculated nominal wall thickness.
ASTM A500, ASTM A501, and ASTM A347 HSS only: For heavier sections it shall be permissible to use a suitable measuring
device to determine twist. Twist measurements siiall not be taken within 2 in. of the ends of the HSS.
ASTM A501 and A618: The upper limit on specific length is 44 ft.
i
I
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

1-114 DIMENSIONS AND PROPERTIES
Table 1-28
Tolerances for Round HSS
1
and Pipe
0
ASTM A53
Weight
The weight as specified in ASTM A53 Table X2.2 and Table X2.3 or as calculated from the relevant
equation in ASME B36.1 OM shall not vary by more than ± 10%. Note that the weight tolerance is
determined from the weights of the customary lifts of pipe as produced for shipment by the mill, divided
by the number of ft of pipe in the lift. On pipe sizes over 4 in. where individual lengths may be weighed,
the weight tolerance Is applicable to the individual length.
Diameter
For pipe 2 in. and over In nominal diameter, the outside diameter shall not vary more than ± 1 % from
the outside diameter specified.
Ttiickness
Tiie minimum wall thicl(ness at any point shall not be more than 12.5% under the nominal wall
thickness specified.
ASTM A500 and ASTM A847
Diameter^
For HSS 1.900 in. and under in specified diameter, ttie outside diameter shall not vary more than
+ 0.5%, rounded to the nearest 0.005 in., from the specified diameter.
Diameter^
For HSS 2.000 in. and over in specified diameter, the outside diameter shall not vary more than
± 0.75%, rounded to the nearest 0.005 in., from the specified diameter.
Ttiiclcness
The wall thickness at any point, excluding the weld seam of welded tubing, shall not be more than
10% under or over the specified wall thickness.
ASTM A501 and ASTM A618
Outside Dimensions
For HSS 1V2 in. and under in nominal size, the outside diameter shall not vary more than '/64 in.
over nor more than Vss in. under the specified diameter.
Outside Dimensions
For round hot-formed HSS 2 in. and over in nominal size, ttie outside diameter shall not vary more than
± 1 % from the specified diameter.
Weiglit
{A501 only)
The weight of HSS, as specified in ASTM A501 Table 5, shall not be less than the specified value by
more than 3.5%.
Mass
(AG18 only)
The mass of HSS shall not be less than the specified value by more than 3.5%. The mass tolerance
shall be determined from individual lengths or, for HSS 4V2 in. and under in outside diameter, shall
be determined from masses of customary lifts produced by the mill.
ASTM A500, ASTM A501, ASTM A618 and ASTM A847
HSS are commonly produced in random mill lengths, in multiple lengths, and in specific lengths. When
specific lengths are ordered for HSS, the length tolerances shall be in accordance with the following table;
Length
Length tolerance for specific cut lengths, In.
Length
22 ft and under Over 22 ft"
Over Under Over Under
V2 , Vi
Straightness
The permissible variation for straightness of HSS shall be Vs in. times the number of.ft of.total length
divided by 5.
= The outside diameter measurements shall be taken at least 2 in Jrom tlie end d tlie'HSS.
" ASTM A501 and A618: Tiie upper limit and specific length is 44 ft.
AMERIC AN INSTITUTE OF STEEL CONSTRUCTION

DIMENSIONS AND PROPERTIES 1-115
Table 1-29
Rectangular Plates
Permissible Variations from Flatness(Carbon Steel Only)
Specified
TKickness,
in.
Variations from Flatness for Specified Widths, in.
Specified
TKickness,
in.
To 36,
excl.
36 to 48,
excl.
48 to 60,
exd.
6010 72,
excl.
72 to 84,
excl.
8410 96,
exd.
96 to 108,
exd.
10810120,
excl.
To 'A, excl. 9/16 % «/l6 1V4 1% 1V2 1%
V4tO%,
excl.
V2 % 15/16 iVe 1V4 1% 1V2
^AtoVz,
exd.
V2 S/16 % 5/8 % % 1 iVa
1/2 to 3/4,
excl.
Vie V2 S/16 5/8 5/8 3/1 1 1
3/4 to 1,
excl.
'/16 V2 9/16 5/6 5/8 5/8 3/1 %
1 to 2,
excl.
% V2 V2 '/16 '/16 5/8 5/a =/8
2 to 4,
excl.
5/16 % V16 Va Va V2 V2 9/16
4 to 6,
excl.
% V16 Vl V2 '/16 '/le 5/a %
6 to 8,
excl.
'he Va ^ V2 5/8 "/16 % %
Notes:
1. The longer dimension specified is considered the length, and permissible variations in flatness along the length shall not exceed the
tabular amount for the specified width for plates up to 12 ft in length, or in any 12 ft for longer plates.
2. The flatness variations across the width shall not exceed the tabular amount for the specified width.
3. When the longer dimension is under 36 in., the pemilssible variation shall not exceed V4 in. When the longer dimension is from 36 to 72 In.,
inclusive, the permissible variation should not exceed 75% of the tabular amount for the specified width, but in no case less than VA in.
4. These variations apply to plates which have a specified minimum tensile strength of not more than 60 ksl or comparable chemistry or
hardness. The limits in the table are increased 50% for plates specified to a higher minimum tensile strength or comparable chemistry
or hardness.
5. lijr plates 8 in. and over in thickness or 120 in. and over in width, see ASTM A6 Table 13.
6. Plates must be in a horizontal position on a flat surface when flatness is measured.
Permissible Variations in Camber^ for Caiton Steel Sheared and Gas Cut Rectangular Plates
Maximum permissible camber, in. (ail thicknesses) = Va in. x—
Permissible Variations in in Camber^ for High-Strength Low-Alloy and Alloy Steel Sheared,
Special-Cut, or Gas-Cut Rectangular Plates
Specified Dimension, in.
Permitted Camber,
in.
Tliickness Width
Permitted Camber,
in.
To 2, incl. All
(total length, ft)
5
Over 2 to 15, incl.
To 30, incl.
(total length, ft)
5
Over 2 to 15, incl.
Over 30 to 60, incl.
^Jtotal length, ft)
" Camber as It relates to plates is the horizontal edge curvature in the length, measured over the entire length of the plate in the flat position.
i
i
AMERICAN INSTITUTE .OF STEEL CONSTRUCTION

1-114 DIMENSIONS AND PROPERTIES
AMERIC AN INSTITUTE OF STEEL CONSTRUCTION

2-1
PART 2
GENERAL DESIGN CONSIDERATIONS
SCOPE 2-4
APPLICABLE SPECIFICATIONS, CODES AND STANDARDS 2-4
Specifications, Codes and Standards for Structural Steel Buildings 2-4
Additional Requirements for Seismic Applications 2-4
Other AISC Reference Documents 2-5
OSHA REQUIREMENTS 2-6
Columns and Column Base Plates • 2-6
Safety Cables -2-6
Beams and Bracing 2-7
Cantilevers 2-7
Joists 2-7
Walking/Working Surfaces • • 2-8
Controlling Contractor 2-8
USING THE 2010 AISC SPECIFICATION : 2-8
Load and Resistance Factor Design (LRFD) 2-9
Allowable Strength Design (ASD) . 2-9
DESIGN FUNDAMENTALS 2-10
Loads, Load Factors and Load Combinations 2-10
Load and Resistance Factor Design 2-10
Allowable Strength Design 2-11
Superposition of Loads in Load Combinations 2-12
Nominal Strengths, Resistance Factors, Safety Factors and
Available Strengths 2-12
Serviceability 2-12
Structural Integrity 2-13
Progressive Collapse 2-14
Required Strength, Stability, Effective Length, and Second-Order. Effects 2-14
Simplified Determination of Required Strength 2-16
Table 2-1. Multipliers for Use With the Simplified Method 2-17
STABILITY BRACING 2-17
Simple-Span Beams 2-17
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION
I
i

2-2 GENERAL DESIGN CONSIDERATIONS
Beam Ends Supported on Bearing Plates 2-17
Beams and Girders Framing Continuously Over Columns 2-19
PROPERLY SPECIFYING MATERIALS 2-25
Availability 2-25
Material Specifications 2-25
Other Products 2-25
Anchor rods 2-25
Raised-Pattern Floor Plates • 2-25
Sheet and Strip 2-26
Filler Metal 2-26
Steel Headed Stud Anchors 2-26
Open-Web Steel Joists 2-26
Castellated Beams 2-26
Steel Castings and Forgings 2-26
Forged Steel Structural Hardware . 2-26
Crane Rails 2-27
CONTRACT DOCUMENT INFORMATION 2-27
Design Drawings, Specifications and Other Contract Documents 2-27
Required Information 2-28
Information Required Only When Specified 2-28
Approvals Required • • 2-29
Establishing Criteria for Connections 2-29
Simple Shear Connections 2-30
Moment Connections 2-31
Horizontal and Vertical Bracing Connections 2-31
Strut and Tie Connections 2-32
Truss Connections 2-32
Column Splices 2-32
CONSTRUCTABILITY 2-32
TOLERANCES 2-33
Mill Tolerances 2-33
Fabrication Tolerances 2-33
Erection Tolerances 2-33
Building Fa9ade Tolerances 2-34
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

GENERAL DESIGN CONSIDERATIONS 2-3
QUALITY CONTROL AND QUALITY ASSURANCE 2-36
CAMBERING, CURVING AND STRAIGHTENING 2-37
Beam Camber and Sweep 2-37
Cold Bending 2-37
Hot Bending 2-37
Truss Camber 2-38
Straightening 2-38
FIRE PROTECTION AND ENGINEERING .2-38
CORROSION PROTECTION 2-38
RENOVATION AND RETROHT OF EXISTING STRUCTURES .2-38
THERMAL EFFECTS 2-39
Expansion and Contraction 2-39
Elevated-Temperature Service 2-40
FATIGUE AND FRACTURE CONTROL 2-40
Avoiding Brittle Fracture 2-40
Avoiding Lamellar Tearing 2-42
WIND AND SEISMIC DESIGN 2-42
Wind and Low-Seismic Applications 2-42
High-Seismic Applications 2-42
PART 2 REFERENCES 2-44
TABLES FOR THE GENERAL DESIGN AND SPECIFICATION
OF MATERIALS 2-47
Table 2-2. Summaiy Comparison of Methods for
Stability Analysis and Design 2-47
Table 2-3. AISI Standard Nomenclature for Flat-Rolled Carbon Steel 2-47
Table 2-4. Applicable ASTM Specifications for Various Structural Shapes 2-48
Table 2-5. Applicable ASTM Specifications for Plate and Bars 2-49
Table 2-6. Applicable ASTM Specifications for Various Types of
Structural Fasteners 2-50
Table 2-7. Metal Fastener Compatibility to Resist Corrosion 2-51
Table 2-8. Summary of Surface Preparation Specifications 2-52
AMERICAN iNSTrruTE OF STEEL CONSTRUCTION

2-4 GENERAL DESIGN CONSIDERATIONS
SCOPE
The specification requirements and other design considerations summarized in this Part
apply in general to the design and construction of steel buildings. The specifications, codes
and standards listed below are referenced throughout this manual.
APPLICABLE SPECIFICATIONS, CODES AND STANDARDS
Specifications, Codes and Standards for Structural Steel
Buildings
Subject to the requirements in the appUcable building code and the contract documents, the
design, fabrication and erection of structural steel buildings is governed as indicated in the
AISC Specification Sections A1 and B2 as follows:
1. ASCE/SEI 7: Minimum Design Loads for Buildings and Other Structures. ASCE/
SEI 7-10 (ASCE, 2010). Available from the American Society of Civil Engineers,
ASCE/SEI 7 provides the general requirements for loads, load factors and load
combinations.
2. AISC Specification: The 2010 AISC Specification for Structural Steel Buildings (ANSI/
AISC 360-10), included in Part 16 of this Manual and available at www.aisc.org,
provides the general requirements for design and construction (AISC, 2010a).
3.. AISC Code of Standard Practice: The 2010 AISC Code of Standard Practice for Steel
Buildings and Bridges (AISC, 2010c) included in Part 16 of this manual and available
at www.aisc.org, provides the standard of custom and usage for the fabrication and
erection of structural steel.
Other referenced standards include:
1. RCSC Specification: The 2009 RCSC Specification for Structural Joints Using
High-Strength Bolts, reprinted in Part 16 of this Manual with the permission of the
Research Council on Structural Connections and available at www.boltcouncil.org,
provides the additional requirements specific to bolted joints with high-strength bolts
(RCSC, 2009).
2. AWS Dl.l: Structural Welding Code-Steel, AWS Dl.l:2010 (AWS, 2010). Available
from the American Welding Society, AWS D1.1 provides additional requirements spe-
cific to welded joints. Requirements for the proper specification of welds can be found
in AWS A2.4: Standard Symbols for Welding, Brazing, and Nondestructive Examination
(AWS, 2007).
3. ACI 318; Building Code Requirements for Structural Concrete and Commentary
(ACI, 2008). Available from the American Concrete Institute, ACI 318 provides addi-
tional requirements for reinforced concrete, including composite design and the design
of steel-to-concrete anchorage.
Various other specifications and standards from ASME, ASTM and ACI are also referenced
in AISC Specification Section A2.
Additional Requirements for Seismic Appiications
The 2010 AISC Seismic Provisions for Structural Steel Buildings (AISC, 2010b) apply as
indicated in Section Al.l of the 2010 AISC Specification and in the Scope provided at the
front of this Manual. The AISC Seismic Provisions are available at www.aisc.org.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

APPLICABLE SPECIFICATIONS, CODES, AND STANDARDS Z-5
Other AISC Reference Documents
The following other AISC publications may be of use in the design and constraction of
structural steel buildings:
1. AISC Detailing for Steel Construction, Ttiird Edition, covers the standard practices
and recommendations for steel detailing, including preparation of shop and erection
drawings (AISC, 2009).
2. The AISC Seismic Design Manual (AISC, 2006) provides guidance on steel design
in seismic applications, in accordance with the 2005 AISC Seismic Provisions for
Structural Steel Buildings.
3. The AISC Design Examples is a web-based companion to this Manual and can be
found at www.aisc.org (AISC, 2011). It includes design examples outlining the appli-
cation of design aids and AISC Specification provisions developed in coordination
with this Manual.
Additionally, the following AISC Design Guides are available at www.aisc.org for in-depth
coverage of specific topics in steel design:
1. Base Plate and Anchor Rod Design, Design Guide 1 (Fisher and Kloiber, 2006)
2. Steel and Composite Beams with Web Openings, Design Guide 2 (Darwin, 1990)
3. Serviceability Design Considerations for Steel Buildings, Design Guide 3 (West and
Fisher, 2003)
4. Extended End-Plate Moment Connections—Seismic and Wind Applications, Design
Guide 4 (Murray and Sumner, 2003)
5. Low- and Medium-Rise Steel Buildings, Design Guide 5 (Allison, 1991).
6. Load and Resistance Factor Design ofW-Shapes Encased in Concrete, Design Guide
6 (Griffis, 1992)
7. Industrial Buildings—Roofs to Anchor Rods, Design Guide 7 (Fisher, 2004)
8. Partially Restrained Composite Connections, Design Guide 8 (Leon et al., 1996)
9. Torsional Analysis of Structural Steel Members, Design Guide 9 (Seaburg and Carter,
1997)
10. Erection Bracing of Low-Rise Structural Steel Buildings, Design Guide 10 (Fisher
and West, 1997)
11. Floor Vibrations Due to Human Activity, Design GmAe 11 (Murray et al., 1997)
12. Modification of Existing Welded Steel Moment Frame Connections for Seismic
Resistance, Design Guide 12 (Gross et al., 1999)
13. Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic
Applications, Design Guide 13 (Carter, 1999)
14. Staggered Truss Framing Systems, Design Guide 14 (Wexler and Lin, 2002)
15. AISC Rehabilitation and Retrofit Guide—A Reference for Historic Shapes and
Specifications, Design Guide 15 (Brockenbrough, 2002)
16. Flush and Extended Multiple-Row Moment End-Plate Connections, Design Guide 16
(Murray and Shoemaker, 2002)
17. High Strength Bolts—A Primer for Structural Engineers, Design Guide 17 (Kulak,
2002)
18. Steel-Framed Open-Deck Parking Structures, Design Guide 18 (Churches et al. 2003)
19. Fire Resistance of Structural Steel Framing, Design Guide 19 (Ruddy et al., 2003)
20. Steel Plate Shear Walls, Design Guide 20 (Sabelli and Bruneau, 2006)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

2-6 GENERAL DESIGN CONSIDERATIONS
21. Welded Connections—A Primer for Engineers, T)esignGmde2\ (Miller, 2006)
22. Fafade Attachments to Steel-Framed Buildings, Design Guide 22 (Parker, 2008)
23. Constructability of Structural Steel Buildings, Design Guide 23 (Ruby, 2008)
24. Hollow Structural Section Connections, Design Guide 24 (Packer et al., 2010)
25. Web-Tapered Frame Design, Design Guide 25 (Kaehler and White, 2010)
OSHA REQUIREMENTS
OSHA Safety and Health Standards for the Construction Industry, 29 CFR 1926 Part R
Safety Standards for Steel Erection (OSHA, 2001) must be addressed in the design,
detailing, fabrication and erection of steel structures. These regulations became effective
on July 18,2001.
Following is a brief summary of selected provisions and related recommendations. The
full text of the regulations should be consulted and can be found at www.osha.gov. See also
Barger and West (2001) for further information.
Columns and Column Base Plates
1. All column base plates must be designed and fabricated with a minimum of four
anchor rods.
2. Posts (which weigh less than 300 lb) are distinguished from colunins and excluded
from the four-anchor-rod requirement.
3. Columns, column base plates, and their foundations must be designed to resist a min-
imum eccentric gravity load of 300 lb located 18 in. from the extreme outer face of the
column in each direction at the top of the column shaft.
4. Column splices must be designed to meet the same load-resisting characteristics as
columns.
5. Double connections through column webs or at beams that frame over the tops of
columns must be designed to have at least one installed bolt remain in place to support
the first beam while the second beam is being erected. Alternatively, the fabricator
must supply a seat or equivalent device with a means of positive attachment to support
the first beam while the second beam is being erected.
These features should be addressed in the construction documents. Items I through 4 are
prescriptive, and alternative means such as guying are time consuming and costly. There are
several methods to address the condition in item 5, as shown in Chapter 2 of AISC Detailing
for Steel Construction.
Safety Cables
1. On multi-story structures, perimeter safety cables (two lines) are required at final inte-
rior and exterior perimeters of floors as soon as the deck is installed.
2. Perimeter columns must extend 48 in. above the finished floor (unless constructability
does not allow) to allow the installation of perimeter safety cables.
3. The regulations prohibit field welding of attachments for installation of perimeter
safety cables once the column has been erected.
4. Provision of some method of attaching the perimeter cable is required, but responsi-
bility is not assigned either to the fabricator or to the erector. While this will be subject
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

OSHA REQUIREMENTS 2-1
to normal business arrangements between the fabricator and the erector, holes for these
cables are often punched or drilled in columns by the fabricator.
The primary consideration in the design of the frame based on these rules is that the posi-
tion of the column splice is set with respect to the floor.
Beams and Bracing
1. Solid-web rnembers (beams) must be connected with a minimum of two bolts or their
equivalent before the crane load line is released.
2. Bracing members must be connected with a minimum of one bolt or its equivalent
before the crane load line is released.
The OSHA regulations allow an alternative to these minimums, if an "equivalent as speci-
fied by the project structural engineer of record" is provided. If the project requirements do
not permit the use of bolts as described in items 1 and 2, then the "equivalent" means should
be provided in the construction documents. It is recommended that the "equivalent"means
should utilize bolts and removable connection material, and should provide requirements for
the final condition of the connection. Solutions that employ shoring or the need to hold the
member on the crane should be avoided.
Cantilevers
1. The erector is responsible for the stability of cantilevers and their temporary supports
until the final cantilever connection is completed. OSHA 1926.756(a)(2) requires that
a competent person shall determine if more than two bolts are necessary to ensure the
stability of cantilevered members. Cantilever connections must be evaluated for the
loads imposed on them during erection and consideration must be made for the inter-
mediate states of completion, including the coiinection of the backspan member
opposing the cantilever.
Certain cantilever connections can facilitate the erector's work in this regard, such as shop
attaching short cantilevers, one piece cantilever/backspan beams carried through or over
the column at the cantilever and field bolted flange plates or end plate connections to the
supporting member. To the extent allowed by the contract documents, the selection of
details is up to the fabricator, subject to normal business relations between the fabricator
and the erector.
Joists
1. Unless panelized, all joists 40 ft long and longer and their bearing members must have
holes to allow for initial connections by bolting.
2. Establishment of bridging terminus points for joists is mandated according to OSHA
and manufacturer guidelines.
3. A vertical stabilizer plate to receive the joist bottom chord must be provided at
columns. Minimum' sizes are given and the stabilizer plate must have a hole for the
attachment of guying or plumbing cables.
These features should be addressed in the construction documents and shop drawings.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

2-8 GENERAL DESIGN CONSIDERATIONS
Walking/Working Surfaces
1. Framed metal deck openings must have structural members configured with project-
ing elements turned down to allow continuous decking, except where not allowed by
design constraints or constructability. The openings in the metal deck are not to be cut
until the hole is needed.
2. Steel headed stud anchors, threaded studs, reinforcing bars and deformed anchors that
will project vertically from or horizontally across the top flange of the member are not
to be attached to the top flanges of beams, joists or beam attachments until after the
metal decking or other walking/working surface has been installed.
Framing at openings with down turned elements and shop versus field attachment of
anchors should be addressed in the construction documents and the shop drawings.
Controliing Contractor
1. The controlling contractor must provide adequate site access and adequate storage.
2. The controlling contractor must notify the erector of repairs or modifications to anchor
rods in writing. Such modifications and repairs must be approved by the owner's des-
ignated representative for design.
3. The controlling contractor must give notice that the supporting foundations have
achieved sufficient strength to allow safe steel erection.
4. The controlling contractor must either provide overhead protection or prohibit other
trades from working under steel erection activities.
These provisions establish relationships among the erector, controlling contractor and
owner's representative for design that all parties need to be aware of.
USING THE 2010 AISC SPECIFICATION
The 2010 AISC Specification for Structural Steel Buildings (ANSI/AISC 360-10) contin-
ues the format established in the 2005 edition of the Specification (AISC, 2005),
ANSI/AISC 360-05, which unified the design provisions formerly presented in the 1989
Specification for Structural Steel Buildings--~Allowahle Stress Design and Plastic Design
and the 1999 Load and Resistance Factor Design Specification for Structural Steel
Buildings. The 2005 Specification for Structural Steel Buildings also integrated into a sin-
gle document the information previously provided in the 1993 Load and Resistance
Factor Design Specification for Single-Angle Members and the 1997 Specification for the
Design of Steel Hollow Structural Sections. The 2010 AISC Specification, in combination
with the 2010 Seismic Provisions for Structural Steel Buildings (ANSI/AISC 341-10),
brings together all of the provisions needed for the design of structural steel in buildings
and other structures.
The 2010 AISC Specification continues to present two approaches for the design of struc-
tural steel members and connections. Chapter B establishes the general requirements for
analysis and design. It states that "designs shall be made according to the provisions for
Load and Resistance Factor Design (LRFD) or to the provisions for Allowable Strength
Design (ASD)." These two approaches are equally valid for any structure for which the
Specification is applicable. There is no preference stated or implied in the provisions.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

USING THE 2010 AISC SPECIFICATION 2-9
The required strength of structural members and connections may be determined by elas-
tic, inelastic or plastic analysis for the load combinations associated with LRFD and by
elastic analysis for load combinations associated with ASD and as stipulated by the appli-
cable building code. In all cases, the available strength must exceed the required strength.
The AISC Specification gives provisions for determining the available yucngih ;is summa-
rized below.
Load and Resistance Factor Design (LRFD)
The load combinations appropriate for LRFD are given in the applicable building code or,
in its absence, ASCE/SEI 7 Section 2.3. For LRFD, the available strength is referred to as
the design strength. All of the LRFD provisions are structured so that the design strength
must equal or exceed the required strength. This is presented in AISC Specification Section
B3.3 as
Ru<(lfR. (2-1)
In this equation, is the required strength determined by analysis for the LRFD load
combinations, R^ is the nominal strength determined according to the AISC Specification
provisions, and <]) is the resistance factor given by the AISC Specification for a particular
limit state. Throughout this Manual, tabulated values of (])/?„, the design strength, are given
for LRFD. These values are tabulated as blue numbers in columns with the heading LRFD.
If there is a desire to use the LRFD provisions in the form of stresses, the strength provi-
sions can be transformed into stress provisions by factoring out the appropriate section
property. In many cases, the provisions are already given directly in terms of stress.
Allowable Strength Design (ASD)
Allowable strength design is similar to what is known as allowable stress design in that they
are both carried out at the same load level. Thus, the same load combinations are used. The
difference is that for strength design, the primary provisions are given in terms of forces or
moments rather than stresses. In every situation, these strength provisions can be trans-
fonned into stress provisions by factoring out the appropriate section property. In many
cases, the provisions are already given direcdy in terms of stress.
The load combinations appropriate for ASD are given by the applicable building code or,
in its absence, ASCE/SEI 7 Section 2.4. For ASD, the available strength is referred to as the
allowable strength. All of the ASD provisions are structured so that the allowable strength
must equal or exceed the required strength. This is presented in AISC Specification Section
B3.4as
3 (2-2)
In this equation, R^ is the required strength determined by analysis for the ASD load com-
binations, R„ is the nominal strength determined according to the AISC Specification
provisions and Q, is the safety factor given by the Specification for a particular limit state.
Throughout this Manual, tabulated values of k„fQ, the allowable strength, are given for
ASD. These values are tabulated as black numbers on a green background in columns with
the heading ASD.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

2-10 GENERAL DESIGN CONSIDERATIONS
DESIGN FUNDAMENTALS
It is commonly believed that ASD is an elastic design method based entirely on a stress for-
mat without limit states and LRFD is an inelastic design method based entirely on a strength
format with limit states. Traditional ASD was based on limit-states principles too, but with-
out the use of the term. Additionally^ either method can be formulated in a stress or strength
basis, and both take advantage of inelastic behavior. The AISC Specification highlights how
similar LRFD and ASD are in its formulation, with identical provisions throughout for
LRFD and ASD.
Design according to the AISC Specification, whether it is according to LRFD or ASD, is
based on limit states design principles, which define the boundaries of sthictural usefulness.
Strength limit states relate to load carrying capability and safety. Serviceability limit states
relate to performance under normal service conditions. Structures must be proportioned so
that no applicable strength or serviceability limit state is exceeded.
Normally, several limit states will apply in the determination of the nominal strength of
a structural member or connection. The controlling Umit state is normally the one that
results in the least available strength. As an example, the controlling limit state for bending
of a simple beam may be yielding, local buckling, or lateral-torsional buckling for strength
and deflection, or vibration for serviceability. The tabulated values may either reflect a sin-
gle limit state or a combination of several limit states. This will be clearly stated in the
introduction to the particular tables.
Loads, Load Factors and Load Combinations
Based on AISC Specification Sections B3.3 and B3.4, the required strength (either Pu, Mu,
Vu, etc. for LRFD or Pa, Ma, Va, etc. for ASD) is determined for the appropriate load mag-
nitudes, load factors and load combinations given in the applicable building code. These are
usually based on ASCE/SEI 7, which may be used when there is no applicable building
code. The common loads found in building structures are:
D = dead load
L - live load due to occupancy
Lr - roof live load
S = snow load
R = nominal load due to initial rainwater or ice exclusive of the ponding contribution
W = wind load
E = earthquake load
Load and Resistance Factor Design
For LRFD, the required strength is determined from the following factored combinations,'
which are based on ASCE/SEI 7 Section 2.3:
1. 1.4£> (2-3a)
2. \.2D+\.6L + 0.5(LrOTSoTR) (2-3b)
3. 1.2D + 1.6(L, or SotR) + (0.5L or 0.5W) (2-3c)
4. 1.2Z)+1.0Vl' + 0.5L + 0.5(L,or5or.R) (2-3d)
' Exception: Per ASCE/SEI 7, the load factor on L in combinations 3,4 and 5 shall equal 1.0 for g^ages,
areas occupied as places of public assembly, and all areas where the live load is greater than 100 psf.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN FUNDAMENTALS 2-11
5. 1.2D+1.0£ + 0.5L + 0.2S (2-3e)
6. 0.9D+1.0W (2-3f)
7. 0.9£»+1.0£ (2-3g)
The load combinations for LRFD recognize that, when several transient loads act in combi-
nation, only one assumes its maximum lifetime value,^ while the other(s) are at their
"arbitrary-point-in-time" (APT) values. Each combination models the total design loading
condition when a different load is at its maximum. Thus, the maximum-lifetime load effect
is amplified by an amount that is proportional to its relative variability and the APT load
effect(s) are factored to their mean value(s). With this approach, the margin of safety varies
with the load combination yielding a more uniform reliability than would be expected when
nominal loads are combined directly.
Dead load, D, is present in each load combination with a load factor of 1.2, except in load
combination I, where it is the dominant (only) load effect, and load combinations 6 and 7,
where it is reduced for calculation of the overturning or uplift effect. The 1.2 load factor
accounts for the statistical variability of the dead load. The designer must independently
account for other contributions to dead load, such as the weight of additional concrete, if any,
added to adjust for concrete ponding effects (Ruddy, 1986) or differing framing elevations.
Allowable Strength Design
For ASD, the required strength is determined from the following combinations, which are
also based on ASCE/SEI 7 Section 2.4:
D (2-4a)
2. D + L (2-4b)
3. D + {Lr 01 S or R) , (2-4c)
4. D + 0.15L + QJ5{L,orSorR) (2-4d)
5. D + iO.m or O.IE) (2-4e)
6a. £» + 0.75L + 0.75(0.6WO + 0.75(LrOrSor/^) (2-4f)
6b. £» + 0.75L + 0.75(0.7£) + 0.75S ' {2-4g)
7. 0.6D + 0.6W (2-4h)
8. 0.6D + 0JE (2-4i)
The load combinations for ASD combine the code-specified nominal loads directly with no
factors for those cases where loads with minimal variation with time are combined, cases 1,
2 and 3. For those cases where multiple time-variable loads are included, a 0.75 reduction
factor is applied to the time-variable loads only. Since all of the safety in an ASD design
comes through the introduction of the safety factor on the resistance side of the equation,
each load case uses the same safety factor for a given limit state.
In ASD, when considering members subjected to gravity loading only, it is clear that the
controlling load combination is the one that adds the larger live load to the dead load. Thus,
for a floor that does not carry roof load, the controlling combination will bs D + L while for
a roof the controlling combination will he D + (Lr or S or R). For gravity columns, after live
load reductions have been accounted for, the floor and roof live loads may be reduced to
0.75 of their nominal values. A similar reduction is permitted for live loads in combination
with lateral loads.
- Usually based upon a 50-year recurrence, except for seismic loads,.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2-12 GENERAL DESIGN CONSIDERATIONS
Superposition of Loads in Load Combinations
Whether the loads themselves or the effects of those loads are used in these combinations,
LRFD or ASD, the results are the same, provided the principle of superposition is valid. This
is true when deflections are small and the stress-strain behavior is nominally elastic.
However, when second-order effects are significant or the behavior is inelastic, superposi-
tion is not valid and the loads, rather than the load effects, should be used in these
combinations.
Nominal Strengths, Resistance Factors, Safety Factors and
Available Strengths
The AISC Specification requires that the available strength must be greater than or equal to
the required strength for any element. The available strength is a function of the nominal
strength given by the Specification and the corresponding resistance factor or safety factor.
As discussed earlier, the required strength can be determined either with LRFD or ASD load
combinations.
The available strength for LRFD is the design strength, which is calculated as the prod-
uct of the resistance factor (j) and the nominal strength ((()P„, (|)M„, (|)V„, etc.) The available
strength for ASD is the allowable strength, which is calculated as the quotient of the nomi-
nal strength and the corresponding safety factor £2 (Pn/£2, M„/£2,y„/Q, etc.).
In LRFD, the margin of safety for the loads is contained in the load factors, and
resistance factors, (j), to account for unavoidable variations in materials, design equations,
fabrication and erection. In ASD, a single margin of safety for all of these effects is con-
tained in the safety factor, Q,.
The resistance factors, (|), and safety factors, Q, in the AISC Specification are based upon
research, as discussed in the AISC Specification Commentary to Chapter B, and the experi-
ence and judgment of the AISC Committee on Specifications. In general, (|) is less than unity
and is greater than unity. The higher the variability in the test data for a given nominal
strength, the lower its <j) factor and the higher its Q, factor will be. Some examples of (|) and
£2 factors for steel members are as follows:
(j) = 0.90 for limit states involving yielding
(|) = 0.75 for limit states involving rupture
IQ = 1.67 for limit states involving yielding
iQ - 2.00 for limit states involving rupture
The general relationship between the safety factor, £2, and the resistance factor, <j), is
£2 = 15 (2-5)
<l>
Serviceability
Serviceability requirements of the AISC Specification are found in Section B3.9 and
Chapter L. The serviceability limit states should be selected appropriately for the specific
application as discussed in the Specification Commentary to Chapter L. Serviceability
limit states and the appropriate load combinations for checking their conformance to
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN FUNDAMENTALS 2-13
serviceability requirements can be found in ASCE/SEI7 Appendix C and its Commentary.
It should be noted that the load combinations in ASCE/SEI 7 Section 2.3 for LRFD and
Section 2.4 for ASD are both for strength design, and are not necessarily appropriate for
consideration of serviceabihty.
Guidance is also available in the Commentary to the AISC Specification, both in general
and for specific criteria, including camber, deflection, drift, vibrations, wind-induced motion,
expansion and contraction, and connection slip. Additionally, the applicable building code
may provide some further guidance or establish requirements. See also the serviceability dis-
cussions in Parts 3 through 6, AISC Design Guide 3, Serviceability Design Considerations
for Steel Buildings (West and Fisher, 2003) and AISC Design Guide 11, Floor Vibrations Due
to Human Activity (Murray et ah, 1991).
Structural Integrity
Structural integrity as introduced into building codes and the 2010 AISC Specification
Section B3.2, is a set of prescriptive requirements for connections that, when met, are
intended to provide an unknown, but satisfactory, level of performance of the finished struc-
ture. The term structural integrity has often been used interchangeably with progressive
collapse, but these two concepts have widely varying interpretations that can influence design
in a variety of ways. The teiin progressive collapse does hot appear in the International
Building Code (ICC, 2009) or in the 2010 AISC Specification. Progressive collapse require-
ments generally are intended to prevent the collapse of a structure beyond a localized area of
the structure where a structural element has been compromised. Progressive collapse require-
ments are often mandated for government facilities, or by owners for structures which have
a high probability of being subject to terrorist attack.
Structural integrity has always been one of the goals for the structural engineer in engi-
neering design, and for the committees writing design standards. However, it has only been
since the collapse of the buildings at the World Trade Center tltat requirements with the
stated purpose of addressing structural integrity have appeared in U.S. building codes. The
first building code to incorporate specific structural integrity requirements was the 2008
New York City Building Code which was quickly followed by requirements in the 2009
International Building Code. Although the requirements of these two building codes are
both prescriptive in nature, there are some differences in requirements and their application.
The AISC Specification Section B3.2 addresses the requirements of the 2009 International
Building Code.
The 2009 International Building Code stipulates minimum integrity provisions for build-
ings classified as high-rise and assigned to Occupancy Categories III or IV. High-rise
buildings are defined as those having an occupied floor greater than 75 ft above fire depart-
ment vehicle access. The structural integrity requirements state that column splices must
resist a minimum tension force and beam end connections must resist a minimum axial ten-
sion force, the nominal axial tension strength of the beam end connection must equal or
exceed either the required vertical shear strength for ASD or % the required vertical shear
strength for LRFD. These required strengths can be reduced by 50% if the beam supports a
composite deck with the prescribed steel anchors (Geschwindner and Gustafson, 2010).
The International Building Code structural integrity requirements for the axial tension
capacity of the beam end connections use a nominal strength basis reflecting the intent of
the code to avoid brittle rupture failures of the connection components, rather than limiting
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
I

2-14 GENERAL DESIGN CONSIDERATIONS
deformations or yielding of those coraponents. Section B3 .2 of the 2010 AISC Specification
is based on this difference in limit state requirements for resistance to the prescriptive
structural integrity loads, as compared to those limit states required when designing for tra-
ditional load combinations.
Progressive Collapse
Progressive collapse is defined in ASCE/SEI7-10 (ASCE, 2010) as "the spread of an initial
local failure from element to element resulting, eventually, in the collapse of an entire struc-
ture or a disproportionately large part of it."
Progressive collapse requirements often involve assessment of the structure's ability to
accommodate loss of a member that has been compromised through redistribution of forces
throughout the remaining structure. Design for progressive collapse poses a particularly
challenging problem since it is difficult to identify the load cases to be examined or the
members that may be compromised. Two main sources of requirements for evaluation of
structures for progressive collapse are the Department of Defense and the General Services
Administration. For facilities covered by the Department of Defense, all new and existing
buildings of three stories or more must be designed to avoid progressive collapse. The spe-
cific requirements are published in United Facilities Criteria 4-023-03, "Design of Buildings
to Resist Progressive Collapse" (DOD, 2009).
For federal facilities under the jurisdiction of the General Services Administration,
threat independent guidelines have been developed. The publication "Progressive Collapse
Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization
Projects" (USGSA, 2003) provides an explicit process that any structural engineer could use
to evaluate the progressive collapse potential of a multi-story facility.
Required Strength, Stability, Effective Length, and
Second-Order Effects
As previously discussed, the AISC Specification requires that the required strength must be
less than or equal to the available strength in the design of eyery member and connection.
Chapter C also requires that stability shall be provided for the structure as a whole and each
of its elements. Any method that considers the influence of second-order effects, also known
as F-delta effects, may be used. Thus, required strengths must be determined including sec-
ond-order effects, as described in Specification Section C2.1. Note that Specification Section
C2.1(2) permits an amplified first-order analysis as one method of second-order analysis, as
provided in Appendix 8.
Second-order effects are the additional forces, moments and displacements resulting from
the applied loads acting in their displaced positions as well as the changes from the unde-
formed to the deformed geometry of the structure. Second-order effects are obtained by
considering equilibrium of the structure within its deformed geometry. There are numerous
ways of accounting for these effects. The commentary to AISC Specification Chapter C pro-
vides some guidance on methods of second-order analysis and suggests several benchmark
problems for checking the adequacy of analysis methods.
Since 1963, there have been provisions in the AISC Specifications to account for second-
order effects. Initi^ly these provisions were embedded in the interaction equations. In past
ASD Specifications, second-order effects were accounted for by the term
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN FUNDAMENTALS 2-15
1-
Fe
found in the interaction equation. In past LRFD Specifications, the factors B] and Bi from
Chapter C of those specifications were used to amplify moments to account for second-
order effects. was used to account for.the second-order effects due to member curvature
and Bz was used to account for second-order effects due to sidesway. In both Specifications,
more exact methods were permitted.
AISC Specification Section CI and Appendix 7 provide three approaches that niay be
followed.
• The direct analysis method is provided in Chapter C. This is the most comprehensive
and, as the name suggests, most direct approach to incorporating all necessary factors
in the analysis. Through the use of notional loads, reduced stiffness, and a second-
order analysis, the design can be carried out with the forces and moments from the
analysis and an effective length equal to the member length, K- 1.0. Section C2 of
the AISC Specification details the requirements for determination of required
strengths using this method.
• The effective length tnethod is given in AISC Specification Appendix 7, Section 12. In
this method, all gravity-only load cases have a minimum lateral load equal to 0.2% of
the story gravity load appHed. A second order analysis is carried out and the member
strengths of columns and beam-columns are determined using effective lengths, deter-
mined by elastic buckling analysis, or more commonly, the alignment charts in the
Commentary to the Specification when the associated assumptions we satisfied. The
Specification permits AT = 1.0 when the ratio of second order drift to first order drift is
less than or equal to 1.1.
• The first-order analysis method is given in AISC Specification Appendix 7, Section 7.3.
With this approach, second-order effects are captured through the application of an
additional lateral load equal to at least 0.42% of the story gravity load applied in each
load case. No further second-order analysis is necessary. The required strengths are
taken as the forces and moments obtained from the analysis and the effective length
factor is/<:= 1.0.
When a second-order analysis is called for in the above methods, AISC Specification
Section CI allows any method that properly considers P-delta effects. One such method is
amplified first-order elastic analysis provided in Specification Appendix 8. This is a modi-
fied caixy over of the Bi-Bj approach used in previous LRFD Specifications, which was an
extension of the simple approach taken in past ASD Specifications.
The AISC Specification fully integrates the provisions for stability with the specified
methods of design. For all framing systems, when using the direct analysis method, AISC
Specification Section C3 provides that the effective length factor, K, for all members can be
taken as 1.0 unless a lesser value can be justified by analysis. For the effective length
method, AISC Specification Appendix 7, Section 7.2.3(a) provides that in braced frames, the
effective length factor, K, may be taken as 1.0. For moment frames, Appendix 7, Section
7.2.3(b) requires that a critical buckling analysis to determine the critical buckling stress, Fe,
be performed or effective length factors, K, be used. For the first-order analysis method.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

2-16 GENERAL DESIGN CONSIDERATIONS
Appendix Section 7.3,3 stipulates that the effective length factor, K, be taken as unity for all
members. This is discussed in more detail in the Commentary to Appendix 7.
Simplified Determination of Required Strength
Wheii a fast, conservative solution is desired, the following simplification of the effective
length method can be used with the aid of Table 2-1. The features of each of the other meth-
ods of design for stability are summarized and compared in Table 2-2.
An approximate second-order analysis approach is provided in AISC Specification
Appendix 8. Where the member amplification {P-5) factor is small, that is, less than B2, it
is conservative to amplify the total moment and force by Bz- Thus, Equations A-8~l and
A-8-2 become
Mr = BiMn, + B2Ml,^B2Mu (2-6)
Pr^P„t + B2Pu = B2Pu (2-7)
To use this simplified method, B\ cannot exceed £2- For members not subject to transverse
loading between their ends, it is very unlikely that Bi would be greater than 1.0. In addi-
tion, the simplified approach is not valid if the amplification factor, B2, is greater than 1.5,
because with the exception of taking 5i = B2. this simplified method meets the provisions
of the effective length method in AISC Specification Appendix 7. It is up to the engineer
to ensure that the frame is proportioned appropriately to use this simplified approach. In
most designs it is not advisable to have a final structure where the second order amplifica-
tion is greater than 1.5, although it is acceptable. In those cases, one should consider
stiffening the structure.
Step 1: Perform a first-order elastic analysis. Gravity load cases must include a minimum
lateral load at each story equal to 0.002 times the story gravity load where the story grav-
ity load is the load introduced at that story, independent of any loads from above.
Step 2: Establish the design story drift limit and determine the lateral load that produces
that drift. This is intended to be a measure of the lateral stiffness of the structure.
Step 3: Determine the ratio of the total story gravity load to the lateral load determined in
Step 2. For an ASD design, this ratio must be multiplied by 1.6 before entering Table
2-1. This ratio is part of the determination of the calculation on the elastic critical buck-
ling strength, Pe story, in AISC Specification Equation A-8-7, which includes the parameter
Rm. Rm is a minimum of 0.85 for rigid frames and 1.0 for all other frames.
Step 4: Multiply all of the forces and moments from the first-order analysis by the value
obtained from Table 2-1. Use the resulting forces and moments as the required strengths
for the designs of all members and connections. Note that B2 must be computed for each
story and in each principal direction.
Step 5: For all cases where the multiplier is 1.1 or less, shown shaded in Table 2-1,
the effective length may be taken as the member length, K = 1.0. For cases where the
.multiplier is greater than 1.1 but does not exceed 1.5, determine the effective, length fac-
tor through analysis, such as with the alignment charts of the AISC Specification
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STABILITY BRACING 2-17
TABLE 2-1
Multipliers for Use With the
Simplified Method
Design story
Drift Limit
1 Load Ratio from Step 3 (times'l .6 for ASD, 1.0 for LRFD) |
Design story
Drift Limit
0 5 10 20 30 40 50 60 80 100 120
H/100 1.1 1.1 1.3 1.5/1.4 ^ When ratio exceeds 1.5, simplified method
H/200 1.1 1.1 1.2 1.3
r squires a stitfer
structure.
H/300 1 1.1 1.1 1.2 1.2 i 1.3 1.5/1.4
squires a stitfer
structure.
H/400 1 1.1 1.1 i.r 1.2 1 1.2 1.3 1.4/1.3 1.5
H/500 : i
. vl
1 1 1.1 1.1 1.1 i 1.2 1.2 1.3 1.4
Note: Where two values are provided, the value In bold is the value associated with = 0.85. i
Commentary. For cases where no value is shown for the muhipher, the structure must be
stiffened in order to use this simplified approach. Note that the multipliers are the same
value for both R„, - 0.85 and 1.0 in most instances due to rounding. Where this is not the
case, two values are given consistent with the two values of R„„ respectively.
Step 6: Ensure that the drift limit set in Step 2 is not exceeded and revise design as
needed.
(
STABILITY BRACING
Beams, girders and trusses must be restrained against rotation about their longitudinal axes
at points of support (a basic assumption stated in the General Provisions of AISC
Specification Section Fl). Additionally, stability bracing with adequate strength and stiff-
ness must be provided consistent with that assumed at braced points in the analysis for
frames, columns and beams (see AISC Specification Appendix 6). Some guidance for spe-
cial cases follows.
Simple-Span Beams
In general, adequate lateral bracing is provided to the compression flange of a simple-span
beam by the connections of infill beams, joists, concrete slabs, metal deck, concrete slabs
on metal deck, and similar framing elements.
Beam Ends Supported on Bearing Plates
The stability of a beam end supported on a bearing plate can be provided in one of several
ways (see Figure 2-1):.
1. The beam end can be built into solid concrete or masonry using anchorage devices.
2. The beam top flange can be stabilized through interconnection with a floor or roof sys-
tem, provided that system is itself anchored to prevent its translation relative to the
beam bearing.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2-18 GENERAL DESIGN CONSIDERATIONS
STIFFENER PL. --
STIFFENER PL.
TYP.
(a) Stability provided with transverse stiffeners
TYP.>-|>
END PL.
TYP.
.(b) Stability provided with an end plate
ANCHOR BEAM ANO/OR
BEARING PL. AS REQUIRED
Fig. 2-1. Beam end supported on bearing plate.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STABILITY BRACING 2-19
3. A top-flange stability connection can be provided.
4. An end-plate or transverse stiffeners located over the bearing plate extending to near
the top-flange fe-distance can be provided. Such stiffeners must be welded to the top
of the bottom flange and to the beam web, but need not extend to or be welded to the
top flange.
In each case, the beam and bearing plate must also be anchored to the support. For the
design of beam bearing plates, see Part 14.
In atypical framing situations, such as when very deep beams are used, the strength and
stiffness requirements in AISC Specification Appendix 6 can be applied to ensure the sta-
bility of the assembly. It may also be possible to demonstrate in a limited number of cases,
such as with beams with thick webs and relatively shallow depths, that the beam has been
properly designed without providing the details described above. In this case, the beam and
bearing plate must still be anchored to the support. In any case, it should be noted that the
assembly must also meet the requirements in AISC Specification Section JIO.
Beams and Girders Framing Continuously Over Columns
Roof framing is commonly configured with cantilevered beams that frame continuously
over the tops of columns to support drop-in beams between the cantilevered segments
(Rongoe, 1996; CISC, 1989). It is also commonly desirable to provide an assembly in which
the intersection of the beam and column can be considered a braced point for the design of
both the continuous cantilevering beam and the column top. The required stability can be
provided in several ways (see Figure 2-2);
1. When an infill beam frames into the continuous beam at the column top, the required
stability normally can be provided by using connection element(s) for the infill beam
that cover three-quarters or more of the T-dimension of the continuous beam.
Alternatively, connection elements that cover less than three-quarters of the T-dimen-
sion of the continuous beam can be used in conjunction with partial-depth stiffeners in
the beam web along with a moment connection between the column top and beam bot-
tom to maintain alignment of the beam/column assembly. A cap plate of reasonable
proportions and four bolts will normally suffice.
In either case, note that OSHA requires that, if two framing infill beams share com-
mon holes through a column web or the web of a beam that frames continuously over
the top of a column,' the beam erected first must remain attached while connecting the
second.
2. When joists frame into the continuous beam or girder, the required stability normally
can be provided by using bottom chord extensions connected to the column top. The
resulting continuity moments must be reported to the joist supplier for their use in the
design of the joists and bridging. Note that the continuous beam must still be checked
for the concentrated force due to the column reaction per AISC Specification Section
JIO.
i
^ This requirement applies only at the location of the column, not at locations away from the column.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2-20 GENERAL DESIGN CONSIDERATIONS
The position of the bottom chord extension relative to the column cap plate will
affect the bottom chord connection detail. When the extension aligns with the cap
plate, the load path and force transfer is direct. When the extension is below the col-
umn cap plate, the column must be designed to stabilize the beam bottom flange and
the connection between the extension and the column must develop the continu-
ity/brace force. When the extension is above the column top, the beam web must have
the necessary strength and stiffness to adequately brace the beam bottom/column top.
Fig. 2-2a. Beam framing continuously over column top, stability
provided with connections of infill beams.
AMERICAN INSTITUTE OF STEEL CoNSTRUcrioN

STABILITY BRACING 2-21
3. If connection of the joist bottom chord extensions to the column must be avoided,
the required stabihty can be provided with a diagonal brace that satisfies the strength
and stiffness requirements in AISC Specification Appendix 6. Providing a relatively
shallow angle with respect to the horizontal can minimize gravity-load effects in the
diagonal brace.
Alternatively, the required stability can be provided with stiffeners in the beam web
along with a moment connection between the column top and beam bottom to main-
tain ahgnment of the beam/column assembly. A cap plate of reasonable proportions
and four bolts will normally suffice.
In atypical framing situations, such as when very deep girders are used, the strength and
stiffness requirements in AISC Specification Appendix 6 can be applied for both the beam
i
COLUMN
Fig. 2-2b. Beam framing continuously over column top, stability
provided with welded joist-chord extensions at column top.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2-22 GENERAL DESIGN CONSIDERATIONS
and the column to ensure the stability of the assembly. It may also be possible to demon-
strate in a limited number of cases, such as with continuous beams with thick webs and
relatively shallow depths, that the column and beam have been properly designed without
providing infill beam connections, connected joist extensions, stiffeners, or diagonal braces
as described above. In this case, a properly designed moment connection is still required
between the beam bottom flange and the column top. In any case, it should be noted that the
assembly must also meet the requirements in AISC Specification Section JIO.
GUY CABLE HOLE
COLUMN
BOLTS
COLUMN
CAP PL.
Fig. 2-2c. Beam framing continuously over column top, stability provided with
welded joist-chord extensions above column top.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STABILITY BRACING 2-162
WELDING
COLUMN
STIFFENER/
STABILIZER PLs.
i
CAP PL
COLUMN- ^
Fig. 2-2d. Beam framing continuously over column top, stability provided with
transverse stiffeners, joist chord extensions located at column top not welded.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2-24 GENERAL DESIGN CONSIDERATIONS
Fig. 2-2e. Beam framing continuously over column top, stability provided with
stiffener plates, joist-chord extensions located above column top not welded.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

PROPERLY SPECIFYING MATERIALS 2-25
PROPERLY SPECIFYING MATERIALS
Availability
The general availability of structural shapes, HSS and pipe can be determined by checking
the AISC database of available structural steel shapes at www.aisc.org/SteelAvaiIability.
Generally, where many producers are listed, it is an indication that the particular shape is
commonly available. However, except for the larger shapes, when only one or two produc-
ers are listed, it is prudent to consider contacting a steel fabricator to determine availability.
Material Specifications
Applicable material specifications are as shown in the following tables:
• Structural shapes in Table 2-3
• Plate and bar products in Table 2-4
• Fastening products in Table 2-5
Preferred material specifications are indicated in black shading. Other applicable material
specifications are as shown in grey shading. The availability of grades other than the pre-
ferred material specification should be confirmed prior to their specification.
Cross-sectional dimensions and production tolerances are addressed as indicated under
"Standard Mill Practices" in Part 1.
Other Products
Anchor rods •
Although the AISC Specification permits other materials for use as anchor rods, ASTM
F1554 is the preferred specification, since all anchor rod production requirements are
together in a single specification. ASTM F1554 provides three grades, namely 36 ksi, 55 ksi
and 105 ksi. All Grade 36 rods are weldable. Grade 55 rods are weldable only when they are
made per Supplementary Requirement SI. The project specifications must indicate if the
material is to conform to Supplementary Requirement S1. As a heat-treated material. Grade
105 rods cannot be welded. Grade 105 should be used only for limited applications that
require its high strength. For more information, refer to AISC Design Guide 1, Base Plate
and Anchor Rod Design (Fisher and Kloiber, 2006).
Raised-Pattern Floor Plates
ASTM A786 is the standard specification for rolled steel floor plates. As floor-plate design
is seldom controlled by strength considerations, ASTM A786 "commercial grade" is com-
monly specified. If so, per ASTM A786-05 Section 5.1.3, "the product will be supplied
0.33% maximum carbon by heat analysis, and without specified mechanical properties."
Alternatively, if a defined strength level is desired, ASTM A786 raised-pattern floor plate
can be ordered to a defined plate specification, such as ASTM A36, A572 or A588; see
ASTM A786 Sections 5.1.3, 7.1 and 8.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2-26 GENERAL DESIGN CONSIDERATIONS
Sheet and Strip
Sheet and strip products, which are generally thinner than structural plate and bar products
are produced to such ASTM specifications as A570, A606 or A607 (see Table 2-3),
Filler Metal
The appropriate filler metal for structural steel is as summarized in ANSI/AWS Dl.l: 2010
Table 3.1 for the various combinations of base metal specification and grade and electrode
specification. Weld strengths in this Manual are based upon a tensile strength level of 70 ksi.
Steel Headed Stud Anchors
As specified in ANSI/AWS Dl.l Chapter 7 (Section 7.2.6 and Table 7.1), Type B shear stud
connectors (referred to in the AISC Specification as steel headed stud anchors) made from
ASTM A108 material are used for the interconnection of steel and concrete elements in
composite construction = 65 ksi).
Open Web Steel Joists
The AISC Code of Standard Practice does not include steel joists in its definition of struc-
tural steel. Steel joists are designed and fabricated per the requirements of specifications
published by the Steel Joist Institute. Refer to SJI literature for further information.
Castellated Beams
Castellated beams, also known as cellular beams, are members constructed by cutting
along a staggered pattern down the web of a wide-flange member, offsetting the resulting
pieces such that the deepest points of the cut are in contact, and welding the two pieces
together, thereby creating a member with holes along its web. Castellated beams are cur-
rently designed and fabricated as a proprietary product. For more information, contact the
manufacturer.
Steel Castings and Forgings
Steel castings are specified as ASTM A27 Grade 65-35 or ASTM A216 Grade 80-35. Steel
forgings are specified as ASTM A668.
Forged Steel Structural Hardware
Forged steel structural hardware products, such as clevises, tumbuckles, eye nuts and sleeve
nuts, are occasionally used in building design and construction. These products are gener-
ally forged according to ASTM A668 Class A requirements. ASTM A29, Grade 1035
material is commonly used in the manufacture of clevises and tumbuckles. ASTM A29,
Grade 1030 material is commonly used in the manufacture of steel eye nuts and steel eye
bolts. ASTM A29 Grade 1018 material is commonly used in the manufacture of sleeve nuts.
Other products, such as steel rod ends, steel yoke ends and pins, cotter pins, and coupling
nuts are commonly provided generically as "carbon steel,"
The dimensional and strength characteristics of these devices are fully described in the
literature provided by their manufacturer. Note that manufacturers usually provide strength
characteristics in terms of a "safe working load" with a safety factor as high as 5, assuming
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

CONTRACT DOCUMENT INFORMATION 2-27
that the product will be used in rigging or similar applications subject to dynamic loading.
The manufacturer's safe working load may be overly conservative for permanent installa-
tions and similar applications subject to static loading only.
If desired, the published safe working load can be converted into an available strength
with reliability consistent with that of other statically loaded structural materials. In this
case, the nominal strength, R„, is determined as:
Rn - (safe working load) X (manufacturer's safety factor) (2-8)
and the available strength, ^Ra or /?„/0, is determined using
(]) = 0.50 (LRFD) £2 = 3.00(ASD)
Crane Rails
Crane rails are furnished to ASTM A759, ASTM Al, and/or manufacturer's specifications
and tolerances.
Most manufacturers chamfer the top and sides of the crane-rail head at the ends unless
specified otherwise to reduce chipping of the running surfaces. Often, crane rails are
ordered as end-hardened, which improves the resistance of the crane-rail ends to impact
that occurs as the moving wheel contacts it during crane operation. Alternatively, the entire
rail can be ordered as heat-treated. When maximum wheel loading or controlled cooling is
needed, refer to manufacturers' catalogs. Purchase orders for crane rails should be noted
"for crane service."
Light 40-lb rails are available in 30-ft lengths, 60-lb rails in 30-, 33- or 39-ft lengths, stan-
dard rails in 33- or 39-ft lengths and crane rails up to 80 ft. Consult manufacturer for
availabihty of other lengths. Rails should be arranged so that joints on opposite sides of the
crane runway will be staggered with respect to each other and with due consideration to the
wheelbase of the crane. Rail joints should not occur at crane girder splices. Odd lengths that
must be included to complete a run or obtain the necessary stagger should be not less than
10 ft long. Rails are furnished with standard drilling in both standard and odd lengths unless
stipulated otherwise on the order.
CONTRACT DOCUMENT INFORMATION
Design Drawings, Specifications and
Other Contract Documents
CASE Document 962D, A Guideline Addressing Coordination and Completeness of
Structural Construction Documents (CASE, 2003), provides comprehensive guidance on
the preparation of structural design drawings.
Most provisions in the AISC Specification, RCSC Specification, AWS Dl.l, and the
AISC Code of Standard Practice are written in mandatory language. Some provisions
require the communication of information in the contract documents, some provisions are
inyoked only when specified in the contract documents, and some provisions require the
approval of the owner's designated representative for design if they are to be used.
Following is a summary of these provisions in the AISC Specification, RCSC Specification,
and AISC Code of Standard Practice.
AMERICAN iNSTrruTE OF STEEL CONSTRUCTION
I

2-28 GENERAL DESIGN CONSIDERATIONS
Required Information
The following communication of information is required in the contract documents:
1. Required drawing information, per AISC Code of Standard Practice Sections 3.1
and 3.1.1 through 3.1.6. and RCSC Specification Section 1.4 (bolting products and
joint type)
2. Drawing numbers and revision numbers, per AISC Code of Standard Practice
Section 3.5
3. Structural system description, per AISC Code of Standard Practice Section 7.10.1
4. Installation schedule for nonstructural steel elemetlts in the structural system, per
AISC Code of Standard Practice Section 7.10.2
5. Project schedule, per AISC Code of Standard Practice Section 9.5.1
Information Required Only When Specified
The following provisions are invoked only when specified in the contract documents:
1. Special material notch-toughness requirements, per AISC Specification Section
A3.1c and Section A3.Id
2. Special connections requiring pretension, per AISC Specification Section Jl.lO
3. Bolted joint requirements, per AISC Specification Section J3.1 and RCSC
Specification Section 1.4
4. Special cambering considerations, per AISC Specification Section L2
5. Special contours and finishing requirements for thermal cutting, per AISC
Specification Sections M2.2 and M2.3, respectively
6. Corrosion protection requirements, if any, per AISC Specification Section M3 and
AISC Code of Standard Practice Sections 6.5, 6.5.2 and 6.5.3
7. Responsibility for field touch-up painting, if painting is specified, per AISC
Specification Section M4.6 and AISC Code of Standard Practice Section 6.5.4
8. Special quality control and inspection requirements , per AISC Specification Chapter
' N and AISC Code of Standard Practice Sections 8.1.3, 8.2 and 8.3
9. Evaluation procedures, per AISC •S'peciflcariow Section B6
10. Fatigue requirements, if any, per AISC Specification Section B3.9
11. Tolerance requirements other than those specified in the AISC Code of Standard
Practice, per Code of Standard Practice Section 1.9
12. Designation of each connection as Option 1, 2 or 3, and identification of require-
ments for substantiating connection infomiation, if any, per AISC Code of Standard
Practice Section 3.1.2
13. Specific instructions to address items differently, if any, from requirements in the
AISC Code of Standard Practice, per Code of Standard Practice Section 1.1
14. Submittal schedule for shop and erection drawings, per AISC Code of Standard
Practice Section 4.2
15. Mill order timing, special mill testing, and special mill tolerances, per AISC Code of
Stanrfard/"racf/ce Sections 5.1, 5.2 and 5.2, respectively
16. Removal of backing bars and runoff tabs, per AISC Code of Standard Practice
Section 6.3.2
17. Special erection inark requirements, per AISC Code of Standard Practice Section
6.6.1
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

CONTRACT DOCUMENT INFORMATION 2-29
18. Special delivery and erection sequences, per AISC Code of Standard Practice
Sections 6.7.1 and 7.1, respectively
19. Special field splice requirements, per AISC Code of Standard Practice Section 6.7.4
20. Specials loads to be considered during erection, per AISC Code of Standard Practice
Section 7.10.3
21. Special safety protection treatments, per AISC Code of Standard Practice Section
7.11.1
22. Identification of adjustable items, per AISC Code of Standard Practice Section
7.13.1.3
23. Cuts, alterations and holes for other trades, per AISC Code of Standard Practice
Section 7.15
24. Revisions to the contract, per AISC Code of Standard Practice Section 9.3
25. Special terms of payment, per AISC Code of Standard Practice Section 9.6
26. Identification of architecturally exposed structural steel, per AISC Code of Standard
Practice Section 10
Approvals Required
The following provisions require the approval of the owner's designated representative for
design if they are to be used:
1. Bolted-joint-related approvals per RCSC Specification Commentary Section 1.4
2. Use of electronic or other copies of the design drawings by the fabricator, per AISC
Code of Standard Practice Section 4.3
3. Use of stock materials not conforming to a specified ASTM specification, per AISC
Code of Standard Practice Section 5.2.3
4. Correction of errors, per AISC Code of Standard Practice Section 7.14
5. Inspector-recommended deviations from contract documents, per AISC Code of
Standard Practice Section 8.5.6
6. Contract price adjustment, per AISC Code of Standard Practice Section 9.4.2
Establishing Criteria for Connections
AISC Code of Standard Practice Section 3.1.2 provides the following three methods for the
establishment of connection requirements.
In the first method, the complete design of all connections is shown in the structural
design drawings. In this case, AISC Code of Standard Practice Commentary Section 3.1.2
provides a summary of the information that must be included in the structural design draw-
ings. This method has the advantage that there is no need to provide connection loads, since
the connections are completely designed in the structural design drawings. Additionally, it
favors greater accuracy in the bidding process, since the connections are fully described in
the contract documents.
In the second method, the fabricator is allowed to select or complete the connections
while preparing the shop and erection drawings, using the information provided by the
owner's designated representative for design per AISC Code of Standard Practice Section
3,1.2. In this case, AISC Code of Standard Practice Commentary Section 3.1.2 clarifies the
intention that connections that can be selected or completed by the fabricator include those
for which tables appear in the contract documents or the Manual. Other connections should
be shown in detail in the structural design drawings.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

2-30 GENERAL DESIGN CONSIDERATIONS
In the third method, connections are designated in the contract documents to be designed
by a licensed professional engineer working for the fabricator. The AISC Code of Standard
Practice sets forth detailed provisions that, in the absence of contract provisions to the
contrary, serve as the basis of the relationships among the parties. One feature Of these
provisions is that the fabricator is required to provide representative examples of connection
design documentation early in the process, and the owner's designated representative for
design is obliged is to review these submittals for conformity with the requirements of the
contract documents. These early submittals are required in an attempt to avoid additional
costs and/or delays as the approval process proceeds through subsequent shop drawings
with connections developed from the original representative samples.
Methods one and two have the advantage that the fabricator's standard connections nor-
mally can be used, which often leads to project economy. However, the loads or other
connection design criteria must be provided in the structural design drawings; Design loads
and required strengths for connections should be provided in the structural design drawings
and the design method used in the design of the frame (ASD or LRFD) must be indicated
on the drawings.
In all three methods, the resulting shop and erection drawings must be submitted to the
owner's designated representative for design for review and approval. As stated in the AISC
Code of Standard Practice Section 4.4.1, the approval of shop and erection drawings con-
stitutes "confirmation that the Fabricator has correctly interpreted the Contract Documents"
and that the reviewer has "reviewed and approved the Connection details shown in the Shop
and Erection Drawings." Following is additional guidance for the communication of con-
nection criteria to the connection designer.
Simple Shear Connections
The full force envelope should be given for each simple shear connection. Because of
the potential for overestimation and underestimation inherent in approximate methods
(Thornton, 1995), actual beam end reactions should be indicated on the design drawings.
The most effective method to communicate this information is to place a numeric value at
each end of each span in the framing plans.
In the past, beam end reactions were sometimes specified as a percentage of the tabulated
uniform load in Manual Part 3. This practice can result in either over- or under-specification
of connection reactions and should not be used. The inappropriateness of this practice is
illustrated in the following examples.
Over-estimation:
1. When beams are selected for serviceability considerations or for shape repetition, the
uniform load tables will often result in heavier connections than would be required by
the actual design loads.
2. When beams have relatively short spans, the uniform load tables will often result in
heavier connections than would be required by the actual design loads. If not addressed
with the accurate load, many times the heavier connections will require extension of the
connection below the bottom flange of the supported member, requiring that the flange
on one or both sides of the web to be cut and chipped, a costly process.
AMERICAN INSTITUTE OF STEEL CoNSTRUcrioN

CONTRACT DOCUMENT INFORMATION 2-31
Under-estimation:
1. When beams support other framing beams or other concentrated loads occur on girders
supporting beams, the end reactions can be higher than 50% of the total uniform load.
2. For composite beams, the end reactions can be higher than 50% of the total uniform
load. The percentage requirement can be increased for this condition, but the resulting
approach is still subject to the above considerations.
Moment Connections
The full force envelope should be given for each moment connection. If the owner's desig-
nated representative for design can select the governing load combination, its effect alone
should be provided. Otherwise, the effects of all appropriate load combinations should be
indicated. Additionally, the maximum moment imbalance should also be given for use in the
check of panel-zone web shear.
Because of the potential for overestimation~and underestimation—inherent in approxi-
mate methods, it is recommended that the actual beam end reactions (moment, shear and
other reactions, if any) be indicated in the structural design drawings. The most effective
method to do so may be by tabulation for each joint and load combination.
Although not recommended, beam end reactions are sometimes specified by more gen-
eral criteria, such as by function of the beam strength. It should be noted, however, that there
are several situations in which this approach is not appropriate. For example:
1. When beams are selected for serviceability considerations or for shape repetition, this
approach will often result in heavier connections than would be required by the actual
design loads.
2. When the column(s) or other members that frame at the joint could not resist the forces
and moments determined from the criteria so specified, this approach will often result
in heavier connections than would be required by the actual design loads.
In some cases, the structural analysis may require that the actual connections be config-
ured to match the assumptions used in the model. For example, it may be appropriate to
release weak-axis moments in a beam-column joint where only strong-axis beam moment
strength is required. Such requirements should be indicated in the structural design drawings.
Horizontal and Vertical Bracing Connections
The full force envelope should be given for each bracing-member end connection. If the
owner's designated representative for design can select the governing load combination for
the connection, its effect alone should be provided. Otherwise, the effects of all appropriate
load combinations should be indicated in tabular form. This approach will allow a clear
understanding of all of the forces on any given joint.
Because of the potential for overestimation—and underestimation—inherent in approxi-
mate methods, it is recommended that the actual reactions at the bracing member end (axial
force and other reactions, if any) be indicated in the structural design drawings. It is also rec-
ommended that transfer forces, if any, be so indicated. The most effective method to do so
may be by tabulation for each bracing member end and load combination.
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION
i

2-32 GENERAL DESIGN CONSIDERATIONS
Although not recommended, bracing member end reactions can be specified by more
general criteria, such as by maximum member forces (tension or compression) or as a func-
tion of the member strength. It should be noted, however, that there are several situations in
which such approaches are not appropriate. For example:
1. The specification of maximum member forces does not permit a check of the member
forces at a joint if there are different load combinations governing the member designs at
that joint. Nor does it reflect the possibility of load reversal as it may influence the design,
2. The specification of a percentage of member strength may not properly account for the
interaction of forces at a joint or the transfer force through the joint. Additionally, it
may not allow for a cross-check of all forces at a joint.
In either case, this approach will often result in heavier connections than would be required
by the actual design loads.
Bracing connections may involve the interaction of gravity and lateral loads on the frame.
In some cases, such as V- tod'inverted V-bracing (also known as Chevron bracing), gravity
loads alone may govern design of the braces and their connections. Thus, clarity in the spec-
ification of loads and reactions is critical to properly consider the potential interaction of
gravity and lateral loads at floors and roofs.
Strut and Tie Connections
Floor and roof members in braced bays and adjacent bays may function as struts or ties in
addition to carrying gravity loads. Therefore the recommendations for simple shear connec-
tions and bracing connections above apply in combination.
Truss Connections
The recommendations for horizontal and vertical bracing connections above also apply in
general to bracing connections with the following additional comments.
Note that it is not necessary to specify a minimum connection strength as a percent of the
member strength as a default. However, when trusses are shop assembled or field assembled
on the ground for subsequent erection, consideration should be given to the loads that will
be induced during handling, shipping and erection.
Column Splices
Column splices may resist moments, shears and tensions in addition to gravity forces.
Typical column splices are discussed in Part 14. As in the case of the other connections dis-
cussed above, unless the column splices are fully designed in the constinction documents,
forces and moments for the splice designs should be provided in the construction docu-
ments. Since column splices are located away from the girder/column joint and moments
vary in the height of the column, an accurate assessment of the forces and moments at the
column splices will usually significantly reduce their cost and complexity.
CONSTRUCTABILITY
Constructability is a relatively new woM for a well established idea. The design, detailing, fab-
rication and erection of structural steel is a process which in the end needs to result in a safe
and economical steel frame. Building codes and the AISC Specification address strength and
AMERICAN iNStrruTE OF STEEL CONSTRUCTION

TOLERANCES 2-33
Structural integrity. Constructability addresses the need for global economy in the fabricated
and erected steel frame. Constructability must be "designed in," influencing decision making
at all steps of the design process, from framing system selection, though member design, to
connection selection and design. Constructability demands attention to detail and requires the
designer to think ahead to the fabrication and erection of the steel frame. The goal is to design
a steel frame that is relatively easy to detail, fabricate and erect. AISC provides guidance to
the design community through its many publications and presentations, including the recently
published Design Guide 23, Constructability of Structural Steel Buildings (Ruby, 2008).
Constructability focuses on such issues as framing layout, the number of pieces in an area
of framing, three-dimensional connection geometry, swinging in clearances, access to bolts,
and access to welds. It involves the acknowledgement that numerous, seemingly small deci-
sions can have an effect on the overall economy of the final erected steel frame. Fabricators
and erectors have the knowledge that can assist in the design of constructible steel frames.
Designers should seek their counsel.
TOLERANCES
The effects of mill, fabrication and erection tolerances all require consideration in the design
and construction of structural steel buildings. However, the accumulation of the mill toler-
ances and fabrication tolerances shall not cause the erection tolerances to be exceeded, per
klSC Cock of Standard Practice Stdionl.ll.
Mill Tolerances
Mill tolerances are those variations that could be present in the product as-delivered from
the rolling mill. These tolerances are given as follows:
1. For structural shapes and plates, see ASTMA6.
2. For HSS, see ASTMA500 (or other applicable ASTM specification for HSS).
3. For pipe, see ASTM A53.
A summary of standard mill practices is also given in Part 1.
Fabrication Tolerances
Fabrication tolerances are generally provided in AISC Specification Section M2 and AISC
Code of Standard Practice Section 6.4. Additional requirements that govern fabrication are
as follows:
1. Compression joint fit-up, per AISC Specification Section M4.4
2. Roughness limits for finished surfaces, per AISC Code of Standard Practice Section
6.2.2
3. Straightness of projecting elements of connection materials, per AISC Code of
Standard Practice Section 6.3.1
4. Finishing requirements at locations of removal of run-off tabs and similar devices, per
AISC Code of Standard Practice Section 6.3.2
Erection Tolerances
Erection tolerances are generally provided in AISC Specification Section M4 and AISC
Code of Standard Practice Section 7.13. Note that the tolerances specified therein are
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
I

2-34 GENERAL DESIGN CONSIDERATIONS
predicated upon the proper installation of the following items by the owner's designated rep-
resentative for construction:
1. Building lines and benchmarks, per AISC Code of Standard Practice Section 7.4
2. Anchorage devices, per AISC Code of Standard Practice Section 7.5
3. Bearing devices, per AISC Code of Standard Practice Section 7.6
4. Grout, per AISC Code of Standard Practice Section 7.7
Building Fagade Tolerances
The preceding mill, fabrication and erection tolerances can be maintained with standard
equipment and workmanship. However, the accumulated tolerances for the structural
steel and the building fa9ade must be accounted for in the design so that the two systems
can be properly mated in the field. In the steel frame, this is normally accomplished by
specifying adjustable connections in the contract documents, per AISC Code of Standard
Practice Section 7.13.1.3. This section has three subsections. Subsection (a) addresses
the vertical position of the adjustable items, subsection (b) addresses the horizontal posi-
tion of the adjustable items, and subsection (c) addresses alignment of adjustable items
at abutting ends.
The required adjustability normally can be determined from the range of adjustment in
the building fafade anchor connections, tolerances for the erection of the building fa9ade,
and the accumulation of mill, fabrication and erection tolerances at the mid-span point of
the spandrel beam. The actual locations of the column bases, the actual slope of the columns
and the actual sweep of the spandrel beam all affect the accumulation of tolerances in the
structural steel at this critical location. These conditions must be reflected in details that will
allow successful erection of the steel frame and the facade, if each of these systems is prop-
erly constructed within its permitted tolerance envelope.
Figures 2-3a, 2-4a and 2-5a illustrate details that are not recommended because they do
not provide for adjustment. Figures 2-3b, 2-4b and 2-5b illustrate recommended alternative
details that do provide for adjustability. Note that diagonal structural and stability bracing
elements have been omitted in these details to improve the clarity of presentation regarding
adjustability. Also, note that all elements beyond the slab edge are normally not structural
steel, per AISC Code of Standard Practice Section 2.2, and ^e shown for the purposes of
illustration only.
The bolted details in Figures 2-4b and 2-5b can be used to provide field adjustability with
slotted holes as shown. Further adjustability can be provided in these details, if necessary,
by removing the bolts and clamping the connection elements for field welding.
Alternatively, when the slab edge angle or plate in Figure 2-4b is shown as field welded and
identified as adjustable in the contract documents, it can be provided to within a horizontal
tolerance of in,, per AISC Code of Standard Practice Section 7.13.1.3. However, if the
item was not shown as field welded and identified as adjustable in the contract documents,
it would likely be attached in the shop or attached in the field to facilitate the concrete pour
and not be suitable to provide for the necessary adjustment. The details in Figures 2-3b and
2-4b do not readily permit vertical adjustment of the adjustable material. However, the ver-
tical position tolerance of in. is less than the tolerance for the position of the spandrel
member itself, see AISC Code of Standard Practice Section 7.13.1 ;2(b). The manufacturirig
tolerance for camber in the spandrel member is set by ASTM A6, as summarized in Table
1-22. The ASTM A6 limit for camber is Vs in. per 10 ft of length, thus; in most situations
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

TOLERANCES 2-35
the vertical position tolerance in AISC Code of Standard Practice Section 7.13.1.3(b) should
be achieved indirectly. In general, spandrel members should not be cambered. Deflection of
spandrel members should be controlled by member stiffness. Figure 2-5b shows a detail in
which both horizontal and vertical adjustment can be achieved.
With adjustable connections specified in design and provided in fabrication, actions taken
on the job site will allow for a successful fajade installation. Per the AISC Code of Standard
Practice definition of established column line (see Code of Standard Practice Glossary),
-COUJ FORMED STUD
rSlAB
OX. CLIP-X
ANGLE
SLAB
E06E
PLATE
-BEAM
clearance FOR
AOJUSTMBfT
-SLAB
SLAB
EDGE
PLATE
i
-BEAM
(a) Without adjustment
(not recommended)
(b) With adjustment
(recommended)
Fig. 2-3. Attaching cold-formed steel facade systems to structural steel framing.
(a) Without adjustment,
(not recommended)
(b) With adjustment
(recommended)
Fig. 2-4. Attaching curtain wallfagade systems to structural steel framing.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2-36 GENERAL DESIGN CONSIDERATIONS
CLEARANCE FOR
'V
r-SLAB
IT'
-SLAB
EDGE
PUA1B
ju-
-BEAM
-ANGLE
-FRAME
BEAM
ANGLE
ERECTION BOLTS
HORIZ. SLOTS IN OUTIJOOKER
VERT. SLOTS IN FRAME.
-FRAME
(a) Without adjustment
(not recommended)
(b) With adjustment
(recommended)
Fig. 2-5. Attaching masonry fagade systems to structural steel framing.
proper placement of this line by the owner's designated representative for construction
based upon the actual column-center locations will assure that all subcontractors are work-
ing from the same information. When sufficient adjustment cannot be accommodated within
the adjustable connections provided, a common solution is to allow the building fa9ade to
deviate (or drift) from the theoretical location to follow the as-built locations of the struc-
tural steel framing and concrete floor slabs. A survey of the as-built locations of these
elements can be used to adjust the placement of the building fa9ade accordingly. In this case,
the adjustable connections can serve to ensure that no abrupt changes occur in the facade.
QUALITY CONTROL AND QUALITY ASSURANCE
Prior to 2010, quality control and quality assurance were addressed in the contract docu-
ments, Chapter M of the AISC Specification, and building codes. In the 2010 AISC
Specification, Chapter N, entitled Quality Control and Quality Assurance, has been added.
This chapter distinguishes between quality control, which is the responsibility of the fabri-
cator and erector, and quality assurance, which is the responsibility of the owner, usually
through third party inspectors. The new provisions bring together requirements from diverse
sources of quality control (QC) and quality assurance (QA), so that plans for QC and
QA can be established on a project specific basis. Chapter N provides tabulated lists of
inspection tasks for both QC and QA. As in the case of the AISC Seismic Provisions, these
tasks are characterized as either "observe" or "perform." Tasks identified as "observe" ai'e
general and random. Tasks identified as "perform" are specific to the final acceptance of an
item in the work. The characterization of tasks as observe and perform is a substitute for the
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

CAMBERING, CURVING AND STRAIGHTENING 2-37
distinction between periodic and continuous inspection used in other codes and standards,
such as the International Building, Code.
CAMBERING, CURVING AND STRAIGHTENING
Beam Camber and Sweep
Camber denotes a curve in the vertical plane. Sweep denotes a curve in the horizontal plane.
Camber and sweep occur naturally in members as received from the mill. The deviation of
the member from straight must be within the mill tolerances specified in ASTM A6/A6M.
When required by the contract documents, cambering and curving to a specified amount
can be provided by the fabricator per AISC Code of Standard Practice Sections 6.4.2 and
6.4.4, either by cold bending or by hot bending.
Cambering and curving induce residual stresses similar to those that develop in rolled
structural shapes as elements of the shape cool from the rolling temperature at different
rates. These residual stresses do not affect the available strength of structural members,
since the effect of residual stresses is considered in the provisions of the AISC Specification.
Cold Bending
The inelastic deformations required in common cold bending operations, such as for beam
cambering, normally fall well short of the strain-hardening range. Specific limitations on
cold-bending capabilities should be obtained from those that provide the service and from
Cold Bending of Wide-Flange Shapes for Construction (Bjorhovde, 2006). However, the
following general guidelines may be useful in the absence of other information:
1. The minimum radius for camber induced by cold bending in members up to a nominal
depth of 30 in. is between 10 aiid 14 times the depth of the member. Deeper members
• may require a larger minimum radius.
2. Cold bending may be used to provide curving in members to practically any radius
desired.
3. A minimum length of 25 ft is commonly practical due to manufacturing/fabrication
equipment.
When curvatures and the resulting inelastic deformations are significant and corrective
measures are required, the effects of cold work on the strength and ductility of the structural
steels largely can be eliminated by thermal stress relief or annealing.
Hot Bending
The controlled application of heat can be used in the shop and field to provide camber or
curvature. The member is rapidly heated in selected areas that tend to expand, but are
restrained by the adjacent cooler areas, causing inelastic deformations in the heated areas
and a change in the shape of the cooled member.
The mechanical properties of steels are largely unaffected by such heating operations,
provided the maximum temperature does not exceed the temperature limitations given in
AISC Specification Section M2.1. Temperature-indicating crayons or other suitable means
should be used during the heating process to ensure proper regulation of the temperature.
Heat curving induces residual stresses that are similar to those that develop in hot-rolled
structural shapes as they cool from the rolling temperature because all parts of the shape do
not cool at the same rate.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

2-38 GENERAL DESIGN CONSIDERATIONS
Truss Camber
Camber is provided in trusses, when required, by the fabricator per AISC Code of Standard
Practice Section 6.4.5, by geometric relocation of panel points and adjustment of member
lengths based upon the camber requirements as specified in the contract documents.
Straightening
All structural shapes ai-e straightened at the mill after rolling, either by rotary or gag straight-
ening, to meet the aforementioned mill tolerances. Similar processes and/or the controlled
application of heat can be used in the shop or field to straighten a curved or distorted
member. These processes are normally applied in a manner similar to those used to induce
camber and curvature and described above.
FIRE PROTECTION AND ENGINEERING
Provisions for structural design for fire conditions are found in Appendix 4 of the AISC
Specification. Complete coverage of fire protection and engineering for steel structures is
included in AISC Design Guide 19, Fire Resistance of Structural Steel Framing (Ruddy et
al., 2003).
CORROSION PROTECTION
In building structures, conosion protection is not required for steel that will be enclosed by
building finish, coated with a contact-type fireproofing, or in contact with concrete. When
enclosed, the steel is trapped in a controlled environment and the products required for cor-
rosion are quickly exhausted, as indicated in AISC Specification Commentary Section M3.
A similai- situation exists when steel is fireproofed or in contact with concrete. Accordingly,
shop primer or paint is not required unless specified in the contract documents, per AISC
Specification Section M3.1. Per AISC Code of Standard Practice Section 6.5, steel that is to
remain unpainted need only be cleaned of heavy deposits of oil and grease by appropriate
means after fabrication.
CoiTOsion protection is required, however, in exterior exposed applications. Likewise,
steel must be protected from corrosion in aggressively coiTOsive applications, such as a paper
processing plant, a structure with oceanfront exposure, or when temperature changes can
cause condensation. Corrosion should also be considered when connecting steel to dissirtiilar
metals. Guidance on steel compatibility with metal fasteners is provided in Table 2-7.
When surface preparation other than the cleaning described above is required, an appro-
priate grade of cleaning should be specified in the contract documents according to the
Society for Protective Coatings (SSPC). A summaiy of the SSPC surface preparation spec-
ifications (SSPC, 2000) is provided in Table 2-8. SSPC SP 2 is the normal grade of cleaning
when cleaning is required.
For further information, refer to the publications of SSPC, the American Galvanizers
Association (AGA), and the National Association of Corrosion Engineers International
(NACE).
RENOVATION AND RETROFIT OF EXISTING STRUCTURES
The provisions in AISC Specification Section B6 govern the evaluation of existing struc-
tures. Historical data on available steel grades and hot-rolled structural shapes, including
AMERICAN INStRRUTE OF STEEL CONSTRUCTION

THERMAL EFFECTS 1-39
dimensions and properties, is available in AISC Design Guide 15, Rehabilitation and
Retrofit Guide (Brockenbrough, 2002) and the companion database of historic shape prop-
erties from 1873-1999 available at www.aisc.org. See also Ricker (1988) and Tide (1990).
THERMAL EFFECTS
Expansion and Contraction
The average coefficient of expansion, e, for structural steel between 70 °F and 100 °F is
0.0000065 for each °F (Camp et al., 1951). This value is a reasonable approximation of the
coefficient of thermal expansion for temperatures less than 70 °F. For temperatures from
100 to 1,200 °F, the change in length per unit length per °F, e, is:
e = (6.1 +0.0019010' (2-9)
where t is the initial temperature in °F. The coefficients of expansion for other building
materials can be found in Table 17-10.
Although buildings are typically constructed of flexible materials, expansion joints are
often required in roofs and the supporting structure when horizontal dimensions are large.
The maximum distance between expansion joints is dependent upon many variables, includ-
ing ambient temperature during construction and the expected temperature range during the
lifetime of the building.
Figure 2-6 (Federal Construction Council, 1974) provides guidance based on design
temperature change for maximum spacing of structural expansion joints in bem-and-
column-framed buildings with pinned column bases and heated interiors. The report includes
data for numerous cities and gives five modification factors to be applied as appropriate:
§
1
<o
S
i
3
600
500
400
300
200
100
/X
^Rectangular
multiframed
configuration with
__ symmetrical stiffness \ steel

/
Any
material
" Honrectangutar
configuration
_ a, r, U type)
1 L
1 1 1
10 20 30 40 50 60 70 80 90
DESIGN TEMPERA WRE CHANGE CO
Fig. 2-6. Recommended maximum expansion-joint spacing.
AMERICAN INSTITUTE OF STEEL CoNstaucnoN

2-40 GENERAL DESIGN CONSIDERATIONS
1. If the building will be heated only and will have pinned column bases, use the maxi-
mum spacing as specified .
2. If the building will be air-conditioned as well as heated, increase the maximum spac-
ing by 15% provided the environmental control system will run continuously.
3. If the building will be unhealed, decrease the maximum spacing by 33%.
4. If tlie building will have fixed column bases, decrease the maximum spacing by 15%.
5. If the building will have substantially greater stiffness against lateral displacement in
one of the plan dimensions, decrease the maximum spacing by 25%.
When more than one of these design conditions prevail in a building, the percentile fac-
tor to be applied is the algebraic sum of the adjustment factors of all the various applicable
conditions. Most building codes include restrictions on location and maximum spacing of
fire walls, which often become default locations for expansion joints.
The most effective expansion joint is a double line of columns that provides a complete
and positive separation. Alternatively, low-friction sliding elements can be used. Such sys-
tems, however, are seldom totally friction-free and will induce some level of inherent
restraint to movement.
Elevated-Temperature Service
For applications involving short-duration loading at elevated temperature, the variations in
yield strength, tensile strength, and modulus of elasticity are given in AISC Design Guide
19, Fire Resistance of Structural Steel Framing (Ruddy et al., 2003). For applications
involving long-duration loading at elevated temperatures, the effects of creep must also be
considered. For fuither information, see Brockenbrough and Merritt (1999; pp. 1.20-1.22).
FATIGUE AND FRACTURE CONTROL
Avoiding Brittle Fracture
By definition, brittle fracture occurs by cleavage at a stress level below the yield strength.
Generally, a brittle fracture can occur when there is a sufficiently adverse combination of
tensile stress, temperature, strain rate and geometrical discontinuity (notch). The exact com-
bination of these conditions and other factors that will cause brittle fracture cannot be
readily calculated. Consequently, the best guide in selecting steel material that is appropri-
ate for a given application is experience.
The steels listed in AISC Specification Section A3.la. Section A3.1c and Section A3.Id
have been successfully used in a great number of applications, including buildings, bridges,
transmission towers and transportation equipment, even at the lowest atmospheric tempera-
tures encountered in the United States. Nonetheless, it is desirable to minimize the
conditions that tend to cause brittle fracture: triaxial state-of-stress, increased strain rate,
strain aging, stress risers, welding residual stresses, areas of reduced notch toughness, and
low-temperature service.
1. Triaxial state-of-stress: While shear stresses are always present in a uniaxial or biaxial
state-of-stress, the maximum shear stress approaches zero as the principal stresses
approach a common value in a triaxial state-of-stress. A triaxial state-of-stress can also
result from uniaxial loading when notches or geometrical discontinuities are present.
A triaxial state-of-stress will cause the yield stress of the material to increase above its
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FATIGUE AND FRACTURE CONTROL 2-41
nominal value, resulting in brittle fracture by cleavage, rather than ductile shear defor-
mations. As a result, in the absence of critical-size notches, the maximum stress is
limited by the yield stress of the nearby unaffected material. Triaxial stress conditions
should be avoided, when possible.
2. Increased strain rate: Gravity loads, wind loads and seismic loads have essentially sim-
ilar strain rates. Impact loads, such as those associated with heavy cranes, and blast
loads Tiormally have increased strain rates, which tend to increase the possibility of
brittle fracture. Note, however, that a rapid strain rate or impact load is not a required
condition for the occurrence of brittle fracture.
3. Strain aging: Cold working of steel and the strain aging that normally results generally
increases the likelihood of brittle fracture, usually due to a reduction in ductility and
notch toughness. The effects of cold work and strain aging can be minimized by select-
ing a generous forming radius to eliminate or minimize strain hardening.
4. Stress risers: Fabrication operations, such as flame cutting and welding, may induce
geometric conditions or discontinuities that are crack-like in nature, creating stress ris-
ers, intersecting welds from multiple directions should be avoided with properly sized
weld access holes to minimize the interaction of these various stress fields. Such con-
ditions should be avoided, when possible, or removed or repaired when they occur.
5. Welding residual stresses: In the as-welded condition, residual stresses near the yield
strength of the material will be present in any weldment. Residual stresses and the pos-
sible accompanying distortions can be minimized through controlled welding
procedures and fabrication methods, including the proper positioning of the compo-
nents of the joint prior to welding, the selection of welding sequences that will
minimize distortions, the use of preheat as appropriate, the deposition of a minimum
volume of weld metal with a minimum number of passes for the design condition, and
proper control of interpass temperatures and cooling rates. In fracture-sensitive appli-
cations, notch-toughness should be specified for both the base metal and the filler metal.
6. Areas of reduced notch toughness: Such areas can be found in the core areas of heavy
shapes and plates and the fc-area of rotary-straightened W-shapes. Accordingly, AISC
Specification Sections A3.1 c and Section A3.1 d include special requirements for mate-
rial notch toughness.
7. Low-temperature service: While steel yield strength, tensile strength, modulus of
elasticity, and fatigue strength increase as temperature decreases, ductility and tough-
ness decrease. Furthermore, there is a temperature below which steel subjected to
tensile stress may fracture by cleavage, with little or no plastic deformation, rather
than by shear, which is usually preceded by considerable inelastic deformation. Note
that cleavage and shear are used in the metallurgical sense to denote different fracture
mechanisms.
When notch-toughness is important, Charpy V-notch testing can be specified to ensure a cer-
tain level of energy absorption at a given temperature, such as 15 ft-lb at 70 °F. Note that the
appropriate test temperature may be higher than the lowest operating temperature depending
upon the rate of loading. Although it is primarily intended for bridge-related ajpplications,
the information in ASTM A709 Section S83 (includingTables SI .1, SI.2 and SI.3) may be
useful in determining the proper level of notch toughness that should be specified.
In many cases, weld metal notch toughness exceeds that of the base metal. Filler metals
can be selected to meet a desired minimum notch-toughness value. For each welding
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
t

2-42 GENERAL DESIGN CONSIDERATIONS
process, electrodes exist that have no specified notch toughness requirements. Such elec-
trodes should not be assumed to possess any minimum notch-toughness value. When notch
toughness is necessary for a given application, the desired value or an appropriate electrode
should be specified in the contract documents.
For further information, refer to Fisher et al. (1998), Barsom and Rolfe (1999), and
Rolfe(1977).
Avoiding Lamelfar Tearing
Although lamellar tearing is less common today, the restraint against solidified weld deposit
contraction inherent in some joint configurations can impose a tensile strain high enough to
cause separation or tearing on planes parallel to the rolled surface of the element being
joined. The iiicidence of this phenomenon can be reduced or eliminated through greater
understanding by designers, detailers and fabricators of the inherent directionality of rolled
steel, the importance of strains associated with solidified weld deposit contraction in the
presence of high restraint (rather than externally applied design forces), and the need to
adopt appropriate joint and welding details and procedures with proper weld metal for
through-thickness connections.
Dexter and Melendrez (2000) demonstrate that W-shapes are not susceptible to lamellar
tearing or other through-thickness failures when welded tee joints are made to the flanges at
locations away from member ends. When needed for other conditions, special production
practices can be specified for steel plates to assist in reducing the incidence of lamellar tear-
ing by enhancing through-thickness ductility. For further information, refer to ASTM A770.
However, it must be recognized that it is more important and effective to properly design,
detail and fabricate to avoid highly restrained joints. AISC (1973) provides guidelines that
minimize potential problems.
WIND AND SEISMIC DESIGN
In general, nearly all building design and construction can be classified into one of two cat-
egories: wind and low-seismic applications, and high-seismic applications. For additional
discussion regarding seismic design and the applicability of the AISC Seismic Provisions,
see the Scope statement at the front of this manual.
Wind and Low-Seismic Applications
Wind and low-seismic applications are those in which the AISC Seismic Provisions are not
applicable. Such buildings are designed to meet the provisions in the AISC Specification
based upon the code-specified forces distributed throughout the framing assuming a nomi-
nally elastic structural response. The resulting systems have normal levels of ductility. It is
important to note that the applicable building code includes seismic design requirements
even if the AISC Seismic Provisions are not applicable. See the AISC Seismic Design
Manual for additional discussion.
High-Seismic Applications
High-seismic applications are those in which the building is designed to meet the provisions
in both the AISC Seismic Provisions and the AISC Specification. Note that it does not mat-
ter if wind or earthquake controls in this case. High-seismic design and construction will
AMERICAN INStRRUTE OF STEEL CONSTRUCTION

WIND AND SEISMIC DESIGN 2-43
generally cost more than wind and low-seismic design and construction, as the resulting sys-
tems are designed to have high levels of ductility.
High-seismic lateral framing systems are configured to be capable of withstanding strong
ground motions as they undergo controlled ductile deformations to dissipate energy.
Consider the following three examples:
1. Special Concentrically Braced Frames (SCBF)-~SCBF are generally configured so
that any inelasticity will occur by tension yielding and/or compression buckling in the
braces. The connections of the braces to the columns and beams and between the
columns and beams themselves must then be proportioned to remain nominally elas-
tic as they undergo these deformations.
2. Eccentrically Braced Frames (EBF)—EBF are generally configured so that any inelas-
ticity will occur by shear yielding and/or flexural yielding in the link. The beam
outside the link, connections, braces and columns must then be proportioned to remain
nominally elastic as they undergo these deformations.
3. Special Moment Frames (SMF)~-SMF are generally configured so that any inelastic-
ity will occur by flexural yielding in the girders near, but away from, the connection
of the girders to the columns. The connections of the girders to the columns and the
columns themselves must then be proportioned to remain nominally elastic as they
undergo these deformations. Intermediate moment frames (IMF) and ordinary moment
frames (OMF) are also configured to provide improved seismic performance, although
successively lower than that for SMF.
The code-specified base accelerations used to calculate the seismic forces are not necessar-
ily maximums, but rather, they represent the intensity of ground motions that have been
selected by the code-writing authorities as reasonable for design purposes. Accordingly, the
requirements in both the AISC Seismic Provisions and the AISC Specification must be met
so that the resulting frames can then undergo controlled deformations in a ductile, well-
distributed manner.
The design provisions for high-seismic systems are also intended to result in distributed
deformations throughout the frame, rather than the formation of story mechanisms, so as to
increase the level of available energy dissipation and corresponding level of ground motion
that can be withstood.
The member sizes in high-seismic frames will be larger than those in wind and low-
seismic frames. The connections will also be much more robust so they can transmit the
member-strength-driven force demands. Net sections will often require special attention so
as to avoid having fracture limit states control. Special material requirements, design con-
siderations and construction practices must be followed. For further information on the
design and construction of high-seismic systems, see the AISC Seismic Provisions, which
areavailableatwww.aisc.org.
I
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2-44 GENERAL DESIGN CONSIDERATIONS
PART 2 REFERENCES
Much of the material referenced in the Steel Construction Manual may be found at
www.aisc.org.
ACI (2008), Building Code Requirements for Structural Concrete and Commentary, ACI
318, American Concrete Institute, Farmington Hills, MI.
Allison, H. (1991), Low- and Medium-Rise Steel Buildings, Design Guide 5, AISC, Chicago,
IL.
AISC (1973), "Commentary on Highly Restrained Welded Connections," Engineering
Journal, Vol. 10, No. 3,3rd Quarter, American Institute of Steel Construction, Chicago, IL.
AISC (2005), Specification for Structural Steel Buildings, ANSI/AISC 360-05, American
Institute of Steel Construction, Chicago, IL.
AISC (2006), Seismic Design Manual, American Institute of Steel Construction, Chicago, EL.
AISC (2009), Detailing for Steel Construction, 3rd Ed., American Institute of Steel
Construction, Chicago, IL.
AISC (2010a), Specification for Structural Steel Buildings, ANSI/AISC 360-10, American
Institute of Steel Construction, Chicago, IL.
AISC (2010b), Seismic Provisions for Structural Steel Buildings, AISI/AISC 341-10,
American Institute of Steel Construction, Chicago, IL.
AISC (2010c), Code of Standard Practice for Steel Buildings and Bridges, American
Institute of Steel Construction, Chicago, IL.
AISC (2011), Design Examples, V. 14.0, American Institute of Steel Construction, Chicago,
IL.
ASCE (2010), Miw/mMm Design Loads for Buildings and Other Structures, ASCE/SEI7-10,
American Society of Civil Engineers, Reston, VA.
AWS (2007), Standard Symbols for Welding, Brazing, and Nondestructive Examination,
AWS A2.4, American Welding Society, Miami, FL.
AWS (2010), Structural Welding Code—Steel, AV^S Dl.1:2010, American Welding.Society,
Miami,FL.
Barger, B.L. and West, M.A. (2001), "New OSHA Erection Rules: How They Affect
Engineers, Fabricators and Contractors," Modem Steel Construction, Chicago,
IL.
Barsom, J.A. and Rolfe, S.T. (1999), Fracture and Fatigue Control in Structures: Applications
of Fracture Mechanics, 3rd Edition, ASTM, West Conshohocken, PA.
Bjorhovde, R, (2006), "Cold Bending of Wide-Flange Shapes for Construction,"
Engineering Journal, AISC, Vol. 43, No. 4,4th Quarter, Chicago, IL, pp 271-286.
Brockenbrough, R.L. and Merritt, F.S. (1999), Structural Steel Designer's Handbook,
3rd Edition, McGraw-Hill, New York, NY.
Brockenbrough, RL. (2002), AISC Rehabilitation and Retrofit Guide—A Reference for
Historic Shapes and Specifications, Design Guide 15, AISC, Chicago, IL.
Camp, J.M., Francis, C.B. and McGannon H.E. (1951), The Making, Shaping and Treating
of Steel, 6th Edition, U.S. Steel, Pittsburgh, PA.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and
Seismic Applications, Design Guide 13, AISC, Chicago, IL.
CASE (2003), A Guideline Addressing Coordination and Completeness of Structural
Construction Documents, Document 962D, Council of American Structural Engineers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

PART 2 REFERENCES 2-45
Churches, C.H., Troup, E.W.J, and Angeloff, C. (2003), Steel-Framed Open-Deck Parking
Structures, Design Guide 18, AISC, Chicago, IL.
CISC (1989), Roof Framing with Cantilever (Gerber) Girders & Open Web Joists, Canadian
Institute of Steel Construction, Willowdale, Ontario, Canada.
Darwin, D. (1990), Steel and Composite Beams with Web Openings, Design Guide 2, AISC,
Chicago, IL.
Dexter, R.J. and Melendrez, M.I. (2000), "Through-Thickness Properties of Column
Flanges in Welded Moment Connections," Journal of Structural Engineering, ASCE,
Vol. 126, No. 1, pp. 24-31.
DOD (2009), Design of Buildings to Resist Progressive Collapse, UPC 4-023-03, July.
Federal Construction Council (1974), Technical Report No. 65 Expansion Joints in Buildingsi
National Research Council, Washington, DC. '
Fisher, J.M. and West, M.A. (1997), Erection Bracing of Low-Rise Structural Steel Buildings,
Design Guide 10, AISC, Chicago, IL.
Fisher, J.M. (2004), Industrial Buildings—Roofs to Anchor Rods, Design Guide 7, 2nd Ed.,
AISC, Chicago, IL.
Fisher, J.M. and Kloiber, L.A. (2006), Base Plate and Anchor Rod Design, Design Guide 1,
2nd Ed., AISC, Chicago, IL.
Fisher, J.W, Kulak, G.L. and Smith, I.RC. (1998), A Fatigue Primer for Structural
fingwem, NSBA/AISC, Chicago, IL.
Geschwindner, L.F. and Gustafson, K. (2010), "Single-Plate Shear Connection Design to
meet Stiuctural Integrity Requirements," Engineering Journal, AISC, Vol. 47, No. 3, 3rd
Quarter, pp. 189-202.
GrifFis, L.G. (1992), Load and Resistance Factor Design ofW-Shapes Encased in Concrete,
Design Guide 6, AISC, Chicago, IL.
Gross, J.L., Engelhardt, M.D., Uang, C.M., Kasai, K. and Iwankiw, N.R. (1999), Modification
of Existing Welded Steel Moment Frame Connections for Seismic Resistance, Design Guide
12, AISC, Chicago, IL.
ICC (2009), International Building Code, International Code Council, Falls Church, VA.
Kaehler, R.C. and White, D.W. (2010), Web-Tapered Frame Design, Design Guide 25,
AISC, Chicago, IL.
Kulak, G.L. (2002), High Strength Bolts—A Primer for Structural Engineers, Design Guide
17, AISC, Chicago, IL.
Leon, R.T., Hoffman, J.J. and Staeger, T. (1996), Partially Restrained Composite
Connections, Design Guide 8, AISC, Chicago, IL.
Miller, D.K. (2006), Welded Connections—A Primer for Engineers, Design Guide 21, AISC,
Chicago, IL.
Murray, T.M. and Sumner, E.A. (2003), Extended End-Plate Moment Connections—Seismic
and Wind Applications, Design Guide 4, 2nd Ed., AISC, Chicago, IL.
Murray, T.M., Allen, D.E. and Ungar, E.E. (1997), Floor Vibrations Due to Human Activity,
Design Guide 11, AISC, Chicago, IL.
Murray, T.M. and Shoemaker, WL. (2002), Flush and Extended Multiple-Row Moment
End-Plate Connections, Design Guide 16, AISC, Chicago, IL.
OSHA (2001), Safety and Health Standards for the Construction Industry, 29 CFR 1926
Part R Safety Standards for Steel Erection, Occupational Safety and Health
Administration, Washington, DC.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

2-6 GENERAL DESIGN CONSIDERATIONS
Packer, J., Sherman, D. and Leece, M. (2010), Hollow Structural Section Connections,
Design Guide 24, AISC, Chicago, IL.
Parker, J.C. (2008), Fagade Attachments to Steel-Framed Buildings, Design Guide 22,
AISC, Chicago, IL.
RCSC (2009), Specification for StructuralJoints Using High-Strength Bolts, Research
Council on Structural Connections, Chicago, IL.
Ricker, D.T. (1988), "Field Welding to Existing Structures," Engineering Journal, AISC,
Vol. 25, No. 1, 1st Quarter, pp. 1-16.
Rolfe, S.T. (1977), "Fracture and Fatigue Control in Steel Structures," Engineering Journal,
AISC, Vol. 14, No. 1, 1st Quarter, pp. 2-15.
Rongoe, J. (1996), "Design Guidelines for Continuous Beams Supporting Steel Joist
Roof Structures," Proceedings of the AISC National Steel Construction Conference,
pp. 23.1-23.44, AISC, Chicago, IL.
Ruby, D.I. (2008), Constructability of Structural Steel Buildings, Design Guide 23, AISC,
Chicago, IL.
Ruddy, J.L. (1986), "Ponding of Concrete Deck Floors," Engineering Journal, AISC,
Vol. 23, No. 3, 3rd Quarter, pp. 107-115.
Ruddy, J.L., Mario, J.P, loannides, S.A and Alfawakhiri, F. (2003), Fire Resistance of
Structural Steel Framing, Design Guide 19, AISC, Chicago, IL.
Sabelli, R. and Bruneau, M. (2006), Steel Plate Shear Walls, Design Guide 20, AISC,
Chicago, IL.
Seaburg, P.A. and Carter, C.J. (1997), Torsional Armlysis of Structural Steel Members,
Design Guide 9, AISC, Chicago, IL.
SSPC (2000), Systems and Specifications: SSPC Painting Manual, Volume II, 8th Edition,
The Society for Protective Coatings, Pittsburgh, PA.
Thornton, W.A. (1995), "Connections; Art, Science, and Information in the Quest for
Economy and Safety," Engineering Journal, AISC, Vol 32, No. 4,4th Quarter, pp. 132-144.
Tide, R.H.R. (1990), "Reinforcing Steel Members and the Effects of Welding," Engineering
7oMma/, AISC, Vol. 27, No. 4, 4th Quarter, pp. 129-131.
USGSA (2003), "Progressive Collapse Analysis and Design Guidelines for New Federal
Office Buildings and Major Modernization Projects," U.S. General Services
Administration, Washington, DC.
West, M.A., Fisher, J.M. and GrifFis, L.G. (2003), Serviceability Design Considerations for
Steel Buildings, Design Guide 3, 2nd Ed., AISC, Chicago, IL.
Wexler, N. and Lin, FB. (2002), Staggered Truss Framing System.s, Design Guide 14, AISC,
Chicago, IL.
AMERICAN INSTITUTE OF STEEL CoNSTRUcrioN

TABLES FOR THE GENERAL DESIGN AND SPECIFICATION OF MATERIALS 2-47
Table 2-2
Summary Comparison of Methods
for Stability Analysis and Design
Direct Analysis
Method
Effective Lengtii
IVIethod
First-Order Analysis
IVIethod
Limitations on Use' None Aind/AuiS 1.5
A2„<,/A,S,<1.5
a/J/PyS 0.5
Analysis Type Second-order elastic" First-order elastic
Geometry of
Structure
All three methods use the undeformed geometry in tiie analysis.
Minimum or
Additional Uteral
Loads Required
in ttie Analysis
Minimum;' 0.2%
of the story
gravity load
Minimum; 0.2%
of the story
gravity load
Additive; at least
0.42% of the
story gravity load
IVIember Stiffnesses
Used in the Analysis
Reduced EA and B Nominal £4 and H
K= 1 for braced frames. For
Design of Columns /(•= 1 for all frames moment frames, determine K
from sidesway buckling analysis"
/C=1 for all frames®
Specification
Reference for
Method
Chapter C Appendix Section 7,2 Appendix Section 7.3
' A2„rf/4ij(is the ratio of second-order drift to first-order drift, which can be taken to be equal to Bt calculated per Appendix 8. Ajnif/Aisiis
determined using LRFD load combinations or a multiple of 1.6 times ASD load combinations.
' Either a general second-order analysis method or second-order analysis by amplified first-order analysis (the "S1-62 method" described in
Appendix 8) can be used.
' This notional load Is additive if Ajno/Aist >1.5.
" /C=1 ispermittedformomentframeswhenA2„s/Ais(<1.1.
® An additional amplification for member curvature effects Is required for columns in moment frames.
I
Table 2-3
AISI Standard Nomenclature
for Flat-Rolled Carbon Steel
Width,in.
Thickness, in. To OverSVa Over 6 Overs Over 12 Over 48
aVzincl. To 6 To 8 To 12 To 48
0.2300 & thicker Bar Bar Bar Plate Plate Plate
0.2299 to 0.2031 Bar Bar Strip Strip Sheet Plate
0.2030 to 0.1800 SMp Strip Strip Strip Sheet Plate
0.1799 to 0.0449 Strip Strip Strip Strip Sheet Sheet
0.0448 to 0.0344 Strip Strip
0.0343 to 0.0255 Strip Hot-rolled sheet and strip not generally produced
0.0254 & thinner
in these widths and thicknesses
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2-48 GENERAL DESIGN CONSIDERATIONS
Table 2-4
Applicable ASTM Specifications
for Various Structural Shapes
Fy mn. Fu
Applicable Shape Series
Yield Tensile HSS
Steel ASTM Stress Stress'
Type Designation (ksi) (ksi) W M s HP c MC L Rect. o
cc
Pipe
A36 36 58-80°
A53 Gr. B 35 60
Gr.B
42 58
A500
Gr.B
46 58
Carbon
A500
Gr.C
46 62
Carbon Gr.C
50 62
A501
Gr.A 36 58
A501
Gr.B 50 70
A529'
Gr.50 50 65-100
A529'
Gr,55 55 70-100
Gr.42 42 60
Gr.50 50 65"
A572 Gr.55 55 70
Gr. 60' 60 75
High-
Gr, 65® 65 80
1, . . 1
Strength
A618'
Gr. 1 & II 50' 70"
Low-
A618'
Gr. Ill 50 65
Alloy
50 50» 60"
A913
60 60 75
A913
65 65 80
70 70 90
A992 50 65'
Corrosion
421 63'
Resistant A242 46" 67'
High- 50' 70'
Strength
A588 50 70
Low-Alloy
A847 50 70
m = Preferred material specification
H = Other applicable material specification, the availability of which should be confirmed prior to specification
• = Material specification does not apply
® IWinimum unless a range is shown.
' fiir shapes over 426 lb/ft, only the minimum of 58 ksi applies.
° For shapes with a flange thickness less than or equal to 1 in. only. To improve weldability, a maximum carbon equivalent can be specified
(per ASTM Supplementary Requirement S78). If desired, maximum tensile stress of 90 ksi can be specified (per ASTM Supplementary
Requirement S79).
" If desired, maximum tensile stress of 70 ksi can be specified (per ASTIVI Supplementary Requirement 891).
• For shapes with a flange thickness less than or equal to 2 in. only.
' ASTM A618 can also be specified as corrosion-resistant; see ASTM A618.
' iMinimum applies for walls nominally ?<-cn. thick and under, for mil thicknesses over in., 46 ksi and F„ =» 67 ksi.
'' if desired, maximum yield stress of 65 ksi and maximum yleld-to-tensile strength ratio of 0.85 can he specified (per ASTM Supplementary
Requirement 875).
' A maximum yield-to-tensile strength ratio of 0.85 and carbon equivalent formula are included as mandatory in ASTM A992.
' For shapes with a flange thickness greater than 2 in. only.
" f=or shapes with a flange thickness greater than 1 'A in. and less than or equal to 2 in, only
' For shapes with a flange thickness less than or equal to 1V4 in. only
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

TABLES FOR THE GENERAL DESIGN AND SPECIFICATION OF MATERIALS 2-49
Table 2-5
Applicable ASTM Specifications
for Plates and Bars
steel
Type
ASTM
Designation
FfMm.
Yield
Stcess
(ksl)
Fu
Tensile
Stress'
(ksi)
Plates and Bars |
steel
Type
ASTM
Designation
FfMm.
Yield
Stcess
(ksl)
Fu
Tensile
Stress'
(ksi)
to
0.75
incl.
oyer
0.75
to
1.25
over
1.25
to
over
to2
incl.
over
2 to
2.5
incl.
over
2.5
to 4
incl.
over
4to
5
incl.
met
5 to
6
incl.
over
6to
8
incl.
over
8
Carton ,
A36
32; • 58-80
Carton ,
A36
36 58-80
Carton ,
A529
Gr.50 50 70-100 *
Carton ,
A529
Gr.55 55 70-100
.i
High-
Slrengtli
Low-
Alloy
A572
Gr.42 42 60 ••
j ^ ^ * *
High-
Slrengtli
Low-
Alloy
A572
Gr.50 50 65
High-
Slrengtli
Low-
Alloy
A572 Gr.55 55 70
High-
Slrengtli
Low-
Alloy
A572
Gr60 60 75 •
High-
Slrengtli
Low-
Alloy
A572
Gr.65 65 80
Corrosion
Resistant
High-
Strength
lj)w-Alloy
A242
42 63
^ J
J
Corrosion
Resistant
High-
Strength
lj)w-Alloy
A242 46 67 :
Corrosion
Resistant
High-
Strength
lj)w-Alloy
A242
50. . 70
Corrosion
Resistant
High-
Strength
lj)w-Alloy A588
: 42 , 63
Corrosion
Resistant
High-
Strength
lj)w-Alloy A588 46 67
Corrosion
Resistant
High-
Strength
lj)w-Alloy A588
50 70-
Quenched
and
Tempered
Alloy
A514=
90 100-130
Quenched
and
Tempered
Alloy
A514=
100 110-130
H
Quenched
and
Tempered
Low-Alloy
A852= 70 90-110
H = Preferred material specification
^ = Other applicable material specitication, the availability of which should be confirmed prior to specification
• = Material specification does not apply
" Minimum unless a range is shown.
' Applicable to bar^ only above 1-in. thickness.
' Available as plates only.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2-50 GENERAL DESIGN CONSIDERATIONS
Table 2-6
Applicable ASTM Specifications for
Various Types of Structural Fasteners
High-
Strength
Bolts
S2
Anchor Rods
<o'o V) A x: «
Fy
IVIin.
•s
c
&
o
CO II
09 lUi
tc
•o 1
Yield Tensile
1
11
21
1
i
S
X %
xs
1
xs
ASTM
Designation
Stress
(ksi)
Stress'
(ksi)
Diameter Range
(in.) 1
11
21
1
M
•s
a li 1 5) 5
xs
1
X i£i>a
A108 — 65 0.375 to 0.75, ind.
KS25'
— 105 over 1 to 1.5, ind. •
KS25'
— 120 0.5to1,incl. •
— 150 0.5 to 1.5 •
F1852'
105 1.125 •
F1852'
— 120 0.5 to 1, ind. •
Fazao" — 150 0.5 to 1.125, ind. •
Aig4 Gr.2H — — 0.25 to 4
A563 — — 0.25 to 4
F436'' — — 0.25 to 4 H
Fg59 — — 0.5 to 1,5
A36 36 58-80 to 10
— 100 over 4 to 7
A193 Gr,B7' — 115 over 2.5 to 4
— 125 2.5 and under
A307Gr.A _ 60 0.25 to 4
n
A354 Gr. BD
— 140 2.5to4,incl.
m
A354 Gr. BD
— 150 0.25 to 2.5, ind.
— 90 1.75 to 3, ind.
, C
B •
A449 _ 105 1.125 to 1.5, ind.
c
m
— 120 0.25 to 1, ind.
c
6r.42 42 60 to 6
Gr.60 50 65 to 4
A572 Gr.55 55 70 to 2
Gr.eo 60 75 to 1.25
6r.65 65 80 to 1.25
42 63 Over 5 to 8, incl.
A538 46 67 Over 4 to 5, ind.
BP
50 70 4 and under
A637 105 150 max. 0.625 to 3
F1554 Gr.36 36 58-80 0.25 to 4 •
Gr.55 55 75-95 0.25 to 4 • •
m
Gr.105 105 125-150 0.25 to 3 T
S = Preferred material specification
B = Ottier applicable material specification, the availability of which should be confirmed prior to specification
• = Material specification does not apply
— Indicates that a value is not specified in the material specification.
" Minimum unless a range is shown or maximum (max.) is indicated.
" Special washer requirements may apply per RCSC Specificslion Table 6.1 for some steel-to-
anctior-rod applications.
' See AISC Spsciflcation Section J3.1 for limitations on use of ASTM A449 bolts.
' When atmospheric corrosion resistance is desired, Type 3 can be specified.
® For anchor rods with temperature and corrosion resistance characteristics.
steel bolting applications and per Part 14 for
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

TABLES FOR THE GENERAL DESIGN AND SPECIFICATION OF MATERIALS 2-51
Table 2-7
Metal Fastener Compatibility
to Resist Corrosion
Fastener Metal
Base Metal
Zinc and
Galvanized
Stfifii
Aluminum
and
Aluminum
Alloys
Steel and
Cast Iron
Brasses,
Copper,
Bronzes,
Monel
Martensitic
Stainless
Steel
(Type 410)
Austenitic
Stainless
Steel (Type
302/304,
303,305)
Zinc and Galvanized Steel A B B c c c
Aluminum and Aluminum
Alloys
A A B c
Not
Recommended
B
Steel and Cast Iron A,D A A c c B
Tertie (Lead-Tin) Plated
Steel Sheets
AD,E A,E A,E „ c c B
Brasses, Copper, Bronzes,
Monel
A, D,E A,E A,E A A B
Ferritic Stainless ^el
(Type 430)
A,D,E . A,E A,E A A A
Austenitlc. Stainless Steel
(Type 302/304)
A,D,E A,E A,E A,E A A
KEY
A. Tile con'osion of ,the base metal is not increased by the fastener.
B. Tile corrosion of the base metal is marginally increased by the fastener.
C. The corrosion of the base metal may be martffldly increased by the fastener material.
D. Ttie plating on the fastener Is rapidly consumed, leaving the bare fastener metal.
E. The corrosion of the fastener is increased by the base metal.
MOTE; Surface treatment and environment can change activity. For a more thorough understanding of metal corrosion in construction
materials, please consult a full listing of tiie galvanic series of metals and alloys.
Note; Reprinted from the Specialty Steel Wustiy of North America Stainless StesI Fasteners Designer's HamlbDot<.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2-52 GENERAL DESIGN CONSIDERATIONS
Table 2-8
Summary of Sutface
Preparation Specifications
SSPC
Specification
No. Title Description
SP1
Solvent
Cleaning
Removal of oil, grease, dirt, soil, salts and contaminants by cleaning witli solvent,
vapor, alkali, emulson or steam.
SP2
Hand-Tool
Cleaning
Removal of all loose rust, loose mill scale and loose paint to degree specified, by
hand-ctiipping, scraping, sanding and wire brushing.
SP3
^ Power-Tool
Cleaning
Removal of all loose rust, loose mill scale and loose paint to degree specified, by
power-tool chipping, descaling, sanding, wire brushing, and grinding.
SP5/NACE No.1
Metal Blast
Cleaning
Removal of all visible rust, mill scale, paint and foreign matter by blast-cleaning
by wheel or nozzle (dry or wet) using sand, grit or shot. (For very corrosive
atmospheres where high cost of cleaning is warranted.)
SP6/NACE ND,3
Commercial Blast-
Cleaning
Blast-cleaning until at least two-thirds of the surface area is free of all visible
residues. (For conditions where thoroughly cleaned surface is required.)
SP7/NACE No. 4
Brusii-Off Blast-
Cleaning
Blast-cleaning of all except tightly adhering residues of mill scale, rust and
coatings, exposing numerous evenly distributed flecks of underlying metal.
SP8 Pickling
Complete removal of rust and mill scale by acid-pickling, duplex-pickling or
electrolyte pickling.
SP10/NACE No.2
Near-White
Blast-Cleaning
Blast-cleaning to nearly white metal cleanliness, until at least 95% of the
surface area is free of all visible residues. (I^or high humidity, chemical
atmospfiere, marine or other corrosive environments.)
SP11
Power-Tool
Cleaning to
Bare Metal
Complete removal of all rust, scale and paint by power tools, with resultant
surface profile.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

. 3-1
PARTS
DESIGN OF FLEXURAL MEMBERS
SCOPE ..........3-4
SECTION PROPERTIES AND AREAS 3-4
For Flexure 3-4
For Shear 3-4
FLEXURAL STRENGTH 3-4
Braced, Compact Flexural Members 3-4
Unbraced Flexural Member? 3-4
Noncompact or Slender Cross Sections 3-4
Available Flexural Strength for Weak-Axis Bending 3-4
LOCAL BUCKLING 3-6
Determining the Width-to-Thickness Ratios of the Cross Section 3-6
Classification of Cross Sections 3-6
LATERAL-TORSIONAL BUCKLING 3-6
Classification of Spans for Flexure 3-6
Consideration of Moment Gradient 3--6
AVAILABLE SHEAR STRENGTH 3-7
STEEL W-SHAPE BEAMS WITH COMPOSITE SLABS 3-7
Concrete Slab Effective Width 3-7
Steel Anchors 3-7
Available Flexural Strength for Positive Moment •. 3-7
Shored and Unshored Construction 3-8
Available Shear Strength 3-8
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS 3-8
Special Requirements for Heavy Shapes and Plates 3-8
Serviceability 3-8
DESIGN TABLE DISCUSSION 3-9
Flexural Design Tables 3-9
W-Shape Selection Tables - 3-9
Maximum Total Uniform Load Tables 3-10
X.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

3-2 DESIGN OF FLEXURAL MEMBERS
Plots of Available Flexural Strength vs. Unbraced Length 3-11
Available Flexural Strength of HSS 3-11
Strength of Other Flexural Members ^ 3-12
Composite Beam Selection Tables 3-12
Beam Diagrams and Formulas 3-16
PART 3 REFERENCES 3-17
DESIGN TABLES 3-18
Flexural Design Tables 3-18
Table 3-1. Values of Cj, for Simply Supported Beams 3-18
W-Shape Selection Tables 3-19
Table 3-2. W-Shapes~Selection by Z^ 3-19
Table 3-3. W-Shapes~Selection by 3-28
Table 3-4. W-Shapes~Selection by Zy 3-30
Table 3-5. W-Shapes-Selection by 3-33
Maximum Total Uniform Load Tables 3-35
Table 3-6. W-Shapes—Maximum Total Uniform Load 3-35
Table 3-7. S-Shapes—Maximum Total Uniform Load 3-80
Table 3-8. C-Shapes—Maximum Total Uniform Load 3-85
Table 3-9. MC-Shapes-Maximum Total Uniform Load 3-91
Plots of Available Flexural Strength vs. Unbraced Length 3-99
Table 3-10. W-Shapes—Plots of Available Moment vs. Unbraced Length 3-99
Table 3-11. C- and MC-Shapes—Plots of Available Moment vs.
Unbraced Length 3-135
Available Flexural Strength of HSS 3-143
Table 3-12, Rectangular HSS-Available Flexural Strength 3-143
Table 3-13. Square HSS-Available Hexural Strength 3-147
Table 3-14. Round HSS-Available Flexural Strength 3-148
Table 3-15. Pipe-Available Flexural Strength 3-151
Strength of Other Flexural Members 3-152
Tables 3-16 and 3-17. Available Shear Stress in Plate Girders 3-152
Table 3-18. Floor Plates 3-156
Composite Beam Selection Tables 3-158
Table 3-19. Composite W-Shapes 3-158
Table 3-20. Lower-Bound Elastic Moment of Inertia 3-192
Table 3-21. Nominal Horizontal Shear Strength for One Steel Headed
StudAnchor,!2„ .3-209
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

3-3 DESIGN OF FLEXURAL MEMBERS
Beam Diagrams and Formulas • 3-210
Table 3-22a. Concentrated Load Equivalents :............. 3-210
Table 3-22b. Cantilevered Beams 3-211
Table 3-22c. Continuous Beams 3-212
Table 3-23. Shears, Moments and Deflections 3-213
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

3-4 DESIGN OF FLEXURAL MEMBERS
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of flexural members subject to uniaxial flexure without axial forces or
torsion. For the design of members subject to biaxial flexure and/or flexure in combination
with axial tension or compression and/or torsion, see Part 6.
SECTION PROPERTIES AND AREAS
For Flexure
Flexural design properties are based upon the full cross section with no reduction for bolt
holes when the limitations in AISC Specification Section F13.1(a) are satisfied. Otherwise,
the flexural design properties are based upon a flexural rupture check given in AISC
Specification Section F13.1(b).
For Shear
For shear, the area is determined per AISC Specification Chapter G.
FLEXURAL STRENGTH
The nominal flexural strength of W-shapes is illustrated as a function of the unbraced length.
Lb, in Figure 3-1. The available strength is determined as (t)M„ or M„/Q, which must equal
or exceed the required strength (bending moment), Mu or Ma, respectively. The available
flexural strength, (t)M„ or M„/n, is determined per AISC Specification Chapter F. Table User
Note Fl.l outlines the sections of Chapter F and the corresponding limit states applicable to
each member type.
Braced, Compact Flexural Members
When flexural members are braced (Li, < Lp) and compact (A, < A^), yielding must be con-
sidered in the nominal moment strength of the member, in accordance with the requirements
of AISC Specification Chapter F.
Unbraced Flexural Members
When flexural members are unbraced (Li, > Lp), have flange width-to-thickness ratios such
that X>Xp,oi have web width-to-thickness ratios such that X > Xp, lateral-torsional and elas-
tic buckling effects must be considered in the calculation of the nominal moment strength
of the member.
Noncompact or Slender Cross Sections
For flexural members that have width-to-thickness ratios such that X > Xp, local buckling
must be considered in the calculation of the nominal moment strength of the member.
Available Flexural Strength for Weak-Axis Bending
The design of flexural members subject to weak-axis bending is similar to that for strong-
axis bending, except that lateral-torsional buckling and web local buckling do not apply. See
AISC Specification Section F6.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

FLEXURAL STRENGTH 3-5
M, = 0.7 FS,
compact
noncom:


act
A




j
\ N
\
\ V
\
\ N
\
\
V
X
\ ^
s
X.
1 .
CT = 1.0
1-p l;
0.7F4
Jc
i
Jc
+ 6.76
Mr ==0.7 FyS^
For cross sections with noncompact flanges:
X,f-Xpf)
(5/3ec. Eq. F2-5)
Eq. F2-6)
(3-1)
(from Spec. Eq.F3-l)
(3-2)
Fig. 3'1. General available flexural. strength of beams.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-6 DESIGN OF FLEXURAL MEMBERS
LOCAL BUCKLING
Determining the Width-to-Thicl<ness Ratios
of the Cross Section
Flexural members are classified for flexure on the basis of the width-to-thickness ratios of
the various elements of the cross section. The width-to-thickness ratio, X, is determined for
each element of the cross section per AISC Specification Section B4.1.
Classification of Cross Sections
Cross sections are classified as follows:
• Flexural members are compact (the plastic moment can be reached without local buck-
ling) when X is equal to or less than Xp and the flange(s) are continuously connected to
the web(s).
• Flexural members are noncompact (local buckling will occur, but only after initial
yielding) when X exceeds Xp but is equal to or less than Xr-
• Flexural members are slender-element cross sections (local buckling will occur prior to
yielding) when X exceeds X^.
The values of Xp and X^ are determined per AISC Specification Section B4.1.
LATERAL-TORSIONAL BUCKLING
Classification of Spans for Flexure
Flexural members bent about their strong axis are classified on the basis of the length, Lb,
between braced points. Braced points are points at which support resistance against lateral-
torsional buckling is provided per AISC Specification Appendix 6, Section 6.3. Classifications
are determined as follows: •
• lfLi,< Lp, flexural member is not subject to lateral-torsional buckling.
• If Lp< Lb < Lf, flexural member is subject to inelastic lateral-torsional buckling.
• If Lft > Lr, flexural member is subject to elastic lateral-torsional buckling.
The values of Lp and Lr are determined per AISC Specification Chapter F. These values are
presented in Tables 3-2, 3-6, 3-7, 3-8, 3-9, 3-10 and 3-11. Note that for cross sections with
noncompact flanges, the value given for Lp in these tables is Lj, as given in Equation 3-2 of
Figure 3-1. In Tables 3-10 and 3-11, Lp is defined by • and L^ by o.
Lateral-torsional buckling does not apply to flexural members bent about their weak axis or
HSS bent about either axis, per AISC Specification Sections F6, F7 and F8.
Consideration of Moment Gradient
When Li,> Lp, the moment gradient between braced points can be considered in the deter-
mination of the available strength using the lateral-torsional buckling modification factor,
Ch, herein referred to as the LTB modification factor. In the case of a uniform moment
between braced points causing single-curvature of the member, Ct-1.0. This represents the
worst case and Q can be conservatively taken equal to 1.0 for use with the maximum
moment between braced points in most designs. See AISC Specification Commentary
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

STEEL W-SHAPE BEAMS WITH COMPOSITE SLABS 3-7
Section F1 for further discussion. A nonuniform moment gradient between braced points can
be considered using Cf, calculated as given in AISC Specification Equation Fl-1. Exceptions
are provided as follows:
1. As an alternative, when the moment diagram between braced points is a straight line,
Cb can be calculated as given in AISC Specification Commentary Equation C-Fl-1.
2. For cantilevers or overhangs where the free end is unbraced, Cj, = 1.0 per AISC
Specification SsctionVl.
3. For tees with the stem in compression, Cj, = 1.0 as recommended in AISC Specification
Commentary Section F9.
AVAILABLE SHEAR STRENGTH
For flexural members, the available shear strength, (t)V„ or VJQ,, which must equal or
exceed the required strength, V„ or Va, respectively, is determined in accordance with AISC
Specification Chapter G. Values of ^Vn and VJO. can be found in Tables 3-2, 3-6,3-7, 3-8
and 3-9. '
STEEL W-SHAPE BEAMS WITH COMPOSITE SLABS
The following pertains to W-shapes with composite concrete slabs in regions of positive
moment. For composite flexural members in regions of negative moment, see AISC
Specification Chapter I. For further information on composite design and construction, see
Viest et al. (1997).
Concrete Slab Effective Width
The effective width of a concrete slab acting compositely with a steel beam is determined
per AISC Spmyicarion Section 13.la.
Steel Anchors
Material, placement and spacing requirements for steel anchors kic given in AISC
Specification Chapter I. The nominal shear strength, Q,,, of one steel headed stud anchor is
determined per AISC Specification Section 18.2a and is tabulated for common design con-
ditions in Table 3-21. The horizontal shear strength, V'r, at the steel-concrete interface will
be the least of the concrete crushing strength, steel tensile yield strength, or the shear
strength of the steel anchors. Table 3-21 considers only the limit state of shear strength of a
steel headed stud anchor.
Available Flexural Strength for Positive Moment
The available flexural strength of a composite beam subject to positive moment is deter-
mined per AISC Specification Section 13.2a assuming a uniform compressive stress of
0.85/c' and zero tensile strength in the concrete, and a uniform stress of Fy in the tension area
(and compression area, if any) of the steel section. The position of the plastic neutral axis
(PNA) can then be determined by static equilibrium.
Per AISC Specification Section 13.2d, enough steel anchors must be provided between a
point of maximum moment and the nearest point of zero moment to transfer the total hori-
zontal shear force, V'r, between the steel beam and concrete slab, where V'r is determined per
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

3-8 DESIGN OF FLEXURAL MEMBERS
AISC Specification Section I3.2d(l). Eor partial composite design, the horizontal shear
strength, Vr, controls the available flexural strength of the composite flexural member.
Shored and Unshored Construction
The available flexural strength is identical for both shored and unshored construction. In
unshored construction, issues such as lateral support during construction and construction-
load deflection may require consideration.
Available Shear Strength
Per AISC Specification Section 14, the available shear strength for composite beams is deter-
mined as illustrated previously for steel beams.
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS
The following other specification requirements and design considerations apply to the
design of flexural members.
Special Requirements for Heavy Shapes and Plates
For beams with complete-joint-penetration groove welded joints and made from heavy
shapes with a flange thickness exceeding 2 in., see AISC Specification Sections A3.Ic.
For built-up sections consisting of plates with a thickness exceeding 2 in., see Section
A3.1d.
Serviceability
Serviceability requirements, per AISC Specification Chapter L, should be appropriate for
the application. This includes an appropriate limit on the deflection of the flexural member
and the vibration characteristics of the system of which the flexural member is a part. See
also AISC Design Guide 3, Serviceability Design Considerations for Steel Buildings (West
and Fisher, 2003), AISC Design Guide 5, Low- and Medium-Rise Steel Buildings (Allison,
1991) and AISC Design Guide U, Floor Vibrations Due to Human Activity (Murray et al.,
1997).
The maximum vertical deflection, A, can be calculated using the equations given in
Tables 3-22 and 3-23. Alternatively, for common cases of simple-span beams and I-shaped
members and channels, the following equation can be used:
A = MLV(C,/,) (3-3)
where
M - maximum service-load moment, kip-ft
L = span length, ft
/j = moment of inertia, in."
Q ~ loading coiistant (see Figure 3-2) which includes the numerical constants appropri-
ate for the given loading pattern, E (29,000 ksi), and a ft-to-in. conversion factor of
. l,728in.W.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

DESIGN TABLE DISCUSSION 3-9
DESIGN TABLE DISCUSSION
Flexural Design Tables
Table 3-1. Values of Cb for Simply Supported Beams
Values of the LTB modification factor, Cb, are given for various loading conditions on sim-
ple-span beams in Table 3-1. -
W-Shape Selection Tables
Table 3-2. W-Shapes—Selection by Zx
W-shapes are sorted in descending order by strong-axis flexural strength and then grouped
in ascending order by weight with the lightest W-shape in each range in bold. Strong-axis
available strengths in flexure and shear are given for W-shapes with Fy = 50 ksi (ASTM
A992). Cb is taken as unity.
For compact W-shapes, when L^iLp, the strong-axis available flexural strength, ^i^Mpx
or Mpx/£lb, can be determined using the tabulated strength values. When Lp < Lf, < Lr,
linearly interpolate between the available strength at Lp and the available strength at Lr
as follows;
LRFD ASD
i^bMn = Cb [mpx - ^bBF{Lb - Lp)]
<^bMpx .(3-4a)
Mn ^ [Mpx BF,^ , J
(3-4b)
I 1
Ci=201
P P P
t
q=158 Cr170
Fig. 3-2. Loading constants for use in determining simple beam deflections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-10 DESIGN OF HLEXURAE MEMBERS
where
[Lr-Lp]
Lp = for compact sections, see Figure 3-1, AISC5peayiC(2//on Equation F2-5
= for noncompact sections, Lp-L'p, see Figure 3-1, Equation 3-2
Lr = see Figure 3-1, AlSCSpeci/iCfjrfon Equation F2-6
Mpj, - FyZj, for compact sections (Spec. Eq. F2-1)
= M'p as given in Figure 3-1, AISC Specification Equation F3-1, for noncompact
sections
= Mr, see Figure 3-1
= 0.90
Qi, =1.67
When Lfe > Lr, see Table 3-10.
The strong-axis available shear strength, or can be determined using the
tabulated value.
Table 3-3. W-Shapes—Selection by Ix
W-shapes are sorted in descending order by strong-axis moment of inertia, /x. and then
grouped in ascending order by weight with the lightest W-shape in each range in bold.
Table 3-4. W-Shapes—Selection by Zy
W-shapes are sorted in descending order by weak-axis flexural strength and then grouped in
ascending order by weight with the lightest W-shape in each range in bold. Weak-axis avail-
able strengths in flexure are given for W-shapes with Fy = 50 ksi (ASTM A992). Ch is taken
as unity.
For noncompact W-shapes, the tabulated values of Mny/Sit and ^i,Mny have been adjusted
to account for the noncompactness.
The weak-axis available shear strength must be checked independently.
Table 3-5. W-Shapes—Selection by ly
W-shapes are sorted in descending order by weak-axis moment of inertia, ly, and then
grouped in ascending order by weight with the lightest W-shape in each range in bold.
Maximum Total Uniform Load Tables
Table 3-6. W-Shapes~Maximum Total Uniform Load
Maximum total uniform loads on braced (Lt, < Lp) simple-span beams bent about the strong
axis are given for W-shapes with Fy = 50 ksi (ASTM A992). The uniform load constant,
^bWc or Wc/Qfc (kip-ft), divided by the span length, L (ft), provides the maximum total uni-
form load (kips) for a braced simple-span beam bent about the strong axis. This is based on
the available flexural strength as discussed for Table 3-2.
AMERICAN INSTITUTE OF STIEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 3-11
The strong-axis available shear strength, or VJily, can be determined using the tab-
ulated value. Above the heavy horizontal line in the tables, the maximum total uniform load
is limited by the strong-axis available shear strength.
The tabulated values can also be used for braced simple-span beams with equal concen-
trated loads spaced as shown in Table 3-22a if the concentrated loads are first converted to
an equivalent uniform load. -
Table 3-7. S-Shapes—Maximum Total Uniform Load
Table 3-7 is similar to Table 3-6, except it covers S-shapes with Fy = 36 ksi (ASTM A36).
Table 3-8. C-Shapes—Maximum Total Uniform Load
Table 3-8 is similar to Table 3-6, except it covers C-shapes with Fy = 36 ksi (ASTM A36).
Table 3-9. MC-Shapes—Maximum Total Uniform Load
Table 3-9 is similar to Table 3-6, except it covers MC-shapes with Fy = 36 ksi (ASTM A36).
Plots of Available Flexural Strength vs. Unbraced Length
Table 3-10. W-Shapes—Plots of Available Moment vs.
Unbraced Length
The strong-axis available flexural strength, or Mn/O/,, is plotted as a function of
the unbraced length, Lb, for W-shapes with Fy = 50 ksi (ASTM A992). The.plots show
the total available strength for an unbraced length, The moment demand due to all
applicable load combinations on that segment may not exceed the strength shown for
Lfc. Ci, is taken as unity. .
When the plotted curve is solid, the W-shape for that curve is the lightest cross section
for a given combination of available flexural strength and unbraced length. When the plot-
ted curve is dashed, a lighter W-shape than that for the plotted curve exists. The plotted
curves are arbitrarily terminated at a span-to-depth ratio of 30 in most cases.
Lp is indicated in each curve by a solid dot (•). Lr is indicated in each curve by an open
dot(°).
Table 3-11. C- and MC-Shapes—Plots of Available Moment
vs. Unbraced Length
Table 3-11 is similar to Table 3-10, except it covers C- and MC-shapes with Fy = 36 ksi
(ASTM A36).
Available Flexural Strength of HSS
Table 3-12. Rectangular HSS—Available Flexural Strength
The available flexural strength is tabulated for rectangular HSS with Fy = 46 ksi (ASTM
A500 Grade B) as determined by AISC Specification Section F7. For noncompact and
slender cross sections, the tabulated values of M„IQ.b and i|)i,Af„ have been adjusted to
account for the noncompactness or slendemess.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-12 DESIGN OF FLEXURAL MEMBERS
Table 3-13. Square HSS—Available Flexural Strength
Table 3-13 is similar to Table 3-12, except it covers square HSS with Fy = 46 ksi (ASTM
A500 Grade B).
Table 3<14. Round HSS—Available Flexural Strength
Table 3-14 is similar to Table 3-12,'except it covers round HSS with Fy = 42 ksi (ASTM
A500 Grade B) and the available flexural strength is determined from AISC Specification
Section F8.
Table 3-15. Pipe—Available Flexural Strength
Table 3-15 is similar to Table 3-14, except it covers Pipe with Fy = 35 ksi (ASTM A53
Grade B).
Strength of Other Flexural Members
Tables 3-16 and 3-17. Available Shear Stress
in Plate Girders
The available shear stress for plate girders is plotted as a function of aJh and Ut-w in
Tables 3-16 (for Fy = 36 ksi) and 3-17 (for Fy = 50 ksi). In part a of each table, tension
field action is neglected. In part b of each table, tension field action is considered.
Table 3-18. Floor Plates
The recommended maximum uniformly distributed loads are given in Table 3-18 based
upon simple-span bending between supports. Table 3-18a is for deflection-controlled
applications and should be used with the appropriate serviceability load combinations.
The tabulated values correspond to a maximum deflection of L/100. Table 3-18b is for
flexural-strength-controlled applications and should be used with LRFD or ASD load
combinations. The tabulated values correspond to a maximum bending stress of 24 ksi in
LRFD and 16 ksi in ASD.
Composite Beam Selection Tables
Table 3-19. Composite W-Shapes
The available flexural strength is tabulated for W-shapes with Fy - 50 ksi (ASTM A992).
The values tabulated are independent of the specific concrete flange properties allowing the
designer to select an appropriate combination of concrete strength and slab geometry.
The location of the plastic neutral axis (PNA) is uniquely determined by the horizontal
shear force, tQn, at the interface between the steel section and the concrete slab. With the
knowledge of the location of the PNA and the distance to the centroid of the concrete flange
force, I,Qn, the available flexural strength can be computed.
Available flexural strengths are tabulated for PNA locations at the seven locations shown.
Five of these PNA locations are in the beam flange. The seventh PNA location is computed
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

DESIGN TABLE DISCUSSION 3-13
at the point where XQn equals O.lSFyAg, and the sixth PNA location is halfway between the
location of I,Q„ at point five and point seven. Use of beams with a PNA below location
seven is discouraged.
Table 3-19 can be used to design a composite beam by entering with a required flexural
strength and determining the corresponding required I,Q„. Alternatively, Table 3-19 can be
used to check the flexural strength of a composite beam by selecting a valid value of XQn,
using Table 3-21. With the effective width of the concrete flange, b, determined per AISC
Specification Section 13.la, the appropriate value of the distance from concrete flange force
to beam top flange, Y2, can be determined as
Yl^Ycon-^ (3-6)
where
Ycon = distance from top of steel beam to top of concrete, in.
a • (3-7)
0.85/>
and the available flexural strength, ^hMn or MJQ'b, can then be determined from Table
3-19. Values for the distance from the PNA to the beam top flange, Y\, are also tabulated for
convenience. The parameters Y1 and Y2 are illustrated in Figure 3-3. Note that the model of
the steel beam used in the calculation of the available strength assumes that
As = cross-sectional area of the Steel section, in.^
Af = flange area, in.^ = b/tf
Aw - web area, in.^ = (d - 2k)t^,
Kdep = k- in.
Karea = {As ' lAf - AJI2, in? .
Table 3-20. Lower-Bound Elastic Moment of Inertia
The lower-bound elastic moment of inertia of a composite beam can be used to calculate
deflection. If calculated deflections using the lower-bound moment of inertia are accept-
able, a more complete elastic analysis of the composite section can be avoided. The lower-
bound elastic moment of inertia is based upon the area of the beam and an equivalent con-
crete area equal to 'ZQJFy as illustrated in Figure 3-4, where Fy = 50 ksi. The analysis
includes only the horizontal shear force transferred by the steel anchors supplied. Thus,
only the portion of the concrete flange used to balance Ign is included in the determina-
tion of the lower-bound moment of inertia.
The lower bound moment of inertia, therefore, is the moment of inertia of the cross
section at the required strength level. This is smaller than the corresponding moment of
inertia at the service load where deflection is calculated. The value for the lower bound
moment of inertia can be calculated as illustrated in AISC Specification Commentary
Section 13.2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-14 DESIGN OF FLEXURAL MEMBERS
O.SSfJ
Crof- ^VOTC Cj^
Location of
effective concrete
aj I flange force (SQJ
— BFLMS)
Y1 (varieS'See figm befow)
Y1 = Distance from top of steel flange to any
of the seven tabulated PNA locations
point®) =
JQ„(§point(X)) = 0.25FyA,
Beam
top flange
A.
spaces
PNA RANGE LOCAVONS
(c)
TFL
tf
BFL
Fig. 3-3. Strength design models for composite beams.
AMERJCAN INSTITUTE OF STEEL CONSTROCTION

DESIGN TABLE DISCUSSION 3-15
Table 3-21. Nominal Horizontal Shear Strength for
One Steel Headed Stud Anchor, Qn
The nominal shear strength of steel headed stud anchors is given in Table 3-21, in adcor-
dance with AISC Specification Chapter I. Nominal horizontal shear strength values are
presented based upon the position of the steel anchor, profile of the deck, and orientation of
the deck relative to the steel anchor. See AISC Specification Commentary Figure C-I8.1.
- Equivalent concrete area - ^^
Fy
ENA
Fig. 3-4. Deflection design model for composite beams.
AMERICAN INSTiTUTE OF STEEL CONSTRUCTION

3-16 DESIGN OF FLEXURAL MEMBERS
Beam Diagrams and Formulas
Table 3-22a. Concentrated Load Equivalents
Concentrated load equivalents aie given in Table 3-22a for beams with various support
conditions and loading characteristics.
Table 3-22b. Cantilevered Beams
Coefficients are provided in Table 3-22b for cantilevered beams with various support
conditions and loading characteristics.
Table 3-22c. Continuous Beams
Coefficients are provided in Table 3-22c for continuous beams with various support condi-
tions and loading characteristics.
Table 3-23. Shears, Moments and Deflections
Shears, moments and deflections are given in Table 3-23 for beams with various support
conditions and loading characteristics.
AMERICAN INSTRRIRRE OF STEEL CoNSTRUcmoN

PART 3 REFERENCES 3-17
PART 3 REFERENCES
Allison, H.R. {\99V), Low- and Medium-Rise Steel Buildings, Design Guide 5, American
Institute for Stee! Construction, Chicago, IL.
Murray, TJVI., Allen, D.E. and Ungar, E.E. (1997), Floor Vibrations Due to Human Activity,
Design Guide 11, American Institute for Steel Construction, Chicago, IL.
Viest, LM., Colaco, J.P., Furlong, R.W., Griffis, L.G., Leon, R.T. and Wyllie, L.A., Jr. (1997),
Composite Construction: Design for Buildings, McGraw-Hill, New York, NY.
West, M.A. and Fisher, J.M. (2003), Serviceability Design Considerations for Steel Buildings,
Design Guide 3,2nd Ed., American Institute of Steel Construction, Chicago, IL.
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

3-18 DESIGN OF FLEXURAL MEMBERS
Table 3-1
Values of Cb for Simply Supported Beams
Load
Lateral Bracing
Along Span
None
Load at midpoint
At load point
1.32
1.67 1.67
P |P None
Loads at third points
At load points
Loads symmetricatly placed P
.67 1.00 1.67
P P jP
m
None
Loads at quarter points
At load points
Loads at quarter points
1
1.14
1
]ri.67^1.lj'l.11^1.67|
None
At midpoint
At third points
At quarter
points
At fifth points
1.30 1.30
rxn
1.4S 1.01 1.45
1.62 1.06 1.06 1.52
1.66 1-12 1.00 1.12 1.56
Note; Lateral bracing must always be provided at points of support per AISC Specification Chapter F.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

W-SHAPE SELECTION TABLES 3-19
Fy = 50 ksi
Table 3-2
W-Shapes
Selection by Z* z
Shape
z.
Mpx/Qi, ^Mpx Mrxliii, <I>(,M„ BF/Qi,
h If /x
Shape
z.
kip-ft kip-ft kip-« kip-ft kips kips
h If /x
kips kips Shape
in.' ASD LRFD ASD LRFD ASD LRFD ft ft in." ASD LRFD
W36X652'' 2910 7260 10900 4300 6460 ?46.8 70.3 14.5 77.7 50600 1620 2430
W40X593'' 2760 68^ 10400 4090 6140 55.4 84.4 13.4 63.9 50400 1540 2310
waexszg" 2330 5810 8740 3480 5220 «.4 70.1 14.1 64.3 39600 1280 1920
W40X503'; 2320 5790 8700 3460 5200 55.3 83.1 13.1 55.2 41600 1300 1950
W36x487" 2130 5310 7990 3200 4800 46.0 $9.5 14.0 59.9 36000 .1180 1770
W40X431'' 1960 48® 7350 2950 4440 53.6 80.4 12.9 49.1 34800 1110 1660
W36X441'' 1910 4770 7160 2880 4330 ,45.3 67,9 13.8 55.5 32100 1060 1590
W27X539'' 1890 4720;: 7090 2740 4120 26.2 39,3 12.9 88.5 25600 1280 1920
wwxagT" 1800 4W90 6750 2720 4100 52.4 78.4 12.9 46.7 32000 1000 1500
W40X392'' 1710 41270 6410 ^10 3780 60.8 90.8 9.33 38.3 29900 1180 1770
wsBxags" 1710 4270 6410 2600 3910 44,9- 67,2 13.7 50:9 28500 937 1410
wwxSTa" 1680 4190 6300 2550 3830 51.7 77,9 12.7 44.4 29600 942 ,1410
W14x730'' 1660 4140: 6230 2240 3360 ' 7.35, 11.1 16.6 275 14300 1380 2060
1740x362" 1640 4090 6150 2480 3730 51.4 77.3 12.7 44.0 28900 909 1360
W44x33S 1620 4040 6080 2460 3700 59.4 89.5 12.3 .38.9 31100 9% 1360
W33X387'' 1560 3890 5850 2360 3540 ^38.3 57.8 13.3 53.3 24300 • 907 1360
W36X361'' 1550 3870 5810 2360 3540 43.6.: 65.6 13.6 48.2 25700 851 1280
W14x665" 1480 3690 5550 2bl0 3020 7.10 10.7 16.3 253 12400 1220 1830
W40X324 1460 3640 5480 Z240 3360 49.0 74.1 12.6 41.2 25600 804 1210
W30X391'' 1450 3620 5440 2180 3280 31.4 47.2 13.0 58.8 20700 903 1350
W40X331'' 1430 3570, 5360 ,2110 3180 59.1 88.2 9.08 33.8 24700 996 1490
W33X354'' 1420 3540 5330 2170 3260 37.4 56.6 13.2 49.8 22000 826 1240
W44X290 1410 3520 5290 2170 3260 54.9 82.5 12.3 36.9 27000 754 1130
W40X327'' 1410 3520 5290 2100 3150 58.0 87,4 9.11 33.6 24500 963 1440
W36x330 1410 3520 5290 2170 3260 42.2 63.4 13.5 45.5 23300 769 1150
W40X297 1330 332d, 4990 2040 3070 47.8 71,6 12.5 39,3 23200 740 1110
W30x357" 1320 31290 4950 1990 2990 31.3 47.2 12.9 54.4, 18700 813; 1220
W14x605" 1320 3290 4950 1820 2730 :6.81 10.3 16.1 232 10800 1090 1630
W36x302 1280 3190 4800 1970 2970 40.5 60.8 13.5 43.6 21100 705 1060
ASD
£2(,=1.67
£2, = 1.50
LRFD ' Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section
A3.1C.
$6=0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-20
DESIGN OF FLEXURAL MEMBERS
z
Table 3-2 (continued)
W-Shapes
Selection byZ^
Fy = 50 ksi
ASO
ai=i.67
LRFD
(|,j = 0.90
<1^=1.00
Shape
Zx
Mpx/Qi MM BF/Ot
h Lr Ix
Shape
Zx
kip-ft kip-ft kip-ft kip-ft kips kips
h Lr Ix
kips kips
Shape
in.' ASO LRFD ASO LRFD ASO LRFD ft ft in." ASP LRFD
W44x262 1270 53170 4760 1940 2910 52.6 79.1 12.3 35.7 24100 680r. 1020
W40x294 1270 3170 4760 , 1890 2840 .5^.9 85.4 9.01 31.5 21900 856., 1280
W33x318 1270 •3170 4760 1940 2910 36.8 55,4 13.1 46.5 19500 732 ' 1100
W40X277 1250 •,3120' 4690 1920 2890 '45.8 • 68,7 12,6 38.8 21900 659 989
W27X368'' 1240 3090. 4650 1850 2780 24.9.- 37,6 12,3 62.0 16200 839 1260
W40x278 1190 2970 4460 1780 2680 55.3 82,8 8.90 30.4 20500 828 1240
W36x282 ' i;i90 2970 4460 . 1830 2760 •39.6 V 59.0: 13.4 42.2 19600 -657 985
W30X326'' 1190 2970 4460 1820. 2730 30.3 ' 45.6 12.7 50.6 16800 739 1110
W14x550" 1180 2940 4430 1630 2440 , • 6.65 10.1 15.9 213 9430 , 962.', 1440
W33X291 1160 2890. 4350 1780 2630 36.0 54.2 13,0 43,8 17700 668 1000
W40X264 1130 2820 4240 1700 2550 53.8 81.3 8,90 29,7 19400 768 1150
W27X336'' 1130 2820a 4240 * 1700 2550 :25.0 37.7 12,2 57,0 14600 756" 1130
W24X370'' 1130 ,2820.
4240 1670 2510 20.0. 30.0 , 11.6 69,2 13400 851 1280
W40X249 1120 2790 4200 1730 2610 42.9 , 64.4 125 37.2 19600 591 887
1^44x230" 1100 2740 4130 1700 2560 fee 71.2 12.1 34.3 20800 547 822
W36X262 1100 2740.; 4130 ri700 2550 .3ai 57.9 13,3 40.6 17900 620 -930
W30X292 1060 2640 3980 1:620 2440 29.7 44.9 , 12,6 46,9. 14900 653 979
W14x500" 1050 M6' 3940 1460 2200 • 6.43 9.65 15.6 196 8210 858 1290
W36X256 1040 i2590u 3900 1560 2350 46.5 70.0 9.36 31.5 16800 718. 1080
W33X263 1040 259G 3900 1610 2410 34.1 51.9 12,9 41.6 15900 600 900
W36x247 1030 -2570 3860 1590 2400 37,4 55.7 13,2 39.4 16700 587-' 881
1^/27x307" 1030 2570 3860 1550 2330 25,1 37.7 12,0 52,6 13100 687 1030
W24X335'' 1020 ,2540, 3830 1510 2270 ,19.9 30.2 11.4 63.1 11900 759 1140
W40X235 1010 3790 ;iS30 2300 '51.0 76.7 8,97 28.4 17400 659 ' 989
W40X215 964 2410 3620 1S00 2250 39.4 59.3 12.5 35.6 16700 507 761
W36X231 963 2400 3610 1490 2240 35,7 53,7 13,1 38.6 15600 555 832
W30X261 943 2350 3540 1450 2180 29.1 44,0 12,5 43.4 13100 588 882
W33X241 940 2350 3530 1450 2180 33.5 50.2 12,8 39,7 14200 568 852
W36X232 ' 936 2340 3510 1410 2120
, 44.8
67.0 9,25 30.0 15000 646 968
W27x281 936 234o:; 3510 1420 2140 '24,8; 36.9 12.0 49,1 11900 621 932
W14x455" 936 mo 3510 1320 1980 i6.24. 9.36 15,5 179 7190 768" 1150
W24X306" 922 .23bO: 3460 1380 2070 19.7 29.8 11.3 57,9 10700 683 1020
W40X211 906 2260 3400 1370 2060 48.6 73.1 8.87 27.2 15500 591 887
' Flange thickness greater tfian 2 in. Special requirements may apply per AISC Specmcam Seciioii
A3.1C,
' Shape does not meet the m„ limit for shear in AISC Specification Section G2.1{a) with Fy = 50 ksi;
therefore, iiii,= 0.90 anda^s 1.67.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

W-SHAPE SELECTION TABLES 3-21
Fv = 50 ksi
Table 3-2 (continued)
W-Shapes
Sefection by Z*
z
Shape
Zx
MpxiCib ^bMpx BF/Qi, ^tBF
Lr 'x
WOv
Shape
Zx
kip-ft kip-ft kip-ft kip-ft kips kips
Lr 'x
kips kips Shape
in.' ASD- LRFD ASD LRFD ASD LRFD ft ft in." ASD LRFD
W40x199 869 2170 3260 1340 2020 37.6 56.1 12.2 34.3 14900 503 755
W14x426" 869 2170': 3260 1230 1850 ;; 6.16 9.23 15.3 168 6600 703 1050
W33x221 857 2140 3210 : 1330 1990 31.8 47.8 12.7 38.2 12900 525 788
W27X258 852 ::2130- 3200 1300 1960 ^;24.4 36.5 11.9 45.9 10800 568 853
W30X235 847 ;2iio,- 3180 1310 1960 ;28,0 42.7 12.4 41.0 11700 520 779
W24X279'' 835 2080 3130 1250 1880 M9.7 29.6 11.2 53.4 9600 619 929
W36x210 833 2080 3120 t260 1890 42.3 63.4 . 9.11 28.5 13200 ^09v 914
W14x398" 801 2000;; 3000 1150 1720 5.95 8.96 15.2 158 . 6000 : 648 ; 972
W40x183 774 1930 2900 1180 ir?o 44.1 66.5 8.80 25.8 13200 507 761
W33X201 773 1930' 2900 1200 1800 • 30.3 " 45.6 12.6 36.7 11600 482 723
W27X235 772 1S30. : 2900 1180 1780 24.1 36.0 11,8 42.9 9700 522 784
W36x194 767 1910 2880 '1;160 1740 :40.4 61.4 9.04 27.6 12100 558 838
W18x311" 754 ..1;880.. 2S30 1090 1640 11.2 16.8 10.4 81.1 6970 678 1020
W30X211 751 1874'
2820 T160 1750 ;26.9 40.5 12.3 38.7 10300 479 . 718
W24X250. 744 i;86d 2790 1120 1690 ::19.7 29.3 11.1 48.7 8490 547 821
W14X370?, 736 ,i:84ct: 2760 1590 5.87 8.80 15.1 148 5440 ' 594 •391
W36X182 718 1790 2690 1090 1640 38.9 58.4 9.01 27.0, 11300 526 790
W27X217 711 M770:i 2670 : 1100 1650 23.0 35.1 11.7 40,8 8910 471 707
W40X167 693 1730 2600 1050 1580 41.7 62.5 8.48 24.8 11600 502 753
W18x283" 676 ^1690' 2540 987 1480 >11.1 16.7 10.3 73:6 6170 613 . 920
W30X191 675 ; :168a- 2530 1:050 1580 25.6 ; 38.6 12.2 36,8 9200, 436 654
W24x229 675 1680 . 2530 f030 1540 19.0- 28.9 11.0 45,2 7650 499 749
W14x342" 672 1680;; 2520 075 1460 ; 5.73 8.62 15.0 138 4900 539 809
W36X170 668 :1670' 2510 1010 1530 37.8 56.1 8.94 26,4 10500 492 738
W27x194 631 MSTO : 2370 ; 976 1470 22.3 33.8 11.6 38.2 7860 422 632
W33X169 629 1570 i 2360- 959 1440 34.2 51.5 8.83 26,7 9290 453 679
W36x160 624 1560 2340 947 1420 36.1 54.2 8.83 25.8 9760 468 702
W18x258" 611 1520 2290 898 1350 10.9 16.5 10.2 67.3 5510 550 826
W30X173 607 1510: 2280 945 1420 :24.1 36.8 12.1 35.5 8230 398; 597
W24X207 606 ;15W 2270 927 1390: 18.9::' 28.6 10.9 41.7 6820 : 447, 671
W14x311" 603 1500; 2260 «84 1330 : 5.59 8.44 14.8 125 4330 482: 723
W12x336" 603 1500
; 1
2260 844 1270 4.76 7.19 12.3 150 4060 598:: 897
ASD
£1/1 = 1.67
LRFD ' Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificaHon Section
A3.1C.
If 1,=0.90
<t)v=1.00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-22
DESIGN OF FLEXURAL MEMBERS
z
Table Z-2 (continued)
W-Shapes
Selection by Z*
Fy = 50 ksi
Shape
Zx
BF/Oe
if
Shape
Zx
kip-ft kip-ft kip-ft kip-ft kips kips
if
kips kips Shape
in.' ASD LRFD ASO LRFD ASD LRFD ft ft in.' ASD LRFD
W40X149', 598 1490. 2240 896 1350 38.3 57.4 8.09 23.6 9800 432 650
W36X150 581 1450 2180 880 1320. 34.4 51.9 8.72 25.3 9040 449 673
W27X178 570 1420. 2140 882 1330 21 .e 32,5' 11.5 36.4 7020 403 605
W33X152 559 1390: 2100 851 1280 31.7 48.3 8.72 25.7 8160 425 638
W24X192 559 1390 2100 858 1290 18.4 28.0 10.8 39.7 6260 413 620
W18x234" 549 1370 2060 814 1220 10.8 16,4 10.1 61.4 4900 490 734
W14x283'' 542 1350 2030 802 1200 5.52 8,36 14.7 114 3840 431, 646
W12x305" 537 1340 2010 760 1140 4.64 6.97 12.1 137 3550 531 ^ 797
W21X201 530 1320 1990 805 1210 ,14.5 22.0 10.7 46.2 5310 419. 628
W27X161 515 1280 1930 800 1200 20.6 31,3 11.4 34,7 6310 364 546
W33X141 514 128Q 1930 782 1180 30 J 45.7 8.58 25.0 7450 403 604
W24x176 511 1270 1920 786 1180 18.1 27.7 10.7 37.4 5680 378 567
W36X135' 509 1270 1910 767 1150 31.7 47.8 8.41 24.3 7800 384 577
W30X148 500 1250 1880 • 761 1140 29.0 43.9 8.05 24.9 6680 399 599
W18x211 490 1220 1840 732 1100 10.7 16.2 9.96 55.7 4330 439' 658
W14x257 487 1220 1830 725 1090 5.54 8.28 14.6 104 3400 387 581
W12x279" 481 1200 1800 686 1030 • 4.50 6.75 11.9 126 3110 487 . 730
mum 476 1190 1790 728 1090 14.4 21.8 10.6 42.7 4730 377 565
W24X162 468 -1170 1760 723 1090 ,17.9 26.8 10.8 35,8 5170 353 529
W33X130 467 1170 1750 709 1070 29.3 43.1 8.44 24.2 6710 384 576
W27X146 464 1160 1740 -723 1090 19.9 29,5 11.3 33.3 5660 332 497
W18X192 442 1100 1660 664 998 10.6 16,1 9.85 51.0 3870 392 588
W30X132 437 1t)90 1640 664 998 26.9 40.5 7.95 23.8 5770 373' 559
W14x233 436 1090 1640 655 984 J 5.40 8,15 14.5 95.0 3010 342,.i 514
W21X166 432 1080 1620 664 998 14.2 21,2 10.6 39.9 4280 338;^ 506
W12x252" 428 1070 1610 617 927 4.43 6.68 11.8 114 2720 431
647
W24X146 418 1040 1570 648
974 17.0 25,8 10.6 33.7 4580 321 482
W33X118V 415 1040 1560 627 942 27.2 40.6 8.19 23.4 5900
I 325
489
W30X124 408 1020 1530 620 932 26.1 39.0 7.88 23.2 5360 353 530
W18X175 398 993 1490 601 903 ib.6- 15,8 9.75 46,9 3450
.534
W27X129 ; 395 986 1480 603 906 23.4 35.0- 7.81 24.2 4760 ! 337, 505
W14x211 390 973 1460 590 887 5.30 7,94 14.4 86.6 2660 308:'
462
W12x230" 386 963 1450 561 843 4.31 6,51 11.7 105 2420 390
.!., ^
584
ASO
£16 = 1.67
LRFD
6=0.90
,= 1.00
' Flange thickness greater than 2 in. Special requirements may apply per AISC SpecWcaHon Section.
A3.1C.
• Shape (toes not meet the h/t^ limit for shear in AISC Specification Section G2.1 (a) with F, - 50 l(si;
therefore, ([p„= 0.90 and 1,67,
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

W-SHAPE SELECTION TABLES 3-23
Fy = 50 ksi
Table 3-2 (continued)
W-Shapes
Selection by Zx
z
£ii, = 1.67
£i,= 1.50
IRFO
).90
^1.00
Shape
MfJQi, BF/Qi, ttSf
ip if
Vm/av
Shape kip-ft kip-ft kip-ft kip-ft kips kips
ip if
kips kips Shape
in.' ASD LBFO ASD LRFO ASD LRFD ft ft in." ASD LRFD
W30X116 378 943 1420 575 864 24.8 37.4 7.74 22.6 4930 339 509
W21X147 373 , 931, : 1400 575 864 ;i3.7 20.7 10.4 36.3 3630 318 > 477
W24X131 370 • 923 • : 1390 575 864 16.3 24,6 10.5 31.9 4020 296 : 445
W18X158 356 888 1340 541 81,4 10.5 15.9 9.68 42.8 3060 , 319 ;, 479
W14X193 355 886 1330 541 , 814 bo 7.93 14.3 79.4 2400 276 , 414
W12x210 348 868 1310 510 767 , 4.25 6,45 11.6 95.8 2140 ^47
I i-
520
W30X108 346 863 1300 522 785 23.5 35.5 7.59 22.1 4470 325 487
W27X114 343 856 1290 522 785 21.7 32,8 7.70 23.1;, 4080 311 : 467
W21X132 333 831 f 1250 • 515 774 13.2 19.9 10.3 34.2 3220 283,: 425
W24X117 327 816 1230 508 764,- 15.4 23,3, 10.4 30.4 3540 267 401
W18X143 322 : 803 1210 493 740 10.3 15,7 9.61 39.6 2750 285„: 427
W14X176 . 320 798 1200 491 738 5.20 7,83 14.2 73.2 2140 , ,252 ; 378
W30X99 312 778 1170 470 706 22.2: 33.4 7.42 21.3 3990 309 463
W12X190 311 776 1.170 459 690 4.18 6.33 11.5 87.3; 1890 305 ; 458
W21X122 307 766 -1150 477 ; 717 12.9 19.3 10,3 32.7 2960- ^60 391
W27X102 305 761 , 1140 466 701 20.1 29.8 7,59 22.3 3620 279- 419
W18X130 290 724 . 1090 447 , 672 10.2 15,4 9,54 36.6 2460. 259 388
W24X104 289 721 1080 451 677 14.3 21.3 10.3 29.2 3100 • 241 362
W14X159 ' 287 716; 1080 444 667 ,5.17 7.85 14,1 66.7 1900 224 ' 335
wsoxgo' 283 706 1060 428 643 20.6 30.8 7.38 20.9 3610 249 374
W24x103 280 ' 699 1050 428 643 18.2 27.4 7.03 21.9 3000 270 404
W21X111 279 696 1050 435 654 18.9 10,2 31.2 2670 237 355
W27X94 278 •694 1040 424" 638 I9.r 28,5 7.49 21.6 3270 264 395
W12X170 275 686' 1030 410 617 4.11 6,15 11.4 78.5 1650 269 403
W18X119 262 ' 654 983 403 606 10.1 15,2 9.50 34.3 2190 249 373
W14X145 260 649 975 406 609 ; 5.13 7,69 14,1 61.7 1710 201 302
W24x94 254 634 953 388 583 17.3 26.0 6.99 21.2 2700 250 375
W21X101 253 631 949 396 596 11.8 17.7 10.2 30.1 2420 214 321
W27X84 244 609 915 372 559 17.6 26.4 7.31 20.8 2850 246 368
W12X152 243 606 911 365 549 4.06 6,10 11.3 70.6 1430 238 358
W14X132 234 584, 878 365 549 5.15 7,74 13.3 55.8 1530 i;90 284
W18X106 230 574 863 356 536 9.73 14,6 9.40 31.8 1910 221 331
' Shape does not meet tfie A/fa, limit for shear in AiSC Specification Section G2.1 (a) witli Fy= 50 l(si;
therefore, (fp, = 0.90 and = 1.67.
{
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-24 DESIGN OF FLEXURAL MEMBERS
z
Table 3-2 (continued)
W-Shapes
Selection by Z*
Fy = 50 ksi
Shape
Zx
IV^xlOb
iftMni BF/Qb ^bBF
h if Ir
Shape
Zx
kip-ft kip-ft kip-ft kip-ft kips kips
h if Ir
kips kips Shape
in? ASO" LRFD ASd LRFD ASD LRFD ft ft in." ASD LRFD
W24x84 224 ^559 840 342 515 16.2 24.2 6.89 20.3 2370 227 340
W21X93 221 55T- 829 . 335 504 514.6 • 22.0 6.50 21,3 2070 251 376
W12x136 214 534; 803 ! 325 488 ' 4.02 6.06 11.2 63.2 1240 212 318
W14X120 212 529 795 332 499 ^ 5.09 7.65 13.2 51.9 1380 171 257
W18X97 . 211 526' 791 328 494 ! 9.41 14.1 9.36 30.4 1750 ' 199 -299
W24x76 200 499 750 307 462 1S.1 22.6 6.78 19.S 2100 210 315
W16x100 198 494 743 306 459 ^ 7.86- 11.9 8.87 32.8 1490 199 298
W21x83 196 489 ' 735 299 449 13.8 20.8 6.46 20.2 1830 220 • 331
W14x109 192 47S 720 302 454 5.01 7.54 13.2 48.5 1240 150 225
W18x86 186 464 698 ' 290 436 • 9.01' 13.6 9.29 28.6 1530 177 265
W12x120 186 464 698 .285-- 428 ' 3.94 5.95 11.1 56.5 1070 186-' 279
W24x68 177 442 664 269 404 14.1 21.2 6.61 18.9 1830 197 295
W16x89 175 " 437 . 656 271 407 7.76 11,6 8.80 30.2 1300 i76 265
W14x99' 173 ^ 430 ' 646 274 412 4.9% 7.36 13.5 45.3 1110 m 207
W21x73 172 429 -645 264; 396 12.9 19.4 6.39 19.2 1600 193 289
W12X106 164 ? 409 615 253 381 3.93 5.89 11.0 50.7 933 157-' 236
W18x76 163 407 611 255. 383 8.50 12.8 9.22 27.1 1330 • 155 -232
W21x68 160 399 600 245 368 12.5 ia8 6.36 18.7 1480 181 272
W14x90' 157 382 574 250 375 i82 7.26 15.1 42.5 999 123 185
WZ4X62 153 382 574 229 344 ,16.1 24.1 4.87 14.4 1550 204 306
W18x77 150 374 563 234 352 : 7.34 11.1 8.72 27.8 1110 1'50, 225
W12X96 147 , 367 551 229 344 3.85 5.78 10.9 46.7 833 140 210
W10X112 147 ; 367 551 220 331 2.69 4.03 9.47 64.1 716 172 258
W18x71 146 ; 364 ^ 548 222 333 10.4 15.8 6.00 19.6 1170 183., 275
W21x62 144 359 540 222 333 11.6 17.5 6.25 18.1 1330 168 252
W14x82 139 347; 521 215 323 5.40 8.10 8.76 33.2 881 146 219
W24x55' 134 334 ' 503 199 299 14.7 22.2 4,73 13.9 1350 167 252
W18x65 133 499 204 307 f 9.98 15.0 5.97 18.8 1070 166 248
W12x87 132 i 329 ^' 495 206 310 3.81 5.73 10.8 43.1 740 129 193
W16X67 130 i' 324 ^ 488 . 204 307 6.89 10.4 8,69 26.1 954 129- 193
WlOxlOO 130 : 324 488 196 294 2.64 4.00 9.36 57.9 623 151 226
W21X57 129 322 484 194 291 13.4 20.3 4.77 14.3 1170 1:71 256
ASD
nj,=i.67
LRFD
i|)4 = 0.90
4>,= 1.00
' Shape exceeds compact limit for flexure with F,= 50 ksi.
• Shape does not meet the hlt„ limit for shear in NSC Specification SecSon G2.1(a) with Fy= 50 ksi;
therefore, 0.90 and 1.67.
AMERICAIM INSTITUTE OF STBEL CONSTRUCTION

W-SHAPE SELECTION TABLES 3-25
Fy = 50 ksi
ASD
04 = 1.67
fl,= 1.50
Table 3-2 (continued)
W-Shapes
Selection by Z*
z.
Shape
Mux/Cii, BF/Qt ^tBF
Lp
L, 'x
Vn^lCly
Shape kip-ft kip-ft kip-ft kip-ft kips kips
Lp
L, 'x
kips kips Shape
in.3 ASO LRFD ASO LRFD ASD LRFD ft ft in." ASD LRFD
W21X55 126 ' 314 473 192 289 10.8 16.3 6.11 17.4 1140 156 234
W14x74 126 314 473 196 294 5.31 8.05 8.76 31.0 795 '1^8 192
W18x60 123 • 307 • 461 189 284 9.62 14.4 5.93 18.2 984 151 227
W12x79 119 ; 297- 446 187 281 3.78' 5.67 10.8 39.9 662 117 175
W14x68 115 ^ 287: 431 180 270 • 5.19 7.81 8.69 29.3 722 116 174
W10x88 113 J82 424 172 259 2.62 3.94 9,29 51,2 534 131 " 196
W18X55 112 279 420 172 258 9.15 13.8 5.90 17.6 890 141 : 212
W21x50 110 274. 413 165 248 ,12.1 18.3 4.59 13.6 984 m 237
W12x72 108 269 405 170 256 • 3.69 5.56 10.7 37.5 597 106 159
W21X48' 107 265 398 162 244 9.8^ 14.8 6.09 16.5 959 144 21,6
W16x57 105 : 262 394 161 242 7.98, 12.0 5.65 18.3 758 141 212
W14X61 102 254 383 161 242 4.93 7.48 8.65 27.5 640 104 156
W18x50 101 . 252 • 379 155 233 be 13.2 5.83 16,9 800 192
W10x77 97.6 ; 244. ' . 366 150 225 : 2,60 3.90 9.18 45,3 455 112 • 169
W12x65' 96.8 356 154 . 231, 3.58 5,39 11.9 35.1, 533, 94.4 142
W21x44 95.4 ; 238 358 143 214 11.1 16.8 4,45 13.0 843 145 217
W16x50 92.0 , 230 345 141 213 7.69,. 11.4 5.62 17.2 659 124 186
W18x46 90.7 ; 226 340 138 , 207 9.63 14,6 4.56 13.7 712 .130 , 195
W14x53 87.1 ,217/ 327
. 136
204 5.22 7,93 6,78 •22.3: 541 •103 . 154
W12x58 86.4 216 324 136 205 3.82 5,69 8.87 29.8 475 87.8 132
W10x68 85.3 320 132 199 2.58 3,85 9.15 40.6 394 • 97.8 147
W16X45 82.3 205 309 127 191 7.12 10.8 5,55 16.5 586 111 167
W18x40 784 196 294 119 180 8.94 13.2 4.49 13.1 612 113 169
W14X48 78,4 ' 196 294 123 184 5.09 7.67 6.75 21.1 484 93.8 141
W12x53 77.9 194 292 123 185 3.65 5,50 8.76 28,2 425 83.5 125
W10x60 74.6 ^ 186 280 116 175 2.54 3,82 9.08 36,6 341 85.7 129
W16x40 73.0 f 182 274 113 170 6.67 10.0 5.55 15.9 518 97.6 146
W12x50 71.9 U9 270 ii2 169 3.97 5,98 6.92 23.8 391 s 90.3 135
W8x67 70.1 ,175 263 105 159 -1.75 2,59 7.49 47.6 272 103 154
W14x43 69.6 174 261 109 164 ' 4.88 7,28 6.68 20.0 428 83.6 1Z5
W10x54 66.6 166' 250 105 158 2.48 3,75 9.04 33.6 303 74,7 112
LRFD
4)/, = 0.00
ii)v = 1.00
' Shape exceeds compact limit for flexure wiih fv= 50 ksl.
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-26
DESIGN OF FLEXURAL MEMBERS
z
Table 3-2 (continued)
W-Shapes
Selection by Zx
Fy = 50 ksi
Shape
z.
Mf^/ai, <|)tAfpx Mncliib BF/ilb
L, Lr Ix
Shape
z.
kip-ft kip-ft Wp-ft kip-ft kips kips
L, Lr Ix
kips kips
Shape
in; ASD LRFD ASO LRFD ASD LRFD « ft in." ASO LRFD
W18>c35 66.5 166 ; 249 101 151 8.14 12.3 4.31 12.3 510 106 159
W12x45 64.2 160 241 10 151 3.80 5.80 6.89 22.4 348 81.1 122
W16x36 64.0 160 240 98.7 148 6.24 9.36 5.37 15.2 448 f 93.8 141
W14X38 61.5 153. < 231 . 95.4 143 5.37 8.20 5.47 16.2 385 / 87.4. 131
:W10x49 60.4 151 227 95,4 143 2.46 3.71 8.97 31,6 272 >68.0 102
W8x58 59.8 149, 224 . 90.6 137 T.70 2.55 7.42 41,6 228 . -89.3 134
W12x40 57.0 142 214 89.9 135 3.66 5.54 6,85 21,1 307 70.2, 105
W10x45 54.9 137 206 85,8 129 2.59 3.89 7,10 26,9 248 70.7" 106
Wl4x34 54.6 136- 205 84.8 128 5.01 7.5S 5.40 15.6 340 79.8 120
W16x31 54.0 13S 203 82.4 124 6.86 10.3 4.13 11.8 375 87.5 131
W12x35 51.2 128' 192 79.6 120 4.34 6.45 5.44 16.6 285 7S,0 113
W8x48 49,0 122 184 75,4 113 1.67 2.55 7.35 35,2 184 : 68.0 ; 102
W14X30 47.3 lis 177 73.4 110 4.63 6.95 5.26 14.9 291 74.5 112
W10x39 46.8 117 176 73.5 111 2.53 3.78 6.99 24,2 209 62,5 93.7
W16X26' 44.2 110 166 67.1 101 5.93 8.98 3.96 11.2 301 70.5 106
W12X30 43.1 108 162 67.4 101 3.97 5.96 5,37 15.6 . 238 64,0 95.9
W14x26 40.2 100 161 61.7 92,7 5.33 8,11 3.81 11.0 245 70.9; 106
W8x40 39.8 99:3 149 62,0 93.2 1.64 2.46 7.21 29.9 146 59.4 89.1
W10X33 38.8 96.8 146 61.1 91.9 2.39 3.62 6.85 21.8 171 56.4 84.7
W12x26 37,2 92.8 140 58.3 87,7 3.61 5,46 5.33 14.9 204 S6.1 84.2
W10X30 36.6 91,3 137 56.6 85.1 3.08 4.61 4.84 16.1 170 63.0; 94.5
W8x35 34.7 86.6 130 54.5 81.9 1.62 2.43 7.17 27.0 127 50.3 75.5
W14x22 33.2 82.8 125 50.6 76.1 4.78 7.27 3.67 10.4 199 63.0 94.5
W10X26 31.3 78.1 117 48.7 73.2 2.91 4.34 4.80 14.9 144 53.6 80,3
W8x3l' 30.4 75.8 114 46.0 72.2 1.58 2.37 7.18 24,8 110 45.6 68.4
W12X22 29.3 73,1 110 44.4 66,7 4.68 7.06 3.00 9.13 156 64.0 95.9
W8x28 27,2 67.9 102 42,4 63.8 1.67: 2.50 5.72 21.0 98.0 45,9;: 68.9
W10X22 26.0 64.9 97.5 40.5 66.9 2.68 4.02 4.70 13.8 118 49,0 73.4
W12X19 24.7 61.6 92.5 37.2 55.9 4.27 a43 Z90 &61 130 57.3 86.0
W8X24 23.1 57.6 86.6 36.5 54.9 1.60 2.40 5.69 18,9 82.7 38.9 58.3
W10x19 21.6 53.9 81.0 32.8 49.4 3.18 4.76 3.09 9.73 96.3 51.0 76,5
W8x21 20.4 50.9 76.5 31.8 47.8 1:.85 2.77 4,45 14.8 75.3 41.4, 62.1
ASD
^4 = 1.67
LRFD
i|>j = 0.9I)
(t.„=1.00
' Shape exceeds compact limit for flexure Willi/>= 50 ksi.
• Shape does not meet the h/t^ limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi;
therefore, i|>v = 0.90 and n, = t .67,
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

W-SHAPE SELECTION TABLES 3-27
Fy = 50 kst
Table 3-2 (continued)
W-Shapes
Selection by Z*
z
Shape
W12x16
W10X17
W12x14'
W8x18
W10x15
W8x15
W10X12'
W8x13
W8x10'
ASD
04 = 1.67
in.'
20.1
18.7
17.4
17.0
16.0
13.6
12.6
11.4
8.87
LRFD
(, = 0.90
kip-ft
ASP
50.1
• 46.7
43.4
42.4
39.9
33.9
31.2'
28.4;-
21.9
kip-ft
LRFD
75.4
70.1
65.3
63.8
60,0
51.0
46.3
42.8
32.9
AVa^
kip-ft
ASD.
29.g
28.3
26.0
26.5
24.1
20.6
19.0
17.3
13.6
kip-ft
LRFD
44.9
42.5
39.1
39.9
36.2
31.0
28.6
26,0
20.5
BF/Qt
kips
ASO
3.80
2.98
3.43
1.74
2.75
1.90
,2.36
1.76
1.54
i/bBF
kips
LRFD
5.73
4.47
5.17
2.61
4,14
2,85
3.53
2.67
2.30
2.73
2.98
2.66
4.34
2.86
3.09
2.87
2.98
3.14
8.05
9.16
7.73
13.5
8.61
10.1
8.05
9,27
8.52
in."
103
81.9
88.6
61.9
68.9
48.0
53.8
39.6
30.8
Vn„IO.i
kips
ASO,
52.8
48.5:
42.8
37.4f
46:0
39.7
37.5
36.8
26.8
kips
LRFD
79.2
72.7
64.3
56.2
68.9
59.6
56.3
55.1
40.2
(
'Shape exceeds compact limit for flexure witti Fy - 50 ksi.
' Shape does not meet the Mt^ limit for shear in AISC Specification Section G2,1 (a) with Fy= 50 ksi;
therefore, it>, = 0,90 and nv= 1.67.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-28
DESIGN OF FLEXURAL MEMBERS
Table 3-3
W-Shapes
Selection by Ix
Shape
Ix
Shape Shape
Ix
Shape
Ix
Shape
in.^
Shape
in."
Shape
in.'
Shape
in."
W36x652^ 50600 W44X230 20800 W40x167 11600 W33X118 5900
^30x391" 20700 W33X201 11600 'W30X132 5770
W40X593'' 50400 W40X278 20500 W36x182 11300 W24x176 5680
W40x249 19600 W27X258 10800 W27X146 5660
W40X503'' 41600 W36x282 19600 W14x605" 10800 W18x258" 5510
waexsag" 39600 W33x318 19500 1^24x306" 10700 W14x370" 5440
W40X264 19400 W36x170 10500 W30X124 5360
W36X487'' 36000 W30x357^ 18700 W30x211 10300 W21x201 5310
W36X262 17900 W24X162 : 5170
W40X431'' 34600 W33x291 17700 W40X149 9800
W36X441'', 32100 W40x235 17400 W36X160 9760 W30x116 4930
W36X256 16800 W27X235 9700 W18x234" 4900
W40x397" 32000 W30X326'' 16800 W24x27g'' 9600 W14x342" 4900
W14x550" 9430 W27X129 4760
W44X335 31100 W40x215 16700 W33X169 9290 W21X182 4730
W40X392'' 29900 W36X247 16700 W30X191 9200 W24X146 4580
W40X372'' 29600 W27X368'' 16200 W36X150 9040
^40x362" 28900 W33X263 15900 W27x217 8910. W30x108 4470
wsexsgs" 28500 W36x231 15600 W24X250 8490 W18x211 4330
W30X173 8230 W14x311" 4330
W44X290 27000 W40X211 1S5Q0 W14x500" 8210 W21x166 4280
W36x36f 25700 W36X232 15000 W33x152 8160 W27x114 4080
W40X324 25600 W27x194 7860 W12x336" 4060
W27X539" 25600 W40X199 14900 W24x131 4020
W40X331'' 24700 W30x292 14900 W36x135 7800
W40X327'' 24500 W27X336'' 14600 W24x229 7650 W30x99 3990
W33X387'' 24300 1^14x730" 14300 W33x141 7450 W18X192 3870
W33X241 14200 W14X455'' 7190 W14x283" 3840
W44X262 24100 W24X370'' 13400 W27x178 7020 W21x147 3630
W36X330 23300 W18x311" 6970 W27X102 3620
VI/40X297 23200 W40X183 13200 W24X207 6820
W33X354'' 22000 W36x210 13200
W40X277 21900 W30X261 13100 W33X130 6710
W40X294 21900 W27x307^ 13100 W30X148 6680
W36X302 21100 W33X221 12900 W14x426" 6600
W14x665'' 12400 W27X161 6310
W36X194 12100 W24X192 6260
W27X281 11900 W18x283" 6170
mAxZZS" 11900 W14x398" 6000
W30x235 11700
' Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.tc.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

W-SHAPE SELECTION TABLES 3-29
Table 3-3 (continued)
W-Shapes
Selection by h
Shape
Ix
Shape
/r
Shape
Ix
Shape
Ix
Shape
in."
Shape
in.'
Shape
in."
Shape
in."
W30X90 3610 W24X68 1830 W21x44 843 W16x26 301
W12x305" 3550 W21x83 1830 W12X96 833 W14x30 291
W24x1T7 3540 W18x97 1750 W18x50 800 W12x35 285
W18x175 3450 W14x145 1710 W14x74 795 W10x49 272
W14x257 3400 W12X170 1650 W16x57 758 W8x67 272
W27x94 3270 W21x73 1600 W12X87 740 W10x45 248
W21X132 3220 W14x68 722
W12x279" 3110 W24X62 1550 W10x112 716 W14x26 245
W24X104 3100 W18x86 1530 W18x46 712 ,W12x30 238
W18x158 3060 W14X132 1530 W12x79 662 W8x58 228
W14x233 3010 W16x100 1490 W16x50 659 W10x39 209
W24X103 3000 W21x68 1480 W14x61 640
W21x122 2960 W12x152 1430 WlOxlOO 623 W12x26 204
W14X120 1380
W27x84 2850 W18x40 612 W14x22 199
W18X143 2750 W24X55 1350 W12x72 597 W8x48 184
W12x252" 2720 W21x62 1330 W16x45 586 W10x33 171
W24x94 . 2700 W18x76 1330 W14x53 541 W10x30 . 170
W21X111 2670 W16x89 1300 W10x88 534
W14x211 2660 W14x109 1240 W12x65 533 W12x22 156
W18X130 ; 2460 W12X136 1240 W8x40 146
W21x101 2420 W21x57 1170 W16x40 518 W10x26 144
W12X230'' 2420 W18x71 1170
W14x193 2400 W18x35 510 W12x19 130
W21X55 1140 W14X48 484 • W8x35 127 ^
W24x84 2370 W16x77 1110 W12X58 475 W10X22 118
W18X119 2190 W14x99 1110 W10x77 455 W8x31 110
W14X176 2140 W18x65 1070 W16x36 448
W12x210 2140 W12X120 1070 W14X43 428 W12x16 103
W14x90 999 W12X53 425 W8x28 98.0
W24x76 2100 W10x68 394 W10x19 96.3
W21x93 2070 W21x50 984 W12X50 391
Wl8x106 1910 W18X60 984 W14X38 385 W12x14 88.6
W14X159 1900 W8x24 82.7
W12X190 1890 W21x48 959 W16X31 375 W10x17 81.9
W16X67 954 W12X45 348 W8x21 75.3
W12X106 933 W10x60 341 W10X15 68.9
W18x55 890 W14x34 340 W8x18 61.9
W14x82 881 W12X40 307
W10x54 303 W10x12 53.8
W8x15 48.0
W8x13 39.6
W8x10 30.8
' flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1 c.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-30
DESIGN OF FLEXURAL MEMBERS
z
Table 3-4
W-Shapes
Selection by Zy
Fy = 50 ksi
Zy 4
MaylQi, (jjjMoy
Shape
Zy
kip-ft kip-ft
Shape
4
kip-ft Idp-ft Shape kip-ft i^ip-ft
in.' ASD LRFD in.^ ASD LRFD ASD LRFD
W14x730" 816 2040 3060 W14x283" 274 684 1030 W14X211 198 484 : 743
W14X66S'' 730 1820 2740
W12x336" 274 684 1030 W30X261 196 489 735
W14X66S'' 730 1820 2740
W40X362" 270 674 1010 W12x252" 196 : 489 • 735
WMxBOS" 652 1630' 2450 W24x370"^^ 267 666 1000 W24x279" 193 482.: 724
W14x550" 2190
W36x330 265 661 994 W36X247 190 474 ' 713
W14x550" 583 1450 2190
W30x326" 252 629 945 W27X258 187 : 467 701
wsexesz" 581 1450; 2180
W27x336" 252 629 945 W18x283" 185 462 694
W14x500" 522 1300 1960 W33x318 250 6^4 938 W44x262 182 454' 683
W40X593'' 481 WO' 1800
W14x257 246 614 923
W40X249
W33x241
182
182
454-
: 454- ^
683
683
W14x455" 468 1170 i 1760 W12x305" 244 609 915
W40X249
W33x241
W36x529" 454 1130: 1700 W36x302 241 601 904 W14x193 180 449 ^ 675
W27X539" 437 10901 1640 W40x324 239 596 896 W12x230" 177 442 664
W14X426" 1080 1630
W24x335" 238 594 893 W36x231 "176 439; 660
W14X426" 434 1080 1630
W44x335 236 58? 885 W30x235 175 437:' 656
W36X487" 412 1030; 1550
W27X307" 227 •566 851 W40x331" 172 423 •636
1^14x398" 402 1000 1510 W33X291 226 •564 848 W24X250 171 • 427'f 641
W40x503" 394 ^ 983: 1480 W36X282 223 556 836 W27x235 168 419 630
W14x370" 370 923 1380
W30X292 223 556 836 W18X258'' 166 : m 623
W14x370" 370 923 1380
W30X292 223
W33x221 164 : 409; 615
W36X441'' 368 918 1380 W14x233 221 551 829
W33x221 164 : 409; 615
W14x342" 843! 1270
W12x279" 220 549 825 W14X176 163 m:
611
W14x342" 338 843! 1270
W40x297 215 536 806 W12x210 159 i 397 596
W40X431" 328 Bis' 1230
W24x306" 214 534 803 W44X230' 157 i 392 589
W36x395" 325 811: 1220
W40x392" 212 519 780 W40x215 156. • 389 585
W33x387" 312 778 1170
W18x311" 207 516 776 W30X211 155 387;' 581
W30X391" 310 773: 1160
W27X281 206 514 773 W27x217 154 384 • 578
WMxSTI" 304 738 1140 W44X290 205 511 769 W24X229 154 ^ 384-• 578
W40X397" 300 749 1130 W40X277 204 509 765 W40X294 150 373 561
W36X361" 293 731 1100 W36X262 204 509 765 W18x234" 149 372 559
W33X354" 282 704 1060 W33x263 202 504 758 W33x201 147 367 551
W30X357'' 279 ' 696^ 1050
W27X368" 279 696; 1050 J. •
W40x372" 277 6911 1040
ASO
aj=i.67
Qt= 1.50
LRFD
4)6 = 0.90
11)^=1.00
' Shape exceeds compact limit tor flexure with 50 ksi.
' Flange thicl<ness greater than 2 in. Special requirements may apply per AISC Specification
Section A3.1C.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

W-SHAPE SELECTION TABLES 3-31
Fy = 50 ksi
Table 3-4 (continued)
W-Shapes
Selection by Zy z
y
Shape kip-ft
ASD
kip-ft
LRFD
Shape
in.'
kip-ft
ASO
kip-ft
IRFD
Shape
in.'
kip-ft
ASD
kip-ft
LRFD
W14x159
W12X190
W40x278
W30X191
W40X199
W36X256
W24X207
W27X194
W21X201
W14X145
W40X264
W18x211
W24X192
W12X170
W30x173
W36X232
W27X178
W21x182
W18X192
W40x235
W24X176
W14x132
W12x152
W27X161
W21X166
W36X210
W18X175
W40X211
W24X162
W14X120
W12X136
W36X194
W27X146
W18X158
W24X146
146
143
140
138
137
137
137
136
133
133
132
132
126
126
123
122
122
119
119
118
115
113
111
109
108
107
106
105
105
102
98.0
97.7
97.7
94.8
93,2
364
^357
348
344
342
342
.3it2
;339
332
332
329
329
314
314
307
304
304
;297
...297
1294
287
282
277
272
269
267
264
262
262
254
245
244
244
237
233
548
536
523
518
514
514
514
510
499
499
495
495
473
473
461
458
458
446
446
443
431
424
416
409
405
401
398
394
394
383
368
366
366
356
350
W14x109
W21X147
W36X182
W40X183
W18X143
W12x120
W33X169
W36x170
W14x99'
W21X132
W24X131
W36X160
W18x130
W40X167
W21X122
W14X90'
W12x106
W33X152
W24x117
W36x150
W10x112
W18x119
W21x111
W30X148
W12x96
W33X141
W24X104
W40x149
W21x101
WlOxlOO
W18X106
92.7
92.6
90.7
88.3.
85.4
85.4
84.4
83.8
83.6
82.3
81.5
77.3
76.7
76.0
75.6
75.6
75.1
73.9
71.4
70.9
69.2
69.1
68.2
68.0
67.5
66.9
62.4
62.2
61.7
61.0
60.5
231
231
226
,220
213
'213
211
209
207
205
203
193
191
190
189
181
187
184
178
177
173
172
170
170
168
167
156
155
154
152
151
348
347
340
331
320
320
317
314
311
309
306
290
288
285
283
273
282
277
268
266
260
259
256
255
253
251
234
233
231
229
227
W12x87
W36X135
W33X130
W30X132
W27x129
W18x97
W16x100
W12x79
W30x124
W10x88
W33x118
W27x114
W30X116
W12x72
W18X86
W16x89
W10x77
W14x82
W12x65'
W30X108
W27X102
W18x76 ^
W24X103
W16x77
W14X74
W10X68
W27x94
W30x99
W24x94
W14x68
W16x67
60.4
'59.7
59.5
58.4
•57.6
55.3
54.9
54.3
54.0
53.1
51.3
49.3
49.2
49.2
48.4
48.1
45.9
44.8
44.1
43.9
43.4
42.2
41.5
41.1
40.5
40.1
38.8
38.6
37.5
36.9
35.5
151
149
148
:146 '
144
138
137 :
135
135
i32
128
123
123
123
'121 •
:12b '
115 ^
'112
107
110 ;
108
105
104
103
101
100
96.8
96.3
9i3.6
92.1
88.6
227
224
223
219
216
207
206
204
203
199
192
185
185
185
182
180
172
168
161
165
T63
158
156
154
152
150
146
145
141
138
133
ASD
ni=i.67
LRFD ' Shape exceeds compact limit tor flexure wltti Fy- 50 ksi.
(ft = 0.90
1(11,= 1.00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-32
DESIGN OF FLEXURAL MEMBERS
z
Table 3-4 (continued)
W-Shapes
Selection by Zy
Fy = 50 ksi
Shape
in.-'
Mny/Clb
kip-ft
ASD
kip-tt
LRFD
Shape
in.'
kip-ft
ASD
kip-ft
LRFD
Shape
in.'
W1Dx60
W30X90
W21x93
W27x84
W14x61
W8x67
W24x84
W12x58
W10x54
W21x83
W12x53
W24x76
W10x49
W8x58
W21x73
W18x7i
W24x68
W21x68
W8x48
W18x65
W14x53
W21x62
W12x50
W18x60
W10x45
W14x48
W12X45
W16x57
W18x55
35.0
34.7
34.7
33.2
32.8
32.7
32.6
32.5
31.3
30.5
29.1
28.6
28.3
27.9
26.6
24.7
24.5
24.4
22.9
22.5
22.0
21.7
21.3
20.6
20.3
19.6
19.0
18.9
18.5
87.3
86.6
86.6
.82.8
.81.8
81.6
81.3
81.1
78.1
76.1
72.6
71.4
70.6
69.6
66.4
61.6
61.1
60.9
57.1
56.1
54.9
54.1
,53.1
51.4
50.6
48.9
47.4
47.2
::46.2
131
130
130
125
123
123
122.
122
117
114
109
107
106
105
. 99.8
92.6
91.9
91.5
85.9
84.4
82.5
81.4
79.9
77.3
76.1
73.5
71.3
70.9
69.4
W8x40
W21x55
W14X43
W10x39
W12x40
W18x50
W16x50
W8x35
W24x62
W21X48'
W21X57
W16X45
W8x31'
W10x33
W24X55
W16x40
W21X50
W14x38
W18x46
W12X35
W16x36
W14x34
W21x44
W8x28
W18x40
W12x30
W14x30
WIOxSO
18.5
18.4
17.3
17.2
16.8
16.6
16.3
16.1
15.7
14.9
14.8
14.5
14.1
14.0
13.3
12.7
12.2
12.1
11.7
11.5
10.8
10.6
10.2
10.1
10.0
9.56
8.99
46.2
45.9 :
43.2i'
42.9
"41.9
41.4"'
40.7"'
40.2
39.1 '
:36.7
36.9
36.2-':
35.1
34.9 .
33.1
'31.7
30.4'
30.2
'29.2
28.7
26.9
26.4
:2i4 :
25.2
25.0 :
23.9
22.4
:22.1
69.4
69.G
64.9
64.5
63.0
62.3
61.1
60.4
58.8
55.2
5.5,5
54.4
52.8
52.5
49,8
47.6
45.8
45.4
43.9
43.1
40.5
39.8
38.2
37.9
37,5
35.9
33.7
33,2
W8x24
W12X26
W18x35
W10X26
W16x31
W10X22
W8x21
W14X26 :
W16X26
W8x18
W14x22
W12X22
W10x19
W12x19
W10x17
W8x1S
WIOxIS
W12X16
W8x13
W12X14
W10x12'
W8x10'
8.57
8,17
8.06
7.50
7,03
6.10
5.69
5,54
5,48
4.66
4.39
3.66
3,35
2.98
2.80
2.67
2.30
2.26
2.15
1.90
1.74
1.66
ASO
ni=i.67
LRFD
' Shape exceeds compact linjit for flexure with Fy = 50 ksi.
6 = 0.90
,= 1.00
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

W-SHAPE SELECTION TABLES 3-33
Table 3-5
W-Shapes
Selection by ly
I
y
Shape
ly
Shape
ly
Shape Shape
ly
Shape
in."
Shape
in."
Shape
in."
Shape
in."
1/1/14x730" 4720 W14x283" 1440 W14X193 931 W14X132 548
1^40x372" 1420 W40x249 926 W21X201 542
W14x665" 4170 W36X330 1420 W44x262 923 W24X192 530
W30X357" 1390 W24x306" 919 W36X256 528
1/104x605" 3680 W40X362" 1380 W27x258 859 W40x278 521
W27x368" 1310 W30x235 855 W12x170 517
W14x550" 3250 W36X302 1300 W33x221 840 W27X161 497.
W36X652" 3230 W33X318 1290
W14X176 838 W14x120 495
W14X500" 2880 W14X257 1290 W12x252" 828 W40x264 493
W30X326" 1240 W24X279" 823 W18x211 493
W14x455" 2560 W40X324 1220 W40X392" 803 W21X182 483
W40X593'' 2520 W44X335 1200 W44x230 796 W24x176 479
W36X282 1200 W40X215 803 W36X232 468
1/1/36x529" 2490 W12x336" 1190 W18x311" 795 W12X152 454
W27X336" 1180 W27X235 769
W14x426" 2360 W33x291 1160 W30x211 757 wi4xiog 447
W36x487" 2250 W24X370" 1160 W33X201 749 W40X235 444.
W27x146 443
W14x398" 2170 W14x233 1150 W14x159 748 W24X162 443
W27x539" : 2110 W30x292 1100 W12x230" 742 W18X192 440
W40X503" 2040 W40X297 1090 W24x250 , - 724:
W21X166 435
W36x441" 1990 W36X262 1090 W27X217 704 W36X210 411
W27x307^ 1050 W18x283" 704
W14X370" 1990 W12x305" 1050 W40X199 695 W14xg9 402
W44X290 1040 W12X136 398
W14x342" 1810 W40X277 1040 W14x145 677 W24xl46 391
W36X395'' 1750 W33X263 1040 W30X191 673 W18x175 391
W40x431" 1690 W24X335" 1030 W12x210 664 W40X211 390
W33x387" 1620 W24X229 651 W21X147 376
W14x211 1030 W40x33l" 644 W36x194 375
W14x311" 1610 W36X247 1010 W40x327" 640
W36x361" 1570 W30X261 959 W18x258" 628
W30X391" 1550 W27X281 953 W27x194 619
W40x397" 1540 W36X231 940 W30x173 598
W33x354" 1460 W12x279" 937 W12x190 589
W33X241 933 W24x207 578
W40x294 562
W18x234" 558
W27x178 555
' Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1 c.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-34 DESIGN OF FLEXURAL MEMBERS
I
y
Table 3-5 (continued)
W-Shapes
Selection by ly
Shape
ly
Shape
ly
Shape Shape Shape
in."
Shape
in/
Shape
in."
Shape
in.'
W14x90 362 W12x65 174 W8x48 60.9 W8x28 21.7
W36x182 347 W30X116 164 W18x71 60,3 W21x44 20.7
W18X158 347 W16x89 163 W14X53 57,7 W12x30 20.3
W12x120 345 W27X114 159 W21X62 57.5 W14x30 19.6
W24x131 340 W10x77 154 W12x50 56,3 W18X40 19,1
W21X132 333 W18x76 152 W18x65 . 54.8
W40x183 331 W14x82 148 W8x24 18.3
W36X170 320 W30x108 146 W10x45 53.4 W12x26 17.3
W18x143 311 W27X102 139 W14x48 51.4 W10X30 16.7
W33X169 310 W16x77 138 W18x60 50.1 W18x35 15.3
W21x122 305 W14x74 134 W10x26 14.1
W12x106 301 W10x68 134 W12x45 50.0 W16X31 12.4
W24X117 297 W30x99 128
W36x160 295 W27x94 124 W8x40 49.1 W10x22 11.4
W40X167 283 W14X68 121 W21X55 48.4
W18X130 278 W24X103 119 W14x43 45.2 W8x21 a77
W21X111 274 W16X67 119 W16x26 9.59
W33X152 273 W10x39 45.0 W14x26 8.91
W36X150 270 W10x60 116 W18x55 44,9
W12X96 270 W30x90 115 W12x40 44.1 W8x18 7.97
W24X104 259 W24x94 109. W16x57 43,1 W14x22 7,00
W18X119 253 W14x61 107 W12x22 4,66
W21X101 248 W8x35 42.6 W10X19 4,29
W33x141 246 W12x58 107 Wl8x50 40.1 Wi2x19 3.76
W27x84 106 W21x48 38,7
W12x87 241 W16X50 37.2 W10x17 3.S6
W10x112 236 W10x54 103
W40x149 229 W8x31 37.1 W8x15 3.41
W30x148 227 W12x53 95.8 W10X33 36.6
W36X135 225 W24x84 94.4 W24x62 34.5 W10X15 Z89
W18x106 220 W16x45 32.8 W12x16 2,82
W33X130 218 W10X49 93.4 W21X57 30.6
W21X93 92.9 W24x55 29.1 W8x13 2.73
W12x79 216 W8x67 88,6 W16x40 28.9 W12X14 2.36
W10X100 207 W24x76 82.5 W14x38 26.7
W18X97 201 W21X83 81.4 W21x50 24.9 WIOxlZ 2.18
W30X132 196 W8x58 75.1 W16x36 24.5
W21x73 70.6 W12X35 24.5 W8x10 2.09
W1Zx72 195 W24X68 70.4 W14x34 23.3
W33X118 187 W21X68 64.7 W18x46 22.5
W16X100 186
W27X129 184
W30X124 181
W10x88; 179
W18x86 175
' Flange thickness greater than 2 in. Special requirements may apply per AISC Specification SeOion
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-35
Table 3-6
Maximum Total
Fy = 50ksi
Uniform Load, kips
W-Shapes
w. 44
W44x
33S 290 262 230"
Design ASD LRFD ASD > LRFD ASD LRFD ASD LRFD
17 ; 1810 2720
;
18 - 1800 2700 1510 2260 1360 2040
19 , 1700 2560 1480 "2230 1330 2010
20 1620 2430 1410-., 2120 ,,1270 1910 loi 1640
21 : 1540 2310' 1340 % 2010 -1210 1810 1050^ 1570
22 ' I1470- 2210 1280 : 1920 1150 1730 998 1500
23 • 1410 2110 1220 1840 ,<.1100 1660 955: 1430
24 1350 2030 1170 1760 j,1060 1590 915 1380
25 , h290 1940 1130 • 1690 '1010 1520 878; 1320
26 1240 1870 1080) : 1630 975 1470 844 1270
27 ? 1200 1800 1040 1570 .. 939 1410 1220
28 1150 1740 1010. 1510 905 1360 784 1180
29 :i120 1680 970 1460 874 1310 757 1140
30 1080 1620 938::; 1410 845 1270 732 1100
32 ^ 11010 1520 ' 879::^' 1320 792 1190 686: 1030
34 > ' 951 . 1430 ; . 828.x ' 1240 .. 746 1120 646 971
36 1 r898 1350 ; 782 : 1180 704 1060 610 917
38 • ; 851 1280 , 741 , 1110 , 667 1000 578 868-
40 i ! 808, 1220 704 1060 634 953
54?
825
42 ^ 770 1160 i 670'; 1010 604 907 523! 786
44 735 1100 640 961 576 866 499 750
46 703 1060 612 , 920 551 828 477 717
48 674 1010 586 881 528 794 457 688
50 : 647 972 563 846 507 762 439 660
52 622 935 . 54r'i'. 813 -487 733 422. 635
54 599 r 900 . 521: 783 ~ 469 706 407 611
56 577 868 503 . 755 453 680 392 589
58 558 838 485,. 729 437 657 379 569
60 539 , ,810 469: 705 ' 422 635 :3|B: 550
62 522 784 454 682 409 615 354 532
64 505 759 440. 661 396 595 343 516
66 490 736 426 • 641 384 577 333 500
68 476 715 414 622 373 560 323 485
70 462 694 402 604 362 544 314 471
72 449 675 588 352 529 305 458
Beam Properties
wan (|)jlVc,kip-tt 32300 48600 , .28100 . 42300 25300 38100 22000, 33000
MpfStt i|>i/lfp,kip-tt '4040 6080 , 3520 ,, 5290 3170 • 4760 2740 ' 4130
Wdi <|)cMr,kip-ft 2460 3700 3260 1940 , 2910 1,700 2550
Bm,, i|)6ef,kips i • 5a4 89.5 54.9 82.5 52.6 79.1 !i46.B 71.2
Vnia, : 4) A, kips 906 1360 754 1130 - 680 1020 - 547 . 822
1620 1410 1270 1100
un 12.3 12.3 12.3 ' 12.1
ft 38.9 36.9 35.7 34,3
ASD LRFD • Shape does not meet the /)/f„ limit for shear in AiSC Specification Section G2.1 (a) with
^=50 ksi; therefore,! 0.90 and 1.67.
Note: i=or beams laterally unsupported, see Tatile 3-10.
04=1.67 $6 = 0.90
Available strength tabulated above heavy line is limited by available shear strength.
n,= i.50 cti„=1.00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-36 DESIGN OF FLEXURAL MEMBERS
W40
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Fy ~ 50 ksi
W40x
OllcipB
593" 503" 431" 397" 392" 372"
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
14 2360 3540
15 2280 3420
16 2130 3210
17
3 4620 •2590 3890 2210 3320 2010 3020 1880 2830
18
3
4600 2570 3870 2170 3270 2000 3000 1900 2850 1860 2800
19 2900 4360 2440 3660 2060 3090 1890 2840 1800 2700 1760 2650
20 2750 4140 2320 3480 1960. 2940 1800 2700 1710 2570 :1680 2520
21 2620 3940 :22ld 3310 1860 2800 1710 2570 1630 2440 '1600 2400
22 2500 3760 2100 3160 1780 2670 1630 2450 1550 2330 1520 2290
23 2400 3600 '2010 3030 1700 2560 1560 2350 1480 2230 1460 2190
24 2300 3450: :1930 2900 1630 2450 1500 2250 1420 2140 |1400 2100
25 2200 3310 ,1850 2780 1560- 2350 1440 2160 1370 2050 11340 2020
26 2120 3180 1780 2680 '150Q! 2260 1380 2080' 1310 1970 1290 1940
27 2040 3070 1720 2580 1450 2180 1330 2000 1260 1900 1240 1870
28 1970 2960 1650 2490 1400: 2100 128Q 1930 1220 1830 1200 1800
29 1900 2860, •1600 2400 1350" 2030 1240 1860 1180 1770 1160 1740
30 1840 2760 1540 2320 ,1300 1960 1200 1800 1140 1710 1120 1680
32 1720 2590 1450 2180 1220. 1840 1120 1690 1070 1600 i1050 1580
34 1620 2440 1360 2050 115a 1730 1060 1590 lOOO 1510 ; 986 1480
36 1530 2300 1290 1930 1090 1630 998 1500 948 1430 i 931 1400
v>
38 1450 2180 1220 1830 1030f 1550 945 1420 898 1350 : 882 1330
40 1380 2070 1160 1740 . 978 ^ 1470 898 1350 853 1280 838 1260
42 1310 1970 '1100 1660 931 •• 1400 855 1290 813 1220 ^ 798 ,1200
44 1250 1880 '1050 1580 889' 1340 817 1230 776 1170 .762 1150
46 1200 1800 iilOlO 1510 , 850 1280 781 1170 742 1120 729 1100
48 1150 1730 i 965 1450 . 815 1230 .749 1130 711 1070 ! 699 1050
50 1100 1660 926 1390 782 1180 -:719 1080 683 1030 : 671 1010
52 1060 1590' 891 1340 : 752:' 1130 • 691 1040 fe56 987 645 969
54 1020 1530 "858 1290 724 ' 1090 665 1000 632 950 621 933
56 984 1480 827 1240 699 1050 642 964 609 916 ; 599 900
58 950 1430 : 798 1200 : 675 1010 619 931 588 884 : 578 869
60 918 1380 772 1160 652: 980 . S99 900 569 855 559 840
62 1 389 1340 747 1120 631 948 579 871 551 827 ' 541 813
64 861 1290 724 1090 611 1 919 561 844 533 802 524 788
66 835 1250 702 1050 593' 891 544 818 517 777 , 508 764
68 810 1220 681 .1020 : 575 865 528 794 502. 754 ,493. 741
70 787 1180 662 994 559 .840 513 771 488 733 479 720
72 765 • 1150 ,643 967 543, 817 499 750 713 46f 700
Beam Propeilieis
.ftWckip-ft 55100 82800 46300 69600 38100 58800 35900 54000 341OO. 51300 33500.,; 50400
MplOt 6f 190 10400 5790 8700 4890 7350 4490 6750 4270,: 6410 4190,:.: 6300
HlflQt' (|)sMf, kip-ft 4090 6140 3460 5200 2950 4440 2720 4100 2510 3780, 2550 3830
BF/Qi, ^tBF, kips 55,4 84.4 55.3 83.1 53.6 80.4 52.4 78.4 60.8 90.8 ' 51.7 77,9
ilvVn, kips 1540 2310 1300 1950 1110 1660 1000. 1500 1180 1770 942 1410
Zx, In.^ 2760 2320 1960 1800 1710 1680
ip,ft 13.4 • • 13.1 • 12.9 12.9 9.33 12.7
Lr,n 63.9 55.2 49.1 46.7 38.3 44.4
ASD LRFD •' Range thickness greater than 2 in,Special requirements may apply perAISC Specl^cation Section A3.1c,
ni = 1.67 <(.(, = 0.90
(|)i,= 1.00
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-37
Table 3-6 (continued)
Maximum Total
Fy = 50 ksi
Uniform Load, kips
W-Shapes
m \0
Chona
W40x
362" 331" 327" 324
297 294
Design ASD LRFD ASO LRFD iASO LRFD ASD LRFD ASO LRFD im LRFD
14 1990 ?990 1930 2890 51710 2570
15
''.s
1900 2860 ;1880: 2820 !l690 2540
16 1780 2680 I176bf 2640
;
,;1580 2380
17 1680 2520 •1660' 2490 1480 1490 2240
18 1820' 1590 2380 '156Qi 2350
i'
610; 2410 1470 2220 1410 2120
19 1720 2590
.igoo;
2260 1480: 2230 530 2310 1400' 2100 1330 2010
20 1640. 2460 :f«30i 2150 :i4io; 2120 ,1460 2190 1330 2000 1270 1910
21 ilSSO 2340 1360; '2040 i1340: 2010 1390' 2090 1260 1900 S1210 1810
22 14S0 2240 :1300! 1950 1280; 1920 1320: 1990 1210 1810 1150 1730
23 ,1420 2140 1240 1870 .1220 1840 :127a r 1900 1150 1730 1100 1660
24 i1360 2050 1190 1790 1170 1760 ,1830 1110 1660 1060 1590
25 ;i31ff 1970 1140 1720 .11.30 1690 1750 1060 1600 1010 1520
26 1260 1890 1100 1650 1080 1630 hl20 1680 i1020 1530 , 975 1470
27 1210 1820 1060 1590 1040 1570 1 1080 1620 • 983 1480 939 1410
28 1170 1760 ®20 1530 :ioio 1510 104O 1560 : 948 1430 905 1360
29 1130 1700 i 984 1480 1 970 1460 1000 1510 915 1380 874 1310
30 1090 1640 : 951 ; 1430 {938 1410 971 1460 1330 845 1270
J2 32 1020 1540 (892 1340 ': 879 1320 911 1370 : 630 1250 792 il90
e 34 963 1450 (8391 1260 ; 828 1240 857 1290 781 1170 746 1120
£
36 '909 1370 1190 M
1180 809 1220 737 ,1110 704 1060
<A 38 861 1290 im •1130 • m 1110 7.67 1150 699 ,1050 ^ 667 iooo
40 818 1230 '7M 1070 :,704 1060 729 1100 . 664 998 ' 634 953
42 Z79 1170 : 680 1020 .! 670 1010 694 1040 632 • 950 604 907
44 744 1120 • 649, 975 '640 961 662 : 995 • 603 907 576 866
46 712 1070 i62!0: 933 161,2 920 634 ; 952 577 867 : 551 828
48 682 1030 : 595. 894 i"586 881 607: 913 553 831 528 794
50 655 984 ! 571! ; 858 563 , 846 581 876 531. 798 507 762
S2 630 946 ;S49 825 : 541 813 560 842 ; 5t1 767 487 733
54 606 911 529 794 521 783 S40 811 ' 492 739 - 469 706
56 879 . 510 766 !;.503 755 'SZfl 782 474 713 453 680
58 S64 848 492 740 ; 485 . 729 §02 755 458 688 437 657
60 546 820 476: 715 469 705 486 730 "442 665 > 422 635
62 i 528 794 : 460 692 ; 454 682 470 706 428 644 s 409 615
64 511 789 : 446 670 f 440 661 455 684 415 623 ' 396 595
66 496 .745 : 432 650 426 641 442 664 402 605 ;. 384 577
68 481 724 4;;o 631 !. 414 622 429 644 .390 587 373 560
70 468 703 4u8 613 j 402 604 416 626 379 570 362 544
72 455 683 396 596 .' 391 588 405 606 369 554 ^ 352 529
Beam Properties
v&Oi, ,t>6H(;,kip-ft mm • 49200 28500;< 42900 281O0:. 42300 29100- •43800 26500 ? 39900,( 2^0 ; 38100
MflClt
mat
409ai' 6150 3570: 5360 8520', 5290 3640,: 5480 3320 4990 3170 4760 MflClt
mat 2480} 3730 21:10 3180 2100 3150 2240 3360 2040; 3070 .1890 , •2840
. BflQu-<l)4fif,kips ,. 51.4 77.3 i.59.1 88.2 i • S8.0 87,4 49.0 74.1 0 >47.8 71 .e .sS6.9 85.4
<t>Al<ips ' 9Q9' 1360 I 996; 1490 "963^ 1440 f w 1210 1110 1280
m? 1640 1430 '1410 1460 1330 1270
12.7 9. 06 9.11 12.6 12.5 9.01
44.0 • 33.8 33.6 41.2 39.3 31.5
ASD
ns = 1.67
0^=1,50
LRFD
(1)6 = 0.90
ct)f = 1.00
Note; For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-38 DESIGN OF FLEXURAL MEMBERS
W40
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Fy = 50 ksi
W40x
anape
278 277 264 249 235 215
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD wa LRFD ASD LRFD
14 1660 2480 1540 2300
15 "Yssd" •2380' 1500 2260 1320 1980 i
16 .1480 2230 1410 2120 1260 1890
17 2100 1330 1990 1190 1780
18 '1320 1980 1320: 1980 1250 1880 1120' 1680
19 1250 1880 1310 1970 1190 1780 1180 1770 1060 1590 1010 520
20 1190. 1790 1250 1880 1130 1700 1120 1680 1010 1520 962 4b0
21 11:30 = 1700 1190 1790 1070 1610 ,1060 1600 960 1440 916 1380
22 1080 1620 1130 1700 1030 1540 1020 1530 ; 916 1380 . 875 1310
23 1030 1550 i1080> 1630 981 1470 972 1460 877 1320 837 1260
24 990 = 1490 1040 1560 940 1410 931 1400 ' 840 1260 \ 802 1210
25 i 950 1430 998 = 1500 902; 1360 894 1340 806 s 1210 770 1160
26 1914 1370 ^ 960 1440 867 1300 860; 1290 : 775 1170 740 1110
27 ; 880 1320 924 1390 835 1260 828 1240 • 747 • 1120 713 1070
28 848 1280 891 1340 806 1210 798; 1200 : 720 1080 687 1030
29 819 1230 : 860 ; 1290 778 1170 771 1160 . 695 1040 664 997
30 ;792 1190 832 1250 : 752 1130 745 1120 672 1010 641 964
fi 32 i 742 1120 780 1170 705 1060 699 1050 630. 947 601 904
34 : 699 1050 S734 1100 ! 663 997 ; 658 988 593 891 i 566 851
ffl
36 660 992 : 693 1040 i627 942 •' 621 933 560 842 534 803
V) ' 38 i625 939 ; 657 987 594 892 58^ 884 i 531 797 506 761
40 : 594 893 624 938 564 848 559 840 ' 504 758 481 723
42 566 850 -594 893 537 807 532 800 ; 480 721 458 689
44 'i 540: 811 : 567. , 852 513 770 508 764 458 689 437 657
. 46 , 516 776 i 542 815 490: 737 : 486 730 438 659 418 629
48 495 744 : 520 781 470 706 466 700 m 631 401 603
50 '475 714 499 750 1 451 678 447 672 403 606 385 578
52 :457 687 480 721 : 434 652 430 646 388 583 370 556
54 :; 440 661 462 694 '418 628 414 622 ' 373 561 356 536
56 : 424 638 : 446 670 403 605 399 600 360 541 344 516
58 ' 410 616 430 647 389 584 ' 385 579 34S 522 332 499
60 396 595 : 416 625 376 565 373 560 336 505 321 482
62 383 576 402 605 364 547 361 542 325 489 310 466
64 i 371 558 390 586 352 530 349 525 315 473 301 452
66 360 541 378 568 342 514 339 509 305 459 292 438
68 349 525 : 367 551 332 499 329 494 296 446 283 425
70 339 510 ' 356 536 322 484 i 319
480 288 433 275 413
72 330 496 347 521 313 471 ^ 310 467 280 421 267 402
Beam Properties
m/cit 23800: 35700 25000 37S0D 22600 33900 22400:; 33600 20200 30300 19200 2E 1900
tfiMp, kip-ft ^970 4460 31203i 4690 '2820; 4240 2790 4200 ; 2520 3790 2410 3620
MrlSlt ^eMr, kip-ft 1780 2680 1920,.; 2890 1700 2550 1730 2610 ' 1530 2300 1500 2250
BF/Sit ^eBF. kips > 55.3 82.8 45.8 68.7 : 53.8 81.3 42.9 64.4 - 51.0 76.7 39.4 59.3
v„ia. kips , 828 1240 659, 939 • 768 1150 591 887 659 989 507 761
z„ 1190 1250 . 1130 1120 1010 964
8 .90 12.6 8.90 12.5 8.97 12.5
ir.ft 30.4 38.8 29.7 37.2 28.4 35.6
ASD LRFO • Shape does not meet the ft/i, limit for shear in AISC Specification Section G2.1(a) with /> = 50 i«i;
ns=1.67 (|)l=0.90
therefore, 0.90 and £Jf= 1.67.
n,=i.50
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-39
Fy = 50 ksi
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
W40
W40x
oiiape
211 199 183 167 149"
Design ASO LRFD ASD LRFD ASD LRFO ASD LRFD ASD. LRFD
13 inr n" 1510 865 1300
14 '9f 8! 1490 853
15
.1180 • 1770 1010 1520 922 ; 1390 m
1200
16 1130 1700 . 966 1450 865; 1300 746 1120
17 1060 1600 1010 1510 909 1370 814 • 1220 7P2, 1060
18 looo: 1510 >;964 1450 i858. 1290 768 .1160 663 997
19 952 1430 : 913 ' 1370 •813 1220 728 : 1090 628 944
20 904 1360 1300 • 772'f 1160 692; 1040 597 897
21 861' 1290 .826 1240 ^ 736 1110 6E i9! 990 S68 854
22 822 1240 ' -788 -1190 ' 702 1060 629 945 §43 815
23 786: 1180 ^754 1130 672 1010 ;601 ; 904 519 780
24 , 753 1130 • 723 1090 :, , 644 968 576 866 497 748
25 7?3 1090 1040 618;:. 929 553 832 477 718
26 696 1050 ,,.667 1000 ^ 594: 893 532 800 459 690
27 670 1010 966 ' 572;: 860: 512 770 664
28 i 646 971 u,619 931 :: :552 829 4'94 743 4^6 641
29 624 937 r-598 899 533' 801 477 717 412 619
30 . -603 906 • 578 869 i5i5 774 '461 , 693 398 598
32 565 849 815 . ;483 . 726 •:432 ; 650 373 ,561
g
S
34 5532 799 '.510 767 K54'- 683 407 611 528
g
S
36 502 755 • 482" 724 >429 • 645 384 578 332 498
38 -476 715 V ,456 686 407 611 364 i 547 314 472
40 452 680 M;:434: 652 581 346 ' . 520 449
• 42 431 647 621 ' '368 553 329 ' 495 ^84 427
44 411 618 394 593 351 528 : .i3l4 , '473 271 ' 408
46 ,393 591 , ,377 567 :336 505 301 452 259 390
48 377 566 361 543 322 484 288 : 433 249 374
50 362 544 521. :309 464 • 277; . 416 239 359
52 348 523 •;:334 • 501 297 447 266 400 ^30 345
54 335 503 ^•321 483 286 • 430 i>256 ' 385 221 332
56 323 485 . 310 466 276 415 247 371 213 320
58 312 469 ;; :i299 449 266 400 238 358 206 309
60
'
453 289 435 , 257, 387 231 ; 347 199 299
62 292 438 280 420 249 375 223 i 335 ilgS 289
64 283 425 : 271 407 241 363 216 325 1S7 280
66
68
274 412 : , 263 395 ,234 352 210 315 181 272
66
68 266 400 25S 383 ' .227 341 203: 306 .176 264
70 . 258 388 '248 372 221 332 '198 • 297 171 256
72 i 2^ • 378 >241 362 215 323 '192; 289 166 249
Beam Properties
Hynt (|)illt,kip-ft 18100 27200 1:7300 26100 15400 23200 13800 • 20800 .11900 1790C
/lynt 2260 3400 2170 3260 1930 2900 1730 : 2600 ill 490, 2240
Mr/Qi <ti6/l?,,kip-ft 1370 2060 •1340 2020 1180 1770 1050; 1580 1350
BFIQi W.kips . -48.6 73.1 • 37.6 56.1 :,44.1 66.5 : 41.7! 62.5 38.3 57.4
it^Xkips i 591 887 503 755 :507; 761 ;502 753 432 650
906 . 869 774 693 698
3.87 12.2 8 .30 8 .43 3.09
27.2 34.3 25.8 24.8 23.6
•^ASO LRFO
. ' Shape does not meet the /i/fulitnit for shear in AISC Specfc&bn Section G2.1(a) with Fy-50 l(si;
mererore, ®i.=u.au ana
^(=1.67 Its = 0.90
Note: For beams lateraliy unsupported, see Taljle 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
AMERICAN iNsnruTE OF STEEL CONSTRUCTION

3-40 DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
c
Uniform Load, kips
Fy = : 50 KSI
w; 36
W-Shapes
W36x
oiid^je
652" 529" 487" 441" 395" 361"
Design ASD LRFD ASD LRFD ASO LRFD iASD LRFD ASD LRFD ASD LRFD
17 3240 4860
18 3230: 4850 2560 3840 2360 3540 2110 3170 1870 1700 2550
19 3060; 4590 2450 3680 2240 3360 2010- 3020 iSM 1630 2450
20 2900' 4370 2330 3500 2130 3200 1910 2870 1710 2570 <155^ 2330
21 2770 4160 2210. 3330. 2020 3040 i&o 2730 1630" 2440 1470 2210
22 2640 3970 21,10 3180' 1930 2900 1730 2600 1S50 2330 .1410. 2110
23 ,2530 3800 2020 3040 1850 2780 1.660 2490 1480 2230 •1350 2020
24 2420; 3640 1940 2910 1770 2660 1590 2390 1420 2140 :1290 1940
25 2320" 3490 1860 2800 1700 2560. ,^t52q 2290 1370 2050 ,^240 1860
26 2230 3360 1790 2690 1640 2460 1470 2200 1310. 1970 1190 1790
27 2150 3230 1720 2590 1570 2370 1410 2120 1260 1900 1150 1720
28 2070, 3120 1660 2500' 1520 2280 1360 2050 1220 1830 1100 1660
29 2000 3010 1600 2410 1470 2200 1310 1980 1180 1770 a 070 1600
30 1940 2910 1550 2330 1420 2130 127Q 1910 1140
t,\ .
1710 1030 1550
32 1820 2730 1450 2180 1330 2000 1:190 1790 1070 1600 ? 967 1450
34 1710 2570 1370 2060 1250 1880 •1120 1690 1000 1510 ? 9ip 1370
Jt; 36 1610 2430 1290 1940 1180 1780 1.060 1590 9i8 1430 , 859 1290
G 38 1530 2300 12120 1840 1120 1680 1000 1510 698 1350 "814, 1220
I
40 1450: 2180 ; 1160 1750 1060 1600 953 1430 853 1280 • 773 1160
42 1-380 2080 ,1110 1660' 1010 1520 V908 1360 8'T3 1220: •i' 737 1110
44 1320 1980 1060 1590 966 1450 866 1300 776 1170 ' 703: 1060
46 1260 1900 1010 1520 924 1390 829 1250 742 1120 ^673 1010
48 1210 1820 969 1460 886 1330 ',794 1190 ffl 1070 : 645 969
50 liBO 1750 930 1400 850, 1280 ;'762 1150 B83 1030 : 619 930
52 1120 1680 894 1340 818 1230 ••733 1100 m 987. 595 894
54 1080 1620 861 1290 787 1180 706 1060 ,632 950 573 861
56 1040; 1560 830 1250. 759. 1140 681 1020 e09 916 3 552 830
58 1000 1510 802 1210 733 1100 ::657 988 588 884 e533 802
60 968 1460 775 1170 709 1070 635 955 569 855 51.6 775
62 937 1410 750 1130 686 1030 615 924 551 827 499 750
64 908 1360 727 1090 664 998 596 895 533 802 483 727
66 880 1320 705 1060 644 96S 578 868 '517 777 ' 469 705
68 854 1280 684 1030 625 940 ,561 843 502 754 45'5 684
70 830 1250 664 999 607 913 ; 545 819 r488 733 r 442 664
72 , 807 1210 646 971 590 888 ,529 796 474 713 430 646
Beam Properties
m/ot (fjWckip-ft 58100; 87300 46500 , 69900 42500 63900 38100' 57300 34100 . 51300 30900 46500
Mfiai, 7260: 10900 5810 8740 5310 7990 4770: 7160 4270 6410 3870 5810
liifioii ^tMr, kip-ft 4300 6460 3480 5220: 3200 4800 ;:2880: 4330 26,00 3910 2360 3540
BFIOt kips 46.8 70.3 46.4 70.1 46.0 69.5 45.3 67.9 44.9 67.2 43.6 65.6
if.l'mkips 1620 2430 1280 1920 1180 1770 1060 1590 937 1410 851 1280
Zx, 2910 2330 2130 1910 ;1710 1550
14.5 14,1 14,0 13.8 13.7 13.6
Lr,n 77.7 64.3 59.9 55.5 50.9 48.2
ASO ' LRFD " Flange thickiiess greater thah 2 iff. Special requirements may apply per AiSC Specification Section A3;1c.
at=1.67 (|)6 = 0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-41
Fy = 50 ksi
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
W36
W36x
siidfje
330 302 282 262 247 231
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LI^FD
17
1410.
1240 isfin 1170 I7fi0 1110 IBfiO
18 540, p.sin 1410. ?1?n 1970 1220 1830 1140; 1720 .1070 1610
19 480 2230 1340' 2020 1.250^ 1880 1160 1740 liao: 1630 1010 1520
20 1410 2120 1280 1920 1190: 1790 1100 1650 1030; 1550 i 961 1440
21 l340 2010 1220 1830 Ma 1700 1050. 1570 979' 1470 915 1380
22 1280 1920 1160 1750 1080 1620 998 1500 934 1400 874 1310
23 1220 1840 1110 1670 1030 1550 955 1430 894 1340 836 1260
24 1170 1760 1060 ,1600 :990 1490 915 1380 857 1290 801 1200
25 iisti 1690 1020 1540 : 950 1430 878, 1320 822 1240 • 769 1160
28 1080 1630 983 1480 914 1370 844 1270 791 1190 739 1110
27 1040 1570 ; 946 1420 880 1320 813 1220 761 1140 712 1070
28 10T0 1510 912 1370 : 848 1280 i 784 1180 7'34 1100 686 1030
29 970 1460 '881: 1320 1 819 1230 757 1140 : 709 1070 663 996
30 938 1410 852 1280 792 1190 732 1100 685 1030 . 641 963
32 879' 1320 798 1200 ,742 1120 686 1030 642 966 601 903
34 828 1240 751 1130 '699 1050 646 971 ^ 60?. 909 565 850
36 ! 782 1180
w
1070 860 992 : 610 917 571 858 534 803
c" 38 741 1110 672 1010 625 939 578 868 541 813 : 506 760
CL
00
40 7p4 1060 639 960 594 893 S49 825 514 773 481 722
42 6^70 1010 608 914 566 850 523 786 489 736 • 458 688
44 6ifO 961 581 873 i 5^0 811 499 750 467 702 437 657
46 612 920 555 835 , 516 776 477 717 447 672 418 628
48 586 881 >532 800 495 744 457 688 4.28 644 40P 602
K 50
563 846 511 768 475
: 714 43^
660 i4t1 618 384 578
52 5.41 813 491 738 457 687 4'22 635 '395 594 . 370 556
54 52:1 783 473 711 440 661 407 611 381 572 - 356 535
56 5b3 755 456 686 4^4 638 : 392 589 367 552 343 516
58 485 729 440 662 •410 616 379 569 '354 533 331 498
60 469 705 426 640
; 396 595 366 550 343 515 320 482
62 454 682 4f2 619 i S83 576 ' 354 532 332 498 31D 456
64 440 661 399 600 i 371 558 343 516 321 483 300 451
66 426 641 387 582 360 541 333 500 ; 311 468 291 438
68 414 622 376 565 : 349 525 323 485 302 454 283 425
70 402 604 ;365 549 : ?39 510 314 471 294 441 , 275 413
72 391 588 355 533 330 496 305 458 286 429 r 267 401
Beam Properties
<|>s(%,kip-ft 28100 42300 25500 , 38400 23800 35700 22000 33000 2b6oa. 30900 19200 28900
3520 5290 3190 4800 2970 4460 2740 4130 257,0: 386C 2400 3610
21.70 3260 1970 , 2970 1830. 2760 17.00:). 2550 1590 240C 1490 2240
'BF/Qb 42 2 63.4 40 5 60.S ! 39.6 59.0 38.1 57.9 ' 37.4 55 367
53.7
763 1150 705 1060 i653t 985 620: 930 "587 881 555 832
1410 1280 1190 1100 1030 963
13.5 13.5 13 .4 13.3 13.2 13.1
feft • 45.5 43.6 42.2 40.6 39.4 38.6
116=1.67
LRFD
(!>(, = 0.90
!]),= 1.00
NoterFor beams laterally unsupported, see Table 3-10.
Available strength.tabulated above heavy,line is limited by available shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-42 DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
Fy =
Uniform Load, fcips
Fy = : 50 KSI
W36
W^Shapes
W36x
oliape
256 232 210 194 182 170
Design ASO LRFD ASO LBFD ASO LRFD ASO LRR) ASO LRFD ASD LBFD
13 1720 1830 .1120 1680 1050 1580 ' 985 1480
14 '1440 2150 1290 1940 1190 1790 1094
mraj,
1640 1020 1540 952
15 .1380 2oao 1259 1W0 IWQ 1670
1094
mraj, 1530 ' 955 1440 i 889 1340
16 ,1300 1950 1170 1760 1040 1560 i 957 " 1440 896 1350 833 1250
17 !1220 1840 1100 1650 ; 978 . 1470 , 901 1350 843 , 1270 784 1180
18 1150 1730 1040 1560 Sl24 1390 851 1280 796 1200 741 1110
19 1090 1640 983 1480 875 1320 '806 1210 754 1130 702 1050
20 1040 1560 934 1400 831 1250 765 1150 717 1080 .667 1000
21 988 1490 ; 896' 1340 792 1190 : 729 1100 '682: 1030 .635 954
22 944 1420 ; ^49 1280 . 756 1140 : 696 1050 6S1 979 606 911
23 903 1360 ' 812 1220 ; 723 1090 666 1000 623 937 580 871
24 ,86S 1300 778 1170 ; 693 1040 638 959 597 898 556 835
25
830 1250 ; 747 1120 665 1000 612 920 573 862 .533 802
26 798 1200 719 1080 639 961 589 885 551 828 7 513 771
27 769 1160 69? 1040 616 926 i 5,67 852 531 798 ,494 742
28 741 1110 i 667 1000 594 893 :547 822 512 769 476 716
29 716 1080 968 573 862 528 793 494 743 460 691
30 692 1040 936 5/4 833 510 767 478 718 444 668
K :
32 649 975 5ii 878 : 520 781 478 719 '448 673 • 417 626
c
CO 34 d11 918 549 826 • 489 735 450 677 422 634 392: 589
I-
36 '577 867 :5i9 780 462 694 ; 425 639 398 598 •37d 557
38 ' 546 821 : 492 739 438 658 403 606 3.77 567 >,351 527
40 519 780
M
702 416 625 383 575 358 539 333 501
42 ^ 494 743 ' 445 669 396 595 365 548 341, 513 : 317 477
44 472 709 425. 638 378 563 348 523 326 490 5 303 455
46 451 678 :406
i389
610 ! 36^1 543 333 500 ; 312 468 290 436
48 432 650
:406
i389 585 i 3 46 521 319 479 299 449 278 418
50 ,415 624 :374 562 : 333 500 ; 306 460 287 431 267 401
52 399 600 i359 540 ^ m 481 294 443 276 414 f256 385
54 384 578 1 346 520 • 306 463 284 426 265 399 247 371
56 371 557 334 501 297 446 : 273 411 256 385 ;238 358
58
60
358 538 322; 484 287 431 ; 264 397 247 371 230 346 58
60 : 346 520 311 468 277 417
r^
384 239 359 222 334
62 335 503 301 453 268 403 247 371 231 347 215 323
64 324 488 292 439 260 390 239 360 224 337 208 313
66
68
315 473 283 425 252 379 232 349 217 326 202 304
66
68 305 459 275 413 . 245 368 225 338 : 211 317 196 295
70 297 446 : 267 401 238 357 219 329 : 205 308 190 286
72 288 433 25^ 390 ^231 347 213 320 ! 199 299 ' 185 278
Beam Properties
Wp-ft 20800 31200 18700 281 CO 16®' 25000 I'SJOO aooo 14300; 21500 1330b 20000
Mp/Qi 2590 3900 2340 3510 208Q 3120 1910 2880 1790 ;f 2690 1670 2510
MrlCib kip-ft 1560' 2350 1410 2120 1260;. 1890 1160 1740 1090 " 1640 1010 : 1530
BF/Qi, (fijS/; kips . • 46.S 70.0 ;; 44.8 67.0 42.3 63.4 40.4 61.4 38.9 58.4 37.8 56.1
(|>A, kips 718; 1080 ; 646' 968 609 914 558. 838 :5» 790 492 738
Zx, in.' 1040 936 833 767 718 668
9.36 9.25 9.11 9.04 9 .01 8 1,94
Lr,n 31,5 30.0 28.5 27.6 27.0 •26.4
! LRFD '' Range thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3;1 c.
0(1=1.67 = 0.90
• Shape does not meet the /i/t^ limit for shear In AISC Specification Seam G2,1 (a) with F, = 50 ksi;
$,= 1.00
therefore, iti,= 0.90 and 1.67.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-43
Fy = 50 ksi
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
W36-W33
W36x W33x
dfiape :
160 150 135' 387^ 354"
L 318
Design ASD LRFO ASD LRFD ASD LRFD ASD LRFD ASD; LRFD ASD LRFD
12
898 1350
: 13 936 1400 892 1340 767 1150
14 890 ,1340 828 1250 726 "io9o
15 830 1250 773., 1160
677 ;
1020
16 'Trik 1170 '725'^ 1090 954
17 i733 1100 682 1030 59,8' 898 1810 2720 -lio-; 2480 :i4«) 2200
18 692 1040 644; 968 ; 564:; 848 1730 2600 1570:
1490
2370 :'1410 2120
19 656. 985 61 o: 917 535,1 804 '1640 2460
1570:
1490 2240 1330 2010
20 623 936 ;5?0: 872 508, 764 ,1560 2340 2130 1270 1910
21 •Ml 891 830 ' 484 727 :14S0 2230 iaii.i 2030 1210 1810
22 566 , 851 5S7 792 462 694 1420 2130 i29o:; 1940 ;'115b 1730
23 .542 814 504 758 IW
664 1350 2030 123P 1850 ;'110D 1660
24 519 , 780 483: 726 636 ,1300 1950 IIS® 1780 ,'1060 1590
25 498.- : 749 ;464;' 697 406 611 ;i25ff 1870 jiiio; 1700 ;ioiO 1520
26 479 720 446: 670 i39li 587 1200 1800 'l090 1640 " '975 1470
27 461, 693 :4303 646 376; 566 1150 1730 1050 1580 939 1410
28 . 445 669 414; 623 363 545 1110 1670 ,10,10 1520 ;;; 905 1360
29 429 , 646 400 601 350.: 527 10,70 1610 : 917 1470 „; 874 1310
<2
30 ;415 624 387- 581 339 509 1040 1560 i 9 4S ;i420 84'5 1270
32 '389': 585 ^362 545 3lf 477 973 1460 : 8'86, il330: :. 792 1190
34 366;; 551 '341;: 513 '299 449 91,6: 1380 834' 1250 ;•; 746 1120
(/i
36 i346': 520 484 282 424 865 1300 : 787 1180 S 704 1060
38 >328 493 30^ 459 267 402 819 1230 746' 1120 ;- 667 1000
40 311 468 :290 436 .254 382 778 1170 ; 709 1070 634 953
42 297; 446 ^276' 415 242' 364 : 741 1110 efs 1010 ' 604 907
44
283 425 :264 396 231 347 708 1060 ; 62(4 968
;; 576
866
46 271 407 252 379 , 221 332 i 67 7 , 1020 6# 926 ^^ 551 828
46 259 390 242; 363 '212 318 649 975 , m 888 528 794
50 249 374 232 349 203: : 305 623 936 56"7 852 '; 507 762
52 .240' 360 223 335 195' 294 599 900 : 545 819 : 48^ 733
54 231 347 215' 323 ,188: 283 : 577 867 525 789 46& 706
56 222 334 i207;; 311 i8r; 273 ' 556 836 506 761 ' 453 680
58 2is: 323 '200' 301 175 263 537 807 489 734 • 437 657
60 208'; 312 193: 291 169 255 519 780 472 710 422 635
62 201 302 187: 281 164 246 ,502 755 457 687 409 615
64 195, 293 181; 272 159 239 487 731 443 666 i 396 595
66 189 284 176; 264 154: 231 472 709 : 429 645 ' 384 577
68 183 275 171: 256 «9; 225 458 688 4,t7 626 373 560
70 178 267 1,66 249 145.; 218 ; 445, 669 405 609 : 362 544
72 173 260 161 242 141:: 212 432 650 394 592 352 529
Beam Properties
wm (l)iHt,kip-ft 125fiD 18700 11600 , 17400 10200 15300 31100 46800 28300 42600 25300 , 38100
Hpm itijM„kip-ft 1560 2340 1450 2180 1270 1910 3890 5850 3540 5330 3170 4760
947, 1420 880 1320 767 1150 2360 3540 2170 3260 1940 2910
BFIQn: <t>i,ef,kips . 36.1 54.2 • 34.4 51.{ 31.7 47,8 38.3 57.8 ; 37.4 56.6 36.8 55.4
mi 4>Kll>,kips 468 702 449 673 384 577 907 1360 : 826, . 1240 732 1100
Zx, in.' 624 581 509 1560 1420 1270
8.83 8 .72 8 ,41 13.3 13.2 13.1
Lr.n 25.8 25.3 24.3 53.3 49.8 46.5
ASD LRFO
iti6 = 0.90
(|)„ = 1.00
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-44 DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
Fy = : 50 ksi
WJ J3
• W-Shapes
W33x
oiidpt;
291 263 241 221 201 169
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
13 906 1360
14
:
857 13!)()
15 •837 1260
16 ii4d 1700 imso 1580 1450 785 1180
17 1340 2000 1200 1800 11^)0 1660 1010
950
1510 908'
857
1360 739 1110
18 ;l2iio "IMO' 1160 f/iO 1040 1570
1010
950 1430
908'
857 1290 697- ; 1050
19 1220 1830 1090- 1640 . 987 1480 900 1350 812 . 1220 ,•661 993
20 1161) 1740 1040 1560 •938' 1410 855 1290 771 1160 628 944
21 1100 1660 988 1490 893 1340 811 1220 73s 1100 598 899
22 1050 1580 944 1420 853 1280 770.
1170 701 1050 ^571 858
23 1Q10 1510 903 1360 816 1230 744 1120 671 1010 • 546 820
24 965 1450 ; 865; 1300 782 1180 ! 713 1070 643 966 ,523 786
25 ,926 1390 830 1250 750 1130 , 684 1030 617 928 .502 755
26 891 1340 7S8 1200 722 1080 65,8 989 593 892 ,483 726
27 8'58 1290 769 1160 1040 634 952 57T 859 465 699
28 8?7 1240 741 1110 6?0 1010 611 918 551 828 ^448 674
29 798 1200 716 1080 ' 647 972 590 887 532 800 433 651
30 772 1160 692 1040 ; 625 940 , 570 857 514 773 ; 418 629
32 724 1090 649 975 • 586 881 535- 803 482 725 ' 392 590
c
34 ' 681 1020 611 918 ; 552 829 503 756 454 682 ^'369 555
I
36 '643 967 577 867 521 783 475 714 429 644 349 524
38 609 916 i 546 821 4§4 742 450 677 406, 610 '>330 497
40 ,579 870 519 780 469 705 4253 643 386 580
31,4
472
42 551 829 494 743 447: 671 407 612 367 552 ,.299 449
44 526. 791 472 709 : 426 641 ' 389 584 351 527 285 429
46 ^ 503. 757 451 678 408 613 372 559 335" 504 273 410
48 482 725 U32 650 391
588 356 536 321 483 • 262 393
50 463 696 4l5 624 375
564 342 514 309 464 251 377
52 , 445 669 399 600 361 542 329 494 297 446 .241 363
54 429 644
.384 578 347 522 317 476 286 429 , 232 349
\ 56 413 621 371 557 • 335 504 ^ 305: 459 276 414 224 337
58 •399 600 ; 358 538 323 486 295 443 266 400 325
60 386 580 '346 520 313 470 ; 285 429 257. 387 •209 315
62 373 561 335 503 303 455 i 276 415 249 374 202 304
64 362 544 324 488 293 441 i 267 402 241. 362 ^196 295
66 ^ 351 527 315 473 284 427 259 390 234 351 190 286
68 340 512 305 459 276 415 252 378 227 341 185 278
70 331 497 297 446 268 403 244' 367 220 331 • 179 270
72 • 322 483 •288 433 261 392 ! 238: 357 214 • 322 174 262
Beam Properties
Mt/flj <t>6lVc, kip-ft 23200"^ 34800 20800! 31200 18800 26200 17100i: 25700 15400 23200 12600 18900
Mpm lt>«% kip-ff 289D 4350 259d--' 3900 2350- 3530 2140 3210 1930 2900 1570 2360
<t>A kip-tt 1780i 2680 161D! 2410 -1450' 2180 1330 1990 1200 1800 959 1440
BF/Qt ilbBf, kips 36.0 54,2 34.1 51.9 33 2 50.2 31,8 47.8 303 45.6 34.2
51,5
v„m kips i 668 1000 600 900 567 852 .525 788 48-2" 723 i 453
679
A, in.^ -1160 1040 940 857 773 629
13,0 12.9 12.8 12,7 12,6 8.83
ir,tt 43.8 41.6 39.7 38.2 36.7 26.7
ASO LRFD »Flange thickness greater ttian 2 iri. Special requirements may apply-per AISC Specification Section A3.1c.
£16 = 1.67 (|)e = 0,90
' Shape does not meet the ft/V limit for shear in AISC Spec/fafcn Section 62,1 (a) with F, = 50 ksi;
Of =1.50 ci)i,= 1.00
therefore, i|)v= 0.90 and a, = 1.67.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-45
Fy = 50 ksi
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
W33-W30
W33x
oiidfjt;
152 141 130 118" 391" 357"
Design ASD LRFD ^SD LRFD ASO LRFD ASD LRFD ASD LRFD A$D> LRFD
12 B 1210 768 150 :i650 977
; i
13 851 280 -f •TfSo- bW '637 , 958
14 iiOU 733 1100 ' 666.. 1000 592.: 889
15 744 1120 684 1030 621:; 934 ;552;' 830
16 697 1050 964 583t 876 :'5i8: 778 iM' 2710 1630 2440
17 656 986 603 907 i548: 824 :487 :732 IMO, 2560 -1550 2330
18 i620 932 5570 857 5T8' 778 '460. 692 1610' 2420 1460 2200
19 ,587 883 540 812 491 737 436.:: 655 :i52ff. 2290 ^1390 2080
20 558 839 '513 771 466: 701 4:14: 623 :i45a:: 2180 £1320 1980
21 531 799 489 734 4*44 667 394i 593 13®" 2070 '1250 1890
22 507 762 '41 36 701 :424 637 377' 566 '1320' ,1980 Si 200 1800
23 485 729 446 670 :40S. 609 3'60: 541 1260 1890 ':nso 1720
24 465 699 427 643 :388 584 345 519 1210 1810 1100 1650
25 446, 671 41D 617 ;373-. 560
'333^
498 ;ii6o: 1740 SI 050 1580
26 1429. 645 395 593 35ff 539 319' 479 1140. 1670 ^idio 1520
27 '413 621 380 571 34j5-i 519 :307:. ,461 :1070 1610 , 976 1470
28 ,398 > 599 366 551 i333' 500 :296: 445 ,1030 1550 " 94i 1410
29 385- 578 3 54 . 532 :3a: 483 286: 429 9® 1500 . 909 ,1370
30 '372'- 559 i3. i2 514 -i3#' 467 276: 415

1450 ft 878 1320
G 32 349: 524 321 482 438 259, 389 9® 1360 : 823 1240
a
34 328 493 302 454 ;274 412 244 366 8^1; 1280 :: 776 1160
W :
36 310 466
2i
35 428 :259, 389 ,230 346 ..80f 1210 732 •1100
38 294 441 70' 406 245 369 328 , m 1140. 693 1040
40 2/9 419 ;256 386 ' 233. 350 ':20:7.: :311 ; 724 1090 65? 990
42 266 399 244 367 334 197 296 ' te 1040 ^ 627 943
44 254 381 233 350 121-2-' 318 :1«8: 283 658 989 ? 599 900
46 !243;. 365 223" 335 i203; 305 180 271 ,629 946 1 573 861
48 232 349 214 321 194 292 173- 259 ^ 603. , 906 : 549 825
50 223 335 '205, 308 186. 280 166: 249
51
, 870 : , 527 792
52 215 323 197 297 1;7i9 269 ' 159 239 557 837 507 762
54 207 311 190 286 173' 259 153 231 .
' 806 488 733
56 ;i9S; 299 183: 275 ;166 250 M48; 222 im 777 ; 470 707
58 192 289 ;177 266 i 16T 242 i143 215 : 499 750 454 633
60 '186 280 171 257 1B5 234 138 208 482 725 ' 439 660
62 180 270 165: 249 1.50 226 h34 201 :4S 702 425 639
64 174 262 160 241 :r46. 219 129. 195 452 680 412 619
66 i169' 254 155 234 I4i- 212 126 189 439 659 399 600
68 164 247 151 227 f37 206 122 183 426 640 : 387 582
70 159 240 147 220 1.33- 200 ,ri8„ 178 413 621 376 566
72 155 233 142 214 129' 195 'lis:; 173 • 402 604 366 550
Beam Properties
^blUfc, kip-tf lit 200? 16800 103B0:-f 15400 9320 14000 5280 12500 28900:' 43500 26300 39600
Wpiat ^1,11/lp, kip-ft 1390 2100 1280:- 1930 1170 1750 1040 1560 3620: 5440 3290 4950
Kiai, •iMr.kip-ft 851 : 1280 782 1180 709 i 1070 627 942 2180 3280 1990 2990
BF/Qi,. (ftSf, kips W 31.7 48.3 30.3 45.7 •29.3 43.1 27.2 40,6 : 31.4 47.2 31.3 47.2
425 638 ; 403: 604 1384 ! 576 325 489 903 1350 813 1220
^t, in.' 559 514 467 415 1450 1320
• 8 .72 8 .58 . 8 .44 8 .19 13.0 12.9
ir,ft 25.7 25.0 24.2 ; 23.4 58.8 54.4
ASD LRFD Note: For beams laterally unsupported, see Table 3-10.
(])/,= 0.90
Available strength tabulated above heavy line is limited by available shear strength.
1,50 ^>,= 1.00
mox
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-237 DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
CA I^MS
Uniform Load, kips
Fy = : 50 KSI
WJ 30
W-Shapes
W30x
OIID^N;
326" 292 261 235 211 191
Design ASD LRFD ASD LBFD ASO LRFD ASD LRFD ASD LRFD fASD'! LRFD
15 958 1440 872 1310
16 !|480 ???N 1310 1960 1180 1760 .1040 1560 937' 1410 842 1270
17 1400 2100 1240 1870 1110 1660 994 1490 882 1330 793 1190
18 1320 1980 1180 1770 1050 1570 939'
1410 833 1250 749 1130
19 1250 1880 1110' 1670 991 1490 890 1340 789 1190 709 1070
20 1190' 1790 J060 1590 941 1410 845 1270 750 1130 674 1010
21 1130 1700 1010 1510 896 1350 ' 805 1210 714 1070. 642 964
22 1080 1620 962 1450 856 1290 768 1160 681 1020 '612 920
23 1030 1550 '920 1380 818 1230 • 735 1100 652 980 586 880
24 990 1490 882 1330 784 1180 704 1060 625 939 : 561 844
25 950 1430 846 1270 753. 1130 676 1020 600. 901 539 810
26 '914 1370 814 1220 724; 1090 650 977 577 867 518 779
27 '880 1320 : 784 1180 697 1050 626 941 1555 834 499 750
28 84S 1280 756 1140 672 1010 604 908 535 :805 i481 723
29 8f9 1230 •730 1100 649' .976 1 583 876 •517 777 ' 465 698
30 792 1190 • 705 1060 627 943 ; 564 847 500 751 1:449 675
32 742 1120 661 994 ' 588 884 528 794 468 704 <421 633
34 699 1050 6,22 935 554 832 I 497: 747 441 663 : 396 596
c
M 36 ' 660 992 588 883 523 786 470 706 416 626 '374 563
i
38 ' 625 939 557 837 495 744 445 669 394- 593 355 ,533
40 5^4 893 529 795 471, 707 423 635 375" 563 : 337 506
42 566 850 504 757 448 674 403 605 357 536 321 482
44 540 .811 481: 723 428 643 ' 38,4 578 I341 512 306 460
46 516 776 460- 691 409': 615 . 368 552 326 490 293 440
48 '495 744 441 663 392 589 '352. 529 ,312' 469 281 422
SO .475 714 423 636 376 566 : 338 508 .300" 451 269 405
52 687 ;4or 612 362 544 325 489 288 433 "259 389
54 440 661 '392 589 349 524 313 471 278 417 250 375
56 424 638 378 568 336 505 : 302 454 268 402 '241 362
58 410 616 365: 548 32S 488 291 438 258 388 232 349
eo 396 595 353 530 314 472 282 424 250 376 225 338
62 383 576 341 513 304, 456 273 410 242 363 217, 327
64 371 558 331 497 294 442 264 397 234 352 '211 316
66 360 541 321 482 285 429 256 385 227 341 204 307
68 349 525 311 468 277 416 249 374 220, 331 198 298
70 339 510 302 454 269 404 242 363 214 322 •192 289
72 !33a 496 : 294- 442 i261^ 393 235 353 ,208 313 187 281
Beam Properties
%Ki6 238(30:: 35700 2I20O:': 31800 18800'I 28300 18900.. 26400 15000.,.^ 22500 13500 20300
Mpini i^bMp, kip-ft 12970? 4460 2640. 3980 2350.' 3540 2110 3180 1870 2820 .1600 2530
MrlQi (|>j/W„ kip-tt IffiO 2730 '1620:- 2440 1450 2180 1310 1960 1160 1750 1050 1580
BFICii ^^BF, kips 30.3 45.6 29.7 44.9 29.1 44.0 28.0 42.7 .26.9 40.5 25.6 38.6
va. kips : 739: 1110 653 979 588 882 520. 779 479 719 436 654
Zx, in.' 1190 1060 943 847 751 675
12.7 12.6 12.5 12.4 12.3 12.2
Cit 50.6 46.9 43.4 41.0 38.7 ,36.8
ni, = 1.67
£2^=130
LRFD " Flange thickness greater than 2 in. Special requirements may apply per AISC Specification SeuSon A3,1c.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-47
Fy = 50 ksi
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
W30
W30x
Olldfjc
173 148 132 124 116 108
Design ASD LRFO ASD.' LRFO ASD UIFD ASD LRFD ASD LRFD ASD LRFD
10 •650 974
11 745 1120 ITO?;- 1060 678 1020 628 944
12 798 1200 727 1090 679 1020 629 -945 576 865
13 S768 1150 671 1010 626. 942 580 872 >531 798
14 713.; 1070 623 936 ,582 874 539 810 .493 741
15 •7!)fi=: 1190 665 1000 ' 582 = 874 ;543 ; ^ 816 ,503-r 756 -460 692
16 : 757« 1140 624 ; 938 545 819 :509;:' 765 472 709 :432: 649
17 733 1070 587 ; 882 513 '; 771 !479ffi 720 444 667 406 611
18 ,673-.. 1010 554 833 485; 728 452 » 680 419 630 384. 577
19 638 958 525 789 4,59;; 690 429 644 397. 597 363 546
20 :606 911 499 750 436;; 656 612 377 567 .-345, 519
21 577. 867 475 714 ' 415 : 624 583 359 540 329 494
22 551 828 454 • 682 396 ; 596 370 556 343 ' 515 314 472
23 52^: 792 ;434 , 652 379 , 570 354.; 532 328 493 300 i ; 451
24 505i 759 i416' 625 363 ;• 546 339:; 510 314 473 288 433
25 485" ; 728 399 600 , 349, 524 326,. 490 302' 454 276 415
26 '466. 700 384 577 335 • 504 "313- 471. 290 436 266' 399
27 449 674 370, : 556 323, ; 486 302 , 453 279 420 256 384
28 433; 650 356 536 312" 468 291 437 269 405 247 i 371
29 418: 628 344; 517 301 452 281, 422 260 391 238 358
30 404; 607 333 500 291;;; 437 271,,,; 408 25t 378 230- 346.
32 379 569 '312- 469 273^: 410 :254,;- 383 236 354 216' 324
34 356. 536 294 441 257 -386 240 360 222 334 203,
192'
305
36 337^ 506 .277^ 417 242: 364 226" 340 '210 • 315
203,
192' 288
38 319) 479 263 395 230: 345 ..214 322 199 298 182. 273
40 303; 455 250 375 218. 328 ;204.; 306 189 284 173 260
42 !288.; 434 •238,:, 357 208:; 312 ;i94;. 291 •180- 270 164 247
44 '275i 414 ;227 341 198 298 ; 1:85;; 278 171 258 -157 236
46 2631 396 217 326 190-: 285 177., 266 164 247 ;150 226
48 ;252S 379 .208,, 313 182 273 170: 255 157 236 .144 216
50 242,; 364 '200^ 300 174 , 262 163 245 151 227 .-•138 208
52 233v 350 ik 288 168 252 157;;; 235 145- 218 133 200
54 224f 337 185 278 162 243 MSI;}:, 227 140 210 128 192
56 ,216i 325 178 268 1S6 234 145;^ 219 135 203 123 185
58 209 314 172 259 ISO 226 1,40 211 130 196 119 179
60 202 304 166: 250 145 219 136 204 126 ' 189 115 173
62 195 294 161 242 141 211 131 197 122 183 111. 167
64 189 285 156 234 136 205 127; 191 tl8 177 108 162
66 184 276 151. 227 132 199 123 185 11.4; 172 •105 157
68 178 268 147 221 128 193 ;120: 180 111,. 167 102 153
70 173, 260 143 214 • 125 187 ;i.l6: 175 108 162 • 98.7 148
72 168 253 139 208 121 182 1:13: 170 105 158 - 95.9 144
Beam Properties
Wni <|isMt,kip-ft 12100 ; 18200 9980 . 15000 8720'; 13100 ,8l40- 12200 7540 11300 6910 10400
IHplQt 1510 . 2280 1250: 1880 1090 1640 1020 . 1530 943: 1420 863 1300
Mriat (|)6M„kip-ft 945 1420 761 1140 664 998 •620'; 932 •575 , 864 522 785
man it)sBF,kips ; 24.1 36.8 29.0 43.S 26.9 40.5 26.1 39.0 24.8 37.4 ; 23.5 35,;
cl'.li.kips 398. 597 ;399 599 373 . 559 353: 530 339 : 509 .:325:: 487
607 500 437 408 378 346
12.1 8 .05 7.95 7.88 7.74 7.59
if, ft 35.5 24.9 23.8 23.2 22.6 22.1
ASD LfifD Note; For beams laterally unsuppor led, see Table 3-10.
04 = 1.67 (|)s = 0.90
Available strength tabulated above heavy line is limited by available shear strengtn.
£2, = 1.50 (|)„=1.00
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-48 DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
Fy = 50 ksi
W30 •W27
W-Shapes
W30x W27x
Shdp6
99 90" 539" 368" 336" 307"
Design ASD LRFD ASDft LRFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD
10 pifi 927
11 851 4980' 749 :
12 519fi 780 471:: /U8
13 479: • 720 435 -653
14 445' 669 403 606 '2560 3840 1680 2520 '1510 2270
2060
IS 415 624 377 ;-566 2510 'i'm =1650 •'246(3' <500 2260 rs 1370 2060
16 389 ; 585 353 531 2360 3540 1550 2330 1410 2120 •1280 1930
17 366 551 332- 499 2220 3340 1460 2190 1330 1990 •rl210 1820
18 346 520 314fi' 472 210ff 3150 1380 2070 '1250 1880 1140 1720
19 328 493 297,:;' 447 1990 2980 1300 1960 1190 1780 •:5l080 1630
20 311 •
468 282 425 1890- 2840 1240 1860 1130;. 1700 '1030 1550
21 297::
2S3
446 269 ^404 1800 2700 1180 1770 1070 1610 - 979 1470
22
297::
2S3 .425 257 . : 386 1710 2580 1130: 1690 1030. 1540 934 1400
23 27t:" 407 246 369 1640 2470 1080 1620 1 981. 1470 : 894 1340
24 259 .. 390 235v:f 354 1570 2360 1031V 1550 940 1410 857 1290
25 249 r 374 22651 340 1510 2270 ' 990 1490 , 902 1360 . 822 1240
26 240.:' 360 217: 327 1450 2180 : 95?. 1430 ' 867- 1300 - 791 1190
27 231 : 347 209 <: 314 1400i 2100 917:. 1380 835. 1260 . 761 1140
28 222'f: 334 202. 303 1350 2030 884 1330 806:- 1210 '. 734 1100
ti 29 215 323 195 293 1300 1960 853;. 1280 778 1170 709 1070
30 312 188 283 1260 1890 825 1240 752 1130 685 1030
32 1S5 . 293 177 265 1180 1770 : 773 1160 1 705- 1060 64i 966
34 183 :: 275 166:5' 250 1110. 1670 728 1090 ' 663 997 ^ 605 909
36 ira:;. 260 1:'.7 236 1050? 1580 ! 688 1030 , 627, 942 • 571 858
38 164 246 149 223 993 1490 : 651:; 979 , 594: 892 . 541 813
40 155' i 234 141 •. 212 . ; 943. 1420 619 930 564- 848 • 514 773
42 148: 223 134 202 : 8'9S 1350 i 589 886 537 807 489 736
44 142:; 213 128 193 i 857 1290 : 553 845 513-. 770 • 457 702
46 135 203 123 185 •: 820 1230 ; 538: 809 490 737 447 672
48 ISO'f 195 118 177 786 1180 : 516. 775 ' 470 706 428 644
50 125£: 187 113 170 754 1130 495 744 451 578 1 411 618
52 120 180 109 163 : 725 1090 ' 476 715 434 552 395 594
54 lis . 173 105 . 15/ 699: 1050 458! 689 448 528 381 572
66 Ill 167 101 1.52 ;: 674 1010 442: 664 ' 403 605 367 552
58
60
107" 161 97.4 146 • 650' 978 427. 641 389 584 354 533
58
60 104 156 94.T 142 629 945 . 413 620 376 565 - 343 516
62 aoo !- 151 5 91.1 137 , 608 915 399 600 364 547 ; 332 498
64 97.3 146 88.3 133 589 886 : 387 : 581 352* 530 . 321 483
66 94.4 142 85.6 129 572 859 . 375: 564 342; 514 : 311 468
68 :91.e 138 . 83.1 125 555 834 364 547 332 499 302 454
70 89.0 134 80.7 121 539; 810 354 531 : 322 484 294 441
72 , 86.5 1.30 i 78.5 118 524 • 788 344 517 • 3ia 471 ;'• 286 429
Beam Properties
mm
9360 5650 8490 37700 56700 24800 37200 22G00 33900 20SOO 30900
Mpldi, (jifi/Wp, kip-ft 778 -1170 706 • 1060 4720 7090 3090 4650 2820. 4240 '2570 3860
Wdt hIVIn kip-ft 470 ' 706 , 428;, 643 2740 4120 1850 2780 1700 2550 1550 2330
BFiat ^bBF, kips 22;2 33.4 20,6 30.8 '26.2 39.3 24.9 37.6 i: 25.0 37.7 25.1 37.7
4>A, kips 309 463 249 374 . 1280 1920 839 1260 756 1130 687 1030
Zx, in.' 312 283 1890 1240 1130 1030
Lp,n 7.42 7.38 12.9 12.3 12.2 12.0
If, ft 21.3 20.9 88 ;.5 62.0 57.0 52.6
ASO
0)1 = 1.67
nv=i.50
LRFD
s = 0.90
,= 1.00
' Flange thickness greater than 2 in: Special requirements may apply per AISO Specification Section A3.1c.
• Shape does not meet the h/fe limit for shear in N&C Specification Section G2.1(a) with Fy = 50 l(si;
therefore, 0.90 and 1.67.'
AMERICAN INSTITUTE OF STBEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES J-49
Table 3-6 (continued)
IT CA Maximum T< otal 1
- 50 KSI
Uniform Load , kips
W-Shapes
W: 27
mix
oiidiic
281 258 235 217 194 178
Design ASD LRFD ASO LRFD ASD LRFD ASD LRFD ASD.» LRFD ASD LI^FD
14 ..iV •
11
40 710 040 1570 ;843 1260 'r'806 1210
15 1240 1860 .1 30 030 1540 i943 1410 .8-0 1260 5 758 ii4b
16 1170 1760 1060 1600 1450 .887 1330 787 1180 r7ii; 1070
17 1100 1650 1000 1500 goB' 1360 835 1250 741 1110 669 1010
18 1040 1560 945 1420 856 1290 788 1190, sm.. 1050 632 950
19 983- 1480 :f !95 1350 811" 1220 747 f 1120 663 ^ : 996 •599 900
20 934 1400 • 850.. •1280 m 1160 710 1070 630;- 947 !569 855
21 .890 1340 810 1220 M 1100 676 102D 6od; 901 .542 814
22 849 1280 7?3 1160 700 1050 645 r 970 .572 860 :517 777
23 812 1220 739 1110 67() 1010 61/; 927 548 823 M95 743
24 778 1170 709 .1070 642 965 591 889 525 789 474 713
25 747, 1120 '680 ;1020 61B, 926^ 56i 853 .504- . 757 455 684
26 719 1080 983 593 891 ,546 820 484 728 438 658
27 692 1040 947
!
sn; 858 526 790 466:i: . 701 421 633
28 667 1000 £ i07 913 560 827 567 762 ;450l 676 406 611
29 • 644 968
f
.86 881 531 799 4?g . 736 ,434 653 .392 590
30 623 936 567 852 iv 772 ,473 711 ;420:; . 631 379 570
3Z 584 878 531 799 482; 724 ;443 667 394,i 592 •->356 534
c 34 549 826 500 752 453 681 417 627 370 557 335 503
a 36 1519 780 472 710 42S, 643 394 593 ,350 526 .316 475
M
38 : 492- 739 f448 673 406:; 609 373 561 331 498 299 450
40 ! 467 702 425 639 385: 579 355 533 315k 473 284 428
42 445 669 405 609 367^ 551 338 508 451 271 407
44 : 425 638 186 581 age. 526 323 485 286* 430 259 389
46 ^ 406- 610 370 556 335 503 309 464 274 412 247 372
48 ; 389- 585 354: 533 321 483 296 444 262. 394 -237 356
50 i 374 562 ; 340: 511 3® 463 284 427 252- 379 •-228 342
52 359 540 ' m 492 2b. 445 273 410 24^: 364 219 329
54 346 520 31B 473 285.. 429 263 395 233 : 351 211 317
56 334 501 304 «e 275: 414 253'. 381 i22!5. 338 203 305
58 '322 484 1293 441 26.6 .399 245 368 i217 326 :i96 295
60 311 468 !283 426 257: 386 237 356 ;21ff: 316 .190 285
62 301 453 m 412 249 374 229 344 203 305 "184 276
64 292 439 266 399 241 362 232^ 333 197 296 .178 267
66 283 425 258 387 233 351 215 323 191: 287 172 259
68 275: 413 250 376 227, 341 209 314 185 278 167 251
70 267 401 243 365 220; 331 203 305 186-: 270
72 .259 390 236 355
Beam Properties
tmib:: «,kip-ft 18700 ' 23100 17000 i 25600 15400;; 23200 14200 2130C 12600j„ 18900 11:400 17100
* <l>6M„kip-ft 2340 3510 2130;; 3200 1930 2900 1770 2670 1570 2370 1420 , 21.40
Hfrm 1420 2140 1300 1960 iisot 1780 110a 1650 976 1470 882 1330
BF/Clt Wf.kips , 24.8 36.9 .24.4 35.5 •-24.1 36.0 ."23.0 35.1 22.3 33.8 21.6 , 32.5
vam <i)AWps 621 932 568 853 522 784 47f 707 422;, 632 i 403 605
in.' S36 852 772 711 631 570
to, ft 1Z0 11.9 11.8 11.7 11.6 11.5
Ir.tt 49.1 45.9 42.9 40 .8 38.2 36.4
LRFD
it>s = 0.90
4),= 1.00
Note: For teams laterally unsupported, seeTable 3-10.
Available strensth tabulated above heavy line is limited by available shear
AMERICAN IMSTTRUTE OE STEEL CONSTRUCTION

3-50
DESIGN OF FLEXURAL MEMBERS
Table 3>6 (continued)
Maximum Total
Uniform Load, kips
: 50 KSi
w: 27
W-Shapes
W27x
Shape
161 146 129 114 102 94
Design ASO LRFD ASP LRFD ASD LRFD ASD LRFD ASD LRFD ASD' LRFD
10
558 •837 527 791
11
1010 622 934 5^3 , ; 832 504 758
12 .657- 988 571 858 507 ?63 462 695
13 663 995 '606
563,
912 527 792 468 704 427 642
14 729 :090 (ite 994
'606
563, 846
790
489^ 735 435. .i :654 396 596
15 685 •030 reii?' 928 526
846
790 456; 686 406 610 370 556
16 64? 966 579 ^ 870 •493 741 428 643 380.''^ 572 347 521
17 6ns 909 545 819 464 : 697 •403 605 358 538 326 491
18 571 858 515 773 438 658 (380 572 338,, 508 308? 463
19 541 • 813 487 733 415 624 !360 542 320 -482 .292 439
20 514 773 ,463 696 394 593 :342 515 3C(4K' 458 277 417
21 489, 736 441 663 '375, 564 326; 490 290 436 ,264 397
22 467 702 421 633 :358' 539 468 277 ,416 252 379
23 447' 672 403 605 343' 515 2^8' 447 265 398 241 363
24 428 644 38? 580 329 494 2^5'' '429 254 381 '231: 348
25 411- 618 370 557 '315 474 '274 412 244 366 222 334
26 395 • 594 356 535 456 26S: 396 234 352 213; 321
27 381 572 343', 516 292 439 254 381 225 339 206 309
28 .367 552 331 497 :282 423 245 368 217.;; 327 ^198 298
29 .35'4 533 319 480 m 409 236 ,355 210': 316 ;191 288
S. 3D 343 515 309 464 ,263 395 1228;; 343 203;- 305 185 278
V)
32 321 483 289 435 i246 370 214 322 190 286 -173; 261
34 302 454 272 409 S32 349 •201 303 269 '163 245
36 286 429 257;,: 387 21i9 329 190 286 169 254 154 232
38 271 407 :244; 366 207 312 180. 271 560,.: 241 ,146 219
40 257 386 232 348 19? 296 171 257 152,5,- 229 ,J39 209
42 245 368 221 331 188; 282 163 245 145 218 ,132 199
44 ,234- 351 210 316 '179; 269 156;' 234 138 s 208 126 190
46 223 336 2Q1 . 303 171... 258 149 224 132 199 121 181
48 214 322 193 290 164 247 143 214 127 191 116 174
50 206' 309 :185' 278 .158 237 137 206 122':; 183 111:; 167
52 198 297 178 268 1S2 228 132 198 117 176 107 160
54 190 286 172 258 , 1^6 219 127 191 113 169 i03 154
56 184 276 ,165 249 141 212 122 184 109 163 99.1 149
58 177 266 160 240 136' 204 118 177 105 158 95.7 144
60 171 258 154 232 131 198 114 172 101 153 5 92.5 139
62 166; 249 149 225 127 191 no 166 98.2 148 89.5 135
64
66
161 241 145 218 123 185 107 161 95.1 143 86.7 130 64
66 156 234 140- 211 119 180 104 156 92.2 139 84.1 126
68 ,151 227 -136 205 116 174 101 151
Beam Properties
(fiWc, kip-ft ittSOOi 15500 9260 13900 7880'J 11900 6850 10300 6090 9150 5550; ,8340
MplQt kip-ft '1280; 1930 1160 1740 986 1480 ! 856 ^ 1290 C61 1140 1040
Mr/a» ifjMr, kIp-ft
800 1200 723 1090 603 i 906 522 ,; 785 466 701 424 638
BflCit (|)j8f, kips : 20.6 31,3 19.9 29.5 23.4 35.0 21.7 32.8 20.1 29.8 m 28.5
Kiffl, ((.vH, kips 364 546 332 497 337 505 311 467 279 419 264 395
in.2 515 464 395 343 305 278
11.4 11.3 7.81 7.70 7.59 7.49
lr,tt 34.7 33.3 242 , , 23.1 22.3 21.6
,ASD
n/,=i.67
£2^=1.50
LRFD ' Flange thickness greater ttian 2 in. Special requirements may apply per AISC Specification Section A3.1c.
(t)i, = 0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-51
Table 3-6 (continued)
Maximum Total
Fjr = 50 ksi
Uniform Load, kips
W-Shapes
W27-•W24
W27x W24x
oiia|J9
84 370" 335'' 306" 279" 250
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD Asn LRFD ASD LRFD
9 491 •737
10 48/ 732
11 443 665
12 406 . 610
13 375 563 1700' 2550 1520 2280 1370 2050 1240 1860 109 0 1640
14 348 523 'mlo 2420 >1450 2190 "iSIb 1980 1190 1790 ,106 0 1590
15 325 488 1500 2260 1360J 2040 1230 1840 11J0 1670 990 1490
16 304 458 1410 2120 1270' 1910 1150 1730 1040 1570 928 1400
17 286 431 1330 1990 :1200< 1800 1080 1630 980 1470 874 1310
18 271 407 1250 1880 >113:0, 1700 1020 1540 926 1390 825 1240
19 25? 385 ,1190 1780 1070 1610 969 1460 877- 1320 - 782 1170
20 244 366 1130 1700 !1620 1530 S20 1380 833 1250 743 1120
21 232 349 1070 1610 1460 876 1320 794 1190 707 1060
22 221 . 333 1030 1540 SSS- 1390 837 1260 758 1140 675 1010
23 212 318 981 1470 885 1330 ' 800;- 1200 725 1090 t 646 970
24 203 305 940 1410 ,848 1280 767 1150 694 1040 619 930
25 19S 293 902 1360 1220 736 1110 667 1000 594 893
26 187 282 867 1300 783 1180 708 1060 641 963 571 858
27 180- 271 835- 1260 • 754 1130 682- 1020 617 928 ' 550 827
28 174 261 806 1210 727- 1090 657 988 595 895 530 797
c 29 168, 252 778 1170 702 1060 635 954 575 864 • 512 770
S.
ai
30 162 244 752 1130 67a 1020 613 922 556 835
f
.7,44 S.
ai
32 152 229 705 1060 636: 956 575. 864 521 783 ' 464 698
34 143 • 215 , 663 997 ,599 900 : 541 814 490
463
737 437 656
36 135 203 627> 942 566- 850 511 768
490
463 , 696 413 620
38 128 193 594, 892 536 805 484 72B 439 659 391 587
40 122 183 ' 564:. 848 ,509 765 460 692 417 626 371 558
42 116 174 537 807 485 729 438, 659 397 596 354 531
44 111 166 513 770 463 695 ' 418 629 379 569 338 507
46 106 159 490' . 737 443 665 400 601 ' 362 545 323 485
48 101 153 470. 706 424 638 383 576 347» 522 309 465
50 97,4 146 451 678 407 612 368 -.553 333: 501 297 446
52 93.7 141 434 652 ,392 588 254 532 3?r
309
482 286 429
54 9&.2 • 136 4^18 628 377, 567 341 512
3?r
309 464 275 413
56 87.0 131
^
389
605 • 36"4' 546 329 •494 298 447 265 399
58 ,84.0' 126
^
389
584 351- 528 '317 477 • 287 432 256 385
60 81.2 122 376, 565 339 510 307 461 278 418 ^ 248 372
62 78.6 118 364' 547 328= 494 297 446 269 404 240 360
64 76.1 114 352 530 318 478 288 432 260 391 232 349
66 73.8; 111 342 514 308 464 279 419 253 380
68 332 499 ; 299 450
70 322 484
Beam Properties
.Kt/Qs ima' 7320 22600 33900 20400:- 30600 18400 27700 16700, 25100 14900 22300
Mp/n» (j>6Mp,kip-ft 609 915 2820. 4240 2540 3830 2300 3460 2080,, 3130 ,1860 2790
wcii (jilWr, kip-ft .372. 559 1670 2510 1510 2270 1380 2070 1250,;! 1880 1120 1690
BFIOi,. (fjBf, kips ,•17.6 26,4 20.0 30.0 19.9 30,2 ,19,7 29,8 19.7 29,6 ,19.7 29,3
<ti.H„kips 246; 368 851 1280 759 1140 683 1020 619, 929 mz: 821
Z..I In.' 244 1130 1020 922 835 744
tp,ft 7,31 11.6 ,. 11.4 11,3 11,2 11.1
ir,ft 20.8 69.2 63.1 57,9 53.4 48.7
ASO LRFD Note: For beams laterally unsupported, see Table 3-10.
04 = 1.67 <{11,^0.90
Available strength tabulated above heavy line is limited by available shear strengm.
i|i,= 1.0D
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-52
DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
cn Irci
Uniform Load, kips
Fy = OU KSI
m >4
W-Shapes -
W24x
anape
229 207 192 176 162 146
Design ASO LRFD ASD LRFO ASO LRFD LRFQ ASD LRFD ASO LRFD
13 i998 1500 894 1340 826 1240 !756 1130 705; 1060 642 963
14 962
898
14bO •864 1300 •••797 1200 729 1100 667 1000 596 896
15
962
898 1350 !806 1210 J44 1120 680 1020 623, 936 556 836
16 '842 1270 756 1140 697 1050 •637 958 .584', 878 521 784
17 793 1190 712 1070 658 986 600 902 549 826 491 738
18 749 1130 672 1010 620 932 567 852 519. 780 464 697
19 709 1070 637 957 587 883 537 807 492 739 •439 660
20 674 1010 605 909 558, 839 510 767 467 702 417 627
21 642 964 576 866 531 , 799 486 730 445 669 397 597
22 612 920 550 826 507 762 464 697 425 638 379 570
23 586 880 526 790 4(15 729 443 667 406- 610 363 545
24 561 844 504 758 465 699 425 639 '389 585 348 523
25 539 810 484 727 446 671 408 613 374 562 334 502
26 5J8'
499
779 465 699 429 645 392 590 359 540 321 482
27
5J8'
499 750 448 573 413 621 378 . 568 '346- 520 309 464
28 481' 723 432 649 398 599 364 548 334 501 298 448
r 29 465 698 417 627 385 578 352 529 322 484 288 432
s"
30 449 675 403 606 372
559 340 511 31 f 468 278 418
to 32 431 633 378 568 349 524 319
479 292 439 ".261 392
to
34 39?
374
596 356 .535 326 493 300 451 275 • 4131 245 369
36
39?
374 563 336 505 31Q 466 283. 426 259 '390 232 348
38 355 533 318 478 294 441 268 403 246 369 220 330
40 337 506 302 455 279 419 255 383 234' 351 209 314
42 321 482 288 433 266 399 243 365 222 334 299
44 30g 460
275
413 254 381 232 348 212 319 ^190 285
46 293 440 263 395 243 365 222 333 203 305 181 273
48 s3S1 422 252 379 232 •349 212 319 195- 293 174 261
50 '269 405 242 364 223 335 204 .307 187 281 167 251
52 259 389 233 350 215 323 196 295 180 270 160 241
54 250 375 224 337 207 311 189 284 173 260 155 232
56 Z4t .362 216 325 199 299 182 274 167 251 •149 224
58 Z32: 349 209 313 192 289 176 264 161 242 s144 216
W 225 338 202: 303 .186 280 170 256 156 234 >139 209
62 mr 327 293 270 165; 247 151 226 i; - i
64 211 316 189 284 •Y ;
Beam Properties
Mfc/SJi kip-ft 13500 20300 12100" 18200 11200; 16800 10200 • 15300 9340.? 14000 12500
MplQi, (t.sM„,kip-ft 1680 . 2530 i5io;.i 2270 1390i. 2100 1270 1920 tl7ft'S 1760 1570
Miiat, i|)c«ff, kip-ft 1030:; 1540 927 1390 •858 = 1290 78e-. 1180 723', 1090 .648. 974
BF/ai <titBF,ldps 19.0 Z8.9 18.9 28.6 18.4 28.0 :. 18.1 27.7 .17.9 26.8 26,8
(f.l'n, kips 499: 749 447 671 ;413 620 378 567 353..: 529 321!. 482
in.' 675 606 559 511 468 418
tp,ft 11.0 10.9 10.8 10.7 10.8 10.6
tr,ft 45.2 41.7 39.7 37.4 35.8 33.7
ASl) • LRFO
((.4 = 0.90
11)^ = 1.00
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-53
Fy = 50ksf
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
W24
W24x
9lld|JB
131 117 104 103 94 84
Design ASD LRFD ASD^ LRFD ASD LRFD ASD-4 LRFD ASD LRFD ASD LRFD
9 453. 680
10 539 809 501 751 447 672
11 i (8? .723 508- 764. 461 -693 .406 611
12 59C 889 535 802 I 81 ' m 466 700 422 ^ 635 373, 560
13 568 854 502 755 444 667 430 646 390 586 344 517
14 528, :793 466 701 412 619 399 ' 600 362'!: 544 319 480
15 495 740 435- 654 385 578 373 , 560 338 ' 508 298, 448
16 '462 694 408 613 361 542 349. 525 317 476 279' 420
17 434 653 384 577 339 510 329' 494 298 , 448 263 395
18 410' 617 363 545 320 482 310 467 282 423 '248 373
19 389' 584 344 516 304 456 294 442 267. 401 235 354
20 369 555 326 491 288- 434 279 , 420 253: 381 224 336
21 352 529 311 467 275,- 413 266 " 400 241' 363 213 320
22 336 505 297 446 262 394 254 382 230 346 ,203 305
23 ,321 483 284 427 251" 377 243 365 220, 331 194 292
24 305 463 272 409
24a
361 233,„ 350 211^- 318 386 280
. 25 295 444 261 392. 231' 347 224-: 336 203"4 305 179. 269
26 284 427 251 p 377 222 333 215," 323 195-"' 293 -172, 258
« 27 274 411 242 363- 214 321 207 311 188 282 166 249
28 264 •396 233 350 206 310 200, 300 181 . 272 :i60 240
29 255 383 225c 338 199 299 193 .290 175 . 263 .154 232
30 246 370 218. 327 192 289 186 280 169' 254 •149. 224
32 231 347 ,'204 307 180 . 271 175 • 263 158 238 140 210
34 217
326 192' 289 170 255 164 247 149 224 132 198
36 205 308 181 .273 160 241 155 233 141- 212 124 187
38 194 292 '172- 258 152 228 147 221 133 201 118 177
40 185 278 163 245 144 217 140 •210 127 -191 • 112 168
42 176 264 155- 234 137 206 J 33' 200 12-r 181 •106 160
44 166 252 148 223 131 • 197 127 191 1T5 173 .102i 153
46 161 241 142- 213 125' 188 121 183 110- 166 97.2 146
48 154 231 136- 204 120 181 116 175 106 159 93.1 140
50 148 222 131. 196 115 173 112 168 101 152 • 89.4 134
52 142 213 126" 189 111 167 107 162 97.5 147 86.0 129
54 137 206 121 182 107. 181 103 156 93.9 141 82.'8 124
56 132 198 117 175 1031 155 ,99.8 150 90.6 136 79.8 120
58 12? 191 113 169 99.5 149. '96.4 145 87.4 131 77.1 116
60 123 185 109 164 96.1 145 93.1 140 84.5 127 • 74.5 112
Beam Properties
mat ?390 11100 6530 .! 9810: 5770 8670 5590 8400 5070 7620 4470 6720
iiMg, kip-ft 923' ' 1390 ;8r6, 1230 721" : 1080 699 1050 634 953 559 . 840
lUrlQt H^r, kip-ft 575 864 508 764 451 . 677 428 643 388 ' 683 342, 515
ef/fij- ipiiBfikips ;i16.3 24.6 . .1S.4 23.3 14.3 21.0 1B.2 27.4 17.3 26.0 16.2 24.2
<>vVi„ kips i296 445 267, 401 241 362 270 405 250 375 227, 340
370 327 289 280 254 224
10.5 10.4 10.3 7.03 6.99 6 i.89
ir.n 31.9 30.4 29.2 21.9 21.2 20.3
\m
LRFD Note: For beams laterally unsupported, see Table 3-10.
06 = 1.67 (^6 = 0.90
Available strength tabulated above heavy line is limited by available shear strength.
(^,= 1.00
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

3-54 DESIGN OF FLEXURAL MEMBERS
W24-W21
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Fy = 50 ksi
Shape
W24x
76 68 62 55'
W21x
201 182
Design ASO LRFD ASD LBFO ASD LRFD ftSD LRFD ASD LRFD ASD LRFD
7
8
,9
io
r 11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
363
333
307
285
266
250
235
222
210:
200
19Q
181
174
166 '
160
154'
148
143,
138 •
133-
125.
117
111
105
99,8
95.0
90.7
86;8
83.2
79.8:
76.8
73.9
71.3
68.8
545
500
462
429
400
375
353
333
316
300
286
273
261
250
240
231
222
214
207
200
188
176
167
158
150
143
136
130
125
120
115
111
107
103
^3
321-
294
272
252
236
221
208
196
186
177
168
161
rsift
147
141-
136
131
126
122
118 .
110 •
104
98.1
93.0
88.3
84.1
80.3
76.8
73.6
70.7
67.9
65.4
63.1
60.9
590
531
483
443
408
379
354
332
312
295
279
266
253
241
231
221
212
204
197
190
183
177
166
156
148
140
133
126
121
115
111
106
102
98.3
94.8
91.6
339
305
278
254
235
218
204
191 '.
180
170'
161
153
145
139 .
133
127
122 •
117
113 •
109
105
102 .
95.4
89.8
84.8
'80.4
76.3
72,7
69.4
66:4
63.6
'61:1
58.7
56:6
m
611
w
510
459
417
383
353
328
306
287
270
255
242
230
219
209
200
191
184
177
170
164
158
153
143
135
128
121
115
109
104
99.8
95.6
91.8
88.3
85.0
82.0
79.1
297
267-
243
223
206
191 ,
178
167,
157,
149
141
134
127
122 .
116;
111
lOr;'
103
95.5
92.2
89.2
83.6
78.7
74.3
70.4
66.9
63.7
60:8
58.1
55i7
53,5i
51.4
49.5
47.8
: 46.1
447
402
365
335
309
287
268
251
236
223
212
201
191
183
175
168
161
155
149
144
139
134
126
118
112
106
101
95.7
91.4
87.4
83.8
80.4
77.3
74.4
71.8
69.3
ML
814
756
705
,661
622
588
557
529
504
481
460
441
423
407
392
378
365
353
331
311
294
278
264
252
240
230
220
212
2^
220
1140
1060
994
935
883
837
795
757
723
691
663
636
612
589
568
548
: 530
' 497
: 468
' 442
418
398
379
361
346
331
318
306
294
284
SI
679
;633
594
,559
528
500
;:475
'452
432
.413
•396
: 380
>365
• 352
339
"328
317
^ 297
®279
264
-250
V.238
: 226
•216
20;^
-198
190
•183
176
170
10
1020
952
893
840
793
752
714
680
649
621
595
571
549
529
510
492
476
446
420
397
376
357
340
325
310
298
286
275
264
255
Beam Properties
Woisit
Mfiai,
mm
BFIClt
V„Kl,
(t)sMp,l(ip-ft
<l)6/Ml-,l<ip-ft
(|ijBf,kips
499
307
15.1
210
6000
750
462
22,6
316
35303:
442
14:1
197 .
5310
664
404
21.2
295
3050'
382
229 :
16.1
204:
4590
574
344
24.1
306
2670 :
334::
199'
14.7
167^
4020
503
299
22.2
252
106»:
1320
80S
14.5
•419:
15900
1990
1210
22.0
628
9500^
1190i
728
144
: 377' •
14300
1790
1090
21.8
565
tp,tt
if, ft
200
6.78
19.5
177
6.61
18.9
153
4.87
14.4
134
4.73
13.9
530
10.7
46.2
476
10.6
42.7
ASD
£J4 = 1.67
t2,= 1.50
LRFD
$6 = 0.90
' Shape does not meet the limit for shear in AISC Specification Section G2,1 (a) with Fy = 50 ksi;.
therefore, 41,= 0.90 and 1,67.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-55
Table 3-6 (continued)
Maximum Total
Fy = 50 ksi
Uniform Load, kips
W-Shapes
w 21
W21x
shant*
OlldPC
166 147 132 122 111 101
Design ASD LRFD ASD LRFD ASD LBFD ASD LBFD ASI> LRFO LRFD
11
i
636 955. 567' 850 521 781 473 710 428^ 642
12 675 1010 620 933 . 554 833 5.11 768 464- 698 421i 633
13 663 997 573 861 5^V 768 •471 708 428 644 ^388 584
14 616' 926 532- 799 475 714 438 658 398 598 ,361 542
15 575 864 496, 746 443 666 409 614 371 558 3371 506
16 539 810 465 ; 699 • 415 624 :383 576 348 523 316 474
17 507 762 438 658 391 588 3^0 542 328,' 492 297 i 446
18 479. 720 414 622 369 555 340 512 309 465 281; 422
19 454: 682 392 589 •350 526 323, 485 293 441 266 399
20 43r 648 372 560 . 332 500 306 461 278 419 , 252 380
21 411: 617 355 533 : 476 292 439 265 399 '240 361
22 392 589 338 509 ::302 454 279 419 253 380 :230 345
23 375: 563 324 . 487 .; 289,. 434 -266 400 242 364 220: 330
24 359 540 31tf 466; ; 277 416 255 384 232 349 210 316
25 345 518 298 448 266 400 245 368 223 335 202 304
a 26 332 498 286 430 r-256- 384 236 354 214 322 194' 292
i
27 319 480 276- 414 246 370 227 341 206' 310 '187 281
« 28 308: 463 266 400 237: 357 .219 329 199,' ,299 180 271
29 ^ 297 447 , 257 ,386 229 344 211 318 192< 289 174 262
30 287 432 248; 373 S 222 333 204 307 186 279 168 253
32 269: 405 233 350 ' 208. 312 191 288 ,v174' 262 158 237
ii 254 381 219 329 '195': 294 180 271 164' 246 149: 223
36 240 360 207' 311 .185 278 170^ 256 MliSr 233 140 211
38 227 341 196 294 175 263 242 147 220 133: 200
40 216 324 186 280 166 250 ::i53r 230 139 209 126 190
42 205 309 177 266 158 238 146 219 133: 199 320' 181
44 196 295 169 254 •f5i: 227 139 209 127 190 115 173
46 187 282 162: 243 144" 217 133 200 121: 182 11 Oi 165
48 180 270 155, .233 • 138 208 ,128i 192 lie". 174 :105 158
50 172' 259 149 224 133 200 123 184 111 167 101 152
52 ^ 166 249 143 215 128 192 118 177 107 161 V 97.1 146
54 160 240 138 207 123 185 113 171
56 154 231
Beam Properties
mick 8620 13000 inm 11200 6650 . 9990 6130 9210 5670r;: 8370 50.50:, 759C
I ; <|)s/lf„,kip-ft 1080 1620 931 1400 831 1250 766 1150 696 1050 63i; :.:949
Utiai, 664 998 575 664 515 : 774 •477 717 435, 654 396 :-696
'BFiai, ifjBF.kips ' 14.2 21.2 13.7 •20.7 13.2 19.9 12.9 19.3 .12.4 18.9 11.8 : 17.7
i!>/a,: <t>A,kip5 338 506 318 477 283 425 260: 391 237>. 355 2141 321
432 373 333 307 279 253
Lf.n 10.6 10.4 10.3 10.3 10.2 102
39.9 36.3 34.2 32.7 31.2 30.1
ASO
01 = 1.67
a,=i.5o
LRFO
411, = 0.90
(ti, = 1.00
Note; ftir beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

3-56 DESIGN OF FLEXURAL MEMBERS
W21
Table 3^6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Fy = 50 ksi
W21x
Shape
93 83 73 68 62
Design ASO LfiFD ;.ASD imj ASD LRFO ASO LRFO ASD LRFD
8 50U 752 441 661 386 579 363 ' 544 336 504
9 490 > 737 435 653 381 573, .355 533 319 480
10 441 663 391 588 ;516 '319 i - 480 287 432
11 401 603 •356 535 312 469 290 i 436 261 • 393
12 368 553 326 490 , 286 430 266 ' 400 240 ; 360
13 !339. 510 301- 452 264 397 246 ^ 369 221 332
14 ;315, ; 474 279 420 245 369 228 343 205 309
15 442 261 392,; 229 344 213 320 192 288
16 414 245 368 215 323 200 , 300 180 , 270
17 259 390 230 346 202: 304 188 282 169 254
18 . 245'" 368 '217 327 191 287 177 i 267 ,160 : 240
19 232 349 206 309 181 272 168 ! 253 T51 227
20 332 196 294 : 172- 258 160 ; 240 144 216
21 316 186 280: . : 163 : 246 152 229 137 206
22 201 301 : 178 267 • 156 -235 145 : 218 131 196
23 288 170 256 149 224 l39 209 125 188
24 i184r. 276 -163 245 215 133 i 200 120 180
c 25 m-. 265 156 235 ; 1^7; 206,. 128,! 192 lis 173
I 26 255 -150' 226 132 198 123 ' '185 I'll 166
27 iies; 246 145 218 '127^^ 191 , 1.18, i 178 106 160
28 158 237 i140 210 ; 1|23 184 114:! 171 T03 154
29 iJS2 229 135 , 203 178 ;110 i 166 99.1 149
30 221 130 196 . 172 : 106 . 160 95,8 144
32 138 207 122 184 my 161 99.8' 150 .89.8 135
34 130? 195 115 173 101: 152 : 93.9. 141 -84.5, 127
36 123 184 109 163 95.4 143 88.7; '133 79.8 120
38 116 174 103 155 90:3 136 84.0 '126 75.6 114
40
iitt;
166 97.8 147 85:8^ 129 79.8 120, 71.9 108
42 105 158 ,93i1 140 81.7 123 76.0 114 ^68.4 103
44 100 151 88.9 134 ;78.0 11:7 72,6
109 •65.3 98.2
46 95.9 144 85.0 128 ?74.6' 112 69.4 104 62.5 93.9
48 91:9 138 '81.5 122 71.5 108 66,5 100 59.9: 90.0
50 88.2 133 78,2 118 68.7 103 63.9 96.0 57.5: S6.4
32 84.8 128 75.2 113 66.0 99.2 61.4 92.3 •55.3 83.1
54 8I.7; 123
-
Beam Properties
Mt/lii «M(:,kip-ft 4410 • 6630 : 3910 ' 5880 , 3430 5160 3190 4800 2870 4320
Mp/fti ikjMp, kip-ft 551 829 489 735 429 , 645 399 600 359 ' 510
Mrfdt dfiM,, kfp-n 335 504 299 449 264 396 245 :, 368 222 333
BFJCit tjfif, kips 14.6 22.0 - 13.8 20.8 i12.9 13.4 125; 18.8 11.6 17:'5
251 376 220 331 193 289 181 272 168 ^ 252
ZK, in.2 221 196 172 160 144
Lp,n 6.50 6.46 6.39 . 6.36 6.25
Lr,n 21.3 20.2 19.2 18.7 18.1
Q4 = 1.67
ai,= i.5o
' Shape does not meet compact limit tor flexure witli /> = 50tei.
4)4 = 0.90
(i),= 1.00
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-57
Table 3-6 (continued)
Maximum Total
Fy. = 50 ksi
Uniform Load, kips
W-rShapes
w; 21
W21x
ShdpG
57 55 50 48' 44
Design ASD LRFD ASD LRFD ASO LRFD ASD LRFD ASD LRFD
1 6 316 474 290 ' 435
7 342 . 513 . T i :
314 288 ' 433 272 409
8 4S4 312 468 • 274 . 413 265 398 238 358
9 286 430 279 244 • 367 235 ' 354 212 318
10 257 387 . 251 • 378 220 330 212 ' 318 ido 286
11 234 352 229 344-. 200 300. 193 289 173 260
12 2f5 323 '210 315 • 183 275 176 265 159 239
13 198 298 "193i 291 169 ;254 163 245 146 220
14 184 276 •180 270 -157 ' 236' 151 1
227
136 204
13 172- 258 168 252 146 220 141 212 127 191
16 161 242 157: 236 137 206 132 199 113 • 179
17 151 228 148 222 ' 129 194 ^25 187 112 168
18 143 215 140 210 122 183 n8 177 106 . 159
19 136 204 199 116 174 .111 ' 168 100 151
20 129- 194 426 189 110 165 106 159 •^5.2 143
21 123 184 '320 180 . ' 105^ 157 101 ' 152 50.7 136
22 117
176 ^114 172 99.8 150 96.3 145 86.6 130
23 ,112 168 109 164 : 95.5 143 92,1 138 82.8' 124
24 107 161 105 158 91.5 138 88.2 133 79.3 119
25 103 155 101. 151 87.8 132 84.7 127 76.2 114
26 99.0 149 96.7 145 84.4 127. '81.5 122 73,2 110
27 95.4 143 93.1 140 81.3 122 75.4| 118i 70.5 106
28 92.0 138 ,89.8 135 78.4 118 75.6' 114 68.0, 102
29 88.8 133 86.7 130 75.7 114 73,0 110 65,7 98.7
30 85.8 129 83.8 126 73.2 110 ,70.6 106 63.5 95.4
32 fi0.S 121 -'78.6 118 • 68,6 103 '166.2; 99.5 ^9.5 89.4
34 75.7 114 , ,74.0 111 64.6 97.1 62.3' 93.6 -56.0 84.2
36 7f.5 108 "69.9 105 61.0 917 58.8. 88.4 52.9 79.5
38 67.8 102 ' ,66.2 99.5 57.8 86.8 55.7 83.8 50.1 75.3
40 64.4 96.8 .82.9 94.5 54.9 , 82.5 52.9 79.6 47.6 71.6
42 61.3 92.1 ' .59.9 90.0 52.3 78.6 50.4 75.8 45.3 • 68.1
44 58 5 88.0 57.2 85.9 49.9 75.0 48.1 72.3 43.3 85.0
46 56.0 84.1 , 54.7 82.2 47J 71,7 46.0 69.2 41 4 62,2
48 : 53.6 30.6 52.4 78.8 :45J 68.8 44.1 66.3 39 7 59.6
ao 51.5 77.4 .50.3 75.6 43.9 66,0 42.4 63.7 381 57.2
52 > 49.5 74.4 48.4 72.7 • !42i : 63.5
Beam Properties
kip-ft ? 25701'? 3870 2510 . 3780 2200, 3300 2120 .3180 1900 2860
it>6«p, kip-ft : 322 484 473 ' 274 413 265 398 ,238 .358
kip-ft 194 291 ;:192 289 165 248 162 ! 244 •143 214
feSf. kips : ..J3.4 20.3 1018 16.3 •12.1 18.3 ^ a89 14,8 11,1 16.6
Vnia, kip$ 256 :<?i156 234 / 1158. 237 144 . !; 216 145 , 217
ZxM? 129 126 110 107 95.4
4.77 6.11 4.59 6.09 4.45
in ft 14.3 17.4 13.6 16.5 13.0
LRFD Note: For beams laterally unsupported, see Table 3-10.
ns = 1.67 (!>/,=0.90
Available strength tabulated above heavy line is limited by available shear strength.
n„=i.5o 4), = 1.00
{
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
W18
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Fy = 50 ksi
W18x
Shape
311" 283" 258" 234" 211 192
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD LRFD ASD LRFD
11 1360 2030 1230 840 1100 650 979 1470 878 1320 783 11 80
12 1250 1890 1120 690 ^1020 530 913 1370 815 1230 735 V 10
13 1160 1740 1040. 1560 938 1410 843 1270 752 1130 ; 679 1020
14 1070 1620 964 1450' .87f 1310 J83 1180 699 1050 630 947
15 1000 1510 900 1350 ,'613 1220 731 1100 980 ;688 884
16 941 1410 843 1270 762 1150 685 1030 em. 919 551 829
17 885 1330 794 1190 : 717 1080 645 969 575- 865 519 780
18 • 836 1260 750 1130 678 1020 609 915 543 817 490 737
19 792 1190 7.1Q' 1070 642 965 577 867 5-15 774 i464 698
20 752 1130 675 1010. 610 917 548 824 489 735 441 663
21 717 1080 643 966 "581 873 522 784 466 700 .420 631
22 .684 1030 613 922 r 554 833 498 749 445 , 668 401 603
23 -654 983 587 882 ; ;530 797 •476 716 425 639 384 577
24 .627 943 562 845 508 764 457 686 408 . 613 368 553
25 : 602
905 540 811 ! 488 733 _.438 659 391 1 588 353 530
26 579 870 5li 780 469^ 705 '•'421. 633 376 . 565 339 510
27 557 . 838 500 751 452: 679 406 610 : 3Q2 544 327 491
28 537 808 482 724. 436 655 391: 588 349 525 315 474
cf
29 519 780 465^ 699 421 632 378 568 337 ' 507 304 457
o. 30 ^ .502 754 450 676 407 611 :365 549 326: 490 ,294 442
CO
31 730 435 654 393 591 353, 531 .3T5 , 474 28^ 428
32 470 707 422 634 381 573' ,342 515 306 : 459 276 414
33 456 -685 409 615 370 555 332 499 296 445 267 402
34 441 665 397 596 359 539 322 484 288 432 259 390
35 430 .646 386; 579 348 524 '313 471 279 420 252 379
36 -418 ' 628 375 563 339 509 304 458 272 408 245 368
37 '407 • 611 365 548 330 495 296: 445 264 397 ••238 358
38 :.396 595 355 534 321 482 288 433 257 387 232 349
39 386 580 346 520 313 470 281 422 25T 377 226 340
40 376 566 337 507 305 458 274 412 •245 368 ;221 332
42 358 539 321 483 290 436 261 392 233 350 210 316
44 342 514 307 461 277 417 .249 374 222' 334 201 301
46 327 492 293 441 265 398 238 358 213 320 192 288
48 314 471 281 423 254 382 228 343 204 306 184 276
50 301 452 270 406 ^44 367 219 329 196 294 176 265
52 289 435 259 390 235 353 211 317
54 279 419 250 376
Beam Properties
WtlClu 15000 22600 13500 20300 12200 18300 IfflOO 16500 9780 14700 8820: 13300
MfliU
M,/£2i
1880; 2830 1690 2540 1520 2290 1370 2060 1220 1840 1100 , 1660
MfliU
M,/£2i (fjdfr.Wp-ft 1090' 1640 987 1480 898 1350 ;, 814 1220 732 1100 664
(
)98
BFISh, <|)(,fl/-i(ips 11:2 . 16,8 11.1 16.7 10.9 16.5 10,8 16.4 107 16.2 io;6 16,1
678' T020 613 220 550 826 490 734 439 658 392
[
188
754 676 611 549 490 442
Lp,n 10.4 10:3 10.2 10.1 9.96 9,85
Lr,n 81.1 73.6 67,3 61,4 55.7 51,0
ASD LRFD " Flange thickness greater than 2 in. Special requirements may apply per AISC Specification SecftonM'io.
416 = 0,90
a,= i.5o i|if=1.00
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Table 3-6 (continued)
Maximum Total
Fy. : 50 ksi
Uniform Load, kips
W-Shapes
W1 8
W18x
Ollciuc
175 158 143 130 119 106
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFO ASD LRFD
10 498 747 441; 662
11 '712 1070 638 957 569 854 517 776 475 715 417; 627
12 662., 995 592 890 536 805 482 725 436, 655 383 i 575
13 611" 918 547 822 494 743 445 669 402 605 553; 531
14 '567- 853 508 763 459 690 413 621 374 561 328. 493
15 :530: 796 474 712 428- 644 386 580 349 524 306 460
16 :497t 746 '444 668 402: 604 362 544 327. 491 287 431
17 ;467' 702 41 fc 628 378 568 340 512 308 462 270 406
18 44'i 663 395,; 593 357:; 537 322 483 291 437 255: 383
19 418: 628 i374- 562 338 508 305 458 275 414 242 363
20 f39r 597 355' 534
321,
483 289 435 261": 393 230 345
21 '378 569 '33?: 509 1306'i 460 276 414 249 374 219 329
22 361 543 :323 485 i292,i 439 263 395 238 357 209 314
23 345 519 309 464 •279,, 420 252 378 227 342 200 300
24 33i: 498 ,296' 445 !268;;" 403 241 363 •218 328 191; 288
25 318, 478 427 386 232 348 209' 314 184 276
c 26 i.306^: 459 :273i:t 411 372 223 335 201>i 302 177 265
27 294. 442 263 396 238 358 214 322 194 291 170 256
S. 28 284 426 ;254, 381 ,230 345 207 311 187 281 164 246
29 274 412 :245 368 :222, 333 200 300 180 271 158 238
30 265 398 '237 356 •214: j 322 193 290 1/4 , 262 153, 230
31 385 '229 345 207 312 187' 281 169 254 148" 223
32 :248" 373 222 334 201 302 181- 272 1^3 246 143 216
33 241 362 215 324 293 175 264 158 . 238 139 209
34 234. 351 i209 314 •189 284 170 256 154 231 135! 203
35 227>
341 i203 305 184. 276 165 249 149- 225 >131 197
36 221- 332 197 297 M.7S 268 161 242 145 218 '128' 192
37 215 323 192 289 261 156 235 141 212 124 186
38 |209 314 187 281 169 254 152 229 138 207 121 182
39 i204 306 182 274 165 248 148 223 134 202 118i 177
40 199 299 178 267 161 242 145 218 131 197 •115; 173
42 189: 284 169 254 '153 230 138 207 125 187 109 164
44 181 271 161 243 146 220 152 198 119 179 '104 157
46 173 260 154 232 140 210 126^ 189 114 171 99.S 150
48 1B6
249 148 223 ;i34 201 121 181 r
SO 159 239
: J
Beam Properties
mm ifbWo, kfp-ft 7940. 11900 7110 . 10700 6430 9660 5790 8700 : 5230 7860 4590 6200
Hpint ^tMp, kip-ft 993 1490 888 1340 803 1210 724 1090 654 183 ;574' 863
Uriai, kip-ft 601 903 541 814 .493' 740 447 : 672 403 i06 356 ' 536
BFm-itisBF, kips ,10:6 '15.8 ^ -MO,5 15.9 slO.3 15.7 10,2 15.4 101 15.2 9.73 .14.6
wm
kips .355 534 319 . 479 i285f 427 ,259 388 249 173 221 331
398 356 322 290 262 230
9.75 9.68 9.61 9.54 - 9.50 9.40
lr,tt 46.9 42,8 39.6 36.6 34.3 31.8
ASD LRFD Note: For beams laterally unsupported, see Table 3-10.
ai,=i.e7 <|i6 = 0.90
Available strengtti tabulated above heavy line is limited by available shear strenstn.
$, = 1.00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
C _ . Rfl L-ci
Uniform Load, kips
Fy- : OVI KSI
w 18
W-Shapes
W18x
oudpe
97 86 76 71 65 60
Design ASD- LRFD ASD. LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
7 366 549
. '
8
- A* «
364 548 331 497 302 i 4.53
9
- 324 487 -295 443 27Z- 410
10 398 597 353' 53(1 309 464 291 438 265 399 246.0 369
11 383 575 338 . 507 296 445 265 398 241 363 223 335
12 351* 528 309 465 271 ,408 243 365 221 333 205 308
13 324 487 286 ' 429 250 . 376 224 337 204 307 189' 284
14 301 -452 265 399 232 349 208 : 313 190; 285 •175 264
15 281 422 248 372 217 326 194; 292 177 266 :164i 246
16 263 -396 232 : 349 203 306 182' 274 lei 249 153 231
17 248, 372 218 328 191 288 171 258 156 235 144 i 217
18 234 352 206 310 181 272 162 243 147 : 222 136; 205
19 222 333 195' 294 171' 257 153' 231 140 210 • 129^ 194
20 211-' 317 186 279 163 245 146^ 219 133 200 5123: 185
21 201 ' 301 177, 266 155 233 139' 209 126 190 ,1171 176
22 191: 288 169^ 254 148 " 222 132, 199 121 181 ,112: 168
23 18'3 275 161 ,243 141 213 127 190 11.5 173 107 160
24 264 155: 233 136. 204 121 183 111 • 166 •102 154
c 25 168 • 253 149 223 130 196 117 175 106 160 • 98^ 148
I 26 162 , 243 143 215 125 188 112 ' 168 102 153 94.4 142
27 156 ' 234 138 207 120 , 181 108: 162 98.3 148 90.9 137
28 150 226 133 199 116 175 104' > 156 94:8 143 87.7 132
29 145 218 128', 192 112 169 100 151 91,5 138 84.7 127
30 140, 211 m 186 108 < 163 -97.1 146 88.5 133 81.8 123
31 136 ' 204 120"' 180 105 158 94.0 141 85.6 129 79.2 119
32 132 198 116 174 102 153 91.1 137 83.0 125 -76,7 115
33 128 192 113 169 198.6- 148 88.3 133 80.4 121 74j4 112
34 124,. 186 109 164 95.7 144 85.7 129 78.1 117 £72^ 109
35 120 181 106. 159 93.0 140 83.3 125 75.8 114 " 70,1 105
38 117 176 103 155 ;90.4 136 •80.9 122 73.7 111 • S6a2 103
37 114' 171 100 151 87.9 132 78.8 118 71,7 103 166.4 99.7
38 111- 167 97.7 147 85:6 129 : 76.7 115 69:9 105 i 64.6 97.1
39 108 162 95.2 143 83.4 125 :74.7 112 68.1 102 , 63.0 94,6
40 105 158 92.8 140 81.3 122 72:9 110 66.4 99.8 , 61.4 92.3
42 100 151 88.4 133 ; 77.5 116 694 104 63.2 95.0 58.5 87.9
44 95.7 144 84.4 127 73.9 111 66.2 99.5 60.3 90.7 55.8 83.9
46 91.6 138 80.7 121 63.4 95.2 , 57.7 86.7
i
Beam Properties
vmsii (t>6Ht,l<ip-ft 4210 6330 3710.; 5580 3250.^ 4890 2910! t 4380 2650 3990 2460 3690
MplOi itijMp,Wp-ft 526 791 464; , 698 407,' 611 364: 548- 332 499 307; 461
UrlSli (ftMr.kip-ft
ifteF.Wps
328 494 290 436 255t 383 222. :, 333 204 i 307 189 284
BFISli
(ftMr.kip-ft
ifteF.Wps 941 14,1 ,9.01 13.6 8.50 12,8 15.8 .9.98 15.0 9.62 14,4
199 299 177:., 265 155 232 183 : 275 166 248 151: 227
211 186 163 146 133 123
tp,ft 9 ,36 9.29 9,22 6.00 5,97 5.93
u.n 30.4 28.6 27.1 19.6 18.8 .18i2
ASU : LRFD
n/,= i.67 $6 = 0.90
a,=1.50 (t), = 1.00
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Fy = 50 ksi
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
W18-W16
W18x
55 50 46 40 35 100
Design ASD LRFD ASD; LRFD ASD LRFD ASD LRFD ASD LRFD ASOff LRFD
6 261 391 226 338 212 319
7 4?4 256 383 259 389 224 336 190 285
8 279 420 252 379 226 340 196 294 166- 249
9 248 373 224 337 -201 ; 302 • 174 261 147.. 222 398 597
10 224 336 202 303 ; .181 272 156 235 133 200 395 594
11 203 305 183 275. 165 247 142 214 121' 181 359' 540
12 186 280 168 253 151 227 130 196 111 166 329 495
,13 172 258 155 233 ,139 209 120 181 102. 153 304 457
14 160 240, 144 216 129 194 112 168 94.8 143 282 424
15 149 224' 134 202 121 181 104 157 88:5 133 263 396
16 140 210' 126' 189 113 170 ' 978 147 83,0 125 247 371
17 132 198 119 178 106 160 921 138 78,1 117 232 349
18 '124 187 112 168 101 -151 86.9 131 73:7 111 220 330
19 : 118 ! 177 106 ' 159 95.3 143 824 124 69,& 105 208 313
20 112: 168 101 152 90.5 136 78 2 118 66,4 99.8 '198 297
21 1fl6 • 160 96.0 144 . 86.2 130 74 5 112 63.2 95.0 .188 283
22 102 153 91.6 138 82.3.. 124 71 1 107 60.3 90.7 180 270
23 97.2 146 87.7 132,: 78.7 118 680 102 57.7 86.7 172 258
a 24 93.1 140 84.0 126 75.4 113 65 2 98.0 55.'3 83.1 165 248
1
25 S89.4 134 80.6 121 72.4 109 626 94.1 53.1 79.8 158 238
26 i.86.0 129 77.5 117 69.6 105 602 90.5 51.1 76.7: 152 228
27 :82.8 124 74.7 •112 .67.1- 101 58.0 87.1 49.2 73.9 146 220
28 •/g.8 igo 72.0 108 64.7 97.2 559 84.0 47.4 71.3 141 212
29 V77.1 116 69.5 104 62.4- 93.8 • 04 0 81,1 45.? 68.8 136 205
30 :ii2 67,2 101 60.3 90.7 522 78.4 44.2 66.5 "132 198
31 72.1 108 65.0 97.7 58.4 87,8 ,50.5 75.9 42.8 64.4 127 192
32 ; 69.^
67.7
105 63.0 94.7 56.6 85.0 489 73.5 41,5 62.3 J 24 186
33
; 69.^
67.7 102 61.1 .91.8 54.9 82.5 474 71.3 40:2 60.5 120 180
34 65.8 98.8 59.3, 89.1 53.2 80.0 460 69.2 39:0: 58.7 116 175
3J5 •63.9 96.0 57.6 86.6 51.7 77.7 44 7 67.2 37;9 57.0 113 ira
36 62.1 93.3 56.0 84.2 •50.3 75.6 43 5 65.3 •36:9 55.4 110 165
37 60.4 90.8 54.5 81.9 48.9' 73.5 423 63.6 35.9 53 9 •107 161
38 58.8 88.4 53.1 79.7 47.6 71.6 41 2 61,9 34,9 52.5 104 156
39 .57,3 86.2 51.7 77.7 46.4 69.8 401 60.3 34,0 51.2 101 152
40 55.9 84.0 50.4 75.8 45.3 68.0 : 39.1 • 58.8 49,9 988 149
42 53.2 80.0 t48:0 72.1 43.1 64.8 373 56.0 '31,6 941 141
44 50.8 76.4 45.8 68.9 4l.1 61.8 35.6 53.5 30,2 45.3
Beam Properties
Ht/Oi • (tit(lt,kip-ft 2240 3360- 2020: 3030 1810 : 2720 156,0 ; 2350 1330 2000 3950; 5940
Mp/fl),; kip-ft i'279 420 252 379 226 340 136 294 166 249 '494: . 743
Mriai,; <l.sM„Wp-ft 172 258 155: 233 ,138 207 .119 180 lOl 151 459
BF/Qi; 9.15 13.8 8.76 13.2 9.63 14.6 8.94 13,2 8l4 12,3 ^7.16 11.9
%/a, • 141 : 212 128 192 130 195 0)13 i 169 106 169 i99|: 298
in.' 112 101 90.7 78.4 66.6 198
5.90 5.83 4, ,56 4.49 4.31 8 .87
ir,tt 17.6 16.9 13,7 13.1 12.3 32.8
W16x
rASD
06=1.67
LRFD
([)(, = 0.90
4,= 1.00
Note: For Beams laterally unsupported, see Table 3-10. .
Available strength tabulated above tieavy line is limited by available shear strength.
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
W16
Table 3-6 (eontinued)
Maximum Total
Uniform Load, kips
W-Shapes
Fy = 50 ksi
W16x
Miape
89 77 67 57 50
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
7
282 ^ 423 248 372
8
'•"'Jfi" 262 394 230 : 345 ••••
9 353- 529 300 450
-386'
233 350 204 307
10 •••^25' • 299 450 258 -386' 210 r 315 184 276
11 318 " 477 in 409 236 355 191 286 167 251
12 :29i 438 250 375 216 325 175 :. 263 153 230
13 269 404 230 346 200 300 161 242 141 : 212
14 250':' 375 214 321 •185: 279 150 225 131 197
15
'Mi
350 200 300 173 260 140 ; 210 122 184
16 ^218-:
328 i87' . 281 X162,. 244 131 ' 197 115 : 173
17 205 309 •fte: 265 153 , 229 123 185 108 162
18 194 292 166 250 M44 217 116 i 175 102 153
19 184 276 158 237 137 205 110 : 166 '96.6 145
20 263 150 225 . 1,30 195 105 • 158 91.8 138
21 166.V: 250 143!
214 ; 124 186 > 99.8 150 87.4 131
22 1590: 239 136; 205 118 177 95.3 143 >83.5 125
23 152 228 '130: 196 113 170 91.1 137 79 8 120
i
24 14(6 219 125 188- 108 • 163 87.3 -131 76 5 115
25 140 210 '120; 180 104 156 83.8 126. 73 5 110
26 'M'r 202 lis: 173 • 99.8 150 80.6 121 706 106
27 194 167 • 96.1 144 77.6 117 68 0 102
28 125 188 3;;I:07 161 92.7 139 74.9 113 65.6 98.6
29 120 181 155, 89,5 134 72.3 109 63.3 95.2
30
illf
175 150 ;86.5 130 69.9 105 61.2 92.0
31 169 .. 96.6 145 83.7 126 67.6 102 592 89.0
32 1,09 164 ¥^3.6 • 141 . . :8T.l 122 : 65.5 98.4 57 4 86.3
33 106 159 136 78.6 118 63.5 95.5 55.6 83.6
34 .103/ 154 88.1 132 76.3 115 61.6 92.6 :-54.0 81.2
35 99.8 150 129 74.1 111 59.9
90.0 52 5 78.9
36 146 83.2 125 72.1 108 58.2 87.5 51.0: 76,7
37 94:4 142 80.9 122 70.1 105 56.6 85.1 49.6 74.6
38 91.9 138 78.8 118 68.3 103 55.2 82.9 48 3 72.6
39 89.6 135 f76,8 115 66.5 100 53.7 80.8 47.1 70.8
40 : 87.3 131 74.9 113 . 64.9 97.5
52.4 78.8 459 59.0
42 83.2 125
Beam Properties
wt/nj <ti6Kt,kip-tt 3490 i. 5250 2990: 4500 2590 3900 2100 3150 1840 2760
MplQi (tisMp, kip-ft 437 i: 656 374 563 324 488 262 394 230 345
MAlt <t)6*kip-ft ;271 407 234: 352 204 307 161 242 141 213
BF/Qt fcBf.kips -7.76 11.6 7.34 11,1 6.89 10.4 7.98 12,0 , • 7.69 11.4
vm <l)„l/n,kips 265 •150: 225 129 193 141 ; 212 124 T86
A, 175 150 130 105 92.0
t/^ft 8.80 8.72 8 .69 5.65 5.62
t„ft 30.2 27.8 26.1 18.3 17.2
ASD LRFD ' Shape does not meet the hltm limit for shear in AISC SpeatkaSon Section G2.1 (a) with F, = 50 ksl; •
())/, = 0.90
therefore, 0.90 and n,= .1.67.
((>, = 1.00
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL MIFORM LOAD TABLES 3-63
Fy = 50 ksi
Table 3-6 (continued)
Maximum Total
Uniform^ Load, kips
W-Shapes
W16
W16x
OllillJC
45 40 36 31 Z6'
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
6 88 281 75 262 141 212
7 223 333 fe-T 293 82 274 54 '23l 126 189
8 205 309 82 i 274 : : 160 240 135 : 203 110 166
9 183 274 162 243 142 213 120 180 ^8.0: 147
10 164.0 247 146 219 128 . .192 108 162 88.2 133
11 149 224 132 i ' 199 116 175 98.0 147 80.2 121
12 137 206 121 183 106 ieo 89.8 135 73.5 111
13 126 190 •112 168 98.3 148 fe9 125 67.9 102
14 117 176 104 156 91.2 137 77.0 116 63.o: 94.7
15 110; 165 971 146 85.2 128 71.9 108 58.8 88.4
16 103 154 ^1:1 ' 137 79.8 120 67.4 101 55.1 82.9
17 96.6 145 85;7 129 75,1 113 63.4 95,3 51.9 78,0
18 91.3 137 80.9 122 71.0 107 59.9 90,0 49.0: 73.7
19 86.5 130 76-7 115 .67.2 101 56.7: 85.3 46.4, 69.8
20 82.1 123 72.9 110 63.9 96.0 ,53.9 81.0' 44.1 66.3
21 ^ 78.2 118 69.4 104 i60.8 91.4 51.3 77.1 42.0 63.1
IB
22 74.7 112 66.2 99.5 58.1 87.3 49.0 73.6 40.1 60.3
i 23 ^ T^ A 107 634 95.2 55,5 83.5 46.9 70.4 38.4 57.7
& 24 68.4' 103 60 7 91.3 53.2 80.0 44.9 67.5 36.8- 55.3
25 65:7 98.8 58.3 87.6 51.1 76.8 ,43,1; 64.8 35.3 53,0
26 63.2 95.0 56 0 84.2 49.1 • 73.8 41.5 ... 62.3 33.9 51.0
27 60.8 91.4 54.0 81.1 47.3 71.1 39.9 . 60.0 32.7 49.1
28 58.7 88.2 52 0 78.2 45.6 68.6 38.5 57,9 31.5' 47.4
29 56.6 85.1 502 75.5 44.0 66.2 37.2 55.9 30.4 45,7
30 54.8 82.3 48.6 73.0 42.6 , 64.0 35.9 54.0 29.4 ; 44,2
31 53.0 79,6 47.0 70.6 41,2 61.9 34.8 52.3 28.5 42,8
32 1 51.3 77.2 45.5 68.4 39.9 60.0 33.7 50.6 27.6 : 41.4
33 49.8 74,8 44.2 66.4 38.7 58.2 32.7 49.1 26.7 40.2
34 48.3 72.6 42.9 64.4 37.6 56,5 :3i.7; 47.6 25.9 39.0
35 46.9 70.5 41.6 62.6 36,5 54,9 'M.8, • 46.3 25.2 37.9
36 45.6 68.6 40.5 60.8 35.5 5X3 29.9 45.0 24.5 36,8
37 44.4 66,7 39.4 59.2 34.5 51.9 29.1 43,8 23.8 35,8
38 43.2 65.0 38:3 57.6 33.6 50.5 28.4 42,6 23.2 34,9
39 42.1 63,3 37.4 55.2 32.8 49,2 27.6- 41,5 22.6 34.0
40 ; 41.1 61,7 36.4 54.8
Beam Properties
iliAldp-n 1648 , 2470 1460: 2190 iiiao 1920 1080 1620 882 ,. 1330
iihiat kip-ft 205- 309 .182 274 160 240 135 203 110 166
MrlCli ^oMr, kip-ft m 191 113 170 98.7 148 82.4 124 67.1 ior
BFISlj, djtSf, kips • 7.12 10.8 6.67 10.0 6.24 9,36 6.86 10.3 593. 8,98
m,, hK, kips 111: 167 97.i6, 146 93.8 141 87.5: 131 70,5 106
82.3 73,0 64.0 54.0 44.2
5.55 5.55 5.37 4,13 3,96
Lr,n 16.5 15.9 15.2 11 .8 11.2
ASD LRFD Note: For beams laterally unsupported, see Table 3-10.
nj=i.67 (|)S = 0.90
Available strength tabulated above heavy line IS limited by available shear strength.
n,=i.so
AMEBUCAN INSTITUTE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
W14
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Fy = 50 ksi
W14x
snape
66SX 605" 550" 500" 455"
Design ASO LRFD ASO URFD ASD LRFD Asn LRFD ASD LRFD ASD LRFD
12 2750 4130 2450 3670 -2170 3260 m 2880 1720 2580 1540 2300
13 2550 3830 iird 3420: f2030 3050 S10 2720 1610. 2420 1440 2160
14 2370 3560 2110 .3170 ito' 2830 ,1680 2530 1500 2250 1330 2010
IS 2210 3320 1970 2960 1760 2640 rWQ 2360 1490 2100 125b 1870
16 2070 3110 1850 2780 1650 2480 ^1470 2210 1310 1970 1176, 1760
17 1950 2930 1740. 2610 1550 2330 1390 2080 1230 1850 ,1100 1650
18 1840 2770 1640 2470 1460; 2200 t310 1970 1160 1750 ,1040 1560
19 1740 2620 1550 2340 1390: 2080 1240 1860 1100: 1660 983 1480
20 1660 2490 1480 2220 1320 1980 1180 1770 10SO 1580 I 934 1400
21 1580 2370 1410. 2110 1250^ 1890 1120 1690 998 1500 89b 1340
22 1510 2260 1346 2020 1200 1800 107Q 1610 953 1430 849 1280
23 1440 2170 1280 1930 1150 ^ 1720 1020 1540 911 1370 812 1220
24 1380 2080 1230 1850 1100 1650 981 1480 '-873 1310 778 1170
25 1330 1990 1180 1780 ;1950 1580 942 1420 838 1260 747 1120
26 1270 1920 1140 1710 1010: 1520 906 1360 .806 1210 719 1080
27 1230 1840 T090 1640 976^ 1470 872 1310 776 1170 •692 1040
28 .1180 1780 1060 1590 941 1410 841 1260 749 1130 667 1000
a 29 1140 : 1720 1020 1530 909. 1370 ,812 1220 .723 1090 644 968
tz
m
M tlOO 1660 1480 , 878 1320 ;785 1180 699 1050 628 ,936
1 31 1070 1610 1430 • ko 1280 760 1140 676 1020 ~ 603 906
32 '1-040 1560 923 1390 823 1240 736 1110 655 984 584 878
33 1000 1510 :P95 1350 798 1200 714 1070 635 955 566 851
34 975 1460 869 1310 775 1160 693 1040 616 926 . 549 826
35 947 -1420 844 1270 •^53 1130 673 1010 599 900 534 802
36 •920 1380 azi 1230 732., 1100 ,-654 983 582 875 . 519 760
37 896 1350 )!i798 1200 712 1070 •637 957 566 851 505 759
38 ,872 1310 J77 1170 693:
.67&'
1040 620 932 552 829 492 739
39 850 1280 757 1140
693:
.67&' 1020 604 908 •587 808 479 720
40 •828 1250 C739 1110 659 990 589 885 524 788 ' 467 702
42 789 1190 703 .1060 627 943 561 843 499 750 . 445 669
44 753 1130 671 iaio S99' 900 535 605 ,476 716 425 638
46 720 1080 642 965 573 861 512 770 456 685 406 610
48 690 1040 615 925 549 825 491 738 437 656
50 663 996 591 888 527 792 471 708
52 • 667 . 958 ;568 854 507 762
54 •614 922 m 822
56 592: 889
Beam Properties
WilCit <|)jll4,kip-f( 33.100 49800 29500 44400 :.26300 33600 23600 35400 21000 31500 18700 28100
KplSit •4140 6230 3690 555C 3290 4950 •2940 4430 2620 3940 -2340 3510
UMi (fj/Wr.kip-ft 2240 3360 2010 3020 1820,: 2730 1630 2440 1480: 2200 .1320 1980
Bmt (|)jBf,kips , 7.35'J 11.1 7.10 10.7 6.81 10.3 6.65 10.1 6.43 9.65 6.24 9.36
V„ICl, 13S0 2060 1220 1830 1090. 1630, 962 1450 858 1290 . 768 1150
ill.3 1660 1480 1320 1180 1050 936
ip,n 16 .6 16.3 16.1 159 15.6 15.5
Lr,n 275 253 232 213 196 179
ASD ' LRFD I" Range thickness greater than 2 In.-Special requirements may apply per AISC Specification Section A3.1 c.
n4=i.67 (jii = 0.90
a, <=1.50
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 5-65
Table 3-6 (continued)
Maximum Total
50 KSi
Uniform Load, kips
W-Shapes
w 14
W14x
Chan A
bnape
426h - 398" 370" . 342" 311" 283"
Design ASD LRFD ASO LRFO ASO LRFD ASD LRFD ASO LRFO ASD LRFD
12 1410 2110 1300 1940 r SOi 1760 1080 1B20 964 1450 862 1290
13 1330 2010 1230 1850 r 30' 1700 1030 1550 926 1390 • 832 1250
14 1240 1860 114Q 1720 1050 1580 958 1440 '860 1290 ,773 1160
15 1160 1740 1070 1600 979; 1470
:
1340 802, 1210 •721 1080
16 108Q, 1630 ;999 1500 ^ 91,8 1380 838 1260 752 1130 676 1020
17 1020 1530 ^ 94tf 1410 ; 864 1300 789 1190 708 1060 636 956
18 964 1450 888 1340 816 1230 745 1120 669 1010 601 903
19 913 1370 841 1260 773 1160 •706 .1060 633 952 569 856
20 867 1300 799 1200 735 1100 671 1010 ,602 905 '541 813
21 826 1240 761 1140 1050 639 960 573 861 515 774
22 788 1190 727 1090 : 668- 1000 • 61ft, 918 .547 822 .492 739
23 754 1130 695- 1040 ; 639 960 583 877 523 787 -470 707
24 723 1090 666 1000 612 920 559 840 501. 754 451 678
25 694 1040 640 961 883 537 806 481 724 .433 650
26 667 1000 615 924 565 849 516 775 463 • 696 416 625
E
27 642 966 592, 890 : 544 818 497 747 446 670 401 602
O. 28 619 931 , 57!" 858 525 789 479 720 430 846 386 581
UJ
29 598 899 551 829 507 761 463 695 415' 624 373 561
30 578 869 533 801 490 736 447 672 401 603 •361 542
31 560 841 m 775 474 712 433 650 388 ' 584 349 525
32 54^ 815 500 751 459 690 419 630 376 565 ' 33S 508
33 526 790 484 728 !445; 669 406 611 365 548 • 328 493
34 510 767 470 707 432 849 395 593 354 532 ,•318 478
35 496 745 457 687 420 631 383 576 '344 517 pSoi 465
36 482 724
i 444
668 408 613 373 560 334 . 503 i:30i 452
37 469 705 432 649 397 597 363 545 325 489 292 439
38 :456 686 421 632 387 581 353 531 317 476 285 428
39 445 668 410'' 616 377 566 •344^ 517 309 464 "277 417
40 434 652 400' 601 367 552 335 504 301 452 270 407
42 413 621 : 381 572 350: 526 319. 480 287.. 431
44 394 593 363 546 334 502
46 377 567

Beam Properties
Wciai, 17300 261OO 16000 24000 14700 22100 13400- 20200 12000 18100 10800 •16300
Mpint kip-ft 2170 3260 ,2000 3000 ;1840' 2760 1680, i 2520 1500 2260 •1350 . 2030
Mrlilt :1230 1850 1150 1720 1060. 1590 97®: 1460 884 ^ 1330 802 1200
BF/ilt (t,(,8f,kips 9.23 5.95 8.96 ; :5.87« 8.80 5,73.. 8.62 5.59 8.44 5.52 • 8,36
•t-AWps ;703. 1050 646 972 891 |53&i 809 i482£ 723 431 646
869 801 736 672 603 542
tpft 15.3 15.2 15.1 15.0 14.8 14.7
tr,ft 168 158 148 , 138 125 114
ASD
£24 = 1.67
LRFD
(|)t = 0.90
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
AMERICAN iNSTIrTrRE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
c crt t^^i
Uniform Load, kips
Fy = •• 50 KSI
w 14
W-Shapes
W14x
Shape
257 233 211 193 176 159
Deisign ASD URFD ASO LRFD ASO LRFD ASD LRFD ASD LRFD ASO LRFD
12 774 1160 685 1030 615 923 552 828 505 757 .v447 671
13 748 1120 669 1010 599 900 545 819 491 738 441 662
14 694 1040 622 934 556 :836 506 761 456 686 409 615
15 648 974 580, 872 519 780 472 710 426 640 382 574
16 608 913 544: 818 487' 731 443 666 399 600 358 538
17 572 859 769 458; 688 417 626 3/6 565 337 506
18 540 812 •483' 727 432 650 394 592 355 533 i 318 478
19 5li
769 458 688 :;4io: 616 373 561 330 505 •302 453
20 486 731 654 389 585 354 533 319 480 286 431
21 463 696 4.14 623 371 557 337 507 304 457 273 410
22 442 664 396 595 354- 532 322 484 290 436 260 391
23 423 635 378 569 •338 509 308 463 278 417 249 374
24 405 609 .3'63 545 488 295 444 266 400 -239 359
t:
25 389 584 ,348: 523 311 468 283 426 255. 384 ,229 344
e
s
26 374
360
562 I335; 503 299 450 273 410 24p 369 220 331
& 27
374
360 541 322 484 288 433 ^262 394 237,- 356 212 319
28 347. 522 467 278 418 253= 380 228 343 205 308
29 335 504 •300, 451 268 403 244 367 220 331 198 297
30 '324 487 290 :436 259 390 236 355 •?13 320 ; 191 287
31 314 471 422 251 377 229 344 206 310 185 278
32 30^ 457 272 409 243 366 22t 333 200 300 "-179 269
33 295 443 264 396 236 355 215 323 194 291 174 261
34 286 430 256 385 229 344 208 313 188> 282 ,168 253
35 278 417 249 374 222 334 202 304 182 274 164 246
36 270 406 •24^ 363 216 325 197 296 177 267 159 239
37 263 395 235 354 210 316 192 288 173 259 155 233
38 256 384 229 344 205 308 186 280 168 253
39 249 375 223 335
200
300
40 243 365 218 327
200
Beam Properties
(|)jl«t, kip-ft 9720 14600 8700 13100 7780 11700 7090 10700 6390 9600 5730 8610
Mpiat (fs/Wp, Mp-ft 1220 1830 ,1090 1640 973 1460 886 1330 798 1200 716 , 1080
MrlSli, i^M, kip-ft 725 1090 655'; 984 590 887 541 814 491 738 ,444 667
BFICli, tfiBF, kips 5.54 8.28 5,40. 8.15 :5.30 7.94 5.30 7.93 5.20.. 7.83 5.17 7.85
V„IQi :387: 581 342c; 514 ' 308 462 276 414 252 378 224 ' 335
Zx, ln.3 487 436 390 355 320 287
Lp,n 14.6 14.5 14.4 14.3 14.2 14.1
If, ft 104 . 95.0 86 i.6 79.4 73.2 66.7
ASD URFD ' Shape does not meet compact limit for flexure witli fy=50 tel.
04=1.67 (|)s=o.ao
(|i, = 1.00
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Table 3-6 (continued)
Maximum Total
Fy = 60 ksi
Uniform Load, kips
W-Shapes
w 14
W14x
SnsDG
145 132 120 109 9! 31 90'
Design ASD LRFD ASD LRFD ASO LRFD ASD LRFD ASD LRFD 'ASD LRFD
12 403 604 379 ;569 342 513 300 450 275 413 246 370
13 399i ;600 :3S9; 540 326 489 295 . :443 264. ' 397 235' 353
14 37^ 557 501 302 454 274 411 246^- 369 218' 328
15 346 520 ;3ii. 468 282 424 255 384 229 344 204 306
16 324 488 292, 439 ;264i 398 240i; 360 215 323 .191 287
17 305;:. 459 275 413 249 374 225 339 202 304 180 270
18 m. ,433 259, 390 235 353 320 191 287 170 255
19 273 411 246 369 223 335 202 303 181' 272 161 242
20 390 ;2i4: 351 212 318 192 288 172 258 153 230
21 247 371 222 334 303 im 274 164'- 246 145 219
22 ,236 355 212 319 •192, ,289 174 ,262 156 235 139 209
23 226 339 203 305 :184'; 277 167 250 149' 225 133 200
24 216 325 195( 293 ;176::; 265 H60,. 240 143 215 .127 191
25
^H
312 •Wt, 281 169 254 153 230 137 207 122' 184
f
26 200 300 180; 270 163 245 147 222 132 199 117 177
27 192. 289 173 260 157 236 213 127 191 113f 170
28 185 279 167';; 251 227 137 206 123 185 109 164
29 179 269 161 242 219 132 199 319 ' 178 105, 158
30 173
^ >
260 ,1^6: 234 212 125 192 115; 172 -102 153
31 167 252 226 137 205 124i 186 111 , 167 98.5 148
32 .162 '244 :1S16- 219 132 199 120 180 107 161 95J4 143
33 157 236 142 213 im 193 175 IOC 157 • 92.5 139
34 153 229 'i:37i 206 •124 187 113 169 101 152 -89.8 135
35 1.48 223 133 201 •121-, 182 109 165 98,2 148 87.3 131
36 144 217 130'; 195 lie" 177
37 ;140. 211
Beam Properties
miQi, tjifiW^j kip-ft 5180 7800 4670;' 7020 4230: 6360 3830.. 5760 ;3440 5170 3050 .4590
649 975 584; 878 529 > 795 .479:; 720 430 646 382 574
MrlOt (fjMr, kip-ft 405 609 365 549 332 499 :302- 454 i274. 412 •250 375
mat 4>f,Sf,kips '5.13; 7.69 5.15 7.74 ;5.09« 7.65 5.01 ; 7.54 i4.91.; 7.36 482 7.26
KVmkips 201 302 190 284 ,;17iti 257 225 207 •123 185
in.3 260 234 212 192 173 157
14.1 13.3 13.2 13.2 13,5 15.1
lr,ft 61.7 65.8 51 .9 48 .5 45.3 42.5
Oi = 1.67
fl,= 1.50
LRFD
J = 0.90
f=1.00
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
<
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
Fy =
Uniform Load^ kips
Fy = : 50 ksi
w 14
W-Shapes
W14x
Shape
82 74 68 61 53 48
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
8 , f
209 •
206 • 309 188 282
9 292 438 256/,; 383 232 349 209 • 313 193"' 290 .174' 261
10 277:. 417 251 378 230 345 204 , 306 174. 261 156; 235
11 252 ' 379 344 209 • 314 185 278 158' 238 142 214
12 231 348 210:, 315 191 • 288 170' 255 145 . 218 130 196
13 213 321 193iS 291 177 265 157 235 134" 201 120i 181
14 1985 298 180, ,270 164 246 145" 219 J24- 187 112 168
15 185! 278 168-,; 252 153, 230 136 204 116.^ 174 104
^ .i
157
16 173 261 iSf; 236 143 216 127- 191 109 163 97.8 147
17 163 245 222 135 203 120 » 180 102 ' 154 92.1 138
18 154 232 |40\. 210 128 192 113 170 96 JB 145 86.9 131
19 146 219 132;-! 199 121 182 107 161 91:5 138 82,4 124
20 139 209 12®^ 189 115 173 102 153 86.9 131 78.2 118
21 132 199 •180 109' 164 96.9 146 '8'2i' 124 74.5 112
1 22 126 190 114ir, 172 104 157 92.5 139 79,0 119 71,1 107
<n
23 121 181 f094; 164 99.8 150 '88:5 133 ^75.6 114 . 68,0 102
24 116 174 i05::i. 158 95.6 144 84.8 128 72.4 109 < 65,2 98.0
: 25 111' 167 lOir, ,151 91.8 138 81.4 122 69.5 105 , 62,6 94,1
26 107 160 :9B:7 145 '88.3 133 ITS.-S 118 ,66.9 101 ' 60.2 90,5
27 103, 154 140 85.0 128 '75.4 113 ,64.4 96,8 58.p 87,1
28 99.1 149 '89.8 135 82-.0 123 72.7 109 , 62.1 93,3 "55.9 84.0
29 95,7' 144 86.7 130 79:2 119 70.2 106 59.9 90.1 ;54.0 81.1
30 92.5 139 "83:8 126 '76.5 115 67,9 102 '58.0 87.1 52.2 78.4
31 M:B 135 ;8l;i 122 ! 74.0 111 i65.7 98.7 56.1 84.3 50.5 75.9
32 M.7 130 •78.6 118 71.7 108 63.6 95,6 54,a 81,7 48.9 73,5
33 84.1 126 i76.2 115 69.6 105 i61.7 92,7 52,7 79.2 47.4 71,3
34 81.6 123 : 74.0 111 i67.5 101 .59.9 90,0 51.1 76.9 46.0 69,2
35 79,3 119 71.9 108 65.6 98.6
Beam Properties
Wcia^ <|)i,H!„ kip-ft 27.70 4170 2510 3780 12300 3450 '2040;' 3060 1740 2610 1560 .2350
Uplih kip-ft 347 521 :.314 473 287 431 i254i« 383 327 196 ,284
MrlCii ijisWf, kip-ft 215 323 • 196., 294 180 270 : 161 242 136 204 123 . 184
BF/Qt i^bBF, kips 5.40 8.10 5.31 8.05 ,519 7.81 ,4.93 7.48 52Z 7,93 5.09 7,67
.v„iai-it.,l'»,kips 1146 219 ;128 192 i116 174 104 156 103 154 93.8 141
Ix,
ilT.3 139 126 115 102 87.1 78,4
8 .76 3,76 8 .69 8 ,65 6.78 6,75
L„n : 33.2 31,0 29.3 27.5 22.3 21;1
ASC LRFD t-: .'i
04 = 1.67
n,=i.50 (|), = 1.00
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Fy = 50 ksi
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
W14
W14x
43 38 34 30 26 22
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASDi LRFD
5

142 213 126 189
6
!
160 239 149 224 134 201 110 166
7 175 262 156- 234 135 203 115' 172 ' 94,^ 142
8 67 251 153". 231 136.,, 205 118' 177 100 151 82.8 125
9 54-- 232 136" 205
121,-
182 105 158 89.2 134 . 73.6 111
10 139 209 123 185 109 164 94.4 142 S0,2 121 66.3 99,6
11 126 , 190 112- 168 9,9.1 149 -85.8 129 72,9 110 60.2 90,5
12 116 174 102 154 90.8 137 78.7 118 66.9 101 55.2 83,0
13 107 ' 161 94.4 142 83.8 126 72.6 109 61.7 92.8 51.0 76,6
14 •90.2 149 •8?;7 132 77.8 117 67.4 101 57.3 86,1 47.3 71,1
15 92.6 139 81.6 123 72.7 109 62.9 94.6 53.5 80 4 44.2 66,4
16 86 8 131 76'.7 115 68.1 102 59,0 88.7 50.1, 75 4 41.4' 62,3
17 8:3.7 123 •72I2 109 64.1 96.4 :55;5 83.5 47.2 70.9 39,0 58,6
18 T7,2 116 68.2 103 60.5 91,0 52.5 78,8 44.6 67,0 36.8 55,3
19 734- 110 97,1 5i4 86,2 49,7 74,7 42.2 63.5 34,9 52,4
s"
20 695 104 61,,4 92,3 54,5 81.9 47^2 71,0 40,1 60,3 33.1 49,8
&
21 i 66.2 99.4 58.'5 87.9 51,9 78,0 4iO 67,6 38,2 57,4 31.6 47,4
22 .63;i 94.9 55.8 83.9 49.5 74,5 42,9 64,5 36.5 54,8 30,1 45,3
23 ! 60:4 90.8 53,4 80.2 47.4 71,2 ,41,0 61,7 ' 3i'.9 52,4 28.8 43.3
24 i 57:9 87.0 51/t 76.9 45:4 68,3 39.3 59.1 '33.4 50 3 27.6 41,5
25 155.6 83.5 49.1 73,8 '43.6 65,5 37.8 56,8 32.1 48.2 26.5 39,8
26 534 80.3 47.2 71,0 41J 63.0 36.3 54,6 30.9 46,4 • 25.6 38,3
27 77.3 45.a 68,3 49!:4 60.7 35.0 52,6 29.7 44,7 24.5 36,9
28 '•49.6 74,6 43.8 65.9 38,9 58.5 >33.7 50,7 28,7 43,1 : 23.7 35.6
29 47,9 72.0 42.3 63.6 : 37.6 56,5 i32.6 48,9 27.7 41,6 22.9 34,3
30 I46.3: 69,6 ,40.9 61.5 36.3 54,6 3t.5 47,3 26.7 40,2 22.1 33,2
31 44.8 67.4 39.6 59.5 35.2 52 8 •30.5 45.8 25,9 38 9 21.4 32.1
32 43.4 65,3 38.4 57.7 34.t 51.2 29.5 44,3 25.1 37.7 20.7 31,1
33 42.1 63.3 ,37.2 55.9 33.0 49 6 28.6 43.0 ; 24,3 36,5 20.:1 30,2
34 40.9 61,4 36.1 54,3 i 32.1 48,2 127,8 41,7 25:6 35,5 ' 19.5 29.3
35 35.1 52,7 31.1 46.8
Beam Properties
Mt/Qs! <t,»Wt,kip-fl: ^390 . 2090 123Q 1850 loao 1640 944.V 1420 802? 1210 66$: 996
(|>i,/lfp,kip-tt ;ir4 261 153 231 l36 205 ^ 1M 177 ,100 . 151 82.8 .125
MrlQi, 109 164 95.4 143 849 128 73;4' 110 mn 92,7 50,6 76.1
mat (^jBfikips 4.88' 7,28 •5.37 8.20 bOi 7.55 4,63. 6.95 5,33 8.11 ,4,.78 7.27
<1-A, kips ,83.6 125 87 4 131 ^98 120 74:6; 112 i70.9^ 106 63,(|;: 94:5
in.3 69.6 61,5 54.6 47,3 40,2 33,2
6.68 5.47 5.40 5,26 3.81 3,67
irift 20.0 16.2 15,6 14,9 11,0 10,4
Ain LRFD Note: For beams laterally unsupported, see Table 3-10.
n(,=i.67 <1,6 = 0.90
Available strengtti tabulated above heavy line is limited by available shear strength.
0,= 1.50 <|„=1.00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
iVIaximum Total
CA I^MS
Uniform Load, kips
Fy = : 50 KSI
w 12
W-Shapes
ChlrkA
W12x
3361' 3051' 279" 252" 2301' 210
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD msm LRFD
9 973 1460 862 290 '779 170
10 1200 1790 1060 1590 i960 1440 i8S4 280 jm 160 694 1040
11 109a 1640 974 1460 "8751 1310 777 1170 700 1050 631 949
12 100b 1510 893 1340 80b' 1200 712 1070 642 965 579 870
13 926: 1390 825 1240 1110 :657:- 988 593- 891 534 803
14 1290 766 1150 686 1030 610 917 550 827 496 746
15 ;;802 1210 715 1070 640''- 962 mCf: 856 514- 772 463 696
16 1130 •670 1010 ^600 902 :53S 803 482 724 U34 653
17 1060 631 948 565-: 849 M503:' 755 453 681 409 614
18 1010 ::595; 895 533 802 ;475t; 713 428 643 386 580
19 ;633 952 564 848 505 759 :450=; 676 406 609 . 366 549
20 905 536 806 480; 722 427 642 385 579 347 522
21 ^ i 'S73: 861 510 767 457: 687 •407 611 •367> 551 331 497
22 547 822 487 732 436; 656 388. 584 350- 526 316 475
23 523 787 i466' 700 417,:: 627 371 , 558 335 503 302 454
24 ;5dr 754 447 671 400" 601 '356 535 321 483 289 435
25 ;481 724 429 644 577 514 •30? 463 278 418
c
s. 26 '463' 696 '412 620 ,369' 555 329 494 I296' 445 267 402
CO
27 446.' 670 "391 597 "356? 534 i316c 476 '285 429 257 387
28 430 646 383 575 515 305 459 275 414 •248 373
29 '41:5v 624 ; 370, 556 i331. 498 295 443 266 399 240 360
30 603 '357 537 ;32O, 481 285 428 257 386 232 348
31 f:38&: 584 346 520 310 465 276 414 249- 374 224 337
32 t376 565 s 335: 503 300 451 267 401 241 362 .217 326
33 i365 548 325 488 437 259 389 •233 351 210 316
34 ; 354v 532 •315 474 282 424 251 378 227 341 • 204 307
35 517 306 460 412 244 367 220 331 198 298
3G 334 503 : 208 ' 448 26r 401 237 357 ?14, .32? ,193 290
37 325 489 290 435 259 390 231 347 208 313
38 317 476 282 424 253 380 225; 338
39 309 464 275 413 246 370
40 : 301: 452 268 403
41 294 441
42 j.287 431
Beam Properties
WAlb kip-tt 12000 18100 10700 16100 9600 14400 :8540. 12800 7700 1160D 6950 10400
Mp/fli ifiMp, kip-ft 1500' 2260 1340 2010 1200 1800 ,1070- 1610 963 1460 868 1310
Mrffii <l>jM„ kip-ft 1270 ;760, 1140 686 1030 617 927 561 843 510 767
BFISii, kips i4.76 7.19 4.64 • 6.97 4.50 6.75 4.43 6.68 4.31 6.51 425 6 45
i>,Vn, kips
897 ,531 . 797 487 730 431 647 390 584 347, 520
Zx, in.3 : 603 537 481 428 386 348
ft 123 12.1 11.9 11.8 11.7 11.6
tr,ft . 150 137 126 114 . 106 95.8
ASD
nj=i.67
LRFD 1 Flange thickness greater than 2 in. Special requirements may apply per ABC Spec/toSon Section VBvlc.
(1)6 = 0.90
If,= 1.00
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Fy = 50 ksi
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
W12
W12x
Olldpi/
190 170 152 136 120 106
Design ASD' LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD" LRFD
9 372 558
i
10 611 916 •538':: 806 477' 715 423 635 371. 558 •315 472
11 564 848 750 441' 663 388 584 •338. 507 .298- 447
12 517 778 J457- 688 404' 608 .356P: 535 309 • 465
"273 410
13 '478 718 635 373 561 '329' 494 286 429 .-252 378
14 443: 666 589 346 521 305 ' 459
' 265-; 399 •234 351
15
414 622 J366;- 550 323 . 486 285 428 ,248 372
•218 328
16 388
583 •343-: 516 303 456 ,257 401 232 349 205 . 308
17 365 549 ;323I 485 .285' 429 .251 . 378 218-' 328 193 289
18 345 518 305 458 269. :405 :237 . 357 206 310 , 182 273
: 19 327 491 289 434 255 384 225 338 195' 294 •172 259
20 310 467
;274:
413 243 365 '.2W 321 186 279 - 164 246
21 :296
444 261 393 231 r 347 203 306 177- 266 15Q 234
e
22 282 424 J250<f 375 220 331
194 • 292 169 254 I:I'49 224
n
CL 23 270 406
.239; 359 '211 317 186 279 161 243 142 214
</)
24 259 389 I229S: 344 202. 304 •178 268 155 233 136 205
25 248 373 330 194* 292 'IZF 257 149 223 131'. 197
26 239 359 IYIIS 317 187 280 '164 247 143 215 RI26 189
27 230 346 i203V 306 180 270 158 238 138 207 121 182
28 222" 333 196 295 173. 260 153. 229 ^33 199 176
29 214 322 284 •167 251 im 221 128 •, 192 '113 170
30 207 311 275 162 243 '142' 214 ,124: 186 109 164
31 200 301 H77 266 156 235 138 207 12A' 180
. 106
159
32 194 292 172 258
1,52 228 I133 201 116 174 102 154
33 188 283 166 250 147 221 1-29 195
34 183 274
161 243 143 214
35 177 267 157 236
38
m
259
Beam Properties
m/Qi, 6210, 9330 5490 8250 4850 7290 4270 6420 '3710 5580 3270 4920
Hlp/Ot •776 1170 686 1030 606 911 534' 803 464 698 409 -615
Mr/at 459 690 i 4i:o' 617 365 549 325 488 '28S
428 253 381
BFKli <i)68F,klps 4.18 6.33 4.11 6.15 406 6.10 4.02 6.06 3.84 5.95 3.93 5.89
%IQr <|>,l'„,kips SOS 458 269 403 239 358 .212- 318 186'. 279 . 157 236
311 275 243 214 186 164
11.5 11.4 11.3 11.2 11.1 11.0
Lr.1t 87.3 78.5 70.6 63.2 56.6 50.7
ASD LRFD Note: For beams laterally unsupported, see Table 3-10. •
«l, = 1.67 <!>(, = 0.90
Available strength tabulated above heavy line is limited by available shear strength.
it),= 1.00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
Uniform Load^ kips
Fy = : 50 Ksi
w 12
W-Shapes
W12x
anape
96 87 79 72 65' 58
Design ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFO ASD LRFD
9
' • i.
^12-
176 264
10 279. 419 25S 386 233 350 ^12- 317 189 • 283 172 259
11 2B7 401 240.-- 360 216 325 jl96 295 172 , 259 157 236
12 245 ' 368 220- 330 198 298 il80 -270 158 ; 237 .144 216
13 226- 339 203- 305 183 275 166 •• 249 146 219 133 199
14 210 315 188 • 283 170 255 154^ 231 135 204 123 185
15 iae ,294 176 264 "158 238 144 -.216 126 190 115 173
16 183.- 276 165-i 248 148 223 135 203 il18- 178 .108 162
17 173 259 155 233 140 210 ^127 191 112 168 101 152
18 163. 245 146 220 132 198 120; 180 105 158 ; 95.8 144
19 154 . 232 139- 208 125 188 113 - 171 99.8 150 90,8 136
20 147 221 132 198 119 179 108' 162 94.8 142 86.2 130
21 140 210 i125 189 113 170 154 90.3 136 - 82.1 123
22 13.3 200 120 . 180 )0& . 162 98.0 ,147 •86.2 130 78.4 118
1 23 428 192 115 172 103 155 93.7 141 82.4- 124 75.0 113
1/1
24 122>- 184 .110- -165 ;99.0 149 89.8 135 79,0 119 71.9 108
25 117 176 105 158 '95.0 143 86J2 130 75.8 114 i. 69.0 104
26 m 170 101- 152 91.4 137 82.9 125 72,a 110 . 66.3 99.7
71 loa 163 97.6 147 88.0 132 79.8 120 70.2 106 63.9 96.0
28 105 158 ,94.1 141 84.8 128 77.0 116 67-7, 102 ^61,6 92.6
29 101 152 ;9a9 137 81:9 .123 '74.3 112 65.4 98.3 1 59,5 89.4
30 ,97.8 147 -.87,8 132 '7^.2 119 73.9 103 63.2 95.0 •57:5 '86.4
31 142 •85.0 128 76.6 115
1 • •
1-
Beam Properties
Wcia„ (l.*kip-ft .2930. 4410 2630: 3960 2380 3570 2160' 3240 '1900 2850, 1720 2590
MfiCh (,6/lfp, kip-ft 367 551 323. 495 297 446 269^ 405 237- 356 216 324
msh kip-ft 229 344 2Q6. 310 ^ 187 281 170 256 ^ 154.; 231 136 205
i/iBF, kips 385 5.78 3.61 5.73 3.78 5.6Z ,3.69 5.56 3.58, 5.39 '3.82 S.69
va. i>fV„, kips
140 210 • 129 193 •117,: 175 106. 159 94'.4 142 87.8 . 132
Zx,
in.^ 147 132 ; 119 108 96.8 • 86 .4
iD,ft 10.9 10.8 10.8 107 11.9 8 .87
ft : 46.7 43.1 39.9 37.5 ^ 35.1 29.8
n(, = 1.67
n,= 1.50
LRFD ' Shape does not meet compact limit for flexure with Fy~ 50 ksi.
(|i4 = 0.90
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Table 3-6 (continued)
Maximum Total
Fy-. : 50 KSI
Uniform Load, kips
W-Shapes
w 12
W12x
53 50 45 40 35 30
Design ASD LRFD ASO LRFD ASD LRFD ASD. LRFD ASO LRFD ASD LRFD
6 150 225 128! 192
7 181. 271 162 243 146 219 123: 185
8 179 270 160 241 140 ' 211 128 192 1081 162
9 J67 250 159 240 142 214 126 190 114 171 95.6 144
10 1S5 234 li(4' 216 1?8 193
^K
171 ^02 154 86.b 129
11 14l 212 130 196 116 175 103' 155 92.9 140 78.2 118
12 lao 195 120 180 107 161 94.8 143 •85.2 128 71.7 108
13 120 ' 180 110. 166 198 6 148 87^.5 132 78,6 118 r66.2 99.5
14 hi 167 103 154 91 5 138 81,3 122 73,0 110 61.4 92.4
15 156 95,7 144 85 4 128 75.8 114 .p.1 102
: 57.4
86.2
16 97.2 146 89.7 135 80.1 120 71.1 107 63,9 96.0 •535 80.8
17 91.5 137 84.4 127 '754 113 66.9 101 '60,T 90.4 ; 50,i6 76.1
18 86.4 130 79.7 120 71.2 107 63.2 95.0 56,8 85.3 : 47.8 71.8
19 81.8 123 75.5 114 67.4 101 ; 59.9 90.0 53.8 80.8 ,45i3 68.1
g
20 77.7 117 71,8 108 '641 96.3 56.9 85.5 ,51.1 76.8 • 43.10 64.7
21 74.ff 111 68.3 103 61 0 91.7 542 81.4 48.7 73.1 r4i.b 61.6
22 70:7- 106 65.2 98.0 58.2 87.5 51„7 77.7 46.5 69.8 i 39.:l 58.8
23 67.6 102 62.4 93.8 557 ^ 83.7 49.5 74.3 '44.4 66.8 37.4 56.2
24 '64,8 : 97,4 159.8 ,89.9 53,4 80.3 ,47.4 71.3 42.6 64.0 35.i8 53.9
25 62.2 93,5 57.4 86.3 5t3
1
77.0 ,45:5
o_
68.4 '44:9 61.4, J 34.4 51.7
26 59J3r 89.9 55.2 83.0 49 3 74.1 43.8 65.8 39:3 59.1 i:33.h 49.7
27 .86,6 53.2 79.9 47,5 71.3 63.3 37,9 56.9, S314 3 47.9
28 r55.5 83.5 513 77.0 '458 68.3 4a6 61.1 36.5 54.9 ••:30.7 46.2
29 : 53,6 80.6 i49.5 74.4 44 2 66.4 39,2 59.0
35,?
53.0 29.7 44.6
30 77.9 47.8 71.9 427 64.2 34.1 51.2 28.7 43.1
31 33;Q 49.5
f- ;
Beam Properties
(!ijMt,kip-ft 1550 2340 1440 2160 1Z8fl 1930 i1T40. 1710 1020 1540 860; 1290
MflQ, (!)(,/»„, kip-ft 194'. 292 179 270 160 241 142 214 128,: 192 >10.8 162
MrlSlu (fi/WnWp-ft 123 185 112 169 101? 151 89,9 135 178.6- 120 ,••67:4 101
tflQb <l>j,SF,l(ips 3,85-. 5.50 '397 5.98 380 5.80 3J66> 5.54 i4.34! 6.45 •3.97 5.96
m. 83.5 125 '90.3: 135 811 122 105 113 :64;0 95,9
in.' 77,9 71.9 64.2 57.0 51.2 43.1
« 8 .76 6.92 6.89 6 .85 5.44 5.37
un 28 .2 23 .8 22.4 21.1 16.6 15.6
ASD i LRFD Noie; For beams laterally unsupported, see Table 3-10.
0.4=1.67 I|16 = 0.90
Available strength tabulated above heavy line is limited ny avaiiaDie shear strengtn.
(|)f = 1.00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
ry = ivai
w 12
W-Shapes
W12x WlOx
anapi;
26 22 19 16 14" 112
Design ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
3 106 158
4
=
128 192 115 172 100 151 85.5 129
176 98 6 148 80.2 121 69.5 104
6 112.' 166 97:5 147 "82:2: 124 . 66.9' 101 57.9 87.0
7 106' 159 1835 126 IGA 106 57.3 86,1 49.6 74.6
8 9?,8 140 i73D1' 110 6136 92.6 50.1 75.4 43.4 65.3 344 516
9 82.B 124 ;65.0 97.7 i54;8 82.3 44.6 67.0 38.6. 58.0 326 490
10 74.3 112 • 58.5
87.9 ;49;3 74.1 40.1 60.3 34.7 52.2 -293 441
11 67.S 101 El 79.9 ••Me 67.4 :.36.5 54.8 31.6 47.5 267 401
12 61 .'9 93.0 : 48.7 73,3 61.8 33.4 50.3 28.9 43.5 245 368
13 57.1 85,8 : 45,0 67.6 ;;37.9 57.0 30.9 46.4 26.7 40.2 •226 339
14 53.0 79,7 :41,8 62.8 ;35.2, 52.9 28.7 43,1 24.8 37.3 210 315
15 '49.5 74,4 i39;0 58.6 49.4 26.7, 40.2 23.2. 34.8 196 294
« i
16 46.4 69,8 54.9 30.8 46.3. 25.1 37.7 21.'Z 32.6 183 276
1 17 43.7 65.6 344 51.7 ;-2£0i 43.6 216 35.5 20.'4 30.7 173 259
«
18 41.3 62.0 32.5 48.8 27 4 41.2 22.3 33.5 19.3 29.0 163 245
19 39.1 58.7 30.8 46.3 259 39.0 21.1 31.7 18.3 27.5 154 232
20 • 37.1 55.8 :29:2 44.0 24 7 37.1 20.1. 30.2 '17.4 26.1 .147 221
21 iv
53,1 41.9 35.3 19.1 28.7 16.5~ 24.9 140 210
22 133.8 50.7 26.6 40.0 22 4 33.7 18.S 27.4 !I5.8 23.7 133 200
• 23 32.3 48.5 :25!4 38.2 :2ii4 32.2 ,174 26,2 'W.1 22.7 128 192
24 30.9 46.5 :24# 36.6 20 5 30.9 16.7 25.1 14;5 21.8 122 184
25 29.7 44.6 ;23;4 35.2 ^19.7 29.6 16.0 24,1 13.9 20.9 117 176
26 28.6 42.9 ' 22.5 33,8 19.0 28.5 15.4 23.2 1,3.'4 20.1 .113
170
27 27.5 41,3 ^21.7 32,6 18.3 27.4 14.9 22,3 12.9 19.3 109 163
28 26.5 39,9 20.9 31.4 17.6 26,5 14.3 21.5 ;12.4 18,6 105 158
29 25.6 38.5 ;, 20.2 30.3 17.0 25.6 13.8 20.8 >12.0 18.0
30 24.8 37.2 '19.5 29,3 M6.4 24.7 13.4 20.1
j
Beam Properties
lijMt, kip-ft 743, 1120 ^ 585': 879 -493; 741 4Q1f 603 347' 522 '2330 4410
kip-ft •92:8' 140 73:1 110 61:6 92.6 i50.1; 75.4 43.4 65.3 367 551
Mr/ni <1)4/^., kip-ft 58.3 87.7 .44.4':. 66.7 37.2 55,9 !2a9' 44.9 26.0 • 39.1 220 331
BFIQi, (t>tBf, kips 3.61 5,46 7.06 :4:27f 6,43 i3.80 5,73 3.43 5.17 2.69 : 4.03
<|>X kips
84,2 i64J) 95,9 :57.3iv 86,0 79,2 42.8, 64.3 •J72 258
A,
in.3 37.2 29,3 Z4.7 20.1 17.4 147
ft 5.33 3.00 2.90 2,73 2.66 9.47
Lr,n 14,9 9.13 . 8 1.61 a 1.05 7.73 64,1
, ASD" LRFD
h = 0.90
' Shape does not meet the /i/Vlimit for shear in AISC Specification SecHon G2.1(a) with />= 50 l(si;'.
therefore, (t>v = 0.90 and n, i 1.67.
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Fy = 50 ksi
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
W10
WlOx
100 88 77 68 60 54
Design ASD LRFD ASD LRFD ASD' LRFD ASD LRFD ASD LRFD ASD LRFD
8 302 453 261 392 225 337 196 293 171 257 149! 224
9 288 433 251. . 377 216 325 189 284 •165 249 ,148! 222
10
259 390 ?26' ;• 339 195,;, 293 170 256 149 224 133; 200
• 11 236 355 205 308 'rn^f 266 155 233 135.,- 203 :T21; 182
12 216 .325 188 -t 283 162':- 244 142 213 124 187 Mill 167
13 200 300 173 - 261 150 225 131_ 197 115i 172 ;fl02: 154
14 185 279 161 242 139, 209 122 183 106' 160 .95.0 143
15 173' 260 150. 226 130 195 114; 171 ;99.3 149 ^88.6 133
16 162 244 141'- 212 mt 183 106 160 '93.1 UO ;-83.}1 125
17 153- 229 133- 199 115 172 1Q0. 151 87.6 132 •r78.2 118
18 144 4 217 125 188 lQ8,:i 163 94.6 142 82J 124 i:73.9 111
19 137. 205 119 178 103 ;, 154 89.6 135 78.4 118 . 70,0 105
20 130 195 113
' V
170 97.4 146 85.1 128 14.5 112 : 66.15 99.9
c
21 124 186 107., 161 ^92i8 139 81.1 122 '70.9 107 5 63.!3 95.1
1
22 118 177 103 154 ;88i6 133 77.4 116 102 :V 60.i4 90.8
(A
23 113 170 98.1 147 84.7 127 74.0 111 64.7 97.3 S57.jS 86.9
24 108 163 94.0 141 :81.2 122 70.9 107 •62.0 93.3 55;j4 83.3
25 104 156 90.2 136 77.9 117 68:T
• - '^' x,
102 89.5 ;'53.2 79.9
26 99.8 150 '86.7 130 113 65.5 • 98.4
27 96.1 144 :83.5. 126
1
i
Beam Properties
Ht/nj it.»nt,iiip-n 2590;:: 3900 2260. • 3390 iteO: ; 2930 1700- 2560 1490 2240 1330: 2000
ft/Hp, Wp-ft 324 : 488 282 424 244 , 366 ^13 , 320 186 : 280 1'66:', 250
(ti,/Mt.Wp-ft 196: 294 mf: 259 150?v 225 132:' 199 116; 175 105.1. 158
SFIOl, 4.00 «2.62 3.94 3.90 2.58 3.S5 ;j;2.54 3,82 "LiM 3.75
KIQ. cti„l'„,Wps 151. 226 131:^* 196 112,. 169 97.8 147 'SSJ:: 129 112
130 113 97.6 85.3 74.6 66.6
Lp,n 9.36 9.29 9.18 9.15 9.08 9.04
Uft 57.9 51.2 45.3 40.6 36.6 33.6
ASO LRFD
Note: For beams laterally unsupported, see Table 3-10.
<|)l, = 0.90
Available strength tabulated above heavy line is iimitea by available snear strength.
av=ia) $,= 1.00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
Fy = : 50 ksi
w 10
W-Shapes
Shape
WlOx
Shape
49 45 39 33 30 26
Design ASO LRFD ASD LRRD ASD LRf=D ASD LRFD ASD LRFD ASD LRFD
5
!l 126-- 189 •107; 161
6 113' 169 m, 183 ,104; 157
7 i4r 212 125 187 iir 166 ia4 157 89.3 134
8 136-, 204 137 206 117 176 96.8 146 '91'.3 137 78.i1 117
9
10
134 -
121 .
201
181
122
110 .
183
165
104.
93.4
156
140
86:1
77.4
129
116
i81.2
73.1
122
110
;69.4
62.5
104
93.9
11
12
13
14
15
110
ido"
92,7
•86.1
80.4
165
151
139
129
121
•99.6
91.3
84.3
'78.3
73.1
150
137
127
118
110
!84.9
77.8
71.9
;66.7
'62.3
128
117
108
100
93.6
•70.4
64.5
59:6
55.3
51.6
106
97.0
89.5
83.1
77.6
66.4
60.9
56.2
52.2
48.7
99.8
91.5
84.5
78.4
73.2
' 56.8
52.1
48.1
•44.6
41.7
85.4
78.3
72.2
67.1
62.6
c
1
16
17
18
19
20
67J3
63.5
60.3
113
107
101
95.4
,90,6
68.5
:64.5
60.9
57.7
54.8
103
96.9
91.5
86.7
82.4
•5£1.4
54.9
51i9
•49,2
46.7
87.8
82.6
78.0
73.9
70.2
'4M
45.6
43.0
40.8
38.7
72.8
68.5
64.7
61.3
58.2
'45.7
43.0
40.«
38.4
36.5
,68.6
64.6
61.0
57.8
54.9
"39.0
36.8
,34.^
'-32.3
> 31.2
58.7
55.2
52,2
49.4
47.0
21
22
23
24
25
54.8
'52.4
50.2
48.2
86.3
82.4
78.8
75.5
72.5
52.'2
49.8
47.6
45.7
4^8
78.4
74.9
71.6
68.6
65.9
;42.5
40.6
38.9
66:9
63.8
61.0
58.5
36.9
35.2
33.7
'32.3
55.4
52.9
50.6
48.5
'34.8^
,33.2
;31.8
'30.4
29.2
52.3
49,9
47.7
45.8
43.9
,,29.8
'28.4
:27.2
..26.0
25.()
44.7
42.7
40.8
39.1
37.6
26

28.1 42.2
S
Beam Properties
Mt/£J4
lOp/Qb
MflQt
BF/Qi,
/^bWc, kip-ft
^tkp, kip-ft
ifuMr, l(lp-ft
^iBF, kips
12itf .
151
: 95.4 ;
'2.46
?8.0
1810
227
143
3.71
102
1100 .
137; '
;85.8
2,59
70,7
1650
206
129
3.89
106
•934
117
73.S
2.53
•62.5
1400
176
111
3.78
93,7
774/ •
!96.»'
;6i?lV
•3239
>56.4;;
1160
146
91.9
3.62
847
731 ^
91.3
56«
3.08
630
1100
137
85.1
4.61
94.5
78.1
48,7
2.91
•53.6
939
117
73.2
. - 4.34
80.3
tp,ft
ir,n
60.4
8.97
31,6
54.9
7.10
26.9
46.8
6.99
24.2
36,8
6,85
21,8
36.6
4,84
16,1
31.3
• 4.80
14,9
ASD LRFD ' Shape does not meet compact limit for flexure with- Fy~ 50 ksi.
£lj = 1.67
1-SO
•1)6 = 0.90
i|)^=1.00
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Table 3-6 (continued)
IVIaximum Total
Fy = 50ksi
Uniform Load, kips
W-Shapes
W1C I-W8
WlOx mx
22 19 17 15 12' 67
Design ASO LRFD ASD. LRFD ASO? LRFD ASD- LRFD ASD LRFD ASD LRFD
3

97.0 145 i9i:9 138 75,0 113
i
4 ; 1. ' -
102,. 153 93 3 140 ,79:8 120 62.4. 93.8
5 97.9 147 86.2 130 74 7 112 63.9. 96.0 49.9 75.0
6 86.5 130 '71.9 108 62.2 93.5 53.2 80.0 41.6 62.5 205^ 308
7 ,74.1, •111 61.6 92.6 53.3 80.1 45.6 68.6 35i7- 53.6 :200^ 300
8 '64.9 97.5 53.9 81.0 46.7 70.1 39.9 60.0 31.2 46.9 175; 263
9 ,57.7 86.7 '47.9 72.0 41,5 62,3 35.5. 53.3 27.7, 41.7 155; 234
10
51,9 78.0 64.8 37.3 561 31.9 48.0 37.5 iito! 210
11 47.2- 70.9 39;2 58,9 33.9 51.0 29.0 43.6 22.7 34.1 127' 191
12 43.2 65.0 35.9 54.0 31.1 46.8 26.6 40.0 20.8 31.3 117; 175
13 39.9- 60.0 33.2 49.8 28.7 43.2 24.6 36.9 1i95 28.9 108; 162
14 37.1 55.7 ^30.8 46.3 26.7 40.1 22.8 34.3 17.8. 26.8 ,99.& 150
15 34.6 52.0 28.7 43.2 •24.^ 37.4 32.0 25.0 ' 93.3 140
16 32.4. 48.8 ,269 40.5 23.3 35,1 20.0 30.0 15^ 23.5 '87.5 131
1 17 30.5 . 45.9 '25.4 38.1 22.0 33.0 18.8 28.2 14.7' 22.1 f 82,3 124
18 28.8 43.3 24.0 36.0 20.7 31.2 17.7 26.7 13.9. 20.8 S77.7 117
19 27.3 41.1 ^22.7 34,1 19.6 29.5 25.3 19.7 73.6 111
20 25.9 39.0 21.6 32.4 18.7 28.1 160' 24.0 12I; 18.8 "70.0 105
21 24.7 37,1 bo.5 30.9 17.8 26.7 15.2 22.9 11.9 17.9 66.6 100
22 23.6 35.5 19.6 29.5 117.0 25.5 •14.5 21.8 11.3 171 63.6 95.6
23 22.6 33.9 18.7 28.2 16.2 24.4 13.9 20.9 10.9 16.3
24 21.6 : 32.5 18.0 27.0 15.6 23,4 13.3 20.0 io.4 15.6
1
25 20.8 31.2 17,2 25.9 i14.9 22.4
Beam Properties
WJUo (|)»Mfc.kip-ft 559 .' 780 431' t:- 648 373 Ki 561 319 480 250 J: 375 1400. i 2100
<|i6Wp,kip-ft 64 9 97.5 :53.g • 81.0 (46.7 70.1 39.9:,: 60.0 31.2 '46.9 •175 263:
Wai, •Akip-ft 4a 5 60,9 32.8- 49.4 28.3:: 42,5 24.1 36.2 19.0S 28,6 105 159
uBF/Qj ibBF, kips 268 4,02 i3.18 4.76 2.98 4,47 "2V75 414 ,C2;36 3,53 1.75 2,59
%ia. (tifK.,kips iBJS 73.4 5t.O 76,5 :48.Ss .72.7 :46i0' 68.9 56.3 103 154
4. in.3 26.0 . 21,6 18.7 16.0 12.6 70.1
tp,ft 4.70 3.09 2,98 2.86 2,87 7.49
13.8 9 .73 9.16 8 .61 8.05 47.6
ASD LRFD Note: For beams laterally unsupported, see Table 3-10.
(|)6 = 0.90
Available strength tabulated above heavy line is limited by available shear strength.
(|), = 1.00
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
W8
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Fys 50 ksi
W8x
&nape
58 48 40 35 31' 28
Design ASO LRFD ASD. LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
s 91.9 138
6 179 268

119 178 101 151.0 91,2 137 90.5 136
7 171 256 136 204 113 171 98.9 149 86.6 130 77.6 117
8 149 224 122-- 184 99.3 149 86.6 130 75 8 114 67.^ 102
9 133 199 109 -163 88.3 133 77;0 116 67.4 101 60.3 90.7
10 119 -179 97.8 147 79.4 119 69.3 104 60.6 91,1 ' 54.3 81.6
11 109 163 '88.'9 134 72.2 109 63.0 94.6 55.1 82,8 49.4 74.2
12 99.5 150 81.5 123 66.2 99.5 57.7 86.8 50.5 75,9 45.2 68.0
13 •91.8. 138 ;75.2 113 61.1 91.8 53.3 80.1 46 6 70.1 •41.8 62,8
14 85.3 128 69.9 105 5^7 85,3 49.5 74.4 43.3 65,1 38.8 58,3
.15 79.6 120 65.2 98.0 53.0 79.6 46.2 69.4 40.4 60.7 S36.2 54,4
16 74.6 112 61.1 91.9 49.7 74,6 43.3 65.1 37.9 56.9 33.9 51,0
17 70.2 106 ,57.5 86.5 46.7 70,2 40.7 61.2 35.7 53.6 '31.9 48,0
18 '66.3 99.7 54.3 81,7 44.1 66,3 38.5. 57.8 33.7 50.6 30.2 45,3
a 19 62.8 94,4 51.5. 77.4 41.8 62,8 36.5 54,8 31.9 48.0 5 28.6 42.9
w
20 ,59.7 89.7 48.9. 73,5 39.7 59,7 34.6 52,1 30.3 45.6 27.1 40.8
21 '56.8 85.4
f; -
!
70,0
-
Beam Properties
1390 • 1790 978 • 1470 1190 693 -1040 606- 911 ^ 543 816
Mpisia 149 224 122 184 MZf 149 86.5 130 75 8 114 67.9 102 •
misit
(f^eF, wps
90.8 137 75,4 113 ezo 93,2 54.5: 81.9 48.0 72,2 42.4 63:8
BFIQt (f^eF, wps •M.70 2.55 1.® 2,55 1.64 2.46 1.62 2,43 '158 2,37 1.67 2,50
Wps
89.3 134 68,0-- 102 ;59.4;: 89,1 50.3 75.5 45.6 68.4 45.9 68,3
Zx. in.3 59.8 49.0 39.8 34.7 30,4 27.2
ip,n 7.42 7.35 7.21 717 7,18 5.72
L„n 41.6 35.2 29 ,9 27.0 24,8 /21.0
LRFD ' Shape does not meet compact-limit for fle;(ure with Fy=50 ksi.
n,= i.5o (|>,= 1.00
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Fy = 50 ksi
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
W8
Shape
W8x
24 21 18 15 13 10'
ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD ASD LRFD
g
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
79.5 119 73.5 110 53.7 80.5
82.8 124 74.3 112
77.7 117
76.8
65.9
57.,6
51.2
46.1
•41.9
38.4
35.5
32.9
30.7
28.8
27.1
25.6
24 3
115
99.0
86.6
77.0
69.3
63,0
57.8
53,3
49.5
46.2
43.3
40,8
38.5
36,5
81.4
67.9
58.2
50.9
45.2
40,7
37.0
33.9
31.3
,29,1
27.1
25',4
24,0
22,6
21.4
20,4
122
102
87.4
76.5
68.0
61.2
55.6
51.0
47.1
43.7
40.8
38.3
36,0
34,0
32.2
30.6
67.9
56.6
48.5
42.4
37.7
33.9
30.8
28.3
26.1
24 ^
22.6
21.2
20.0
18.9
17,9
17.0
102
85.0
72.9
63.8
56.7
51.0
46.4
42.5
39.2
36.4
34.0
31.9
30.0
28.3
26.8
25.5
67.9
5f3
45.2
38.8
33.9,
30.2
.27.1
24.7
22.6
20.9
19,4
18.1
,17,0
16.0
15.1
14.3
'13;6
102
81.6
68.0
58.3
51.0
45.3
40.8
37.1
34.0
31.4
29.1
27.2
25.5
24.0
22,7
21.5
20.4
56.9
45,5
37 9
32,5
28.4
25.3
22,8
20/
19.0
17.5
16.3
15.2
14.2
13.4
12.6-
12.0
85.5
68.4
57.0
48.9
42.8
38.0
34.2
31.1
28.5
26.3
24.4
22.8
21.4
20.1
19.0
18.0
43.7
35.0
29.2
25.0
21.9
19.4
17.5
15.9
14.6
M3.5
12.5-
11.7
10.9
10.3
9.72
9.21
65.7
52,6
43.8
37,6
32.9
29.2
26.3
23.9
21.9
20.2
18.8
17.5
16.4
15.5
14.6
13.8
Beam Properties
Mt/Qj
Uriat
BFiai,
Vnia,
<|)6M'c,l<ip-ft
<|)/,/lfr,kip-ft
hBF.Ups
461
57.6
36.5
1.60
38,9
693
86.6
54.9
2.40
58.3
407
'50.9
315
: 1;85
41.4
612
76.5
47.8
2.77
62.1
339.
42.4
26.5
1.74
37.4
510
63.8
39.9
2.61
56.2
271,.
•33.9
20;6
1-90
39.7
51.0
31.0
2.85
59.6
228 ~
28.4
17.3
1.76
36.8
342
42.8
26,0
2.67
55.1
175
21.9
.13.6
• ,1.^4
•26.8
263
32.9
20.5
2;30
40.2
Lp,n
In ft
23.1
5.69
18.9
20.4
4.45
14.8
17.0
4.34
13.5
13.6
3.09
10.1
11.4
2.98
9.27
8.87
3.14
8.52
jm
Clb=^.•eT
LRFD
= 0.90
= 1.00
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
S24-S20
Table 3-7
Maximum Total
Uniform Load, icips
S-Shapes
/y = 36 ksi
SZ4x
snape
121 106 100 90 80 96
Design ASD LRFD ASD LRFD ASD LRFD ASD- LRFD ASD. LRFD ASD LRFD
6 515 772 468- 702
7 564 847 491., 737 432 648 407 B11
8 550 826
' • •
429 •645 ^99 599 846 518 356' 535
9 489 734 43f 656 574 354- 533
293
490
441
475
10 440 661 461 6U3
PK
516 319 480 293
490
441 2851. 428
11 400 601 365 548 312'' 469 290 436 267 401 259, 389
12 366 •
338 .
551 334 502 286 430 266 400 244 -367 237 356
13
366 •
338 . 508 308 464 264' 397 245 369 226 , 339 219 i 329
14 314 472 286 430 245 369 228. 343 209 315 203 305
15 293 441 267 402 229 J 344 213 320 195 294 190 285
16 275 - 413 251 377 21-5 • 323 199 300 '183"'" 275 178 267
17 259 389 236 . 354 202.,. 304 188, 282 172 259 252
18 244 367 223 335 191 •• 287 177" 266 163'- 245 158 238
19 231 348 2H ' 317 181 272 168' • 252 154," 232 ^50. 225
20 220 330 200 301 172 258 160 240 147 . 220 v142i 214
21 209; 315 191 287 164 246 152 228 ,140 •-210 -136 204
22 200 300 183: 274 156 235 145 218 133, 200 129- 194
23 191 287 174 262 149 224 139 208 127-' 192 •124, 186
24 183 275 167 251 il43 215 133 200 122 . 184 119; 178
25 176 264 160 .241 137" 206 128- 192 176 114' 171
S. 26 169' 254 154"' 232 132 199 12S 184 113*' 169 -109" 164
27 163 245 149 223 127., 191 118 . 178 1Q9, , 163 >105 158
28 157 236 143 215 123 184 114 171 157 102' 153
29 152 228 138 208 118' 178 11'0 165 lor 152 ' 98.1: 147
30 147 220 134 201 114' 172 ,106 160 97.7 147 94.j9 143
32 W 207 125 168 107 161 '99.7 150 '91.6 138 88.9 134
34 129 194 118 177 101 152 :93.8 141 86.2 130 83.7 126
36 122 184 111 167 95.4 ,143 88.6 133 81.4 122 79.0 119
38 116 174 106 159 90.4 136 84.0 126 •77.2 116 74.9 113
40 (110 165 100 151 85.9 129 1:79.8 120 :73.3 110 71.1 107
42 105 .157 95.5 143 81.8 123 76.0 114 69.8 105 67.8 102
44 i 99.9 150 91.1 137 ' 78.1 117 72.5 109 r66.6 100 • 64.7 97.2
46 : 95.6 144 87.2 131 74.7 112 69.4 104 63.7 95.8 61.8 93.0
48 91.6 138 ' 83.5 126 71.6 108 :66.5 99.9 '61,1 91.8 5g.'3 89.1
50 88.0 132 80,2 121 68.7 103 63.8 95.9 ;58.6 88.1 56.9 85.5
52 84.6 127 77.1 116 : 66.1 99.3 ; 61.4 92.2 56.4 84.7
54 81.4 122 74.3 .112 63.6 95.6 59.1 8S.8 •54.3 81.6
58 78.5 118 .71.6 108 61.3 92.2 57.0 85,6 52.4 78.7
58 75.8 114 i69.1 104 :59.2 83.0 :55.0 82.7 50.5 76.0
60 73.3 110 : 66.8 100 • 57.2 86.0 ' 53.2 .79.9 > 4£9 73.4
Beam Properties
Ht/fte ^tWc, kip-ft 4400 i" 6610 4010-' 6030 3430:- 5160 3190. : 4600 2830S 4410 2850, 4280
A/p/Qt
^iMf, kip-ft .826 SOI':' 753 429 : 645 .399 599 ;366:.;: 551 356 535
Mf/fJt feWr, kip-tt '324; 488 . 302 -454 250 376 235 353 :220S 331 207 312
BF/Cif •-1:1.4 17.1 ,11.0 !6:5 : 11;6 17.5 11.4 17.1 10:8 16.2 7.63 11.5
If fll., kips 282 -423 •2T9 328 257' 386 216 324 173-;: 259 234 351
Zx,? 306 279 239 222 204 198
ft 6 .37 6.54 5.29 5.41 5.58 5.54
in ft 26.2 24.7 20.7 19.8 19.2 24.9
S20x
ASD
£Jj = 1.67
LRFD
(|)l = 0.90
11),=: 1.00
Note: Beams must b6 latsrally supported if Table 3r7 is used.
Available strength tabulated above heavy line is limited by available shear strength.
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Table 3-7 (continued)
Maximum Total
Fy-= 36ksi
Uniform Load, kips
S-Shapes
S20 •SI 5
Chano
S20x SIBx S15x
OllctpC
86 75 66 70 54.7 SO
Design ASD LRFD ,ASD LRFD Asn LRFD ASD LRFD ASD- LRFD ASD LRFD
4 369 553 238- 356
366 549 356. 536 221 333
6 W 579 • 364- 547 291 ' 436 297 446 239 358
184:
277
376"j 565 312 469 285 429 255 383 214 • 321 158 238
8 329, 494 273, 410 250 375 223 335 187': 281 138 208
9 292> 439 243' 365 222 334 198 298 166 250 I23.i 185
10 263 395 218' 328 200 300 178 268 143 225 111 : : 166
11 23# 359 199 298 182 273 162 243 136 204 101 i 151
12 219' 329 182 274 166 250 149 223 125 187 92.2 139
13 202 304 168 253 154 231 137 206 115 173 • 85;1 128
14 188 282 , 156.. 235 143 214 127, 191 107 160 79.0 119
15 175^ 264 146 219 133 200 119 _ 179 99.6 150 , 73.8 111
16 164 j 247 137. 205 125 188 111 ' 167 93.4 140 69.2 104
17 155' 233 128^ 193. 118 177 105 158 S7.9 132 97.8
18 146 220 lat 182 111 167 99,0 149 83.0 125 61.5 92.4
19 138 208 115 173 105 158 93.8 141 78.7 118 58.2 87,5
20 131 ' 198 109 164 99.9 150 89.1 134 74,7 112 ! 55.3: 83.2
21 125 188 • 104' 156 951 143 84.9 128 71.2 107 ; 52.7 79.2
c
(0 22 120 180 993 149 Q0..8 136 81.0 122 67.9 102 •50.3 75.6
23 114, 172 950 143 86 9 131 . 77,5 116 65.(1 97.7 481 72.3
24 1ft 165 91 0 137 83,2 125 74.3 112 62.3 93.6, 461 69.3
25 10S* 158 87.4 131 79^9 120 71.3 107 59.8 89.9 * 44.3 66.5
26 101 152 84 0 126 ,7613 115 68.5 103 57.5 86.4 426 64.0
27 97.4 146 80.9 122 '740 111 66,0 , 99.2 S5.4 83.2 410 61.6
.28 939 141 78.0 117 713 107 63.6 • 95.7 ,53.4 80.2 39 5 59.4
29 907 136 755 113 68.9 104 61.4 ,92.4 51i5 77.5 382 57.4
30 87..7 132 728 109 666 100 59.4 89.3 498 74.9 369
32 82.2 124 68.3 103 624 93.8 55,7 , 83.7 46J 70.2 346 52.0
34 77.4 116 6^2 96 6 S8 8 88.3 52.4 • 78.8 44.0 66.1 325 48.9
36 731 110 607 91 2 55 5 83.4 49,5 74.4 415 62.4 30 7 46.2
38 69.2 104 575 86.4 52 ^ 79.0 46,9 70.5 39.3 59.1
40 65.7 98.8 54 6 ,821 499 75.1 44.6 67.0 37,4 56.2
42 62.6 94.1 52.0 78.2 476 71.5 42.4 : 63.8 35.6 53.5
44 ;59.8 89.8 49.6 74.6 45.4 68.2 40.5 .60.9 34 0 51.1
46 ;57.2 85.9 47.5 71.4 43.4 65.3
48 54 8 82.4 -45.5 68.4 41 6 62.6
50 52.6 79.1 43.7 65.7 40 0 60.0
Beam Properties
MAI (!>4Mt,kip-ft 2630 3950 2Mor 3280 2000 3000 1780 2680 1490 2250 1110 1660
U0AT (|i6M„,kip-ft 320 494 273 410 250 375 2A 335 187 281 >138 208
WQI, (|)i/lf.,l(ip-ft 195 293 161.. 242 150". 225 130 195 112 168 51.4 122
"MFIOI, <Di,BF, kips 753 11.3 I.7.74 11.6 749 11.3 612 9.19 S,98 8.99 4.07 6.12
VFIA,. Iffl'n.kips 193 • 289 m. 274 145 218 184 276 119 179 119 .178
A, in.5 183 152 139 124 104 77.0
U ft 5.66 4 .83 4.95 4 .50 4.75 4.29
ir,ft 23.4 . 19.3 18.3 19.7 17.3 18.3
Asnj
n,= 1.50
LRFD
<|ij = 0.90
(t),= 1.00
Note: Beams must be laterally supported if Table 3-7 is used. •
Available strength tabulated above heavy line is limited by available shear strength.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-100
DESIGN OF FLEXURAL MEMBERS
S15-S10
Table 3-7 (continued)
Maximum Total
Uniform Load, kips
S-Shapes
Fy = 36ksi
S15x S12x S10x
Shape
42.9 50 40.8 35 31.8 35
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ;ASD LRFD
2
171; 257
3 237 356 170: 255
4 219 3?9 160 240 148 222 i2V , 127! 191
5 178 ?fifi 175 263 151 ^ 228 128 193 120 181 102! 153
6 166 -249 146 219 126 190 107 161 loa". 150 , 84,8 127
7 142 214 125 188 108 163 916 138 85:8 129 ; 72.7 109
8 124 187 109, 164 947 142 801 120 113 63.6 95.6
9 1lff 166 97.2 146 84.2 126 712 107 66.7 100 56.5 85.0
10 149 87.5 132 75.7 114 641 96.3 60.1 90.3 76,5
11 90.4' 136 79'.6 120 68.9 103 58.3 87,6 '54.6 82.1 46.2 69,5
12 82.9 125 72.9 110 631 94.9 534 80.3 ,5o;i 75.2 '42^ 63.7
13 7'6.5 115 67.3 101 58 3 87.6 49 3 74.1 4&2 69.5 39.1 58.8
14 71.0 107 62;5 94.0 54.1 81.3 45.8 68.8 42'.9 64.5 '36.5 54.6
15 6^.3 99.6 58.3 87.7 50.5 75.9 42 7 64.2 40.0 60.2 :33j9 51.0
16 62:2 93.4 54.7 82.2 47.3 71.1 401 60.2 37.5 56.4 31.8 47,8
17 58.5 87.9 51.5 77.4 44.fi 67.0 37.7 56:7 .35.3 53.1 29.9 45.0
c
a
18 55.2 83.0 48.6 73.1 42.1 63.2 35.6 53.5 33.4 50.2 •• 28.3 42.5
19 52;3 78.7 46.1 69.2 39.9 59.9 33.7 50,7 316 47.5 26.8 40,2
20 49.7 74.7 43.8 65.8 37.9 56,9 32.0 48.2 3o;o, 45.1 25.4 38.2
21 47.4 71.2 '41,7 62.6 36.t 54.2 30.5 45.9 .28.6 43.0 24.2 36.4
22 •45,.2 67.9 a9.B 59.8 34.4 51,7 29.1 43.8 27.3 41.0 23.1 34.8
23 '43.2 65.0 381 57.2 '32.9 49.5 27,9 41.9- 26.1 39.3 22.1 33.2
24 ,41.4 62.3 365 54.8 31.6 47.4 26.7 40.1 25.0 37.6 ••21.2 31.9
25 ,3^.8 59.8 3S:o 52.6 30.3 .45.5 25 6 38.5 ,24.0 36.1 -20.3 30.6
26 ,38.2 57.5 337 50.6 29-i 43,8 24,7 37.1 23:1 34.7
27 36.8 55.4 32.4 48.7 28,1 42.2 23.7 35.7 22.2 33.4
28 35.5 53.4 313 47,0 27.0 40.7 22 9 34.4 21.5 32.2 •• • i
29 34.3 51.5 302 45.4 26.1 39.3 221 33.2 '20.7 31.1
30 33.1 49.8 29 2 43.8 25.2 37.9 21.4 32.1 20.-0 30.1
32 31.1 46.7
34 ;29.2 44.0
36 27.6 41,5
Beam Properties
Wciah ((•sMt, kip-ft .994 1490 875 1320 1140 641 ,s? 963 601 • 903 509 765
Mpiat
kip-ft 124 187 109 164 '94.7 142 80.1 : 120 75.i1 113 63.6 95.6
UrlSlt • kip-ft 74 7 112 636 95.6 i56.7:. 85.2 '47.9 72.0 45.5 68,4 370 55.6
BFISli,:. (|itBF,kips 4 01 6.03 2 22 3.33 2,31 3.48 : 2.45 3.69 •2.43 3.66 151 ZS6
kips 888 133 119 178 79.8 120 74.0. 111 60.5 90.7 85.5 128
in.3 69.2 60.9 52.7 44,6 41 .8 35.4
4.41 4.29 4.41 4,08 4.16 3.74
if.tt 16.8 24,9 20.8 17,2 16.3 21.4
ASD LRFD
Note: Beams must be laterally suppdrted.if Table:3-7 Is used.
Dt = 1.67 $(, = 0.90
J^vaiaoie strengm laouiaiea aoove neavy ime is iimnea oy avaiiaoie snear sirengm.
(|),= 1.00
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION
sSSw.-

MAXIMUM TOTAL UNIFORM LOAD TABLES 5-65
Table 3-7 (continued)
Maximum Total
Fy = 36 ksi
Uniform Load, kips
S^Shapes
SIC I-S5
SI Ox SSx sex S5x
25.4 23 1M 17.25 12.5 10
Design ASD LRFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
2 •102 152 75.4 113 i30:8 46.2
3 . '
92.0 138 62.4 93.7 •50.3 75.6 40.1 60.1 27.1 40.8
4 89.6 134 ^69.0 104 59.3 89.1 37.7 56.7 30.4 45.6 20.3 30.6
5 81.3 122 ^55.2 82.9 47.4 71.3 30.2 45.4 24.3 36.5 j16.3 24.5
6 67.8 102 . 46.0 69.1 '39.5 59.4 25:1 37.8 20.2 30.4 13.6 20.4
7 58,1 87.3 39.4 59.2 33.9 .50.9 21.6 32.4 17.3 26.1 11.6 17,5
8 50.8 76.4 34.5 51.8 .29.6 44.6 18.9 28.4 >15,2 22.8 ho.2 15,3
9 45.2 67.9 30.7 46.1 26:3- 39:6 16,8 25.2 13.5 20.3 '9.04 13.6
10 40.7 61.1 27.6 .41.5 23.7 35.6 15.1 22.7 12.1 18.3 8.13 12,2
11 37.0 55.6 25.1 37.7 21.6 324 13.7 20.6 11.0 16.6 "7.39 11.1
12 33.9 50.9 23,0 34.6 19.8 29.7 12.6 18.9 10.1 15.2 '6.78 10.2
13 31.3 47.0 21.2 31.9 ;18.2 27.4 11.6 17.4 9,34 14.0
14 29.1 43.7 19.7 29.6 ,16.9 25.5 10.8 16.2 8.67 13.0
15 27.1 40.8 18.4 27.6 ;15,8 23.8 10.1 15.1 8.10 12.2
c
I
16 25.4 38.2 17.2 25.9 'l4.8 22.3
i
(A
17 23.9 36.0 162 24.4 ;13.9' 21.0
18 22.6 34,0 15.3 23.0 13.2 19.8 5
19 21.4 32.2 14.5 21.8 12.5 18.8
. . , ;,
20 20.3 30,6 13.8 20.7 '11;9 17.8
21 19.4 29.1
22 m5 27.8 !
23 17.7 26.6
24 16.9 25.5
25 16.3 24.5
Beam Properties
VHIllt <|)6Mt,klp-ft 407 / 611 276- ' 415 237 !., 356 151 227 121 . 183 81.3 122
<|,sMp,kip-ft 50.8 76.4 .;34.5 51,8 Z9.6 44.6 18.9 28,4 15.2 . 22,8 10.2 15.3
WQi il/M, kip-ft 30.9 46.5 m 30.8 1B.1 27.2 11.0 16,5 9.23 13.9 6.16 9.26
^iBF, kips 1.58 2.38. ~ '0.948 1,42 0.974 . 1.46 .0,460 0,691 d.516 0.775 0.341 0,512
V„ia. 44.8 67.2 50.8 76.2 31.2 ,46.8 40:2 60,3 20.0- 30,1 15:4 J. '23.1
28.3 19.2 16.5 10,5 8.45 5.66
3.95 3.31 3.44 2.80 2.92 2.66
L,.n 16.5 18.2 15.3 19,9 14.5 14,4
A
i24=1.67
LRFD
ij)(, = O.BO
$,= 1.00
Note: Beams must be laterally supported KTable 3-7 is used.
Available strength tabulated above heavy line is limited by available shear strength.
AMERICAN INSTIRTRRE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
S4-S3
Table 3-7 (continued)
Maximum Total
Uniform Load, kips
S'-Shapes
Fy = 36 ksi
Shape
S4x
9.5 7.7
S3x
7.5 5.7
Design ASO tRFO ASD LRFD ASD LRFD ASD LRFD
2
3
4
5
6
7
8
9
10
29.0
19.4
14.5
• 11.6
9.68
8.29
7.26
6.45
. 5.81
43.6
29.1
21T8'
.17'.5.
14:5
12:5.
10.9
9.70
8.73
22.2 33.4
16.8
12.6,
10.1
8.38-
7.19
6.29 ^
5.59
5.03
25.2
18.9
15.1
12.6
10.8
9.45
8.40
7.56
16.9
.11.3
8.44
6.75
•5.63
V 4.82
25.4
16.9
12.7
10.2
8.46
7.25
13.«
9,29
6.97
5.58
4.65
3:98
21.0
14,0
10,5
8.38
6.98
5.99
Beam Properties
Ht/Jlj - OsMt,l(ip-ft '58.1 87.3 50.3 75.6 33.8 50.8 27.9 41 ;9
^uMp, kip-ft '7.26 10.9 e.29 . 9.45 4,22 6.35 3,49 5.24
M^fi, • <|isM„ kip-tt 4.25 6;39. 3i81 5,73 2';4it 3.67 2.10 3,16
mht ifiiiBF, Mps 0.190 0.285 0.202 0.304 0.0^99 0.135 0.102 0.154
18.8 28.2 ' 11.1 ' 16.7 15.1. • 22.6 '7:34 11.0
Zx, in.3 4.04 3.50 2.35 1.94
2.35 2.40 2.14 2;16
in ft 18.2 14.6 22.0 15,7
ASD LRFD Note-, Beams must be laterally supported If Table 3-7 Is used.
n4=i.67
Available strengtn tabulated aoove tieavy line is iimiiea uy avaiiaoie snear strengm.
<t)„=1.00
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
F. = 36ksi
Table 3-8
Maximum Total
Uniform Load, kips
C-Shapes
C15-C12
C15x
oiiapc
SO 40 33.9 30 2S 20.7
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ^0. LRFD
3 278 418 58 238 120 • 181
.; •4 • 246 i 370 202 303 fts - 233 21 183 159 87.5 132
, 5 197 296 165,v 248 146 219 . 97,1 146 127 73.6 111
6
Iff,
247 138 207 122 183 810 122 7Q.4 106 61.3 92,2
7 211 118 177 104 157 694 104 60.4 '90.7 52.6 79.0
8 123 185. T03:; 155 91:3 137 60,7 91.3 -.52.8 '79.4 46.0 69.1
9 109 164 91.8 138 81,1 122 . .54,0 81.1 46.9 70.6 40.9 61,4
10 .98.f 148 .82,6., 124 73.0 110 48.6 73.0 42.3 63.5 36.8 55,3
ii 89.5 135 113 66.4 99.8 44.2 66.4 if .4 57.7 33.4 50,3
12 82.0 123 68:9 104 60.8 91.4 40.5 60.8 •,2 52.9 30.t 46,1
13 75.7 114 esfe 95.5 56.2 84.4 37.4 56.2 •32.5 48.8 28.3 42,5
14 70.3 106 ,59,0 88.7 52,1 _ 78.4 34.7 52.1 45.4 26.3 39,5
15 65.6 98.6 '55:t 82.8- 48,7 73.2 32.4 48.7 "2 42.3 ,24.5 36,9
16 61.5 92.5 77.6 45:6, 68.6 30.4 45.6 39.7 23.0 34,6
17 57.9 87.0 48.6 73.1 42.9 64.5 28.6 42.9 24;9 37.4 21.6 32,5
18 54.7 82.2 69.0 40.6 61.0 27.0 40.6 -23.5 35.3 •20.4 ' 30,7
« 19 51.8 77.9 =43:5 65,4 38.4 57.8 25.6 38.4 -22.2 33.4 •'19.4 29,1
c 20 49.2 74.0 41.3 62.1 36.5 54.9 24.3 36,5 21.1 31.8 184 27,6
S.
U9 , 21 ,46.9 70.5 39;3 59.1 34.8 52,3 23.1 34,8 302 17.5 26,3
S.
U9
22 44.7 67.3 •37.6 56.5 33.2 49,9 221 33,2 28.9 16.7 25,1
23 42.8 64.3 '35.9 54.0 31.7 47,7 211
31,7 '18.4 27,6 16.0 24,0
24 41.0 61.7 34,4 51.8 30.4 45.7 20 2 30.4 17.6 26,5 .15.3 23,0
25 39.f 59.2 33.1 49.7 29.2 43,9 194 29.2 -Ig.? 25,4 14.7 22,1
26 37.9 56.9 3L8 47.8 28.1 42.2 187 28.1 16.3 •24,4 14.2 21,3
27 ' 36.5 54.8 30.6 46.0 27.0 40.6 180 27,0 •1S.6 23.5 •13.6 .20,5
28 35.2 52,8 f29;5 44.4 26.,t. 39.2 173 26,1 ;15.1 22.7 13.1 19,7
29 33.9 51.0 28.5 42.8 25.2 37,8. 167 25,2 14.6 21,9 -12.7 19,1
30 32.8 49.3 57,5 41.4 24.3 36.6 162 24,3 J4.1 21.2 12.3 18,4
31 .31.8: 47./ .26.7 40.1 23,6 35,4
32 30.8 46,2 25.8 38.8 22:8 34.3
33 29.8 44.8 25.0 37.6 22,1 33,3
34 29.0 43.5 24.3 36.5 21.5 32,3
35 28.1 42,3 23.6 35.5 20.9 31,4
36 27.3 41,1 23,0 34.5 20.3 30,5 i
37 26.6 40.0 22.3 33.6 19.7 29,7
Beam Properties
%/SJj , <t>s»!„ klp-ft 984 1480 826. 1240 730 1100 486 i 730 423 635 368 553
KflQi
(ft/Mp, kip-ft 123 ! 185 103 155 9l,3 137 60.7 91,3 52.8- 79.4 460 69;i
KflQi i^tl/lr, kip-tt '67.7. 102 58.5 87,9 52.8 79,4 -.34,0' 51,0 30.2 45.4 270 40,6
•BF/Qi ^iBF, kips 3.46 5.19 3.58 5.40 :3.58 5,36 2.18 3,30 2.22 3.35 2.16 3.25
kips 139 209 101 152 77.6 117 .mt 119 60.1 90,3 43.8 ,65,8
68.5 57.5 50.8 33.8 29,4 25.6
Ci„ft 3.60 3.68 3.75 3.17 3.24 ; 3.32
if.tt 19.6 16.1 14.5 15.4 13.4 12,1
C12X
ni=i.67
LRFD
$6 = 0.90
i!),= 0.90
Note: For beams laterally unsupported, see Table 3-11,.
Available strength tabulated above heavy line Is limited by available shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
Table 3-8 (continued)
Maximum Total
Fv = 3B lc<$
Uniform Load, kips
' y
C1(
••M
)-C9
C-Shapes
ClOx C9x
aiiape
30 25 20 15.3 20
Design ASD LRI=D ASD LRFO ASO LRFD ASD LRFD ASD :: LRFO
2 174' 262 136 205 98.0 147 104 i 157
3 i128 192 111 166 92.9 140 62.1 93,3 81.0^ 122
4 ; 144 83.0 125 69.7 105 57,1 85,9 60.7: 91.3
5' 76.7 115 66.4 99.8 •55.8' 83.8 45.7 68,7 ,48.6 ; 73,0
6 , 64,0 96.1 55.3 83.2 46.5 69.8 38.1 57.2 •40.5 60,8
7 54:8 824 47:4 71.3 39,8 : 59:9 32.6 49.1 '34.7- 52,1
a 48 0 72.1 41.5 62.4 34.9 52.4 28.6' 42.9 30.4 ^ 45.6
9 •42.6 64.1 36.^ 55.4 31.0 46.6 25.4 38.2 27.0' 40.6
10 38.4 57.7 33.2 49;9 27.9 41.9 22.9 ; 34.3 24.3: 36.5
11 • 34.9 52.4 30.2 45.4 25.3 38.1 20.8 31.2 22.1 ; 33.2
12 ' 48.1 27.7 41,6 23.2 34;9 19.0. 28,6 20.2: 30.4
13 2^.5 44.4 38.4 21.4 32.2 17.6 26,4 •18.7; 28,1
14 2754 41.2 23.7 35:6 19.9 29:9 16,3, .24,5 17.3: 26,1
« s IS ' 25.6 38.4 t22.1 33.3 18.6 27.9 15.2;' 22,9 16.2 24,3
c
n
CL 16 24,0 36,0 20.7 31.2. 17.4' 26.2 14.3 • 21,5 15.2 22.8
Iff
17 22.6 33.9 19.5 29.4 16.4 ;-24.6 -13.4 20.2 14.3 i 21.5
18 ^1.3 32.0 18.4 27.7 15.5 23.3 12.7 19.1 •13.5 i 20.3
19 20.^ 30.4 17.5 26,3 14.7 22.1 12.0 18,1 12.8 19.2
20 19.2 28.8 '"16.6 24.9 13.9 21.0 n;4 17,2 12.1 18.3
21 .18.3 . 27.5 '15,8 23,8 13.3 20:0 W.9 16,4 '11.6 17.4
22 ' 17.4 26.2 MS.1 22,7 12.7 19.0 10.4 15,6 11,0: 16.6
23 ' .16.7 25.1 , 21.7 12.1 18.2 ;9.93 14.9
24 16.0 24.0 13.8 20,8 11.6 . 17.5 9.52 14.3
25 15.3 23,1 13.3
J-
20.0 11.2 16.8 9.14 13.7
Beam Properties
Mt/fli kip-ft 384 577 332 499 .2?9 ' ^ 419 229 343 243 365
Wp/Qi ;: 48.^1: 72.1 415 62,4 ; 34.9, 52.4 286 42,9 30.4 45.6
Mr/Qt 260 39.1 229 34.4' , 19.9"! 29,9 170 25.5 .17.0 25,5
BFiai,; ifbBF, kips !Z7 1.91 140 2.11 : 1:48 2,22 144 - 2,16 1.12 1,68
l-AWpS • 87;0? 131 680 102 , 49.0. 73,7 31.0 ij 46.7 52.2 .78.4
Z., in3 26.7 23.1 19.4 15.9 16.9
2.7S 2,81 2,87 2,96 2.66
tr.ft
20,1 16.1 13,0 11,0 14.6
ASO LRFD Note: For beams laterally unsupported, see Table 3-11,.'
WailaDle sirenptn taoulateo above neavy line is iimitea oy avaiiaoie snear strengm.
£2,= 1.67
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Table 3-8 (continued)
Fy = 36 ksi
Maximum Total
Uniform Load, kips
C-Shapes
C9 -C8
Shape
C9x C8x
Shape
15 13.4 18.75 13.7 11.5
Design ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
2 66.4 99.7 99.9 150: 62.7 94,2
65.1 97.9 ^ 81.5 66.6' 100 52.7 79,2 45,5 68,4
4 48.9 73.4 5:45.3^; 68.0 r49.9 75,1 39.5 59,4 34.6 52,0
5 39.1 58.8 36.2 .54.4 40.0 60,0 31.6 47.5 27.7 41.6
6 32.6 49.0 45.4 33.3 50,0 26.3 39.6 23.1 34,7
7 27.9 42.0 25.9 38.9 28.5 42.9 22.6 33,9 19.8 29,7
8 24.4 36.7 •.22.6; 34.0 i25.0 37.5. 19.8 29,7 17.3 26.0
9 21.7 32.6 20.1 30.2 22.2 . 33.4 17.6 26.4 15.4 23.1
10 19.5 29,4 27.2 20.0 30^0 15.8 23.8 13.8 • 20.8
11 17.8 26.7 V,316.3;-' .24.7 18.2 .27,3 14.4 .21.6 12.6 18.9
12 16.3 24.5 15.1 22.7 16.6 .'25,0 13.2 .19,8 11.5 17.3
13 15.0 - 22,6 13.9 , 20.9 •15.4 ' i 23,1 12.2 18.3 10.6 16,0
14 14.0 . 21.0 12.9 19.4 14.3 : • 21,4 11.3 17,0 9.89 14.9
15 13.0 19,6 .12.1? f 18.1 13.3 20,0 10.5 15.8 "9.23 • 13.9
c
n
16 12.2 18,4 11.3 17.0 12.5 18,8 9.88 .14,9 8.65 13.0
c
n
17 11.5 17,3 10,7 16.0 17.7 9.30 14.0 8.14 12,2
18 10.9 16.3 10.1 15,1 11.1 16.7 8.78 13.2 7.69 11,6
19 10.3 15,5 9.53 14.3 10.5 15.8 8.32 12.5 7.28 10,9
20 9.77 14,7 9.05 13.6 9.99 ; 15:0 7.90, 11.9 6.92 10,4
21 9.31 14,0 8.62 13.0
22 8.88
1
13.4 8.23 12.4
i
Beam Properties
R/Qt
Mp/SJi
Mrini,
Bf/Sli,
Wn,.
(|.jMp;kip-ft
^iBF, (dps
(jXkips
195
24.4
14.2
:> 1.18 !
• •33.2
294
.36.7
21,4
1,77
49,9
- Wl - - :
22,6
13,3
1,17,
27.1:
272
34,0
20.0
1.77
40,8
200 '
25.0
• ;;
0.829
50.4
300
37,5
20,8
1.24
75,7
158 ::>
19.8:
11.3 :
0.929
31.4
238
29.7
17.0
1,39
47.1
138 .
,17.3
10.2
0 909
^^2.8
208 '
26,0
15,4-
1,36
34,2
lp,fl
ir,fl
13.6
2.74
11.4
12,6
2.77
10,7
13.9
2,49
16,0
11,0
2,55
11,7
9,63
2,59
10,4
SASO LRFD Note: For beams laterally unsupported, sei ! Table 3-11,
flii=1,67
ai,= 1,67
(|)t = 0.90
(tif = 0.90
Availatjie strengm taDulated aDove neavy line is limiteo oy avaiiaoie snear sirengm.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
G7-C6
Table 3-8 (continued)
Maximum Total
Uniform Load, kips
C-^Shapes
Fy = 36ksi
Shape
C7x
14.75 12.25 9.8
C6x
13 10.5
Design .ASD LRFO ASD LRFD ASD LRFD ASD LRFD ASD LRFO
5
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
70.1
46.7
35.0
28.Q
23.4
20.0
17.5
12.7
11.7
10.8
10.0
8.76
8.24
105
70.2
52.7
42.1
35.1
30.1
26.3
•23.4
.;21.1
19.1
:i7.6
16.2
15.0
14.0
13.2
•12:4
56.9 ;85.5 38.0 57.2
40.5
30.4
24.3
20.3
17.4
15.2
13.5
12.2
11.1
:!t0.f
9.35
8.68
8.11
i.
7.60
7.15
60.9
45.7
36.5
30.5
26.1
22.8
20.3
18.3
16.6
15.2
14.1
13.1
12.2
11.4
10.7
34.4
25.8
20,7
17.2
14.8^
12.9
11.5
10.3
. 9.39;
8.61
7.95
7,38
6.89
'-6.46
' 6.08
51.8
38.8
31.1
25.9
22.2
19.4
17.3
15.5
14.1
12.9
11.9
11.1
10.4
9.72
9.14
52.4
34.9
26.2
21.0
17.5
^15.0:;
_13.1
11.6
10.5
9.52
8.73
8.06
7.48
6.98
78.7
52.5
39.4
31.5
26.2
22.5
19.7
17.5
,15.7
14.3
13.1
.12.1
11.2
10.5
44.4
29.6
22.2
178
14.8
127
11 1
9 87
8 88
807
740
6.83
6 34
S.92
66.7
44,5
33.4
26.7
22.2
19.1
16.7
14.8
13.3
12,1
11.1
10.3
9.53
8.90
Beam Properties
Kt/Qi
MrlQi
BF/Cli,
v„ia.
<ti(,Wc,kip-ft
<l)j/Ml„kip-tl
(t>6/Wr, kip-fl
<fi,BF,Mf$
<tirV„,kips
140 C .
17.5
9.78
0,620
37,9
211
26.3
U.7
0.931
57.0
122
15.2;
-.8.7(3
0.661
28.4
183
22,8
13.1
0,986
42,7
103 '
7.63
0.677
19,0
155
19.4
11.5
1,01
105 !
13,1
7,27
0,^3
33,9
157
197
10.9
0,623
51,0
«88 .
11,1
6.34
0.458
244
133
16.7
..3,53

36,6
ir.ft
9.75
2.34
14,8
8,46
2.36
12,2
7,19
2,41
10.2
7.29
2.18
16.3
6.18
2,20
12,6
ASD
£26=1.67
n,= 1.67
LRFD
(ti(, = 0,90
((>,= 0.90
Note; For teams laterally unsupported, see Table 3H1,
Available strerigtti tabulated above heavy line is limited by available shear strength.
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Fy = 36 ksi
Table 3-8 (continued)
Maximum Total
Uniform Load, kips
C-Shapes
C6-C4
Shape
C6x
8.2
C5x
6.7
C4x
7.25 6.25 5.4
Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASa4 LRFD
2
3
4
5
6
7
8
9
10
11
12
13
14
15
310 6.7
24 7
18.5;
14 8
124
106
'9.27
8.24
7.42
6.74
6.18
5.70
5.30
4.94
37.2
27.9
22.3
18.6-
15.9
13.9
12.4
11.1
10.1
9.29
8.57
7.96
7.43
31.5
21.0/
15.8
1Z6
10.5
9.01
7.89
7.01
6.31
5.74
5.26
47.4
31.6.
23.7
19.0
15:8
13.5,
11.9
10.5
9.48
8.62
7,90
24.6 36.9
17.0
12.8;
10.2
8.50
7.29
6.38
5.67
5.10
4.64
.4:25
25.6
19.2
15.3
12.8
11.0
9.59
8.52
7.67
6,97
6.39
20.4
13.6
10.2
8.16
6.80
5.83
5.10
4.53
30,7
20,4
15.3
12.3
10.2
8.76
7:67
6,82
6,13
17i5
116
8.73
6.98
5.^2
4.99
4:37
3.88
3^9
26.2
17,5
13,1
10,5
8,75
7.50
6.56
5.83
5.25
16.5,
'11.0'
8.23
6.58
5^49
4.70
4.11
3.66
' 3.2b

• j"
24.7
16.5
12,4
9,89
8,24
7,07
6.18
5,50
4,95
Beam Properties
Kt/Qj
im^ich
MrlOb
BFiat
H./Q,
(fiWckip-ft
<t6Wl„kip-ft
ifsMn kip-ft
fc^f, kips
i!>vV„, kips
74,2;
9,27
5.47.
0,477^
15,5 •
111
13,9
8,22
. 0.713
23.3
63.1 V
7:89
4.48
0.287
21.0 ::
94.8
11.9
6.73
0,435
31,6
51,0 ;
; ^38
3,76 .
. o,3ia
!12.3 •,
76,7
9.59
5,65
0,471
18,5
5,10'
^88
0.165
16,6
61,3
7,67
4,33
0,249
25,0
34.9
4.37
2.51
0.178
12,8:
5Z.5
6.56
3.78
0.266
19.2
32.9.
.4.11.
2.41
0.1861
49.5
6,18
3.63
0;279
143
Z„in.'
tp,ft
Lr,n
5.16
2.23
10,2
4,39
2.02
13,9
3,55
2,04
10,4
2.84
1.86
15.3
2.43
1,84
12.3
2.29
1,85
11,0
n(p=i.67
ft,= 1.67
LRFD
<tie = D.90
(ti, = 0.90
Note: For beams laterally unsupported, see Table 3-1i.
Available strength tabulated above heavy line Is limited by available shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
C4-C3
Table 3-8 (continued)
Maximum Total
Uniform Load, kips
C-Shapes
Fy = 36 ksi
Shape
C4x
4.5
C3x
4.1 3.5
ASD LRFD ASD LRFD ASD UJFD ASD LRFD ASP; LRFD
2
3
4
5
6
7
8
9
10
12.9- 19,4
,10.2
• 7.62
6.09
5.08
4,35
,•3,81
5,39
3.05
15.3
11.4
9.16
7,63
6.54
5,72
5,09
4,58
12.5
8.34
6.25
5.00
4.17
, 3.57
18.8
12:5
9.40
7.52
6,26.
5.37.
10.9
7.28
5.46
4.37
3.64
3.12
16.4
10.9
8.21'
6.57
5.47
4.69
9.49
6.32
4.74
3.79
3.16
2.71
14.3
9,50
7.13
:5,70
4:75
4,07
8.91
5.94
4.46
3.56
2.97
2.55
13,4
8,93
6,70
5,36
4.46
3,83
Beam Properties
Ht/a» ituWc, kip-It 45.8 25.0 37,6 mi:8 • 32.8 19,0 28.5 .17,?...: 26;3
•sM^kip-ft ,3.81S 5.72 3,13 4.70 . 1 2.73 4.10 2,37 3.56 2.23 3.35
Mrldl, 4j,/lfr,klp-« Z30 3.46 1,74 2.61 • . 1.55:: 2.32 1,38 : 2,08 •1.31 1,97
wisli tifif.kips 0.184 0.276 0.0760 0,114 0.0861 0.130 0,0930 0.139 0.0962 0,144
V„ICl, <l),V„,kips r6,47:' 9.72 1,3,8: 20.8 10.0 i : 15,0 . 6.60 : 9,91 5,12 ' . 7.70
Zx,
in.3 2,12 1,74 1,52 1,32 1,24
ic.
ft 1.90 1,72 1 ,69 1,66 1 ,64
l„ ft 10.1 20,0 15,4 12,3 11,2
ASD
ni,=i.67
LRFD
<|)e = 0.90
(t), = 0.90
Note: For beams latetally unsupported, see Table 3-11. :
Available strength tabulated above heavy line is limited by available shear strength:
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES
5-65
Table 3-9
Maximum Total
Fy = 36ksr
Uniform Load, kips
MC-Shapes
MC1£ t-MC13
Shape
MClBx MC13X
58 51.9 45.8 42.7 50 40
Design ASD LRFO ASO LRFO ASO LRFD ASD LRFD ASO LRFD ASD LRFD
3
326'-
^
265 398 188; 283
4 326'- 490 279 420 233 350 .
218 328 184 276
; 5 274 ^ 412 251 . 377 228 342 210 315 175 263 147 221
6 229 ' 343 209 314 190 285 180 270 146 219 123 184
7 196 294 179 269 163 244 154 232 125 188 105 158
8 171 • 258- 157 236 142. 214 135 203 109 164 92.0 138
9 152 229 139 210 126' 190 120 180 97,1 146 81.8 123
10 137, 206 125. 189 114 171 108 162 87.4 131 73.6 111
11 125 187 114 171 103 156 98.1 147 70 4 119 66.9 101
12 114 172 105 157 94,9 143 •89,9 135 72.8 109 61.3 92,2
13 105 159 96.5 145 87.6 132' 83,0 125 67.^ 101 56.6 85,1
14 97.9 147 ,89.6 135 81.3 122 77,1 116 62.4 93 8 52.6 79.0
15 91.4 137
83.6 126 .75.9 114 72.0 108 58.3 87.6 49.1 73,7
16 85.7 129 78.4 118 71.1 107 67;5 101 54.6 82.1 •46X) 69,1
17 80.6 121 .73.8 iri 67.0 101 63.5 95,4 51.4 77.3
• 43,j3
65.1
18 76.2 114 69.7 105 63.2 95.0 ,60.0 90,1 48.5 73.0 40.9 61,4
19 72,2 108 ,66.0 99.2 •59.9 90.0 56.8 85,4 46,0 69,1 38.7 58,2
g 20 68,6 103 62.7 94,3 :.,5a9 85.5 54.0 81.1 43.7 65,7 '36.8 ,55,3
J- 21 65.3 98.1 59.7 89,8 81.5 51-.4 77.2 41.6 62,5 • 35.0 52.7
22 62a 93.7 'S7.0 85,7 :5fe7; 77.8 49.1 73.7 39.7 597 33:4 50,3
23 59.6 89,6 54,5. 82,0 74,4 m
70.5 38.0 57,1 .32.0 48,1
24 57.1 85.9 ;52.3 78.6 !47;4 71.3 45.0 '67.6 36.4 54,7 30:7 46.1
25 54.8 82,4 50.2 75.4 f45i5 ,68.4 '43.2 64.9 35.0 52.5 29.4 44,2
26 52.7 79,3 48.3 72,5 43.8 65.8 ,41:5 62.4 33'.6 50.5 28j3 42,5
27 50.8 76.3 46:5 69.8 42.2 63.4 40.0 60,1 48.6 27.3 41,0
28 4S.0 73.6 44.8 67.3 40.7 61.1
38j6
57,9 '3K2 46.9 26.3 39,5
29 47.3 71.1 43.3 65.0 39.2 . 59.0 37.2 55.9 30:1 45.3 •25.4 38,1
30 •45.7 68.7 41.8 62.9 37.9 57.0 36.0 54.1 •29:1 43.8 24,5 36,9
32 42.8 64.4 39.2 58.9 35.6 53.5 '33.7 50.7 . 27.3 41.0 ' 23.(0 34.6
34 40:3 60.6 ;36;9 55.5 33:5 50.3 ,31.7 47.7
36 38.1 57.2 34.9 52.4 31.6 47.5 30.0 45.1
38 36.1 54.2 33.0 49.6 30,0 45.0 28.4 42,7
40 34.3 51.5 31.4 47,1 ;2i5 42,8 27.0 40,6
42 ; 32.6 49.1 29.9 44,9 :27:i 40,7 25,7 38,6
44 31,2 46.8 128.5 42,9 25.9 38,9 24,5 36.9
Beam Properties
Ht/Qj -ffclVcWp-tt 1370 2060 1250 1890 1140 1710 1080- 1620 874' 1310 735 1110
hMp, kip-ft 171 258 157 236 142" 214 135' 203 109 164: ®0 138
kip-tt : 94.3 142 87.5, 132 80.7 121 77.3 116 60.7 , 91.3 S27 7,9:2
BFIQt <i)i,8F, Wps • 5.16 7.81 5.26 7,87 > 5.23 7.93 5.17 7.80 .2.08 3.13 2.28 342
V„fQ, <|)X kips 163 245 140- 210 11£ 175 105 157 132.' 199 94.2- 142
95.4 -r 87,3 79.2 75.1 . 60.8 •51,2
4.25 4.29 4,37 4,45 4.41 4,50
lr,1 t 19.1 17.5 - 16.1 15,6 27.6 21,7
01,= 1.67
LRFD
K = 0.90
(1k = 0.90
Note; For beams laterally unsupported, see Table 3-11.
Available strengtti tabulated above heavy line is limited by available shear strength.
AMERICAN iNSTIrTrRE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
MC13-MC12
Table 3-9 (continued)
Maximum Total
Uniform Load, kips
MO-Shapes
Fy = 36 ksi
MC13X MC12X
anape
35 31.8 50 45 40 35
Design ASB« LRFD ASD LRFD ASD LRFD ASD' LRFD ASD LRFD ASD., LRFD
3
-
259 390 220^ 331 183 275
t
4 150. ' 226 126 190 203' 305 187_ 281 i?i ; 258 144* 217
5 134 201 125« -187 162 244 149
1
225 137' 206 124; 187
• 6 111 167 104 156 135 203 125' 187 114 172 1031 156
7 95.5 143 89.1 134 116 ' 174 107..- 160 97.9 147 88.7 133
8 83.S 126 78.0 117 101 153 '93.4 140 85.7 129 77.6 117
9 ,74.3 112 69.3 104 90 2 136 83.0 125 76.2 114 69.0 104
, 10 100 624 93.7 812 122 74.7 112 68,6 103 ' 62.<1 93.3
11 .qo.8 91.3 S6.'7 85.2 738 111 67.9 102 62.3 93.7 • 56.4 84.8
12 55.? 83,7 52.0 78.1 67 7 102 62.3 93.6 57,1 85.9 • 51.7 77,8
13 51.4 77,3 48.0 72.1 62-5 93.9 57.5 86.4 52i7 79.3 47.8 71.8
14 47.7 71.7 44.6 67.0 58 0 87.2 53.4 80.2 49.0 73.6 f 44.3 66.7
15 44.6 67.0 41.6 62.5 54,1 81.4 49.8
f .
74.9 45.7 68.7 41.4 62.2
16 41.8 62.8
1 li Ui
'39.0 58.6 507 76.3 46.7 70.2 42.8 64.4 ' 38.8 58.3
17 39.3 59.1 36.7 55.1 47 8 71.8 44.0 66.1 40.3 60.6 36.'5 54.9
18 37.1 55,8 34.7 52.1 45.1 67.8 .41;5 62,4 .38.1, 57.2 £34.5 51.8
19 '35.2 52.9 32.8 49.3 42 7 64.2 ,39.3 59.-1 36.1, 54.2 • 32.7 49,1
20 33.4 .50,2 '31/2 46.9 406
1
61.0 ,37.4 56.2 34.3 51.5 31.0 46,7
21 31.8 47,8 .2^7 44.6 38 7 58.1 35,6 53.5 32.6 49.1 29.6 44,4
22 30.4 45.7 28.4 42.6 36 9 55.5 34.0 51.1 31.2 46.8 -28.2 42,4
23 ,29:1 43.7 27.1 40 8 35 3 53.1 48.8 '29.8 44.8 "27.0 40.6
24 •'27.8 .41.9 26.0 39.1 338 50.9 31.T 46.8 28.« 42.9 25.9 38.9
25 40.2 kfi 37.5 32 5 48.8 29.9 44.9 41.2 •,24.8 37.3
26 25.7 38.6 24.0 36.1 31 2 46.9 28.7 43,2 264 39.6 • 23.9 35.9
27 '24.8 37.2 23.1 34.7 . 30:1 45.2 27.7 41.6 25.4 38.2 23.0 34.6
28 123.9 35.9 22.3 33.5 29.0 43.6 '26.7 40.1 24.5 36.8 22.2 33.3
29 •:23.0 34.6 21:5 32.3 , 28.0 42.1 25.8 38.7 23.6 35.5 21.'4 32.2
30 ;22.3 33.5 20:8 31.2 27.1 40.7 : 24:9 37.4 22:9 34.3 20.7 31.1
32 ,20.9 31.4 19,5 29.3 ^ I
Beam Properties
Ht/ii^ •ii»lK„kip-ft 668'. 1000 624'J? 937 812 1220 747 1120 me 1030 621 833
Mp/fis
MflOt
diiMp, Wp-ft 83.5- 126 , 78.-0, 117 101 153 934 140 85.7 129 77.8 117
Mp/fis
MflOt (ils/Wr,kip-ft ,48.8 73,3 46.r 69.4 56 5 84.9 527 79.2 49J) 73.7 45.3 68.0
iBFiai,. ioBF, kips 1,2.34 3.55 2,-31 3.44 165 2.53 177 2.65 1.87 2,82 1.92 2.92
K./SJ, (f^li, kips '75.2i, 113 ' 63,t. 94.8 130 195 110 166 91.6 138 72.2 108
46.5 43.4 56.5 52.0 47.7 43.2
4.54 4.58 4 .54 4.54 A 1,58 4 !.62
if,ft 19.4 18.4 • 31.5 27.5 24.2 21.4
ASD IRFO
Note: For beams laterally unsupported, see Table 3-11.
at=i.67
Available strengtti tabulated above heavy line is limited Dy available snear strengm.
<1)„ = 0.90
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 3-93
Table 3-9 (continued)
Maximum Total
Fy-. 36 ksi
Uniform Load, kips
MC-Shapes
MC1: 2-MC10
Cliana
iVIC12x IViClOx
onape
31 14.3 10.6 41.1 33.6 28.5
Design ASD LRFD ASD. LRFD ASD LRFD ASO LRFD ASD. LRFD ASO. LRFD
2 77.6' 117 59,0 88.6 206 309
. i,'
3 76.2- 114 55,6' 83.5 188 283 149 224 110' 165
4 115 173 57.3 85.9 41.7 62.6 141 212 121 . 182 108' 162
5 114-; 172 45.7 68.7 33.3 50,1 m-
170 96.9 146 86.2 130
6 95,1 143- 38.-1 57.2 27,8 41.8 94.1- 141 80.7, 121 71.9 108
7 .81.5 123 32,6 49.1 23.8 35.8 '80,7 121 ^9.2 104 61.6 92.6
8 71.3 107 28.6 42.9 20,8 31.3 70,6 106 60.5 91.0 53.9 81.0
9 63.4 95.3 2^,4. 38.2 18.5, 27.8 62,8 94.3 53.8 80.9 47.9 72.0
10 85.8 22.9 34.3 16,7 25.1 56,5 84.9 48.4 .72.8 43.1 64.8
11 51.9 78.0 20,8 31.2 15.2 22.8 51 ,-3 77.2 ,44,0 '66.2 39.2 58.9
12 47.5 71.5 19,0 28.6 13.9 20.9 47.1 70.7 40.4 60.7 35.9 54.0
13 43.9 66.0 17.6 26.4 12.8 19.3 43,4 65.3 37.,3 56.0 33.2 49.8
14 kdfi
38.0
f V-.'V-. ••
61.3 1p.3, 24.5 11.9 17.9 40,3 ,60.6 34 6 52.0 30,8 46.3
V.
15
kdfi
38.0
f V-.'V-. ••
57.2 15:2 22.9 11.4 16.7 37,7 56.6 32.3 48.5 28.'7 43.2
c
s
16 35.7. 53.6 14.3 21.5 10.4 15.7 35.3 53.1 30.3 45.5 26.9 40.5
17 .33.6 50.4 13,4. 20.2 14.7 33 2 49.9 235 42.8 •25,4 38.1
18 .31.7 47.6 32.7' 19.1 9.26 13.9 314 47.2 26.9 40.4 • 24.0 36.0
19 30.0 45.1 18,1 8.77 13.2 29.7 44.7 3j5 38.3 22:7 34.1
20 42.9 m 17.2 8.34 12.5 28.2 42.4 36.4 , 21.B 32.4
21 '27,2 40.8 ^0.9 16.4 7.94 11.9 26.9 40.4 23.t
34.7 20.'5 30.9
22 25.9 39.0 10.4 15.6 7*58 11.4 25.7 38.6 i 22.0 33.1 19.6 29.5
23 24,8 37.3 §:93 14.9 10,9 24,6 36.9 21.1 31.6 18.7 28.2
24 23.8 35.7 i9,52 14.3 10.4^ 2I'5 35.4 20.2 30.3 - 18.0 27.0
25 '22.8 34.3 9.14 13.7 6.67 10.0 ,22,6 34.0 194 29.1 •17.2 25.9
26 •21.9 . 33.0 : 8.79 13.2 6.41 9.64

27 !21.1 31.8 8.46 12.7 6.17 9.28
28 20.4 30.6 '8.16 12.3 5,95 8.95
29 197 29.6 7.88 11.8 5,75 8.64
30 19.0 28.6 7.62 11.4 5,56 8.35
Beam Properties
IV^/iis <|.(,M<„kip-ft 571 858 229 343 167 251 565 , 849 484 728 431 648
M^/Qi ifuMi,, kip-ft 71.3 107 28 6 42.9 20.8 31.3 70.6 106 60,5 91.0 53.9 81,0
kip-tt .424 63.7 16.0 24.0 17.4 39,6 59.5 35,0 52,5 31.8 47.8
(Difif, kips •1.-90 2.85 2.49 3.73 ,<Z.7Z 4.11 1,00 1.50 1,13 1.71 1.22 1,83
V„l!. kips 57.4 • 86.3 38.8 58,3 ::29.5A 44.3 103 155 74,4 112 S-iC 82,6
39.7 15.9 11.6 39.3 33.7 30.0
4 .62 2.04 1.45 4.75 4.79 4.83
Lr,1t 18.8 7.11 4.83 35.7 27.3 23.0
04=1,67
LRFD
<1)1, = 0.90
<1)^=0.90
Note: For beams laterally unsupported, see Table 3-11. ,
Available strength tabulated above heavy line is limited by available shear strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
Table 3-9 (continued)
Maximum Total
Uniform Load, kips
Fy = : 36 ksi
MC 10-MC9
MC-Shapes
MClOx MC9x
aiiape
25 22 ^ 8.4 6.5 25.4 23.9
Design ASO LRFD ASD LRFD ASD LRFD ASO LRFD Asn LRFD ASD LRFD
2
44.0 66.1 393 59,1
3 9a.3 148 37.9' 57.0 28.3 42.5 105 157 93.1 140
4 141 75.0' 113 28.5- 42.8 212 31.9 J.84.4 127 80.8 121
S 75.'3' 113 68.7 103 22.8 : 34.2 17.0' 25.5 •67.5 102 64.7 97.2
6 ;B5.8 94.3 .57.2' 86.0 19.0 28.5 14.1 21.2 56.3 84,6 53.9 81.0
7 53:e 80.8 49.'1 73.7 16.3; 24.4 12.1 '
18.2 48.2 72,5 46.2 69.4
8 47.1 70.7 42.9- 64.5 14.2 21.4 10.B 15.9 .42.2 63,5 40.4 60.8
9 41.8 62.9 38.2 57.4 12'.6 19.0 9.42 14.2 37:5 56,4 35.9 54.0
10 37.7 56.6 34.3' 51.6 11.4 ' 17.1 .8.48 12.7 33.8 50.8 32.3 48.6
11 •34.2' 51.4 31.2" 46.9 10.3 ^ 15.6 7.71 11.6 •30.7 46.1 29.4 44.2
12 31.4' 47.2 28.6 43 0 9.49 14.3 7.07 10.6 '28.1 42.3 26.9 40.5
13 is.d 43.5 26.4
39.7 8.7b 13.2 6.52 9.80 26.0 39.0 24.9 37.4
14
26.t 40.4 i4^5 36.9 8.13 12.2 6.06 9.10 24.'1 36.3 •23.1 34.7
« • 15 25.1 37.7 22.9
34.4 7.59 11.4 5.65 8.50 22.5 33.8 21.6 32,4
I
16 !Z3;5. 35.4 32.3
-i
7.11 10.7 •5.30 7.97
, 2f,1
31.7 20.2 30.4
CO
17 22.1 33.3 ih.2 30.4 iro 10.1 4.99 7.50 19.9 29.9 •19.0 28.6
18 20.9 31.4 28.7 6.32 9.50 7.08 18.8 28.2 '18.0 27.0
19 i9.;a 29.8 18.1 27.2 5.99 9.00 ' 4.-46' 6.71 17,8 26.7 "17.0 25.6
20 18.8 28.3 17.2 25.8 5.69 8,55 4.24 6.37 16.9 25.4 •16.2 24,3
21 .i'T;^ 26.9 ,16.4 24.6 5.42 8.15 .4*04 6.07 ,ie:f 24.2 •'15.4 23,1
22 ,17.1 25.7 1S.6' 23.5 5.17 7.78 3^5 5.79 i15.4, 23.1 14.7 22,1
23 16.4' 24.6 14.9
22.4 7.44 3 69 5.54 • ^ ,
24 15J 23.6 14.3 21.5 i.74 7.13 3.53 5.31
;
25 15.1 22.6 13.7" 20.6 4.55 6.84 ,3.39 5.10
. i
Beam Properties
Wt/Sle <l>j,H{:,kip-n 377 566 344 ; 516 114 171 84.8 127 338 > 508 323- •
486
it>6Mp,kip-ft '47.1 70.7 42.9.
64.5 14.2. 21.4 10.6 15.9 42,2 63.5 40.4 . 60.S
Mr/Qt H^n kip-n 27,7 '41.6 25.8 38.7 8.04 12.1 . 5:77 8.68 24,5 36.9 23.8 35.7
. BFla„ iJdBf, kips T.29 1.93 1.28 1.93 -1.75 2.65 1.95 : 2.91 ,0,967 1.45 0.982
1.49
If A, kips 49.1 73.9 375 56.4 22.0 33.0 19.7 29.5 5Z4
78.7 46.6, -70.0
I,. [n.3 26.2 23.9 7.92 5.90 23,5 22.5
Lp.n 4.13 4.15 1.52 1.09 4,20 4.20
Lr, ft 19.2 17.5 5.03 3,57 , 22,5 •21.1
£lj = 1,67
£2,= 1.67
LRfD
(In = 0.90
(1)„ = 0.90
Note: For beams laterally unsupported; see Table'3-T1.
Available strength tabulated above heavy line Is limited by available shear strength.
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 5-65
Table 3-9 (continued)
l\^axinnum Total
Fy. : 36 ksi
Uniform Load, kips
•hto
MC-Shapes
MC8-MC7
fUCSx MC7x
22.8 21.4 20 18.7 8.5 22.7
Design ASO LBFD ASD UIFD ASO LRFD ASD LftFD ASD LRFD ASD LRFD
2 82.8 124 37.0 55.7 91.1 137
3 SS.'f 133 77.6 117 7,8.6 118 73.1' 110 33.3. 50.0 78.6 118
4 '68.6; 103 65:4 98.3 58.9 88.6 56.0 84.2 25,0 37.5 58.9 88.6
5 54.9f 82.5 52.3 78.6 47.1 70.8 44.8 67.4 20.0 30.0 47.1 70.8
6 68.'8 43.6 65.5 39.3 59.0 37.4 56.2 16.6 25.0 39.3 59.0
7 "39.2' 58,9 37.4 56.2 33.7 50.6 32.0 48.1. 14.3 21.4 33.7 50,6
8 34.S 51.6 32.7 49.1 29.5 44.3 28.0 42.1 18.8 29.5 44.3
9 .30.5: 45.8 29.1 43.7 26.2 39.4 24.9 37.4 16.7 26.2 39.4
10 27.4 41,3 26.2 39.3. 23.6 35.4 22.4 33.7 9.99 15.0 23.6 35.4
11 25.0 37:5 23.8 35 7 21.4 32.2 20.4 30.6 9.08 T3.6 21.4 32.2
12 22.9 34.4 21.8 32.8 19.6 29.5 <18.7 28.1 8.32 12.5' 19.6 29.5
13 21.1; 31.7 20.1 30.2 18.1 27.2 17.2 25.9 7,68 11.5 fi8.i: 27.2
14 19.6 29,5 1.8.7 28.1 16.8 25.3 24.1 7.13 10.7 16.8 25.3
15 •18,1 27.5 17.4 26.2 15.7 23.6 14.9 22.5 6.66 10.0 i15.?: 23.6
1 16 17.2 25.8 16.3 24,6 14.7 22.1 14.Q 21.1 6.24 9.38 :i4.7 22,1
U)
17
\6.i:
24.3 15.4 23.1 13.9 20.8 13.2 19.8 5.88 8.83 n3.9i 20.8
18 15.2 22.9 14.5 21.8 13.1 19.7 ^2.i 18.7 5.55 8.34
19 14.4 21.7 13.8 20.7 12.4 18.6 11.8 17.7 5.26 7.90
20 13.7

;
20.6 13.1 19.7 1N.8 17,7 11.2 16.8 4.99 7,51
Beam Properties
tHiai, kip-ft 274 " , 413 262 393 236 354 224 337 99:9 150 236 354;
M^dt <t.6/ijp,kip-n 34.3! 51.6 32;7 49.1 29.5 44.3 ;28i0 42.1 12.5 18,8 29,5 44,3
iii,rat 20.0 30.1 19.4: 29,1 17.1 25.7 1«.5i 24.8 7.32 11.0 17.0 25;5
i>m kips 0.724 1.09 0.733 1,10 0.775 1.16 0.778 1.17 •0.970 1:46 0.493 ,0.741
mi,. .44.2. 66.4 38.8 58.3 . 41.4 . 62.2 36.5:; 54.9 183 27.8 •45.5 .68.4
19.1 18.2 16.4 15.6 6.95 16,4
h,n 4.25 4 .25 3.61 3.61 2,08 4 .33
in ft 24.0 22.4 19.6 18.4 7.42 29,7
ASD
a,=1.67
LRFD
4.4 = 0.90
<|), = 0.90
Note: For beams laterally unsupported, see Table 3-11.
Available strength tabulated above heavy line is limited by available shear strength,
AMERICAN INSTIRTRRE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
MC7-MC6
Table 3^9 (continued)
Maximum Total
Uniform Load, kips
MC-Shapes
Fy = 36 ksi
Shape
MC7x IVIC6X
Shape
19.1 18 15.3 16.3 15.1
Design ASO LRFD ASD LRFD ASO LRFD ASO LRFD ASO LRFD
2 ! 58.8 88.4 52.8 79.3 58.2 i 87.5 49.0 73.7
3 95.8 56.0 84.2 '47.5 71.4 49.8, 74.9 47.1 ' 70.8
4 78,3 42.0 63.2 35.6 53:5 37:4: 56.2 35,3 ' 53.1
5 ,41,7 62,6 •33.6 50.5 • 28.5 42.8- '29.9 . 44.9 28.3 42.5
6 34.7 52,2 28.0 42.1 , 23.7 35.7 24.9' 37.4 23.5 35.4
7 29.8 44.7 24.0 36.1 . 20.3 30.6 21.4 32.1 20.2 30.3
8 26.0 39,2 21.0 31.6 l'7.8' 26.8 18.7 28.1 17.7 26.5
9 34,8 15.7 28.1 -15.8 23:8. 16.6 • 25.0 15.7 23.6
10 20.8 31,3 16.8 25.3 14.2 21:4 14.9 22.5 14.1 21.2
11 .48.9 28,5 15.3- 23.0 ;l'2.9' 19.5 13.6 ' 20.4 t2.8 19.3
12 26.1 14.0 21.1 . : 1t.9 17.8 12.5 18.7 11.8 ; 17.7
13 T6.0 24.1 12.9 19.4 110 16.5 11.5 17.3 W.9 16.3
14 iR9 22.4 12.0 18.1 10.2 15.3 10J 16.0 10.1 15.2
IC 15 13,9 20.9 . -11.2 16.8 ,9.49- 14.3 9.96 • 15.0 ••9.42- 14.2
cT
I
16 ^3.0 19.6 i
e/i .
17 18.4
f.' . -
• !
. i;
Beam Properties
miat
Mp/ili
Mrlilt
BFIllt
fcUt^kip-ft
^bBF.UfS
26.0
,•15.5
0.523
,31.9.^
313
39.2
23.2
0.797
47.9
168 >
121.0
1S.4
"0.356
-29.4.
253
31.6
18.7
0,535
44.2
142
17.8
: 10.6 K
0j372
214
26.8
16.0
0.559
39.7
149 ii
18.7 ;
10.9 •
0 373
29ii ;
225
28.1
16.4
0.560
43.7
141
,10.4
0.384.
24,5 ,
212
26.5
15.7
0,568
36,9
tr,n
14,5
4,33
24,4
11,7
4,37
28.5
9,91
4,37
23,7
10,4
3,69
24,6
9.83
3,68
22,7
£16 = 1,67 ltd = 0.90
4>r = 0.90
Note: For beams laterally unsupported, see Table 3-11,
Available strength tabulated above heavy line is limited by available shear strength.
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

MAXIMUM TOTAL UNIFORM LOAD TABLES 5-65
Shape
Design
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Fv = 36 ksi
Table 3-9 (continued)
Maximum Total
Uniform Load, kips
MC-Shapes
MC6-MC3
MC6x
12
ASD
48.1
35.8
26.8
21.5
17.9
15.3
13.4
11.9
10.7
9.76
8.95
8.26
7.67
7.16
LRFD
72.3
53.8
40.3
32.3
26:9
23.1
20.2
17.9
16.1
14.7
13.4
12.4
11.5
10.8
ASO
27.8
21.6
16.2
12.9
10.8
9.24
8.08
7.19
6.47
5.88
5.39
4.97
4:62
4.31
LRFD
41.8
32.4
24.3
19.4
16.2
13.9
12.2
10.8
9.72
8.84
8.10
7.48
6.94
6.48
6.5
ASD
24.1
20.5
15.4
12.3
10.3
8.79
7.69
6.83
6.15
5,59
5.13
4.73
4.39
4.10
LRFD
36.2
30.8
23.1
18.5
15.4
13.2
11.6
10.3
9.24
8.40
7,70
7.11
6.60
6.16
MC4x
13.8
ASD
39.7
26,5
19.9
15,9
13,2
11.4
9.93
8.83
7.95
LRFD
59.7
39.8
29.9
23.9
19,9
17.1
14.9
13,3
11,9
MC3x
7.1
ASD
16.1
10.7
8.05
6.44
5.37
4.60
Beam Properties
ASO
Sit = 1.67
LRFD
((i/, = 0.90
(|),= 0.90
Mi/fli (fiWckip-ft 107 161 64,7 97.2 61.5 92,4 79.5 119 32.2 48,4
Mf/Qi, (|)sM„ kip-ft 13.4 20.2 8.08 12.2 7.69 11,6 9.93 14,9 4.02 6,05
MrlQi <|)6Mnl«P-ft
<t>i,0F,kips
7.85 11.8 4.79 7.20 4.60 6,92 5.57 8,37 2.28 3,42
BF/Clt
<|)6Mnl«P-ft
<t>i,0F,kips 0,414 0,627 0.490 0.744 0.485 0,735 0.126 0.189 0.0745 0,113
24,1 36,2 13.9 20.9 12.0 18,1 25.9. - 38.9 12.1. 18,2
7,47 4.50 4.28 5.53 2.24
3.01 2.24 2.24 3.03 2.34
In ft 16.4 8 .96 8.61 37,6 25.7
LRFD
24.2
16.1
12.1
9.68
8.06
6.91
Note: For beams laterally unsupported, see Table 3-11.
Available strength tabulated above heavy line is limited by available shear strength.
i
AMERICAN INSTIRTRRE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-103
f,,=50ksi
Table 3-10
W-Shapes
Available Moment vs. Unbraced Length
Table 3-10
W-Shapes
Available Moment vs. Unbraced Length
kip-ft kip-ft
Table 3-10
W-Shapes
Available Moment vs. Unbraced Length
ASD LRFD
Table 3-10
W-Shapes
Available Moment vs. Unbraced Length
8000 12000
11550
11100
10650
10200
9750
9300
8850
8000 12000
11550
11100
10650
10200
9750
9300
8850
8000 12000
11550
11100
10650
10200
9750
9300
8850
8000 12000
11550
11100
10650
10200
9750
9300
8850
8000 12000
11550
11100
10650
10200
9750
9300
8850
8000 12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
f
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

1,
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
1


7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
i>
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
12000
11550
11100
10650
10200
9750
9300
8850
« V
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500
A

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500
s>
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500


7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500
•f
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500
V
V
7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500
— >

7700
7400
7100
6800
6500
6200
S900
5600
5300
r
5000
8400
7950
7500


d"
16 28 40 52
Unbraced Length (3-ft4ncreinents)
64 76
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-100 DESIGN OF FLEXURAL MEMBERS
/y=50ksi
MnlQi, (S/jMn
Wp-ft kip-tt
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
14 18 22
Unbraced Length (1-ft increments)
AMERICAN iNSTrruTE OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-101
f^ = 50ksi
Ci = 1
M„iai,
kip-tt
ASD-.
kip-ft
' LRFO
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
t
5000
480Q
4600
4400
4200
4000
/3800
3600
3400
.3200
3300
7500
7200
6900
6600
6300
6000
5700
5400
5100
4800
4500

R
V


• s —
%

IS^o'

s
s,
s





i
-
•X
h

-


k



s





— -- --


— -- --


s



--

S
--
s
N
V.
s y i k
s


-—
s
— — —

1
-—
s
— — —
s

•••
--
X
V
--

—Sy


V

i

— — —
A s

i

— — —
A
^
i
s.
i



1
S —
i



i
s
-

---
1
— --
i
- ---
" j
— --

i 1
y
i
s , i
s

— --— —
y
! i
— --— —
y
Co
j

i



"A

s,
t

— — H

hi


1
— — H
k
— - — —
hi


1
m
— — H
k
— - — —

m
—L_ sxr^NK TT
30 34 38 42 46 50
Unbraced Length (1-ft increments)
54
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
fj,=50ksi
M„ICli, ^bfUn
kip-tt kip-ft
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
10 14 18 22
Unbraced Length (1-ft increments)
26 30
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-103
34 38 42 46 50
Unbraced Length (1-ft increments)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
Ay = 50ksi
C4 = 1
kip-ft kip-tt
ASD ' LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
10 14 18 22 26
Unbraced Length (1-ft increments)
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-103
30 34 38 42 46 50
Unbraced Length (1-ft increments)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
fj,= 50ksi
C6 = 1
kip-ft kip-ft
ASD IRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
14 18 22
Unbraced Length (1-ft increments)
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXXJRAL STRENGTH VS. UNBRACED LENGTH 3-119
fV=50ksi
C4=1
M„/Q„ <SfM
kip-fl kip-ft
ASO LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
38 42 46
Unbraced Length (1-f^ increments)
AMERICAN INSTITIRRE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
/y = SOkSi
Ci,= 1
M„iai, ifiK
kip-ft kip-ft
m LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
14 18 22
Unbraced Length (1-ft increments)
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-103
38 42 46
Unbraced Length (1-fVincrements)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
Fy=SOksi
C(,= 1
kip-ft kip-ft
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
10 f 14 18 ZZ
Unbraced Length (1-ft increments)
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-103
/V=50ksi
C» = 1
M„/Qt i^M
kip-ft kip-ft
ASD LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
I
Unbraced Length (1-ft increments)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
fy=50ksi
MnlO-b
kip-ft kip-ft
ASD LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
14 18 22
Unbraced Length (1-ft increments)
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH
3-103
fy=50ksi
kip-tt kip-ft
ASD LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
38 42 46
Unbraced Length (1-ft increments)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-100 DESIGN OF FLEXURAL MEMBERS
C» = 1
kip-ft Kip-tt
ASD LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
6 8 10 12 14 ie 18
Unbraced Length (0.5-ft increments)
AMERICAN INSTRRuTE OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-103
Table 3-10 (continued)
W-Shapes
Unbraced Length
26 28 30 32 34
Unbraced Length (0.5-ft increments)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-120
DESIGN OF FLEXURAL MEMBERS
fy=50ksi
C» = 1
kip-ft kip-ft
ASD LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
10 12 14 16 18
Unbraced Length (0.5-ft increments)
AMERICAN INSTITUTTB OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-103
fy=50ksi
C6=1
Mfl/at
kip-ft kip-ft
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
26 28 30 32 34
Unbraced Length {0.5-ft increments)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3~U8 DESIGN OF FLEXURAL MEMBERS
fy = 50 ksi
Mfl/Qt ifi,M„
kip-ft kip-ff
ASD LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
10 12 14 16 18
Unbraced Length (0.5-ft increments)
AMERICAN INSTITUTE OF STEEL CoNsiRucnoN

PLOTS OF AVAILABLE FLEXXJRAL STRENGTH VS. UNBRACED LENGTH 3-119
Fj,= 50ksi
JH,/n<, i^M
kip-ft I kip-ft
ASD LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
22 24 26 28 30 32
Unbraced Length (0.5-ft increments)
AMERICAN INSTITIRRE OF STEEL CONSTRUCTION

3-120 DESIGN OF FLEXURAL MEMBERS
Ci = 1
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Lengtb
10 12 14 16 18
Unbraced Length (0.5-ft increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCtiON

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-103
22 24 26 28 30 32 34 36
Unbraced Ungtfi (0.5-ft increments)
AMERICAN INSTITUTe OF STEEL CONSTRUCTION

3-122
DESIGN OF FLEXURAL MEMBERS
Fy = 50ksf
kip-ft kip-ft
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
8 10 12 14 16
Unbraced Length (0.5-ft increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-123
/y=50ksi
Cs=1
Mnldb ^bMi,
kip-ft kip-ft
ASO LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs/Unbraced Length
i
20 22 24 26 28 30 32
Unbraced Length (0.5-ft increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

3-124 DESIGN OF FLEXURAL MEMBERS
fy= 50 ksi
kip-tt Wp-ft
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
6 8 10 12 14 16 18 20
Unbraced Length (0.5-ft increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-125
22 24 26 28 30 32
Unbraced Length (0,5-ft increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

3-126 DESIGN OF FLEXURAL MEMBERS
/y=50ksi
C6=1
kip-(t kip-ft
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
6 8 10 12 14
Unbraced Length (0.5-ft increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-127
18 20 22 24 26 28 30
Unbraced Length (0.5-ft increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

3-128
DESIGN OF FLEXURAL MEMBERS
fy=50ksi
Mniai, i\ii,M„
kip-ft kip-ft
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
6 8 10 12 14 16 18
Unbraced Lengtfi (0.5-ft increments)
AMERICAN INSTitUTe, OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-129
fy=50ksi
kip-ft kip-ft
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
I
22 24 26 28 30
Unbraced Length (0.5-^ increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

3-130 DESIGN OF FLEXURAL MEMBERS
fy=50ksi
kip-ft kip-ft
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
6 8 10 12 14 Ifi
Unbraced Length {0.5-ft increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-131
i
18 20 22 24 26 28 30
Unbraced Length (0.5-ft increments)
32 34
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-132
DESIGN OF FLEXURAL MEMBERS
fy=50ksi
Mg/Qt r in,M„
kip-ft kip-ft
ASO LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
4 6 8 10 12 14 16
Unbraced Length (0.5-ft incfements)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXORAL STRENGTH VS. UNBRACED LENGTH 3-133
S
t:
c.
A
i
/y=50l(Si
C»=1
kip-ft
ASO
80
76
72
68
64
60
56 r
52
«
44
^ - r
' 40
kip-ft
LRFD
120
114
108
102
96
90
84
78
72
66
60
Table 3-10 (continued)
W-Shapes
Available IVIoment vs. Unbraced Len


% Vs
• p £
p «
>
-

1

r
-
1
V V




^

M
#


M
#
M
#
V
N

1

V

1
"n

K
*

V
t [
k

V
Vi
tX> fk
V
1 N
S A


s


&


s


1
% K
>1
?
L
1
L
1



k



1
K

J


s
s
¥
\ —


¥
N

i
p


s

¥
N

i
p
s
--


s
....
-—


>1
N
s,
--


s
....
-—
s
s



-
-





-
-
V

-
-



ht
s




i>-

s.
v

i>-

---


---
I
i>-

---
---
I

N

9th
i
18 20 22 24 26 28 30
Unbracedlength (O.S-lt increments)
30 32
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-134 DESIGN OF FLEXURAL MEMBERS
Fy^SOksi
C4 = 1
MJCib
kip-ft
ASD
kip-ft
LRFO
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
&
•g
S
a
40
36
32
28
24
20
16
12
60
54
48
42
36
30
24
18
12
0
<

(—
s k k
c

(—
Vn \c

(—
>

>5
j


W

V

i ^
s

"N
i ^
S,
L^.
Y

ij
*
i
£

v


i
-• -i •

t?
<,
•4

s, %



r



>
••
V I
'


N
(O

3-
S


s P

V
tf- tf-
S J
P
t
P
V

K
f

A !




K,

f

A !
>


h


A !
>


V




V

s

>



S

N

k
N

&•

s

s


^
S

•s
s
----
s
s
i
V
N
V
s.
Ss.
Is
V;
---- >
k
c kj?
s.
Ss.
Is
V;

s
X
s

k
I': 0
p
•NV
p p
----
6 8 10 12 14
Unbraced Length (0.5-ft increments)
2 4
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION
16 18

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-135
/y=36ksi
C» = 1
Mfl/Qo
kip-ft
ASO
<S>bHI«
kip-ft
LRFD
Table 3-11
Channels
Available Moment vs. Unbraced Length
180
172
164
156
148
140
132
124
116
108
100
270
258
246
234
222
210
198
186
174
162
150
ifl
A

K


-
ic 18 cS •S
k
-
ic 18 cS •S
I
K






V

^ c-18) <4t .8




A



O • A' J -y'



iU O) i. /

V
s


V
V

>

-

5x 50

-

••



V

-
-

v
-

-
-
s

-

-
-

*

y
S


M

h



-
l^y. in
-
V<1
-
f
iy i
icia x60
K




0 2
AMERKAJ^ INSTITUTE OF STEEL CONSTRUCT[ON
4 6 8 10 12
Unbraced Length (0.5;ft increments)
14 16

3-136 DESIGN OF FLEXURAL MEMBERS
4 6 8 10 12
Unbraced Length (0.5-ft increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXORAL STRENGTH VS. UNBRACED LENGTH 3-137
fy=36ksi
M„IQb
kip-tt
ASO
100
96
88
84
80
76
72
68
64
kip-ft
LRFO
150
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Length
138
132
126
120
114
108
102
90
V
t-
-c -

-
1
-







h
j
1
I h
h
s 1

k

\


A

---

---




>
4 :
Vn
'fi
s


-k 1

-
N
i
-
— V
V
-- --
i
-
-— V
V
-- --
^
-
-

J


i i
•S
s
-

s
- --

v
r
s
- --

v >5? ; i



v
1
v.!
V

s

v
¥
i
V
'5
S.

----r--- -

v
¥
i
V
'5
S.

----r---
A
-
i

16 18
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
20 22 24 26 28
Unbraced Length (0.5-fl increments)
i
30 32

3-138 DESIGN OF FLEXURAL MEMBERS
f,,= 36ksi
M„ICli,
kip-tt
ASD
kip-ft
LRFD
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Leng Ith
K \ '
V
h 4 ri
i>
h 4
\i

V
5
Vtv

V
1
V ffiT
L
1


V
'<D
\


1
M( "I
i- ••



£ !2



£ !2

^ %

s
k.
'Ia
' r
s



C10 X3I
>

'


^^
c Oi
>


s

8.
c 2 x2l •).7
•A

-
o
k

-

i-
1
>
V

i-
%



H
w q-
C!
il*
*
>
1
w q-
C!
il* \c >

w q-
C! A
s
w q-
C!
r
------*
s
c 0-<2£



h 1C Px 9
i
1

i 60
58
56
54
52
50
48
46
44
42
40
90
87
84
81
78
75
72
69
63
60
4 6 8 10 12
Unbraced Length (0.5-ft incfements)
0 2
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION
14 16

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-139
i
20 22 24 26 28
Unbraced Length (0.5-tt increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

3-140 DESIGN OF FLEXURAL MEMBERS
fy = 36ksi
MnlQt
kip-ft
ASb
kip-ft
LRFD
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Length
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
>
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
tc \c
Si
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •

h

?
t

Si
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
V
f

Si
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •




V
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
P
V

8

40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •

>
Nl V


40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •

V


40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •




40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •


40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
•'I 1v' >0
VA
s
, 1
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
-r
Mir in




40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •

J s
\ .

C V
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •


^
i


k
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
LQ
3x !1 4-



i
k
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
-Ji LQ
3x !1 4-
--- V
V
V

40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •


N,
»
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •

>
s
5?" i
V'
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •


^


40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
r

1

40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
T
t;
y
Si
1
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
tj C8xJ .0
V


V
1
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
Vl
S V
V


1.
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
c 0x1 £
s

A
N
1.
Vo
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
M<
M<
2x14
X 1
h
1.
>
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
M<
M< 38 x1 3.7
s
t C
i
;-<s


40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •

V

s > l
A

40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •

^ V
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
s

S '


N

40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •

s


40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
C 3x-8. 75 K
V,
\

s
»
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
s s s

40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
C 9x 15

y
A
s

s
Xj
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •

1
P V
<
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
V"




40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
Ci 3x" 3. 4 \C
r
"S •

40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
V r

V K
•V
V
N
s
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
—^

\0


Q

40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •
M' CI 2x 10 .6

s ^
y ) fe
N
4

40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •




s,
-
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 •



V
N
-
40
38
36
34
32
30 ;
28
, . 26
24
22
20 ,
60
57
54
51
48
45
42
39
36 •
33
30 • L/BXl a./s
"T'TT'I _
c
:
i
B
0
#
1
<0
I
in
a
•Q
g
s
2 4 6 8 10 12 14 16
Uhbraced Length (0.5-ft increments)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3-141
f,,=36ksi
C4 = 1
ajQ.!, HftMn
kip-H kip-ft
flSD LRFD
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Length
i
20 22 24 26 28
Unbraced Lengfli (0.5-ft.increnients)
30 32
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

3-142 DESIGN OF FLEXURAL MEMBERS
F^=36ksi
Mn/a®
kip-ft
Astr
kip-ft
LRFD
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Length
I
i
20
18
16 -
14
12
-10 '
I
s
30
27
24
21
18
15
12
s la 3.


.,1
1
s la 3. Lk

c
1
%

)
>
s
>
•v
V
s
\o
\
>

•'a
Qi
.0>
y
'v

Qi
-
1 \|
N
V




V

>
V



V



y

>



V



s



5

s
6
N
*
5
^



M 28 x8 5
»
A s,

N



V|
V
S

s
\C

fl
s
s


h
y
s,
»

N
>
s

h
?
N


\o
"J

s



s
s
Y
'cJ^


V

O

'cJ^
V


s

s


s V

I

s <
^
i
s
s



N

s




s





to
'5

s
s
>c
••7
s
p
-
4 6 8 10 12
Unbraced Length {0.5-ft increments)
0 2
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION
14 16

AVAILABLE FLEXURAL STRENGTH OF HSS 3-143
Fy = 46 ksi
Table 3-12
Available Flexural
Strength, kip-ft
Rectangular HSS
HSS20-HSS12
Shape
X-Axis Y-Axis
Shape
X-Axis Y-Axis
M„/at M„/ai, Shape MMh
W„/Q),
ASD, LRFD ASD LRFD
Shape
ASD LRFO ASD LRFD
% 528 794 350 527 HSS14x6x 5/e 204- 306 167
V2 432 649 254 382 V2 169 254 92.7 139
% 305 459 169 255 3/8 198 62.6 94,2
5/16 226 339 130 196 5/16 112, 168 .48:7 73.2
VE 425- 638 209 314
Vi 90.9 137 35,2 53.0
V2 349 524 iS2 229
Vw \6?-.7 94.3 .22,8 34.2
% 269 404 101 152 HSS14x4x 5/8 T68 . 252 §5A 98.3
5/16 223 336 76.8 115 VZ 140 211 55,4 83.3
V2 26'4 397 62.7 94.3
3/E 110' 165 37.5 56.3
3/8 205 308 42.2 63.4
5/16 ,93,3 140 29.2 43.9
S/16 171 257 32.T. 48.3
V4 •76.2 115 21.1 31.8
V4 131 198 228 34.3
3/16 4M 83.2 13.6 20.4
% 310' 466 140 210
HSS12x10x V2 IAI 272 IJSO 240
V2 257" 386 102 153
3/6 14() 211 11,6 175
% 198 298 68.0 102
5/16 }1-1
166 88.7 133
5/16 168 252 52;2 78.5
V4 78,9 119 65.5 98.5
V4 132 198 37.3 > 56.1 HSS12x8x 5/B 188- 283 ^ 142 214
% 569 310 466
V2 156, 235 118 178
VZ 310 466 240 360
3/6
W-
183 86.8 130
% 221 333 159 238
5/16 155 66:3 99.7
5/16 166^ 249 123 185
1/4 .77.8
117 48,8 73.4
5/6
>
3/16 , SP.O 75.2 32.1 48.3
5/6 296 445 182 273
3/16 32.1 48.3
VA 243 366 142 ' 213
HSS12x6x 5/8 158 237 145
% FFA 283 94.3 142
V2 132' 198 •FEG 122
5/16 240 73.0 110
3/6 103', 155 59.9 90.1
V4 119 178 52.6 79.1
5/16 87^5 132 46.1 69.4
5/6
V4 . 71.4 107 33.8 50.8
5/6 213 321 74:6 112
3/16 49,6 74.6 22.0 33.1
VZ 177 267 58.8 88.3
3/16 49,6 22.0
% 138 208 39.4 59.2
HSS12x4x 5/8 127 192 56r3 84.6
5/16 m 176 30.4 45.7
VZ 1Q7 161 ,47.9 71.9
V4 4a 142 21.8 32.8
3/8 84.2 127 35.8 53.8
3/16 '66.9 100 13.9 20.9
5/16 71,9 108 27.7 41,6
5/8
V4 ...SAS 88.4 20.3 30.5
5/8 275 414 218 328
3/16 • 44,3 66.6 13.1 19.7
V2 227 341 180 271
3/16 • 44,3 66.6 13.1 19.7
175 263 120: 180
HSS12X3V2X 3/8 ,79:6 120 30.2 45.4
5/16 137 207 93.2 140
5/16 67.9' 102 23.4 35.1
V4 97 J 146 , 88.2 103
HSS20><12x
HSS20x8x
HSS20x4x
HSS18x6x
HSS16x12x
HSS16x8x
HSS16x4x
HSS14x10x
at»1.67
LRFO
i|>/, = 0.90
Note: Values are reduced for compactness criteria, wtien appropriate. See Table 1-12A (or limiting .
dimensions for compactness.
AMEWCAN INSTITIRRE OF STEEL CONSTRUCTION

3-144 DESIGN OF FLEXURAL MEMBERS
HSS12-HSS8
Table 3r12 (cdntinued)
Available Flexural
Strength, kip-ft
Rectangular HSS
Fy = 46 ksi
X-Axis Y-A)ds X-Axis Y-Axis
Shape Mn/n/, MalClt Shape M„/at, M„/at (j)6M„
ASD LRFD ASD LRFD ftSD LRFD ASD LRFD
HSS12x3x Vl6 64.0 96.2 28.8 HSS10X3X 3/e -5C3 81,6 22.3 33.6
V4 52i5 79.0 14.1 21.2 5/16 46.6 70,0 18.1 27.3
V16 39;6 59.5 9.15 13.7 1/4 3S.4 57.7 13.3 20.0
HSS12x2x 5/16 56.2 84.5 11.2 16,8
3/16 29.5 44.3 8,75 13.2
HSS12x2x
V4 '46.3 69,5 8.37 12,6
1/8 \19.0 28.5 7.10
V16 34:9 52.4 5.48 8.24 HSS10x2x 3/8 46.6 ?0,0 13.2 19.9
HSS10x8x 5/8 143 215 122^' 184
Vl6 40.1 60,3 10.8 16,2
HSS10x8x
Vz 119 17S 102 153
1/4 33,2 49,8 7.86 11,8
Vi 93.0 140 79.8 120
3/16 25.6 38,4 -.:5,25; . 7.89
Vl6 79.0 119 63.8 95.9
1/8 16-.3 24,6 2.83 4.25
1/4 60.0 90,2 46.1 69,2 HSS9X7X 5/8 1t1 167 93:0 140
3/16 39:0 58.6 '30,7 46.2 1/2 92.9 140 78.1 117
HSS10x6x S/8 118 177 8^1 • 123
3/8
5/16
110
Wrj
92.3
HSS10x6x
V2 98.7 148 . 69.1 104
3/8
5/16 62.2 93.4 52.4 78,7
3/8 77.5 116 54.4 81,8
1/4 50.9 76,5 37.3 56,0
5/16 •^66.1 99,3 43.9 65.9
3/16 ..32.3 48,6 25.0 37.6
V4 54.1 81,3 : 31'.8i 47,9 HSS9X5X 5/8 88.3 133 58.1 87,3
3/16 37:9 57.0 21.1 31,7 1/2 Z4.7 112 49.3,- 74.1
HSS10x5x 3/3 69.8 105 42.9 64.5
3/8
5/16
59.1 88.8 39.2 . 58,9
S/16 ; 59.6 89.5 34,7 52,2
3/8
5/16 50.5 75,9 33.6 50,5
1/4 48.8 73.4 25.3 38,0
1/4 43.5 62.4 24.3 36.5
3/16 37.3 56.1 16.7 25,1
3/16 47,8 16.2 24.3
HSS10x4x 5/8 92.6 139 70,9
HSS9x3x 1/2 •564
84.8 24^8: 37,3
1/2 78.3 118 40.3 60.6
3/8 4&2 67,9 .20.2 30.4
3/8 62'0 93.2 32.2 48,4
5/16 38.9 58,5 17.5 26,3
Vie 53:1 79.8 26.1 39,3
1/4 32.1 48,3 12.7 19,1
1/4 ,43.6 65.5 19.1 28,7
3/16 24.7 37.2 .-8.5P. 12,8
3/16 33.4 50.2 12.6 18,9 HSS8x6x 5/8 ska 124 67.7 102
1/8 20:7 31,1 fi.84 10.3 1/2 105 57.3 861
HSSiOxSVz 1/2 73:2 110 33.8 50.8
3/8 -5^-3 83.1 45.4 68,2
3/8 58.2 87,4 27.2 40.8
Vl6 47.3
rf-
71.1 38.8: 58,4
5/16 49.8 74.9 22.1 33.2
1/4 ^8.8 58,4 30.t : 45,2
1/4 41.0 61.6 16.1 24,3
3/16 27,5 41,4 19,7 29.7
3/16 31.5 47,3 10,6 16,0
1/8 20.3 30,5 ::5.75 8.65
-
ASD
06 = 1.67
LRFD
= 0.90
Note: Values are reduced for compactness criteria, wlien appropriate. See Table 1 '12A for limiting
dimensions for compactness.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

AVAILABLE FLEXURAL STRENGTH OF HSS 3-145
Fy = 46 ksi
Table 3-12 (continued)
Available Flexural
Strength, kip-ft
Rectangular HSS
HSS8-HSS5
Shape
X-Axis Y-Axis
Shape
X-Axis Y-Axis
Shape M„/Qt HMn M„/Slb <I>«M„ Shape i>l,M„ M„IQ.t, Shape
ASD LRFO /^D LBFD ASD LRFO ASD LRFO
HSS8x4x 5/8 63.0 94.7 38!l:V: 57.2 HSS7x2x V4 17.5 26,4 6.94>- 10.4
V2 53.8 80.9 32.8 49.3 3/16 13,7 20.5 4.67 7.01
3/B 43.0 64.7 26.4 39.6 Vs 9.49 14.3 2.63 3.95
5/16 37.0 55.6 22.7 342
HSS6x5x V2 39,5- 59,4 34.8 52.3
V4 30(5 45.9 17.8 26.7
% 31,8 47.8 28.0 42.1
23,5 35.3 11.8 17,7
Via 27.4 41.2 24.2 36.3
V8 14.7" 22.1 6.53
XT '•
9,82
V4 22.7 34,1 20.0 30,1
HSS8X3X V2 45.8 68.8 22.1 33!3 '17.S 26,3 14.5 21.8
% 36.9 55.5 18,1 27.2 Vs -9.80 14.7 8,12 12.2
5/16 31,9 47.9 15,7 23.6
HSS6x4x V2 33.6 50.5 25.2:;;. 379
V4 26,4 39.6 12,3 . 18.6
% 27.3 41.0 20.5 30,8
3/16 20,4 30.6 8,fsf- 12.3
V16 23.6 35.4 17.8 26,7
Va 13.8 20,8 4.52 6.79
V4 19.6 29.4 14.8 22.2
HSS8x2x % 30.8. 46.3 10.6 15.9 3/16 15.2 ' 22.8 10.8 16.2
5/16 26.7 40.1 9.33 14.0 Vs 9.65 14.5 9.12
V4 22,2 33,4 ~ 7.3f 11.1
HSS6x3x Vz 27.7 41.7 16.7 25.1
3/16 17.2 25.9 4.90 7.37
% 22.7 34:2 13.8 20.8
V8 11.7 17.6 2.71 4.07
5/16 19.8 29.7 12.1 18.2
HSS7x5x Vz 50.2 75,4 59.6 V4 16.5 24.8 10.1 15.2
% 40,1 60.2 31.7 47.7 3/16 12.8 19.3 ,7.46 11.2
5/16 3'4,4 51.8 27:3 ; 41.1 V8 8.89 13.4 4.20 6.31
V4 28',4. 42.7 22.6 33.9
HSS6x2x % 18.2 27.4 7.94 11.9
ifS 32,8 14.9 22,4
5/16 16.0 24.0 7.05 10.6
VB 12.1 18.2 •J.47,; 12.7
1/4 '13.4 20.2 5.99 9.01
HSS7x4x V2 13.2 64,9 29.0 43.6 3/16 10.5 15.8 ,4.46 6,70
3/8 34.7' 52.2 23,4 35.2 1/8 7.33 11.0 2.52 3.79
Vl6 30,0 45.0 ;?0,3 30,5
HSS5x4x VJ 25.1 37.B 21.5 32.2
V4 24.8 37.3 16,8 25.3
3/3 20,6 30.9 17,6 2S.5
3/16 19.1 28.7 .11.2 ,, 16,8
5/16 17,9 26.9 15.3 23.0
Vs 121 18.1 e;33 9.51
V4 ,14,9 22.4 12.8-., 19,2
HSS7x3x Vz 36.2 54.4
19,4 29,2 V16 11,6 17.4 9.95 15.0
% 29.4 44.2 16.0 24.0 Ve 7,45 11.2 5.72 8.60
5/16 25.5 38.3 13.9 20.9
V4 21.2 31:8 11'.6» 17.4
3/18 16.4 24.6 7.80 11.7
VB 113 17.0 4.3i 6,58
-
,ASO-
«4 = 1.67
LBFD
6=0.90
Note: Values are reduced for compactness criteria, when appropriate. See Table 1-12A for limiting
dimensions for compactness.
AMERICAN iNSTirtrre OF STEEL CONSTRUCTION

3-146
DESIGN OF FLEXURAL MEMBERS
HSS5-HSS2
Table 3-12 (continued)
Available Flexural
Strength, kip-ft
Rectangular HSS
Fy = 46 ksi
X-Axis Y-Axis
Shape Wn/fifi (ptK SMape
ASD LRFD ASD LBFD
HSS5x3x Vz 20.3 30.5 14^0- 21.1 HSS3V2X2X V4
% 16.8 25.3 11.7 17,6 3/16
5/16 145- 22.1 10.3 15.4 Va
V4 1^.4, 18.6 8.65 13.0
HSS3V2X1V2X V4
3/16 9.66 14.5 6.79 10.2
3/16
Va 6.7^ 10.1 3.96 5.95
Ve
HSS5X2V2X V4 11.T: 16.7 6.78 10,2
HSS3x2V2X 5/16
3/16 8.70 13,1 5.35 8,04
V4
Vs •6.08 9,14 3.14 4.72
3/16
HSS5x2x: 3/e 1-3.-1 19,7 -6.62' 9,95 Ve
5/16 11.6 17.4 5^91 8,88
HSS3x2x 5/16
V4 9.81 14,7 5.05 7,59
V4
3/15 7.74 11,6 4i02 6,04
3/16
Vs $.43 8.16 2.37 3,57
Vs
HSS4x3x 3/s 17,7 9.58 14.4
HSS3X1V2X V4
Vl6 10.4 15.6 8.47'. 12.7
3/16
V4 8.76 13.2 7.17 10.8
Vs
3/16
Vs
6.90
4.84
10,4
7,27
5.66
3.73
8.50
5.61
HSS3x1X 3/16
Vs
V4
3/16
Vs
HSS4X2V2X 3/s
S/16
10.3
9.12
15.5
13,7
7.34
6.53
11.0
9.82
HSS2V2X2X
3/16
Vs
V4
3/16
Vs
V4 •7.75 11.6 5,57 8,37
3/16
Vs
V4
3/16
Vs
3/16 6.13 9,22 4.42 6,65
3/16
Vs
V4
3/16
Vs
Vs 4.32 6,49 2.94 4.42
HSS2V2X1V2X V4
HSS4x2x 3/8 a'82 13,3 5;30 7,96
3/16
Vs
5/16 '7.88 11,8 4.76 7.16
3/16
Vs
V4 6.74 10.1 4.10 6,17
HSS2V2X1X 3/16
3/16 5.37 8.07 3.29 4,94
Vs
Vs 3.80 5.71 2.21 3.32 HSS2V4X2X 3/16
HSS3V2X2V2X 3/8 '8.24 12,4 6.48 9,74
Vs
=/l6 ^35 11.1 5.79 6.71 HSS2X1V2X 3/16
V4 '^6.28 9,44 4.96 7.46
Vs
3/16 5.00 7,51 3.96 5,95
HSS2x1x 3/16
Va 3.54 5.32 2;81 4.22
HSS2x1x
Vs
X-Axis
Jl^n/Qi
ASD
5.41
4.33
3.09
4.53
3.67
2.64
5.75
4:95'
3.96
2.82
4.85
4.21
3.40
2.44
3.47
£83
2,05
2.27
1.67
3.14
2.56
1.86
2.54
2.10
t54
1.64
1.22
2.19
1.59
14,
1.09.
1.10
0.840
LBFD
8.13
6.51
4.64
6.82
5.51
3,96
8.65
7,44
5.96
4.24
7.29
6.33
5,11
3.66
5.21
4,26
3.09
3,41
2.51
4,73
3.86
2,79
3,81
3,16
2,31
2.46
1.84
3,28
2,39
2,20
1,64
1.66
1,26
Y-Axis
Mn/Qj,
ASD
3.63"
2.92
2.09
2.43
1.99
1.45
5.06
4.36'
3.49
2.49
3.62
3.16
2.56
1.84
2.09
1.73
1.26
0.991
0.747
2.69
2.20
1.59
1.75
1.46
1.08
0.826
0.629
2.01
1.47
1.20
0.893
0.661
0.511
ASD..'
Sis = 1.67
iRFD
(|)s = 0,90
Note: Values are reduced for compactness criteria, witen appropriate. See Table 1 -12A for limiting,
dimensions for compactness.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

AVAILABLE FLEXURAL STRENGTH OF HSS 3-147
Fy = 46 ksi
Table 3-13
Available Flexural
Strength, kip-ft
Square HSS HSS16-HSS2
Shape
C/£J4
Shape
Mn/O® <l>iMa
Shape
ASD LRFD
Shape
ASD LRFD
HSS16x16x Ve 459 690 HSS5V2X5V2X 3/8 30,0 „ 45.1
V2 352 529 =/ie '25.9 38.9
3/6 ' ^232': 348 V4 21.4 32.2
«/l6 181,;,' 272 3/16 16.4. 24.6
HSS14x14x =/8 347 ' 521
Va , 8.98 13,5
V2 '285 428 HSS5x5x Vi 30.0 , 45,0
Ve 185 278 3/8 24.3 36,5
145- 219 =/ie •21.0' 31,6
HSS12x12x 5/8 250' 376
1/4 17.5 26,2
V2
3/8
206 309
3/16 13.5 20,3
V2
3/8 149' ' 223
1/8 7.67 11,5
=/l6 113 • 169 HSS4V2X4V2X 1/z ,23.4 35,2
V4 83,3 125 3/8 ,19.2 28,8
3/16 ' 55.7 83.8 Vl6 16,.? 25,1
HSSIOxlOx =/8 168 252
1/4 13.9 20,9
V2 139 210
3/16 10.8 16,3
V2
iqs . 163
1/8 6.43 9,66
5/16 86,1 129 HSS4x4x 1/2 •17.7 26,6
V4 61.6 92.5 3/8 14.7 22.1
3/16 41.4 62.3 Vl6 12.8 19,3 :
HSS9x9x 5/8 133' 200
1/4 10.8 16,2 •
V2 111 167
3/16 8.42 12,7
3/8 86.8 130
1/8 5.48 8,23
5/16: 73.8 • 111 HSS3V2X3V2X 3/8' 10.8 16,2
.V4 , 51.7 77.8 =/l6 : 9.50 14,3
3/16. 1 35.0 , 52,5 1/4 8.03 , 12,1
Vs 20.0 30,1 3/16 6.33 9,51
HSS8x8x % loa 154
1/8 4.44. 6,67
% 86.0 129 HSS3x3x 3/8 7,46' 11,2
3/8 . 67.6 102 5/16 6.66 10,0
5/16 57.6 86.6 1/4 5.69 8,55
V4 44.1 66.3 3/16 4.53 6,81
3/ie 28.8 43.3 1/6 3.21 4,82
V8 16.5 24.8
HSS2V2X2V2X 5/16 " 4.32 6.49
HSS7x7x =/8 75.9 114 1/4 315 5.64
V2 64.1 96.4 3/16 3.03 4.55
3/8 50.7 76.2 Va . 2.17 .3.27
5/16 43.4 , 65.2
HSS2V4X2V4X 1/4 • 253 - 4,41
V4 35,6 53.6
3/16 ' 2.39 3,60
3/16 23.1 34.7
1/a i 1,73 2,60
Va 13:3 20.0
HSS2X2X 1/4 2,21 3,33
HSS6x6x 5/8 53.2 80.0
3/16 1.83 2.75
V2 45.4 68,3
1/8 2,02
3/8 36.3 54,6
1 5/16 t31.2 i 46,9 1
1/4 25.7 38.7
3/16 18.5 27.8
1/8 10.4 15;6
£2(1=1.67
LRRD
6=0,90
Note: Values are reduced ifor compactness criteria, when appropriate. See Table 1 -12A for lirhiting
dimensions for compactness.
i
AMERICAN INSTiRTRrE OF STEEL CONSTRUCTION

3-148
DESIGN OF FLEXURAL MEMBERS
HSS20-
HSS6.625
Table 3-14
Available Flexural
Strength, kip-ft
Round HSS
Fy = 42 ksi
Shape
^nMn
Shape
M„/£J4 MMn
Shape
ASD LRFD
Shape
ASD LRFD
HSS20X 0.500 558 HSS8.625X 0.625 78.9 119
0.375'
f, ^M
410 0.500 65.0 97,6
0.375 i50.1 : 75.3
HSS18X O.5O0 450 0.322 : 43,6 ; 65.5
0.375' ! 225 :
338 0,250 34.4 ' 51.7
0.188' ,25.9 39.0
HSS16X 0.625 289 435
0.500 : ;-235 i- 353 HSS7.625X 0.375 38.8 58.2
0.438 '207 312 0.328 34.3 51.5
0.375 269
0.312'
::-i47 221 HSS7.500X 0.500 48.3 , 72.6
0.250r 171 0.375 37.4 1 56.3
0.312 31,7 47.7
HSS14X 0,625 '^220 331 0.250 25:8 38.8
0.500 '':i79 268 0.188 . i9;6 29.4
0.375 IKII&.v ; 205
0.312 f'llllS 172 HSS7X 0.500 41.7 1 62.7
0.250' 88.8 133 0.375 32.4 48.7
0.312 ,127.5 41.3
HSS12.750X 0.500 221 0.250 22.4 33.6
0.375 ! 169 0.188 17.0 25.5
0.250' 112 0.125' 11.0 16.6
HSS10.750X 0.500 iiv iioa : 155 HSS6.875X 0.500 40.1 60.3
0.375 7^2; ' 119 0.375 31.2 46.9
0.250
• • : ^
81.2 0.312 26:5 : 39.8
0.250 21.6 32,4
HSS10X 0.625 • ';108 163 0.188 .,16.4 24.6
0.500 ' 88.7 ^ 133
0.375 68.2 102 HSS6.625X 0.500 37.1 55.7
0.312 57.5 86.4 0.432 32.7 49.1
0.250 46.6 ' 70.0 0.375 28.8 43.3
0.188' 340 51.2 0.312 24.5 36,8
: 0.280 • 22.1 33,2
HSS9.625X 0.500 81 8 123 0.250 '20.0 •30,0
0.375 < 63.0 94.6 0.188 15.2 : 22,8
0.312 53.2 79.9 0.125' 9.97 15.0
0.250 43.1 64.8
0.188' • 31.7 : 47.7
......m
ASD
n/,=i.67
LRFD ' Shape exceeds compact limjt fpr'flexure with 42 ksi,
<|)/,=0.90
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

AVAILABLE FLEXURAL STRENGTH OF HSS 3-149
Fv = 42 ksi
Table 3-14 (continued)
Available Flexural
Strength, kip-ft
Round HSS
HSS6-
HSS1.66
Shape
Mn/Oi (|)/,Mn
Shape
^bMn
Shape
ASD LRFO
Shape
ASD LRFD
HSS6X 0.500 29.9 45.0 HSS3.500X 0.313 6.30 9.47
0.375 23:4 35.2 0.300 6.08 9.14
0.312 19.9 29.9 0,250 5.22 7,85
0.280 18.0 27.0 0,216 4.59 6.90
0.250 16.2 ^ 24.4 0,203 4.35 6.53
0.188 12.4 18.6 0,188 4.04 6.07
0.125' '8.30 12.5 0,125 2.79 4.19
HSS5.563X 0.500 25.4 38.2 HSS3X 0.250 3.75 5.63
0.375 . 19,9 29.9 0.216 3.31 4.97
0.258 14.3 • 21.4 0.203 3.13 4.71
0.188 10.6 15.9 0.188 2.92 4,38
0.134 7.69 11.6 0.152 2.42 3,63
0.134 2.15 3.23
HSS5.500X 0.500 24.8 37.2 0.125 2.02 3,04
0.375 19.4 29.2
0.258 13.9 20.9 HSS2.875X 0.250 3.42 5,14
0.203 2.86 4,30
HSS5X 0.500 20.1 30.2 0.188 2.66 4.00
0.375 15.9 23.8 0.125 1.85 2.78
0.312 13.5 20.4
0.258 11.4 17.1 HSS2.500X 0.250 2.52 3.79
0.250 11.1 16.7 0.188 1.98 2.97
0.188 8.50 12.8 0.125 1.38 2.08
0.125 5.80 8.72
HSS2.375X 0.250 2.25 3.38
HSS4.500X 0.375 12.6 19.0 0.218 2.01 3,03
0.337 11.5 17.3 0.188 1.77 2,66
0.237 8.45 12.7 0.154 1.50 2.25
0.188 6.83 10.3 0.125 1.24 1.87
0.125 4.67 7.02
HSS1.900X 0.188 1.09 1,64
HSS4X 0.313 8.41 12,6 0.145 0.883 1.33
0.250 6.94 10.4 0.120 0.746 1,12
0.237 6.60 9.91
0.226 6.33 9.51 HSS1.660X 0.140 0,639 0,961
0.220 6.19 9.31
0.188 5.34 8.03
0.125 3.67 5.51
' ASD LRFD
= 0.90
Shape exceeds compact limit for flexure with Fy-42 l<si.
i
AMERICAN INSTiRTRrE OF STEEL CONSTRUCTION

5-150
DESIGN OF FLEXURAL MEMBERS
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

AVAILABLE FLEXURAL STRENGTH OF HSS 3-151
Fy = 35 ksi
Shape
Pipe 12 x-Strong
Pipe12Std.
• '
Pipe 10 x-Strang
PlpelOStd.
Pipe 8 xx-Strong
Pipe 8 x-Strong
PipeSStd.
Pipe 6 xx-Strong
Pipe 6 x-Strong
Pipe 6 Std.
Pipe 5 xx-Strong
Pipe 5 x-Strdng
Pipe 5 Std.
Pipe 4 xx-Strong
Pipe 4 x-Strong ^
Pipe 4 Std.
Pipe 3V2 x-^Strong
Pipe 3V2 Std.
Pipe 3 xx-Strong
Pipe 3 x-Strong
Pipe 3 Std.
ASD
n»=i.67
Table 3-15
Pipe
Available Flexural Strength,
kip-ft
LRFD
6 = 0.90
M„ia„
ASO
123
93.8 ' •
86.0
64.4
87.2
'54.1
36.3
47.,9
• -27.3
18.5
29.1
16.6"
11.9
16.6
9,65
7.07.
7.11'
5.30-
8.55
5.08
3.83
<|)i,M„
LRFD
184
141
129
96.8
131
81.4-
54.6
72.0
41.0
27.8
43.7
24.9
17.9
24.9
14.5 •
10.6
10.7
7.96
12.8
7.64
5.75.
Shape
Pipe 2V2 xx-Strong
Pipe 2V2 x-Strong
Pipe 2V2 Std.
Pipe 2 xx-Strong
Pipe 2 x-Strong
Pipe 2 Std.
Pipe IV2 x-Strong
Pipe 1V2 Std.
Pipe 1V4 x-Strong
Pipe 1'A Std.
Pipe 1 x-Strong
Pipe i Std.
Pipe '/4 x-Strong
PipeSStd.
Pipe V2 x-Strong
Pipe V2 Std.
M„/at
ASD
5.08
3.09
2.39
2.79
1.68
1.25
0.958
0.736
0.686
0.533
" 0.385
0.308
0,207
0.164
0.120
0.0969
.1
LRFD
7.64
.4.64
3.59
4.19
2.53
1.87
.1.44
1.11
1.03
0.801
0.579
0,463
0.311
0,247
0,180
0,146
t
AMERICAN INSTiRTRrE OF STEEL CONSTRUCTION

3-152
DESIGN OF FLEXURAL MEMBERS
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
ft
AMERICAN INSTITUTE OF STEEL CONSTRUCTJON

STRENGTH OF OTHER FLEXURAL MEMBERS 3-153
Table 3-16b F-36ksi
Available Shear Stress, ksi
Tension Field Action Included
jft
u
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
£
h
AMERICAN iNSTrruTE OF STEEL CONSTRUCTION

3-154
DESIGN OF FLEXURAL MEMBERS
0.00 0.Z5 0.50 0.75 1.00 1.Z5 1.50 1.75 2.00 225 2.50 2.75 3.00
h
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

STRENGTH OF OTHER FLEXURAL MEMBERS 3-155
80
100
120
140
160
180
200
220
240
260
280
Table 3-17b
Available Shear Stress, ksi
Tension Field Action Included
Ay = 60 ksi
300
320
ASD
18.0
16.0
14.0
12.0
10.0
&Q0
7.00
ASD
LRFD
27.0
24.0
21,0
18.0
15.0
12,0
10.5
t
LRFD
.=0.90
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
h
AMERICAN INSTrrUTE OF STEEL CONSTRUCTION

3-156 DESIGN OF FLEXURAL MEMBERS
Table 3-18a
Raised Pattern Floor
Plate Deflection-Controlled
Applications
Recommended Maximum
Uniformly Distributed Service Load,
Ib/ft2
Plate thickness t
in.
Theoretical
weight,
Span,ft
Moment of
inertia per ft
of width,
ifiM
Plate thickness t
in.
Ib/ft2 1.5 2 2.5 3 3.5
Moment of
inertia per ft
of width,
ifiM
Va 6.15 89.5 37.8 19.3 11.2 7.05 0.00195
8.70 302 127 65.3 37.8 23.8 0.00659
V4 11.3 • 716 302 155 89.5 56.4 0.0156
Vl6 13.8 1400 590 302 175 110 0.0305
'/« 16.4 2420 1020 522 302 190 0.0527
Vz Z1.5 5730 2420 1240 716 451 0.125
26.6 11200 4720 2420 1400 881 0.244
3/4 31.7 19300 8160 4180 2420 1520 0.422
Vt 36.8 30700 . 13000 6630 . 3840 2420 0.670
1 41.9 45800 19300 9900 5730 3610 1.00
1V4 52,1 89500 37800 19300 11200 7050 1.95
IV2 62.3 155000 65300 33400 19300 12200 3.38
72.5 246000 104000 53100 30700 19300 5,36
2 82.7 367000 155000 79200 45800 28900 8.00
Plate thickness t
in.
Theoretical
weight,
Span, ft
Moment of
inertia per ft
of width,
in.Vft
Plate thickness t
in.
Ib/ft2
4 4.5 5 6 7
Moment of
inertia per ft
of width,
in.Vft
V16 8.70 15.9 11.2 8.16 4.72 2.97 0,00659
V4 11.3 37.8 26.5 19.3 11.2 7.05 0,0156
5/16 13.8 73.8 51.8 37.8 21.9 13.8 0,0305
% 16.4 127 89.5 65.3 37.8 23.8 0.0527
V2 21.5 302 212 155 89.5 56.4 0,125
5/8 26.6 590 414 302 175 110 0,244
3/4 31,7 1020 716 522 302 190 0,422
% 36.8 1620 1140 829 480 302 0.670
41.9 2420 1700 1240 716 451 1.00
IV4 52.1 4720 3320 2420 1400 881 1.95
IV2 62.3 8160 5730 4180 2420 1520 3.38
1'/4 72.5 13000 9100 6630 3840 2420 5,36
2 82.7 19300 13600 9900 5730 3610 8,00
Note: Material conforms to ASTM A786.
AMERICAN iNsirruTE OF STEEL GQNsntucnoN

STRENGTH OF OTHER FLEXURAL MEMBERS 3-157
Table 3-18b
Raised Pattern Floor Plate
Flexural-Strength-Controlled
Applications
Recommended Maximum
Uniformly Distributed Load,
Ib/ft2
Plate
Wcknesst,
Tiworetical
weight,
Span, ft
Plastic
section
modulus
per ft of
width, in.3/ft
in. mm^
1.5 2 2.5 3 3.5
Plastic
section
modulus
per ft of
width, in.3/ft D^ign ASD LRFD ASD LRFD ASD LRFD Asp LRFD ASD LRFD
Plastic
section
modulus
per ft of
width, in.3/ft
Ve 6.15 . 222 333 125 188 79.8 120 55.4 83.3 40.7 61.2 0.0469
3/16 8.70 750 281 422 180 270 Sl25 188 91.7 138 0.105
V4 11.3 •887 1330 499 750 319 480 •222 333 163 . 245 0.188
5/16 13.8 4390 2080 780 1170 499 750 347 521 255 383 0.293
'/8 16.4 '2000 3000 .1120 1690 719 1080 : 499 : 750 367 551 0.422
1/2 r ; 21.5 3550 5330 2000 3000 1280 1920 -887 ; 1330 652 980 0.750
26.6 5540 8330 ado 4690 2000 3000 1'390! 2080 1020 1530 1.17
'/4 31.7 7980 12000 4490 6750 2870 4320 iboo 3000 1470 2200 1.69
Ve • 36.8 10900 16300 6110 9190 "3910 5880 2720 4080 2000 3000 2.30
1 41.9 14200 21300 7980 12000 5110 7680 3550 5330 2610 3920 3.00
1V4 52.1 22200 33300 12600, 18800 .7980 12000 ,55&' 8330 4070 6120 4.69
IV2 62.3 3.1900 48000 18000 27000 11500 17300 ,79,80 12000 5870 8820 6.75
IV4 72.5 43500 65300 24500 3680ff 15600 23500 10900 16300 im 12000 9.19
2
82.7 56800 85300 31900 48000 20400 30700 14200 21300 10400 15700 12.0
Plate
thickness t,
Theoretical
weight,
Span,ft
Plastic
section
modulus
per ft of
width, in,'/ft
in. Ib/ft2
4 4.5 5 6 7
Plastic
section
modulus
per ft of
width, in,'/ft Design ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
Plastic
section
modulus
per ft of
width, in,'/ft
3/16 8.70 70.2 105 S5,4 83.3 44,9 67.5 .31:2 46.9 22.9 34,4 0,105
1/4 11.3 125 188 98.6 148 79.8 120 55:4^ 83,3 40.7 61,2 0.188
5/16 13.8 195 293 154 231 125 188 86.6 130 63.6 95,7 0,293
% 16.4 281 422 222 333 270 '125 : 188 91.7 138 0,422
V2 21.5 499 750 394 593 •519 480 222 333 163 245 0.750
6/8 26.6 780 1170 616 926 750 ;347: 521 255 383 1.17
31.7 1,120 1690 ,887 1330 719 1080 ''499 750 367 551 1,69
Vi 36.8 1530 2300 1210 1810 978 1470 679 1020 499 750 2,30
1 41.9 2000 3000 1580 2370 1280 1920 887 1330 652 980 3,00
IV4 52.1 3120 4690 2460 3700 'ZM 3000 1390' 2080 1020 .1530 4.69
IV2 62.3 4490 6750 3550 5330 2870 4320 2000 i 3000 1470 2200 6,75
72.5 6110 9190 4830 7260, -3§10 5880 2720; 4080 2000 3000 9.19
2 82.7 7980 12000 6310 9480 .5110 7680 3550 5330 2610 3920 12.0
Note: Material confotms to ASTM A786.
AMERICAN INSTrrUTE OF STEEL CONSTRUCTION

3-158 DESIGN OF FLEXURAL MEMBERS
ID
W40
Table 3-19
Composite W-Shapes
Available strength in Flexure,
kip-ft
Fy = 50 ksi
Shape PNA'
na IQn
Y2\m.
Shape kip-ft PNA'
na IQn
2 zs 3 3.5 Shape
ASD LRFD
PNA'
in. kip ASD LRFD ASD LRFD ASD LRFD ASD LRFD
W40x297 13320 4990 TFL 0 4370 '4770 7170 4880 7330 4990 7500 5100 7660
2 0.413 3710 4700 7060 4790 7200 4S80 7340 4980 7480
3 0.825 3060 5Q10 6930 4690 7050 4770 7160 wo- 7280
4 1.24 2410 4510 6790 4570 6880 4630 6970 4700 7060
•i • ' BFU 1.65 1760 4400 6620 4450 6680 4490 6750 4530 6820
6 4.58 1420 4320 6490 4360 6550 -4390 6600 4430" 6650
7 8.17 1090 4180 6280 '4210 6320 4240 6370 4260 6410
W40xZ94 3170 4760 TFU 0 4310 4770 7180- •48§0 7340 4990 7500 5100 7660
2 0.483 3730 •4710 7080 4800 7220 4900 7360 4990 7500
3 0.965 3150 4630 6960 4710 7080 4790 7200 4870 7320
4 1,45 2570 4540 6820 4600 6920 ,4670 7010 ;4730 7110
BFL 1.93 1990 4^30 6660 4480 6740 4530 6810 4580 6880
6 '5.71 1540 4300 6470 4340 6520 4380 6580 '4420 6640
7 10.0 1080 4080 6130 : 4110 6170 4130 6210 •4160 6250
W40X278 2970 4460 TFL 0 , 4120 4540 6820 "4640 6970 4740 7130 4850 7280
2 0,453 3570 "4480 6730 4570 6860 4660 7000 4750 7130
3 0.905 3030 ! 44T0 6620 4480 6730 4S60 6850 4630 6960
4 1.36 2490 4320 6490 4380 6590 4440 6680 4510 6770
BFL 1:81 1940 4220 6350. 4270 6420 4320 6490 '4370 6570
6 5,67 1490 4100 6160 -4130 6210 4170 6270 4210 6320
7 10,1 1030 3870 5820 3900 5860 3920 5900 3950 5930
W40X277 :3120 4690 TFL 0 4080 4440 6680 4540 6830 4650 6980 '47k 7140
2 0.395 3450 4370 6580 4460 6700 4550 6830 -4630 6960
3 0.790 2830 4290 6450 4360 6560 4440 6670 4SlD 6770
4 1.19 2200 4200 6310 ^260 6400 4310 6480 4370 65G0
BFL ,1.58 1580 4100 6160 4130 6210 4170 6270 4210 6330
6 4,20 1300 4030 6060 .4060 6110 4090 6150 4130 6200
7 7,58 1020 3920 5890 3940 5930 3970 5970 4000 6010
W40X264 2m 4240 TFL 0 3870 4250 6390 J350 6530 4440 6680 4540 6820
2 0,433 3360 4190 6300 14280 6430 4360 6550 4f40 6680
3 0,865 2840 4120 6200 ^190 6300 4270 6410 4340 6520
4 1.30 2330 4040 60SO 4100 6170 4160 6250 4220 6340
BFL 1.73 1810 '3350 5940. 4000 6010 4040 6080 4090 6150
6 5.53 1390 3840 5770 3870 5820 3910 5870 3940 5930
7 9.92 968 3630 5460 3660 5500 3680 5540 3710,
1 . '
5570
1, sSSlit '
LRro
/, = 0.90
' K1, f= distance from,top of the steel beam to plastic neutral axis
I" n = distance ffom'tbp of the steel beam to concrete flange force
See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STTEEL CoNsraucnoN

COMPOSITE BEAM SELECTION TABLES 3-159
f>-50ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft W40
3]
Shape Shape 4 4.S S 5.5 6 6.5 7 Shape
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD iASD LRFD
W40X297 5210 7820 5310 7990 5420 8150 5530 8320 5640i 8480 5750 8640 5860 8810
5070 7620. 5160' 7760. •5250 7900. 5350 8040 5440 8180 5530; 8310 i5620 8450
4920 7390 5000 7510 5070 7620 5150 7740 5220; 7850 5300 7970 5380 8080
4760 7150 4620 7240 4880 7330 4940 7420 5000; 7510 5060 7600 •5120 7690
•4580 6880 4620 6950 •4670 7010 '•4710 7080 4750! 7140 4800 7210 4840 7280
4460 6710 4500 6760 4530 6810 4570 6870 4600^ 6920 4640 6970 14670 7030
4290 6450 4320 6490 •4340 6530. -4370 6570 4400' 6610 4430 6650 14450 6690
W40X294 5200 7820 5310 7980 5420 8150 5530 8310 5630 8470 5740 8630: 5850- 6790
5080- 7640 5i:80 7780 5270 7920 5360 8060 5450 8200 5550 8340 •5640 8480
4950 7430 .5020 7550 5100 7670 5180 7790 5260 7910 5340 8020 5420 8140
4800 7210: 4860 7300 4920 7400. 4990 7500 5050i 7590 5120 7690 5180 7790
4630- 6960 4680 7030 4730 7110 4780 7180 4830; 7260 4880 7330 .'4930 7410
4460 6700 4490 6760 4530 6810 4570 6870 4610i 6930 4650 6990 4690 7040
4190 6290 4210 6330 4240 6370 4270 6410 4290 6450 4320 6500 4350 6540
W40X278 4950 7440 5050 7590 5150 7750 5260 7900 5360; 8060 5460 8210 5560 8360
•4830- 7270 4920 7400 •5010 7530, •5100 7670 :5190 7800 5280 7940 5370 8070
4710 7080 •4780 7190 4860 7300- 4930 7420 5010 7530 5090 7640 5160 7760
4570 6870 4630 6960 4690 7050 4750 7150 '4820: 7240 4880 7330 4940 7430
4420 6640 4470 6710 4510 6780 4560 6860 461.0; 6930 4660 7000 4710 7080
4250 6380 4280 6440 4320 6490 4360 6550 4390; 6600 4430 6660 ,4470 6720
3970 5970 4()00 6010 4030 6050 4050 6090 4080: 6130 4100 6170 4130 6200
W40x277 4850 7290 51950 7440 5050 7590 5150 7750 5260' 7900 5360 8050 5460, 8210
.4720 7090 4810 7220 4890 7350 4980 7480 :;5060; 7610 5150 7740 5240 7870
-4580 6880 •4650 6980 4720 7090 '4790 7200 •4660 7300 4930 7410 :5000 7510
^4420 6640 4480 6730 4530 6810 .4590 6890 4640; 6970 4700 7060 4750 7140
4250 6390 4290 6450 4330 6510 4370 6570 4410: 6630 4450 6690 4490 6750
4160 6250 4190 6300 4220 6350 4260 6400 4290 6450 4320 6500 J4350 6540
4020 6040 4050 6080 4070 6120 4100 6160 4120 6200 4150 6230 4170 6270
W40X264 4630 6970 4730 7110 -4830 7260. 4920 7400 5020 7550 5120 7690 5210 7840
;4530- 6800 4610 6930 ,4690 7060 54780 7180 ?4860; 7310 4950 7430 5030 7560
4410 6620 4480 6730 4550 6840 4620 6940 '4690 7050 4760 7160 4830 7260
4280 6430 4330 6520 4390 6600 4450 6690 4510 6780 4570 6860 4630 6950
4130 6210 4180 6280 4230 6350 4270 6420 4320 6490 4360 6550 4410 6620
3980' 5980 4010 6030 4050 6080 4080 6140 4120 6190 4150 6240 4190 6290
3730 5610 3760 5640 3780 5680 •3800 5720 383Di 5750 3850 5790 iSSBO 5830
ASD
aj=i.67
LRFD
(l>t=0.90
= K1 = distance from top of the steel beam to plastic neutral axis
fc Y2 ~ distance from top of the Steel beam to concrete flange force
See Rgure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-160 DESIGN OF FLEXURAL MEMBERS
EZ
W40
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Fy = 50 ksi
Shape
Mp/Qt
PNA»
Y\> IQn
rz"", in.
Shape kip-ft PNA»
Y\> IQn
2 2.5 3 3.5 Shape
ASO LRFD in. kip ASD LRFO ASD LRI=D ASD LRFD ASD LRFD
W40x249 2790 4200 TFL 0 3680 3980 5980 4070 6120 4160 6260 4250 6390
2 0.355 3110 3920 5890 4000 6010 -4070 6120 4150 6240
3 0.710 2550 3850 5780 3910 5880: 3970 5970 ,4040 6070
4 1.07 1990 mo 5660 3820 5740 3870 5810 •3920 5890
BFL 1.42 1430 ^680 5520 3710 5580 3750 5630 1-3780 5690
6 4.03 1180 • 3620 5440 3650 5480 3680 5530 .3710 5570
7 7.45 919 3520 5290 3540 5320 3560 5360 •3590 5390
W40x235 2520 3790 TFL 0 3460 •3770 5660 3850 5790 3940 5920 ,4030 6050
2 0.395 2980 3720 5580 3790 5700 3860 5810 3940 5920
3 0.790 2510 3650 5490 3720 5590 3780 5680 3840 5780
4 1.19 2040 3580 5390 3640 5460 3690 5540 ,.^740 5620
BFL 1.58 1570 3510 5270 3540 5330 3580 5390 '3620 5450
6 ; 5.16 1220 3410 5130 3440 5180 3470 5220 3500 5270
7 9.44 864 3250 4880: 3270 4920 3290 4950 :3310 4980
W40X215'; i24lfl 3620 TFL 0 3180 ..3410 5120 3490 5240 .3560 5360 -3640 5480
2 0.305 2690 3350 5040 3420 5140 3490 5240 •3560 5340
3 ; 0.610 2210 •3300 4950 3350 5040 3410 5120 3460 5200
4 0.915 1730 -3230 4850 3270 4920 3320 4980 3360 5050
8FL 1.22 1250 .3160 4740: 3190 4790 3220 4840 3250 4880
6 3,80 1020 3110 4670 •3130 4710 3160 4750 3180 4780
7 7.29 794 3020 4540 3040 4570 •3060 4600 •3080 4630
W40x2ri i226Q 3400 TFL 0 3110 3360 5050 3440 5170 3520 5290 3590 5400
2 0.355 2690 3320 4990 3380 5090 3450 5190 3520 5290
3 0.710 2270 3260 4910 3320 4990 3380 5080 •-3430 5160
4 1.07 1850 3200 4810 3250 4880 3300 4950 3340 5020
BFL 1.42 1430 •3140 4710 3170 4770 3210 4820 f3240 4870
6 5.00 1100 •3050 4590. 3080 4630 3110 4670 3140 4710
7 9.35 776 .2900 4370. 2920 4390 2940 4420 •2960 4450
W40x199 ;2170 3260 TFL 0 2940 •3130 4710 3210 4820 3280 4930 3350 5040
2 0.268 2520 ,309p 4640 •'3150 4730 3210 4830 •3280 4920
3 0.535 2090 *304b 4560 3090 4640 3140 4720 -3190 4800
4 0.803 1670 '2980 4480 3020 4540 3060 4600 •3110 4670
BFL 1.07 1250 '2920 4390 2950 4430 .2980 4480 3010 4530
6 4.09 992 2860 4300 ••2890 4340 2910 4380 2940 4410
-
7 : 8.04 735 .2760 4150. ,2780 4170 -.2800 4200 •.•^810 4230
ASD I Ll^
06 = 1^7 $6=0.90
a n = distance from top of the steel t)eam to plastic neutral axis
" V2 = distance from top of. ttie steel tieam to concrete flange force
' See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-161
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available strength in Flexure,
kip-ft
ZD
W40
Shape
K26,in.
Shape 4 4.5 S S.S 6 6.5 7 Shape
ASD LRFD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
W40X249 4350 6530 .4440 6670 4630 6810 .4B20 6950 4710 7080 4800 7220 49Q0J 7360
4230 6360 4310 6470 4380 6590 4460 6710 4540 6820 4620 6940 i4700 7060
4100 6170 41:70 6260 4230 6360: 4290 6450 4360 6550 4420 6640 '4480 6740
3970 5960 3020 6030 4060 6110 -.4110 6180 4160 6260 4210 6330 4260 6410
;3820 5740 3850 5790 3890 5850 3930 5900 .3960 5950 4000 6010 !4030 6060
3740 5610 3770 5660. :=3790 5700 3820 5750 3850: 5790 3880 5840 3910 5880
3610 5430 ;3d30 5460 :3660 5500 '3680 5530 ;3700 5560 3730 5600 ;3750 5630
W40x235 •4110 6180 .4200 6310 6440 4370 6570 4460; 6700 4540 6830 ;4630' 6960
rtOlO 6030 :4Q90 6140 4160 6260. 4240 6370 4310, 6480 4390 6590 (4460 6700
3910 5870 i3970 5960 :I030 6060 .4090 6150 ,4160 6250 4220 6340 •4280 6440
3790 5690 3840 5770 3890 5850 3340 5920 3990 6000 4040 6080 i4090 6150
3660 5500 3700 5560 3740 5620: 3780 5680 3820 5740 3860 5800 3900 5860
3540 5310 a570 5360 3600 5410 3630 5450 3660: 5500 3690 5540 3720 5590
:3330 5010 :;3360 5040 3380 5080 3400 5110 3420 5140 3440 5170 i3460 5210
W40x215^ 3720 5600 >3800 5720 >3880 5830 3960 5950 4040i 6070 4120 6190 4200 6310
3620 5450 3690 5550 3760 5650 3820 5750 '3890' 5850 3960 5950 (4030 6050
3520 5280 3570 5370 3630 5450 ^3B8P 5530 3740' 5620 3790 5700 3850 5780
3400 5110 3440 5180 3490 5240 3530 5310 3570. 5370 3620 5440 3660 5500
3280 4930 3310 4980 .3340 5020 '3370 5070 3400' 5120 3440 5160 3470 5210
3210 4820 3230 4860 3260 4900 4280 4940 3310 4970 3340 5010 3360 5050
;3!ioo 4660 3120 4690 3140 4720 3160 4750 3180 4780 3200 4810 3220 4840
W40X211 3670 5520 3750 5640 3830 5750 3900 5870 3980 5980 4060 6100 4140 6220
3580 5390 3650 5490 3720' 5590 3790 5690 :3850 5790 3920 5890 !3990 5990
.3!J90 5250 r3550 5330 3600 5420 3660 5500 3720 5590 3770 5670 3830 5760
^3390 5090 3430 5160 3480 5230 3530 5300 .jl570: 5370 3620 5440 3660 5510
3280 4930 3310 4980 3350 5030 3390 5090 3420 5140 3460 5200 3490 5250
3160 4760 3190 4800 3220 4840 3250 4880 3270, 4920 3300 4960 ;3330 5000
2980 4480 '3000 4510 3020. 4540 304? 4570 3060 .4600 3080 4630 i3100 4660
W40X199 3430 5150 .3500 5260 3570 5370 '3650 5480 3720 5590 3790 5700 3870 5810
•3340 5020 :3400: 5110 3460 5210 3530 5300 3590 5400 3650 5490 13720 5580
3250 4880 3300 4960 3350 5030, 3400 5110 3450 5190 3510 5270 :35eo 5350
.3150 4730 3190 4790 3230 4860 3270 4920 3310 4980 3360 5040 '3400 5110
3040 4570 3070 4620 3110 4670 3140 47.10 3170 4760 3200 4810 ?3230 4850
2960 4450 2990 4490 :3010 4530 3040 4560 3060; 4600 3090 4640 .3110 4670
2830 4260 2850 4280 2870
1
4310- 2890 4340 som 4370 2920 4390 2940 4420
04=1.67
LRFD
$4=0.90
distance from top of the steel beam tn plastic neutral axis
" Ka = distance from t»p of tiie steei beam to concrete flange force
c See Figure 3-3c for PNA locations.
AMERICAN INSRMITE OP STEEL CONSTRUCTION

3-162 DESIGN OF ELEXURAL MEMBERS
W40-W36
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Fy = 50 ksi
Shape
Mp/an
kip-ft
ASD LRF0
n® IQn
KZi'.in.
n® IQn
2 2.5 3 3.S
in. kip ASO LRFD ASO LRFD ASD LRFD Asn LRFD
TFL 0 2670 2860 4300 2930 4400 2990 4500 -3060 4600
2 0.300 2310 2820 4240 I!880- 4330 2940 4410 2990 4500
3 0.600 1960 2780 4180 2830 4250 2880 4320 •2920 4400
4 0.900 1600 2750 4100 2770 4160 .2810 4220 •2850 4280
BFL 1.20 1250 -2680 4020 2710 4070 2740 4110 2770 4160
6 4;77 958 2610 3920 •2630 3950 2650
3990 2680 4030
7 9.25 666 -2480 3720 .2490 3750 2510 3770 2530 3800
TFL 0 . 2470 2620 3940; 2g80' 4030 2740 4120 2800 4220
2 0.258 2160 •2590 3890 3970 2700 4050 -2750 4130
3 0.515 1860 2550 3840. 2600 3900 •2640 3970 2690 4040
4 0.773 1550 ^2510 3770 2550 3830 2590 3890 2630 3950
BFL 1.03 1250 2470 3710 2490 3760 2530 3800 2560 3850
6 4.95 933 2390 3600 2420 3630 2440 3670. 2460 3700
7 9.82 616 2240 3370 -2260 3400 2280 3420 2290 3440
TFL 0 • 2190 2310 3470 2360 3550 2420 3630 2470. 3710
2 0.208 1950 2280 3430 •2330 3500 •2380 3570 ,il430 3650
3 0.415 1700 2250 3380 2290 3450 2340 3510 2380 3580
4 0.623 1460 mo 3340 ;2260 3390 •2290 3450 •2330 3500
BFL 0.830 1210 2190 3290 •2220 3330 2250 3380 -2280 3420
6 5.15 879 .2110 3170 2130 3200 21 SO 3240 "2180 3270
7 10.4 548 1950 2930. mo 2950 -1980 2970 1990 2990
TFL 0 4450 4590 6890 4700 7060 4810 7230 4920 7390
2 0.420 3750 ,4510 6780 '4600 6920 47001 7060 4790 7200
3 0.840 3050 4420 6640 4490 6750 4570 6870 4640 6980
4 1.26 2350 4310 64S0 4370 6570 4430 6650 4490 6740
BFL 1.68 1640 4190 6290 4230 6360 4270 6420 4310 648Q
6 4.06 1380 4120 6200 4160 6250 4190 6300 4230
PISO
7 6.88 1110 4030 6050 4050 6090 4080 6130 4110 (.J 70
TFL 0 4150 6390 4350 6540 4460 6700 4560 6850
2 0.393 3490 4180 6280 4270 6410 4350 6540 '4440
6670
3 0.785 2840 •4090 6150 4170 6260 4240 6370 4310 6470
4 1.18 2190 '4000 6010 4050 6090 4110 6170 4160 6?60
BFL 1.57 1540 -3890 5840 3930 5900 '3970 5960 4000 6020
6 4.00 1290 3830 5760 3860 5800 3890 5850 3930
5900
7 6.84 1040 4740
Bi
5620. 3760 5660 3790 5690 -3810
5730
W40x183 1930 2900
W40x167 1730 2600
W40X149 1490 2240
W36X302 3190 4800
W36X282 2970 4460
ASD__
ni,=i.67
LRFD
= 0.90
a Y1 - distance from top of the steel tjeam to plastic neutral axis
^ Y2 = distance from top of ttie steel beam to concrete flange force
' See Figure 3-3c for PMA locations.
AMERICAN INSTRRINRE OF STBEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-163
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft W40-W36
in.
Shape 4 4.5 5 5.5 6 6.5 7 Shape
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ;ASD LRFD
W40X183 >3130 4700 3190 4800. >3260 4900 3320 5000 3390: 5100 3460 5200 3520- 5300
3050 4590 3tt0 4670 3170 4760, 3220 4850 3280 4930 3340 5020 3400 5110
2970 4470 3020 4540 3070 4620 3120 4690 3170 4760 3220 4840 3270 4910
5890 4340 ,2930 4400 2970 4460 3010 4520 3050 4580 3090 4640 3130 4700
2800 4210 2830^ 4260 2860 4300 ,2890 4350 2920: 4400 2960 4440 2990 4490
2700 4060 2730 4100 2750 4130 .2770 4170 28Q0! 4200 2820 4240 2850 4280
2540; 3820 ;2560 3850 2580 3870 ,259B 3900 26W: 3920 2630 3950 2640 3970
W40X167 2870 4310; ,2930 4400 2990 4490 3050 4580 3110; 4680 3170 4770 3240 4860
2800 4210 2860 4290 2910 4380 2970 4460 ,3020; 4540 3070 4620 3130 4700
2740 4110 2780 4180 2«0 4250 2886 4320 '2920; 4390 2970 4460 3020 4530
2670 4010 :2710 4070 2740.: 4120 2780 4180 2820: 4240 2860 4300 2900 4360
2590, 3900 =2620 3940 2650 3990 2690 4040 2720; 4080 2750 4130 2780 4180
2490, 3740 '2510 3770 ,2530 3810 2560 3840 2580 3880 2600 3910 ;2630 3950
2310; 3470 2320; 3490 2340 3510 2350 3540 2370; 3560 2380 3580 2400 3600.
W40X149 2520 3790 2580 3880 2630 3960 ;:2e90 4040 2740 4120 2800 4200 2850 4290
2470 3720 2520 3790 2570 3860 2620 3940 2670 4010 2720 4080 2770 4160
2420 3640 2460 3700 2510 3770 2550 3830 '2590= 3890 2630 3960 I2680 4020
2370 3560 2400 3610 .2440 3670 '2480 3720 261;0; 3780 2550 3830 2580 3880
2310 3470 2340 3520 •2370 3560 5400 3610 2430' 3650 2460 3700 2490 3740
2200 3300 2220 3340 2240 3370 2260 3400 2290! 3430 2310 3470 -2330 3500
2000 3010 :2o;2o 3030 2030 3050 2040 3070 2G60: 3090 2070 3110 2090 3130
W36x302 5p30 7560 5140 7730 5250 7890 5360 8060 5470 8230 5580 8390 5700 8560
4880 7340 ;-4980 7480 5070 7620 i5160 7760 5260 7900 5350 8040 5440 8180
4720 7090 4800 7210 4870 7320 '4950 7440 5020' 7550 5100 7670 5180 7780
'4540 6830 4doo 6920 4660 7010. 4720 7090 4780; 7180 4840 7270 4900 7360
4350 6540- 4390 6600 4430 6660 4470 6730 4520 6790 4560 6850 4600 6910
4260 6410 4300 6460 4330 6510 4370 6560 4400; 6610 4430 6670 4470 6720
::4140 6220 4160 6260 4190 6300 4220 6340 4250; 6380 4270 6420 4300 6470
W36X282 ;4660 7010 ,4770 7170 4870 7320 .4970 7480 508D 7630 5t80 7790 5280 7940
v4530 6810 4610 6940 4700 7070 m9o 7200 :4880 7330 4960 7460 5050 7590
4380 6580 4450 6690 •4520 6790 .i45,90 6900 4660, 7010 4730 7110 •4800 7220
4220 6340 4270 6420 4330 6500 4380 6580 4440 6670 4490 6750 4540 6830
4040 6080 4080 6130 M2Q 6190 4160 6250 4200; 6310 4230 6360 4270 6420
3960 5950 3990 6000 4020 6050 4050 6090 4090 6140 4120 6190 4150 6240
3840 5770 3870 5810 3890 5850, =3920 5890 3940; 5930 3970 5970 4000 6010
LRFD
= 0.90
a Kl = distance from top of the steel beam to plastic neutral axis
' y2 = distance from-top of the steel beam to concrete flange force
See Rgtire 3-3c for PNA locations. '
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-164 DESIGN OF FLEXURAL MEMBERS
ZZZD Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
W36 kip-ft
Fy = 50 ksi
Shape
Mpiat (^iMp
PNAo
IQo
Shape kip-ft PNAo
IQo
2 2.5 3 3.5 Shape
ASD LRFD
PNAo
in. kip ASD LRFD ASD LRFD ASD LRFD ASD LRFD
W36X262 2740 4130 TFL 0 3860 •3940 5920 4040 6070 4130 6210 4230 6350
2 0.360 3260 •3S7d. 5820 3960 5940 4040 6070 4120 6190
3 0.720 2660 3800 5710 3860 5810 13930 5910 •4000 6010
4 1.08 2070 >3710 5580 3760 5660 3820 5730 3870 5810
BFL 1.44' 1470 '3610 5430 :3B5®> 5490 3690 5540. 3720 5600
6 3.96 ^ 1220 3560 5350 3590 • 5390 3620 5440 3650 5480
7 6.96 965 3460 5210 •3490 5240- 3510 5280 3540 5310
W36X256 ;i2590 3900 TFL 0 3770 3890 5850 3980 5990 4080 6130 4170 6270
2 0.433 3240 3830 5760 3910' 5880 3990 6000 •4070 6120
3 0.865 2710 3760 5650 3830' 5750 3d00 5860 '3960 5960
4 1.30 2180 •3680 5530 •3730 5610 3790 5690 3840 5780
•RV
BFL 1.73 1650 3590 5390: '3030 5450 3670 5520 3710 5580
6 5.18 1300 =3490^ 5250 3520 5300' .3560 5350 3590 5390
7 8.90 941 •;3330 5010 3350 5040 3380 5080 3400 5110
W36X247 ;2570 3860 TFL 0 3630 3680 5530 mio 5670 3860 5800 3950 5940
2 0.338 3070 3620 544.0- ;3700- 5560 3770 5670 3850 5790
3 0.675 2510 3550 5340 3610 5430 3680 5530 3740 5620
IC:.' 4 1.01 1950 '3470 5220 ;3'5a0' 5290 3570 5360 3620 5440
BFL 1.35^ 1400 ••3380 5090 3420- 5140 3450 5190 3490 5240
6 3.95 1150 !C333b 5000 ^3360 5050 3390 5090 3410 5130
7 7.02 906 3240 4860 3260 4900 3280 4930: -3300 4970
W36X232 2340 3510 TFL 0 3400 :3490 5240 3570 5370 3660 5500 3740 5620
2 0.393 2930 •3430' 5160 3510 • 5270 3580 5380 M50 5490
3 0.785 2450 3370 5070 '3430 5160 -35001 5250 3560 5350
4 1.18 1980 3300^ 4960 3350 5040 •3400 5110 ^3450 5190
BFL 1.57 1500 3220 4840 3260 4900 3300 4960 3330 5010
6 5.04 1180 3140 4720 3170 4760 3200 4810 '3230 4850
7 8.78 850 2990 4500 3010 4530 3040 4560 3060 4590
W36X231 2400 3610 TFL 0 3410 3450 5180 3530 5310 3620 5430 WOO 5560
2 0.315 2890 3390 5090 3460 5200 .8530 5310 3610 5420
3 ,0.630 2370 3330 5000 3380 5090 3440 5180 •3500 5270
4 0.945 1850 3250 4890 3300 4960 3350 5030 •3390 5100
BFL 1.26 1330 3170 4770 3210 4820 3240 4870 3270 4920
6 3.88 1090 3120 4690 3150 4730 3170 4770 ;3200 4810
7 7.03 853 .3030'. 4560 3050 4590 3Q70
1
4620 3090
4-
.1 ,
4650
ASD
01 = 1.67
LRFD
il>ft = 0.90
« n = distance from top of ttie steel beam to plastic neutral axis
I" Y2 = distance from top of the steel beam to concrete flange force
See Rgure 3-3c for PNA locations.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-165
Fy = 50 ksi
Table 3-19 (continued) ezzz
Composite W-Shapes
Available Strength in Flexure,
kip-ft W36
Shape Shape 4 4.3 3 5.5 6 6.5 7 Shape
ASO LRFD -sASD LRFD ASD LRFD ASD LRFD ASO LRFD ASO LRFD ASO LRFO
W36X262 4320 6500 «420 6640 4520 6790 4610 6930 4710 7080 4810 7220 4900 7370
4200 6310 "4280 6430 4360 6560 4440 6680 4530 6800 4610 6920 4690 7050
4060 6110 41:30 6210 4200 6310 4260 6410 4330 6510 4400 6610 •4460 6710
>3920 5890 3970 5970 4020 6040 4070 6120 4120 6200 4180 6280 4230 6350
"3760 5650 ;3800 -5710 3830 5760 3870 5820 3910 5870 3940 5930 3980 5980
'3680' 5530 i3710 5570 i3740 5620 3770 5670 3800; 5710 3830 5760 :3860 5800
JSSeO' 5350 3580 5390 3610 5420 3630 5460 '3660: 5490 3680 5530 3700 5570
W36X256 4260 6410 4360 6550 t450- 6690 4550 6830 4640^ 6970 4730 7120 4830 7260
'4150 6240 4230 6360 4320 6490 4400- 6610 ^44g0: 6730 4560 6850 4640 6970
;4030 6060 4100 6160 •4170 6260 4230 6360 4300! 6470 4370 6570 4440 6670
3900 5860 39,50: 5940 4010 6020 406i 6100 4120 6190 4170 6270 4220 6350
'3750 5640 3790 5700 3830 5760 3880 5830 3920' 5890 3960 5950 4000 6010
,3620 5440 3650 5490 3690 5540 3720 5590 3750 5640 3780 5690 3820 5740
3420 5150 3450 5180 3470 5220 3500 5250 3520, 5290 3540 5320 3570: 5360
W36X247 .•4p40 6080 4t30 6210 '4220 6350 4310 6480 44fl0i 6620 4500 6760 4590 6890
3930 5900 4000 6020 4080 6130 4160 6250 4230 6360 4310 6480 4390 6590
3800 5710 3860 5810 3930 5900 3990 6000 ^4050^ 6090 4110^ 6180 4180 6280
5670 • 5510 3720 5580 3760 5660 3810 5730 3860' 5800 3910 5880 3960 5950
.3520 5300 3560 5350 3590 5400 3630 5450 3660f 5510 3700 5560 3730 5610
3440 5170 3470 5220 3500 5260 3530 5300 ,3560: 5350 3590 5390 '3620 5430
-3330 5000 3350 5030 3370 5070 3390 5100 3420 5140 3440 5170 3460 5200
W36x232 3830 5750 3910 5880 4000 6010 •4080 6130 4170 6260 4250 6390 4330 6520
3730 5600' 3800 5710 3870 5820 3950 5930 4020 6040 4090 6150 4160 6260
3teo 5440 3680 5530 3740 5620 3800 5710 3860 5800 3920 5900 3980 5990
'3500 5260 3550 5330 3600 5410 •3650 5480 3700 5560 3750 5630 3800 5710
3370 5070 3410 5120 3450 5180 ••3480 5240 3520 5290 3560 5350 3600 5410
3260 4890 3290 4940 3310 4980 3340 5030 3370 5070 3400 5110 3430 5160
3080 4630 3100: 4660 3120 4690 3140 4720 3160 4750 3180 4790 3210 4820
W36x231 3790!' 5690 3870 5820 3960 5950 4040 6070 4130 6200 421tl 6330 4300 6460
>3^0 5530 3750 5640 3820 5750 3890 5850 3970 5960 4040 6070 4110 6180
3560 5350 3620 5440 3680 5530 3740 5620 3800 5710 3860 5800 3920 5890
3440 5170 3480 5240 3530 5310 3580 5380 3620 5440 3670 5510 ,3720 5580
•3310 4970 3340 5020 3370 5070 3410 5120 3440 5170 3470 5220 3500 5270
3230 4850 3260. 4890 3280 4930 3310 4980 3340 5020 3360 5060 3390 5100
j3J20 4680 8140 4720 3160 4750 3180 4780 3200 4810 3220 4840 3240 4880
t.RFD
<14=0.90
® yi = distance from top or ttie steel beam to plastic neutral axis
' n = distance from top ot ttie steal beam to concrete flange force
See Figure 3-3c for PNA locations.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-166 DESIGN OF FLEXURAL MEMBERS
ZZ3 Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
W36 kip-ft
Fy = 50 ksi
Shape
H^p/Q) (^Mf
PNA"
K1» I0„
K26, in.
Shape kip-ft PNA"
K1» I0„
2 2.5 3 3.5 Shape
ASO LRFO
PNA"
in. kip ASD LRFD ASD LI?FD ASO LRFD ASD LRFD
W36x210 12080 3120 TFL 0 3100 314b: 4720 3220 4840 3300 4960 3370 5070 12080
2 ^ 0.340 2680 3100 4660 ,3160 4760 3230 4860 3300 4960
3 0.680 2270 3050 ^ 4580 3100 4660. 3160 4750 .3220 4830
4 1.02 1850 2990 4490 3030 4560 3080 4630 3130 4700
BFL 1.36 1440 2920 4390 2960 4440 2990 4500 3030 4550
6 5.04 1100 .2840 4260 2860 4300 2890 4350 2920 4390
7 9.03 774 2690 4040 2710 4070 2730 4100 2750 4130
W36X194: :1910 2880 TFL 0 2850 2880 4330 2950 4440 3020 4540 3090 4650
2 0.315 2470 2840 4270 2900 4360 2960 4450 3020 4540
3 0,630 2090 ;2790 4200 2840 4270 . 2900 4350 2950 4430
4 0.945 1710 2740 4120 2780 4180 2820 4240 2870 4310
BFL 1.26 1330 -2686 4030 2710 4080 2750 4130 2780 4180
6 4.93 1020 2500 3910 2630 3950 2650 3990 2680 4030
7 8.94 713 2470 3710 2480 3730 2500 3760 2520 3790
W36X182 '1790 2690 TFL 0 2680 2690 4050 4150 2830 4250: .2900 4350
2 0.295 2320 •.2660 3990 2710 4080 2770 4170 2830 4250
3 : 0.590 1970 2610 3930 2660 4000 •2710 4070 2760 4150
4 0.885 1610 2560 3850: 2600 3910 2640 3970 ,-2680 4040
BFL 1:18 1250 2510 3770 '2540 3820 2570 3870 2600 3910
6 4.89 961 2440 3670 2460 3700 2490 3740,, 2510 3770
7 8.91 670 2310 3470 .2330 3500 2340 3520 2360 3550
W36x1.Z0: ^ :i670 2510 ra 0 2500 2510 3770 25tO, 3860 2630 3960. 2690 4050
2 0.275 2170 2470 3720 £530^ 3800 2580 3880 2630 3960
3 0.550 1840 2430 3660 2480 3730 2520 3790 2570 3860
4 0.825 1510 2390 3590 2430 3650 2460 3700 2500 3760
BFL 1.10 1180 2340 3520 2370 3560 2400 3600 2430 3650
6 4.83 903 2270 3420 2300 3450 2320 3480 2340 3520
7 851 625 2150 3230 2170 3250 2180 3280 2200 3300
W36x160 1S60 2340 TFL 0 2350 2350 3530 2400 3610 2460 3700 2520 3790
2 0.255 2040 2310 3480 FG^O 3550 2410- 3630 2470 3710
3 0.510 1740 .;2280 3420 2320 3490 2360 3550 2410 3620
4 0.765 1430 2240 3360 2270 34-10 2310 3470 2340 3520
BFL 1.02 1130 2190 3290 2220 3340 2250 3380. 2280 3420
6 4.82 857 2130 3200 2150 3230 2170 3260. 2190 3290
7 8.96 588 2010 3020 2020 3040 2040 3060 2050 3080
£26 = 1.67
LRFD
H=0.90
a yi ~ distance from top of ttie steel beam to plastic neutral axis
1 Y2 = distance from top of the steel beam to concrete flange force ,
See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTJON

COMPOSITE BEAM SELECTION TABLES 3-167
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft W36
Shape
K2^in.
Shape 4 4.5 5 5.5 6 6.5 7 Shape
m
LRFD ASD LRFD ASD LRFD ASD LRFO ASD< LRFD ASD LRFD ASD LRFD
W36X210 3450 5190 "3530 5300 3610 5420 3680 5540 3760 5650 384ft 5770 3920 5880
•3370 5060 3430 5160 3500 5260 3570 5360 3630 5460 37ftft 5560 3770 5660
3270 4920 3330: 5000 3390 5090 3440 5170 ,3500 5260 355ft 5340 3610 5430
;3170 4770 3220 ,4840. 3260 4910 3310 4980 3360 5040 34ft0 5110 3450 5180
3060 4610 3100 4660 3140 4710 3170 4770 3210 4820 3240 4880 3280 4930
2950 4430 2970 4470 3000 4510 3030 4550 3060 4590 3080 4640 -3110 4680
2760 4160 2780 4180 2800 4210 2820 4240 2840 4270 2860 4300 2880 4330
W36X194 3160 4760 3240 4860 3310 4970 3380 ,5080 3450 5180 3520 5290 3590 5400
3090 4640 :3150: 4730 3210 4820- 3270 4910 3330 5010 3390 5100 3450 5190
3000 4510 :3d50 4590 3100 4670 •3160 4740 3210 4820 3260 4900 331ft 4980
2910 4370 2950 4440 2990 4500 3040 4560 3080 4630 3120 4690 316ft 4760
2810 4230 2£i40 4280 2880. 4330 2910 4380 2940 4430. 2980 4480 3010 4530
•2710 4070: 2730 4100 2760 4140' 2780 4180 2810 4220 2830 4260 2860 4300
2540 3810 :2560 3840 2570 3870 2590 3900 2610 3920 2630 3950 2640 3980
W36X182. 2960 4450 3030 4550 ®00 4650 3160 4750 3230' 4850 3300 4950 3360 5060
2890 4340 2950 4430, 3000 4520 3060 4600 3120 4690 3180 4780 3240 4860
2810 4220j S2850: 4300 2910 4370 2960 4440 3010 4520 3050 4590 3110 4660
2720 4100: 2760 4160 2810 4220 2850 4280 2890 4340 2930 4400 2970 4460
2630 3960 2670 4010 2700 4050 2730 4100 2760' 4150 2790 4190 '2820 4240
2530 3810 :;2560! 3850 2580 3880 2610 3920 2630 3950 2650 3990 2680 4030
2380 3570 ::2390 3600 2410 3620 2430 3650 2440 3670 2460 3700 2480 3720
W36X170 2760 4140 :2620 4240 2680 4330 2940 4430 3010 4520 3070 4610 3130 4710
2690 4040 2740 4120 2800 4200 2850 4290 2910 4370 2960 4450 •3010 4530
2620 3930 2660 4000 2710 4070 2750 4140 280ft 4210 2850 4280 '2890 4350
2540 3820 2^80 3870 2610 3930 2650 3990 2690 4040 2730 4100 2770 4160
2460 3690 .2490 3740 2520 3780 2550 3830 2580i 3870 2600 3910 i2630 3960
2360 3550 2390 3580 2410 3620 "2430 3650 2450 3690 2480 3720 2500 3750
2210 3320 2230 3350 2240 3370 2260 3400 2270 3420 2290 3440 2310 3470
W36x160 2580 3880 ;2d40 3970 .2700 4050 2760 4140 2810 4230 2870 4320 2930 4410
2520 3780 2570 3860 2620 3940 2670 4010 2720 4090 2770 4170 2820 4240
2450 3680 2490 3750 '2540 3810 2580 3880 2620 3940 2670 4010 2710 4070
2380 3580 2410 3630 2450 3680 2490 3740 2520 3790 2560 3840 2590 3900
2300 3460 2330 3510 2360 3550 2390 3590 2420 3630 2450 3680 2470 3720
:2210 3330 2230 3360 2260 3390 2280 3420 2300 3450 2320 3490 2340 3520
.2070 3110 2080 3130 2100 3150 2110 3170 2130 3190 2140, 3220 2150 3240
ASO_
ai=i.67
LRFO
= 0.90
a K! = distance from top of the steel beam to plastic neuttal axis
" 1'2 = distance from top of the steel beam to concrete flange force
t See Figure 3-3c for PNA locations.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-168 DESIGN OF FLEXURAL MEMBERS
zzm
W36-W33
Table 3-19 (continued)
Composite W-Shapes
Available Strengtii in Flexure,
kip-ft
Fy = 50ksi
Shape
Mflat ^iMp
PMA":
YV IQn
Ya'.rn.
Shape Wp-ft PMA":
YV IQn
2 2.5 3 3,5 Shape
ASD LRFD
PMA":
in. kip ASD LRFD ASD LRFD ASD LRFD ASD LRFD
W36x15a : 1450 2180 TFL 0 2220 2210 3310 2260 3400 2320 3480 2370 3560
2 0.235 1930 2180 3270 -2220 3340 2270 3410 2320 3490
3 0,470 1650 2140 3220 2180 3280 2220 3340 2270 3410
4 0.705 1370 2110 3160 2140 3220. 2170 3270 2210 3320
BFL 0.940 1090 2070 3110 2090 3150 2120 3190 2150 3230
6 4.82 820 2000 3010 2020 3040 2040 3070 2060 3100
7 9.09 554 1880 2830 TOOO 2850 -1910 2870 1930 2890
W36X135 1270 1910 TFL 0 2000 1970 2960 •2020 3040 2070 3110 Z120 3190
2 0.198 1760 1950 2930 1990 2990 2030 3060 2080 3120
3 0.395 1520 1920 2880 1960 2940- 2000 3000 2030 3060
4 0.593 1280 1890 2840 1920 2890 1950 2940 1990 2980
BFL 0.790 1050 1860 2790 1880 2830 1910 2870 1940 2910
6 4.92 773 1790 2700 •M10 2720 laso 2750 1850 2780
7 9.49 499 1670 2510 -1680 2530 1690 2540 •1710 2560
W33X221 2140 3210 TFL 0, 3270 3090 4640 3170 4760 •3250 4890 3330 5010
2 0.320 2760 3030 4560 3100 4660, 3170 4770 3240 4870
3 0,640 2250 2970 4460 3030 4550 '^080 4630 •3140 4720
4 0.960 1750 2900 4360 2940 4420 > 2990 4490 .3030 4560
BFL 1.28 1240 2820 4240 2850 4290. 2880 4330 2910 4380
6 3.67 1030 2770 4170 '2800 4210- '2830 4250. ^850 4290
7 6.42 816 2700 4060 2720 4090 2740 4120 2760 4150
W33X201 1930 2900; TFL 0 2960 27«0 4180 2850 4290 2930 4400 •3000 4510
2 0.288 2500 2730 4110 2790 4200 2860 4290 2920 4390
3 0.575 2050 2680 4020 2730 4100, 2780 4180 2830 4250
4 0,863 1600 2620 3930 2660 3990 •2700 4050 :2740 4110
ea 1,15 1150 2550 3830 2580 3870 2600 3920 2630 3960
6 3,65 944 5500 3760 2530 3800 •2550 3830 2570 3870
7 6.52 739 2430 3650 2450 3680 2470 3710 2490 3740
W33X169 1570 2360 TFL . 0 2480 .2330 3510 2400 3600 2460 3690 2520 3790
2 0.305 2120 2300 3450 2350 3530 2400 3610 '2460 3690
3 . 0.610 1770 2250 3390 2300 3450 2340 3520 .2390 3590
4 0.915 1420 2210 3310 2240 3370 2280 3420 •2310 3470
BFL 1.22 1070 2150 3230 2180 3270 2200 3310 .2230 3350
6 4.28 845 2100 3150 2120 3190 2140 3220 2160 3250
7 7.66 619 2010 3020 2020 3040 •2040
i
3070 .2060 3090
AS)
Ot = 1.67
LRFD
((.4=0.90
3 n = distance from top of the steel beam to plastic neutral axis
' (7 distance from top of tlie steel beam to concrete flange force
See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCNON

COMPOSITE BEAM SELECTION TABLES 3-169
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available strength in Flexure,
kip-ft
ZID
W36-W33
Shape
KZMn.
Shape 4 4.5 5 5.5 6 6.5 7 Shape
ASD LRFD ASO LRFO ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
W36X150 2430 3650 2480 3730 2540 3810 2590 ; 3900 2650 3980 2700 4060 2760 4140
2370 3580 2420 3630 2460 3700 2510 3780 2560 3850 2610 3920 2660 3990
2310 3470 2350 3530 2390 3590 2430 3650 •2470 3710 2510 3780 2550 3840
2240 3370 2280 3420 2310 3470 -2340 3520 2380 3580 2410 3630 2450 3680
2170 3270 2200 3310 2230 3350 2260 3390 2280 3430 2310 3470 2340 3510
•2i380 3130 2100 3160 '2130 3200 2150 3230 2,170; 3260 2190 3290 2210 3320
lb40 2910 1950 2940 1970 2960 1980 2980 1990 3000 2010 3020 2020 3040
W36X135. 2170^ 3260 2220 3340 •2270 3410 2320 3400 2370: 3560 2420 3640 2470 3710
:ziI20 3190 2170 3250 •22iQ 3320 2256 3390 ^2300; 3450 2340 3520 2380 3580
2070 < 3110 2110 3170 2150 3230 2180 3280 2220 3340 2260 3400 2300 3450
2020 3030 2050i 3080 2080 3130 2110 3180 2150 3220 2180 3270 2210 3320
1960 2950 1990 2990 <2010 3030 2040 3070 2070 3110 2O90 3150 2120 3190
•1670; 2810 1890 2840 1910 2870 •1930 2900 1950' 2930 1970 2960 1990 2990
fi720: 2580 1730 2600 1740 2620 1750 2640 1770 2660 1780 2670 1790 2690
W33x22r 3410: 5130 3490 5250 OTO 5380 3660 5500 3740' 5620 3820 5740 3900 5860
3310 4970 3380 5080 3450 5180 3510 5280 ^3580^ 5390 3650 5490 i3720 5590
4800 3250 4890 "3310 4970 3360 5060 =3420: 5140 3480 5220 :3530 5310
3070 4620 3120 4690 3'160 4750 3210 4820 3250 4880 3290 4950 3340 5010
2940 4430 2^80 4470 3010 4520 :3040: 4570 13070: 4610 3100 4660 3130 4710
4320 2900 4360 2930 4400 2950 4440 2980i 4480 3010 4520 3030 4560
2780 4180 2800
,;
4210 2820 4240 2840 4270 2860 4300 2880 4330 2900 4360
W33x20r 3070 4620 3150 4730 3220 4840 3300 4950 3370 5060 3440 5170 3520 5290
Mo-' 4480 '3040; 4570 3110 4670 ^170 4760 3250 4860 3290 4950 3360 5040
2880 4330 2030 4410 2980 4480 3030 4560 3090 4640 3140 4720 '3190 4790
2770 4170 2810 4230 2850 4290 2890 4350 2930 4410 2970 4470 3010 4530
2660 4000 2W0 4040 2720 4090 2750 4130 2780 4170 2810 4220 2830 4260
2600 3900 2^20 3940 2640 3980 2670 4010 2690 4050 2720 4080 :2740 4120
2500 3760 2520: 3790 2540 3820 2560 3850 2580 3880 2600 3900 ^2620 3930
W33x169 2580 3880 2640 3970 2700 4070 2770 4160 2830 4250 2590 4340 2950 4440
2510 3770 3850 2610 3930 2670 4010 :2720; 4090 2770 4170 2830 4250
2i30 3650 2470; 3720 2520 3790 2560 3850 2610 3920 2650 3990 2700 4050
2350 3530 2380 3580 2420 3630 •2450 3690 2490 3740 2520 3790 2560 3850
2260 3390 2290 3430 2310 3470 2340 3510 2370 3550 2390 3600 2420 3640
2180 3280 2200 3310 2230 3350 2250 3380 2270 3410 2290 3440 2310 3470
rg" —h—
2070 3110 2090 3140 .2100 3160 2T20 3180 2,130 3210 2150 3230 2160 3250
ASD
04 = 1,67
LRFO
6 = 0.90
' n = distance from top of the steel beam to plastic neutral axis
iJ YZ = distance fiom top of the steel beam to concrete flange force
= See Rgute 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-170 DESIGN OF FLEXURAL MEMBERS
p.- ••
1 laDie icontmueo)
Composite W-Shapes
Available Strength in Flexure
laDie icontmueo)
Composite W-Shapes
Available Strength in Flexure
>
•>
Fy. = 50 ksi
W33-W30 kip-ft
Mp/Qt
K1» IQn
yzi'.in.
Shape kip-ft PNA«
K1» IQn
2 2.5 3 3.5
ASO LRFD in. kip ASD LRFD ASO LRFD ASD LRFD ASO LRFD
W33X152 ; 1390 2100 TFL 0 2250 •2100 3160 2160 3240 2210 3330 2270 3410
2 0.265 1940 2070 3110 ,2120 3180 2160 3250 2210 3330
3 0.530 1630 2030 3050 2070 3110 2110 3170 r2150 3240
4 0.795 1320 1990 2990 ,2020 3040 2060 3090 2090 3140
BFL 1.06 1020 1950 2920 1970 2960 2000 3000 2020 3040
6 4.34 788 1890 2850 :1910 • 2870 1930 2900 1950 2930
7 7.91 561 1800 2710 1820 2730 1830 2750 1840 2770
W33X141 •1280 1930 TFL 0 2080 1930 2900 1980 2980 2030 3060 2090 3140
2 0.240 1800 1900 2860 1950 2930 1?90 2990 >.2040 3060
3 0.480 1520 1870 2810 «10. 2870 195Q 2920 -1980 2980
4 0.720 1250 1830 2760 V1860 2800 1900 2850 1930 2900
BFL 0.960 971 1790 2700 1820 2730 1840 2770 1870 2810
6 4.34 745 •1740 2620 i1760 2650 1780 2680 -1800 2700
7 8.08 519 1650 2480 2500 1680 2520 1690 2540
W33X130 il170 : 1.750: TFL 0 . 1920 1770 2660 1820 2740 1870 2810 19»3 2880
2 0.214 1670 1750 2630 2690 1830 2750 ,1870 2810
3 ,0.428 1420 1720 2580 ;1?5Q 2640 1790 2690 1820 2740
4 0.641 1180 1690 2540 1720 2580 1750 2620 1780 2670
BFL 0.855 932 1650 2490 1680 2520 1700 2560 1720 2590
6 4.39 705 1600 2410 1620 2440 1640 2460 1660 2490
7 8!30 479 1510 2270 1520 2290 1530 2300 •1540 2320
W33x118 jl040 1560 TFL 0 1740 .1600 2400. 1640 2470. '1680 2530 1730 2600
2 0.185 1520 1580 2370 1610 2420 •1650 2480 1690 2540
3 0.370 1310 1550 2330 1S80 2380 1620 2430 1650 2480
4 0,555 1100 1520 2290 1550 2330 hi 580 2370 1610 2420
BFL 0,740 884 -1500 2250 1520 2280 1540 2320 1560 2350
6 4,47 659 1450 2170 1460 2200 1480 2220 1500 2250
7 8.56 434 ;1350 2030 tm 2050 1370 2060 1380 2080
W30X116 943 1420 TFL 0 1710 1450 2180 •W90 2240 1540 2310 t5M 2370
2 0.213 1490 .1,430 2150 M^O 2200 1500 2260 S1540 2310
3 0.425 1260 1400 2110 1430 2150 1460 2200 •;1500 2250
4 0.638 1040 1370 2060 1400 2100 ,1430 2140 1450 2180
BFL 0.850 818 1340 2020 1360 2050 1380 2080 1400 2110
6 3.98 623 -1300 1960 1320 1980 1330 2000 1350 2030
7 7.43 428 1230 1840. 1240 1860 •1250 1870 1260
iS
1890
A&O LRFD ® Kl = distance from top of the steel beam to plastic neutrai axis
nt=i.67 ij)t, = 0,90
" n = distance from top of the steel beam to concrete flange force
= See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-171
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft W33-W30
Shape
1 r2^•m.
Shape 4 1 4.5 5 j 5.5 6 6.5^ 7 Shape
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASO LRFD
W33x152 2320 3490 2380 3580 3440 3660 »2490 3750 2550 3830 2600 3910 266ff 4000
2260 3400 2310 3470 2360 3540 2410 3620 2450 3690 2500 3760 2550 3830
2190 3300 2230 3360 i'2260 3420 2320 3480 '2360 3540 2400 3600 2440 3660
2120 3190 2160 3240 2190 3290 ^2220 3340 2250 3390 2290 3440 2320 3490
2050 3080 2070 3110 :2100 3150 2120 3190 2150 3230 2170 3270 2200 3310
1970 2960 1990 2990 2010 3020 2030' 3050 205Q 3080 2070 3110 2090 3140
liaeo 2790 1870 2810 T890 2830 :i900= 2850 1910 2880 1930 2900 1940 2920
W33x14r. 2140 3210 2190 3290' .2240- 3370 2290 3450 2350 3520 2400 3600 .2450:- 3680
2080 3130 2130 3200 2170 i 3260 2220 3330 2260 3400 2310 3470 2350 3530
2b20i 3040 2060 3100 2100 3150 2T40 3210 2170 3270 2210 3320 2250 3380
1960 2940 1990 2990 2020 3040 2050: 3080 2080 3130 2110 3180 2140 ' 3220
1890 2840 1920 2880' 1940 2920 1960 2950 1990 2990 2010 3020 •2040: 3060
1820 2730 1^0 2760 1850 2790 ;1870 2820 1890 2840 1910 2870 1930 2900
1700 2560 51720 2580 1730 2600! 1740! 2620 1750 2640' 1770 2660 1780 2680
W33X130 1960 2950 2010 3020 2060 3100 .2110' 3170 2150 3240 2260 3310 2250J 3380
1910 2880 1960 2940 2000 3000 :2040; 3060 2080 3130' 2120 3190 2160 3250
1'860- 2800 1900 2850 1930 2900 1970l 2960 2000 3010 2040 3060 2070 j 3120
1800 2710 iteo 2760 1860 2800 '18905 2850 1820 2890; 1950 2930 1980 1 2980
1750 2630 ^1770 2660 1790 2690 'Am 2730' •1840 2760 1860 2800 1890! 2830
1^70 2510 1690 2540 1710 2570 i1730 2590 1740 2620 1760 2650 1780 2670
1S60 2340. 1570 2360 1580 2370 1590 2390 1600' 2410 1620 2430 1630 2450
W33X118 1770 2660 1810 2730 1860 2790 M900 2860 1940 2920 1990 2990 •2030 3050
1730 2600 1760 1 2650 1-800 2710 ('1840 2770 188(1 2820; 1920 2880 1950 2940
1680 2530 1710 2580 1750 2630 I.1780: t 2670 1810 2720 1850 2770 M880 2820
i1630 2460 |!1660 2500 1690 2540 1720 2580 1740 2620 1770 2660 [1800 2700
1580 2380 1610 2420 1630 2450 1650 2480 1670 2510 1700 2550 [ 1720 2580
1510 2270. 1530 2300 1550 2320 1560 2350 1580 2370 1590 2400 fl610 2420
1390 2100 1410 2110 1420 2130 1430 2140 1440 2160 1450 2180 h460 2190
W30X116 11620 2440 51660 2500 1710 2570 •1750- 2630 1790 2690 1830 2760 tl880? 2820
1580 2370 1610 2420 ^1650 2480 1690- 2540 1720 2590 1760 2650 i 1800 2700
1530 2300 1560 2340 1590 2390 1620 2440 '1650 2490 1680 2530 M720 2580
1-480 2220 1500 2260 1530 2300 1550 2340 1580 2380 1610 2410 1630 2450
1420 2140 1440 2170 1470 2200 1490 2230 1510 2260 1530 2290 i1550 2320
1360 2050 1380 2070 1390 2100 1410 2120 1430 2140 1440 2170 ^460 2190
1270 1910 1280 1920 1290 1940 .1300 1950 13«j 1970 1320 1990 ;1330
f
2000
ASD
0(1 = 1.67
LRFO
(fi(,=0.90
yi s= distance frotn top of the stsel beam to plastic neutral axis
n YZ = distance from top of the steel beam to concrete flange force
See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE OP STEEL CONSTRUCTION

3-172 DESIGN OF FLEXURAL MEMBERS
EZZZZ
W30-W27
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Fy = 50 ksi
Shape
Mfiab -^bMp
pm
Kia
IQa
no, in.
Shape kip-ft pm
Kia
IQa
2 2.5 3 3.5 Shape
ASD LRFD
pm
in. kip ASD LRFD im LRFD ASD LRFD ASD LRFD
W30XT08 B63 1300 TFL 0 1590 1340 2010 •1380 2070 .1420 2130-: 1460: 2190
2 0.190 1390 1320 1980. ,1350 2030 J 380 2080 1420 2130
3 0.380 1190 1290 1940 1990 •1350 2030 1380 2080
4 0.570 987 1270 1910 1290 1940 3320 1980 1340 2020
BFL 0.760 787 1240 1870 1260 1900 1280 1930 1300 1960
6 4.04 592 1200 1800 1210 1830 1230 1850 •1240 1870
7 7.63 396 1120 1690 1130 1700 1140 1720 1150 1730
W30x99 778 1170 TFL 0. 1450 1220 1830 1260 1890 1290 1940. 1330 2000
2 Q;168 1270 1200 1800 1230 1850 .1260 1900 1300 1950
3 0.335 1100 •1180 1780 1210 1S20 1240 1860 1260 1900
4 0.503 922 1160 1740 1180 1780 1210 1810 •1230 1850
BFL 0.670 747 1140 1710 1160 1740 1170 1770 1190 1790
6 4.19 555 1100 1650 1110 1670 1120 1690^ 1140 1710
7 7.88 363 1020 1530 1030 1540 1040 1560 1050 1570
mom ,706, '
1060 TFL 0 1320 1100 1650 1130 1700 1160 1750 r1200i 1800
2 0.153 1160 1080 1630 ,1,110 1670 1140 1710 1170 1760
3 0.305 998 1070 1600 1090 1640 1110 1680 1140 1710
4 0.458 839 1050 1570 1070 1600 1090 1640 1110 1670
BFL 0,610 681 1030 1540 1040 1570 1060 1590 1080 1620
6 4.01 505 989 1490 1000 1510 1010, 1530 1030 1540
7 7.76 329 920 1380 -928 1400 937 1410 945 1420
W27XT02 761 11.40 TFL 0 1500 1160 1750 1200 1810 1240 1860 1280 1920
2 0.208 1290 1140 1720 1170 1770 1210 1810 1240 1860
3 0.415 1090 T120 1680 1150 1720 1170 1760 1200 1800
4 0.623 878 1090 1640 1110 1670 1140 1710 1160 1740
BFL 0.830 670 1060 1600 1080 1620 1100 1650 1110
1670
e 3.40 523 1030 1550 1050 1570 1060 1590 1070 1610 '
7 6.27 375 984 1480 993 1490 1000 1510 1010 1520
W27m 694 1040 TFL 0 1380 1060 1600 1100 1650 1130 1700 iil70! 1750
2 0.186 1190 1040 1570 1070 1610 1100 1660 'Il30 1700
3 0,373 1010 • W20 1540 mm 1580 1070 1610 ilGO 1650
4 0.559 821 1000 1500 1:020 1530 1040 1570 1060 1600
BFL 0.745 635 976 1470 ^992 1490 1010 1510 iozo 1540
6 3.45 490 947 1420 959 1440 . 971 1460 983 1480
7 6.41 345 897 1350 ;;:905 1360 •914 1370 922 1390
nj,=i.67
LRFD ' n = distance from top of the steel beam to plastic neutral axis
!> = distance from top of the steel beam to concrete flange force
See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-173
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft W30-W27
YZ", in.
Shape 4 4.5 5 5.5 6 6.5 7 Shape
ASD LRFD ASD LRFD ASD LRFD :ASD LRFD JISD: LRFD ASD LRFD ASD LRFD
W30x108 1490: 2250 1530 2310 1570 2370 1610 2430 1650 2480 1690 2540 1730 2600
iHSO: 2190 1490 2240 15k 2290 156P 2340 ,1590 2390 1630 2450 [1660 2500
WO 2120 1440: 2170 1470 2210 1600 2260 1530 2300 1560 2340 1590 2390
1370 2050 1390. 2090 •14^ 2130 1440 2170- 1470 2200 1490 2240 1510 2280
1320 1980 1340 2010 •1360 2040 1-380 2070 :«00 2100 1420 2130 1440 2160
1260; 1890 1270: 1910 a 290 1940 1300 1960 1320 1980 1330 2000 1350 2030
1|160 1750. 1170., 1760 i1180:- 1780 1190 1790 1200 1810 1210 1820 1220 1840
W30x99 1360 2D5.0i 1400 2100 1:44O 2160 •1470 2210 1510 2270 1S40 2320 1580: 2380
1330 2000 1360^ 2040 1390 2090 1420 2140 :!l!46b 2190 1490 2230 ;1520 2280
1290 1940 1320 1980 ;1350 2020 1370 2060 :i3400 2100 1430 2150 :1460 2190
1250 1880 1270 1920 iiaoo, 1950 1320 1990 1340 2020 1370 2050 : 1390 2090
1210 1820^ 1230 1850 a 250 1880 1270 1910 1290 1930 1300 1960 1320 1990
1150 1730 111 60 1750 aite' 1770 1190 1790 1210 1810 1220 1830 1230 1850
1050 1590 1060 1600 1070 1610 1,080 1630 1090 1640 1100 1650 1110 1670
W30x90 1230 1850 1260 1900 1950 1330 2000 1360 2050 1:390 2100 14301 2150
1200 1800 1230 1840 C126Q 1890 -1280 1930 1310 1970 1340- 2020 1370 2060
1160 1750 1190. 1790 SIZIO^ 1830 •1240 1860 1260 1900 1290 1940 1310 1970
1(130: 1700 1150 1730 M170 1760 1190 1790 121<) 1820 1230 1860 1260 1890
1090 1640 1110 1670 Ilk 1700 J150 1720 1160 1750 ilso 1770 1200 1800
1040 1560- 1050 1580 1070 1600 ,1080 1620 1090 1640 1100 1660 1120 1680
953 1430 961 1440 969 1460 r978 1470 986 1480 994 1490 1000 1510
W27X102 1310 1970. 1350 2030 3390 2090 1430 2140 1460 2200 t500 2260 1S40, 2310
li270 1910 1300 1960 isio 2010 1370 2060 1400 2100 1430 2150 1460 2200
1230 1840 1-250 1880 .1280 1930 1310 1970 1340 2010 1360 2050 1390 2090
1180, 1770 1200 1810 1220 1840 •1250 1870 1270; 1900 1290 1940 1310 1970
1130 1700 1150 1720 1160 1750 1180 1770 1200 T800 1210 1830 :i230 1850
1090 1630 1100 1650 1110 1670 1130 1690 1140 1710 1150 1730 i1160 1750
lb20 : 1540 1030, 1550 i1040 1560 1050 1580 1,060 1590 1070 1610 :1080 1620
W27X94 liaoo; 1810 1240 1860 1270 1910 130b 1960 1340 2010 1370 2060 : 1410, 2120
liieo. 1750 1190 1790 1220 1840 1250 1880 >1280 1930 1310 1970 !1340 2020
1120 1690 1150 1730 1170 1760 1200 1800 1220 1840 1250 1880 M270 1920
1080 1630 1110 1660 .1120 1690 1140 1720 11.60 1750 1180 1780 1210 1810
1D40 1560 1050 1590 1070 1610 1090 1630 lloo: 1660 1120 1680 1130 1700
996 1500 1010 1510 1020 1530 1030 1550 104d 1570 1060 1590 1070 1610
931 1400 940 1410 948 1430 >957
• ^
1440 :iS65 1450 974 1460 983 1480
ASD
i2£, = 1.67
LRFD
6=0.90
' K1 = distance from top of ttie steel beam to plastic neutral axis
1= Y2 = distance from top of the steel beam to concrete flange force
= See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-174 DESIGN OF FLEXURAL MEMBERS
EZZZZZZZD
W27-W24
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Fy = 50 ksi
Shape
MgJCXt ^Mp
PMA"
Kla
iQn
yzi'.in.
Shape kip-ft PMA"
Kla
iQn
2 2.5 3 3.5 Shape
ASD LRFD
PMA"
in. kip ASO U1F0 ASO LRFD ASO LRFD ASO LRFD
W27x84 609, 915 TFL 0 1240 946 1420 977 1470 1010 1510 1040 1560
2 0:i60 1080 929 1400 956 1440 •'983 1480 iOlO 1520
3 0.320 915 911 1370 934 1400 957 1440 980 1470
4 0.480 755 -892 1340 911 1370 ,930 1400 949 1430
BFL 0.640 595 •872 1310 887 1330 S902^ 1360 916 1380
6 3.53. 452 843 1270 855 1280 1300 •877 1320
7 6.64 309 793 1190 -800 1200 808 1210 816 1230
W24x94 : 634 953 TFL 0 1390 978 1470 1010 1520 11050 1570 1080- 1630
2 0.219 1190 957 1440 987 1480 1020 1530 1050 1570
3 0.438 988 , 934 . 1400 959 1440 V! 983 1480 1010 1510
4 0.656 790 909 1370 928 1400 rS48 1430 '968 1450
BFL 0.875 591 881 1320 896 1350 911 1370 926 1390
6 3.05 469 858 1290 869 1310 -881 1320 893 1340
7 5.43 346 819 1230 828 1240 837 1260 845 1270
W24X84 559 840 TFL 0 1240 866 1300 897 1350 927 1390 •'958 1440
2 0.193 1060 .848 1270 874 1310 901: 1350 927 1390
3 0.385 888 828 1240 •850 1280 1310 "894 1340
4 0.578 714 806 1210 824 1240 t?42 1270 860 1290
BFL 0.770 540 783 1180, '797 1200 810 1220 824 1240
6
3.02 425 761 11401 -•772 1160 782 1180 793 1190
7 5.48 309 725 . 1090 733 1100 ' 740 1110 748 1120
W24X76 499 750 , TFL 0 1120 780 1170 -808 1210 836- 1260 •863 1300
2 : 0,170 967 1150 ' 788 1180 812 1220 836 1260
3 0.340 814 '747' 1120 767 1150 787 1180 ' 807 1210
4 0,510 662 728 1090 745 1120 ' 761 1140 778 1170
Ba 0,680 509 708 1060 !721 1080 734 1100 746 1120
6 2.99 394 687 1030 697 1050 707 1060 716 1080
7 5.59 280 651 979 658 989 665 iooo 672 1010
W24X68 442 664 TFL 0 • 1010 «95 1040 720 1080 745 1120 770 1160
2 0.146 874 1020 703 1060 725 1090 746 1120
3 0.293 743 •:666 1000 ?S85; 1030 704 1060 722 1090
4 0.439 611 651 978 cm 1000 '681 1020- 697 1050
BFL 0.585 480 635 954 •:647 972 658 990 670 1010
6 3.04 366 '613 922 623 936 632 949 641 963
7 5.80 251 577 867 583 876 589 886 .595 895
£2(,= 1.67
LRFD
j=0,90
n = distance from top of the steel t)eam to plastic neutral axis
' = distance from top of the steel tieam to concrete flange force
See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-175
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft W27-W24
Kai'.in.
Shape 4 4.5 5 5.5 6 6.5 7 Shape
ASO LRFD ASO LRFD ASD LRFD ASD LBFD ASD LRFD ASD LRiFD ARD LRFD
W27x84 1070 1610 1100 1650 1130 1700 wet) 1750 1190 1790 1220 1840 12S0 1880
1040 1560 1060 1600 1090 1640 1120: 1680 1140 1720 1170 1760 1200 1800
1000 1510 1030 1540 •1050 1580 1070 1610 <1090 1640 1120 1680 1140 1710
968 1450 . 987 1480 rtOio 1510 1020 1540 1040 1570 1060 1600 1080 1620
931 1400 ' 946 1420 '961 1440 976 1470 991 1490 1010 1510 1020 1530
888 1340 : 900' 1350 !9ii 1370 922 1390 . 933 1400 945 1420 956 1440
824 1240 : 831 1250 839 1260 1270 ; 854 1280 862 1300 870 1310
W24x94. 1120 1680 1150^ 1730 '1190 1780 -1220 1830 1250 1890 1290 1940 1320 1990
V
1080 1620 '1110 1660 Ilk 1710 !1160: 1750 t190 1790 1220 1840 1250 1880
1030 1550 1060 1590 1080 1630 ifllO 1660 ri30 1700 1160 1740 1180 1770
988 1480 1010 1510 1030'! 1540 Sf:050 1570 1070 1600 1090 1630 1110 1660
940 1410 955 1440 o'970 1460 1480 • 999 1500 1010, 1520 1030. 1550
904 1360 i 816' 1380 •^928 1390 ;'i939 1410 P95i; 1430 963 1450 975 1460
854 1280 ' 863 1300 871 1310 •;88p 1320 888 1340 897; 1350 906 13B0
W24x84 989 1490 1020 1530 •toso 1580 1080' 1630 1110 1670 1140 1720 1170 1760
954 1430 980 1470 4010 1510 1030 1550 1060 1590 1090 1630 1110 1670
916 1380 939 1410 96r 1440 '983 1480 1010 1510 1030 1540 1050 '1580
878 1320 ' 895 1350 913 1370 : .931 1400 1430 967 1450 985 1480
837 1260 851 1280 864 1300 1320 891 1340 904 1360 918 1380
804 1210 814 1220 825 1240 1260 '846 1270 856 1290 867 1300
>56 1140 ' 764 1150 'H771 1160 P>79> 1170 787 1180 794 1190 802 1210
W24x76 : 1891 1340 ' 919 1380 947 1420 975 1470 1000 1510 1030 1550 1060 1590:
860 1290 884 1330 909 1370 933 1400 • 957 1440 981 1470 1010 1510,
828 1240 848 1270 '868 1310 ^.ssig' 1340 :909 1370 929 1400 950 1430
794 1190 i 811 1220 827 1240 1270 «60 1290 877 1320 893 1340
759 1140 772 1160 784 1180 797 1200 •810 1220 823 1240 835 1260
726 1090 736 1110 746 1120 756 1140 766 1150 775 1170 785 1180
679 1020 686 1030 693 1040 700 1050 : 707 1060 714 1070 721 1080
W24x68 795 1190 3 820 1230 845 1270 V»870 1310 895 1350 920 1330 94S. 1420
768 1150 790 1190 812 1220 <;i834' 1250 .. 855 1290 877 1320 899 1350
741 1110 = 759 1140 778 1170 796 1200 815 1220: 833 1250 852 1280
712 1070 ' 727 1090 742 1120 .:'758 1140 773 1160 788 1180 804 1210
682 1030. 694 1040 706 1060 718 1080 730 1100 742 1120 754 1130
650 977 659 990 668 1000 677 1020 686 1030 696 1050 705 1060
602 904 608 914 '614 923 .62b 933 627 942 633 951 639 961
AS0
04 = 1,67
LRFD
(|)(,=0.90
" n = distance from top of the steel beam to plastic neutral axis
ii YZ = distance from lop of the steel beam to concrete flange force
' See Rgure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-176 DESIGN OF FLEXURAL MEMBERS
W24-W21
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Fy = 50ksi
Shape
t/lflQ.1, MiMp
PNA"
K1' IQn
YZ\in.
Shape kip-ft PNA"
K1' IQn
2 2,5 3 3.5 Shape
m LRFO
PNA"
in. kip .ASD- LRFD ASO LRFD ASD LRFD ASD LRFD
W24x62 382 574 TFL 0 910 629 945 652 979 674 1010 : 697 1050
2 0.148 806 618 929 '638 , 959 658 990. . 679 1020
3 0.295 702 607 912 624 938 642 964 659 991
4 0.443 598 594 893. 609
.5k"
916 624 938 639 961
BFL 0.590 495 581 874
609
.5k" 892 606 91 ti 618 929
6 3.45 361 555 834 ;:5e4 848 ; 573 862 582 875
7 6.56 228 509 764 514 773 520 781 526 790
W24x55 334 503 TFL 0 810 558 838 578 869 598 • 899 618 929
2 0.126 721 649 825 >567'- 852 585 879 603 906
3 0.253 633 539 810 834 571 858 , 586 881
4 0.379 544 529 795 ..542 : 815 556 836 570 856
Ba 0.505 456 518 779 529 796 541 813 552 830
6 3.46 329 493 742 502 754 510 766 518 779
7 6.67 203 449 675 682 459 690 464 697
W21x73 429 6.45 TFL 0 1080 676 1020 -703' 1060 730 1100 •756 1140
2 0.185 921 •660' 992 683 1030 706 1060 729 1100
3 0.370 768 0-642 966. 662 994 681 1020 700 1050
4 0.555 614 624 937 639 960 654 983 670 1010
BFL 0.740 461 $03. 907. 615 924 626 941 |638 959
6 2.58 365 586 881 595 895 604 908 613 922
7 4.69 269 559 840 566 851 573 861 579 871
W21x68 399 , 600 Ta 0 1000 626 941 651 979 676 1020 ,701, 1050
2 0.171 858 919 633 951 654 983 '676 1020
3 0.343 717 S59i 895 613 922 631 949 1649 976
4 0.514 575 ;578 869 : 593 891 607 912 621 934
BFL 0.685 434 560 842 57T 858 582 874 593 891
6 2.60 342 544 817 552 830 561 843 569 856
7 4,74 250 : 518. 778 524 787 530 797 536
806
W21x62 359 540 TFL 0 915 571 858 594 892 616 926 i639 961
2 0.154 788 558 838 577 868 597 897 617
927
3 0.308 662 544' 817 560 842 577 867 593 891
4 0.461 535 528 794 542 814 555 834 568
854
BFL 0.615 408 • 512 770 V523 785 ^33 801 543
816
6 2.54. 318 497 747 505 759 513 771 521
782
7 4.78 229 472 709 (477 717 , 483. 726 489
t
734
ASD
£14 = 1,67
LRFD
s = 0.90
» n = distance from top of the steel beam to plastic neutral axis
' n = distance from top of ttie steel beam to concrete flange force
t See Figure 3-3G for PNA locations.
AMERICAN INSTiTuTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-177
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft W24-W21
Shape
nMa.
ASD LRFD
4.5
ASD LRFO ASD LRFD
5.5
ASD LRFD ASD LRFD
6.5
ASD LRFD ASD LRFD
W24X62
W24x55
W21x73
720^
699
677
654
631
m
531
639
621-
60Z
583
564
526
469
752i
719;
685
649
623
586;
726;
697
667-
636
603
578
543
610
582
553
529
494
S
4
1080
1050
1020
983
948
889
798
960
933
905
876
847
791
705
1180
1130
1.080
1030
976
936
881
1090
1050
1000
956
907
868
816
995
956
916
874
831
794
743
742.
719
694
669
643;
6b0i
537
659
639
618
597
575
534;
474
810
775
738
700
661-
632;
5:93
751.
<719
685
650
614
586
549
685
656
626,
595
563
536
500
i
1120
1080
1040
1010.
967
902
807;
990
960'
929
897
864
803
713
1220
1160
1110
1050
993
949
891
1130
1080
1030
977
923
881
825
1030
986
941
895
847
806
752
765
J39
712
684
655
,6Q9
543
679
6Ei7
634.
610
•586
543;
479
837
798
757
715
672:
641
>599^
776
-740
703
^664
625
595
•1555
708
676
643
609
573
544
506
1150
1110
1070
1030
985
916
816
1020
987
953
917
881
816
720
1260
1200
1140
1080
1010
963
901
1170
1110
1060
999
939
894
834
1060
1020
966
915
862
818
760
788
759
.729
699
668
618
548
699
-675
650
624
598
551
-484
a864
821
777
,731
684
650
-606
801
.761
721
679
636
603
561
731
695
659
622
584
,552
.511
1180
1140
1100
1050
1000
929
824
1050
1010
976
938
898
828
728
1300
1230
1170
1100
1030
977
911
1200
1140
1080
1020
956
907
844
1100
1050
991
935
877
830
769
811
779
747
714
• 680
627
554
71:9;
693
665
637
609
559
489
890:
1844
;?96
MB:
695
:659;
P6t3n
826
783
739!
693:
•647
612
568;
753;
r71Bi
676
635;
594
560
:517!
1220
1170
1120
1070
1020
943
833
1080
1040
1000
958
915
840
735
1340
1270
1200
1120
1040
990
921
1240
1180
1110
1040
972
920
853
1130
1070
1020
955
893
842
777
833
799
764
729
692
636
560
740
711
681
651
620
567
494
917
867
815
761
707
668
620
S51
804
757
708
657
620
574
776
735
692
649
604
568
523
1250
1200
1150
1100
1040
956
841
1110
1070
1020
978
932
853
743
1380
1300
1220
1140
1060
1000
931
1280
1210
1140
1060
988
933
862
1170
1100
1040
975
908
854
786
856^
819
782
744
705
645
565
760;
729
697
665
632
576
499
944J
890
834
777'
718
677
626
876<>
826
•774
722
668
629
580
799-'
754
709
662
614
576
529
1290,
1230
1180
1120
1060
970
850
1140
1100
1050
999
950
865
751
1420
1340
1250
1170
1080
1020
941
1320
1240
1160
1080
1000
945
872
1200
1130
1070
995
923
866
795
LRFD
= 0.90
® K1 = distance from top of ttie steel beam to plastic neutral axis
' n = distance from top of ttie steel beam to concrete flange force
c See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-178
DESIGN OF FLEXURAL MEMBERS
W21
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Fy = 50 ks i
Shape
t/^/ab ^Mp
PMA'
Kia ia„
K2^ in.
Shape kip-tt PMA'
Kia ia„
2 2.5 3 3.5 Shape
ASO LRFO
PMA'
in. kip ASD LRFO ASO LRFO -ASD LRFD ASO LRFD
W21X57 322 484 TFL 0 835 523 786 rt544 817 565 849 585 880
2 0.163 728 512 769 530 797 ' 548 824 566 851
3 0.325 622 500 751 • ds 775 531 798 546 821
4 0.488 515 St87. 732 500 751 5ia 771 '526 790
BFL 0.650 409 473 712 "484' 727 494 742 • 504 758
6 2.93 309 ;^455 684 1;:463 695 •470 707 478 718
7 5:40 209 4424 637 =429 645 -435 653 440 661
W21X55 314 473 TFL 0 810 501 753 521 784 542 814 562 844
2 0.131 703 :49b- 737 763 '525- 789 543 816
3 0.261 595 :478 719 493 741' 508 764 1523 786
4 0:392 488 466 700 f478 719 490 737 502 755
BFL 0.522 381 453 681 . 462 695 472 • 709 i. 481 723
6 2.62 292 .437 657 445 : 668 452 679- 459 690
7 5.00 203 411 618 417 626 422 634 427 641
W21x50 274 413 TFL 0 735 455 684 473 711; 739 ' 510" 766
2 0.134 648 f:446 670 462 694 478 719 494 743
3 0.268 560 '436 656 450: 677 ' 464 698 478 719
4 0.401 473 426 640 438 658 ^ 450 676 461 694
BFL 0.535 386 ;415 624 425 639 ' 435 653 444 668
6 2:91 285 397 597 :404: 607 411 . 618 418 629
7 •5.56 184 1366 550 370 557 i 375 563 379 570
W21x48 265 398 TFL 0 705 433 650 450 677 : 468 703 485 730
2 0.108 617 ;'424 637 439 660: ? 455 683 470 706
3 0.215 530 :414 623 428 643 • 441' 662 454 682
4 0.323 442 404 608 415 624 426 641 437 658
BFL 0.430 355 .394' 592 403 606 412 619 421 632
6 2.71 266 379 569 ::385 579 392. 589 398 599
7 5.26 176 352 529 ::356 535 361 542 365 649
W21x44 238 358 TFL 0 - 650 401 602 417 . 626 • 433 651 449 675
2 0.113 577 .393 591 5407 612 422 634 436 656
3 0.225 504 i-385' 579 398 598 410 617 423 636
4 0.338 431 566 . 368 583 :398 599 409 615
BFL 0.450 358 368 553 377 567 386 580 395 594
6 2.92 260 •351 527 357 537. 364 547 370 556
7 5.71 163 320 481 324 487 328 493 332 499
LRFO
i=0.90
' K1 = distance ftom top of the steel lieam to plastic neutral axis
" 1? = instance from top of the steel tjeara to concrete flange fores
" See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STTEEL CoNsraucnoN

COMPOSITE BEAM SELECTION TABLES 3-179
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available strength in Flexure,
kip-ft W21
Shape
in.
ASD LRFD
4.5
ASO LRFD ASD LRFD
5.5
ASD LRFD
6
ASD LRFD
6.5
^SD LRFD ASD LRFD
W21x57
W21X55
W21x50
W21x48
W21x44
606
585
562
539
514
486
445
582
560
538
515
491
466
432
528
510
492-
473
454
425
384
503
485
467
it49
429
405
369
465
451
435
420
404
377
336
91T'
879
845
809
773
730
669
875
842
808
774
738:
701
649-
794
767
740^
711
682
639
577
756
729
702
674
645
609
555
700
677
654
631 •
607
566
505
627
603
577
551
524
493
450
602
578
553
527
500
474
437
546
527
506
485
463
433
389^
521
501
480
460
438
412
374
482
465
448
431
413
383
3,40:
943:
906
868
829
788-
742
677
905-
868
831
792
752
712
656
821:
791
761
729
696:
650
584'
783 •
753
722
691
659
619
562
724
699
673
647
620
576
511.
648
•621
•593
.564;
535
501
455'
•622
595
•568
539:
•510
481
442
"565
543;
520
497i
473:
i440
.393
• ;• I
?38
516:
494
•471
-447
418
378
498
479
•461
441
422
390
J44
-1
974
933
891
848
804
753
684
936
895
853
810
766
723
664
849
816
782
747
711
661
591
809
m
742
707
672
629
568
748
721
692
663
634
586
518
63S
60^
577
545
'509
,461
'-643
613
•582
^551
-519
•488
,447
"583
559
534
•i509
483
.'447
398
556
.532
'507
-482
456
425
383
-•514
494
•4i'3
452
431
396
•348
1010
960
915
867
819
765
692
966
921
875
828
781
734
672
876
840
ao3
764
725
671
598
835
799
762
724
685
639
575
773
742
711
679
647
595
524
690;
'•:657
624
.590;
.555,
3466;
6631
630
:597i
563
:529:
496
452
601
575
548
520
492'
454
402
573
-547
520,
.493
465
432
387
530
508
I486'
:463:
440
403
352
1040
988
938
887
834
776
700
996
948
898
847
795
745
679
904
864
824
782
740
682
605
862
822
782
741
699
649
582
797
764
730
696
661
605
530
710
675
640
603
565
524
471
683
648
612
576
538
503
457
620
591
562
532
502
461
407
591,
562
533
504
474
438
391
547
523
498
474
448
409
357
1070
1020
961
906
850
788
708
1030
974
920
865
809
756
687
932
889
845
800
754
693
612
888
845
802
757
712
659
588
821
785
749
712
674
615
536
73!f=
694
655
616
575
532
476
703:
665
627
588
548
510
462
638v
607
576
544
512
468
412
609-
578
547
515
483
445
396
563
537
511
484
457
416
361
1100
1040
985
925
865
800
716
1060
1000
942
883
823
767
695
959
913
866
818
769
704
619
915
868
821
774
725
669
595
846
807
768
728
687
625
542
n(,=i.67
LRFD
6=0.90
= K1 = distance from top of the steel beam to plastic neutral axis
'I K2 = distance from top of the steel beam to concrete flange force
See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-180 DESIGN OF FLEXURAL MEMBERS
EZZZ
W18
Table 3-19 (continued)
Composite W-Shapes
Available strength in Flexure,
kip-ft
Fy = 50 ksi
Shape
Mpiai, ^bMp
Mp-ft
ASO LRFO
PNAc
ri»
in.
10„
kip
n\ in.
ASO LRFO
2.5
ASD LRFO ASP LRFO
3.5
ASO LRFD
W18x60 307 461
W18x55 279 420
W18X50 252 379
W18x46 340
W18X40 196 294
TFL
2
3
4
BFL
6
7
TFL
2
3
4
BFL
6
7
TFL
2
3
4
BFL
6
7
TFL
2
3
4
BFL
6
7
TFL
2
3
4
BFL
6
7
0
0.174
0.348
0.521
0.696
2.18
.3.80
a.
0.158
0.315
0^473
0.630
2.15
3.86
0 .
0.143
0.285
0.428
0.570
2.08
3.82
0
0.151
0.303
0,454
0.605
2,42
4.36
0
0.131
0.263
0.394
0.525
2.26
4.27
880
749
617
486
355
287
220
810
691
573
454
336
269
203
735
628
521
414
308
246
184
675
583
492
400
308
239
169
590
511
432
353
274
211
148
487
••47k
459
443
426
' 414
-39^
447
434
421
407
392
381
t36,4
403
392
^381
368
355
345
329
372
-363
353
342
330
318
299
•322
,314
296
287
276
260
733
712
690
666
640
623
598
671
653
633
612
589
572
547
606
590
572
553
533
518
495
559
545
530
513
496
478
450
485
472
459
445
431
415
390
509
:492
474
'455.
435,;:
422.
403
.435
418:
-400
387
369
.422!
408
'394
378
362;
'351
,-334
389 r
377
-365
.352;
338^
324
303
337
327
316
305
294
282
263
766
740
713
684.
653
634
606
702
679
654
629-
602
582
555
634
613
592
569
545
527
502
585
567
548
528
508
487
456
507
491
475
459
441
423
396
.531
•511
490:
467
444
429
409
487
M69
•450
430
•409:
• ^94
374^
440
424
;407
389
370
357
339-
406
392
377
362
345
330
308
352
340
- 327
314
300
287
267
.J
799
768.
736
702
667
644
614
732
705
676
646
614:
592
563
662
637
611
584
556
537
509
610
589
567
543
519
496
462
529
511
492
472
451
431
401
553
530
505
479
,452
436
414
507.
486
464
441
417
401
379
458
,439
420
399
378
363
343
423
406
389
372
353
336
312
367
352
338
323
307
292
271
832
796
759
720
680
655
623
762
731
697
663
627
603
570
689
660
631
600
568
546
516
635
611
585
558
531
505
469
551
530
508
485
462
439
407
01 = 1.67 6=0.90
= yi = distance from top of ttie steel beam to plastic neutral axis ,
!> K2 = distance from top of the steel team to concrete flange force
c See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-181
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft W18
refill.
Shape
ASD LBFD
4.5
ASD LRFD ASD LRFD
5.5
-ASD LRFD ASD LRFD
6.5
(ASD LRFD ASD LRFD
W18x60
W18X55
W18x50
W18x46
575;
548:
521
491
461;
H43
420
527
503
478
452
425
408
384:
477
455
433
•409
385
369:
348
'440
•421
402>
382;
381
342
316
381
365
349
332
314
297
274
865-
824
782
739
693
666
631
793.
756
719
680
639
613
578
717
684
650
615
579.
565.
523
661
633
604.
573.
542
514
475
573
549
524
498
472
447
412
597
567
536
504
470
450
425
548
521
4;93
464
434
414
389
495
471
448
420
393
375
352
456
435
414
392
369
348
320
396
378
359
340
321
303
278
-I
852
805
757
707
677
639
823
782
740
697
652
623
585
744
708
670
631
591
564
530
686,
655.
622
588:
554
523
481
595
568
540
512
482
455
418
619
586
551
516
479
.457
431
568
538
.'•507
475
442
421
.3^5
•513
4^6
.459
430
401
•381
357
473
•450
426
402
376
354
325
>-41,1
5391
370
349
328:
308
,282
931
880
829
775
720
688
647
854
808
762
714
664
633
593
772
731
689
646
602
573
537
711
676
640
603
565
532
488
617
587
556
525
493
463
424
641
605
-567
528
488
465
436
588
555
521
'486
45(1
428
400
532
f502
472
440
408
388
362
•490
465
438
412
-.384
360
329
425
403
381
-358
335
313
286
iiBi
964
909
852
793
733
698
656
884
834
783
731
677
643
601
799
755
709
662
614
583
543
737
698
659
618
577
541
494
639
606
573
538
503
471
429
j623
582
540:
;497
-472^
3442;
608
572
535
•;498;
459'
.434:
4051
550
:51Sj
C485i
'•451^
:;394:
S366;
507
cm.
'451:
;421
333
440
416
392
367;
341
318:
:2S9:
997
937
875
812
747
709
664
914
860
805
748
690
653
608
,827
778
728
677
625
592
550
762
720
677
633
589
550
500
662
626
589
551
513
479
435
685
642
598
552
506
479
447
:629
590
550
509
467
441
410
568
533
498
461
424
400,
371.
524
494
463
431
399
372
337
455
429
403
376
348
324
293
1030
965
898
830
760
.720
672
:945
886
826
765
702
663
616
854
802
748
693
637
601
557
787
742
696
648
600
559
507.
684
645
605
565
523
486
440
707S
661
613
564
514
486
453
6491..
607
564
520
476
448
415
587
549
511
471
431
406
375
541
508
475
44.1
407
378
341
470^
442
413
384
355
329
297
1060
993
921
848
773
731
680
975
912
848
782
715
673
623
882
825
767
708
649
610
564
813
764
714
663
612
568
513
706
664
621
578
534
494
446
LRFD
4.6=0.90
Kl = distance from top of the steel beam to plastic neutral axis
»)? = distance from top of the steel beam to concrete flange force
' See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-182 DESIGN OF FLEXURAL MEMBERS
W18-W16
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Fy = 50 ksi
Shape
Mpiai, ^bMp
PNA'
Kia
la.
K2^in.
Shape kip-ft PNA'
Kia
la.
2 2.5 3 3.5 Shape
ASD LRFD;
PNA'
in. kip •ASO LRFD ASO LRFD ASD LRFD ASD LRFD
W18X35 • .166 249 TFL 0 : 515 '279 419 292 438 305 458 317 • 477
2 0.106 451 -,272 409 284 426 295 443' 306 460
3 0.213 388 265 399 •275 413 <285^ 428 294 443
4 0.319 324 -258 388 266 400 274 412 'i282 425
BFL 0.425 260 251 377 257 •387 264' 396 270 406
6 2:37 194 •:240 360 •245 368 250 375; •254 382
7 4v56' 129 -222 334 225 338 228 343" 232 348
W16X45 205 309 TFL 0 665 333 501 350 526- 367 551-: '!383:: 576
2 0,141 566 323 486 337 507 351 528 ^366 549
3 0.283 466 312 469 324 487 . 336 504 347 522
4 0.424 367 .-301 452 310 466 319 479 928 493
BFL 0.565 267 288 433 •295 443 302 453 '308 463
6 1.77 217 280 421 : -286 430 291 438 '297 446
7 3.23 166 . 269 404' 273 411 ' 277 417 281 423
W16X40 182 274 TFL 0 ' 590 - 294 443- 309 465 324 487 509
2 0.126 502 285 429' 298 448 • 310 466/ 323 485
3 0.253 413 276 414 '286 430- 296 445 i307 461
4 0.379 325 265 399 274 411 282 423 290 436
BFL 0.505 237 '255 383 •261 392 267 401 272 409
6 1.70 192 .248 373 253 380 258 387- 262 394
7 3.16 148 238 358 242 363 246 369 249 375
W16x36 160 240 TFL 0 530 -263 396' 276 415 290- 435 303 455
2 0.108 455 '255 384 267 401 278" 418., 435
3 0:215 380 .247 372 •257 386 266 400 276 414
4 0.323 305 239 359 •246 370 254 382 M2 393
BFL 0.430 229 230 346 236 354 241 363 247 371
6 1.82 181 223 334 227 341 232 348 236 355
7 3.46 133 211 318 215 323 ' 218 328 221 333
W16x31 135 203 TFL 0 : 457 227 341 238 358 249 375 261 392
2 0.110 396 •220 331 "S30. 346 240 361 250 376
3 0.220 335 214 321 ^22 334 .231 347 239 359
4 0.330 274 207 311 214 321 "221 332 227 342
BFL 0.440 213 200 300 205 308 210 316 216 324
6 2.00 164 192 289 196 295 200 301 204 307
7 3.80 114 480' 270 183 275 .186 279 188 283
ASD
£i(,= 1.67
LRFD
([>(,= 0.90
' n = distance from top of the steel beam to plastic neutral axis
» Y2 - distance from top of the steel beam to concrete flange force
See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-183
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
fZ
W18-W16
Shape
l^b.in.
Shape 4 4.5 5 . 5.5 6 6.5 7 Shape
ASD LtiFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
W18x35 330 496 •343 516 '356 535 369 554 382 574 394 593 407S 612
m: 477 329 494' 340 511 351 528 362 545 374 562 385 578
?04' 457 314 472 • 323 486 333 501 343 515 352 530 362 544
291 437 299 449 •307 461 315 473 ,323 485 331 497 339 510
277 416 283 426 .290 435 .-296 445 303 455 309 465 316 474
'zm 390 264 397 269 404 274 411 279 419 283 426 288 433
:|35 353 238- 358 2^1 363 244 367 248 372 251 377 254 382
W16x45 . 400 601 416 626 433 651 450 676 466 701 483 726 499, 751
>80? 571 394' 592 -408 613 422 634 •436 655 450 677 464 698
359 539 370 557 382 574 -394 592 405 609 417 627 429 644
337 507 346 521 .. •35,5 534 365 548 374 562 383 576 392 589
315 473 322 483-^ •328 493 i335 503 342 513 348 523 355 533
302 454 307 462 313 470 318 478 324 486 329 495 334 503
286. 429 :290 436 294 442 •298 448 302 454 306 460 310 ; 467
W16X40 353 531 368- 553 '383- 575 -397 597 412, 620 427 642 442; 664
335- 504 348 523 r36o 542 373 561 385 579 398 598 . 410: 617
317 476 327 492 •338 507 348 523 •358 538 368 ^ 554 , 379 569
298 448 306. 460. 314 472 322 484 330 496 338 509 347 521
278' 418 284 427 2S0 436 •.'296 445 •302 454 308 -463 • 3.14 472
267 401 • 272 409 27i7 416 •282 423 286 430 291 438 : 2 96 445
253 380 257 386 260 391 264 397 268 402 271 408- 275 413
W16X36. 316 475 495 342 515 -356 535 369: 555 302 574 • 395- 594
301 452 ^12 469 486 335 503 346, 520 358 537 ; 369 555
285 429 295 443 •304 457 /314 471 -323 486 333 500 342 514
269" 405- d/7 416 284 428 "292 439 300 450 307 462 : 315 473
253 380 259 389 264 397 270 406 276 414 281 423 : 287 432
241 362 245 368 250 375 254 382 259 389 263 396 : 268 402
225 338 : 228 343 231 348 235 353 238 358 241 363 : 245 367
W16x31 272 409 284 426 295 443 306 460 318 478 329 495 1 341 512
260 391 270 405 280 420 290 435 299 450 309 465 319 480
247 372 256 384 ••264 397 272 409 ;28i: 422 289 434 297 447
234 352 241 362 ''248' 373 -255 383 262 393 268 404 275 414
221 332 226 340 232 348 237 356 V242; 364 248 372 253 380
208 313 212 319 216 325 221 332 225; 338 229 344 233 350
191
"t.
-r'l
287 194
J
292 197
•-I
296 -20^ 300 203! 304 205 309 ; 208 313

Q4 = 1.67
LRFO
6=0.90
" n = distance from top of the steel beam to plastic neutral axis
ti re = distance from top of ttie steel beam to concrete flange force
See Rgure 3-3c for PNA locations.
AMERICAN Institute OF STEEL CONSTRUCTION

3-184 DESIGN OF FLEXURAL MEMBERS
W16-W14
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Fy = 50ksi
Shape
MplCln <t)(,/lfp
kip-ft
ASD LRFD
pm
Y1'
in.
10„
kip
17", in.
<ASO LRFD
2.5
ASD LRFD ASD. LRFO
3.5
ASO LRFD
W16x26 110 166
W14x38 153 231
W14x34 136 205
W14x30 18 177
W14x26 100 151
TFL
2
3
4
BFL
6
7
TFL:
2
3
4
BFL
6
7
TFL
2
3
4
BFL
6
7
TFL
2
3
4
BFL
6
7
TFL
2
3
4
BFL
6
7
0
0.0863
0.173
0,259
0.345
2.05
4.01
0.
0n29
0.258
0.386
0.515
1;38
2.53
0
0.114
0228
0.341
0:455
1.42
2.61
0
0;0963
0.193
0.289
0.385
1.46
2.80
0
0.105
0.210
0.315
0.420
1.67
3.18
384
337
289
242
194
145
96.0
560
473
386
299
211
176
140
500
423
346
270
193
159
125
443
378
313
248
183
147
111
385
332
279
226
173
135
96.1
= 67
MSS
184
179
174
c,168
161
148
253
244
234
224
>214
209
201
225
217
208
200
..190
"186
179
197
190
•183
176
168
163
,156
172
166
161
155
148
143
J134
J.
284
276
269
261
253
241
223
380
367
352
337
321
313
303
338
326
313
300
286
279
269
295
285
275
264
253
245
234
258
250
241
232
223
215
202
198
192
186
-180
173
164
151
..•267
256
•244
-232
219
'213
,205
,237
'227
217
206
'.195-
190
182
•208
-199
•191
182
173
167
J ^8
..161
175
•168
•ido
153
146
137
298
289
280
270
260
247
226
401
384
367
348
329
320
308
356
342
326
310
293
285
273
312
300
287
273
260
250
238
273
262
252
241
230
220
205
208
201
193
186
178
168
153
281
268
254
239
224
217
208
250
238
226
213
.200
193
185
219
209
199
188
177
170
161.
191
1,83
175
166
157
; 149
; 139
312
302
291
279
267
252
230
422
402
381.
360
337
327
313
375
357
339
320
301
2S1
278
329,
314
298
283
266
256
242
287
275
262
249
236
225
209
((>6=0,90
» n = distance from top of the steel beam to plastic neutral,axis
' Y2 = distance from top of the steel beam to concrete flange force
' See Figure 3-3c for PNA locations.
217
209
201
192
.183
171
155
295.
279
263
247
229
222
212
262'
248
234
220
205
197
188
230
218
206
194
182
174
164
20f
•191
182
172
161
153
>1
n
327
314
301
288
275
258
234
443
420
396
371
345
333
319
394
373
352
330
308
297
283
345
328
310
292
273
261
246
301
287
273
258
243
230
213
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-185
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
EIZ
W16-W14
Shape Shape 4 4.5 5 5.5 6 6.5 7 Shape
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD lASD LRFD ASD LRFD
W16x26 227, 341. 237 356 -246 370 256 384 265 399 .275 413 285 428
218 327 226 340 234 352 243 365 im' 377 259 390 268 403
208 312 215 323 222 334 ,-229 345 •m] 356 244 366 251 377
198 297 •204 306 210 315 216 324 ;222 333 228 343 234 352
188 282 192 289 197 296 202 304 k207; 311 212 318 217 326
175 263 179 268 182 274 186 279 189 285 193 290 197 296
158 237 160 241 •163 244 165 248 .31671 252 170 255 172 259
W14x38 309 464 -323 485 •337 506 351 527 365! 548 379 569 393.- 590
291 438 303 455 315 473 327 491 338 508 350 526 362 : 544
' 273 410 283. 425 >2£(2 439 302 454 :m 468 321 482 331 497
254 382 . 262 393 269 404 276 416 284 427 291 438 299 449
235 353 •240 361 245 369 -250 376 .>•256' 384 261 392 266 400
226 340 230 346 235 353 239 360 366 248 373 252 379
215 324 219 329 2212 334 . 226 340 229' 345 233 350 236 355
W14x34 '274 413 .287 431 <2£I9 450 312 469 324! 488 337 506 349 525
259' 389 -269 405 r280 421 291 437 sSOji 453 312 468 322 484
243 365 252 378 '260 391 269 404^ •<277; 417 286 430 295 443
227 340 •233 351 ;24'0 361 247 371 " 381 260 391 267 401
210 315 214 322 219 330 .224 337 •829! 344 234 351 239 359
201 303. 205 309 209 315 213 321 2.17 327 221 333 225 338
191 287 194 292 ',197 297 201 301 •204; 306 207 311 210 316
W14x30 241 362 •252 378 -263. 395 274 412 285; 428 296 445 307 461
-•228 342 237 356 .•246 370 256 385 265 399 275 413 284 427
214 322 •222 334 ..230 345 288 357 245 369 253 381 261 392
201 301 207 311 ^213 320 219 329 225 339 231 348 238 357
186 280 191 287 Id6 294 200 301 ;.208: 308 209 315 214 321
178 267 181 273 185 278 189 284 192 289 196 295 200 300
167 250 169 255 172 259 •175 263 178 267 180 271 183 275
W14x26 ?10 316 220 330 529 345 ,239 359 248 i 373 258 388 268; 402
199 300 208 312 •216 325 -224 337 .i2S3i 349 241 362 249 374
.188 283 ,195 294 '202 304 209 315 216 325 223 336 230 346
177 266 . -183 275 188 283 194 292 JOO^ 300 205 309 211 317
166 249 170 256 174 262 179 269 183 275 187 282 192 288
. 156 235 160 240 •163 245 166 250 170 255 173 260 176 265
144
_ s
216 146 220 ,'149 223 151 227 231 156 234 158 238
LRFD
(|)s=a9o
3 Y^ = distance from top of the steel beam to plastic neutral axis
!> Y2 = distance from top of the steel beam to concrete flange force
See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-186 DESIGN OF FLEXURAL MEMBERS
FZZZZIZ31
W14-W12
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Fy = 50ksi
Shape
Mp/Qi <t>(,Mp
PMA«
Kl' IQn
in.
Shape kipift PMA«
Kl' IQn
2 j 2.5 j ^ 3 3.5 Shape
ASO LRFD
PMA«
in. Wp ASD LRFD ASD U?FD "ASD piiljjilfi^-jill.lilail
W14X22 : 82.8 125 TFL 0 325 1143 215 151 228 159 240 1.68 c: 252
2 0.0838 283 i139 209 •146 220 153 230 160 241
3 0,168 241 "135 . 202 141 211 147 220 153 229
4 0.251 199 1*30 195 •135 203 140 210 1,45 218
BFL , 0.335 157, 125 188 129 194'^ 133 200 137 206
6 1.67 119 120 180 n23 184 126 189: 129 193
7 3;32 81.1 -111
I- • •
167 113 170 115 173 fl7 176
W12x30 108 162 TFL 0' 440 |179 269 190 285 201 302. 212 318
2 ,1 0.110 368 171 258 '481 271 190 285 199 299
3 0.220 296 164 246 1171 257 178 268: 186 279
4 0.330 224 155" 234 1161 242 167 251 172 259
BFL 0:440 153 147. 221 ,151 227 •155 232 158 238
6 ,1 i;io i 131 •144 1 216 147 221 151 226. .154 231
7 .| 1:92 i 110 •uo ! 211 143 215 m 219 149 223
W12x26: . 92;8 ' rto: TFL| O'--- ! 383: 155 232 164 247 174 261 183 . 275
2 j 0.0950: 321 •148 223^ .156 -1 235 164 247 172 259
3 0.190 259 142 213 i-48 223 155 232 161 242
4 1 0.285 198 135 203 140 210 145 217 150 225
BFL 1 0:380 136 128 192 131 197 134 202 •: 138 207
1 6 1.07 i 116 •125 188 128 -192 131 197 .Ii34 201
7 1.94 95.6 •121 183 124 186 126 190 1:29 193
W12x22 73.1 110 TFL 0 ,
324 132 198: 140 210 148 222 1:56 d 234
•. . 1
2 0.106 281 127' 191 -134 202 141 213 ^48 1 223
3 0.213 238 123' 185 129 193 135 202 141 1 211
I 4 0.319 196 1.18 177 123 185 128 192 133 199
i BFL 0.425 153 'J13 170 117 175 120 181 124 : 187
!
6 1.66 117 107 162 .110 166 113 170 116 175
j
7 '1 3.03 81.0 99.8 150 102 1 153 ,104 156 1 106 159
W12x19 61;6 ! 92.6 • TFL,! 0 279 113 169 1 120 ' 180 126 190 133?. 201
i
, ^r,.-;. j 2 1 0.0875 243 109 164 ] lis 1 173 . -121 182 127 191
3 j 0.175 203 105 158 1 110 1 166 •116 174 , {121 182
4 : 0.263 173 101 ' 152 106 159 110 165 114 172
j
i
BFL 1 0.350 138 97.3 146 101 151 ! 104 157 ' 108 182
6 1 1.68 104 92.3 139 , 94.9 143 ! 97.4 146 100 150
3
1 7
1
3.14 69.6 - 84.7
!
- —
127 •86.4 130 88.2 133 89.9 135
.ASD
£24 = 1.67
LRFD
<l>j=0.90
' n = distance from top of the steel beam to plastic neutral axis
1= YZ = distance from top of ttie steel beam to concrete flange force
See Rgure 3-3c for PNA locations.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-187
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft W14-W12
Shape
m.in.
Shape 4 4.5 5 5.5 6 6.5 7 Shape
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
W14X22 176 264 m' 276 192 288 200, 301 208 313 216, 325 i 224; 337
;1>67 251 fTA , 262 ;t8i; 273 188 283 195 294 203 304 ! 210 315
159: r 238 ?I65 247 171; 256 177, 266 183 275 189 284 ; 195 293
150 . 225 :.155 233, 160 240 165 248 17fl„,.: 255 175 262 180 270
141,.: 212., 145 218 :149 223 153- 229 157 235 160 241 ! 164 247
198 135 202. 207 140 211 143 216 146 220 ^ 149 225
119 -179 121 182 123 185, 125 . 188 127t:; 191 129 194 : 131 198
W12x30:. 223 335: .23:4 351 245 368 255 384 266 400 277 417 ;28a 433
208 313 217 ^ 327 . 226 340 236 354 245 368 254 382 '263 396
193 290 :2Q1 : 301 :208 313 215 324 22301 335 230 346 1237 357
178 267:: 183 276 nisa. 284 195 293 200 301 206 309 tail 318
162: 244 leh -250 T7Q 255 174 261 177 267 181 272 ; 185 278
157:., 236 16b : • 241 . 246 167 251 170 : 256 173 261 177 266
151 • 227 154 : 232 ;1:57; ; 236 160 240 162 244 : 165 248
: 168
252
W12X26 193,;:; 290 202 304 318 221 333 231 347 240 361, :25Q.? 376
,180; 271 283 196 295 204, 307 319 220 331 i228 343
168:. 252 . 262 •181, 271 187. 281 193^ 291 200 300 ' 206 310
<155,, 232 160 240 164 247 169 255 262 179 269 184 277
;141. 212, :145 : 217 T48' 222 1511 228 155 233 158 238 il62 243
Tf37:;- 205 139 210 142 214 145" 218 1-48 223 151 227 i 154 231
131 197 133 200 '136 204 138 208 141 211 143 215 il45 218
W12x22 164 247: 172 259 Swb 271 188 283 196' 295 205 307 ' 213:v 320
155 234 162 244 :169 255 176 265 183 276 191 286 : 198 297
147 220 229 158 238 164 247 170 256 176 265 ' 182 274
137, : 207 ,142 214 .147 221 .152 229 157 236 162 243 167 251
.1,28. 193 132 198 136 204 140 210 143 215 147 221 :151 227
119 179 122 183 1:25 188 128 192 :i3l 197 134 201 137 205
108 162 110 ; 165 112 168 114 171 116 174 118 177 : 120 180
W12x19 . 140 211 M7 . 221 154 232 i«r 242 168 253 175 263 • 182- 274
133 200 m ? 209 •14S 219 151' 228 1S80i 237 164 246 170 255
126 189 i3i 197 136 205 142 213 147:' 221 152 228 :i57 236
'119 178 123 185 . 127 191 132 198 136,;: 204 140 211 145 217
111 167 115 172 :118 177 121 183 125,^ 188 128 193 132 198
103 154 105 158 1:08 162 110; 166 113: 170 116 174 118 178
91.7 138 93.4 140
1
143 96 « 146 i98:6 148 100 151 : 1,02 153
A&U
£14 = 1.67
LRFD
$6=0.90
a Y1 = distance from top of the steel beam to plastic neutral axis
' y2 = distance from top of the steel beam to concrete flange force
' See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-379 DESIGN OF FLEXURAL MEMBERS
W12-W10
Table 3-19 (continued)
Composite W-Shapes
Available strength in Flexure,
kip-ft
Fy -50 ksi
Shape PNA"
ior
yji'.in.
Shape kip-ft PNA"
ior
2 2.5 3 3.5 Shape
ASO LRFD
PNA"
in. kip ASD LRFD ASO LRFD ASD LRFD ASO LRFD
W12X16 50.1 ?S.4 TFL : 0 236 5«4.0 141 99.9 150 -;t06 159 112':, 168
2 0.0663 209 91.3 137 .i96.5 145 m 153 107 161
3 0.133 183 ?88.'6 133 93.1 140 .•.SI7.7 147 102 154
4 0.199 156 .'85.7 129 89.6 135 .93.5 141 ]37,4 146
BFL 0.265 130 f82i8 124 . 86.0 129 -:89.2 134 'S2,5 139
6 1.71 94.3 .77.6 117 79.9 120 • 82.3 124 84.6 127
7 3.32 58.9 ••69,6 105 107 72.5 109. - 74.0 111
W12x14 43.4 65.3 TFL 0:: 208 '82.5 124 87.7 132 92.9 140 > 98.1: 147
2 0.0563 186 80.3 121 84.9 128 •-89.5 135 ; 94.2 142
3 o;ii3 163 77.^ 117 •'82.0 123 86.1 129 '90.2 135
4 0.169 141 '75.5 114 •79.1 119 • 82.6 124 86.1 129
. - BFL 0.225 119 J 73.1 110 76.1 114 79.0 119 82.0 123
6 1.88 85.3 V68.3 103 70.4 106 ' 72.6 109 74.7 112
7 3.35 52.0 ,'60.8 91.4 62.1 93.3 '63.4 95,3 .64.7 97.2
W10X26 78.1 117 TFL 0 ' 381 136 204 .145 218 155 233^ 164 • 247
2 0.110 317 194 .137 206 U5 218 153 230
3 . 0.220 254 122' 184 193 135 203. 1'41 213
4 0.330 190 145 173 120 180 c125 187 129 195
BFL 0.440 127 108, 162 :tli 167 . 114 171 .117 176
6 0.886 111 106 159 .108 163 111 187 •1,14 171
7 1.49 95.1 103 155 105 158 •08 . 162 110 166
W10x22 . '64.i9 97.5 TFL 0 325 315' 173 .I2S ' 185 ^ 131 197 139 209
2 0.0900 273 110' 165 ?16 175 185 .130 196
3 0.180 221 104 157 T10 165 115 ' 173 121 181
4 0.270 169 98.4 148 103 154 '-107 161 111 167
BFL 0.360 118 "92.5 139 95.4 143 • 98.3 148 1D1 152
6 0.962 99.3 •SO.I 135 92.5 139 95.0 143 97.5 147
7 1.72 81.1 87.0 131 89.1 134 •91.1 137 93.1 140
W10X19 53.9 81.0 TFL 0 281 !09.6 150 107 160 •T14 171 121 181
2 0.0988 241 -a5)5 144 m 153 •m 162 .i;i4 171
3 0.198 202 137 96.3 145 '401 152 .106 160
4 0.296 162 86.8 130 90.8 13/ • 94.9 143 •98.9 149
BFL 0.395 122 82.1 123 '85.2 128 • .88.2 133 ' 91.3 137
6 1.25 96.2 78.5 118 80.9 122 •83.3 125 85.8 129
7 2:29 70.3 ,-73.7 111 75.4 113 77.2 116 78.9
^
119
1
^ K1 = distance from top of the steel beam to plastic neuiral axis
' n = distance from top of the 'steel beam to concrete flange force
' See Rgure 3-3c for PMA locatioris.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-189
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip^ft W12-W10
Shape
Ka'.in,
Shape 4 4.5 5 5.5 6 6.5 7 Shape
ASD LRFD ASD LRFD Asn LRFD ASO LRFD ASD LRFD m LRFD ASD LRFD
W12x16 118.0 177 123.0 185: 129.0 194 1®.0 203 141.0 212 147.0 221 153.0 230
iibv 169 117 176 123 184 128. 192 133 200 138 208 143 216
107 161 11,1 167; 116 174 120 181 125 188 130 195 134 202
101 152 105 158 .109 164 113 170 117 176 121 182 125 187
95.7 144 99.0 149 102 154 105, 158 109 163 112 , 168 ill 5 173
67.0 131. 89.4 134 91.7 138 94.1 141 96.4 145 98.8 148 101 152
75.5 113 -77.0 116 .78.4 118 79.9 120 '81.4 122 82.8 125 ' 84.3 127
W12x14 103 , 155 lO'S 163 •114 171 119 179 124 1 186 129 194 134 • 202
98.8 148 •103 155 108 162 11.3' 169 117.. 176 122 183 127 190
94.2 142- 148 102 154 106, 160 in 166 115 172 119 178
b.6 135 93.1 140 ' 96.7 145 100 151 104 156 107.,. 161 111 166
85.0 128 87.9 132. 90.9 137 C93.9 141 96:8 146 99.8 150 103 154
76.8 115. 79.0 119 81.1 122 83.k 125 85.3 128 87.5 131 89.6 135
68.0 99.2 67;3 101 68.6 103 B9.9 105 71.2 107 72.5 109 73.8 111
W10x26 :174 261 , 183 275 ^193 290 202 • 304 212 318 332 231 347
161 242 .169 254 177 266 277 193 289 200:,; 301 208 313
lis ; 222 154. 232 160 241 167: 251 173" 260 179 270 186 279
^134 f^ 202 •139 209 '144 216 •MS. 223 153 230 158 .237 163 244
:i.2o 181 123 186 .127 ' 190 130'• 195 133., 200 136 205 139 209
175 119 179 J 22 184 125.' 188 128 192 130 196 133 200
Til 3-; 169 173 117 • 176 120 180 122 183 124 187 127 191
W10x22 147 221 155 234 164 246 172 258^ 180 270 188 282 •196 294
206 144 216 151 226 157 236 164 247 171 257 178 267
190 132 198 137 206 143 215 148 223 154 231 159 239
115 173 120 180 124 186 128 192 132 , 199 136 205 -141 211
104 157 107 161 110 165 113 170 116 ; 174 119 179 122 133
ibo 150 102 154 105 158 107 161 110 : 165 112 169 •115 173
p5.1 143 97.1 146 99.2 149 101 152 103 ; 155 105 158 ;107 161
W10x19 128 192 135 202 142 213 149 223 156 i 234 163 244 'l70 255
M 180 126 189 132 198 138 207 144 ; 216 150 225 156 234
ijl 167 116 175 121 183 126 190 132 : 198 137 205 '142 213
103 155 107 161 111 167 115; 173 119; 179 123 185 ;127 191
94.3 142 97.4 146 100 151 103 156 107; 160 110 165 113 169
88.2 132 90.6 136 93.0 140 95.4 143 97.8 147 100 151 103 154
80.7 121 82.4 124 84.2 127 85.9 129 87.7 132 89.4 134 . 91.2 137
ASO
£21, = 1.67
LRro
= 0.90
=1 n = distance from top of the steel beam to plastic neuttal axis
!> Yl = distance from top of the steel beam to concrete flange force
" See Rgure 3-3c for PNA locations.
AMERICAN INSTITUTE OF STEEL CoNsTrucTIOn

3-190 DESIGN OF FLEXURAL MEMBERS
W10
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Fv = 50 ksi
Shape
Mp/dn
PNA=
K1« tOn
Y2>>, in.
Shape kip-ft PNA=
K1« tOn
2 2.5 3 3.5 Shape
ASO LRFD
PNA=
in. kip ASD- LRFD ASD LRFD ASD LRFD ASO LRFD
W10x17 . 46.7 70.1. TFL 0 250 .B7.8 132 94:0 141.' 100 151 ' 106 ,1 160
2 0:0825 216 '84.4 127 89.8 135 95.2 143- 101 151
3 0.165 183 80.9 122 85.5 128 ' '90,0 135 •94.6 142
4 0.248 150 77.2 116: 81.0 122 84,7 127 •88.5 133
BFL 0:330 117 c73.5 110 .76.4 115 -79,3 119 124
6 1.31 89.8 69.7 105 71,9 108 : 74.2 111 >6,4 115
7 2,45 62.4 64.4 96:8 65.9 99,1 • 6V.5 101 69,1 104
W10X15 39.9 60.0 TFL 0 221 77.0 116 82,5 124 88.0 132 • , 93,5 140
2 0.0675 194 •74.2 112 79.1 119 . •;83.9 126 88.7 133
3 0.135 167 -71.4 107 75.6 114 79.7 120 83.9 126
4 0.203 140 68.5 103 72.0 108 .. 75.5 113 78.9 119
BFL 0i270: 113 •65.5 98.4 ••68.3 103 71.1 107 73.9 111
6 1.35 83.8 .•61^ 92,5 63.6 95:6' 65.7 98.7 67,8 102
7 2.60 55.1 ,S5.8 83.9 57.2 86:0 58.6 88.0 59.9 90.1
W10X12 • 31.2 46.9 TFL 0 177 •.61.? 92.1 65,7 98.7 ;70.1 105 74.5 112
2 0:0525 156 •59.1 88.9 •63:0 94.8 •,-66.9 100 70.8 106
3 0.105 135 57.0 85.7 60,4. 90.7 ,^3.7 95.8 •67.1 101
4 0.158 115 ••54.8. 82,4 57.7 86.7 ,j6'0.5 91.0. 95.3
BFL 0.210 93.8 152.5 78.9 "54.9 82.4 J57.2 86.0 .'69.5 89.5
6 1.30 69.0 49r2 73,9 50.9 76.5 '52.6 79.1 ^54.4 81.7
7 2.61 44.3 .44.3 66.6 45.4 68.2 : 146.5' 69.9 47.6 71.5
^ , i '
r:
; J
* i i
i ..
i-
1 'ifiSS 1 WfSf
lifssf^
ASD
Q4=i.e7
LRFD
(])4=0.90
' Kl = distance from top ofrthe steel beam to plastic neutral axis:
!> Y2 = distance from top of. the steel team to concrete flange force.
' See Figure 3-3c for PNA locations.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-191
Fy = 50 ksi
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft W10
Shape
W10X17
W10x15
W10X12
Kahili,
ASD LRFD
113.0
106
99.2
92.2
85.2
78.6
70.6
99.0
93.5
88.0
82.4
76.7
69.9
61.3
78.9
74.7
70.5
66,2
61.9
56.1
48.7
LRFD
4 = 1.67 416=0.90
169.0
159
149
139
128
118
106
149
141
132
124
115
105
92.2
119
112
106
99.6
93.0
84.3
73.2
4.5
ASO
Ill
104-
96.0
88.1
80.9
72.2
104
98.4:
92.2
, 85.9
79.5
72.0
62.7
83.3
78.6
73.9
69.1:
64.2
57.8
49.8
LRFD
179.0
167
156
144
132
122
108
157
148
139
129
120
108
94.2
125
118
111 .
104:
96.5
86.9
,74.9
ASO
125.0
117
108
99.7
91.0
83.1
73.7
110
103
96.3
89.4
82.3
74.1
64,1
87.7
82.5
77.3
72.0
66.6
59.5
50.9
LRFD
188.0
176
163
150
137
125
111
165
155
145
134
124
111
96.3
132
124
116
108
100
89.5
76.5
5.5
ASD
131.0
122
113
103
93.9
85:4
,75.3
115
108
100
92,9
85.2
76.2
65.4
92.2
86.4
80.6
74.8
68.9
61.2
52.0
LRFD
197.0
184
170
156
141
128
113
174
162,
151
140
128 >
114
98.3
139
130
121
112
104
,92.1
78.2
ASD
138.0
128
117
107
96.8
87.6
76.8
121
113
105
96.4
88.0
78.2
66.8
96.6
90.3
84.0
77.7
71.2
63.0
53.1
LRFD
207.0
192
177
161
146
132
115
182
170
157
145
132
118
100
145
136
126
117
107
94.6
79.8
6.5
ASD LRFD
144,0
133
122
111
99.«
89.8
78.4
126
118
109
99:8
90.8
80.3
68.2
101
94.2
87.4
80.6
73.6
64.7
.54.2
I • •••
216.0
200
183
167
150
135
118
190
177
164
150
136
121
102
152-
142
131
121
111
97.2
81.5
ASP LRFO
150:0
m>
127
115
103
i92.1
80.0
132;
123
^13
103
93.6
62.
696
105
,98.1
90.8
83
;75.9
66.4
55.3
225.0
208
190
172
154
138
120
198
184
170
155
141
124
105
158
147
136
125
114
99.8
83.2
i
« n » distance from top of the steel beam to plastic neutral axis
" YZ = distance from top of ttie steel beam to concrete flange force
' See Hgure 3-3c for PNA tocations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-192 DESIGN OF FLEXURAL MEMBERS
L LB
W40
Table 3-20
Lower-Bound
Elastic Moment of
Inertia, Ilbi for Plastic
Composite Sections
Fy = 50ksi
Shape" PNA'
ri' 10„ KZ^in.
Shape" PNA'
in. kip 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
W40x297 TFL 0; 4370 44100 45100 46100 47100 48100 49200 50300 51400 52500 53600 54800
(23200) 2 0.413 3710 42400 43300 44200 45200 46100 47100 48100 49100 50100 51200 52200
3 0.825 3060 40500 41300 42100 42900 43800 44600 45500 46400 47300 48300 49200
4 1.24 2410 38100 38800 39500 40200 40900 41700 42500 43200 44000 44800 45700
BFL 1.65 1760 35200 35800 36400 36900 37500 38100 38800 39400 40000 40700 41400
6 4.58 1420 33500 34000 34400 34900 35400 36000 36500 37000 37600 38100 38700
7 8.17 1090 31600 32000 32300 32800 33200 33600 34000 34500 34900 35400 35800
W40x294 TFL 0 4310 43100 44100 45100 46100 47100 48200 49300 50400 51500 52600 53800
(21900) 2 0.483 3730 41600 42500 43400 44400 45300 46300 47300 48300 49400 50400 51500
3 0.965 3150 39800 40700 41500 42300 43200 44100 45000 45900 46900 47800 48800
4 1.45 2570 37800 38500 39200 40000 40800 41500 42300 43200 44000 44900 45700
Ba 1.93- 1990 35300 35900 36600 37200 37800 38500 39200 39900 40600 41300 42000
6 5.71 1540 33100 33600 34100 34600 35200 35700 36300 36900 37500 38100 38700
7 10.0 1080 30400 30800 31200 31600 32000 32400 32900 33300 33800 34200 34700
W40x278 TFL 0 4120 40600 41500 42500 43400 44400 45400 46400 47500 48500 49600 50700
(20500) 2 0.453 3570 39200 40000 40900 41800 42700 43600 44600 45600 46500 47600 48600
3 0.905 3030 37500 38300 39100 39900 40800 41600 42500 43400 44300 45200 46100
4 1.36 2490 35700 36300 37100 37800 38500 39300 40000 40800 41600 42500 43300
Ba 1.81 1940 33400! 34000 34600 35200 35800 36500 37100 37800 38500 39200 39900
6 5.67 1490 31200 31700 32200 32700 33200 33700 34300 34800 35400 36000 36600
7 10.1- 1030 28500 28900 29300 29700 30100 30500 30900 31300 31700 32200 32600
W40x277 Ta 0' 4080 41400 42300 43200: 44100 45100 46100 47100 48100 49100 50200 51300
(21900) 2 0.395 3450 39700 40600 41400 42300 43200 44100 45000 45900 46900 47800 48800
3 0,790 2830 37800 38600 39300 40100 40900 41700 42500 43400 44200 45100 46000
4 1.19 2200 35500 36200 36800 37500 38200 38800 39500 40300 41000 41700 42500
BFL 1.58 1580 32800 33300 33800 34300 34900 35400 36000 36500 37100 37700 38300
6 4.20 1300 31300 31700 32200 32600 33100 33600 34100 34600 35100 35600 36100
7 7.58 1020 29700 30100 30400 30800 31200 31600 32000 32400 32800 33200 33700
W40X264 TFL 0 3870 38100 39000 '39900 40800 41700 42600 43600 44600 45600 46600 47600
(19400) 2 0.433 3360 36800 37600 38400 39300 40100 41000 41900 42800 43700 44700 45600
3 0.865 2840 35300 36000 36700 37500 38300 39100 39900 40700 41500 42400 43300
4 1.30 2330 33500 34100 34800 35500 36200 36900 37600 38300 39100 39800 40600
BFL 1.73 1810 31300 31900 32400 33000 33600 34200 34800 35400 36100 36700 37400
6 5.53 1390 29300 29800 30200 30700 31200 31700 32200 32700 33200 33800 34300
7 9.92 968 26900 27200 27600 28000 28300 28700 29100 29500 29900 30300 30700
=1 M = distance from top of ttie steel beam to plastic neutral axis .
fc YZ = distance from fop of ffie steel l)eam to concrete flange fdnce
" See Figure 3-3c for PNA locations.
Value in parentheses is (in.'") of noncomposite steel s/iape.
AMERICAN INSTIRIRRE OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-193
Table 3-20 (continued)
Lower-Bound
Fy = 50 ksi Elastic Moment of
Inertia, /LB, for Plastic
Composite Sections
L LB
W40
Ch^anctd
K1' j^o.in.
Ch^anctd DMAC
K1'
rrirt*'
in. kip 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
W40X249 TFL 0 3680 36900 37700 38500 39400 40300 41100 42000 43000 43900 44800 45800
(19600) 2 0.355 3110 35500 36200 37000 37700 38500 39300 40200 41000 41900 42700 43600
3 0.710 2550 33800 34400 35100 35800 36500 37200 38000 38700 39500 40300 41100
4 1.07 1990 31800 32300 32900 33500 34100 34700 35400 36000 36700 37300 38000
BFL 1.42 1430 29300 29700 30200 30700 31200 31700 32200 32700 33200 33700 34300
6 4.03 1180 28000 28400 28800 29200 29600 30100 30500 30900 31400 31900 32300
7 7.45 919 26500 26800 27200 27500 27900 28200 28600 28900 29300 29700 30100
W40X235 TFL 0 3460 33900 34700 35500 36300 37100 37900 38800 39600 40500 41400 42300
(17400) 2 0.395 2980 32700 33400 34100 34800 35600 36400 37200 38000 38800 39600 40500
3 0.790 2510 31300 31900 32600 33300 33900 34600 35400 36100 36800 37600 38400
4 1.19 2040 29600 30200 30800 31400 32000 32600 33200 33900 34500 35200 35900
BFL 1.58 1570 27700 28200 28700 29200 29700 30200 30700 31300 31800 32400 33000
6 5.16 1220 26000 26400 26800 27200 27700 28100 28500 29000 29400 29900 30400
7 9.44 864 24000 24300 24600 24900 25300 25600 25900 26300 26600 27000 27400
W40X215 TFL 0 3180 31400 32100 32800 33500 34200 35000 35800 36600 37400 38200 39000
(16700) 2 0:305 2690 30200 30800 31400 32100 32800 33500 34200 34900 35600 36400 37200
3 0.610 2210 28700 29300 29900 30500 31100 31700 32300 33000 33600 34300 35000
4 0.915 1730 27100 27500 28000 28500 29100 29600 30100 30700 31300 31800 32400
BFL 1.22 1250 25000 25400 25800 26200 26600 27000 27500 27900 28400 28800 29300
- 6 3.80 1020 23800 24200 24500: 24900 25200 25600 26000 26300 26700 27100 27500
7 7.29 794 22600 22800 23100 23400 23700 24000 24300 24600 25000 25300 25600
W40XZ11 TFL 0 3110 30100 30800 31500 32200 33000 33700 34500 35200 36000 36800 37700
(15500) 2 0.355 2690 29100 29700 30400 31000 31700 32400 33100 33800 34500 35300 36100
3 0.710 2270 27800 28400 29000 29600 30200 30900 31500 32200 32800 33500 34200
4 1.07 1850 26400 26900 27400 28000 28500 29100 29600 30200 30800 31400 32000
BFL 1.42 1430 24700 25200 25600 26000 26500 27000 27400 27900 28400 28900 29500
6 5,00 1100 23100 23500 23900 24200 24600 25000 25400 25800 26200 26700 27100
7 9.35 776 21300 21600 21900 22200 22500 22800 23100 23400 23700 24000 24400
W40X199 TFL 0 2940 28300 28900 29600 30300 30900 31600 32300 33100 33800 34500 35300
(14900) 2 0.268 2520 27300 27900 28500 29100 29700 30300 31000 31700 32300 33000 33700
3 0.535 2090 26000 26600 27100 27700 28200 28800 29400 30000 30600 31200 31900
4 0.803 1670 24600 25100 25500 26000 26500 27000 27500 28100 28600 29100 29700
sa 1.07 1250 22900 23300 23700 24100 24500 24900 25300 25700 26200 26600 27100
6 4.09 992 21700 22000 22300 22600 23000 23300 23700 24100 24400 24800 25200
7 8.04 735 20300 20500 20800 21000 21300 21600 21900 22200 22500 22800 23100
" K1 = distance from top of the steel beam to plastic neutral axis
' YZ - distance from top of ttie steel beam to concrete flange force
' See Figure 3-3c for PNA locations.
'' Value in parentheses is (in.'') of noncomposite steel shape.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-194 DESIGN OF FLEXURAL MEMBERS
L LB
W40-W36
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, /LB, for Plastic
Composite Sections
Fy = 50 ksi
I0„ ra"". in.
Ch^nad DM Ac
onape"
in. kip 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
W40X183 TFL 0 2670 25500 26100 26700 27300 27900 28600 29200 29900 30500 31200 31900
(13200) 2 0.300 2310 24600 25200 25700 26300 26900 27500 28100 28700 29300 29900 30600 (13200)
3 0.600 1960 23600 24100 24600 25100 25700 26200 26800 27300 27900 28500 29100
4 0.900 1600 22400 22900 23300 23800 24200 24700 25200 25700 26200 26700 27200
BFL 1.20 1250 21100 21400 21800 22200 22600 23000 23400 23800 24300 24700 25200
6 4.77 958 19700 20000 20300 20700 21000 21300 21700 22000 22400 22700 23100
7 9.25 666 18100 18400 18600 18800 19100 19300 19600 19900 20100 20400 20700
W40X167 TFL 0 2470 22800 23300 23900 24400 25000 25600 26200 26800 27400 28000 28700
(11600) 2 0.258 2160 22000 22500 23000 23600 24100 24600 25200 25800 26300 26900 27500
3 0.515 1860 21200 21700 22100 22600 23100 23600 24100 24600 25200 25700 26300
4 0.773 1550 20200 20600 21100 21500 21900 22400 22800 23300 23800 24300 24800
BFL 1.03 1250 19100 19500 19800 20200 20600 21000 21400 21800 22200 22600 23100
6 4.95 933 17700 18000 18300 18600 T8900 19300 19600 19900 20300 20600 21000
7 9.82, 616 16100 16300 16500 16700 17000 17200 17400 17700 17900 18200 18400
W40x149 TFL , 0 2190 19600 20000 20500 21000 21500 22000 22500 23100 23600 24200 24700
(9800) 2 0.208 1950 19000 19400 19900 20300 20800 21300 21800 22300 22800 23300 23900
3 0.415 1700 18300 18700 19100 19600 20000 20500 20900 21400 21900 22300 22800
4 0.623 1460 17600 18000 18400 18700 19100 19600 20000 20400 20800 21300 21700
BFL 0.830 1210 16700 17100 17400: 17800 18100 18500 18900 19200 19600 20000 20400
^ 6 5.15 879 15400 15700 15900 16200 16500 16800 17100 17400 17700 18000 18300
7 10.4 548 13700 13900 14100 14300 14500 14700 1,4900 15100 15300 15500 15800
W36X302 TFL 0 4450 40100 41000 42000 42900 43900 44900 46000 47100 48100 49200 50400
(21100) 2 0,420 3750 38500 39300 40200 41100 42000 42900 43900 44800 45800 46800 47900
3 0.840 3050, 36500 37300 38100 38900 39700 40500 41300 42200 43100 44000 44900
4 1.26 2350 34200 34900 35500 36200 36900 37600 38300 39000 39800 40600 41300
BFL 1.68 1640 31300 31800 32300 32900 33400 33900 34500 35100 35700 36300 36900
6 4.06 1380 30100 30500 31000 31400 31900 32400 32900 33400 33900 34400 35000
7 6.88 1110 28700 29000 29400 29800 30200 30600 31000 31500 31900 32300 32800
W36x282 TFL 0 4150 37100 38000 38900 39800 40700 41600 42600 43600 44600 45600 46700
(19600) 2 0.393 3490 35600 36400 37200 38000 38900 39700 40600 41500 42400 43400 44300
3 0.785 2840 33800 34500 35300 36000 36700 37500 38300 39100 39900 40800 41600
4 1.18 2190 31700 32300 32900 33500 34200 34800 35500 36200 36900 37600 38300
BFL 1.57 1540 29100 29600 30000 30500 31000 31500 32100 32600 33100 33700 34300
6 4.00 1290 27900 28300 28700 29200 29600 30100 30500 31000 31500 31900 32400
7 6.84 1040 26600 27000 27300 27700 28100 28400 28800 29200 29600 30000 30500
a n = distance from top of the steel beam to plastic neutral axis
>1 Y2 = distance from top of the steel beam to concrete flange force
See Figure 3-3c for PNA locaUons.
" Value In parentheses is (in "") of noncomposite steel shape.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-195
Fv = 50 ksi
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
inertia, ILB, for Plastic
Composite Sections
I, LB
W36
Chanod
na
IQn Y2K in.
Chanod PUAC
na
IQn
oiiape" oiiape"
in. kip 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
W36x262 TFL 0 3860 34000 34800 35700 36500 37400 38200 39100 40000 41000 41900 42900
(17900) 2 0.360 3260 32700 33400 34200 34900 35700 36500 37300 38200 39000 39900 40800
3 0.720 2660 31100 31700 32400 33100 33800 34500 35200 36000 36700 37500 38300
4 1.08 2070 29200 29700 30300 30900 31500 32100 32700 33400 34000 34700 35400
BFL 1.44 1470 26800 27200 27700 28200 28600 29100 29600 30100 30600 31200 31700
6 3.96 1220 25700 26000 26400 26800 27200 27700 28100 28500 29000 29400 29900
7 6.96 965 24400 24700 25000 25300 25700 26000 26400 26800 27100 27500 27900
W36X256 Ta 0 3770 32900 33700 34500 35400 36200 37100 38000 38900 39800 40700 41700
(16800) 2 0.433 3240 31700 32500 33200 34000 34700 35500 36400 37200 38000 38900 39800
3 0.865 2710 30300 31000 31600 32300 33000 33800 34500 35300 36000 36800 37600
4 1.30 2180 28600 29200 29800 30400 31000 31700 32300 33000 33600 34300 35000
BFL 1.73 1650 26600 27100 27600 28100 28600 29100 29700 30200 30800 31400 32000
6 5.18 1300 25t00 25500 25900 26300 26800 27200 27700 28100 28600 29100 29600
7 8.90 941 23300 23600 23900 24200 24600 24900 25300 25600 26000 26400 26700
W36X247 TFL 0 3630 31700 32500 33200 34000 34800 35600 36500 37300 38200 39100 40000
(16700) 2 0.338 3070 30500 31200 31900 32600 33300 34100 34800 35^0 36400 37200 38100
3 0.675 2510 29000 29600 30200 30900 31500 32200 32900 33600 34300 35000 35800
4 1,01 1950 27200 27700 28300 28800 29400 29900 30500 31100 31700 32400 33000
BFL 1.35 1400 25100 25S00 25900 26300 26800 27200 27700 28200 28700 29200 29700
6 3.95 1150 23900 24300 24700 25000 25400 25800 26200 26600 27100 27500 27900
7 7.02 906 22700 23000^ 2330Q 23600 23900 24300 24600 24900 25300 25700 26000
W36X232 ra 0 3400 29400 30100 30800 31500 32300 33100 33900 34700 35500 36300 37200
(15000) 2 0.393 2930 28300 28900 29600 30300 31000 31700 32500 33200 34000 34800 35500
3 0.785 2450 27000 27600 28200 28800 29500 30100 30800 31500 32200 32900 33600
4 1.18 1980 25600 26100 26600 27200 27700 28300 28900 29500 30100 30700 31300
BFL 1,57 1500 23800 24200 24700 25100 25600 26100 26500 27000 27500 28100 28600
6 5.04 1180 22400 22800 23100 23500 23900 24300 24700 25100 25600 26000 26400
7 8,78 850 20700 ,21000 21300 21600 21900 22200 22500 22900 23200 23500 23900
W36X231 ra 0 3410 29600 30300 31000 31700 32500 33200 34000 34800 35700 36500 37300
(15600) 2 0,315 2890 28400 29100 29700 30400 31100 31800 32500 33200 34000 34800 35500
3 0,630 2370 27100 27600 28200 28800 29400 30100 30700 31400 32000 32700 33400
4 0,945 1850 25400 25900 26400 26900 27500 28000 28600 29100 29700 30300 30900
BFL 1.26 1330 23400 23800 24200 24700 2510Q 25500 25900 26400 26900 27300 27800
6 3;88 1090 22400 22700 23100 23400 23800 24100 24500 24900 25300 25700 26100
7 7.03 853 21200 21500 21800 22100 22400 22700 23000 23300 23600 24000 24300
' n = distance from top of the steel beam to plastic neutral axis
'' Y2 - distance from top of the steel beam to concrete flange force
; See Figure 3-3c for PNA locations.
' Value in parentheses is h (in.'*) of noncomposite steel shape.
i
AMERICAN INSTRRINRB OF STEEL CONSTRUCTION

3-196 DESIGN OF FLEXURAL MEMBERS
I LB
\N36
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, Ilb^ for Plastic
Composite Sections
Fv = 50 ksi
Qhonad
1Q« Keb in.
Qhonad DM Ac
1Q«
diidpe" rNA''
in. kip 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
W36X210 TFL 0 3100 26000 26700 27300 28000 28700 29400 30100 30800 31600 32300 33100
(13200) 2 0.340 2680 25100 25700 26300 26900 27500 28200 28900 29500 30200 30900 31700
•3 0.680 2270 24000 24600 25100 25700 26300 26900 27500 28100 28700 29400 30000
4 1.02 1850 22800 23300 23800 24300 24800 25300 25800 26400 26900 27500 28100
BFL 1.36 1440 21300 21700 22200 22600 23000 23500 23900 24400 24900 25300 25800
6 5.04 1100 19900 20300 20600 20900 21300 21700 22000 22400 22800 23200 23600
7 9,03 774 18300 18600 18800 .19100 19400 19700 20000 20200 20500 20800 21200
W36X194 TFL 0 2850 23800 24400 25000 25600 26200 26900 27500 28200 28900 29600 30300
(12100) 2 0.315 2470 23000 23500 24100 24600 25200 25800 26400 27000 27700 28300 29000
3 0.630 2090 22000 22500 23000 23500 24000 24600 25100 25700 26300 26900 27500
4 0.945 1710 20900 21300 21800 22200 22700 23200 23700 24200 24700 25200 25700
BFL 1,26 1330 19500 19900 20300 20700 21100 21500 21900 22300 22800 23200 23700
6 4,93 1020 18300 18600; 18900 19200 19500 19900 20200 20600 20900 21300 21700
7 8.94 713 16800 17000 17300^ 17500 17700 18000 18300 18500 18800 19100 19400
W36x182 TFL 0 2680 22200 22700 23300 23900 24400 25000 25700 26300 26900 27600 28300
(11300) 2 0.295 2320 21400 21900 22400 23000 23500 24100 24600 25200 25800 26400 27000
3 0.590 1970 20500 21000 21500 21900 22400 22900 23500 24000 24500 25100 25700
4 0.885 1610 19500 19900 20300 20700 21200 21600 22100 22600 23000 23500 24000
BFL : 1.18 1250 18200 18600 18900 19300 19700: 20000: 20400 20800 21200 21700 22100
6 4.89 961 17000 17300 17600 17900 18200 18600 18900 19200 19600 19900 20200
7 8.91 670 15700 15900 16100 16300 16600 16800 17000 17300 17600 17800 18100
W36X170 TFL 0 2500 20600 21100 21600 22200 22700 23300 23800 24400 25000 25600 26300
(10500) 2 0.275 2170 19900 20400 20800 21300 21800 22400 22900 23400 24000 24600 25100
3 0,550 1840 19100 19500 19900 20400 20900 21300 21800 22300 22800 23300 23900
4 0.825 1510 16100 18500 18900 19300 19700 20100 20500 21000 21400 21900 22400
BFL 1.10 1180 17000 17300 17600 18000 18300 18700 19100 19400 19800 20200 20600
6 4.83 903 15900 16100 16400 16700 17000 17300 17600 17900 18200 18500 18900
7 8.91 625 14500 14700 15000 15200 15400 15600 15800 16100 16300 16600 16800
W36x160 TFL 0 2350 19200 19600 20100 20600 21100 21700 22200 22700 23300 23900 24400
(9760) 2 0.255 2040 18500 18900 19400 19900 20300 20800 21300 21800 22300 22900 23400
3 0.510 1740 17800 18200 18600 19000 19400 19900 20300 20800 21300 21800 22300
4 0.765 1430 16900 17200 17600 18000 18400 18800 19200 19600 20000 20400 20900
BFL 1.02 1130 15900 16200 16500 16800 17100 17500 17800 18200 18600 18900 19300
6 4.82 857 14800 15000 15300 15600 15800 16100 16400 16700 17000 17300 17600
7 8.96 588 13500 13700 13900 14100 14300 14500 14700 15000 15200 15400 15600
a K1 = distance from top of ttie steel beam to plastic neutral axis
" Y2 = distance from top of the steel beam to concrete flange force
See Figure 3-3c for PNA locations.
1 Value in parentheses is (in.'*) of noncomposite steel shape.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-197
Fy = 50 ksi
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, Ilb, for Plastic
Composite Sections
L LB
W36.W33
Chanod
na
lOn YlK in.
Chanod PMflC
na
dnape**
kip
dnape**
in. kip 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
W36x150 TFL 0 2220 17900 18300 18800 19200 19700 20200 20700 21200 21800 22300 22800
(9040) 2 0.235 1930 17200 17700 18100 18500 19000 19400 19900 20400 20900 21400 21900
3 0.470 1650 16600 16900 17300 17700 18200 18600 19000 19400 19900 20300 20800
4 0.705 1370 15800 16100 16500 16800 17200 17600 18000 18300 18800 19200 19600
BFL 0.940 1090 14900 15200 15500 15800 16100 16400 16700 17100 17400 17800 18100
6 4.82 820 13800 14000 14300 14500 14800 15100 15300 15600 15900 16200 16500
7 9.09 554 12600 12700 12900 13100 13300 13500 13700 13900 14100 14300 14600
W36x135 TFL 0 2000 15600 16000 16400 16900 17300 17700 18200 18600 19100 19600 20100
(7800) 2 0.198 1760 15100 15500 15900 16300 16700 17100 17500 18000 18400 18800 19300
3 0.395 1520 14600 14900 15300 15600 16000 16400 16800 17200 17600 18000 18400
4 0.593 1280 13900 14200 14500 14900 15200 15600 15900 16300 16600 17000 17400
BFL 0.790 1050 13200 13500 13800 14000 14300 14600 15000 15300 15600 15900 16300
6 4.92 773 12200 12400 12600 12900 13100 13300 13600 13800 14100 14400 14700
7 9.49 499 10900 11100 11300 11400 11600 11800 11900 12100 12300 12500 12700
W33X221 TFL 0 3270 24600 25300 25900 26600 27200 27900 28600 29400 30100 3q900 31600
(12900) 2 0.320 2760 23600 24200 24800 25400 26000 26700 27300 28000 28700 29300 30100
3 0.640 2250 22500 23000 23500 24000 24600 25200 25700 26300 26900 27500 28200
4 0.960 1750 21100 21500 22000 22400 22900 23400 23900 24400 24900 25400 26000
BFL 1.28 1240 19400 19700 20100 20400 20800 21200 21600 22000 22400 22800 23200
6 3.67 1030 18500 18800 19100 19400 19800 20100, 20400 20800 21100 21500 21900
7 6.42 816 17600 17800 18100 18400 18600 18900 19200 19500 19800 20100 20400
.W33X201 TFL 0 2960 22100 22700 23300 23800 24500 25100 25700 26400 27000 27700 28400
(11600) 2 0.288 2500 21200 21700 22300 22800 23400 23900 24500 25100 25700 26400 27000
3 0.575 2050 20200 20700 21100 21600 22100 22600 23200 23700 24200 24800 25400
4 0.863 1600 19000 19400 19800 20200 20600 21100 21500 22000 22400 22900 23400
BFL 1.15 1150 17500 17800 18100 18500 18800 19100 19500 19900 20200 20600 21000
6 3.65 944 16700 17000 17200 17500 17800 18100 18400 18700 19100 19400 19700
7 6.52 739 15800 16000 16300 16500 16700 17000 17200 17500 17800 18000 18300
W33X169 TFL 0 2480 18100 18600 19100 19600 20100 20600 21200 21700 22300 22900 23400
(9290) 2 0.305 2120 17400 17900 18300 18800 19300 19700 20200 20700 21300 21800 22300
3 0.610 1770 16700 17100 17500 17900 18300 18700 19200 19600 20100 20600 21100
4 0.915 1420 15700 16100 16400 16800 17200 17600 17900 18300 18800 19200 19600
BFL 1,22 1070 14600 14900 15200 15500 15800 16100 16500 16800 17100 17500 17800
6 4.28 845 13800 14000 14300 14500 14800 15100 15300 15600 15900 16200 16500
7 7.66 619 12800 13000 13200 13400 13600 13800 14000 14300 14500 14700 14900
' Kl = distance from top of the steel beam to plastic neutral axis
' = distance from lop of the steel beam to concrete flange force
" See Figure 3-3c for PNA locations.
Value in parentfieses is Ix (in.'') of noncomposite steel shape.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-198 DESIGN OF FLEXURAL MEMBERS
LB
W33-W30
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, /te, for Plastic
Composite Sections
Fy = 50 ksi
Shape<< PNAo
Kl' I0„ V^'.in.
Shape<< PNAo
in. kip 2 2,5 3 3.5 4 45 5 5.5 6 6.5 7
W33X152 TFL 0 2250 16100 16500 16900 17400 17800 18300 18800 19300 19800 20300 20800
(8160) 2 0.265 1940 15500 15900 16300 16700 171,00 17600 18000 18500 18900 19400 19900
3 0.530 1630 14800 15200 15500 15900 16300 16700 17100 17500 17900 18400 18800
4 0.795 1320 14000 14300 14600 15000 15300 15700 16000 16400 16800 17100 17500
BFL 1.06 1020 13100 13400 13600 13900 14200 14500 14800 15100 15400 15700 16100
6 4.34 788 12300 12500 12700 12900 13200 13400 13700 13900 14200 14500 14700
7 7.91 561 11300 11500 11700 11800 12000 12200 12400 12600 12800 13000 13200
W33X141 TFL 0 2080 14700 15100 15500 15900 16300 16700 17200 17600 18100 18600 19100
(7450) 2 0.240 1800 14200 14500 14900 15300 15700 16100 16500 16900 17300 17800 18200
3 0.480 1520 13600 13900 14200 14600 14900 15300 15700 16100 16500 16900 17300
4 0.720 1250 12900 13200 13500 13800 14100 14400 14800 15100 15500 15800 16200
BFL 0.960 971 12100 12300 12600 12800 13100 13400 13700 13900 14200 14500 14800
6 4.34 745 11300 11500 11700 11900 12100 12400 12600 12800 13100 13300 13600
7 8.08 519 10300 10500 10700 10800 11000 11200 11300 11500 11700 11900 12100
W33X130 TFL 0 1920 13300 13700 14000 14400 14800 15200 15600 16000 16500 16900 17300
(6710) 2 0.214 1670 12800 13200 13500 13900 14200 14600 15000 15400 15800 16200 16600
3 0.428 1420 12300 12600 12900 13300 13600 13900 14300 14600 15000 15400 15800
4 0.641 1180 11700 12000 12300 12600 12900 13200 13500 13800 14100 14500 14800
BFL 0.855 932 11000 11300 11500 11800 12000 12300 12500 12800 13100 13400 13700
6 4.39 705 10300: 10500 10600 10900 11100 11300 11500 11700 12000 12200 12400
7 8.30 479 9350: 9490 9640 9790 9950 10100 10300 10400 10600 10800 11000
W33x118 TFL 0 1740 11800 12100 12500 12800 13200 13500 13900 14300 14700 15100 15500
(5900) 2 0.185 1520 11400 11700 12000 12300 12700 13000 13400 13700 14100 14400 14800
3 0.370 1310 11000 11300 11500 11800 12100 12500 12800 13100 13400 13800 14100
4 0.555 1100 10500 10700 11000 11300 11500 11800 12100 12400 12700 13000 13300
BFL 0.740 884 9890 10100 10300 10600 10800 11000 11300 11500 11800 12100 12300
6 4.47 659 9150 9330 9510 9700 9890 10100 10300 10500 10700 10900 11200
7 8.56 434 8260 8390 8530 8660 8800 8950 9090 9250 9400 9560 9720
W30X116 TFL 0 1710 9870 10200 10500 10800 11100 11400 11800 12100 12500 12800 13200
(4930) 2 0.213 1490 9530 9810 10100 10400 10700 11000 11300 11600 12000 12300 12600
3 0.425 1260 9120 9370 9630 9900 10200 10400 10700 11000 11300 11600 12000
4 0.638 1040 8670 8890 9120 9360 9600 9850 10100 10400 10600 10900 11200
BFL 0.850 818 8130 8320 8520 8720 8920 9140 9360 9580 9810 10000 10300
6 3.98 623 7570 7730 7890 8060 8230 8400 8580 8770 8960 9150 9350
7 7.43 428 6910 7030 7150 7270 7400 7530 7670 7810 7950 8090 8240
a Kl = distance from top of ttie steel beam to plastic neutral axis
" Yi = distance from top of the steel beam to concrete flange force
See Figure 3-3c for PNA locations.
' Value in parentheses is h (in.'') of noncomposite steel shape.
AMERICAN INSTIRIRRE OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-199
Fy = 50 ksi
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, Ilb, for Plastic
Composite Sections
L LB
W30-W27
Qhanod
Kia
I0„ l^". in.
Qhanod PMAC
rNM"
in. kip in. kip 2 2.5 3 3.5 4 4.5 5 5,5 6 6.5 7
W30X108 TFL 0 1590 9000 9280 9560 9840 10100 10400 10800 11100 11400 11700 12100
(4470) 2 0.190 1390 8700 8950 9220 9480 9760 10000 10300 10600 10900 11300 11600
3 0.380 1190 8350 8590 8830 9070 9330 9590 9850 10100 10400 10700 11000
4 0.570 987 7940 8150 8370 8590 8820 9050 9290 9530 9780 10000 10300
BFL 0.760 787 7470 7650 7840 8030 8230 8430 8640 8850 9060 9290 9510
6 4.04 592 6930 7080 7230 7390 7550 7710 7880 8060 8240 8420 8600
7 7.63 396 6280 6390 6500 6620 6730 6850 6980 7110 7240 7370 7510
W3Qx99. TFL 0 1450 8110 8350 8610 8870 9140 9420 9700 9990 10300 10600 10900
(3990) 2 0.168 1270 7830 8070 8300 8550 8800 9060 9330 9600 9880 10200 10500
3 0.335 1100 7540 7760 7980 8200 8440 8670 8920 9170 9430 9690 9960
4 0.503 922 7190 7380 7580 7790 8000 8210 8430 8660 8890 9130 9370
BFL 0.670 747 6790 6960 7130 7310 7490 7680 7880 8070 8280 8480 8700
6 4.19 555 6270 6410 6550 6690 6840 7000 7150 7310 7480 7650 7820
7 7.88 363 5640 5740 5840 5950 6050 6160 6280 6390 6510 q6,40 6760
W30x90 TFL 0 1320 7310 7530 7760 8000 8240 8490 8750 9010 9280 9560 9840
(3610) 2 0.153 1160 7070 7280 7490 7720 7940 8180 8420 8660 8920 9180 9440
3 0.305 998 6790 6990 7190 7390 7600 7820 8040 8260 8500 8730 8980
4 0.458 839 6480 6660 6840 7020 7210 7410 7610 7810 8020 8240 8460
BFL 0.610 681 6130 6280 6440 6600 6760 6940 7110 7290 7470 7660 7850
6 4.01 505 5660 5780 5910 6040 6180 6310 6460 6600 6750 6910 7060
7 7.76 329 5090 5180 5270 5360 5460 5560 5660 5770 5880 5990 6100
W27X102 TFL 0 1500 7250 7480 7730 7980 8240 8510 8780 9060 9350 9650 9950
(3620) 2 0.208 1290 6970 7190 7420 7650 7890 8140 8390 8650 8920 9200 9480
3 0.415 1090 6670 6870 7080 7290 7510 7730 7960 8200 8450 8700 8950
4 0.623 878 6300 6470 6650 6840 7030 7230 7430 7640 7850 8070 8300
BFL 0,830 670 5860 6010 6160 6310 6470 6640 6810 6980 7160 7340 7530
6 3.40 523 5500 5620 5740 5870 6010 6150 6290 6430 6580 6740 6900
7 6.27 375 5070 5170 5260 5360 5470 5570 5680 5800 5910 6030 6150
W27X94 TFL 0 1380 6560 6780 7000 7230 7470 7720 7970 8230 8490 8760 9040
(3270) 2 0.186 1190 6320 6520 6730 6940 7160 7390 7620 7860 8100 8360 8610
3 0.373 1010 6050 6240 6430 6620 6820 7030 7240 7460 7680 7910 8150
4 0.559 821 5730 5890 6060 6230 6400 6590 6770 6970 7160 7370 7580
BFL 0.745 635 5350 5480 5620 5770 5920 6070 6230 6390 6560 6730 6910
6 3.45 490 5000 5110 5230 5350 5470 5600 5730 5870 6010 6150 6290
7 6.41 345 4590 4670 4760 4860 4950 5050 5150 5250 5360 5470 5580
' n = distance from lop of the steel beam to plastic neutral axis
' I'Z = distance from top of tiie steel beam to concrete flange force
See Figure 3-3c for PNA locations.
Value in parenttieses is 4 (in.i) of noncomposite steel shape.
AMERICAN INSTITUTE OF STBEL CONSTRUCTION

3-200 DESIGN OF FLEXURAL MEMBERS
I, LB
W27-W24
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I lb, for Plastic
Composite Sections
Fy = 50 ksi
Shape" PNA'
Kia
lOn KZ", in.
Shape" PNA'
in. kip 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
W27X84- TFL 0 1240 5770 5980 6160 6360 6580 6790 7020 7250 7480 7730 7970
(2850) 2 0.160 1080 5570 5740 5930 6120 6320 6520 6730 6940 7160 7390 7620
3 0.320 915 5330 5490 5660 5830 6010 6200 6390 6590 6790 6990 7200
4 0.480 755 5060 5200 5360 5510 5670 5840 6010 6180 6360 6540 6730
BFL 0.640 595 4740 4870 5000 5130 5270 5410 5550 5700 5860 6010 6180
6 3.53 452 4410 4510 4620 4730 4840 4960 5080 5200 5330 5460 5590
7 6.64 309 4010 4090 4170 4250 4340 4430 4510 4610 4700 4800 4900
W24x94 TFL 0 1390 5480 5680 5880 6100 6320 6550 6780 7020 7270 7530 7790
(2700) 2 0.219 1190 5260 5450 5640 5840 6040 6250 6470 6690 6920 7150 7390
3 0.438 988 5010 5180 5350 5520 5710 5900 6090 6290 6500 6710 6930
4 0.656 790 4710 4860 5010 5160 5320 5490 5660 5830 6010 6200 6390
BFL 0,875 591 4360 4480 4600 4730 4860 5000 5140 5280 5430 5580 5740
6 3.05 469 4100 4200 4310 4420 4530 4640 4760 4880 5010 5140 5270
7 5,43 . 346 3810 3890 3970 4060 4140 4230, 4330 4420 4520 4630 4730
W24X84 TFL 0 1240 4810 4990 5170 5360 5560 5760 5970 6180 6400 6630 6860
(2370) 2 0,193 1060 4620 4790 4950 5130 5310 5490 5690 5880 6090 6300 6510
3 0.385 888 4410 4560 4710 4870 5030 5200 5370 5550 5740 5930 6120
4 0,578 714 4160 4290 4420 4560 4700 4850 5000 5160 5320 5480 5650
BFL 0.770 540 3850 3960 4070 4190 4310 4430 4550 4680 4820 4960 5100
6 3.02 425 3620 3710 3800 3900 4000 41,00 4210 4320 4430 4550 4660
7 5.48 309 3350 3420 3490 3570 3640 3720 3810 3890 3980 4070 4160
W24x76 TFL 0 1120 4280 4440 4600 4770 4950 5130 5320 5510 5710 5910 6120
(2100) 2 0.170 967 4120 4270 4420 4580 4740 4910 5080 5260 5440 5630 5830
3 0.340 814 3930 4070 4210 4350 4500. 4650 4810 4970 5140 5310 5490
4 0.510 662 3720 3840 3960 4090 4220 4350 4490 4630 4780 4930 5090
BFL 0.680 509 3460 3560 3660 3770 3880 3990 4110 4230 4360 4480 4610
6 2.99 394 3230 3320 3400 3490 3580 3680 3770 3880 3980 4080 4190
7 5.59 280 2970 3040 3100 3170 3240 3310 3390 3460 3540 3630 3710
W24x68 TFL 0 1010 3760 3900 4050 4200 4360 4520 4690 4860 5040 5220 5410
(1830) 2 0.146 874 3620 3760 3890 4030 4180 4330 4480 4640 4810 4980 5150
3 0,293 743 3470 3590 3710 3840 3980 4110 4260 4400 4550 4710 4870
4 0,439 611 3290 3390 3510 3620 3740 3860 3990 4120 4250 4390 4530
BFL 0,585 480 3080 3170 3260 3360 3460 3570 3670 3790 3900 4020 4140
6 3,04 366 2860 2930 3010 3090 3180 3260 3350 3450 3540 3640 3740
7 5.80 251 2600 2660 2720 2780 2840 2900 2970 3040 3110 3180 3260
K1 = distance from fop of the steel beam to plastic neutral axis
» y2 = distance from top of tlie steel beam to concrete flange force
See Figure 3-3c for PNA locations.
<1 Value in parentheses is (in.t) of noncomposite steel shape.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-201
Fy = 50ksi
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, /LB, for Plastic
Composite Sections
L LB
W24-W21
DM AC
Kl' IQ.
Sn3pG" rlMM''
kip
Sn3pG"
in. kip 2 2.5 3 3.5 4 4.5 5 5.5 6 6.S 7
W24X62 Ta 0 910 3300 3420 3560 3690 3840 3980 4130 4290 4450 4610 4780
(1550) 2 0.148 806 3190 3310 3440 3560 3700 3840 3980 4120 4270 4430 4590
3 0.295 702 3070 3180 3300 3420 3540 3670 3800 3940 4080 4220 4370
4 0.443 598 2930 3040 3140 3250 3360 3480 3600 3720 3850 3980 4110
BFL 0.590 495 2780 2870 2960 3060 3160 3260 3370 3480 3590 3710 3830
6 3.45 361 2540 2610 2690 2770 2850 2930 3020 3110 3200 3290 3390
7 6.56 228 2250 2300 2350 2410 2470 2520 2590 2650 2710 2780 2850
W24x55^ TFL 0 810 2890 3010 3120 3250 3370 3500 3640 3770 3920 4060 4210
(1350) 2 0.126 721 2800 2910 3020 3140 3250 3380 3500 3630 3770 3900 4050
3 0.253 633 2700 2800 2910 3010 3120 3240 3360 3480 3600 3730 3860
4 0.379 544 2590 2680 2780 2870 2970 3080 3190 3300 3410 3530 3650
BFL 0.505 456 2460 2540 2630 2720 2810 2900 3000 3100 3200 3300 3410
6 3.46 329 2240 2310: 2370 2450 2520 2590 2670 2750 2830 2920 3000
7 6.67 203 1970 2010 2060 2110 2160 2210 2270 2320 2380 2440 2500
W21X73 TFL 0 1080 3310 3450 3590 3740 3900 4060 4220 4390 4570 4750 4940
(1600) 2 0.185 921 3170 3300 3430- 3570 3710 3860 4010 4170 4330 4500 4670
3 0.370 768 3020 3140 3260 3380 3510 3640 3780 3920 4070 4220 4380
4 0.555 614 2840 2940 3050 3150 3270 3380 3500 3630 3750 3890 4020
BFL 0.740 461 2620 2710 2790 2880 2980 3070 3170 3270 3380 3490 3600
6 2.58 365 2470 2540 2610 2680 2760 2840 2930 3010 3100 3190 3290
7 4.69 269 2280 2340 2400 2460 2520 2580 2650 2720 2790 2860 2930
W21X68 TFL 0 1000 3060 3180 3320 3450 3600 3750 3900 4060 4220 4390 4560
(1480) 2 0.171 858 2930 3050 3180 3300 3440 3570 3710 3860 4010 4160 4320
3 0.343 717 2800 2900 3010 3130 3250 3370 3500 3630 3770 3910 4050
4 0.514 575 2630 2720 2820 2920 3030 3130 3250 3360 3480 3600 3730
BFL 0.685 434 2430 2510 2590 2670 2760 2850 2940 3040 3140 3240 3340
6 2.60 342 2280 2350 2420 2490 2560 2630 2710 2790 2880 2960 3050
7 4.74 250 2110 2160 2210 2270 2330 2390 2450 2510 2580 2640 2710
W21X62 TFL 0 915 2760 2880 3000 3120 3250 3390 3530 3670 3820 3970 4130
(1330) 2 0.154 788 2650 2760 2870 2990 3110 3240 3360 3500 3640 3780 3920
3 0.308 662 2530 2630 2730 2840 2950 3060 3180 3300 3420 3550 3680
4 0.461 535 2390 2470 2560 2650 2750 2850 2950 3060 3170 3280 3400
BFL 0.615 408 2210 2280 2360 2440 2520 2600 2690 2770 2870 2960 3060
6 2.54 31S 2070 2130 2190 2260 2320 2390 2460 2540 2610 2690 2780
7 4.78 229 1900 1950 2000 2050 2100 2150 2210 2270 2330 2390 2450
n = distance from top of the steel beam to plastic neutral axis
' KS = distance from top of the steel beam to concrete flange force
= See Figure 3-3c for PNA locations.
^ Value in parentheses is (in.") of noncomposite steel shape.
AMERICAN INSTRRINRB OF STEEL CONSTRUCTION

3-202 DESIGN OF FLEXURAL MEMBERS
LB
W21
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, /LB, for Plastic
Composite Sections
Fy = 50 ksi
ChcknAfl
ri' Z0„ YZK in.
ChcknAfl DM Ac
ri' Z0„
jjiiflpC rNA'' rNA''
in. kip 2 2.5 3 3.S 4 4.5 5 5.5 6 6.5 7
mU57 TFL 0 835 2490 2590 2700 2820 2940 3060 3190 3320 3460 3600 3740
(1170) 2 0.163 728 2400 2490 2600 2710 2820 2930 3050 3170 3300 3430 3570
3 0.325 622 2290 2380 2480 2580 2680 2780 2890 3010 3120 3240 3370
4 0.488 515 2170 2250 2340 2430 2520 2610 2710 2810 2910 3020 3130
BFL 0.650 409 2030 2110 2180, 2250 2330 2410 2500 2580 2670 2770 2860
6 2.93 309 1880 1940 2000 2060 2120 2190 2260 2330 2410 2480 2560
7 5.40 209 1700 1740 1780 1830 1880 1930 1980 2030 2090 2140 2200
W21x55 TFL 0 810 2390 2490 2590 2710 2820 2940 3060 3190 3320 3450 3590
(1140) 2 0.131 703 2300 2390 2490 2590 2700 2810 2930 3040 3160 3290 3420
3 0.261 595 2190 2280 2370 2470 2560 2660 2770 2870 2990 3100 3220
4 0.392 488 2080 2150 2230 2320 2400 2490 2580 2680 2780 2880 2980
BFL 0.522 381 1940 2000 2070 2140 2210 2290 2370 2450 2530 2620 2710
6 2.62 292 1800 1850 1910 1970 2030 2090 2160 2230 2290 2370 2440
7 5,00 203 1640 1680 1720 1770 1810 1860 1910 1960 2010 2070 2120
W21X50 TFL 0 735 2110 2210 2300 2400 2510 2620 2730 2840 2960 3080 3210
(984) 2 0.134 648 2040 2130 2220 2310 2410 2510 2620 2730 2840 2950 3070
3 0.268 560 1960 2040 2130 2210 2300 2400 2490 2590 2690 2800 2910
4 0.401 473 1870 1940 2020 2100 2180 2260 2350 2440 2530 2630 2730
BFL 0.535 386 1760. 1830 1890 1960 2030 2110 2180 2260 2350 2430 2520
6 2.91 285 1620 1670 1720 1780 1840 1900 1960 2020 2090 2160 2230
7, 5.58 184 1440 1470 1510 1550 1590 1640 1680 1730 1780 1820 1880
W21X48 TFL 0 705 2030 2110 2210 2300 2400 2500 2610 2720 2830 2950 3070
(959) 2 0.108 617 1950 2040 2120 2210 2300 2400 2500 2600 2710 2820 293U
3 0.215 530 1870 1950 2030 2110 2200 2280 2380 2470 2570 2670 2770
4 0.323 442 1780 1850 1920 1990 2070 2150 2230 2320 2400 2490 2590
BFL 0.430 355 1670 1730 1790 1860 1920 1990 2060 2140 2210 2290 2370
6 2.71 266 1540 1590 1640 1690 1750 1810 1860 1920 1990 2050 2120
7 5.26 176 1390 1420 1460 1500 1540 1580 1620 1660 1710 1750 1800
W21x44 TFL 0 650 1830 1920 2000 2090 2180 2280 2370 2480 2580 2690 2800
(843) 2 0.113 577 1780 1850 1930 2020 2100 2190 2280 2380 2480 2580 2680
3 0.225 504 1710 1780 1850 1930 2010 2100 2180 2270 2360 2460 2550
4 0.338 431 1630 1700 1770 1840 1910 1990 2060 2150 2230 2310 2400
BFL 0.450 358 1550 1610 1670 1730 1790 1860 1930 2000 2080 2150 2230
6 2.92 260 1410 1460 1500 1560 1610 1660 1720 1780 1840 1900 1960
'7 5.71 163 1240 1270 1310 1340 1380 1420 1460 1500 1540 1580 1630
n = distance from top of ttie steei beam to plastic neutral axis
» n - distance from top of the steel beam to concrete flange force
See Figure 3-3c for PNA locations.
" Value in parentheses is h (in.'') of noncomposite steel shape.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-203
Fy = 50 ksf
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, /LB, for Plastic
Composite Sections
I LB
W18
Qhanod
lOrt Y2K in.
Qhanod PMAC
lOrt
onapc" rWA**
in.
onapc"
in. kip 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
W18X60 TFL- 0 880 2070 2170 2270 2380 2490 2610 2730 2860 2990 3130 3270
(984) 2 0.174 749 1980 2070 2170 2270 2370 2480 2590 2710 2830 2950 3080
3 0.348 617 1880 1960 2050 2140 2230 2330 2430 2530 2640 2750 2860
4 0.521 486 1760 1830 1900 1980 2060 2140 2230 2320 2410 2510 2610
BFL 0.695 355 1610 1660 1720 1790 1850 1920 1990 2060 2140 2220 2300
6 2,18 287 1520 1570 1620 1670 1730 1780 1840 1910 1970 2040 2110
: 7 3.80 220 1420 1460 1500 1540 1590 1640 1680 1730 1790 1840 1900
W18X55 TFL 0 810 1880 1970 2070 2170 2270 2380 2490 2600 2720 2850 2980
(890) 2 0.158 691 1800 1880 1970 2060 2160 2260 2360 2470 2580 2690 2810
3 0.315 573 1710 1790 1860 1950 2030 2120 2210 2310 2410 2510 2620
4 0.473 454 1600 1670 1730 1810 1880 1960 2040 2120 5210 2300 2390
BFL 0.630 336 1470 1520 1580 1640 1700 1760 1830 1900 1970 2040 2110
6 2.15 269 1380 1430 1480 1530 1580 1630 1690 1750 1800 1870 1930
7 3.86 203 1290 1320 1360 1400 1440 1490 1530 1580 1630 1670 1730
W18X50 TFL 0 735 1690 1770 1860 1950 2040 2140 2240 2350 2450 2570 2680
(800)' 2 0.143 628 1620 1700 1780 1860 1940 2030 2130 2220 2320 2430 2530
3 0.285 521 1540 1610 1680 1750 1830 1910 2000 2080 2170 2260 2360
4 0.428 414 1440 1500 1560 1630 1700 1770 1840 1910 1990 2070 2160
BFL 0.570 308 1330 1370 1430 1480 1530 1590 1650 1710 1780 1840 1910
6 2.08 246 1250 1290 1330 1380 1420 1470 1520 1580 1630 1690 1740
7 3.82 184 1160 1190 1220 1260 1300 1340 1380 1420 1460 1510 1550
W18X46 TFL 0 675 1540 1610 1690 1780 1860 1950 2040 2140 2240 2340 2450
(712) 2 0.151 583 1480 1550 1620 1700 1780 1860 1950 2040 2130 2220 2320
3 0.303 492 1410 1470 1540 1610 1680 1760 1840 1920 2000 2090 2180
4 0,454 400 1330 1380 1440 1500 1570 1630 1700 1780 1850 1930 2010
BFL 0.605 308 1230 1280 1330 1380 1430 1490 1550 1610 1670 1730 1800
6 2,42 239 1140 1180 1220 1270 1310 1360 1410 1460 1510 1570 1620
7 4.36 169 1040 1070 1100 1140 1170 1210 1250 1280 1320 1370 1410
W18X40 TFL 0 590 1320 1390 1450 1530 1600 1680 1760 1840 1930 2020 2110
(612) 2 0.131 511 1270 1330 1390 1460 1530 1600 1680 1760 1840 1920 2010
3 0.263 432 1210 1270 1320 1390 1450 1510 1580 1650 1730 1800 1880
4 . 0.394 353 1140 1190 1240 1300 1350 1410 1470 1530 1600 1670 1740
BFL 0.525 274 1060 1100 1150 1190 1240 1290 1340 1390 1450 1510 1560
6 2.26 211 985 1020 1060 1090 1130 1170 1220 1260 1310 1350 1400
7 4.27 148 896 922 950 979 1010 1040 1070 1110 1140 1180 1210
^ yi = distance from top of the steel beam to plastic neutral axis
" Y2 = distance from top of ttie steel beam to concrete flange force
See Figure 3-3c for PNA locations.
Value in parenttieses is Z, (in.') of noncomposite steel stiape.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-204 DESIGN OF FLEXURAL MEMBERS
L LB
W18-W16
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, Ilbj for Plastic
Composite Sections
Fy = 50 ksi
Qhanod
YV I0„ yzi". in.
Qhanod PNAc
YV
Ollapi/'' riMH
in. kip 2 2.5 3 3.5 4 4,5 5 5.5 6 6.5 7
W18x35 TFL 0 515 1120 1170 1230 1300 1360 1430 1500 1570 1650 1720 1800
(510) 2 0.106 451 1080 1130 1190 1240 1300 1370 1430 1500 1570 1640 1720
3 0.213 388 1030 1080 1130 1190 1240 1300 1360 1420 1490 1550 1620
4 0.319 324 978 1020 1070 1120 1170 1220 1270 1330 1390 1450 1510
BFL 0.425 260 917 955 995 1040 1080 1130 1170 1220 1270 1320 1380
6 2.37 194 842 873 906 940 975 1010 1050 1090 1130 1170 1220
7 4.56 129 753 776 800 825 851 878 906 935 965 996 1030
W16x45 TFL 0 665 1260 1330 1400 1470 1550 1630 1720 1810 1900 1990 2090
(586) 2 0.141 566 1200 1270 1330 1400 1470 1550 1630 1710 1790 1880 1970
3 0.283 466 1140 1200 1260 1320 1380 1450 1520 1590 1670 1750 1830
4 0.424 367 1060 1110 1160 1220 1270 1330 1390 1450 1520 1590 1660
BFL 0.565 267 971 1010 1050 1090 1140 1190 1230 1290 1340 1390 1450
6 1.77 217 917 950 986 1020 1060 1100 1140 1190 1230 1280 1330
7 3.23 166 854 882 910 940 972 1000 1040 1070 1110 1150 1190
W16x40 TFL 0 590 1110 1170 1230 1300 1370 1440 1520 1590 1670 1760 1850
(518) 2 0.126 502 1060 1T20 1170 1240 1300 1370 1430 1510 1580 1660. 1740
3 0.253 413 1000. 1050 1110 1160 1220 1280 1340 1400 1470 1540 1610
4 0.379 325 937 980 1030 1070 1120 1170 1230 1280 1340 1400 1460
BFL 0.505 237 856 891 927 965 1000 1050 1090 1130 1180 1230 1280
.6 1.70 192 808 837 869 901 935 971 1010 1050 1090 1130 1170
7 3.16 148 755 779 804 831 859 888 918 949 982 1020 1050
W16X36 TFL 0 , 530 973 1030 1080 1140 1200 1270 1340 1410 1480 1550 1630
(448) 2 0.108 455 933 983 1040 1090 1150 1210 1270 1330 1400 1470 1540
3 0.215 380 886 931 979 1030 1080 1130 1190 1250 1310 1370 1440
4 0.323 305 831 871 912 956 1000 1050 1100 1150 1200 1260 1310
BFL 0.430 229 765 797 831 867 905 944 984 1030 1070 1120 1160
6 1.82 181 715 743 772 802 833 866 901 936 973 1010 1050
7 3.46 133 659 680 703 727 752 778 805 833 862 892 923
W16X31 TFL 0 457 827 874 923 974 1030 1080 1140 1200 1260 1330 1400
(375) 2 0.110 396 795 838 884 931 981 1030 1090 1140 1200 1260 1320
3 0.220 335 758 797 838 882 927 974 1020 1070 1130 1180 1240
4 0.330 274 714 749 786 824 864 906 949 995. 1040 1090 1140
BFL 0.440 213 663 692 723 756 790 825 862 900 940, 982 1020
6. 2.00 164 614 639 664 691 720 749 780 812 845 879 914
7 3,80 114 556 574 594 614 636 658 681 705 730 756 783
a n = distance from top of the steel beam to plastic neutral axis
b Y2 = distance from top of the steel beam to concrete flange force
' See Rgure 3-3c for PNA locations,
ti Value in parentheses is /^lin."*) of noncomposite steel shape.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-205
Table 3-20 (continued)
Lower>Bound
Fy = 50 ksi Elastic Moment of
Inertia, Ilb, for Plastic
Composite Sections
I, LB
W16-W14
® = distance from top of the steel beam to plastic neutral axis
" n = distance from top of the steel beam to concrete flange force
See Figure 3-3c for PNA locations.
'' Value in parentheses is (in.'') of noncomposite steel shape.
Shape« PNAi:
na
XOn V2^ in.
Shape« PNAi:
in. Wp 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
W16x26 TFL 0 384 674 712 753 796 840 887 ^ 935 985 1040 1090 1150
(301) 2 0.0863 337 649 686 724 763 805 849 894 941 990 1040 1090
3 0.173 289 621 654 689 726 764 804 846 889 934 980 1030
4 0.259 242 589 619 651 683 718 754 791 830 ; 871 912 956
BFL 0.345 194 551 577 604 633 663 694 727 760 795 832 869
6 2.05 145 . 505 527 549 572 597 622 649 676 705 734 765
7 4.01 96.0 450 466 482 499 517 535 555 575 596 617 640
W14X38 TFL 0 560 844 896' 951 1010 1070 1130 1200 1270 1340 1410 1490
(385) 2 0.129 473 805 853 903 956 1010 1070 1130 1190 1260 1330 1400
3 0.258 386 759^ 802 847 894 943 995 1050 1100 1160 1220 1290
4 0.386 299 704 741 779 819 861 905 951 999 1050 1100 1150
BFL 0.515 211 636 665 695 726 759 794 830 868 907 948 990
6 1.38 176 604 629 656 683 712 742 774 807 841 877 914
7 2.53 140 568 589 611 634 659 684 710 738 766 • 796 827
W14x34 TFL 0 500 745 791 840 891 945 1000 1060 1120 1190 1250 1320
(340) 2 0.114 423 711 754 798 845 895 946 1000 1060 1110 1180 1240
3 0.228 346 671 709 749 791 835 881 929 979 1030 1090 1140
4 0.341 270 624 656 691 727 764 804 845 888 933 979 1030
BFL 0.455 193 566 591 618 647 677 708 741 775 811 848 886
6 1.42 159 535 558 581 606 632 659 687 717 748 780 813
7 2.61 125 502 521 540 561 582 605. 628 653 678 705 732
W14x30 TFL 0 443 642 682 725 770 817 866 918 972 1030 1090 1150
(291) 2 0.0963 378 614 651 691 732 775 821 868 918 969 1020 1080
3 0.193 313 581 615 650 688 727 767 810 855 901 949 999
4 0.289- 248 543 572 603 635 669 704 741 780 820 862 905
BFL 0.385 183 496 520 545 571 599 627 658 689 722 756 791
6 1.46 147 466 486 507 530 553 578 604 630 658 687 717
7 2.80 111 432 448 465 483 502 522 542 564 586 610 634
W14X26 TFL 0 385 553 589 626 665 706 749 794 841 890 941 994
(245) 2 0.105 332 530 563 598 634 672 712 754 797 843 890 938
3 0.210 279 504 534 565 598 633 669 707 746 787 830 874
4 0.315 226 473 499 527 556 586 618 652 686 722 760 799
BFL 0.420 173 436 458 481 506 531 558 586 615 645 677 709
6 1.67 135 405 423 443 463 485 507 530 555 580 607 634
7 3.18 96.1 368 382 397 413 429 447 465 483 503 523 544
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-206 DESIGN OF FLEXURAL MEMBERS
I LB
W14-W12
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, Ilb, for Plastic
Composite Sections
Fv = 50 ksi
yz"", in.
Chonad DM AC
onaps" rNA*'
in. kip 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
W14x22 TFL 0 325 453 483 514 547 581 617 655 694 735 778 822
(199) 2 0.0838 283 436 463 492 523 555 588 624 660 698 738 779
(199)
3 0.168 241 416 441 467 495 525 555 587 621 656 692 730
4 0.251 199 392 415 438 463 489 517 545 575 606 639 672
BFL 0.335 157 365 384 404 426 448 472 496 522 548 576 605
6 1.67 119 335 351 368 386 404 423 444 465 487 509 533
7 3.32 81.1 301 312 325 338 352 366 381 397 413 430 448
W12x30 TFL 0 440 530 567 606 648 691 737 785 835 887 942 998
(238) 2 0.110 368 504 538 573 611 651 692 736 782 829 879 931
3 0.220 296 473 503 534 567 602 639 678 718 760 804 850
4 0.330 224 435 460 486 514 544 575 607 641 676 713 751
BFL 0.440 153 389 408 428 449 472 495 520 546 573 601 631
6 1.10 131 372 389 407 426 446 467 489 512 536 561 587
7 1.92 110 355 370 385 402 419 438 457 477 498 520 542
W12X26 TFL 0 383 455 487 521 557 594 634 676 719 764 812 861
(204) 2 0.0950 321 433 462 493 526 560 596 634 674 715 758 803
3 0.190 259 407 432 460 489 519 551 585 620 656 694 734
4 0,285 198 375 397 420 444 470 497 525 555 586 618 652
BFL 0.380 136 336 352 370 389 409 429 451 474 498 523 548
6 1.07 116 321 336 351 368 386 404 423 444 465 487 509
7 1.94 95.6 304 317 331 345 360 376 392 410 428 447 467
W12x22 TFL 0 324 371 398 427 458 490 523 559 596 634 674 716
(156) 2 0.106 281 356 381 408 436 466 497 530 564 600 638 676
3 0.213 238 338 361 386 412 439 467 497 528 561 595 631
4 0.319 196 318 339 360 383 408 433 460 487 517 547 578
BFL 0.425 153 294 312 330 350 370 392 414 438 463 489 515
6 1.66 117 270 285 300 316 333 351 370 389 410 431 453
7 3.03 81.0 242 253 265 277 290 303 317 332 347 363 380
W12X19 TFL 0 279 313 336 361 387 414 443 473 505 538 573 608
(130) 2 0.0875 243 300 322 345 369 395 422 450 479 510 542 575
3 0.175 208 286 306 327 349 373 398 423 450 479 508 539
4 0.263 173 270 288 307 327 348 370 393 417 442 469 496
BFL 0.350 138 251 266 283 300 318 337 357 378 400 423 447
6 1.68 104 229 242 255 270 284 300 317 334 352 370 390
7 3.14 69.6 203 212 222 233 244 255 267 280 293 307 321
a n = distance from top of the steel beam to plastic neutral axis
n K2 = distance from top of the steel beam to concrete flange force
' See Figure 3-3c for PNA locations.
" Value in parentheses is (in.'') of noncomposite steel shape.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-207
/y = 50 ksi
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, Ilb, for Plastic
Composite Sections
L LB
W12-W10
Qtiarkod
na
lOn nK in.
Qtiarkod PMAC
na
in. kip 2 2.5 3 3.5 4 4.5 5 5.5 6 6,5 7
W12x1.6 TFL 0 236 254 273 294 316 339 363 388 415 442 471 501
(103! 2 0.0663 209 245 263 282 303 324 347 . 371 396 . 422 449 477
3 0.133 183 235 252 270 289 : 309 330 352 375 400 425 451
4 0.199 156 223 239 255 272 291 310 330 351 373 396 420
BFL 0.265 130 210 224 239 254 271 288 306 325 344 365 386
6 1.71 94.3 189 200 212 225 238 251 ' 266 281 297 313 331
3.32 58.9 163 171 179 188 197 207 217- 228 239 250 262
W12X14 TFL 0 208 220 237 255 274 295 316 338 361 386 411 437
(88,6) 2 0.0563 186 213 229 246 264 283 303 324 346 369 393 418
3 0,113 163 204 219 235 252 270 288 308 328 350 372 395
4 0.169 141 195 209 223 239 255 272 290 309 329 349 370
BFL 0.225 119 184 197 210 224 238 254 270 287 305 323 342
6 1.68 85.3 165 175 186 197 208 221 234 247 261 276 291
. 7 3.35 52.0 141 148 155 163. 171 179 188 198 207 218 228
W10k26 TFL 0. 381 339 367 397 429 463 499 536 576 617 661 ,706
f144) 2 0.110 317 321 346 374 403 434 466 500 536 574 613 655
3 0.220 254 300 322 346 372 399 428 458 490 523 557 594
4 0.330 190 274 292 312 334 356 380 405 431 459 488 518
BFL 0.440 127 241 255 270 286 303 321 340 360 381 402 425
6 0.886 111 232 245 258 273 288 304 321 339 358 377 .398
, 7 : 1.49 95.1 222 233 245 258 271 286 301 317 333 351 369
W10X22 TFL 0 32S 282 306 331 358 387 417 449 483 518 555 593
(118) 2 0.0900 273 267 289 313 337 364 391 420 451 483 517 552
3 0.180 221 251 270 291 312 '336 360 386 , 413 442 472 503
4 0.270 169 230 246 264 282 302 323 345 368 392 417 443
BFL 0.360 118 205 218 232 246 261 277 295 312 331 351 371
6 0.962 99.3 195 206 218 230 .244 258 273 289 305 ' 323 341
7 1.72 81.1 183 193 203 214 225 238 250 264 278 293 308
wioxig TFL 0 281 238 259 281 304 329 355 383 412 443 474 508
(96;3) 2 0.0988 241 227 246 267 288 311 335 361 388 416 445 476
3 0.198 202 215 232 251 270 291 313 336 360 386 413 440
4 0.296 162 200 215 231 248 266 286 306 327 350 373 397
BFL 0.395 122 182 195 208 222 237 253 270 287 306 325 345
6 1.25 96.2 169 179 190 202 215 228 243 257 273 289 306
7 2.29 70,3 153 161 170 179 189 200 211 223 235 248 261
= n = distance from top of ttie steel beam to plastic neutral axis
" yi - distance from top of the steel beam to concrete flange force
' See Figure 3-3c for PNA locations.
''Value in parentheses is /*(in.'') of noncomposite steel shape.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-208 DESIGN OF FLEXURAL MEMBERS
/ LB
W10
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, /LB, for Plastic
Composite Sections
Fy = 50 ksi
Shape"" PNA'
1Q„ in.
Shape"" PNA'
in. kip 2 2.S 3 3.5 4 4.5 5 5.5 6 6.5 7
W10x17 TFL 0 250 206 224 244 264 286 310 334 360 387 415 445
(81.9) 2 0.0825 216 197 214 232 251 272 293 316 340 365 391 418 (81.9)
3 0.165 183 187 202 219 236 255 274 295 317 340 364 388
4 0,248 150 175 189 203 219 235 253 271 290 311 332 354
BFL 0.330 117 161 173 185 198 212 227 243 259 276 294 313
6 1.31 89.8 148 157 167 178 190 202 215 229 243 258 274
7 2.45 62.4 132 139 147 155 164 173 183 193 204 215 227
W10x15 TFL 0 221 177 193 210 228 248 268 289 312 336 361 387
(68.9) 2 0.0675 194 170 185 201 218 236 255 275 296 318 342 366 (68.9)
3 0.135 167 162 176 190 206 223 240 259 278 299 320 342
4 0.203 140 153 165 178 192 207 223 240 258 276 295 315
BFL 0.270 113 142 153 164 177 190 204 218 233 250 266 284
6 1.35 83.8 128 137 147 157 167 178 190 203 216 229 244
7 2.60 55.1 112 118 125 133 140 148 157 166 175 185 196
W10x12 TFL 0 177 139 152 165 180 195 211 229 247 265 285 306
(53.8) 2 0.0525 156 134 145 158 172 186 201 217 234 252 271 290 (53.8)
3 0.105 135 127 138 150 163 176 190 205 221 237 254 272
4 0.158 115 . 121 131 142 153 165 178 191 206 221 236 252
BFL 0.210 93.8 113 122 131 141 152 163 175 187 200 214 228
6 1.30 69.0 102 109 116 124 133 142 152 162 173 184 195
7 2.61 44.3 87.9 93.0 98.4 104 110 117 124 131 139 146 155
a n = distance from top of the steel beam to plastic neutral axis
b Y2 = distance from top of ttie steel beam to concrete flange force
= See Figure 3-3c for PNA locations.
•I Value in parentheses is (in.i) of noncomposite steel shape.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

COMPOSITE BEAM SELECTION TABLES 3-209
Fu = 65 ksi
Table 3-21
Shear Stud Anchor
Nominal Horizontal Shear Strength
for One Steel Headed Stud Anchor, Qn, kips Q„
stud anchor
Normal weight concrete Lightweight concrete
Deck condition diameter, Mrc = 145pcf ivb 110 pcf
m.
t'= 3 ksi 3 ksi C=4ksi
% 5.26 5.38 4.28 5.31
Klo deck
VA
%
9.35
14.6
9.57
15.0
7.60
11.9
9.43
14.7
3/4 21.0 21.5 17.1 21.2
%
5.26 5.38 4.28 5.31
• s K
" V2 9.35
14.6
9.57
15.0
7.60
11.9 •
9.43
14.7
e
21.0 21.5 17.1 21.2
3/8 4.58 4.58 4.28 4.58
Q V2 8.14 8.14 7,60 8.14
hr =/8 12.7 12.7 11.9 12.7
3/4 18.3 18.3 17.1 18.3
. 3/8 4.31 4.31 4.28 4.31
O"
1
V2 7.66 7.66 7.60 7.66
TO
O
1
% 12.0 12.0 11.9 12.0
II 3/4 17.2 17.2 17.1 17,2
3/8 3.66 3.66 3.66 3.66
"C
O
V2 6.51 6.51 6.51 • 6,51
^
% 10.2 10.2 10.2 10,2
•O 3/4 14.6 14.6 14.6 14.6
3/8 3.02 3.02 ^ 3.02 3.02
s Q
V2 5.36 5.36 5.36 5.36
.1 s
o
«/6 8.38 8.38 8.38 8.38
"c
a .
s.
3/4 12.1 12.1 12.1 12.1
"c
a .
s.
3/A
5.26 5.38 4.28 ' 5,31
K 1
1/2 9.35 9.57 7.60 9.43
1 O
1
3/8 14.6 15.0 11.9 14.7
II
3/4
21.0 21.5 17.1 21.2
II
3/8 4.58 4.58 4.28 4.58

1/2 8.14 8.14 7.60 8,14
£
c
5/8 12.7 12.7 11.9 12.7
•S
3/4 18.3 18.3 17.1 18.3
Vi
3/8 3.77 3.77 3.77 3.77
1 o
1/2 6.70 6.70 6.70 6.70
0
5/8 10.5 10.5 10.5 10.5
3/4 15.1 15.1 15.1 15.1
Note:
Tabulated values are applicable only to concrete made with ASTM C33 aggregates for normal weight concrete and.ASTM C330
aggregates for lightweight concrete.
Atter-weld steel headed stud anchor lengths assumed to be 2 Deck height +1.5 in.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-210 DESIGN OF FLEXURAL MEMBERS
Table 3-22a
Concentrated Load Equivalents
Loading Coeff.
Simple
Beam
Beam Fixed One
End, Supported
at Ottier
Beam Fixed
Both Ends
0.125
0.500
0.013
1.000
1.000
0.070
0,125
0,375
0,625
0.005
1.000
0.415
0.042
0.083
0.500
0,003
0,667
0.300
r
1
0.250
0.500
0.021
2.000
0.800
0.156
0.188
0.313
0.688
0.009
1.500
0.477
0.125
0.125
0.500
0,005
1,000
0.400
r r
J_L
0.333
1.000
0.036
2.667
1.022
0.222
0.333
0.667
1.333
0.015
2.667
0.438
0.111
0.222
1.000
0.008
1.778
0.333
r r r
JJJ.
0.500
1.500
0.050
4.000
0.950
0.266
0.469
1.031
1.969
0.021
3.750
0.428
0.188
0.313
1.500
0.010
2.500
0,320
JLLUL
0.600
2.000
0.063
4.800
1.008
0.360
0.600
1.400
2.600
0.027
4.800
0.424
0.200
0.400
2.000
0.013
3,200
0,312
Maximum positive moment (kip-ft): aPL
IVIaximum negative moment (kip-ft): bPL
Pinned end reaction (kips): cP
Fixed end reaction (kips): dP
iVIaximiim deflection (in.): ePfi /E!
Equivalent simple span uniform load (kips): fP
Deflection coefficient for equivalent simple span uniform load: g
Number of equal load spaces: n
Span of beam (ft): L
Span of beam (in.): i
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

BEAM DIAGRAMS AND FORMULAS 3-211
No. Spans
>6
(even)
£7
(odd)
Typical
Span
Loading
5 c
s i
iVl2
Ms
M4
Ms
A
B
C
D
E
F
G
H
Table 3-22b
Cantilevered Beams
Beam Diagrams and Formulas-
Equal Loads, Equally Spaced
System
"W •m
•i f <r rib r
. ^ f U .
-w-t
W-i^Vf-W-fVi^gr^
W"
f~W
0.086xPL
0.096xPL
0.063xPL
0.039kPL
0.051 xPL
0.414xP
1.172xP
0.438xP
1.063xP
1.086xP
1.109xP
0.977xP
I.OOOxP
0.172xL
0.125xL
0.220xL
0.204xL
0.157xL
0.147xL
I I u u uuuuuu
0.167xPL
0.188xPL
0.125xPL
0.083xPL
0.104xPL
0.833xP
2.333xP
0.875xP
2.125xP
2.167xP
2.208xP
1;958xP
2.000xP
0.250xL
0.200xL
0.333xL
0.308xL
0.273xL
0.250xL
P P
0.250xPL
0.278xPL
0.167xPL
0.083xPL
0.139xPL
1.250xP
3.500xP
1.333xP
3.167xP
3.250xP
3.333xP
2.917xP
3.00axP
0.200xL
0.143xL
0.250xL
0.231 xL
0.182xL
0.167xL
P P P I
0.333xPL
0.375xPL
0.250xPL
0.167xPL
0.208xPL
1.667xP
4.667xP
1.750xP
4.250xP
4.333xP
4.417xP
3.917xP
4.a00xP
0.182xL
0.143xL
0.222xL
0.211x1.
0.176xL
0.167x1.
P P P P
0.429xPL
0.480xPL
0.300xPL
0.171xPL
0.249xPL
2.071 xP
5.857xP
2.200xP
5.300xP
5.429xP
5.557xP
4,871 xP
S.OOOxP
0.176xL
0.130xL
0.229xL
0.203xL
O.ieOxL
O.ISOxL
i
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

3-212 DESIGN OF FLEXURAL MEMBERS
Table 3-22c
Continuous Beams
Moments and Shear Coefficients—
Equal Spans, Equally Loaded
Moment
in terms of
T'
.077 +.036 +.036 +.077
Shear
in terms of wl
Uniform Load
f T T T T 7 t
ofi—f ^
gg m 31 22
10 10 10 10
0fl5 23t20 letlS i9tl8 2OTM Tsto
•W -35~ IT -ST IT -ir
wTw 45]61 S3tS3 Sit 49 ^
104 ToT 104 TM^ TW^ TBT ^TK
rwwwwiFWi
Moment
in terms of P/
+.156 +.156
V.187 ,
Concentrated Loads
at center
Shear
in terms of P
+.175 +.10 +.175
+.171 +.11 +.13 +.11 +.171
* ]
P • P
t 1 I
1,31 .691.69 .311
P P
1.35 .651.50 .501.65 .351
P P P P P
t 1 t ^ t ' t ' t * t
T.34 .661.54 .461.60 .60',46 ,541,66 ,34'
Moment
in terms of Pi
Concentrated Loads
at third points
Shear
in terms of P
'•222 .,111 -,111 -.222 P P p p
, n . n ,
1.67 1,3311,33 ,671
•,156 +,066+ 066+,156 -
-,267 - 267
.,2f,146 • 076*<'?9 ',122 M22 >,099',076 .,01.46 i24
P P P P P P
, 11. n n
1.73 1.2711.0 1.011.27 .731
PP PP PP PP PP
,11.11,11.11,11.
1.72 1.28^1.07 .9311.0 1.01.93 1.07ll.2B .72(
Moment
in terms of P/
..267 .267
• 258 >.022 -.022 ..25(
Concentrated Loads
at quarter points
Shear
in temis of P
-.465
..314 ,128 ..314
..282 ..097 ,003 ,,003 >.097 ..282
',,372 ,.372
:04 ,155
..079,054 ,006 .,079 ,m
-.296 -.394
.,303 ,155 +,204 ,155 *,303
,054 ,079 .,079 ,054 ,006 .,079 . j
tl,03 1,9711,97 l,03l
PPP PPP PPP
.111,Hi 111
11,13 1,8711,50 1,501,87 1,131
PPP PPP PPP: PPP PPP
,11 1:111,111,111. Ill,
11.11 1.8911,60 1.40Ti.50 i:50tl.40 1.60)1:69 1.111
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

BEAM DIAGRAMS AND FORMULAS 3-213
Table 3-23
Shears, Moments and Deflections
1. SIMPLE BEAM — UNIFORMLY DISTRIBUTED LOAD
-l-
wl
Shear
it
Moment
Total Equiv. Uniform Load
R= V
MmoK (at center).
V M.
T
= wl
w/
° 2
Amo( (at center)
A,
_ swi*
saiEi
2. SIMPLE BEAM — LOAD INCREASING UNIFORMLY TO ONE END
w
0.5774/
She&r
Moment
Total EquN. Uniform Load
R,= V,
16W
V.
A™,
a.
' 3
, w
3
W)?
1.031V i
3 ,i
s
. 2WI
0.128 W
0.619;
9^3
= 0.0130 J:
B
m
iBoa/^
(sx*-lO/'!*^+7/^)
3. SIMPLE BEAM — LOAD INCREASlNfi UNIFORMLY TO CENTER
2
ITTTtk
a
Shear
Jl
TTK
Moment
Total Equiv. Uniform Load =
R= V • iK
' 2
1 (at center)
2/^
6
My (when*<i) =1V*
AMX (atoenter) =
AK (wfienx<^)..
r 1 zx'
31' )
460 B/'
AMERICAN INSTrruTE OF STEEL CONSTRUCTION

3-214 DESIGN OF FLEXURAL MEMBERS
Table 3-23 (continued)
Shears, Moments and Deflections
i. SIMPLE BEAM — UNIFORM LOAD PARTIALLY DISTRIBUTED
r -
T
!
'IIIIK
1 Shear
JXUX
ft, = I/, (max. when a <c) c+Jj)
flj (max.when a>c)
(when x> aand< (a+fc)).... =ft, -w(*-a)
M,
M,
M,
(when »•< a) = fi,Ar
(when x> a and <(a+b))....
(when *> (a+b)).... = fij (i-x)
Moment
5. SIMPLE BEAM - UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END
-i-
Bi L
w 1
Shear
Moment
21
R
V, (whenx<a)
f at *=-
V - '
V ' 2
Ml, (whenxo)
-5L
' iw
Mt (when x> a)..
(when X < a)..
A, (whenx>a)..
-
6. SIMPLE BEAM - UNIFORM LOAD PARTIALLY DISTRIBOTEO AT EACH END
f?,= U,
a -
Shear
I w.c
Moment
21
(when x< a) >= ft, -u-ix
Vx (when a < x< (a+b)) = ft,-n^,a
V, (when x> (s+b))
1 1,4
f fh
1 at x= —.wrten ^ w^a J —
T
Mirm
f flo ^
Mirm atx^/ .when w^c
I J
-
My (when x< a) -Bv
M, (when a<x< (a+b))
Mx (when *> (a+b))
AMERICAN INSTITUTE OF STEEL eoNSTRUcrioN

BEAM DIAGRAMS AND FORMULAS 3-215
Table 3-23 (continued)
Shears, Moments and Deflections
7. SIMPLE BEAM - CONCENTRATED LOAD AT CENTER
Shear
Moment
Total Equiv. Uniform Load = SP
R= V
(at point of load).
.m
' 4
^ M, (wh6nx<|)
f
A„„ (at point of load).
pP
A, (when*<|)..
480
8. SIMPLE BEAM — CONCENTRATED LOAD AT ANY POINT
Total Equiv. Uniform Load
xcrrriir
Shear
Moment
1/ (.= V„„ when a> b).
W™, (at point of load)
M, (wtien a)
A™, —i.when^
Aa (at point of load)
A, (wten*<a)...>
. 8Pab
..en
I
.Pa
;
. Pab
1
I
Pal>(a*2l>)j3a^7sb)
' WWi
.PaV
30/
i
9. SIMPLE BEAM — TWO EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED
Total Equiv. Uniform Load =
B=V =p
D Mnx (between loads) = Pa
n
M, (wtienxo) =Px
Shear
Moment
(at center).,
A™ (when a = -)..
3
A, (when *<a).... -aa^-x')
A, (when a,<*<(/-a)) =-a^)
240
-
~ 28e/
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-216 DESIGN OF FLEXURAL MEMBERS
Table 3-23 (continued)
Shears, Moments and Deflections
10. SIMPLE BEAM - TWO EQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED
Shear
V, (= V™, when a < t>)
V™,whena>6).,
V, (when
1
K M, (= M™, when a>b)....
T (= Mrac when a < b)....
Q-a+b)
(i-a)
M,
Moment
M, (when x< a) = *
M„ (whena < x< (/-6)j = R.,x~P(x-e
11. SIMPLE BEAM — TWO UNEQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED
P,(/-a)+Pab
M
-I-
71
.11,
Shear
R = v..
mr
IDI
PK
V, (when a< *<(/-&)) =Ri-Pi
M, ( = when R, < P,) = Rta
H (= M™, when R, < PJ = flj6
Moment
Mj M, (when*<a) =fl,x
1
J,
M, (when a<xc(/-ti)) =fl^x-f x~^
12. BEAM FIXED AT ONE END, SUPPORTED AT OTHER — UNIFORMLY DISTRUBTED LOAD
Wl
•I]
—•:• X
Shear
I Morhent
i
Total Equiv. Uniform Load = wl
1
V,
T
1
M,
i
M,
1 1
}
A,
= Rl ~wx
wf
t^ (at X = ^(U o.«2 () =
AMERICAN INSTTRUTE OF STBEL CONSTRUCTION

BEAM DIAGRAMS AND FORMULAS 3-217
Table 3-23 (continued)
Shears, Moments and Deflections
13. BEAM FIXED AT ONE END, SUPPORTED AT OTHER — CONCENTRATED LOAD AT CENTER
Total Equiv. Uniform Load
i .V-
p
«,= K
=
• 2
1
2
. fi
(at fixed end)
i M, (at point of load)
M, (atx<
11)1111
1
2
. fi
(at fixed end)
i M, (at point of load)
M, (atx<
Shear

111! 1
. fi
(at fixed end)
i M, (at point of load)
M, (atx<
Shear

• M, (wtienx>-)
1 A^ (at X= ^ = 0.447/)
.wllIIllK
• M, (wtienx>-)
1 A^ (at X= ^ = 0.447/)
H
y Moment
- 6P
" 16
.IIP
' 16
32
-(FW)
Pl^ pfl
= 0.00932 ~
a
A, (at point of load) =
=
2
96 B
14, BEAM FIXED AT ONE END, SUPPORTED AT THE OTHER — CONCENTRATED LOAD AT ANY
POINT
R,= V 1+2/)
Shea"
lomern
Pa
;
M, (at point of load) =fi|a
M, (affixed end)
Af (atx<a) 1
M, (wtienx>a) = f!,*-P(jr-a)
^rnax whena<0.414/«t x = /
wtiena> 0.414/
.^ilifz
30
1
Mj A, (at point of load) =
f
6S
Pa^fi'
12 a/'
(3/4-
Ay (whenxo)..
12 eh'
^a/^-tlx'
A, (when X > a) = - ^rf (3/' x - a' x - 2a'-;)
I
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-218 DESIGN OF FLEXURAL MEMBERS
Table 3-23 (continued)
Shears, Moments and Deflections
15. BEAM FIXED AT BOTH ENDS - UNIFORMLY DISTRIBUTED LOADS
Total Equiv. Uniform Load
m:
1 ^^
1 wl
I /
2
TrrT>^
2
Shear
0.211/
t-T-r-
y^'Moment XI
, R=V
fl „
Mm^ (at ends)
M, (at center)....
I A^ ::
1 A™, (at center)....
M ,
-R A,
3
' 2
-if.
' 24
384 S
24 0
(l-'f
16. BEAM FIXED AT BOTH ENDS — CONCENTRATED LOAD AT CENTER
Ft
T
-I-
I
Shear
jJ^Moment
Total Equiv. Unilorm Load
R^V
M„,„ (at center and ends).
I M< (wtien*<i)
J Awai (at center)
f
1 A, (when * < i)
= P
- £
' 2
PI
. pi"
' 192B
48 a
17. BEAM FIXED AT BOTH ENDS — CONCENTRATED LOAD AT ANY POINT
W,( = V™^ when a < b)
-l-
Shear
JP^ Moment
•b '
= ^(aa^o)
v™,when a >6)
'W, (= when a < b)
Mj ( = M™,when a> fa).,
i Wj (at point of load)
J M, (whenx<a)

„ A^ (wtien a>batx=^Si-)
Mj Aa (at point of load)
^ A, (whenx<a)
.
3E/(3a + 6f
6£lfi
(3s(-3a«-l)x)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

BEAM DIAGRAMS AND FORMULAS 3-219
Table 3-23 (eontinued)
Shears, Moments and Deflections
18. CANTILEVEREO BEAM — LOAD INCREASING UNIFORMLY TO FIXED END
Total Equiv. Uniform Load = |iy
R= v..
Vi ..
M™, (at fixed end)
M,
Ama (at free end).
A,
_ wfi
' " KB
600;^
19. CANTILEVERED BEAM - UNIFORMLY DISTRIBUTED LOAD
Total Equiv. Unifomi Load ! = i wi
y =w(
V, = m
ml
LLLU
rsparrr
I
(at fixed end).
M,
Am, (at free end) ..
= ML
~ 2
• 80
20. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT
OTHER—UNIFORMLY DISTRIBUTED LOAD
Total Equiv. Unifomi Load
1 ' -i 3
R~V
/W, (at deflected end).
M,„„ (at fixed end)
Mx
Ama, '(at deflected end) .
3
24 a
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-220
DESIGN OF FLEXURAL MEMBERS
Table 3-23 (continued)
Shears, Moments and Deflections
21. CANTILEVERED BEAM ~ CONCENTRATED LOAD AT ANY POINT
Shear
Moment
Total Equiv. Unifoim Load
R~ V
= 8Pti
i
.... -P
.... - Ph /W„„ (at fixed end)
M, (when a) ,.... =
dma, (at free end) =
P(x-a)
Pb"
A, (at point Of load) =
6 a
(3/-«.)
(wtienxo)
ig (wtien X >. a)
3 a
&EI
6EI
22. CANTILEVERED BEAM — CONCENTRATED LOAD AT FREE END
Moment
Total Equiv. Uniform Load = sp
S R=V =P
Mmi, (at fixed end) = P/
My
(at free end) =
Px
EL
iEI
^
23. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER —
CONCENTRATED LOAD AT DEFLECTED END
1 1 1
Sftc iar
17K
1 —^
2
Moment
Total Equiv. Uniform Load =4P
M„„ (at botti ends)
M^
A,„„ (at deflected end)
_ p/
" 2
net
nei
{l*2x)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

BEAM DIAGRAMS AND FORMULAS 3-221
Table 3-23 (continued)
Shears, Moments and Deflections
24. BEAM OVERHANGING ONE SUPPORT — UNIFORMLY DISTRIBUTED LOAD
= ^f
MJ
—1 wH
a
TTTirrnTTTT Hill
iff)
IThv
1
f%
Shmr
1
4
.. t
V, = ira
^ : =
Vg (belween supports) =
V^ (for overhang) =w{a-x,)
2
M, (atR,)„
sr
2
M, (between supports) =
i M,, (for overhang) = | (a - x, f
A, (between supports)
A,, (foroverhang) tea'x,
NOTE: For a negative value of A*, deflection is upward. I
25. BEAM OVERHANGING ONE SUPPORT — UNIFORMLY DISTRIBUTED LOAD ON OVERHANG
K : =
' ' 21
=
dM
Krpirnmirn
iShear
lEL.
V,, (for overhang) =w(a-xi)
M™, (atR,) ..1
K Mx (between supports) .
= ^^^Ji
21
M,, (for overhang) = y (" - "i f
SScniiinj^.
between supports at x=
leVsa
Amx (for overhang at x, = a) =
A< (between supports) .
Ax, (for overhang)
.we':
~ 240
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-222 DESIGN OF FLEXURAL MEMBERS
Table 3-23 (continued)
Shears, Moments and Deflections
26. BEAM OVERHANGING ONE SUPPORT — CONCENTRATED LOAD AT END OF OVERHANG
PS
I
R,= I/,..
1
] 111111l uUI
Shear
Moment
w™, (atR,) =Pa
M, (between supports)
M,, (for overtiang)
Amiix between supports at X=
H
_ Par
Am,, (for ovettiang at X, = a)
A, (between supports)
A,
aei
((-.a)
(for overhang) = ~ (2a/ t3ax, - x,^)
27. BEAM OVERHANGING ONE SUPPORT — UNIFORMLY DISTRIBUTED LOAD BETWEEN SUPPORTS
Total Equiv, Uniform Load = w!
R= V
H I ~ -^.-a-r-
-f-Xi-H
h iiiiii
-^.-a-r-
-f-Xi-H
R
^ mrr^
1
2
R

1 Shear
V

-IM 1 TTTN
V

_ wl
2
Moment
V,
AW (atcenter)..
/W,
Am,, (atcenter)..
Ax
A,,
240
240
28. BEAM OVERHANGING ONE SUPPORT — CONCENTRATED LOAD AT ANY POINT BETWEEN SUPPORTS
Total Equlv. Uniform Load
- £?
~ I
-l- V, (= IWwtien a< b)
VJ= l/„»when a> 6)
i
b
Shear
MIfflJ
.lUliJ
(at point of toad)
Mx (whenx<a)..
i-2b)
atx= J-^-j—^ wtien
(at point of load)
- Ptix
I
Pab(a^
Momont
A, (whenxo)
A, (When a).: =
_ Pai)*i
(i.a)
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

BEAM DIAGRAMS AND FORMULAS 3-223
Table 3-23 (continued)
Shears, Moments and Deflections
29. CONTINUOUS BEAM - TWO EQUAL SPANS - UNIFORM LOAD ON ONE SPAN
Total Equiv. Uniform Load -^^t
64
Tlx
Shear
7/
• 16 •
nTmpTnTrrr
R,= K
K ;
V,
Mm< (at * =
M, (at support R,)..
= _ 1„
612
= 1
M, (whenxc/) =m(7i-sx)
16
W (at0.472 /from R,) =
30. CONTINUOUS BEAM — TWO EQUAL SPANS — CONCENTRATED LOAD AT CENTER OF ONE
SPAN
Total Equiv. Uniform Load = —p
/_
P 2
k
nrrainn
punn-
k'K •••••
1/
(at point of load)
M, (at support
A/7»b (at 0.480 UromR,) .
, = 13p
32
_ 0.015 Pl^
" ^ El
31. CONTINUOUS BEAM - TWO EQUAL SPANS - CONCENTRATED LOAD AT ANY POINT
Stient
Atomenf
inniraim
'i.3
pju^
R= V+V,
2,3 V /
_ Psb
(/.a)
M™, (at point of load) -a(' + a)')
4/3 ^ '
M, (at support R,) = ^ a)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-224 DESIGN OF FLEXURAL MEMBERS
Table 3-23 (continued)
Shears, Moments and Deflections
sariiSii - UNIFORMLY DISTRIBUTED LOAD AND VARIABIFEND MOMENTS
R
M,
M
M,>M,
A
Moment
b
k
N
H)
_ W/ ^ Mf-M2
~ 2 ;
-Hi ^fld!^
~ 2 ~ /
V,
^ (^tx^U!^^)
• ^ 2 w/ 8 2
,2 H-M^f
M,
r
iM
1 ' e (to locate inflection points)
w w/
W IV/ ,
33. BEAM — CONCENTRATED LOAD AT CENTER AND VARIABLE END MOMENTS
(M,
M,
I
Shear
DI
Moment
' 11
K
W, (at center),.
(when x< '-),.
Mk (wten*>i)..
"4 2
x-M,
AMERICAN INSTITUTE, OF STEEL CoNsTrucTioN

BEAM DIAGRAMS AND FORMULAS 3-225
Table 3-23 (continued)
Shears, Moments and Deflections
34. SIMPLE BEAM — LOAD INCREASING UNIFORMLY FROM CENTER
r- T ' -
- /
• 2
W
2
Shear
Total Equiv, Uniform Load
R=V
3
2
V. (Whenx<i)
Mb^ (atcenter).,
y Mx (when*<i)..
I
Amax (at center)
Ax (when i)..
~ 12
2
_
~ 320 £/
- JIL
" 12S
Moment
35. SIMPLE BEAM — CONCENTRATED MOMENT AT END
(M-
SImr
Total Equiv. Uniform Load
R=V :
M^
M,
_ 8M
I
I
i
-i^-7}
t Jf= 0.423 /)... =:0.0e42
Ml'
Moment
A,
36, SIMPLE BEAM ~ CONCENTRATED MOMENT AT ANY POINT
X 1
Total Equiv. Unifomn Load ... M
=
I
R
-t
, a
] 1111 M 11
Sltesr
N
K
HH^ Moment
R
R'V
Mj, (whence a) = Rx
(when x> a) =fi(/- X)
A, (when x< a) =:.iL.
60 i '
A, (when X > a) _ M
6 El
X"
/
I.,.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

3-226 DESIGN OF FLEXURAL MEMBERS
Table 3-23 (continued)
Shears, Moments and Deflections
37. CONTINUOUS BEAM ~ THREE EQUAL SPANS — ONE END SPAN UNLOADED
0.383 Kl
ShMf
0.583 wl
TTTrm^.^ 0.0330 wl
+0.07
^rm
35 wf
11 r^
0.617 w!
t0.05 wl'
tlUi^
0.417 wl
0333 wl'
0.383 / _ 0.583/
SJ
•MjaoJ-iJ-'-i-'-—
•omsowl
0.0330 wl
A^ (0.4301 fmm A) = 0.0069 wl'/EI
38. CONTINUOUS BEAM — THREE EQUAL SPANS — END SPANS LOADED
0.460 wl
Shear
R^-O.ASOwl Rt^O.SSOwI
0.550 »-/
R^'O.SSOwl
•tO.101 wl'
^xrnTTlTiTtfc^
0.4501
XT
0.S50 w!
-0.0500 wl'
Ro=0.450wl
0.450 ml
T
*0.101 wl'
.diMEIltii^
(0.4791 from AorO}' 0.0099 wl'/EI
39. CONTINUOUS BEAM ~ THREE EQUAL SPANS — ALL SPANS LOADED
wl wl wl
I B I I
R, = 0.400x1
0.400 wl
Shear
R,-1.10wl
0.500 wl
*o.oaoowi'
dUnriTDi^
0.4001
Rc= 1.1 Owl
0.600 iv/
0.600 wl —-J-LL,
*0.0250 wl'
ImirrEi^^
/?„= 0.400WI
+O.OSOO wl'
^ / 0.61 0.6001
(0.4461 from AorOJ = 0.0068 w/'/E/
AMERtcAN INSTITUTE OF STEEL CoNSTRUcnoN

BEAM DIAGRAMS AND FORMULAS 3-227
Table 3-23 (continued)
Shears, Moments and Deflections
40. CONTINUOUS BEAM — FOUR EQUAL SPANS — THIRD SPAN UNLOADED
/ c I D (
0.380 wl
Shear
o.mwi
TTTTrrr^
0.558 wl
Trnrm^.
^.omwi'
"^'•'-i-! 1 1
0.620 Wl 0.397 wl
'79 wl' -0.056
0.0400 wl
*-0.09
—'-UL
77 wl'
^ >10.380/
Rt = 0.442wl
A^(0.475!fromE} = 0.0094 wl'/EI
41. CONTINUOUS BEAM — FOUR EQUAL SPANS — LOAD FIRT AND THIRD SPANS
1
I Dl I
0.0180 wl 0.482 wl
->0.0
-<mTTl
-^-'-^uiiLL
996 wf
rrrrrrv.-^-^^-
0.554 wl
i$wl' • -0.035
+0.0805 wf
05)8 wl
536 wj*
0.44ei
jjjjjXLLLU-u^
A„„(0.477ifFmiA} " O.OogTwl'/EI
42. CONTINUOUS BEAM — FOUR EQUAL SPANS — ALL SPANS LOADED
mi-""'
I C] I 0] I
= Rc^0.92ewl Ra=1.14wl R^==0.393wl
0.536 wl 0.464 wl
rm-T^. TTTrm-r^.
•H}.07?2 wl'
scaxtrr
0.60? wl ^^
wp *o.o3etwi'
^r-rTTTTT-r-T^ i
0.46.WI
1 r-rv.
0.S36WI
•K).0772
0.3931
0.6361

0.5361 ^
0.3931
(0.4401 from A and £) ~ 0.0065 wlfai
AMERICAN iNSTrruTE OF STEEL CONSTRUCTION

3-228 DESIGN OF FLEXURAL MEMBERS
Table 3-23 (continued)
Shears, Moments and Deflections
43. SIMPLE BEAM — ONE CONCENTRATED MOVING LOAD
fllmax--Vimax(atx = 0)
/WfTtax ^at point of toad, when Jt =
B
4
44. SIMPLE BEAM — TWO EQUAL CONCENTRATED MOVING LOADS
fe .,,6.^
fllmax=Vimax(a<f-0)
Mmax
underload 1 i Ig
'when a > (2 - = 0.586/
with one load at center of span (Case 43)
4 ('-If
pt
4
45. SIMPLE BEAM — TWO UNEQUAL CONCENTRATED MOVING LOADS
fllmaK= ^max(a^'< = 0)
Mmsx
Wmflx may occur with larger
load at center of span and other
load off span (Case 43)
= P, + f^-
51
4
GENERAL RULES FOR SIMPLE BEAMS CARRYING MOVING CONCENTRATED LOADS
y
The maximum shear due to moving concentrated bads occurs at one support
when one of the loads is at that support. Witti several moving loads, the location that
will produce maximum shear must be determined by triai.
The maximum bending moment produced by moving concentrated loads occurs
under one of the loads when that load is as far from one support as the center of
gravfty of all the moving loads on the beam is from the other support.
In the accompanying diagram, the maximum bending moment occurs under load
Pi when x'- iJJt should also be noted that this condition occurs when the center-
line of the span is midway between the center of gravity of loads and the nearest
concentrated load.
AMERICAN INSTITUTE, OF STEEL CONSTRUCTION

4-1
PART 4
DESIGN OF COMPRESSION MEMBERS
SCOPE 4-3
AVAILABLE COMPRESSIVE STRENGTH 4-3
LOCAL BUCKLING 4-3
Determining the Width-to-Thickness Ratios of the Cross Section 4-3
Determining the Slendemess of the Cross Section j 4-3
EFFECTIVE LENGTH AND COLUMN SLENDERNESS 4-3
COMPOSITE COMPRESSION MEMBERS 4-4
DESIGN TABLE DISCUSSION 4-4
Steel Compression—Member Selection Tables 4-4
Composite Compression—Member Selection Tables 4-9
PART 4 REFERENCES 4-11
STEEL COMPRESSION-MEMBER SELECTION TABLES 4-12
Table 4-1. W-Shapes in Axial Compression 4-12
Table 4-2, HP-Shapes in Axial Compression 4-24
Table 4-3, Rectangular HSS in Axial Compression 4-28
Table 4-4. Square HSS in Axial Compression 4-52
Table 4-5. Round HSS in Axial Compression 4-68
Table 4-6. Pipe in Axial Compression 4-85
Table 4-7. WT-Shapes in Axial Compression 4-89
Table 4-8. Equal-Leg Double Angles in Axial Compression 4-122
Table 4-9, LLBB Double Angles in Axial Compression 4-131
Table 4-10. SLBB Double Angles in Axial Compression 4-146
Table 4-11. Concentrically Loaded Single Angles in Axial Compression 4-161
Table 4-12. Eccentrically Loaded Single Angles in Axial Compression 4-183
COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-205
Table 4-13, Rectangular HSS Filled with 4-ksi Normal Weight Concrete
in Axial Compression 4-205
Table 4-14, Rectangular HSS Filled with 5-ksi Normal Weight Concrete
in Axial Compression 4-226
Table 4-15. Square HSS Filled with 4-ksi Normal Weight Concrete
in Axial Compression 4-247
AMERICAN INSTRRUTE OF STEEL CoNsrmucnoN
i

4-2 DESIGN OF COMPRESSION MEMBERS
Table 4-16. Square HSS Filled with 5-ksi Normal Weight Concrete
in Axial Compression 4-263
Table 4-17. Round HSS Filled with 4-ksi Normal Weight Concrete
in Axial Compression 4-279
Table 4-18. Round HSS Filled with 5-ksi Normal Weight Concrete
in Axial Compression 4-296
Table 4-19. Pipe Filled with 4-ksi Normal Weight Concrete
in Axial Compression 4-313
Table 4-20. Pipe Filled with 5-ksi Normal Weight Concrete
in Axial Compression 4-317
l^ble 4-21. Stiffness Reduction Factor Tj 4-321
Table 4-22. Available Critical Stress for Compression Members 4-322
AMERICAN INSTTTUTE OF SIBEL CONSTRUCTION

EFFECTIVE LENGTH AND COLUMN SLENDERNESS 4-3
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of members subject to axial compression. For the design of members
subject to eccentric compression or combined axial compression and flexure, see Part 6.
AVAILABLE COMPRESSIVE STRENGTH
The available strength of compression members, or Pn/il, which must equal or exceed
the required strength, Pu or Pa, respectively, is determined according to AISC Specification
Chapter E.
LOCAL BUCKLING
Determining the Width-to-Thickness Ratios
of the Cross Section
Steel compression members are classified on the basis of the width-to-thickness ratios of the
various elements of the cross section. The width-to-thickness ratio is c^culated for each ele-
ment of the cross section per AISC Specification Section B4.
Determining the Slenderness of the Cross Section
When the width-to-thickness ratios of all compression elements are less than or equal to
the cross section is nonslender, and Q, the reduction factor fqr slender compression ele-
ments (elastic local buckling effects), equals 1.0. When the width-to-thickness ratio of a
compression element is greater than V, the cross section is a slender-element cross section
and Q must be included in the calculation of the available compressive strength. Q is deter-
mined per AISC Specification Section E7, and Xr is determined per AISC Specification
Section B4 and Table B4.1 a.
EFFECTIVE LENGTH AND COLUMN SLENDERNESS
Columns are designed for their slenderness, KLIn per AISC Specification Section E2. The
effective length, KL, is equal to the effective length factor, K, multiplied by L, the physical
length between braced points (see AISC Specification Appendix 6).
When a stability analysis is performed using the direct analysis method per AISC
Specification Chapter C, Z = 1.
When a stability analysis is performed using the first-order analysis method in AISC
Specification Appendix Section 13,K= 1.
When a stability analysis is performed using the effective length method in AISC
Specification Appendix Section 7,2, the following applies:
jST = 1 for columns braced at each end and whose flexural stiffnesses are not consid-
ered to contribute to lateral stability and resistance to lateral loads.
for all columns when the ratio of maximum second-order drift to first-order drift
in all stories is less than 1.1.
K shall be determined from a sidesway buckling analysis for all columns whose flex-
ural stiffnesses are considered to contribute to lateral stability and resistance to lateral
•s.
AMERICAN INSTITUTE OF STEEL CONSTRUGTION

4-4 DESIGN OF COMPRESSION MEMBERS
loads. Guidance on the proper determination of the value of K is given in AISC
Specification Commentary to Appendix Section 7.2.
As indicated in the User Note in AISC Specification Section E2, compression member
slendemess, KL/r, should preferably be limited to a maximum of 200. Note that this recom-
mendation does not apply to members that are primarily tension members, but subject to
incidental compression under other load conibinations.
Additional information is available in the SSRC Guide to Stability Design Criteria for
Metal Structures (Ziemian, 2010).
COMPOSITE COMPRESSION MEMBERS
For the design of encased composite and filled composite compression members, see AISC
Specification Section 12. See also AISC Design Guide 6, Load and Resistance Factor
Design ofW-Shapes Encased in Concrete (Griffis, 1992). For further information on com-
posite design and construction, see also Viest et al. (1997).
DESIGN TABLE DISCUSSION
Steel Compression—Member Selection Tables
Table 4-1. W-Shapes in Axial Compression
Available strengths in axial compression are given for W-shapes with Fy - 50 ksi (ASTM
A992), The tabulated values are given for the effective length with respect to the y-axis
iKL)y. However, the effective len^ with respect to the ;c-axis (KL)x must also be investi-
gated. To determine the available strength in axial compression, the table should be entered
at the larger of (KL)y and (KQy eq, where
(^'U-^ (4-.)
Values of tlie ratio rjry and other properties useful in the design of W-shape compres.sion
members are listed at the bottom of Table 4-1.
Variables Pwo, Pwi^ Pwb and Pf], shown in Table 4-1 can be used to determine the strength
of W-shapes without stiffeners to resist concentrated forces applied normal to the face(s) of
the flange(s). In these tables it is assumed that the concentrated forces act far enough away
from the member ends that end effects are not considered (end effects are addressed in
Chapter 9). When Pr S (])/?„ or /?„/£!, column web stiffeners are not required. Figures 4-1,
4-2 and 4-3 illustrate the limit states and the applicable variables for each.
Web Local Yielding: The variables P^o and P^i can be used in the calculation of the avail-
able web local yielding strength for the colunm as follows:
LRFD ASD
RJQ. = P„o + Pjb (4-2b)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 4-5
where
Rn (5k+k) — SFyyifty^fk + Fywtw lb, kips (AISC Specification Equation JlO-2)
Pm = ^5Fy„twk for LRFD and SFy^uklQ for ASD, kips
Pvi = ^Fyy^ty, foT LRFD sncj FywtJQ. for ASD, kips/in.
k = distance from outer face of flange to the web toe of fillet, in.
lb = length of bearing, in.
tw - thickness of web, in.
(|) = i.OO
a =1.50
Web Compression Buckling: The variable P^t, is the available web compression buckling
strength for the column as follows:
LRFD ASD
where
= ^fW^^ (AISC Specification Equation JlO-8)
h
h ah
Fyw - specified minimum yield stress of the web, ksi
h = clear distance between flanges less the fillet or comer radius for rolled shapes, in.
(|) = 0.90
Q =1.67
+
lO
4
Rn
>
\l
Rn
Fig. 4-1. Illustration of web local yielding limit state
(AISC Specification Section JI0.2).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-6 DESIGN OF COMPRESSION MEMBERS
Flange Local Buckling; The variable Pp is the available flange local bending strength for
the column as follows:
LRFD ASD
^Rn==Pfb (4-4a) Rn/a = Pfi, (4-4b)
where
Rn = 6.25Fyft% kips (AISC Specification Equation JlO-1 )
Pfl = i^6.25FyftffoT LRFD and 6.25F^ftj/Q. for ASD, kips
(j) =0.90
Q =1.67
Fig. 4-2. Illustration of web compression buckling limit state
(AISC Specification Section JI0.5).
-^r-tf
Fig. 4-3. Illustration of flange local bending limit state
(AISC Specification Section J 10.1).
AMERICAN INSTRRUTE OF STBEL CONSTRUCTION

DESIGN TABLE DISCUSSION 4-7
Table 4-2. HP-Shapes in Axial Compression
Table 4-2 is similar to Table 4-1, except it covers HP-shapes with Fy = 50 ksi (ASTM A572
Grade 50).
Table 4-3. Rectangular HSS in Axial Compression
Available strengths in axial compression are given for rectangular HSS with Fy - 46 ksi
(ASTM A500 Grade B). The tabulated values are given for the effective length with respect
to the j-axis, {KL)y. However, the effective length with respect to the x-axis (KL)x must also
be investigated. To determine the available strength in axial compression, the table should
be entered at the larger of {KL)y and (KL)y eq, where
Values of the ratio rjry and other properties useful in the design of rectangular HSS com-
pression members are listed at the bottom of Table 4-3.
Table 4-4. Square HSS in Axial Compression
Table 4-4 is similar to Table 4-3, except that it covers square HSS.
Table 4-5. Round HSS in Axial Compression
Available strengths in axial compression are given for round HSS with Fy - 42 ksi (ASTM
A500 Grade B). To determine the available strength in axial compression, the table should
be entered at KL. Other properties useftil in the design of compression members are listed
at the bottom of the available column strength tables.
Table 4-6. Pipe in Axial Compression
Table 4-6 is similar to Table 4-5, except it covers pipe with Fy = 35 ksi (ASTM A53 Grade B).
Table 4-7. WT-Shapes in Axial Compression
Available strengths in axial compression, including the limit state of flexural-torsional buck-
ling, are given for WT-shapes with Fy = 50 ksi (ASTM A992). Separate tabulated values are
given for the effective lengths with respect to the jc- and j-axes, (KL)x and (KL)y, respec-
tively. Other properties useful in the design of WT-shape compression members are listed at
the bottom of Table 4-7.
Table 4-8. Equal-Leg Double Angles in Axial Compression
Available strengths in axial compression, including the limit state of flexural-torsional buck-
ling, are given for equal-leg double angles with Fy - 36 ksi (ASTM A36), assuming ^/s-in.
separation between the angles. These values can be used conservatively when a larger sep-
aration is provided. Alternatively, the value of {KL)y can be multiplied by the ratio of {Vy for
a \8-in. separation) to (/y for the actual separation).
Separate tabulated values are given for the effective lengths with respect to the x- and
)'-axes, {KL)x and (KL)y, respectively. For buckling about the jc-axis, the available strength
v,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-8 . DESIGN OF COMPRESSION MEMBERS
is not affected by the number of intermediate connectors. However, for buckling about the
jj-axis, the effects of shear deformations of the intermediate connectors must be considered.
The tabulated values for iKL)y have been adjusted for the shear deformations in accordance
with AISC Specification Equations E6-2a and E6-2b, which is applicable to welded and
pretensioned bolted intermediate shear connectors. The number of intermediate connec-
tors, fi, is given in the table and the line of demarcation between the required connector
values is dashed. Intermediate connectors are selected such that the available compression
buckling strength about the y-axis is equal to or greater than 90% of that for compression
buckling of the two angles as a unit. If fewer connectors or snug-tightened bolted interme-
diate connectors are used, the available strength must be recalculated per AISC
Specification Section E6. Per AISC Specification Section E6.2, the slendemess of the indi-
vidual components of the built-up member based upon the distance between intermediate
connectors, a, must not exceed three-quarters of the controlling slendemess of the overall
built-up compression member.
Other properties useful in the design of double-angle compression members are listed at
the bottom of Table 4-8.
Table 4-9. LLBB Double Angles in Axial Compression
Table 4-9 is the same as Table 4-8, except that it provides available strengths in axial com-
pression for double angles with long legs back-to-back.
Table 4-10. SLBB Double Angles in Axial Compression
Table 4-10 is the same as Table 4-8, except that it provides available strengths in axial com-
pression for double angles with short legs back-to-back.
Table 4-11. Concentrically Loaded Single Angles in Axial
Compression
Available strengdis in axial compression are given for single angles, loaded through the cen-
troid of the cross section, with Fy = 36 ksi (ASf M A36) based upon the effective length with
respect to the z-axis, (KL)^. Single angles may be assumed to be loaded through the centroid
when the requirements of AISC Specification Section E5 are met, as in these cases the
eccentricity is accounted for and the slendemess is reduced by the restraining effects of the
support at both ends of the member.
Table 4-12. Eccentrically Loaded Single Angles in Axial
Compression
Available strengths in axial compression are given for eccentrically loaded single angles
with Fy = 36 ksi (ASTM A36).
The long leg of the angle is assumed to be attached to a gusset plate with a thickness of
1.5t. The tabulated values assume a load placed at the mid-width of the long leg of the angle
at a distance of 0.75f from the face of this leg.
Effective length, KL, is assumed to be the same on all axes irx, ry, r^ and rj. Table 4-12
considers the combined bending stresses at the heel and the tips of the angle (points A, B
and C in Figure 4-4) produced by axial compression pltiS biaxial bending moments about
AMERICAN INSTTRUXE OF STEEL GONSTRUCTION

DESIGN TABLE DISCUSSION 4-9
the principal w- and z-axes using AISC Specification Equation H2-1. Points A and C are
assumed at the angle niid-thickness at distances b and d (respectively) from the heel.
Note that for some sections, such as 13^2x3x^/16, the calculated available strength can
increase;'slightly as the unbraced length increases from zero, and then decrease as the
unbraced length further increases.
Composite Compression—Member Selection Tables
Table 4-13. Rectangular HSS Filled with 4-ksi Normal Weight
Concrete in Axial Compression
Available strengths in axial compression are given for rectangular HSS with Fy 46 ksi
(ASTM A500 Grade B) filled with 4-ksi normal weight concrete. The tabulated values'are
given for the effective length with respect to the y-axis However, the effective length
with respect to the ;ic-axis (KL)x must also be investigated. To determine the available strength
in axial compression, the table should be entered at the larger of (KL}y and (ifDy eg> where
(4-5)
'my
Values of the ratio r^ilrmy and other properties useful in the design of composite HSS com-
pression members are listed at the bottom of Table 4-13. Tfie variables r^j: and r^y are the
radii of gyration for the composite cross section. The ratio rnaif my is determined as
'my ^ Pey (JCyLy )
(4-6)
Fig. 4-4. Eccentrically loaded single angle.
AMERICAN iNStrruTE OF STEEL CONSTRUCTION

4-10 DESIGN OF COMPRESSION MEMBERS
For compact composite sections, the values of and MrJQ. were calculated using the
noniinal moment strength equations for point B of the interaction diagram in Table C of the
Discussion of Umit State Response of Composite Columns and Beam-Columns Part II:
Application of Design Provisions for the 2005 AISC Specification (Geschwindner, 2010).
For noncompact sections, the values of ^Mn and M„/Q. were calculated using the dosed
formed equations presented in the Commentary Figure C-I3-7.
The available strengths tabulated in Tables 4-13 through 4-20 are given for the indicated
shape with the associated concrete fill. AISC Specification Section I2.2b stipulates that the
available compressive strength of a filled composite member need not be less than that spec-
ified for a bare steel member. In these tables, available strengths controlled by the bare steel
acting alone are identified. Additionally, there is no longitudinal reinforcement provided,
because there is no requirement for minimum reinforcement in the AISC Specification. The
use of filled shapes without longitudinal reinforcement is a common industry practice.
Table 4-14. Square HSS Filled with 4-ksi Normal Weight
Concrete in Axial Compression
Table 4-14 is the same as Table 4-13, except that it provides available strengths in axial com-
pression for square HSS filled with 4-ksi normal weight concrete.
Table 4-15. Rectangular HSS Filled with 5-ksi Normal Weight
Concrete in Axial Compression
Table 4-15 is the same as Table 4-13, except that it provides available strengths in axial com-
pression for rectangular HSS filled with 5-ksi normal weight concrete.
Table 4-16. Square HSS Filled with 5-ksi Normal Weight
Concrete in Axial Compression
Table 4-16 is the same as Table 4-13, except that it provides available strengths in axial com-
pression for square HSS filled with 5-ksi normal weight concrete.
Table 4-17. Round HSS Filled with 4-ksi Normal Weight
Concrete In Axial Compression
Available strengths in axial compression are given for round HSS with Fy ~ 42 ksi (ASTM
A500 Grade B) filled with 4-ksi normal weight concrete. To determii\e the available strength
in axial compression, the table should be entered at the largest effective length, KL. Other
properties useful in the design of compression members are listed at the bottom of Table 4-5.
The values of (t)M„ and M„/Q. were calculated using the nominal moment strength equa-
tions for point B of the interaction diagram in Table D of die Discussion of Limit State
Response of Composite Columns and Beam-Columns Part 11: Application of Design
Provisions for the 2005 AISC Specification (Geschwindner, 2010).
Table 4-18. Round HSS Filled with 5-ksi Normal Weight
Concrete in Axial Compression
Table 4-18 is the same as Table 4-17, except that it provides available strengths in axial com-
pression for round HSS filled with 5-ksi normal weight concrete.
AMERICAN INSTTTUTE OF SIBEL CONSTRUCTION

PART 4 REFERENCES 4-11
Table 4-19. Pipe Filled with 4-ksi Normal Weight Concrete in
Axial Compression
Available strengths in axial compression are given for pipe with Fy = 35 ksi (ASTM A53
Grade B) filled with 4-ksi normal weight concrete. To determine the available strength in
axial compression, the ta;ble should be entered at the largest effective length, KL. Other prop-
erties useful in the design of compression members are listed at the bottom of Table 4-6.
Table 4-20. Pipe Filled with 5-ksi Normal Weight Concrete in
Axial Compression
Table 4-20 is the same as Table 4-19, except that it provides available strengths in axial com-
pression for pipe filled with 5-ksi normal weight concrete.
Table 4-21. Sfififness Reduction Factor
When an toalysis is performed using the effective length* method in AISC Specification
Appendix Section 7.2, thait procedure requir& determination of the effective length factor,
K. A common method of determining K is through the use of alignment charts provided in
the AISC 5/>ec(/jcaft"on Comumentaiy,-
When column budding occurs in the inelastic range, the alignment charts usually give
conservative results. For more accurate solutions, inelastic AT-factors can be determined
from the alignment chart by using Xb times the elastic modulus of the colunms in the equa-
tion for Gi The stiffness reduction factor, Xb, is the ratio of the tangent modulus, Et , to the
elastic modulus, Values are tabulated for steels with Fy = 35 ksi, 36 ksi, 42 ksi, 46'ksi
and 50 ksi; V '
Table 4-22. Available Critical Stress for Compression
Members
Table 4-22 provides the available critical stress for various ratios of Kl/r, for materials with
a minimum specified'yield stren^ of 35 ksi, 36 ksi, 42 ksi, 46 ksi and 50 ksi.
PART 4 REFERENCES i
Geschwindner, L.F. (2010), "Discussion of Limit State Responses of Composite Columns
and Beam-Columns Part II: AppUcation of Design Provisions for the 2005 AISC
Specification," Engineering Journal, AISC, Vol. 47, No. 2, 2nd Quarter, pp. 131-139,
Chicago, IL.
Griffis,L.G. (1992), Load and Resistance Factor Design ofW-Shapes Encased in Concrete,
Design Guide 6, AISC, Chicago, IL.
Sakla, S. (2001), "Tables for the Design Strength of Eccentrically-Loaded Single Angle
Struts," Engineering Journal, AISC, Vol. 38, No. 3,3rd Quarter,pp. 127-136, Chicago, IL.
Viest, m., Colaco, J.P, Furlong, R.W., Griffis, L.G., Leon, R.T. and Wyllie, L.A. (1997),
Composite Construction Design for Buildings, ASCE,t^&v/YoTk,NY.
Ziemian,;R.D. (ed.) (2010), Guide to Stability Design Criteria for Metal Structures,6ih. Ed.,
John Wiley and Sons, Hoboken, NJ.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-12 DESIGN OF COMPRESSION MEMBERS
Table 4-1
Available Strength in
e _ . en Ut^',
Axial Compression, kips
, y - IVOI
W1 4
W-Shapes
Shape W14x
lb/ft 730" 665" 605" 550" 500" 4S5''
Pnfac 'i'cPn <|)c/?7 ^Pn ^cPn W P«ICip M Pnfac 'i'cPn <|)c/?7
UQSiyii
i&D .Asp, ASD LRFD ASD LfiFD ASD LRFD i&D LRFD .Asp, LRFD ASD,. LRFD
0 644b 9670 5870 8820 5330 8010 4850 7290 4400 6610 4010 6030
11 6070 9130 5530 8310 5010 7530 ,4550 6840 6200 3?50 5640
12 6010 9030 5470 8220 '495?: 7440 6760 WO 6120 •3710-^ 5570
13 S940. 8920 5400 8110 7350 ,4440^ 6670 ,•4020 6040
mo.
5500
14 ,5^60. 8810 5^30 8010 4820 7250 4380 6580 3960 5950, 3600
35Sb
5420
n 15 8690 '5250 7890 4750 7140 43l'0 6480 3900 5860
3600
35Sb 5330
"S
16 5690 8560 5170 7770 '^680 7030 4240" 6380 '3840 5770 5240
17 5610 8430 5090 7650 4600 6920 •4170r 6270 13770 5660 34^' 5150
2 18 (5510 8290 ,500q 7520 452,0. 6790 .4100 6160 370ft. 5560 3360 5050
1
19 5420 8140 4910 7380 4440 6670 402Q 6040 3630 5450 3290 4950
a 20 5320 7990 4820 7240 4350 6540 3940 5920 3550 5340 32?0^ 4840
s
« 22 '5110 7670 4620 6950 '4170 6260 3770 5660 "hk 5100 "3080 4620
IS 24 4890 7340 4420 6640 3980 5980 •3590 5400 •3230 • 4860 '2920 4400
1
26 4660 7000 4200 6320 3780 5680 •3410 5120 .3060 4600 27-70 4160
28 4420 6650 3990 5990 3580 5380 3220 4840 2890 4340 28J0 3920
f 30 4180 6290 3760 5660 3370 5070 3030 4560 2720 4080 2450 3680
g 32 3940 5930 3540 5320 3170 4760 2840 4270 2540 3820 229p 3440
34 * 5560 -3320. 4990 2960' 4450 2650 3990 3560 2330; 3200
36 3460 5200 3100 4650 2760 4140 2460 3700 2200 3300 2960
1
38 3^0 4850 2880 4330 2560 3840 2280 3430 2030 3050 sftid' 2730
S 40 2990 4500 2670 4010 2360 3550 2100: 3160 1870^ 2800 -;1670' 2510
s
42 2770 4160 ,2460 3690 2170 3270 ,1930r 2900 171p 2570 JSZO 2290
8 44 2550 3830 2260 3390 1990 2990 1760 2650 1560 2340 1390 2080
iS 46 2330 3510 2060 3100 1820 2730 1610 2420 1420 2140 ,1270 1910
48 2140 3220 1900 2850 1670 2510 1480 2220 1310 1960 •Tfeo 1750
50 1970 2970 1750 2630 1540 2310 1360. 2050 1500 1810 1070' 1610
Properties
Pm, kips
2320 4230 '2410 3620 2060 3090 1750 2630 1500 2240 'T28b 1920
Pwi, kips/in. 102 154 94^ 142 86.7 130 79.3' 119 73.0 110 •67.3 101
Pwu, kips 44000 66100 34400 51700 26600 40100 20500 30800 T5900 23900 12500 18800
Pft, kips 4510 6780 3820 5750 3240 4870 2730 4100 2290 3450 "1930 2900
16.6 16.3 16.1 15.9 15.6 15.5
Lr,n 275 253 232 213 196 179
Ag, in.^ 215 196 178 162 147 134
//.in." 14300 12400 10800 9430 8210 7190
4720 4170 • 3680 3250 2880 2560
fy, in. 4.69 4.62 4.55 4.49 4.43 , 4.38
fxlry 1.74 1.73 1.71 1.70 1,69 1.67
409000 355000 309000 270000 235000 206000
135000 119000 105000 : 93000 , 82400 73300
ASD LRFO " Range thickness is greater than 2 in. Special requirements may apply per AiSC
Specification Section A3.1c.
fic=1.67 (be = 0.90
AMERICAN INSTRRUTE OF STBEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-13
Fy = 50 ksi
Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
W14
Shape W14x
tb/ft 426" 398'' 370^ 342" 311" 283"
inn
Pnltlc ifcPn Pn/Cic (ttePfl p„iac i^Pn PnlS^ic hP, Pn/Clo M Pn/ilc •^oPn
uca
ASD LRFD ASD- LRFD >ASO LRFD ASD LRFD ASO LRFD ASD LRFD
0 374ff 5620 .3500 5260 3260 4900 3020 4540 2740 4110 2490 3750
11 3500- 5260 3270 4920 3040 •4570 2820 4230 2550 3830 2320 3480
>^
12 •3450 5190 •3230 4850 3000 4510 2780 '4180 25m- 3770 2290 3440
o 13 3410 5120 ^3180 4780 2960 • 4450 2740 4120 247Q 3720 2250 3380
& 14 -3350'^ 5040 3130 4710 2910 4380 •2700 4050 t2430 3660 2210 3330
a 15 3^00, 4960 3080 4630 2870 4310 2650 3980 2390 3600 2180 3270
•s
16 3240. .4870 3030 4550 2810 4230 26Q0 3910 2350 3530 -2140 3210
S
17 -3180- 4790 2970 4470 2760 4150 2550; 3840 2300 3460 .-2O90 3150
s 18 3120 4690 2920 4380 2710 4070 2500- 3760 :2260 3390 2050 3080
m
19 3060 4600 2850 • 4290 2650- 3980 •2450' 3680 2210 3320 ,2000 3010
M 20 2990 4500 2790 4200 •2590 3890 '2390> 3600 2160 3240 1960 2940
s
22 2860- 4290 2660 4000 2470 3710 3420 2050 3080 •I860 2800
1 24 2710 4080 '2530 3800 2340 3520 3160 3240 1940- 2920 :1766 2640
« 26 2560 3850 2390 3590 2210 3320 2040' 3060 1830 2750 i1660 2490
28 3630 2250 3380 2080 3120 1910- 2870 1710' 2580, .•1550 2330
•g 30 2260 3400 2100 3160 •J 940 • 2920 •1790 2680 1600 2400 1459 2170
t
32 2110 3170 1960 2950 ^1810 2720 1660 2500 1490. 2230 .1340 2020
34 1i 360- 2950 1820 2730 1670 2520 "1540. 2310 1370, 2060 "1240 1860
*
36 1810 2730 1680 2530 •1540 2320 1420 2130 1260' 1900 '1140 1710
'E 38 1670 2510 1550 2320 1420 2130 1300 1950 1160'' 1740 .1040 1560
J 40 1S30 2300 141C ,2130 1300 1950 1180 1780 1050. .1580 • 945 1420
s 42 .1390: 2090 1290- 1930 1180 1770 1070 1610 954;/ 1430 r857 1290
a <44 i: 270 1910 1760 1070 1610 :97;0<. 1470 -869 • 1310 "781 1170
S 46 41 60 1750 1070 1610 r980. 1470 806 1350 795-; 1200 I--715 1070
48 1070 •1600 1480 .900 1350 823 1240 •730 1100 656 986
: 50 983 1480 907 • 1360 830 1250 758'- 1140 673- 1010 -•>605 909
Properties
Pm, kips 1140 1710 1010 1520 902'. 1350 7S8 1180 672 1010 574 861
Pyfi, kips/In. 62.7 94.0 59.0 88.5 55.3 83,0 .-51.3 77.0 :47.0- 70.5 43.0. 64.5
Pk6, kips 10 100 15100 8420, 12700 6920' 10400 5540 8320 •4250', 6390 3260 4900
Pft, kips •Ml m' 2600 1520" 2280 1320 1990 li40 1720 956 1440 802 1210
tp.ft 15,3 15.2 15.1 15,0 14,8 147
Lr.n 168 158 148 138 125 114
AgM? 125 117 109 101 91.4 83.3
/x.in,' 6600 6000 5440 4900 4330 3840
/y.in," 2360 2170 1990 1810 1610 1440
fy. in. 4.34 4.31 4.27 4.24 4.20 4.17
rju 1.67 1.66 1.66 1.65 1.64 1.63
Pwl/fqVlO'.k-in.^ 189000 172000 156000 140000 124000 110000
67500 62100 57000 51800 46100 41200
Cic=1.67
LRFD
c = 0.90
' Range thickness is greater than 2 in. Special requirements may apply per AISC
Spec/ffcaficn Section A3.1c.
AMERICAN INSTRRUTB OF STEEL CONSTRUCTION

4-14 .
DESIGN OF COMPRESSION MEMBERS
Table 4-1 (continued)
Available Strength in
p -' (in kci
Axial Compression, kips
ty-• ^W IVOI
W1 4
W-Shapes
Shape
W14x
lb/ft 257 233 211 193 176 159
mo (fcPn Pn/Qc ^cPii Pn/iic P^ICic iS>cPn PnlQc ^cPn P^'Oc M
Design
ASDl LRFD ASO.- LRFD ASO LRFD ASD LRFD ASD LRFD ASO LRFO
, 0 2260 3400 2050'. 3080 1860 2790 1700 2560 1550 2330. 1400 2100
6 2210 ,S,S30 201 a 3010 1810. -2730 1660 •2500 15tff 2280 1370 2050
, 7 ??nn 3300 1990 2990 1800.. 2700 1650 2480 •1500 2260. 1350 2030
I
8 2180 3270 1970 2960 1780;' 2680 1630: 2450 "1490 2240 •1340 2010
I
: 9 ?i.'in 3?40 1950 2930 1760' 2650 1610 2430 1470 •2210 1330 1990
oi 10 2130 3200 1930 2900 1740 2620 1^90 2400 1450' 2180 1310 1970
•s
11 ?inn- 31fi0 i9oa 2860 1720 ,2580 1570 2360 1430- 2150 1290 1.940
s
12 2070 alio 1870 2820 1690 2550 1550 2330 1410 2120 '1270 1910
p 13 2040 .3060 1840 2770 1670 2510 1530 2290 1390" 2090 1250 1880
V 14 •20in 3010 1810 2730 1640 2460 1500- 2250 1360- 2050 1230 1850
1. 15 1970 2960 1780 2680 1610 2420 1470 '2210 l340,; 2010 1210 1810
s
16 19.% 2900 1750 2630 1580 2370 1440' 2170 1319 1970. ,1180 1780
t3
fL
17 1890 2850 1710 2570 1540 2320 1410. -2120 1280 1930 1160 1740
s
18 1850 2790 1670 2520 1510 2270 1^80 2080 126a 1890. 1130 1700
c
19 1810 2720 1640 2460 1480 2220 1350 2030 1230 1840 •1100 1660
1 '
20 •1770 2660 1600, 2400 ,1440 2160 1320." 1980 1200 1800 ,1070 1620
g 22 .1680 2520 1510 2280 1360 2050 12505- 1870 1130 1700 1020 1530
24 1590 2380 1430 2150 1290 1930 •lira. 1770 1070 1600 .957 1440
«
26 •149Q' 2240 1340 2020 1210 1820 1100 1660 998- 1500 ,896 1350
JS
28 140Q 2100 1260, 1890 1130 1700 10® 1550 931 1400- 835 1250
J 30 1300 1950 '1170 1750 105a 1570 954 1430 863" •1300 •773 1160
.1 32 1200 1810 1080- 1620 968" 1460 881. 1320 796= 1200 ;713 1070
34 1110 1670 •994^ 1490 890' 1340 810.5 1220 730 -1100 653 982
UJ 36 1020 1530 911 > 1370 815 1220 740 1110 667 1000 596 896
38 928 1400 830 1250 741 1110 673. 1010 m 909 540 812
40 841" 1260 751 1130 670- 1010 605: 914 546; 821 487 733
Properties
Pwa, kips
. 490 735 414^^ 621 353 529 303' 454 264 396 222 333
Pm, kips/in. 39.3; 59.0 35.7 53.5 32.7 ' 49.0 44.5 27.7 41.5 248 37.3
Pm,. kios 2480 3730 2780 1430 2150 IOTO; 1610 8Z0 1310 628 944
Pfu, kips
refei 1000 5S4;. 832 455 684 sfe. 583 321' 483 265 398
Lp, ft
14.6 14.5 14.4 14.3 14.2 14,1
in ft
104 95.0 86.6 79.4 73.2 66.7
Ag, in.2 75.6 68.5 62.0 56.8 51.8 46.7
y
Ix. in."
3400 3010 2660 2400 2140 1900
Vin." 1290 1150 1030 ' 931 838 748
ry, in. 4.13 4.10 4.07 4.05 4.02 4.00
hlu 1.62 1.62 1.61 1.60 1.60 1.60
PeMfno^: k-in.=
97300 86200 76100 68700 61300 54400
36900 32900 29500 26600 24000 21400
ASO,-;--. LRFD
1.67 (])(;= 0.90
AMERICAN iNSTTrUXE OF STEEL GONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-15
Fy = 50 ksi
Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
W14
Shape W14x
lb/ft 145 132 120 109 99 90
Design
PnlQc fePn PnlQo •t-oPi. PnlO^ « <!>cP« :i>cPn PnlClo ^Pn
Design
Asn LRFD LRFD Asn LRFO ASD, LRFD ASD- LRFD ASto LRFD
0 1280 1920 mo 1750 1060 1590 958 .1440 871 1310 '793 1190
6 •1250 1880 •1130 1700 1030 1550 932 1400 848 1270 772 1160
: 7 1240 1860 1120 1680 1020 1530 923- 1390 839 1260 764 1150
1 8 1230 1840 4110 1660 1010 1510 •913 1370 830 1250 755 1140
9 ,1210 1820 •1090 1640 994 1490 901 1350 819 1230 - 745 1120
oS 10 120q 1800 11080 1620 980 1470 888' 1340 807 1210 735 1100
o
CO 11 •118Q 1770 1060 1600 965 1450 874 1310 794 > 1190 723 1090
.2 12 1160 1750- io4o 1570 948 1430 859 1290 780. 1170 710 1070
E 13 ^140 1720 ••1020 1540 931 1400 843 1270 766- 1150 697 1050
to 14 1120 1690 4B00 1510 912 1370 826 .1240 750; 1130 682 1030
M
s
15 1100 1650 •982 1480 892 1340 «08' 1210 733. •1100 667 1000 M
s
16 1080 1620 • 960 1440 872 1310 789 1190 716'. 1080 .652 979
8 17 1060 1590 937 1410 850 1280 .770 1160 698-,' 1050 •635 955
i
18 1030 1550 913 • 1370 828 1240 750- 1130 680' 1020 618 929
s 19 1010 1510 888 1330 805 1210 729. 1100 , 661 994 601, 903
s 20 980' 1470 1862- 1300 782 1180 708 1060 642- .964 '583 877
t
22 '927' 1390 810 1220 734 1100 664 998 \602 904 547 822
24 .872 1310 756. 1140 685 1030 .620 931 843 509 766
*
26 ^816. 1230: 702 1060 635 955 574. 863 519 781 472 709
a 28 _7S9 1140 64'8. 974 586 880 '529 796 478 719 •434 653
1 30 703 1060 -5d4 893 537 807 485; 729 438 658 397 597
§
32 647' 973 : •542 814 489 735 441 663 398' 598 361 543
34 593' 891 491 738 443 665 399 600 360 541 326 490
£ 36 540' 812 442 664 398 598 359 539 323'-, 485 292 439
.38 489 735 397 596 357- 536 322 484 290' 435 :262 394
40 44V 663 358 538 322 484 290 437 261 393 237 356
Properties
Piwkips . 192 287 175 263 ,151 227 128 192 11^ 167 96.1.: 144
Pw, kips/in. •22.7 34.0 21'.5 32.3 19.7 29.5 17.5 26.3 16.2 24.3 14..7 22,0
476 716 =5407 611 312; 469 220 330 173 260 129 194
/"fekips 222' 334 199 298 165 249 138 208 114 171 94.3 142
14.1 13.3 13.2 13.2 13.5 15.1
Ir.ft 61.7 55.8 51.9 48.5 45.3 42,5
Ag, in.2 42.7 38.8 35.3 32.0 29.1 26.5
1710 1530 1380 1240 1110 999
677 548 495 447 402 362
ry,in. 3.98 3.76 3.74 3.73 3.71 3.70
rxir, 1.59 1.67 1.67 1.67 1.66 1.66
Pa((/fi)^/10^ k-in.^ 48900 43800 . 39500 35500 31800 28600
P^iKLflW. k-in.2 19400 15700 14200 12800 11500 10400
ASD
He =1.67
LRFD
(|)c=0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-16 DESIGN OF CX)MPRESSION MEMBERS
W14
Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
Fy = 50 ksi
Shape W14x
lb/ft 82 74 68 61 53 48 43'
PnlCXc M PnlQc PalClc p„jao ^Pn Pn/Qc ^cPn
Des gn.
ASD- LRFD ASD LRFD «so LRFD ASO LRFD ASO LRFD ASD LRFD ASD LRFD
0 719 "1080 653 981 599 900 536^ 805 -467 702 422 634 374 562
6 676 1020 614 922 562 845. 503 756 421 633 380 572 339 510
I?
7 661 993 600 90? 550 826 492. 739 406 610 •366 551 327 491
s
8 644 968 585 879 536 805 479, 720 389 585 351 527 31'2 470
'i 9 626} 940 568 854 520 782 465 699 371 557 •334 502 297 447
10 606 910 550 827 503 756 450 676 351 528 316 475 281 422
"S
11 584 :878 531 797 485 729 433 651 -331 497 ,298 447 264 397
.3 12 562' 844 510 767 466 701" 416- 626. •310 465 279 419 247 371
E 13 538- 809 489 735 446 671 398 599 {288 433 ,259 390 229 345
m 14 514' 772 467 701 426 640 380 571 !267 401 240 360 212 318
i
s
15 489' 735 444 667 405 608 361 543 -.246 369 221 331 194 292 i
s
16 464^. 697 421 633 384 577 342 514 '225 338 202 303 177 267
a 17 438, 659 398 598 362 544 323 485 205 308 ;183 276 161 242
S 18 413 620 375 563 341 512 304 456 185 278 r166 249 145 218
19 387 582 352 529 320 480 285 428 166 250 M>49 224 130 196
S
3
20 362 545 '329 495 299 449 266 399 150 226 202 117 177
g 22 314. 472 285 428 258 388 229 345 -124, 186 •111 167 97.1 146
24 267- 402 243 365 219 330 195 293- 104 157 •93.2 140 81,6 123
jj 26 343 .207 311 187 281 166 249 88.8 133 •79.4 119 69.5 104
s
28 295 179 268 161 242 143 215. 76.6 115 68:5 103 59,9 90.1
J 30 171 • 257 .156' 234 140 211 125' 187 66.7 100 .59.7 89.7 S2'.2 78.5
1
32 150'- 226 .137 205 123 185 • 110 165 S8.6 88.1
34 133<, 200 1Z1 182 109 164 97.0 146 ;
S 36 li9v 179 108 162 97.5 147 86.5 130 , H
38 107- 160 96.9 146 87.5 131 77.7 117
. 1
40 96.3 145 87.5 131 79.0 119 70.r 105
• 1' ;
Properties
Pwo. kips 123 185 104 155 90.6 136 77.5 116 '77.1 116 674 101 56a 85,4
Puii, kips/in. 17.0 25.5 150 22.5 13.8 20.8 12.5; 18.8 123 18.5 113 17.0 10.2, 15,3
Pwb, kips 201 302 138- 207 108 163 80 J, 120 767 115 59 5 89.5 43.0, 64,7
Pfb. kips 137 206 115 173 97^0 146 irm 117 8l5 123 66 2 99.6 52.6; 79,0
Lp,n 8.76 8.76 8.69 8.65 6.78 6.75 6,68
/.r,ft ; 33.2 31.0 29.3 27.5 22.3 21.1 20.0
AgM? 24.0 21.8 20.0 17.9 15.6 14.1 12.6
/.•in." 881 795 722 640 541 484 428
/y, in." 148 134 121 107 57.7 51.4 45.2
r,, in. 2.48 2.48 2.46 2.45 1.92 1.91 1.89
r./ry 2.44 2.44 2.44 2.44 3,07 3.06 3,08
25200 22800 20700 18300 15500 13900 12300
4240 3840 3460 3060 1650 1470 1290
ASD
£lc=1.67
LRFD
(])<;= 0.90
' Shape is slender for compression with Fy= 50 l«i.
Note: Heavy line indicates equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-17
Fy = 50 ksi
Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
W12
Shape W12X
Ib/tt 336" 305" 279" 252'' 230" 210
Design
p„iao W PnlOc <t>cP/i PnlQc <kP« fli/flc M Pniac PnlClc M
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 2960 4450 2680 4030 2450 3690 .2220 3330 2030 3050 1850 2780
6 2870 4310 2590 3900 .2370 3570 2140 3220 1960 2940 1790 2680
7 2840 4260 2560 3850 2340 3520 2120 3180 1930 2910 1760 2650
§ 8 2800 4210 2530 3800 23-10 • 3470 2090 3140 1910- 2860 1740 2610
9 2760 4150 2490 3740 2280 3420 2060 3090 1880 2820 1710 2570
cn 10 2710 4080 2450 3680 2240 3360 2020 3030 1840 2770 1680 2520
11 2660 4000 2400 3610 2190 3300 1980 2970 1800 2710 1640 2470
12 2610 3920 2350 < 3540 2150 3230 1940 2910 1760 2650 1610 2420
1 , 13 2550 3840 2300 3460 2100 3150 1890 2840 1720 2590 1570 2360
m 14 2490 3750 2250 : 3380 2050 3080 1840 2770 1680 2520 1530 2300
a
15 2430 3660 2190' 3290 1990 3000 1790 2700 1630' 2450 1480 2230
a
16 2370 3560 2130 3200 1940 2910 1740 2620 1580 2380 1440 2160
1
17 2300 3460 2070 3100 1880 2820 1690 2540 1540 2310 1390 2100
18 2230 3350 2000' 3010 1820- 2730 1630 2460 1480 2230 1350 2030
g 19 2160 3250 1940 2910 1760 2640 1580 2370 1430 2150 1300 1950
1 20 ?090 3140 1870' 2810 1700 2550 1520 2290 1380 2070 1250 1880
g
22 1940 2910 1730 2610 1570 2360 1410 2110 1270- 1910 1150 1730
i 24
1790 2690 1600 2400 1440 2170 1290 1940 1170 1750 1050 1580
26 1^0 2460 1460 2190 1320 1980 1170 1760 1060 1590 955 1440
f, 28 1490' 2240 1320 1990 '1190^ 1790 1060 1590 954 1430 859 1290
J 30 1350" 2030 1190 1790 1070 1610 949 1430 854 1280 767 1150
.1 32 1210' 1820 1070' 1600 954 1430 843 1270 756 1140 678 1020
34 1080* 1620 945 -1420 845 1270 746 ' 1120 670 ~ 1010 600 902
£ 36 959 1440 843 1270 754 1130 666 • 1000 597 898 '535 805
38 86t' 1290 7S7, 1140 676" 1020 598 '898 536 806 481, 722
40 777 1170 683- 1030 610 917 539 811 484 727 434 652
Properties
Pm, kips
Ptfi, kips/in.
Pytb, kips
/'ft, kips
I... ft
1050
59.3
10000
1640
1580
89.0
15100
2460
12.3
150
897
54.3
7690
1370
1340
B1.5
11600
2070
12.1
137
783
51 0
6380
1140
1170
76,5
9590
1720
11.9
126
665
46.7
4870
947
998
70.0
7320
1420
11.8
114
574
43.0
3810
802
861
64.5
5730
1210
11.7
105
492=
39;3
2930
676
738
59.0
4400
1020
11,6
95.8
AgM}
L in."
ly, in."
fy, in.
rxiry
PexiKLflW. k-in.2
PsyiKtf/W, k-in.2
98.9
4060
1190
3.47
1.85
116000
34100
89,5
3550
1050
3,42
1,84
102000
30100
81.9
3110
937
3.38
1.82
89000
26800
74.1
2720
828
3.34
1.81
77900
23700
67.7
2420
742
3.31
1.80
69300
21200
61.8
2140
664
3.28
1.80
61300
19000
. ASD
0^ = 1.67
LRFD
(t)c=0,90
'' Flange thickness is greater tlian 2 in. Special requirements may apply per AiSC
Specification Section A3.1c,
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-18 DESIGN OF CX)MPRESSION MEMBERS
Table 4-1 (continued)
Available Strength in
a _ . cn Iroi
Axial Compression, kips
ry - w ivo.
W1 2
W-Shapes
Shape
W12x
lb/ft 190 170 152 136 120 106
PnlCic M PalCic ^Pi, « p„iac Dcfl, PnlClc <\/cPn PnlCic
AStTf LRFD ASD LRFD ASD LRFD ASD.. LRFD ASD LRFD ASD LRFD
0 1680 2520 1500 2250 1340 2010 1190 1800 1050 1580 934 1400
6 1620- 2430 1440 2170 1290 1940 1150 1730 1010 1520 898 1350
7 1600 2400 1420 2140 1270 1910 1130 1710 1000- 1500 886 1330
g 8 1570 2360 1400- 2110 1250 1880 1120 1680 984 i 1480 871 1310
s ' 9 1550 2320 1380 2070 1230 1850 1100" 1650 966 1450 855 1290
OI 10 1520 2280 1350 2030 1210 1810 1080 1620 947 1420 "838 1260
•s
11 1490 2230 1320 1990 1180 1770 1050 1580 925 . 1390 .-819 1^30
•i 12 1450 2180 1290 1940 1150 1730 1030 1540 903 1360 -799 1200
2 13 1420 2130 1260' 1900 1120, 1690 1000 1500 879 .1320 air 1170
S
14 1380 2070 1230 1840 1090 1640 972 •1460 854 = ;1280 :755 1130
jU
15 1340- 2010 1190 1790 1060 1590 942 1420 fe • 1240 731 1100
i
16 1300 1950 1150 1730 1030 1540 912 1370 800 -1200 707 1060
s.
17 1260 1890 1120 1680 992. 1490 881 1320 -773- 1160 -682 1030
«
18 121.0 1820 1080.. 1620 .957, 1440 849 •1280 744;' 1120 65?" 987
x: 19 1170 1760 1040 •1560 921 1380 816 1230 715-^ 1070 .631. 948
20 1130 1690 997, 1500 885, 1330 784 1180 681. 1030 v60f 908
g 22 1030 1560 9,16, 1380 811. 1220 tn 1080 6'26- 942 -!552' 829
ei
24 944 1420 834 1250 737 1110 651'r •978 567 853 1499 750
26 855 1280 754 1130 665 999 5801- 880 510 766 , •448 673
a 28 767 1150 675 1010 595 894 523 786 '454' 682 ^398 598
c
£ 30 684 ' 1030 •600- 902 527 793 462 695 400, 601 ,350 526
i 32 603- 906 528- 794 464 ' 697 406 610 35} 528 462
"1 34 534 803 468 704 411-, 617 360 . 541 3,13 ^ 468 ,272 410
E 36 476?, 716 418; 628 •366 551 321 ' 482 ,278 417 .,243 365
38 428 643 375 563 329. 494 288. 433 249 375 , •218 328
40 386 580 338 508 297- 446 260 391 225 338 197 296
Properties
Pwn. kiOS 412 617 346 518 290' 435 244 365 201 302 162 242
Pm, kips/in. 35.3; 53.0 32.0 48.0 29.0 43.5 26.3 39.5 23.7 35.5 20.3 • 30.5
Pwh. kips 2120 3190 1580 2370 .1170' 1760 878 1320 637 957 405. 609
Pft,klps ,567;- 852 455 684 367' 551 292 439 •231i. 347 183 276
if, ft 11.5 11.4 11.3 11.2 11.1 11.0
ir.ft 87.3 78.5 70.6 63.2 56.5 50.7
Ag, in.' 56.0 50.0 44.7 39.9 35.2 31.2
/x, in."
1890 1650 1430 1240 1070 933
ly, in." 589 517 454 398 345 301
/y, in. 3.25 3.22 3.19 3.16 3.13 3.11
rtlrv 1.79 1.78 1.77 1.77 1.76 1.76
54100 47200 40900 35500 30600 26700
Pey{KL)yW, k-in.2 16900 14800 13000 11400 9870 : 8620
LRFD
1.67 it)c=0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-19
Table 4-1 (continued)
tr _ cn Available Strength in
^" Axial Compression, kips
W-Shapes
w 12
Shape W12x
lb/ft 96 87 79 72 65
np^ion
Pn/Qc PnlUc Pnl^c fcPn PJ^c fcPn
ucaiyii
ASD LRFD ASD tRFO ASD; LRFD ASD' LRFD ASD LRFD
0 844 1270 766 1150 695 ; 1040 632 949 572 859
6 811 1220 736 ; 1110 667 i. 1000 606 911 549 825
7 800 1200 .-726 : 1090 657; • 988 597 ' 898 540 812
8 787 1.180 <714; 1070 P:646 , 971 587 . 883 531 798
S 9 772 1160 i 700 : -1050' 634 953 576 866 521 783
w 10 756 . .1140 :®85 i 1030 620 i 932 564 847 S10 ' 766
o
11 739 1110 670 1010 606 ^ 910 550 . 827 497 747
•i 12 720 1080 653 981 -590:; 887 536 -806 484 728
s 13 701 1050 • 635 . 954 574 : 862 521 • 783 470 707
14 .680 1020 616 925 556 • 836 505 759 456 685
15 659 . 990 596 896 538' 809 489 735 '441 663
16 637 • 957 576 • 865 520 781 '472 709 426 640
OJ 17 614 923 555 834 501 753 455 683 410 616
s 18 591 888 534 802 ,.481 723 437 656 393 591
19 567 ' •852 512 770 462' 694 419 629 •377 567
20 543 ,' 816 490 737 442 664 401 602 360 542
g 22 495 744 • MS 671 402 604 364 547 327 492
24 447 672 403 605 362 544 328 493 294 442
26 401 602 360 541 323 486 292 440 . 262 394
OI 28 356 535 319 480 286 , 430 259 389 •231 348
M 30 312 469 280 ' 421 250 ' 376 226 340 202 304
s.
32 274 413 246 370 220 331 .199 299 . 178 267
g 34 243 365 218 327 195 293 .176 • . 265 157 236
E 36 217 . 326 194 292 174 • 261 157 236 140 211
38 195 i 293 174 262 156 234 141 212 .126 189
40 176 : 264 157 , 237 141 212 127 ; 191 W4 171
Properties
Pm, kips 138 206 121 182 104 156 91.0; 137 78.0 117
Pwh kips/in. 183 27.5 17.2 25.8 15.7 23.5 14.3 21.5 13.0;; 19.5
Pvib, Wps 296 445 ;243-i 365 185; 278 142 ; 213 106 159
Pfekips 152 228 123 i 185 .. 101 : 152 84.0 126 68.5 103
10.9 . 10.8 10.8 107 11.9
46.7 43.1 39.9 37.5 35.1
28.2 25.6 23.2 21.1 19.1
t.in." 833 740 662 597 533
V.in." 270 241 216 195 174
fy, in. 3.09 3.07 3.05 3.04 3.02
rx/ry 1.76 1.75 1.75 1.75 1.75 •
23800 2T200 18900 17100 15300
7730 6900 6180 5580 4980 .
•ASO LRFD
1.67 (i)c = 0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-20 DESIGN OF CX)MPRESSION MEMBERS
W12
Table 4-1 (continued)
Available Strength in
Axial Compression, Icips
W-Shapes
Fy = 50 ksi
Shape W12x
lb/ft 58 53 SO 45 40
Pnl^c ifcPn Pnl^c •fcPn Pfl/fic i/cPn Pnlilc <t)cP« PnlCla
ASD tRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD
0 509 765 .467 , 702 437 657 392 • , 589 350 , 526
6 479 720 439 . 660 396 595 355 534 317 ' 476
7 469 705 . 429 646 382 574 342 515 305 ' 459
I 8 -:457 ' 687 '419 629 367 551 .'329 494 293 . 440
•g 9 445 668 407 611 350 526 313 ' , 471 279 420
10 U31 647 394 592 332 500 297 ' 447 265 398
o
11 -416 625 380 571 314 472 ' 281 • 422 250 375
.3 12 '400 ,601 365 ' 549 295 443 263 396 234- ' 352
2 13 384 577 350 526 , 275 413 246 • 369 .218 328
% 14 367 551 334 502 255 384 .-228 ' 343 202 304
J
B
15 349 525 -318 478 236 355 '210 • 316 187 281 J
B
16 332 499 301 453 217 326 193 I 290 171 , 257
i.
17 314 .472 285 428 •198 ' 298 ,176 265 156 255
« 18 296 ,445 268 , '403 180 270 ••:160 • 240 142 213
19 -278 418 • 252 : 378 162 244 144 216 127 1,91
a.
S
20 261 392 235 354 J 46 220 130 195 t15 173
g 22 •227 ,341 . 204 307 121 182 107 • 161 95.0 143
d 24 .194 292 ^ 174 261 102 153 90.3. 136 79.8 120
26 .,165 , 249 148 -223 86.6 130 76.9' •116 68.0 , 102
i
1
28 143 214 128 , 192 74.7 112 66.3 99,7 58.6 88.1 i
1 30 124 187 111 -167 65.0 97.8 57.8' .86,8 51.1 76.8
.1 32 • 109 164 97.8 147 57.2 85.9 50.8 76.3 44.9 67.5
s.
34 .96.7 •145 :86.6 130
E 36 86.3 130 •77.3 116
38 77.4 116 .69.4 104
40 69.9 105 62,6 94.1
Properties
Pwo. kips 74.4 112 67.9 102 70.3 105 60.3 90.5 50.2 75.2
Pwi, kips/In. •12.0 18.0 11.5 17.3 12.3 18.5 11.2 16.8 9.83 14.8
Fwi, kips ,:83.1 125 73.3 - 110 88.4: ,133 65.6 98.6 ,44.8 ,67.4
Pfb, kips 76.6 115 61.9 93.0 76.6 115 61.9 93.0 49.6 74.6
io.ft 8.87 8.76 6.92 6.89 6.85
Lr,n 29.8 28.2 23.8 22.4 21.1
Ag, in.^ 17.Q 15.6 14.6 13.1 11.7
475 425 391 348 307
ly. in." 107 95.8 56.3 50.0 44.1
/y,in. 2.51 2.48 1.96 1.95 1.94
rJr. 2.10 2.11 2.64 2.64 2.64
13600 12200 11200 9960 8790
3060 2740 1610 1430 , 1260
ASO
He = 1.67
LRFD Note: Heavy line indicates W./ry equal to or greater than 200.
(tic = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-21
Fy = 50 ksi
Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
W10
Shape WlOx
Ib/ft 112 100 88 77 68 60
Design
Pnl^c i/cPn P„IQc ifcPn 6fcPn 'IfcPi, PnlClc ^cPn Pniac (fefi,
Design
ASD LRfD ASD LRFD ASD LRFD ASD LRFD ASD; LRFD ASD LRFD
0 '985 1480 -877- 1320 778 1170 €80 1020 596 i 895 530 796
6 334 1400 -831 1250 •737 1110 •643 966 563-: 846 500 752
• ^ 7 917 1380 815 1230; 722 1090 ,630 946 552 829 490 737
g 8 897 1350 797 1200 .706 1060 .6t5 925 539 810 479 719
1 9 875 13t0 777 1170 688 1030 .£99 900 525 789 466 700
g! 10 ,'851 1280 755 1130- '669 1000 582 874 509. 765 452 679
o
w
11 mz 1240 732 1100 647 973 563 846 493- 741 437 657
12 '798 1200 707 1060 625 940 543 816 475.' 714 •421' 633
2 13 769 1160 • 681 1020: 602 905. '522 785 457. 687 405 608
V, 14 739 1110 '654 983 578 868 •SOT 753 •438' 658 388 583
s
15 '708 1060 626 941 553 831 479 720 419 629 370 556
£
•{3
16 .577 1020 598 898 527 792 •456 686 399 599 •'352 530
S.
IT 645 969 569; 855 501 754 433 651 379 569 334 502
03
5>
18 6T3 921 540 • 811 475 714 410 617 358 539 316 475
19 .580 872 511 -767 449 675 387 582 338 508 298 448
1
20 548 824 '482 724 423 636 365 548 318 478 280 421
g 22 ••485 728 '425 638 373 560 320 481 279 419 , 245; 368
. 24 ^423 636 370 556 , 324 487 .277 417 24 V. 363 212 318
26 365 548 318 478 278 417 237 356 206' 310 181 271
28 315 473 •274 412; 239 360 '204 307 178 267 156 234
30 .274 412 239 359, •209 313 •178 267 155 233 13^ 204
.1 32 241 362 '210 315 183 276 156 235 '136. 205 •119 179
» 34 213" 321 186 279 162 244 1-39 208 1121.. 181 106 159
36 190 286 166 249 145 218 124 186 108 162 94.2 142
38 171 257 '149 224 130 195 111 167 96.5 145 .84.5 127
40 154 232 •134 202 117 176 .100 150 87.1 131 76.3 115
Properties
Pm,, kips
Pm, kips/in.
Pfb. kips
ir.ft
220
25 2
949
•292
330
37,8
1430
439
9.47
64.1
184
22.7
690
"235
275
34.0
1040
353
9.36
57.9
150
20 2
487
183
225
30.3
732
276
9.29
51.2
121
17.7
-328
142
182
26.5
494
213
9.18
45.3
99.5
15.7
229
111
149
23.5
344
167
9.15
40.6
82.6i
14.0
16 J:
86.5
124
21.0
245
130
9.08
36.6
in.^
'y.in."
fy, in.'
rxiry
k-in.2
Pey(KLflWMr^}
mrm7
32.9
716
236
2.68
1.74
20500
6750
29.3
623
207
2.65
1.74
17800
5920
26.0
534
179
2.63
1.73
15300
5120
22.7
455
154
2.60
1.73
13000
4410
19.9
394
134
2.59
1.71
11300
3840
17.7
341
116
2.57
1.71
9760
3320
£5^=1.67
LBFO
c = 0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-22
DESIGN OF COMPRESSION MEMBERS
W10
Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
Fy = 50 ksi
WlOx
lb/ft 54 49 45 39 33
Pn/ilc M Pn'Cic fli/iic t'c/'n <t>c''n
Des ign
ASD LRFD ASD LRFD ASD LRFD LRFD ASD LRFD
0 473 711 648 398 598 344 517 S293 437
6 4'46-4 671 407 • 611 .•/36S' 545 ' ,313 470 '563 , 395
7 437- 657 •398 598 527 ••302 '454 253 • 381
g
8 427.- 642 588 584 337 507 290 436 543 365
2 • 9 415 624 375 568 .'322' 485 277 416 •232 348
s 10 403 ' 605 366 550 =V.307 . 461 263 .396 •220 : 330
"S
11 389 ' 585 354 532 ..291 437 249 374. 037 , 311
.3 12 375.- ^ 564 341 512 ".•274 411 234 352 :m • 292
S 13 361 542 327 492 ' 256 385 219 329 •f81 ' 272
IS 14 345= 519 313 .471 ;239 -359 •203 306 -168 , 253
» 15 330 ' 495 299 • 449 222 333 188 283 4155 233
s
16 314. 471 284 , 427 V, 204 307 173. 260 214
« 17 297-• 447 . 269 ' 404 188 282 ; 158 238 .130 195
m
18 281 422 254 382 171 257 = 144 •217 «7 / 177
c 19 265:- 398 •239 360 •155 234 130 1.96 159
20 249" 374 224' 337 ••i140- 211 • 11«. 177 <95.4 143
B 22 217 327 196 294 116 174 97.2 146 118
fj 24 188. • 282 168 253 97.4 146 81.7 123 m.2 99,5
^
26 160 . 240 143 216 83.0 125 69.6 .'105 56.4 84.8
Ml 28 138 207 m- 186 71,5 108 60.0 90.2 48.7 73,1
M 30 120' 180 .108 • 162 • 62,3 . 93.7 52.3 78.6 ,42,4 63.7
s
32 - loer. 159 f4.7 142 r54,8 82.3 ,46.0 69.1 37.3 56.0
1 34 93.5". 141 B3.9' 126 -f
£ 36 83.sf 125 74.8. 112
38 74.8 112 67.2 101 i
«
.y
40 67.6 . 102 60.6 91.1 -
Properties
Pwn. kiDS 69.1 104 6o;i • 90.1 ' 65,3 98.0 •54:i 81.1 45,2 67.8
Pwi. kiDS/in. 12.3 18.5 17.0 :ii,7 17.5 10.5 15.8 9,67 14,5
Pvib, kips 112' , 168 86.6 130 m.2 142 ,687 103 53,7 80,7
Pfb. kips
70.8 106 '58;7 88.2 .•;71,9 108 52.6 79.0 35,4 53,2
tp.ft 9.04 8.97 7.10 6.99 6,85
ir.ft
33.6 31.6 26,9 24.2 21,8
Ag, in.2 15.8 14.4 13,3 11.5 9,71
Ix, in." 303 272 248 209 171
ly, in." 103 93.4 53.4 45.0 36,6
Cy, in. 2.56 2.54 2.01 1.98 1,94
hlh 1.71 1.71 2.15 2,16 2,16
8670 7790 7100 5980 4890
Pey{KLfm\ k-in.' 2950 2670 1530 1290. 1050
AS') LRFD Note: Heavy line indicates KLUy equal to or greater ttian 200.
ac= 1.67 0,90

AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-23
Fy = 50 ksi
Table 4-1 (continued)
Available Strength in
Axial Compressioh, kips
W-Shapes
W8
Shape W8x
lb/ft 67 58 48 40 35 31
W Pn/Clc M PnlClc Pn'no Pn'iic ^Pn •fcfl,
AiSD LRFD ASD LRFD ASD LRFD ASD. LRFD ASD LRFD ASD LRFD
0 590 886 512 769 422 ; 634 350 526 308=- 463 273 411
6 542 815 470'" 706 -387 581 320 481 281'^ 423 249 374
g"
7 526 790 45S 685 375 563 309 465 272" 409 241 362
f
8 508 763 439' 660 361 543 298 448 262 394 232 348
9 488 733 422. 634 347 521 2'85 429
251.,'
377 222 333
•s
10 467 701 403 606 331 497 272 409 239 359 211 317
.1
11 444 668 384 576 314 473 258 388 '226'' 340 200 301
2.
12 421 633 363' 546 297 447 243 366 2,f3. 321 189 283
<s 13 3'97 597 342 514 280 421 228 343 200 301 177 266
14 .373 560 325 482 262 394. i213. 321 187- 281 , •165 248
•s
15 . 348 523 299 450 244 367 1:98 298 174 261 ,153 230
s.

16 324 487 278' 418 226 340 183 275 160- 241 141 212
£
17 300 450 257 386 209 314 169 253 14?. 221 '130 195
li 18 276 415 236 355 192 288 1:54 232 1S5? 203 118 178
19 253 381 216 325 175 264 141 211 123 184 "108 162
g
20 "231 347 197 • 296 159 239 Ji27 191 111. 166 97.2 146
22 '1'91 287 163 244 132 198, 105 158 138 , ;80.3 121
t 24 160 241 137' 205 111 166 88.2 133 -71.9 116 67.5 101
1 26 W? 205 116- 175 94.2 142 m 113 esls 98.5 -57.5 86.5
.1 28 118 177 100 151 81.2 122 97.4 56.5 84.9 49.6 74.5
1 30 JOS 154 8/.5. 131 70.7 106.. 56.5 84.9 W 74.0 ;:43.2 64.9
s
32 ab.3 136 76.9 116 62.2 93.5 49.6 74,6 43;3 65.0 38,0 57.1
34 7k9 120 68?1 102 -55.1 82.8 66.1 ^ J
Properties
Pwo. kips .126 190 102 153 72.0 108 57.2 85.9 45.9,, 68.9 39.4 59.1
Pwf, kips/in. 19.0 28.5 17.0 25.5 133 20.0 12.0 18.0 15.5 9.50- 14.3
Pwb, kips .507 761 363 546 174 262 127 192 122 63.0 94.7
Pfb, kips 246 123 185 87.8 132 58.7 88.2 4p> 68.9 35.4 53.2
tp.ft 7,49 7.42 7.35 7.21 7.17 7.18
tr.ft 47.6 41.6 35.2 29.9 27.0 24.8
Ag, in.^ 19.7 17.1 14.1 11.7 10.3 9.13
Ik. in." 272 228 184 146 127 110
/yjn." . 88.6 75.1 60.9 49.1 42.6 37.1
/>, in. 2.12 2.10 2.08 2.04 2.03 2.02
rJr, 1,75 1.74 1,74 1.73 1.73 1.72
k-in.2 7790 : 6530 5270 4180 3630 3150 ,
Pey{KL)y-iO\ k-in.2 2540 2150 1740 1410 1220 1060
ASD LRFD Note: Heavy line indicates KL/ry equal to or greater than 200.
(t)c=0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-24
DESIGN OF CX)MPRESSION MEMBERS
HP18
Table 4-2
Available Strength in
Axial Compression, kips
HP-Shapes
Fy = 50 ksi
Shape
lb/ft
Design
0
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
32
34
36
38
40
HP18X
204
PnlO-o
ASD
1S00,
1770
1750
174P.
1720
1700
1680
1660
1640
1610
1590
1560
1530
1500-
1470-
1440
1370
1300
1230
1160
1080
1010
936
..865
795
728
LRFD - ASD
2710
2650
2630
2610
2590
2560
2530
2500
2460
2420
2380
2340
2300
2250
2210
2160
2060
1950
1850
1740
1630
1520
1410
1300
1190
1090
181
PnlClc
1590-
1560
1550
1540
1520
1500
1490,
1470,.
1450
1420
1400
1370
1350
1320
1290
1270
1210.
1140
1080 .
1010
950
884
820
756
695
635
LRFD
2390
2340
2330
2310
2290
2260
2230
2200
2170
2140
2100
2070
2030
1990
1950
1900
1810
1720
1620
1530
1430
1330
1230
1140
1040
954
157
/Ji/fic
ASD
1380'
1350.
1340
1330
1320
1300
1290
1270
1250
1230
121?"
1190
1170
1150
1120s
1100:.
1040.
989
933
876
819.
761
705
650"
596-
544 .
LRFD ASO
2080
2040
.2020
2000
1980
I960
1940
1910
1880
1850
1820
1790
1760
1720
1680
1650
1570
1490
1400
1320
1230
1140
1060
977
896
818
135
Pa/n^
1190.
117a
1160
1150,
1140
1130'
1110
1100
1080
1060
1050 -
1030
1010
985',
,964jp
942
848 ,
800
750
.700 ,
,650
601
553
507 -
461
LRFD
1800
1760
1740
1730
1710
1690
1670
1650
1620
1600
1570
1540
1510
1480
1450
1420
1350
1280
1200
1130
1050
977
904
831
761
693
Properties
kips
Pn/, kips/in.
Pwtokips
Pfb, kips
435
37.7
1830
239
653
56,5
2740
359
15.2
67.8
363
33.3
1270
.
545
50.0
1910
281
15.1
61.3
297
29.0
•840.
142-
446
43.5
1260
213
18.1
55.8
241
. 25.0
535
105
362
37.5
804
15S
21.4
50.5
Agjn.^
ly, in.",
(y, in.
rjry
PeximW, k-in.2
60,2
3480
1120
4,31
1.76
99600
32100
53,2
3020
974
4.28 ,
1.76
86400
27900
46,2
2570
833
4.25
1,75
73600
23800
39,9
2200
706
4,21
1.76
63000
20200
ASD
nc=1.67
LRFD
(Jic = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION—MEMBER SELECTION TABLES 4-25
/V = 50ksi
Table 4-2 (continued)
Available Strength in
Axial Compression, kips
HP-Shapes
HP16
Shape HP16X
lb/ft 183 162 141 121 101 88"'
/5,/nc P^IClc p„/ac •fcPn PnlSic AoPn Pn/Cic 'IV;'?. PnlQc APn
OGSi^n
ASD LRFD ASD LRFD •ASD' LRFD ASD LRFD ASD' LRFD ASD LRFD
0 1610 2430 1430 2150 1250 1880 1070' 1610 895 V 1350 749, 1130
6 1570 2360 1390' 2090 1220 1830 1040. 1570 871 1310 729! 1100

7 1560 2340 1380 2070 1200' 1810 1030 1550 862 -1300 722 1080
.1 8 1540 2320 13b0> 2050 1190 1790 1020 ' 1540 852 1280 714 1070
•g 9 1520 2290 1350, 2020 1180 1770 1010 -1520 841'' 1260 705 1060
•s
10 1500' 2260 1330 2000 1160 1740 995 1490 829 ' 1250 694 1040
•s
11 1480., 2230 1310 1970 1140 1720 979. 1470 816 1230 684 1030
M 12 1460 • 2190 1290 1930 1120 • 1690. 962 1450 802< -1210 672 1010
e 13 1430 2150 1260 1900 1100 1660 944 1420 787 , 1180 •659 991
"w 14 1410 2110 1240 1860 1080 1630 926-, 1390 771 1160 646 971
J : 15 1380 2070 1210 1820 1060 1590 ^906' 1360 754 1130 632 950
s
16 1350 2020 1190 1780 1030 .1560 885 ' 1330 736 . 1110 617 928
s.
17 1320 1980 1160 1740 1010 1520 863, 1300 718'' 1080 602 905
1
18 1280 • 1930 1130 1700 ^985 1480 841 1260 699 1050 S87 882
c
19 1250 • 1880 1100' 1650 958 -1440 818 1230 679 t 1020 570' 857
"s
20 1220T. 1830 1070. 1610 931 1400 794 11.90 659 991 554 833 .
B 22 1150 -1720 10101 1510 876 i 1320 746 1120 618 929 520 782
24 1070 1610 942, 1420 819 1230. 696. 1050 576 • 866 •485 729
*
26 1000 . 1500 877 < 1320 761 ' 1140 646 971 534 802 450 676
28 927 1390 811 , 1220 '703- 1060 596- 896 49U 739 -415 623
J 30 8M 1280 746 1120 645 .970 546- 821 450 i-676 380' 571
.1 32 7^3 1180 682 1030 589 886 498 5 748 409 615 346 520
® 34 .713 ^ 1070 620 i 932 5i35' 804 451 678 370-' 556 313 471
u : 36 ,646 971 5sn, 843 482 725 405" 609 331' 498 281 423
38 873 503 756 433" 651 364- 547 297 447 253 380
40 787 454 682 391 587 328 ' 494 268 C 404 ,228 343
Properties
P«o,kips 435 653 363 545 300 451 241 362 189 283 155 232
P„-, kips/in. 37.7 56 5 33.3 50.0 29.2 43.8 25.0 37 5 20.8 31,3 I8.O1 270
Pwb. kips 2100- 3160 1450- 2190 974, 1460 612* 920 356-^' 535 229 345
Pa, kips 239 359 187 281 143 " 215 105 158 73.1 110 54.6 82.0
ip,ft 13.6 13.5 13.4 16,7 20.2 22,9
Lr.n 67.6 60.2 54.5 48.6 43.6 40,6
Ag, in.^ 53.9 47.7 41.7 35.8 29.9 25,8
/x.in.i 2490 2190 1870 1590 1300 1110
/y.in." 803 697 599 504 412 349
fy, in. 3.86 3,82 3.79 3.75 3,71 3.68
hlty 1.76 1,77 1.77 1.78 1,78 1.78
71300 62700 53500 45500 37200 31800
P^(KLflW. k-in; 23000 19900 .17100 14400 11800 9990
0^=1.67
LRFD ' Shape is slender for compression with 50 ksi.
(])<;= 0,90
AMERICAN INSrrrUTE OF STEEL CONSTRUCTION

4-26
DESIGN OF CX)MPRESSION MEMBERS
Table 4-2 (continued)
Available Strength In
F ~ 50 ksi
Axial CnnriDression. kiDS
• wVi IVOI
HP14-HP12
HP-Shapes
Shape
HP14X HP12X
lb/ft 117 102 89 73'^ 84 74
<i>„Pn p„/ac Pn/Oc ^Pn PnlCic feflr PflWc fc/?.
uesigii
ASD IRFO ASD LRFD ASD: LRFD ASD LRFD •AS0 LRFD ASD > LRFD
0 1030 1550 901 1350 781 V 1170 623 ' 937 737 1110 653' 981
6 won 1500 -875 1310 .758.. 1140 605 909 705 1060 624 938
7 990 • 1490 865-^ 1300 750 1130 598 .s 899 694 . 1040 614 923
g
8 Pi77-1470 855 -1280 740 1110 590 887 681 ' 1020 603 906
2
9 9^4 1450 843 -1270 730 1100 582': 875 667 ? 1000 591 888
Si 10 949 1430 829- 1250 718 1080 573- 861 652 • 980 .577' 867
•s •
11 93S 1400 815. • 1220 705 > 1060 563- 846 636 955 ,562 845
.1 12 916." 1380 800 . = 1200 692 1040 552, 830 618 929 «46 821
13 897 ; 1350 783 -1180 677 1020 541 813 599 901 =530' 796
« 14 87R 1320 766 1150 662 -995 528 794 580 872 512 770
J 15 857 1290 7483: 1120 646 971 516.. 775 560 : 842 494, 743
S
16 R3fi 12fifl 729 1100. 629 946 502 755 . 539 .810 476 715
1
17 813. 1220 709 1070 6)2 920 489 735 518 . 779 '457 687
cl
18 790 • 1190 689 1030 594. ; 893 475- 713 496 746 437 658
% 19 767 1150 668 ' 1000 576" 866 .460 691 474. 713 •418 628
"I : 20 ^743. 1120 646 972 557 838 445 669 452' 680 J398 599
22 694! 1040 603 ' 906 519 780 415<'- 623 408 614 359' 540
24 643 967 S58-1 839 480 722 384 •577 365 .549 3320; 482
i*: ;
26 593- 891 514- 772 441 --663 353 531 323 . 486 1283' 426
£
28 543 816 470 : 706 403 ' 606 322;. 484 283 425 ^47 372
e
S 30 494 • 742 427 641 365 .549 292 439 247 371 '216 > 324
J
32 446" 671 385'" 579 329 494 263 •-396 217' 326 •189 285
1 34 400.' 602 344. 518 294 ' 441 235 . 354 192 289 c168| 252
s
36 3'57' 537 '307 • 462 262 . .394 316 171 • 257 150 225
.38 320 482 276; 414 235 • 353 188 283 154' 231 '134' 202
40 289" 435 '249 374 212 319 170 256 139 208 -121 182
Properties
Pwn. WDS 201 302 162 243 134 201 100 150 158 " 236 132 : • 198
P.,I. kios/irt. 26.8 403 23.5, 35,3 20 5 30.8 16.8 25,3 22.8^ 34,3 20.2 30.3
Pwb, kips
790' 1190 :53ni 798 354 532 195 294 572 Ct 859 393 o : 591
Pti. kips 121 182 • 93;0i 140 708 106 477 71.7 • 87.8 132 69.6? 105
12.9 15.6 17.8 21.2 10.4 11.9
Lr.n 50.5 45.7 41.7 37.6 41.3 37.9
Ag, In.^ 34.4 30.1 26.1 21.4 24.6 21.8
Ix, in.''
. 1220 1050 904 729 650 569
ly, in." 443 380 326 261 213 186
ry.in. 3.59 3,56 3.53 3.49 2.94 2.92
r,/fv 1.66 1.66 1.67 1.67 1.75 1.75
Pex{KL)W, k-in
2
34900 30100 25900 20900 18600 16300
Pey(KQyiO\ krin
2
12700 10900 9330 7470 6100 5320
..JlS LRFD ' Shape is slender for compression with f^s = 50 ksi.
1.67 (lie = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-27
Fy = 50 ksf
Table 4-2 (continued)
Available Strength in
Axial Compression, kips
hfl'-Shapes
HP12-HP8
Shape HP12X HPlOx HP8x
lb/ft 63 53'^ 57 42 36
PnlQc « PnlCic 'kPn P„iQc •^cPn PJQc •^cPn
ASO LRFD ASD LRFD ASD LRFD ASD LRFO ASO LRFD
0 551 828 460. 691 500 751 371 558 317 477
6 526 791 439 660 469 706 ' 348 523 287-, 432
7 518 778 49'2". 649 459 690 340 511 277 416
o 8 508' 763 424 637 , 447 672 331 497. 266 400
g
9 497 , 747 , 415 623 .434 652 . 321 482 254. 381
10 485. . 729 .405 608 ^'420 631 310 465 241 362
"S
11 472-"' 710 394 592 404 608 298 448 227 341
a
12 459 , 690 383, , 575 388' 584 286 . 430 213 320
s 13 445 « 668 371 557 372 559 273 411 199- 299
M 14 430 646 358 538 355 533 ^60 391 184 . 277
i
15 4'I4 622 'M5 , 519 ,^37 506 "247 371 170 256
i
16 398 598 332. ' 499 319 480 233 351 156 235
s.
17 574 318 478 ,301 453 220 330 143 214
w 18 365 . 549 304 ' 457 283 426 206 310 129 194
IH
£ 19 348 524 290 436 265 399 193 290 li7 175
Si
S
20 332;,, 498 ,276' 415 248 373 , i§o
270 10'§ 158
t
22 293 ,' ' 448
m
373 214 322 154 232 86.9 131
24 399 ' 221;
m •
332 182 273 131 196 73,0 110
26 234 351
' 221;
m •
292 .15.5 233 167 62.2 93,5
28 2p3 305 . 169 254 133 , 201 95.9 144 53.7 80,7
M 30 177 J • 266 147 221 .rfi6 175 83.5 126 , 46.7 70.3
g
32 156 234 1?9 ,194 102 154 . 73.4 110 41.1 61.8
» 34 f38 , 207 172 .90,5 136 ;65.0, 97.7
E 36 123 " 185 102 153 •80,7 121 58.0 87.2
38 110 166 91.6, 138 72.5 109 52.1 78.2
40 99.6 150 82.7 124 • 65,4 98.3- 47.0 70.6
Properties
Pm,m 107 161 .81.9 123 118 177 78.2 117 83.8 126
Pw, kips/in. 17.2 25.8 14.5 21.8 18.8 28.3 13.8 20.8 14.8 223
P«4,kips 243 365 147. 221 397 597 158 237 241 363
/•fekips 49,6 74.6 35.4 53.2 59.7 89.8 33.0 49.6 37.1 55.7
Lp,n 14.4 16.6 8.65 12.3 6.90
Lr.n 34.0 31.1 34,8 28.3 27.3
Ag, in} 18.4 15.5 16.7 12.4 10,6
hM 472 393 294 210 119
If.in.' 153 127 101 71,7 40,3
ry, in. 2.88 2,86 2.45 2.41 1.95
rjry 1.76 1,76 1.71 1.71 1.72
Pexm'IIO', k-in.= 13500 11200 8410 6010 3410
4380 3630 2890 2050 1150
ASO
0^=1.67
LRFD
(])<; = 0.90
«Shape is slender for compression wltli = 50 ksi.
Note: Heavy lliie Indicates KUr, equal to or greater than 200.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-28
DESIGN OF COMPRESSION MEMBERS
Table 4-3
Available Strength in
P -
Axial Compresslon, kips
ty-' Hv Ivol
HSi $20-HS S16 Rectangular HSS
HSS20x12x HSS16x12x
anape
«/8 Va" 5/16" V2
^designiin- 0.581 0.465 0.349 0.291 asai 0.465
tt/ft 127 103 78.5 65.9 110 89.7
Pn/Oc M /WQc M flr/flc fcP/. Pn'^c ^cPi,
Design
ASD LRFO ASD LRFD ,ASO LRFD LRFD ASD LRFD ASD LRFD
0 964 1450 740 1110 -495 743 375 563 835 1250 . 678 1020
6 950 1430 732 1100 ; 490 737 3;^ 560 822 1240 668 1000
7 945 1420 • 730 1100 488 734 372 558 818 1230 ' 664 998
8 940' 1410 • 726 1090 487 731 370 557 812 1220 •660 992
9 933 1400 723 1090 ' 484 728 369' 555 807 N 1210 "655 985
10 926 1390 719 1080 •482 725 3'6"B 553 800 1200 650 978
f 11 919' 1380 714 1070 - 480 721 367 551 793 1190 645 969
12 910 1370 709 1070 477 717 365 549 786 1180 639 960
"S 13 901' 1350 704 1060 474 712 363 546 777 1170 632 950
14 892 1340 698 1050 470 707 361 543 769 1160 625 940
€ IS 881 1320' • 692 1040 467 702 360 540 759 1140 •618 929
16 871 131.0 §85 1030 '463 696 357' 537 749' 1130 '610 917
1 17 859 1290 678 1020 459 690 355 534 /39 1110 602 905
i 18 847 1270 1010 455 684 353 530 723 1090 593 892
i
19 835 1250 663' 997 ••451 677 350 526 717 1080 •584 878
1. 20 822- 1240 •655 985 446 670 Ji4f 522 705* 1060 ^^575 864
£
21 8D9 1220 647" 972 ' 441 663 345 518 69' 1040 T^es 850
£
22 795 1190 638 959 '436 656 342 513 681 1020 '556 835
23 781 1170 629' 945 43f 648 338 509 668 1000 ••'545 820
g 24 766 1150 619 931 ' 425 639 335 504 655 985 •535 804
Si 25 ^52 1130 610 916 ;420 631 Ml 497 642' 965 '-524 788
£
26 736 1110 .599 901 414 622 ,327 491 :628- 944 .514 772
1" 27 721 1080 587 882 "408 613 322 485 i6l'4. 923 •-503 755
28 705 1060 575 864 402 604 318 478 600 902 491 738
>
29 690 1040 562 845 <395 594 • 313 471 586 881 480 721
£
30 |73 1010 549 , 826 389 584 309 464 572 859 468 704
u
32 641 963 523 787 375 563 299 449 543 816 445 669
34 608 914 497- 747 ..361 542 •2819 434 513 772 422' 634
36 575 864 47T' 708 "346 519 •278 418 484 727 398 599
38 542:. 815 444 668 330 496 267 401 455 684 375 563
40 510 • 766 418 629 • 314- 472 255 384 426 640 352 528
Properties
Ag:m? 35.0 28.3 21.5 18.1 30.3 24,6
Ix, in."
1880 1550 1200 1010 1090 904
ly, in." 851 705 547 464 700 581
fy, in. 4.93 4.99 5.04 5.07 4.80 4,86
rV/y - 1.49 1.48 1. 48 1.48 1.25 1,25
LflFD ' Shape is slender for compression witfi 46l(si.
1.67 i|)c=0.90
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION—MEMBER SELECTION TABLES 4-29
Fy = 46 ksi
Table 4-3 (continued)
Available Strength In
Axial Compression, kips
Rectangular HSS
HSS16
Shape
HSS16x12x HSS16x8x
Shape
5/16= 5/6 Vz 3/8' s/ie"
'design, i"- 0.349 0.291 0.581 0.465 0.349 0.291
lb/ft 68.3 SIA 93.3 76.1 58.1 48.9
Design
p„iac 'ft'?. PJOic PnlQc Pnlilc ^cPn ft/He M PJilc M
Design
ASD' IRFD ASD tRFD ASD LRFD ASP U1FD ASD LRFD ASD LRFD
0 479' 720 364 547 -.708 1060 57^" 865 '405 609 '.310 466
6 474 712 • 361 543 '685 1030 558 838 396 595 304' 457
7 472 710 360 541 677 1020 55^ 829 393 •590 302 454
8 470 706 359 540 668 1000 544 818 389 585 . 299 450
9 468.- 703 358 537 658 • 989 536 806 385 579 297' 446
10 465' 699 356 • 535 647 V 972 527 792 .380 572 294 441
11 46^ 694 •'354 533 634 954 518 778 >375 564 290 436
s. 12 459 689 35? ' 530 62,1 934 507 762 370 556 .286 430
•s
13 4551 684 r351 527 607 913 496 746 364 547 282 424
•s
14 451 ,678 348 524 593 891 485 728 '358 537 "278 418
••3 15 447 672 346 •• 520 577 868 472 710 351 ,527 273 411
£ 16 '443' 665 344 -516 561 844 460 691 •:344 516 268' 403
i 17 438 658 341 • 512 545 819 447 671 ^36 505 263 395
i
18 433 651 338 508 528 793 433 651 328 .493 •258' 387
i
19 428 644 335 504 510 767 419 630 .320 480 "252. 378
a 20 423 635 332- 499 493 741 405 -• 609 > 311 467 w246" 369
21 . 417 627 329 494 .475. 714 391 : 587 '302 453 239', 360
22 ••411 618 325 489 457' 686 376 565 292 438 ,233; 350
23 405 609 321 •482 -438 659 362;- 544 .281 422 t226' 340
g
24 '399 600 316- 475 .420' 631 ^ 347 d 522 -270 405 ^<219 329
25 393' 590 <312". •468 604 332 500 < 259 389 •,>212 319
S
CO
26 386 •• 580 • 307 461 ""'384 : 577 318 • 478 248 372 •205 307
1
27 379 570 •302 • 454 366 550 303 456 '237 ,356 4.197 296
s
28 37^ 559 297 446 348 523 289 434 226 339 f'^sg, 284
29 365 548 • 292 438 330 ' 497 275 413 215 323 '181 273
1
30 357 537 286 430 313 471 261 392 205 307 173 260
Ul
32 341 513 275 414 28p . 421 234 352 184 ,277 ••^156 235
34 324; 487 264' 396 -24S 373 208 313 164 247 >140 210
36 306 : 460 252 378 221 333 186. 279 146 220 '•'125 188
38 . :288' 433 239 360 199 299 167 250 .'131- 197 1-112 168
40 271 f 407 227 341 179 269 150 226 119. : 178 101 152
Properties
iti.2
//.in."
f/. in.
Or/Cy
18.7
702
452
4.91
1.25
15.7 25.7 20.9 •16.0 13.4
595 815 679 531 451
384 274 230 181 155
4.94 3.27 . 3.32 3.37 3.40
1.24 1.72 1.72 1.71 1.71
LRFD = Shape is slender tor compression with .Fy= 46 ksi.
i|)c=0.90
AMERICAN iNsrrruTE OF STEEL CONSTRUCTION

4-30 DESIGN OF CX)MPRESSION MEMBERS
lauie 4-0 vvuiuinueu;
Available Strength in
P — AR Ifoi
Axial Compression, kips
rV — *tD IVoI
HS{ 516-HS S14 Rectangular HSS
HSS16x8x HSS14x10x
snape
V4' 5/8 V2 6/16'^ V4'
fdeslgm in. 0.233 0.581 0.465 0.349 0.291 0.233
lb/ft 39.4 93.3 76.1 58.1 48.9 39.4
/fcPn Pnl^o PJilc W ifcPn Pnliic ^Pn P„lilc
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD' LRFD
0 224 337 708 1060 576 865 432 649 336. 505 .237, 356
6 220 331 692 1040 564 847 425 639 331 • •497 •235 353
7 219 329 687 1030 559 ' 840 422 635 329 495 234 351
8 : V7 681 1020 554 833 419 '630 327 ,492 233 350
9 216 324 674' 1010 549 825 "416. 625 325 488 232 348
c
10 \214: ; ,321 66'6, 1000 54S 815 412 620 322 484 230 346
11 211^ > ,318 657' 988 536 805 .408 • .613 319. 480 • '229, 344
S,
12 209 • 314 648 974 '529 794 404; 607 316 475 .227 342
"S 13 206 / 310 638 960 •521 783 399 599 •-^13- 470 226 339
14 203 '306 628 ,944 512- ,770 393 ,591 .309, 464 224' 336
.3
TH 15 •200? : 301 617 927 504 757 38t 581 -305- 459 222- 333
;
16 :197;v ; . 297 605 910 495 743 380 571 301 452 219* 330
g
17 194 i 291 593 892 48S: 729 '373 560 "297 ,446 -•217' 326
s 18 3198'! 286 581 873 475 714 365 549 292 •439 -215 323
•E3 19 ;187! f 281 568 853 465 698 358 537 287 431 '-212 319
5
6
20 275 554 ^ 833 -454. 882 350- 525 28'2 424 'J 209 315
»
21 269 541 812 44,3 666 341 513 277 416 206 310
i§ 22 176i : 262 527, 791 432 649 333 500 271 408 "203 306
23 170 ^ 256 512 ^,770 • 42;l ' 632 •324 488 266 399 f200 301
g
24 166 , 249 498 748 409 615 ;316. 475 260 390 '496' 295
25 ,T6f i 242 483 : 726 397,- 597 307 ,461 254 381 • 192 289
e
26 156 235 468; 704 385 579 298 448 •248 372 .S188 282
S 27 151 227 453 681 374 561 289 434 241- 362 184 278
s 28 146 f 220 438 659 362' 543 280' 421 235 353 179 269
29 141 1 212 •423 636 349 525 271 407 228 343 175 263
M
30 136 204 408 614 337 507 262 393 221 332 170 258
32 125 187 378 569 314 471 244 366 309 161 242
34 5 113!; J 171 349 525 290 436 226 339 ,191 287 • 151 227
36 102 -153 320' 482 267 401 208 313 -17# 265 212
38 ' ;91t3; 137 293' 440 244. 367 , 191 287 162 243 •131 196
40 82.4 124 •266' 399 223 334 174 •262 148 223 120 181
Properties
10. 8 25,7 20.9 16.0 13.4 10.8
/x.in." 368 687 573 447 380 310
ly, in," 127 407 341 267 227 186
fy, in. 3.42 3.98 4.04 4.09 412 4.14
rxiry 1.70 1.30 ; 1.29 1.29 , 1:29 1.29
ASU LRFD Shape, is Slender for compression with f, = 46 Ksi.
1,67 (t)c=0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-31
Fy=!46ksi
Table 4-'3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
HSS12
Shape
HSS12x10x HSS12x8x
Shape
Va , '/8
1/4'
5/8 V2
'deslgfl. in. 0.465 0.349 0.291 0.233 0.581 0.465
Ib/ft 69.3 53.0 44.6 36.0 76.3 62.5
Design
p»/ac M Pfl/Oc <kP>i Pn/Oc <S>cfi, Pn/Clc <|>cP/i M Pn/Oc M
Design
ASP. LRFD ASD: LRFO ASD LRFO ASO LRFD ASO LRFD ASD LRFD
0 523 787 , 402 604 327 491 23'4 351 578 869 474 712
6 51^ 769 394 591 321 482 231 347 559 840 458 688
7 508 763 390 587 319 479 230 .346 552 829 .452 680
8 503 756 387 : 582 317 476 229 344 544 817 446 671
9 498 748 383 ^ 576 314 .472 228 342 535 •! 804 439; 660
e" 10 492 739 379 569 3.11 468 226 340 525 789 '431, 648
11 486 730 374 562 308 463 . 225 337 773 423 636
O)
12 479 720 369 554 , 305 458 223 335 -503: 756 '414- 622
•s
13 471 709 363 . 546 301 452 .22:1 332 738 404 607
14 464 697 357 537 297 446 219 329 719 394 592
1
15 455 685 351 528 293 . 440 216 325 465 699 383 576
w
16 447 672 345 518 288 433 214 322 • 45!f: 678 372 560
cS
JE
17 438 658 338 508 283 425 . 211 318 437 ,657 361, 543
s
18 428 644 331 497 277 417 209 314 422 635 •349 525 s
19 ,419 629 324 486 -271 408 206 309 ; 408 613 337 507
»
20 •409 614 316 475 265 398 203 , 305 392 590 •325 489
£ 21 .399 , 599 308 463 -259 389 199 ^ 300 377 567 313 470
§ 22 -388 583 300 , 452 •252 .379 196 294 362 544 301 452
23 377 567 292 439 24p -369 19,2 288 346 520 ..288' 433
g 24 367 551 284 427 .:239 359 187 282 497 276, 414
a 25 356 535 276 415 23^- 349 183 275 315. 474 263, 396
C
26 345 518 268 402 22^ 338 . 179 268 300 451 • 251 377
g 27 334 501 259 390 218 328 174 261 ?-285" 429 239 359
« 28 322 485 251 377 21 i 317 169 254 270 406 •227 341
29 311 468 242 364 204 307 164 247 256 385 215 323
i
30 300 451 234 351 197 296 159 240 242 363 .203 306
bu
32 278 418 217 326 183 275 149 224 214 321 272
34 256- 385 200 301 169" 254 139 208 189 285 .3'60 241
36 235 353 277 156. 234 128 •192 169 254 •143 215
38 214 322 '16&- . 253 143 214 117 176 152 228 128 193
4b 1*94 292 153 230 • 130 195 107 161 137 206 116 174
Properties
/Is, in.'
'x, in."
I,.in.'
'y, in.
rxiry
19.0
395
298
3.96
1.15
14.6
310
234
4.01
1.15
12.2
264
200
4.04
1.15
9.90
216
164
4.07
1.15
21.0
397
210
3.16
1.37
17.2
333
178
3.21
1,37
0^ = 1.67
LRFD ' Shape Is slender for compression with Fy = 46 ksi.
(!)<;= 0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

• 3'3 PV
03 O N5 OA
, fS.
-1. OJ O Ja. •
oj ro •
CO
-nJ Jii.
^ W Ol o p
w ^ ^
OJ en o>
CO
o ro
-t to -I. CO
'•-J CO ^
CO <£i
Effective length, KL (ft), with respect to least radius of gyration, fy
Si^SiiS- o
. -L —t _L ^ jvj ro hd N>
tori—ifo;^ CO tO O ro CO ^^^
-i-o<£)<»;S O), Oi.pi.cn
> N> ^o ts> '
-T c3 03.IV3.
rororoNsro COOJCOCOCO coco^-t^-f»-
JS-OIOJODCD -irOCOCnCD COCOC^rOCO
^^CK-So^^foo oJS'Coro-Nj cdcocooo tocoa>co<X) cn
a § g g K 1 S S 5 a s
ja. CO CO.
-i ro K> ro r
-- - — fo ro «
ja;. to <
-i.—^-^-i—I rororororo rorororoco OJCOCOCOCO COWCO^^ ^^ ^
fe-RsES^ gsssg s^SKS!^ §
• CJ-( Ln --vj tx-- CTJ •
sa^s^i SsSi^ iSs^i ^Ssil islSI
s.
^ jii cn f>o
-i-L-Lfsi Narorororo roro^row cowwww w
cDOfvococri oz-icccoo CTIW^CD-NJ-NJ co«cpcoo S^T^r^
^-^SJcs^-p.. coco-fc-03co
SSSS- ^oS^K KK^SEg S
bi CO'^cn-co. KJ ^ KJ a> o •• •• ... - . •
as^esS SisSS Sgll^ 5S5§s gss'fsg JS5 —^ CO CJ"? O CD
Jla. OS
zig^i SSSsi sii^^s iS^gg si^ii itisi s
O ^
JOT TO " •
Co co'-ci ji.4^cn cfjcncncnaj "-J
^^ CD Si o Kjcn.cooco cn ^ ^^ m
^ ^ S O ^ -t^ CD or —' CT> CO cn Oi ro CO • JS.
iyi.^ CSs tO C? ^ hO O^ OJ-<0 O fO Cd C
St-w ro ro ^ CO o -i- to Si o» ro cr> o ^ a> <
• . - - -• • -
;t3 Eg!
I ca ro, <
< w 63
a
iaijsLcncn cncncjicncn ctj
i-vjooco^ ro:^id>cco cocn-i-j^r/-^ osojcooro OJ
2
to
33
(D
i
3
(Q
C
ST
X S
O
o
3
•d
0)
•Ml
o
3
L
1!
CO
(D
3
3 5-
<Q C
IS
•o ^
CO
II
o
a
§
6
0
1
I
g
£5
II
^ —t .
—^ to to cn -
jS> o 05 o>
3 8
-NJ tn -J.
^ CO oo CO 00
Effective length, KL (ft), with respect to least radius of gyration, r„
gsg^gfg SSSti^ KEtSKtJ sSisJsSS ^ {O^ O<0OO'«4O> O
ro . .... , ^ ^
^Slgg ssSSS ssg^^ Siail gglal 1
Cri 01
-03-C0 ro CO CO .
cji p o) ^ CO » fo p ^ ^ CO Kj S
-itn-^Jtoro^roloKow
CO -J- CO
5 ro ro ro ro . iv>
f
—'rocoj:^ cn-vjooca—^
-'•COO^rCJlOl 00305005 oo—^tomo
ro ro ro ro ro ro ro
tJlOl OC005005 co-
bs 00 tJi
COtOCOCO COCOtOCOCO CO
gsssg gsgIS §
bo b3...b3 ' CO..O fS3 o bt
-1 -k ^ -J.
fo fO gtf CO; Jai
> to
"vj Cd 00 00 <0
^cpo-^ro coji.cncn-vj
Co CO ^ CO c^ a>
—^ —ro ro ro
CO CO o o —
ro o <0 OD
rororororo rororororo ro
^ ^ -vj CO
1 o Ji- Co Co
S^S^I P^p?'^" sssfsssg isssS f
-A ro -VC6 o-^NiKyl- bi>&<ococn'- " ? ' -v • ;:.• v',
pwco^-^ <£)cnroo3co <£)4^ocno ^Sro^o toSSSS S
rocnc7icococo-v4-i_».coro
--•-^rororo cococococo
-sj CO —^ Ji. -vj -
cn O) ro
CTiCnCTitTiCTi a>0>c
—^cocn-sjco —^cotji-^tD -j.cot
ro CO ja. cn -vj -vj --sj -vj cJ5 cn r
' CD a^ oj-vj-vj-vj-^ -vj
iC7>os CO—^roojjii. -vj
' CD tJl to CO 05 "-"J CT5
^ -L
^ cn o^ "iy » CO ro CO
f CO <
2; RSS I M . -^
gyssM siylS igagg gsggs g
s
J"
fo
a
3}
<D
i
3
<Q
C
Q>
L
OS!
I ^
o
3
•a
B
v>
(0
(D <?j
wtr
§ i
2 <Q =
Is
w 3
•5' =
CO
X
2
?
X
i
o
i
§
H
s
cn
t

4-34
DESIGN OF CX)MPRESSION MEMBERS
HSS10
Table 4-3 (continued)
Available Strength in ^ _ ^^
Axial Compression, kips
Rectangular HSS
HSS10x8x
snape
'/8 5/16 V4'= '/a
Wign. in. 0.349 0.291 0.Z33 0,174 D.581
lb/ft 42.8 36.1 29.2 22.2 59.3
Pntiio ^Pn ^cPn Pn/Clc ^cPa PnlS^c i>cPn PnlCic ^Po
Design
' Asa, LRFD ASD. LRFD ASD LRFD ASD LRFD ASD LRFD
0 325 489 273- • 411 212, 318 .,133 200 679
6 314 472 264 , 397 206 310 . 131 197 424 " 637
7 310 >• 466 261, . 392 204 307 . -130 196=\, 4iit 623
8 306 ^ 460 257- 387 202; 303 .<129 . 194 403-. 606
9 • 301 452 253 , 381 199 300 128 193 588
10 296 . 444 249 374 197 295 127 191 569
f 11 (290 •• 435 244 367 194 291 .1?6 189 ^ 548
12 283 • 426 239 359 '190 286 ,124 187. 350 526
•g 13 .277 /J 416 '233 351 187 280 123 185 : 335'> 504
OT I 270 - 405 228 342 .183 275 121 . 182 319 480
3
15 262 394 221 ' 333 179. 269 119 179 303 456
2
16 255 . 383 215 323 174 262 117 176 287 432
S 17 247 371 209 314 <1.70 255 -1.15' 173 , 271 407
s 18 239 , 359 202! 303 164 247 .113. 170 . 255 383
19 231 V 346 195 293 159 239 ,111 166 239 359
S. 20 222 334 188 283 :153 230 108 • 162 223 335
£
21 •214 ' 321 181 272 •148 • 222 • Ib5 •• 158 207 311
22 205 308 174. 261 142 213 , 1D3 154 192 288
23 196 295 ;167~ 251 136 205 99.4 149 177 266
g 24 188 . 282 160 240 130 196 : 95.9- 144 163 245
25 >179 >. 269 152.' 229 125 187 92.4- 139 150 225

26 171 . 257 '145, 218 .(119 179 88.9 134 139 208
e
27 162 244 138- 208 .113 170 • 85.2 128 129 193
•SS
28 154 232 131 197 108 162 ' 81.5 123 120 180
29 146 219 125 187 102 154 77.8 117 111 168
1
30 138 • 207 118 177 96.9 146 74.0 111 104 157
lU
32 122 184 105 158 «6.S 130 66.4 99.8 91.5 138
34 . 108 : 163 92.8 140 •76.6 115 58.9 88.5 61.1 122
36 96.7- 145 ,82.« 125 68.3 103 S2.5 78.9 72.3 109
38 86.8 130 • 74.3 112 61.3 92,1 47.1 70.8 64.9 97.6
40 78.3' 118 67.1 101 .55.3 83.2 42.5 63.9 .
Properties
Ag, in.^ 11. ,8 9.92 8.03 6.06 16.4
h, in." 169 145 119 91.4 201
ly, in." 120 103 84.7 65.1 89.4
ry, in. 3.19 3.22 3.25 3.28 2.34
rx'ry 1.19 1.19 1.18 1.18 1.50
A: 5D LRFD ' Shape is slender for compression with Fy-= 46ksi.
Note: Heavy (me inaicat«s XUr, equal to or greater tfran zou.
0.90
HSS10X6X
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-35
Fy = 46ksi
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS HSS10
HSS10x6x
9n<i|Hi
Vz 3/8 s/ie w
'deslgni <n- OMU 0.349 0.291 0233 0.174
lb/ft 48.9 37.7 31.8 2S.8 19.6
Pnldc ^Pn PnlOc <^cPn PJiic Pnlih M Pnliic ^cPn
Des iign
ASD LRFD ASD LRFD ASD LRFD ASD.: LRFD ASD LRFD
fi 372 559 , 286 431 241 363 186 279 123 185
6 350 526,. 270.. 406 228 343 178>; 268 119 179
7 342 514 • 285 > 398 223 336 175 263 11.7 176
8 334s. 5Q1 . 258 388 • 218 328 172 259 11.6 174
9 324 487 ' 251 • 377 212 319 •f68..^ 253 114 171
10 3P' 472 243 i. 366 206. 309 164 V 247 111 167
"1 It 303 455 235 354 199 299: 160 241 109 164
12 291 438 227 341 192 289 155 234 106 160
•s 13 279:.; 420 218 327 185 277 150 226 103 155
14 267 401 208 • 313 177;: 266 144 216 100 151
i
15 382 199 299^ 169 254. 138 207. 97.0 146
16 362 189 284 . 161 242 131 197 93:5 141
i
17 228 342 179 269 152 229 125 187 9D.0 135
s 18 215 323 169 254.. 144i 217 : 118 177 86.2 130
n 19 202, 303 159 239 136 204 111 167 82.4 124
&
tf>
20 189 284, 149 225' 128 192 105 157 78:4 118
£ 21 176 265 140 : 210 120 : 180 98.2 148 74.3 112
22 164 246 130 196 112 168 91.8 138 70.1 105
23 152 228 121 182 104 157 85.6 129 6K8 98.9
g 24 140 210 112 169 96.7 145 79;5 120 61.4 92.3
25 129 194 103 155 89.3 134 73.5 110 57.0 85.6
£
26 119 179 95.6 144 82.5 124 68:o 102. 5Z7 79.1
S 27 110 166 88.7 133 76.5 115 63.0 94.7 48^8 73.4
28 103 154 .'82.4 1.24 ;71,2 107 58.6 88.1 45.4 68.2
>
29 95.7 144 :76i8 116 66.3 99.7 54.6 82.1 42.3 63.6
30 89;4 134 :7i.8 108 62.0 93.2 ST.I 76.7 39:6 59.4
UJ
32 78.6 118 63.1 94.9 54.5 81,9 44.9 67.4 34.8 52.2
34 69.6 105 56.9 84.0 48.3 72.5 39.7 59.7 30.8 46.3
36 62.1 93.3 19.9 75.0 43.0 64.7 35.5 53.3 27.5 41.3
38 55.7 83.8 44.8 67.3 38.6 58.1 31.8 47.8 24:7 37.0
40 40.4 60.7 34.9 52.4 28.7 43.2 22.2 33.4
Properties
13.S 10.4 8.76 7.10 5.37
k, in." 171 137 118 96.9 74.6 .
/y.in." 76.8 61.8 53.3 44;1 34.1
in. 2.39 2.44 2.47 2.49 2.52
1.49 1.49 1.48 1.48 1.48
1 ASD • LRFD ' Shape is slender for compression with Fy-= 46ksi.
Note: Heavy line indicates KLZ/v equal to or greater than 200.
1.67 0.90
AMERICAN iNSTrruTE OP STEEL CONSTRUCTION

o
«
03 O
fO CJl <
^ o Ko
ts3 -vi
ro CO
—i. rs5 ^ jn oi
^ ^ io bo
Effective length, KL (ft), with respect to least radius of gyration, Ty
^ggggftS StS^S^g KSJSK^i W^WN - C5
I
ro CJ5
—rs3 ro pi <Ji
'•vi V ^ ftO o
o ro
_i. ^
-L ro ik 05
ro cn
rs3 CO
roroNJMW totowcoco
<s\ <yi -.i-^ctocoto C71--V1C5I. oro ojcjiScoo -tI-w^otC}
oirvj tvo^-»-rocn
Ko CO CO CO CO CO
<j> ^
js- cn
p-i CO
cn cn
iSigSgS SSgS!
'—i-ro^ cobifocriro
ro ro ro ro ro fss
> 05 ro CD cn • • >ico cprocnosco o
gfifegg ssspis ssiSi
w'^w'-J-—^ 'in 'di io .•••.<.••':•• ^ - •
Oi <j) <i CO cotoo-^fsa cocna^-vito ^CO^^O;^ CO
^ajocn-ii' ^cnlS-cocn ->iooocy>o orotocotsa co - cji o cr.
03 ts3 in
Kg
00
SS^fiS SJSSi a
'6 to lb Id CO to ^ ^ Ka ib, b:> b> 05. ' :" "
_L _L_L-j.roro fsarorororo
cncncncioj ->j-.jcotoo —»-roco^cji
jiij5.cncna? -^cxsiDOp cp-^itopcn
o bi Id lb 03
.1
SES SKgSS ^^fSSS gsssg SSSjSS PBSSS
b^ Ko ik cc> to b> ro o w io to bo b> ro >4 o ro co ->4 ->»
CO "--v! bi o CO k> o cn OS o CJJ
iSKi
"ft
- ii ^ S ES^^iS^y ^ ^ 6 ^ S S S S 2 S § g
fj^cowoo o-ioo^coco ^o^ooico><J^ i • . Li li. cci 0.1 iXi a: o-i
D
g
cn
E
S
z
mJk
0
1
I
Cfi
Jg
3}
<D
s
<U
3
(Q
• C
<u
X
w
w
s.
o
o
3
•a
0)
tn
5'
3
ii
tt I
s ^
w
tn
(D
2?
11
3
11
s;
s
CO
i
§
O
z
S
!!0
i
i
D
O
!(
—' rvj o ^ w
ro o tp o
ro ^ 4s» j5»
ro CD
05 CJ
-»• ro to ro CO
ro CO ro ^
to --4 -vi
ro CO ro ^ 1-1
-»• o
-I ro ^ S cn
fo CO Ij ^ CO
Effective length, KL (ft), with respect to least radius of gyration, Cy
0» tn 4». M M O CD OB <1 05 O
^sS^g a
S^iSiS IssS^ SSPSfSlg
CO oo CO
lilies
Ssgss SaiSs sgip^EsSS §
p
5
CD-.jcotDo roroos^cn rotorocoto cototoooco c-o
g^„ga, jg^gg gS§8:: fssfsgg; agggij i^^s^eS s
iciii isgsi-sssgs i
t^ojCTj-sJco cDo—tro
Kj ro CO ^ ^ CO
^ SSssS gsiig ggg.^g £
to CO 03 oa 03 fo '->4 to CO
Sfe^gg y^ggg g^SESE^ ssssa sggig
•g
g
tl
Q)
33
o
3
(C
c_
Q>
X
CO
0)
O
o
3
-a
s*
o;
<D
I
u
rt 3 5"
o (Q C
3 % ®
- ara
TT
•5' =
0)
(0
CO
I
ra
t-'
S
0
z
1
g
ra
S
S
^
CO
a
f
UJ
<1

4-38 DESIGN OF COMPRESSION MEMBERS
HSS9
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy = 46 ksi
Shape
HSS9x5x
=/8 Va 5/16 V4'
fdeslju. in. 0.581 0.465 0.349 0.291 0.233 0.174
lb/ft 50.8 42.1 32.6 27.6 22.4 17.1
Design
ifcPn
m.
LRFO ASD LRFD ASD
Pn'^c
LRFO ASD LRFD ASO
Pn/^c
LRFO ASD LRFD
vT
I
"S
i
I
s
I
i
e
£
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
32
34
580
527
510
490
468
446
422
397
372
346
321
296
271
247
224
202
184
167
153
141
130
120
111
103
96.3
90.0
79.t
320
•292
283
272
261
249
:236
223
•'210
196
182
169
'155
142
130
117
11(57
97.1
88.8
81.6
75.2
69.5
64,5
59.9
55.9
52.2
45.9
480
439
425
409
392
374
355
335
315
294
274
253
233
214
195
177
160
146
134
123
113
104
96.9
90.1
84.0
78.5
69.0
247 '
227
220
-213
204
195
lie
176
166
.156
146
135
125 '
115
10'6
•96.5
'87.5
7S.7
72.9
67.0
61.7
•57.1
'52.9
49.2
45.9
42,9
37.7
371
341
331
319
307
294
279
265
250
234
219
203
188
173
159
145
131
120
110
101
92,8
85.8
79.5
74.0
69.0
64.4
56.6
209
192
187
180 .
173 .
166
158
150
142^
138;
124
116
107
99:1
91:0
83.2
75.5
68,8
62,9
57.8
53.3
49,3
45.7
42.5
,39,6
.37.0
'32.5
28.8
314
289
281
271
261
250
238
225
213
200
187
174
161
149
137
125
113
103
94.6
86,9
80,1
74.0
68.6
63.8
59.5
55.6
48.9
43.3
169
157
152
147
142
136
130
123
116
110
103
95.8
89.0
82.3
75.7
69.4
63,2
57.6
52.7
48.4
44,6"
41.2
38.2
35.5
33.1
31:0
27.2
24.1
254
236
229
221
213
204
195
185
175
165
154
144
134-
124
114
104
95,0
86,5
79.2
72.7
67,0
62.0
57,4
53.4
49.8
46;5
40.9
36,2
112
••106
104
102 •
• 98.8
95.8
,92.6
89.0
85.2
.81.2
77.0
72.6
"68.1
63.1
58.2
53.4
48.7
44.4
40,6
37.3
34.4
• 31,8
29.5
'27.4
25.6
23.9
.'"18.6
168
159
156
153
149
144
139
134
128
122
116
109
102
94.9
87.5
80.3
73.3
66.8
61.1
56.1
51.7
47.8
44.3
41.2
38.4
35.9
31.6
27.9
Properties
Ag,-m}
Ix/m."
ly, in."
fy, in.
14.0 11.6 8,97 7,59 6,17 4.67
133 115 92,5 79,8 66,1 51.1
52.0 45,2 36,8 32.0 26,6 20.7
1.92 1,97 2,03 2,05 2,08 2.10
1.60 1,59 1,58 1,58 1,57 1.58
ASD LRFD
a.=1.67 (|)c=0.90
' Shape is slender for compression with Fy - 46 l«i.
Note: Heavy line indicates /a/fy equal to or greater than 200.
AMERICAN INSTITU-RE OF STEEL CoNSTRUcnoN

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-39
Fu - 46 ksi
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
HSS8
HSS8x6x
5/8 V2 5/16 V4
fdesign. i". 0.581 0.465 0.349 0.291 0.233
lb/ft 50.8 42.1 32.6 27.6 22.4
Design
p„iac PJ^c t^fcPn PJOo ifcPn Pniac
Design
ASD LRFO ASD LRFD ASD iJIFD ASD LRFD ASD LRFD
0 386 580 320 • 480 247 371 209 314 170 255
6 360'^ 542 • 299 ^ 450 232 349 197 296 ' 160 241
7 352- 529 293 440 227 342 193 289 157 236
8 342 514 285 428 221 333 188 282 153 230
9 331 498 276 415 215 323 - 182 274 149 224
10 320 480 267 401: 208 313 177 266 144 217
'l 11 ' 307 462 257 386 • 201 302 171 256 139' 209
12 • 294 442 247 371 193 ' 290 164 247 134 202
•s
13 281 422 236 354 185 278 157 236 12r 194
u 14 267- 401 225 . 337 177 266 1 so- 226 123 185
15 , 253 380 213 320 168' 253 us:: 215, 117- 177
« 16 ' 238 358 202 303 • 159c 240 136. 204 112 168
s 17 224 . 337 190 285 151 227 129 193 106 159
18 210 315 ' 178 268 142 213 121 • 182 99,79 150
•5 19 196 294 167 251 133 200 114 171 94:0 141
1
20 182 273 156- 234 125 187
. 107
160 88.2 133
£
21 168 253 144- 217 116 175 99.6 150 82.4 124
a 22 155 233 134 201 W 162 • 92.6 139 ' 7&.'8 115
- 23 142 214 123 185 . 100' 150 85.9 129 • 71.4 107
g 24 131 196 113 170 92.1 138 79.2 119 6s:o 99,2
a 25 12Q 181 104' 157 . '^4.9 128 73.0 110 60.-8 91.5
a
26 111 167 96.4 .145 78.5 118 67.5 101 56,3 84.6
g 27 i03 155 i 89.4 134 72.8 109 62.6 94.1 52.2 78.4
g 28 ' 96.0 144 83.1 125 ' 67.6 102 58.2 87.5 48.5 72,9
u 29 89.5 135 77.5 116 ; 63.1 94.8 54^3 81.6 45.2 68,0
1
30 83.7 126 72.4 109 • 58.9 88.6 50.7 76.2 42,3 63,5
1
32 73.5 111 63.6 95,7 ^ 51.8 77.8 44,6 67.0 37,1 55,8
34 i 65.1 97.9 : 56.4 84.7 ' 45.9 69.0 39.5 -59.3 32;'9 49,4
36 ; 58.1 87.3 : 50.3 75.6 i 40.9 61.5 35.2 52.9 29,3 44,1
38
40
! 45.1 67.8 36.7 55.2 31.6
'28.5
47.5
42.9
26,3
23,8
39.6
35.7
38
40
31.6
'28.5
47.5
42.9
26,3
23,8
39.6
35.7
Properties
Ag. 14.0 11,6 8,97 7,59 6,17
tin," 114 98.2 79.1 68,3 56,6
/y.in," 72.3 62,5 506 43.8 36,4
/y, in. 2.27 2.32 2,38 2,40 2,43
rxiry 1.26 1.25 1,25 1,25 1,25
rs,. LRFD Note: Heavy line indicates W-/ry equal to or greater than 200,
fic=1,67 (|)c = 0.90
Note: Heavy line indicates W-/ry equal to or greater than 200,
I
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-40 DESIGN OF CX)MPRESSION MEMBERS
HSS8
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy = 46ksi
Properties
Ag, in,^
/r. in."
ly, in."
^y, in.
ASD
ac=i.67
LRFD
(t>c=0.90
4.67 11.7 9.74 7.58 6.43
43.7 82.0 71.8 58.7 51,0
28.2 26.6 23.6 19.6 17.2
2.46 1,51 1.56 1.61 1.63
1.24 1.75 1.74 1.73: ,1.73
Shape is slender for compression with Fy = 46 Ici,
Note; Heavy line indicates KiL/fy equal to or greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-41
Fy = 46 ksi
Table 4-3 (continued)
Available Strength in
Axial Gompression, kips
Rectangular HSS HSS8-HSS7
Shape
HSS8x4x
V4 W
HSS7x5x
Vz
'desigm in- 0.233 0.174 0.116 0.465 0.349
lb/ft 13.0 14.5 9.86 35.2 27.5
Design
P„IUc
ASD
PnlOc
LBFD ASO
PnlCic
LRFD ASDf
Poiac
LRFD ASD
PnlO^c
LRFD ASD
<S><!Pa
LRFD
6
7
8
9
10
11
12
13
14
15
16
17
19
20
21
22
23
24
25
26
27
28
29
30
32
144
127
121
115
109
102
94.3
87.0
79.7
72.5
65.4
58.7
52.2
46.5
41.8
^7.7
34.2
31.1
28,5
26.2
24.1
22.3
20.7
217
191''
183
173
163
153 '
131
f20
109
98.4
88.2
78.4
69:9
62.8
56.6
51.4
46.8
42.8
39.3
36.2
33.5
31.1
100
91.9
88.5
85.4
81.6
77 i3-
72.7
67.3
61.8
56:4
51.1
46:0
41.1
36.6
32.9
29.7
2k~9
24.5
22.4
20.6
19.0
17.6
16.3
-15.1
1.51
138
134
128
123
i;i6
109
101
92^9
84.8
76.8
69.2
61.7
55.0
49.4
40.4
.36.8
33.7
31.0
28.5
26.4
24.5
22.7
56:0
52.2'
50.8
49:3"
47.6
45.7'
43:6 •
41;4
39:0^
36:5^
33^9
31.2
215.4
25.4
22.8
20.6
187
17,0
15.6
14.3
13.2
12,2
11.3
10.5
84.2
78.4^
76.4
74.1
71.5
68.6
65.5
62.2
58.6
54:9
50.9
46.8
42,6
38.2
34.3
31.0
28.1
25.6
23.4
21.5
19,8
18.3
17,0
15.8
268 :
244 •
236
226
21 Bf:
206
195
183^
171
159
148
136^^
125
113
103
9i7
84.1
76.6
70.1
644
59.3
549
50,9
47.3
441
41.2
403
366
354
340
325
309
292
275
257
240
222
204
187
171
154
139
126
115
105
96.8
89.2
82.5
76.5
71.1
66.3
61.9
209
191
185
178
171
163
154"
146^
137'
128-
119
110
101
93.0
84,8
76:8
69.6
63.4
Sfe^O
53.3
49:1
454
W
39^2
3|5
3Q,0
314
287
278
267
256
244
232
219
206
192
179
166
153
140
127
115
105
95.4
87.2
80.1
73.8
68.3
63.3
,58.9
54.9
51.3
45.1
Properties
Ag.i!).' 5.24 3.98 2.70 9.74 7,58
Un.' 42.5 33,1 22.9 60.6 49.5
14.4 11.3 7.90 35.6 29,3
fy, in. 1,66 1,69 1.71 1.91 1,97
1.72 1.70 171 1.31 1,30
T ASD LRFD ' Shape Is slender for compression with fi,: = 46 ksi.
He =1.67 (t)c = 0.90
Note: Heavy line indicates KLIry equal to or greater than 200.
AMERICAN INSTITOTB OF STEEI;, CONSTRUCTION

4-42
DESIGN OF COMPRESSION MEMBERS
HSS7
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fv = 46 ksi
HSS7x5x HSS7x4x
Shape
'/IB V4 Vs' Vz
fdesign. f". 0.291 0.233 0.174 0.116 0.465
lb/ft 23.3 19.0 14.5 9.86 31.8
Wc ifcPn Pn'Cic <kPn PJClc Pniao dlcPn Pn/Clc
Design
ASD LRFD i ASD LBFD ASD LRFD ASD LRFD ASD LRFD
0 , 177;- 266 ; 144 217 107 • 161 59.2 89.0 ' 243 365
6 162 244 / i 133 199 100 K. : 151 56.7 85;2 209 314
7 157 236 ! 128 : 193 97.9 147 55.8 83,9 ' 198 298
8 151 228 ; 124 186 : :94!6' 142.: 54.8 82.3 186 280
9 145 218 • i 119 179 ; 91.0 137 53.6 80.5 174 261
.i 10 139 208 ' 114 : 171 87.1 131 52.2 78;5 • 160 241
a 11 ; 132 . 198 108 163 82.9 125 ; 50.8 76.3 147 221
cu
12 125 187 103 154. 78.7 118, ' 49.0 73,7 134. 201
1
13 117 176 : 96.6 145 i 74.3 112 47.0 70.6 . 121 181
14 ' iiqs 165. - 90.6 136 i ,69;8 105 • 44.8 67.3 108 162
s
15 • 102 154 . : 84.6 127 65.3 98.1 42.5 63.9

144
1 16 ' 94.7 142 ! 78.6 118 60.8 91.3 40.2 60.4 ' 84.1 126
s
17 87.3 131: ? 72.7 109 56.3 84.6 37.7 56.7 7.4.5 112
s 18 ' 80,2 121 : 101 ; ,52;i3 78.1 35.2 52.9 #
99.9
®
19 73.2 110 ^ 61.3 92.1 i ,47.7 71.7 32 7 49.1 59.6 89.6
20 • 66.4 99.9 • 55.8 83.9 43.6 65.5 30.1 45.2 , 53.8 80,9
"i
21 60.3 90.6 50.6 76.1 39.6 59.5 27.4 41.2 , 48.8 73.4
e 22 : dig 82.5 46.1 69.3 36.1 54.2 25.0 37.5 4'4!5 66.8
23 , 50.2 75.5 ; 42.2 63.4 33.0 49.6 22.8 343 . m 61.2
24 ! 46:1 69.4 38.7 58,2 : 30.3 45.6 21.0 31.5 37.4 56.2
1" 25 42.5 63.9 ! 35.7 53,7 27:9 42,0 19.3 29.0 3i4 51.8
M
26 39.3 : 59.1 33.0 49,6 25,8 38,8 • 17.9 26.8
o 27 36.5 54,8 30.6 46,0 23.9 36,0 ; 16.6 24.9
28 : 33.9 51,0 • 28.5 42.8 22.3 33.5 15.4 23.2
29 31.6 47.5 26.5 39.9 20.8. 31.2 14.4 21.6
30 29.5 44.4 24.8 37.3 19.4 29.2 13.4 20.2
32 26.0 39.0 : 21.8 32.8 i 17.0 25.6 11.8 17.7
34 ! 15.1 22.7 i 10.4 15.7
Properties
Ag, in.2
/.Jn."
ly.m.'
ry, in.
fx/fy
6.43
43.0
25.5
1.99
1.30
5.24
35.9
21.3
2.02
1.30
3.98
27.9
16:6
2.05
1.29
2.70
19.3
11.6
2.07
1:29
8.81
50.7
20.7
1.53
1.57
ASD LRFD
a,; =1.67 <tic=0.90
' Shape is slender for compression with Fy= 46 ksi.
Note: Heavy line indicates KLky equal to or greater than 200.
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-43
Fy = 46 ksi
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
HSS7
HSS7x4x
5/16 V* 3/16' VB'
(design, in. 0.349 0.291 0.233 0.174 0.116
lb/ft 24.9 21.2 17.3 13;3 9.01
Design
dteft M PnfOc fcPn ft/Hf
Design
ASO • LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 •190 285 .161 242 131 197 •97.7 147 , 55.1 82.8
6 165 •' 248 14l'. 212 115 173 •88,1 132 5a9 76.4
7 157 236 134., 202 110 166 84.2 127 49.4 74.2
8 .148 222 127.. . 191 JG4 157 '79.8 120 fl.7 71.7
C
9 138 208 119 179 98.1 148 -75.2 113 45.8 68,9
10 129, 193 111 167 91.7 138 , 70.4 106 43,8 65.8
>.
at
11 119' 178 103 154 85,p 128 " 65.3 98,2 41',5 62.4
"S
12 108 163 94:1 141 . >8.2 118 , 60.3 90.6 3§,'l 58.8
13 98.4 148 85.7' 129
,J1-5
107 55.2 83.0 36,6 55.0
1 14 88.6 133 77.5 116 64,9 97.5 50.2 75.5 33,9 51.0
1
15 79.2 119 69.S 104 •58,4 87.8 45.3 68.1 31.2 46.9
i 16 '70.0 105 61.8 92,9 52.3 78,5 •<40.7 61.1 28,3 42.6
g 17 62.0 93.2 54.8 82,3 - 46,3 69,6 .36.1 54.3 25.4 . 38.1
s
18 55.3 83.2 48.9 73,4 62,1 •'32.2 48.4 , 22,6 34.0
19 49.7 74.6 43.8 65.9 ,37,1 55,8 •28.9 43.5 20,3 30.5
20 44.8. 67.4 39.6 59.5 33.5 50,3' 26.1 39;2 18.3 27,6
i 21 40.7 61.1 35.9 53.9 \30.4 45,6 23.7 35.6 16,6 25.0
si 22 37.0- 55,7 32.7 49.2 , 27,7 41,6 21.6 32.4 15,2 22,8
s 23 33.9 50.9 29.9 45.0 25 3 38,0 i9,7 29,7 13,9 20,8
1" 24 31.1 46.8 27.5 41.3 23,2 34,9 . 18,1 27,2 12J 19,1
i
25 28.7 43.1 25,3 38.1 21,4 32.2 16,7 25,1 11,7 17,6
1 26 26.5 39.9 23,4 35.2 19,8 29,8 • 15.4 23.2 10,8 16.3
27
28
18.4 27,6 14,3 21.5 10,1
£35
15,1
14,1
27
28
U
10,1
£35
15,1
14,1
27
28
U
Properties
6.88 5.85 • 4.77 3.63 2.46
Un.' 41.8 36.5 30.5 23.8 16.6
lyin-' 17.3 15.2 12.8 10.0 . 7.03
fy.in. 1.58 1.61 1.64 1,66 1.69
rKlff 1.56 1.55 1.54 1.54 1.53
ASD LRFD = Shape Is slender for compression with Fy-= 46 ksi.
He =1.67 <l)c=0.90
Note; Heavy line indicates /Ct/Zy equal to or greater than 200.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-44 DESIGN OF CX)MPRESSION MEMBERS
HSS6
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy = 46 ksi
Shape
HSS6x5x
5/16 V4
'design, i"' 0.465 0.349 0.291 0.233 0.174 0,116
lb/ft 31.8 24.9 21.2 17.3 13.3 9.01
PnlO-c
ASD
Pn/ac ^P„
LRFD SASD LBFD '.ASD
PnlCic (fcPjt
LRFD ASD
PnlCic ^Pn
LRFD
Pnliic M
LRFD LRFD
57.5
57.6
•57.2
56.7
560
55,2
54.^
50.2
48,6
46.5
44.2
lilp
^9,5
37.0
34.4
29,0
•26|
24.0
15.7
•4.i
13,f
tz,!
11 .S
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
243
Z42.
240
237
232
226
220
212-
203
194
184;.
174
:163.
152-
141
13Q'
119
109"
98.9
89.1
30.4
72.9
66.4
60:8
55,8
51.5
-473
44.1
41,0
38.2
35,7
365
364
361
356
349
340
330
318
305. .
291
276.
261 ,
245
228
212
196
179
164
149
134
121
110
99.9
91.4
83.9
77.3
71.5
66.3
61.6
57.5
53.7
190
189
1S8.
185
182
177
172
167
160
153
146
l38p
130
122
105
96.7
:
^ 80,9
73.3
66.2
60,0
54.?
. 50.CI
46.0
42.4
•39.2
36.3
33.8
: a.4
285
284
282
278
273
267
259
250
241
230
219
207
195
183
170
158
145
133
122
110
99.5
90.2
82.2
75.2
69.1
63.7
58.9
54.6
50.8
47.3
44.2
161 •
161
160 •
157
155
151 i
147 :
142
137
131
125
112
105
97.8
•90.8
83.9
77.2
70.6
64,2
•58,0
52.7
48,0
43,9
, 40,3
37.2
34.3
31,9
29,6
27,6
_ 25,8
242
242
240
237
233
227
221
214
206
197
188
178
168
157
147
137
126
116
106
96.6
87.2
79.1
72.1
66.0
60.6
55.8
51.6
47.9
44.5
41.5
38.8
131
131
130
128
126
124'
120
116 V
112
108
103^
97,4
d2.l
86v5
81,0
75.4
69.8
64.3
59.0
53:8
488
443
40,3
369
33.9
31.2
28,9
26.8
24,9
23.2
197
197
196
193
190
186
181
175
169
162
154
146
138
130
122
113
105
96.7
88.7
80.9
73.3
66.5
60.6
55.5
50.9
46.9
43.4
40.2
37.4
34.9
32.6
150
150
149
147
145
142
138
134
129
124
118
112
105
100
:93.9
87;6
81.3
75.2
69.1
63.2
57.5
52.2
47.5
43.5
39.9
36.8
34,0
31.6
29.3
27.4
25.6
87.0
86,9
86.6
86.0
85.2
84.2
82.9
81.4
79.7
77.7
75.5
73.0
69.8
66.5
63.0
59.3
55.6
51:6
47.6
43.6
39.8
36.1
32.9
30.1
27.6
25.4
23.5
21.8
20.3
18.9
17.7
Properties
Ag, in.2
Ix, in."
lyM'
ry, in.
rJr„
8.81
41.1
30.8
1.87
1.16
6.88
33.9
25.5
1.92
1.16
5.85
29.6
22.3
1.95
1.15
4.77
24,7
18.7
1.98
1.15
3.63
19,3
14.6
2.01
1.15
2.46
13.4
. 10.2
2.03
1.15
ASD
He =1,67
LRFD = Shape is slender for compression witti fy.= 46 l<si.
(l)c=0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-45
Fy ~ 46 ksi
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
HSS6
HSS6x4x
V2 3/8 5/16 V4 3/16
fdeslgiv. in. 0.465 0.349 0.291 0.233 0.174 0.116
lb/ft 28.4 22.4 19.1 15.6 12.0 8.16
Pn/^c ^cPn Pn/Qc ^cPn Pnia, <foPn pja. <ShP« P^IClc
Design
Asn LRFD ASD LRFO ASD LRFB ASD . LRFD ASO LRFD ASD LRFD
0 217 • 326 170 256 145 218 113 178 90.3 :136 '•54,1 81,3
1 216 325 170 255 144 217, 118 177 90.0 135 53,9: 81,0
2 213 321 168 252 143 214 117 175 89,0 134 ,53,5 80,4
3 209 314. 164 247 140 210 115 172 87.'4 13V 79,5
4 203 305 160 240 136 205 1J2 168 85.2 128 51.9 78,1
1
5 195 293 154 231 131 (98 108 162 82.5 124 50,8 76,3
6 186 279 147 221 126 189 104 156 79.2 119' 49.4 742
•s
7 176 264 140 210 '120 180 98.6 148 75.6 114 47.7 ' 71,7
u
s
8 165 248 132 198 113 170 ' 93.2 140 71.5 108 '45.8 68,9
9 153 230 123 185 1Q6' 159 8715 ,132 67.2 101 43.8 • 65,8
1
10 141 •212 114 ' 171 98.3
i
148^ 81.5 123 62.7 94.3 41,5 62,4
& 11 129 194 105 157 90.6 136 75.4 113 58.1 87.4 39,1 58,7
s 12 117 176 95.3 143 82.9 125 69,2 104 53.4 80:3 36,5 54.8
1 13 105 158 86.1 129 75.2- -113 63.0 94.7 48.18' 73.3 33.7 50,7
i
14 93.3 140 77.2 116 67;7'- 102 ' 5619 85,6 44.2 66.5 30,8 46,4
hm
15 82.3- 124 68.7 103 60.5 91.0 51 i1 76.8 39 8' 59.8 27.9 41,9
t
16 72.3" 109 60.5^ 91:0 53.5' 80,5 ~ 45:4' 68 3 k.5 53,4 25.0 37,5
t 17 64,0 96,2 53,6. 80.6 47.4 ,71,3 40.3- / 60-5 31.5 47.3 22,2 33.4
Si 18 57.1 85 9 47.8 71,9 42,3 63,6 35,9 54.0 28.1 42 2 19.8 29,8
19 51.3 77:1 42,9- 64:5 38.0 57,1 32.2 48.4 • 25.2 ,37:9 •17.8 ! 267
f
20 46.3 69,5 38.7 58,2 3413 .51,5 29.1 . 43,7 22.7 34,2 i16.0 24,1
u 21 •42.0' 63.1 35..r 52,8 3i;i 46,7 26.4 39.7 20.6 31,0 'ks: 21,9
22 38.2 57.5 32.0 48.1 28,3 42,6 24:o 36.1 18.8 28,2 13.3: 19,9
i
23 35;0 52.8 29.3 44.0 25.9 38,9 22i0 33.1 17.2 25,8 12.1 18,2
24 32:1 48.3 26,9 40,4 2318 35,?. 20a 30,4 15.8: 23,7 11.1 : 16,7
25 M 44:5 24a 37,3 21:9 33,Q 16.6 28.0 14.6 21,9 10.3; 15.4
26 20.3 30,5 17:2 25,9 13.5 20,2 9.49 14.3
27 12.5 18,8 8.8O: 13,2
Properties
7.88 6.18 5,26 4.30 3.28 2.23
'..in," 34.0 28.3 24,8 20.9 16.4 11.4
'yin." 17.8 14.9 13,2 11.1 , 8.76 6.15
fy, in. 1,50 1.55 1,58 1,61 1,63 1.66
r^lry 1.39 1.38 1.37 1.37 1,37 1.36 .
LRFD ' Shape is slender for compression with Fys 46 Ksi,
1.67
Note: Heavy line indicates KL/r, equal to or greater thari 200.
1.67 !tl<; = 0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-46
DESIGN OF CX)MPRESSION MEMBERS
Table 4-3 (continued)
Available Strength in
P -
Axial Compression, kips
fy- - *fO ivol
HSS6 Rectangular HSS
HSS6x3x
Shape
V2 5/16 % '/16 Vs'
'design, 'l- 0.46S 0.349 0.291 0.233 0.174 0.116
lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
« « P„/Q<; 1>of'o Pn'Qc M
Design
ASD LRFD ASD LRFD ASb LRFD ASD' LRFD ASD LRFD ASD LRFD
0 191 288 151 227 194 106 159 80.7 121 71.7
1 190 286 150i 225 128' 192 105 158 80.2 121 47.5' 71.4
2 186 279 147 221 125[:. 189 103 155 78.7 118 •47.0 70.6
3 179 268 142 213 121 182 99.8 150 76.3 115. 46.0 ; 69.2
4 169 254 135 203 116!^ 174 95.3 143 73.1 110 44.7' 67.2
O
5 158 237 126 190 T09! 163 89.9 135 69.1 104 43,0 64.7
6 145 218 117 176 Itlli, 151 83,7 126 64.6 97,0 41,0 i 61.6
•s
7 131 197 107 160 92,2 139 76.9 116 59.6 89,5 38.7 58.1
8 117 176 96.0 .144 83.2 :i25 69:7 105 ks 81,6 36.1 542
s 9 102 154 85.1 128 74:1, 111 62.4 93.8 48.8 73,4 49.9
10 88,4 133 74.4 112 BSio^ 97,8 55:2 82.9 65,3 30.1 45.2
5 11 113 64.1 96.4 56.3 84.7 48.1, 72.3 ' 38.1 57,3 2,6.6 40.0
12 63.2, - 95.0 54.4- 81.7 48.0 72.2 41.4 .62,3 33.1 , 49,7 ^3.2' 34.9
13 53.8; •80.9 46.3 69.6 40.9 61.5 35.3 53.1 28.'3, 42,5 ,19.9 29.9
JZ
14 46.4, 69.8 39.9 60.0 35.3 .53.0 30.4 45,7 24.4 36,6 25.8
f 15 40.4. 60.8 34.8 52.3 30.7 46.2 26.5 39,9 21,2 31,9 1f.O • 22.5
g 16 35.5 53.4 30.6' 46.0 27.0 40.6 23X 35,0 18.7=- 28,1
nz,
19.8
si 17 31'.5 • 47.3 27.1s.- 407 23,9 36.0 31.0 16,5 24,9 417! 17.5
18 28.1 42.2 • 24.2 36.3 21^4 32.1 18.4 27.7 14.7 22,2 si 0.4
>9.33
15.6
19 21:7 32.6 19.2 28.8 16.5. 24.8 13.2' 19,9
si 0.4
>9.33 14.0
20
• '
149 22.4 11.9 18,0 ;8.42 12.7
21 ^>.64 11.5
1 •
Properties
/lo, in.2 6.95 5.48 • 4.68 3.84 2,93 2.00
26.8 22.7 20.1 17.0 13.4 9,43
ly, in." 8.69 7.48 6.67 5.70 4.55 3.23
ry, in. 1.12 1.17 1.19 1.22 1.25 1.27
rxiry 1.76 1.74 1.74 1.72 1.71 1.71
A ASD LRFD = Shape is slender for compression with />=46 l<si.
Note Heavy line inaicates xur^ eqi lal to or greater man™.
ac= 1.67 <|)c = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-47
laoie t-a (conimueaj
Fy
= 46ksi
Available Strength in
Axial Compression, kips
Rectangular HSS
HSS5
Shape
HSS5x4x
Shape
V2 «/l6 V4 Vs'
'design, i". 0.465 0.349 0.291 0.233 0.174 0.116
lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
W « P„/Sic PalQc <t>cP// PnlClc M PJQc P„/Qc
uesign
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD ' LRFD ASD LRFD
0 191 288 151 227 129i 194 106 159 80.7 121 52.6 79.1
1 191 286 150 226 128, 193 105 158 80.4 121 52.4, 78.8
2 188 283 148 . 223 127' 191 104' 156 79.5 119 52.0 78.1
3 1,84 . 276 145 218 124 187 102 .153 78.b 117 51.2 77.0
e'
1
4 178 268 141 . 212 121 181 - 99.3 149 76.0 114 50.2 75.4
e'
1 5 171 257 136 204 116- 175 95.9 144 73,4 ,110 48.9' 73.4
g
•s
6 163 244 130 195 111 167 9118 138 70,4 106 47.3 71.0
g
•s 7 153 230 123 185 106 159. '87.2 ;i3i '67,0 101 .45.4 • 68.3
1
•o
i2
8 143 215 115: 173 99.3; 149 82.3" 124. 63,3 95.2 43.3 65.1
1
•o
i2
, . 9 132 199 107 162 92.6 139 76.9 116 59,4 89.3 40.9 61.4
1
•o
i2
10 122' 183 99.3 149 85-7 129 71.4' 107 55,3 83.1 38.1 ' 57.2
1 11 110. 166 90:9 137. 78!6 118 65.7 98.8 51,1 76.7 35.2 53.0
S 12 99:5 150 82.5 124 - 71ie- 108 60.1 -90.3 46,8 70,3 32.4 48.7
g 13 88.8 133 74.3 112 64,6 97,2 54.4 81.8 42,6 64.0 '2*9.5 44,4
1
14 78.6 118 66.4 99.7 57;9- 87.0 49.0 73.6 38,4 •57,8 •26.7 40.2
C
£
15 68;7- 103 58.7 88.3 51,4 77.3 43.7 65,7 34,4; 51.8 24.0 36.1
16 60.4 90.8 51.6 77.6 45.3 68.0 38.6 58.0 30.6~ 46.0 '21.4' 32.2
g 17 53.5' •80.4 4-, 7 .68i7 • 40.1- 60.3 3412 51.4 27,'!; 40.7 19.0 28.5
18 47t7' 71.7 40 8 .61.3 .35:8 53:7 30,5 45.8 24.2'. 36.3 16.9 25.4
£ 19 . 42;8 64.4 36.6 55.0 • 32;i • 48.2 27.4- 41.1 21.7; 32.6 15.2. 22.8
1
20 38',7 58.1 33,0 49.7 29.0 43.5 24.7 37.1 19.6' 29.4 ^13.7 20.6
i 21 .SSJ'; .52.7 30.0 45,0 26:3 39.5 22;4 33.7 17.8 26.7 12.4 18.7
1
22 31:9 48.0 27i3 41.0 23i9 36.0 20.4 30.7 16.2 24.3 11.3 17.0
i
23 29;2 43.9 25® 37.5 21 ;9 32.9 18.7 28.1 14.8 22.2 10.4; 15.6
24 26.8 40.4 22;9 34.5 20;1 30.2 17.2 25.8 13.6 20.4 9.51 14.3
25 2111 31.8 18i5 27.9 15:8 23.8 12.5 : 18.8 8.77 13.2
26 14:6 22.0 11.B 17.4 8.10' 12.2
27 7.52 11.3
Properties
Ag, m.^ 6.95 5.48 4.68 3.84 2,93 2.00
Un." 21.2 17.9 15.8 13.4 10,6 7.42
/yjn." 14.9 12.6 11.1 9.46 7.48 5.27
fy, in. 1.46 1.52 1,54 1.57 1,60 1.62
rxir, 1.20 1.19 1,19 1.19 1.19 1.19
ASD LRFD " Shape is slender for compression with Fy-46 ksi.
1.67 (|ic=0.90
Note: Heavy line indicates Wry equal to or greater than 200.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-48 DESIGN OF COMPRESSION MEMBERS
HSS5
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy = 46 ksi
HSS5x3x
Shape
Vz '/8 5/16 V4 '/16 w
fdeslgib in. 0.465 0.349 0.291 0.233 0.174 0.116
lb/ft 21.6 17.3 14.8 125 9.42 6.46
Design
p„/ac Pn/Cic -ticft « i^cPn PnlCic fcfi, Pniac
Design
ASD LRFD ASD LRFD vASO LRFO LfiFD lASO > LOFD ASD' LRFD
0 166 249 132 198 1.13 170 ,92.8 140 71.1 107 46.3 69.5
1 1€4 247 131 196 112' 169 '92.2 139 70.6 106 46.0 69.2
2 160 241 128 192 110 165 90.3 136 69.2 104 45.4 68.2
3 154 232 123 185 106' 159 87.3 131 67.0 T01 "44.3 66.6
V.
4 146 219 117 175 101, -152 83.2 125 64.p 96.2 42.8 64.4
5 135, 203 109 164 94.6 142 78.2 118 60.4 90,8 41.0 61.6
•s
6 124 • 186 101 151 87.5 132 72.6 109 56.2 84.5 38.7 58.2
•s
7 111. 167 914 1,37 79.8,, 120 66.4 99.8 51.7 77 6 36.0 54.1
f 8 ,,98.4 148 81.7^ 123 71.8- 108 S9.& 90.1 46.0 . 70,4 32.8 49.3
2 9 129 72.0 108 ,63.7 95.7 53.3 80.2 41,9 63 0 44.3
1
10 73'.4' 110 62.5 93.9 55,7 83.7 46.8 70.4 37.1 •55.7 "26,2 39.4
i ii 61.7 92.7 53.4 80,3 48.0- 72.1 40.6 61.0 32.3, .48.6 23.0 34.6
g
12 51.8 77.9 45.0 67.7 40,7 61.1 3ft.6, 52.0 41 8 20.0. 30.0
13 44.2, 66.4 38.4 57:7 ^34,7^ 52:1 '29.5 44;3 23.7, 35.6 i7.1 ' 25.7
J
14 38.1 : .57.2 ,33,1 49.7 29:9 -44.9 38.2 20,5 30.7 14.7' 22.1
•g 15 33:2 49.9 28:8 43.3 26M 39.1 22.1 _ 33.3 17,8 26.8 12.8 19.3
€ 16 2912 43.8 25*3 38.1 22.9 34.4 J 9.5 29.2 15.7 23 5 11.3 16.9
.17 25.8- 38.8 122.4 33.7 20.3 30.5 17.2- 25.9 13.9 20 s 9.99 15.0
18 23.0' 34.6 20.0 30.1 - 18.1 27.2 15.4' 23.1 12.4- 18:6 8.91 13.4
i
19
20
18,0 27.0 16.2' 24 4 ' 13.8. 20.7 11.1'
10.0.
167
15.1
8.00
7.22
12.0
10.8
i
19
20
- ,'V
11.1'
10.0.
167
15.1
8.00
7.22
12.0
10.8
i
19
20
- ,'V
-
Properties
4.78 4.10 3.37 2.58 1.77
14.1 12.6 10.7 8.53 6.03
6.25 5.60 4.81 3.85 2.75
1.14 1.17 1.19 1.22 1.25
1.51 1.50 1.50 1.49 1.48
Ag, in.^
/x.in."
I,, in."
fy, in.
r,lry
6.02
16.4
7.18
1.09
1.51
ASD
Qc=1.67
LRFD
c = 0.90
'Shape isslender for compression.with 46 ksi.
Note; Heavy line indicates KLUy equal to.or greater tlian 200.
AMERICAN. INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-49
Fy = 46 ksi
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS HSS5-HSS4
Shape
HSS5X2V2X HSS4x3x
Shape
V4 5/16 Va' 3/8 «/l6 V4
'design, in- 0.233 0.174 0.116 0.349 0.291 0JS33
lb/ft 11.4 8.78 6.03 14.7 12.7 10.5
Design
Pnliic p„iao tefl. /5,/£lc M P„IQc p„/ao M Pn/Qc «
Design
• ASO I.RFD ASO LRFD ASD LRFD ASD ? LRFD m: LRFD ASD LRFD
0 86.5 130 66.4 99.8 43.0 64.6 169 97.0 146 80.2: 120
1 ,^5.7 129 65.8 98.8 42.7 64.1 11.2; 168 96.2 145 -79.61 120
2 83.2 125 64.0 961 41.8 62,9 109 164 94.1 141 77.9i 117
3 79.3' 119 61.0 91.7 40.5' 60,8 t05 158 90.6 136 75.1! 113
4 74.0 111 57.2 86.0 38.6 58.0 V99;3 149 85.9 129 71.4? 107
1
5 67.8 102 52.6 ' 79.0 '36.2 54,4 92;s 139 80.2 121 66.9; 101
cn 6 61.0 91.7 47.3 -71.4 33.1 49,8 84.9 128 73.8 .111 ,€1,9 93.0
"B
(0
7 80.8 42.1 63 2 29.5 44,4 76.6 115 66.9 100 -56.3; 84.7
J
ta
8 .46.5 69.8 36.6 ' 55 0 •25.9 38,9 68.1 102 59.7 89.7 ,50.6 76.0
1 9 59.2 .31.2 46 9 22.3 33,5 59,6 89;6 52.4 . :78,8 .44.7 67,2
1
10 S2.7' 49.2 26.2 -.39.3 18.9 28.4 51.3 77.1 45.4 68.2 39.0 58.6
i 11 27.0* •40.6 21.6 32 5 15.7 23.6 43.5 65:3 .38.7 58,2 33.5 50,4
«
12 22.7. ,34.1 18,2 27,3 13.2. 19.8 36.5 54.9 32.6 49 0 28.4 42,7
13 19.4 . 29.1 15.5 23.3 11.2 • 16.9 31.1 46,8 27.8 41,7 24.2 36,3
14 .16.7 25.1 13.4 20,1 9.69 14.6 26.8 .40,3 23.9 36.0 20.9 31.3
15 14.5 21.9 11.6 17,5 8.44 12.7 23.4 35,1 20.9 31.3 18.2; 27,3
t 16 12.8 19.2 10.2 15,4 7.42 11.1 20.5 30,9 18.3 . 27.5 •16.0i 24.0
- sa •
17
18
19
• r
9.06 13,6 6.57 9.88 18.2
16.2
27.4
24.4
16.^
^14,5
24.4
21.8
i4.i;
.12.6
ri1.3
21,3
19.0
17,0
- sa •
17
18
19
• r
18.2
16.2
27.4
24.4
16.^
^14,5
24.4
21.8
i4.i;
.12.6
ri1.3
21,3
19.0
17,0
- sa •
17
18
19
• r
i4.i;
.12.6
ri1.3
21,3
19.0
17,0
- sa •
17
18
19
• r
Properties
/xJn."
/y.in."
r,,.
rjry^
AS
3.14 2.41 1.65 4.09 3.52 2.91
9.40 7.51 5.34 7.93 7.14 6.15
3,13 2.53 1.82 5.01 4.52 3.91
0.999 1.02 1.05 1.11 1.13 1.16
1.73 1.74 1.71 1.25 1.26 1.25
£lc=1.67
LRFD
4)^=0.90
' Shape is slender for compression with fy = 46 l<si.
Note: Heavy line indicates KUry equal to or greater than 200.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-50 DESIGN OF CX)MPRESSION MEMBERS
HSS4
Table 4-3 (continued)
Available Strength In ^ ^^
Axial Compression, kips
Rectangular HSS
HSS4x3x HSS4X2V2X
bhape
'/16 Vs 3/8 5/16 V4
fdesigm i"- 0.174 0.116 0.349 0.291 0.233 0.174
lb/ft 8.15 5.61 13,4 11.6 9.66 7.51
Pn'^c ^cPn PnlClo Pnl0.c P„/Qc ^cPn PatClc PJQc i/cPn
Design
AS5> LRFD ASD LRFD ASD LRFD LRFD ASD LRFD ASD LRFD
0 61.7 ' 92.7 42.4 63.8 103 1S5 89.0 134 73.5 111 56.7 85,3
••••i .1 61.3 ' • 92.1 42.1 63.3 102 153 88.0 132 72.8- 109 B6.2 84,5
2 60.0 90.2 41.3 62.1 98.4 148 85.2 128 70.6 106 54.6 82,0
3 58.0 87.2 40,0 60.1 93.0 140 80.7 121 67.1 101 •S2.0 78,1
4 55.3 83.1 38.2 57.3 85.8 129 74.8 112 62,4- 93,8 73,0
i
5 '52.0 78.2 36.0 .54.0 77.5 116 67.9 102 56.9 85,6 ^44.5 66.9
1: 6 48.2 72.5 33.4 • 50.2 68.4 103 60.3 90,6 50,9 76.5 40.0 60,1
•s
7 44.1 66.3 30.7 46.1 58.9 88.6 52.4 78.8 44.5- 67,0 35.3 53,0
s
'•R 8 39.8 < 59.9 27.8 41.7 49.7 74.7 44.6 67.0 33.2 57,4 30.5 45.8
s 9 35.5 < 53.3 24.8 •• 37.3 40:9 61.5 55,7 .32.,1 48,3 25,9 38,9
1
10 31.-( . 46.8 21.9 32.9 33;.2 49.9 30.2 45.4 26.4 39,7 21.5 32.3
i 11 27.0 • 40.5 19.6 im 27.4 . 41.2 25.0 37.6 21.8- 32,8 •97.7 i 26,7
»
12 23.6 • 34.6 16.3 24.6 •23:0 34.6 21.0 31.6 '18.? 27,5 ;14.9 1 22.4
w 13 19.6 -29.4 13.9 20.9 19.6 29.5 17.9 26.9 15.61 23,5 12.7" 19.1
a
14 16.9 25.4 12.0 18.0 16.9 25.4 15.'4' 23,2 13.5- 20,2 '10.9 16,5
%
15 14.7 22,1 10.5 15.7 14.7 22^2 13.4 20,2 11.7' 17.6 .9.54 14,3
t 16 1^9 -
19.4 -9.19~ -13.8 1 10.3'- 15^5 <8,38 12,6
^ 17 11.5 • 17.2 8.14 :12.2 rr ,
18 10.2 15.4 7.26 10.9 *
s
19 9.17 13.8 6.52 9.80
g 20 5.88 8.84
£
Properties
/Ig, in.^ 2.24 1.54 3.74 3.23 2,67 2.06
in." 4.93 3.52 6.77 6.13 5,32 4,30
ly, in." 3.16 2.27 3.17 2.89 2,53 2,06
/>, in. 1.19 1.21 0.922 0.947 0,973 0,999
rxiry 1.25 1.26 1.46 1.46 1,45 1,44
ASD LRFD Note: Heavy line indicates ML/ry equal to or greater than 200.
1.67 (|)c = 0,90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-51
Fy = 46 ksi
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
HSS4
Shape
HSS4X2V2X
Va
HSS4x2x
5/16 V4 Vl6 Va
'(teslgniin- 0.116 0.348 0.291 0.233 0.174 0.116
\m 5.18 12.2 10,6 8.81 a87 4.75
Design
•Pfl/a,
ASD
p„tac
LRFD ASD
PnlClc
LRFD ASO
tfcPn Pnl^c
LRFD ASD
<i>cPn p„iac ifcPn
LRFD ASD LRFD ASD LRFD
10
11
12
13
14
15
16
17
39.1
38.8
37.7
36.0
33.8
31.1
28.2
25.0
21.8
18.7
15.7
130
10.9
9.30
8.02
6.99
6.14
5.44
58.8
58.3
56.7
54.1
50.8
46.8
42.3
37.6
32.8
28.1
23.6
19.5
TC.4
T4.0
12.1
10,5
9.23
8,18
93.4
91.7
86.8
79.2
69.7
59.2
48.4
38.2
29.4
23.2
18.8
15 5
13.1
140
138
130
119
.105
89.0
72.8
57.5
44.2
34.9
28:3
23.4
19.6
81.0
79.6
75.6
69.5
61.7
52.9
43.9
35.1
27.3
21.5
17.4
UA
I2.i
122
120
114
104
92.7
79.5
65.9
52.8
41.0
32.4
26.2
21.7
18.2
67.2
66.1
63.0
58.2
52.1
45.1
:37.8
30.7
,24.1:.
19.1
15.5
12.8
10.7
101
99.4
94.8
87.5
78.2
67.8
56.9
46.2
• 36.3
28.7
23.2
19.2
16.1
52.t
S1i3;
49.0
45:^
41.0
35.8,
36,4:
25.0
lias
12.8
10.5
8.S6'
•7:55
78.2
77.1
73.7
68.4
61,6
53.8
45.6
,37.5
29.9
23.7
19.2
'15.8
13.3
11.3
358
'35.3 ^
33.8 ^
31.5
28;6
25 2
^1.6
18.0
.14.6
,11.5
9.35
7.73
6.49
5.53
53.8
53,1
50.9
47,4
43.0
37.9
32.4
27.0
21.9
17,3
14.1
11.6
9.76
8.31
Properties
Aa, in.2
in,"
/yin."
Ty, in.
rxiry'
1.42
3.09
1.49
1.03
1.43
3,39
5.60
1.80
0.729
1.77
2.94
5.13
1.67
0.754
1.75
2.44
4.49
1,48
0,779
1,75
1.89
3.66
1.22
0,804
1.73
1.30
2.65
0,898
0.830
1.72
tic =1.67
LRFD Mote: Heai(y tine indicates KLIr, equal to or greater than 200.
<t>c = 0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-52 DESIGN OF CX)MPRESSION MEMBERS
HSS16-HSS14
Table 4-4
Available Strength in
Axial Compression, kips
Square HSS
Fy = 46 ksi
Shape
HSS16x16x HSS14x14x
Shape
Vz 5/16° '/a V2 8°
'design, in. 0.465 0,349 0.291 0.581 0.465 0.349
lb/ft 103 78.5 65.9 110 8a7 68.3
Design
P«ICic PnlClc P^liic '^cPn Pnl^c (fcPn P„IUc PnfCla
Design
LRFO ASO LRFD ASD LRFD ASD LRFD ASD LRFD m LRFO
0 •780 1170 782 381 572 835. 1250 678 1020 •498 748
6 -77I. 1160 518 779 379 570 825. 1240 670 1010 494 743
7 770 1160 517 777 379 569 ,821, 1230 667 1000 .493 741
8 767 1150 316;; 776 378 . 568 "817 • 1230 664 . 998 "491 738
9 .164 1150 515 774 377 ^ .567 813- 1220 660 992 489 736
e- 10 ;t61 1140 772 376 '
•j'l.-' ••> -A
566 808 1210 656 986 487 733
1
11 757 1140 512 769 375 564 802 1210 652 980 485, 729
12 753 1130 510 767 374' 563 796' 1200 647 972 483 725
13 •'748;: 1120 ==S08 764 37^ 561 790 1190 642 965 '480 722
"S
M
14 743 1120 506 761 372 559 783 -1180 &36 956 •"477' 718
3
15 738 1110 758 371 557 775' 1170 630 947 '474' 713
16 732 1100 755 370 555 768 1150 m 938 '471 708
!S
J03 17 727 •1090 55001 751 368 ; 553 s ••759 1140 -618 928 468, 703
i
18 720 1080 747 367 .551 -'751 • 1130 611 :918 464! 697
i
19 714. 1070 "mt 743 365 549 742" 1110 603 907 460 691
I
20 707 1060 492 739 363 546 732 1100 596- . 896 454* 683
e
21 700 , 1050 489 735 361 543 722 1090 'B88' •'884 •448^' 674
22 693 1040 486 730 360 540 712 1070 580 872 442' 665
sf 23 685 1030 481'- 725 358 537 702 1050 572 859 ! 436, 656
24 678 1020 479" 720 356 534 691 1040 563' 846 '430 i 646
25 670 1010 475 714 353 531 680 1020 554 833 423 636
o> 26 661 994 472 709 351 528 669 1010 545 820 416 626
1 27 653 981 468 703 349 524 657 988 536 806 410; 616
,1 28 644 968 464 697 346 520 646 970 527 792 403; 605
g 29 635 955 459 691 344 517 634 953 517 777 395 594
LU 30 626 941 45S 684 341 513 622 934 507 763 388; 5S3
32 608 913 446 670 33§ 504 59i 897 488: 733 373 561
34 584" 884 436 656 330 495 572 859 467 702 358 538
36 iefc 855 426 640 486 821 447. 671 343 51.5
38 549 825 415 623 316, 476 520 782 426 640 327 492
40 528 794 403 606 309 465 494 743 405 509 311 468
Properties
Ag, in;
/.^/y.in."
= in.
28.3
1130
6.31
21.5
873
6.37
18.1
739
6.39
30.3
897
5.44
24.6
743
5.49
18.7
577
5.55
£Jc = 1.67
LRFD ' Shape is slender for compression with /y= 46'ksi.
([)(;= 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION—MEMBER SELECTION TABLES 4-53
Fy = 46ksi
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
HSS14-HSS12
HSS14x14x HSS12x12x
Shape
Ve V2 % V4=
fdesijn. 0.291 0.581 0.465 0.349 0.291 0,233
lb/« 57.4 93.3 76,1 58.1 48.9 39.4
P„/ilc p„/ac ^cPtt PnlClc Cn/Oc 1/cPn Pnliic M
UBSign .
ASO LRFD ASD LRFD ASD ' LRFD ASO LRFD .ASD, LRFD ASD LRFD
0 551 708 ,1060 576 865 441 ' 662 350 526 •239 359
6 •364 547 696 1050 567 • 852 434 652 347 521 237 356
7 363 546 692 1040 S63 . .847 •431 648 345 v519 '236 355
8 ' 362 545 668
682
1030 S60 •841 429 644 344 517 •236 354
9 ,36) 543
668
682 1030 555 835 426 . 640 342- 515 235 353
10 541 676 1020 651 828 •m
.634 340 . 512 f;i€34 351.
1
11 539 670 1010 546 820 418 629 v338 ,509 f233 350 1
12 357 537 663 997 540 , 812 41^ 622 33$ 505 ^232 348
13 m 535 656 985 534 •803 410 616 '334 502 230 346
o
14 354 532 648 973 ^28 793 . •405 609 331 498 ^229 344
1
15 352 529 639 961 521 , 783 400 601 .>328 494 227 342
•s
16 350 526 630 . 947 514 773 394 593 ,,325 ,489 .4226' 339
«
s 17 523 621 . 933 507 761 W 584 322 • 484 '224 337
s
18 •«a46 520 611 918 499 750 ,-383 576 319 479 222 • 334
%
19 516 601 903 491 738 377 567 315 474 220 331
V
20 34i 513 .590 887 482 725 371 .557 311 468 218 328
I
21 .339 509 580 871 474 ;712 364 , 547 306 ,459 216' 325
22 336 ; 505 568 854 465 699 357 .537 300 451 .214 321
23 -333 500 557 . 837 456
446
685 351 527 294 442 :211 318
£
24 496 •545 819
456
446 671 •343 ,516 289 434 ^209 314
25 327 491 •533 . 801 437 •556 836 505 283 425 •206, 310
f
26 3g3 486 521 783 427 642 329 494 276 416 .203 306
J! 27 •320 481 509 764 417 627 321 483 270 406 201 301
S
28 476 496 745 407 612 ,314 472 264 397 198 297
1
29 313 470 483 726 397 597 306 460 258 387 194 292
LU 30 464 471 707 387 581 298 449 251 378 '.191 237
32 sat 452 445 669 366 . 550 283 425 238 358 184 277
34 439 41 & . 630 345 519 267 402 •225 338 ^177 266
36 425 -393 591 325 488 251 378 212 319 169 254
38 ^273 411 368 552 304 457 236 354 199 299 161' 242
40 263 395 342 515 284 426 220 331 186 280 151 228
Properties
Ag, in} 15.7 25.7 20.9 16.0 13.4 10.8
490 548 457 357 304 248
5.58 4.62 V '4.68 4.73 4.76 4.79
ac=1.67
LRFD - Shape is slender for compression with fy = 46 ksi.
(!.c=0.90
AMERICAN iNSrrruTE OF STEEL CONSTRUCTION

4-54 DESIGN OF CX)MPRESSION MEMBERS
HSS12-HSS10
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy = 46 ksi
HSS12x12x HSSIOxlOx
anape
3/16" S/8 Va % 5/16
'design, in. 0.174 0.581 0.465 0.349 0.291 0.233
lb/ft 29.8 76.3 62.5 47.9 40.4 32.6
^cPn P„IQc •ticfli P„IQc ^Pn P„/Qe W PJClc PnlQc ^cPn
uesign
LRFD ASD LRFD LRFD ASD LRFD ASD LRFD ASD LRFD
0 213 578 869 .r.47f i 712 '364 546 306 460 i228 342
6 141 212 565 849 463 696 355 534 299 449 •224 ' 337
7 :141 1 212 560 841 459 690 353 530 297 446 223 336
8 211 •554 833 i454- 683 349 525 294 442 -222 , 334
9 1140 : 211 548 823 •449 '676 • 345 519 291 437 221 . 331
10 '140 210 541 '813 444 667 341 513 287 432 •219 • 329
o
11 "isi- • 209 533 .802 438 658 337 506 284 426 217 326
£2 12 139 ,208 525 789 431 648 332 499 279 420 215 i 323
ai
13 138 208 516 776 424 638 327 491 275 414 2.13 320
"S
14 -:207 507 • 762 417 627 •321 483 271 407 ^.11 , 316
1
15 .206 497 748 409 615 516 474 266 399 508 313
16 205 487 732 401 603 •309 465 261 392 205 308
CA
s
17 135 H 203 477 716 393 590 303 .455 255 384 •202 304
O 18 202 465 700 384 577 296 446 250 375 ;199 299
^ 19 5134: 201 454 682 375 563 290 435 244 367 196 ' 295
n
20 200 442 665 365 549 283 425 238 358 193 289
a
21 132 198 430 647 356 535 275 414 232 349 .188 • 283
22 131 197 418 628 346 •520 268 403 226 340 mi 275
23 130 195 406 .610 336 505 260 392 • 220 330 f78 268
£
24 f;>t29j 193 393 591 326 490 253 380 213 321 f173 260
Se
25 : 128 < 192 380 . 572 316 474 245 .369 207 311 16S 253
1
26 126 190 368 552 305 459 237 357 •201 301 -163 245
J 27 125 188 355 533 295 443 230 345 194 292 158 237
1
28 124 186 342 514 285 428 222 333 187 282 •152 229
1
29 122 184 329 495 274 412 214 322 181 272 147 221
1 30 121 182 316 475 264 397 206 310 174 262 142 213
32 177 291 437 243 -366 191 287 161. 243 J32 ' 198
34, ' tis.ji 173 266 400 223 . 336 175 264 149 223 m 182
36 "111?: 167 242 364 204 307 161 241 '136 205 •141 167
38 108 162 219 • 329 185 278 146 220 124 187 =102 153
40 104 156 198 , 297 167 251 132 199 ' 112 169 92.1 138
Properties
Aa, • 8.15 21.0 1 17.2 13.2 11.1 8.96
189 304 256 202 172 141
/> = fv, in. 4.82 3.80 3.86 3.92 3.94 337
ASD LRFD ® Shape is slender for compression witti Fy= 46l<si,
0.c= 1.67 (t><;=0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-55
fy = 46 ksi
Table 4-4 (continued)
Available Strength in
Axial Gompression, kips
Square HSS
HSS10-HSS9
HSSIOxlOx HSS9x9x !
3/16' S/8 V2 5/e ®/l6 V4'
tdesisn. m- 0.174 0.581 0.465 0.349 0.291 0533
lb/ft 24.7 67.8 55.7 42.8 36.1 29.2
Pnliic <t>cPfl Pnl^c PnlQc •licPn PnlO-c PnlCic dfcPn P„/Clc
Oe; ign
ASO LRFO ASD LRFO ASP' LRFD ASD LRFD ASD LRFD ASD LRFD
0 137 206 515 774 421 633 325 489 273 411 219 330
6 •135 204' 500 751 409 615 316 475 266 . 399 215 323
7 135 203 494 743 405 609 313 ' ,470 263 395 213 320
8 135 202 488 734 400 601 309 .465 260 391 •211 ' 317
9 134 •201 481 723 395 593 305^ • 458 257 386 208 312
10 "133 200 474 712 388 584 -300 -,452 253 380 205 308
.1
11 132 199 465 700 •582 574 296 444 249 ,374 202 303
S 12 132. 198 457 686 "375 563 290 436 244 367 198 298
a
13 131 196 • 447 672 ,367 552 285 428 240 360 194 292
o
M
14 *130 195 437 657 .359 540 279 419 235 353 190 286
3
'•S
15 128 193 •427 641 351 .527 272 • 409 230 345 186 280
JQ
ts
16 127 191 416 625 342 514 266 399 224 , 337 .182 273
a
o 17 126 189 404 •333 501 259 . 389 •219 328 177 267
o 18 125 ,187 393 590 324 ,487. 252 379 213 320 m • 260
i
19 123 185 38? 572 .•314 472 245 368 207 311 •168 25,2
20 122 183 368 554 304 457 .237 -357 201 301 163 245
21 120 180 356 535 294 442 230 . 345 194' 292 d58 237
22 118 178 34& 516 28!} , 427 222 . •334 188 283 153 230
23 ,116 175 331 497 274 412 214 322 182 273 i148 222
E.
24 US' 172 318 478 ••;264' 396 207 , 311 175 263 142 214
a
25
113' 169 • 305 459 253 381 199' : 299 169 253 137 206
§
26 111' 166 292 439 243 365 191' 287 162 244 132 198
a 27 108 163 280 420 233 350 183 275 156 • 234 127 190
.1 28 106 159 267 401 223 335 175 264 149 < ,224 V.121 183
29 104 156 ,255 383 213 319 168 252 143 214 116 175
s 30 lOf 152 242 364 203 305 160 241 136 205 111 167
32 96.0 144 218 328 ,183 275 145 -218 124 186 101 152
34 136 195 293 164 247 131, 197 112 • 168 91.4 137
36 84.2 127 174 262 147 220 117 , 176 100. 150 82.0 123
38 77.7 117 156 235 132 198 105 158 89.9 135 73.6 111
40 70.6 106 141 212 119- 179 94.8' 143 81.1 122 • 66.4 99.8
Properties
6.76 18.7 15.3 11 .8 9.92 8 .03
Ix-'ly.m.' 108 216 183 145 124 102
4.00 3.40 3.45 3.51 3.54 3.56
ASD LRFO ' Shape is slender for compression with fy= 46 ksi.
1.67 (l)c=0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-56
DESIGN OF COMPRESSION MEMBERS
HSS9-HSS8
Table 4-4 (continued)
Avaiiabie Strength in
Axial Connpression, Icips
Square HSS
Fy = 46ksi
HSS9x9x HSS8X8X
anape
VB" 5/8 Vz ®/l6
'deslam 0.174 0.116 0.581 0.465 0.349 0.291
lb/ft 22.2 15.0 59.3 48.9 37.7 31.8
•Pcfn P„/Qc Pn/Oc M Pa/Oc ihPn P«IQc p„/o. M
Design
ASD mo LRFD Ai?n- LRFO LRFD ASD LRFD ASD LRFD
0 134 201 96.8 452 679 ^72 559 286 431 363
6 132 198 95.9 434 ; 653 358 538 276 •415 .233 350
7 m 197 63.6 95.6 428 644 353 531 "273 410 230 346
8 130 196 63.4 95.2 421 633 348 523 269 404 •i !26 340
9 130 195 63.1 94.8 414 622 m 513 264 397 223 335
10 193 62.8 , ' 94.4 405 609 835 503 259 389 .219 329
§
11 128 192 ;93.9 396 596 be 492 254 381 214 ; 322
S 12 126 190 82i1 93.3 386 . .581 320 481 248 372
>
!09 315
&
13 125; 188 gl.7 •92,7 376 565 311 468 242 363 204 307
•s
14 / 186 61.2 92.0 365 549 303 455 235 353 199 299
15 '122::;: 184 91.3 354 532 294 441 228 343 .193 290
16 t2B 181 , 90 5 342 514 28;l ' 427 ,333 ^87 282
1
17 178 |9.7 89.7 330 496 275 413 214 322 '181 • 273
p 18 176 49:1 > 88,8 318 , 478 265 • 398 ^07 311 175 . 263
**
19 115 173 58.5 87 9 306 459 255 383 199 299 n'69 254
i-
20 1W ; 170 57.8 , 86,9 293 ,440 245 367 191, ,288 162 244
£
21 166 57.1 85.9 280 • -421 234 • 352 184 276 •1'56 234
22 108 163 56.4 : 84.8 267 402 224 337 176 264 'M 225
23 106 ,159 55.6 83.6 255 383 214 321 168 253 43 215
£
24 ^lOS'O 155 54.8 ,82.4 242 364 203 306 .160 241 37 205
s
25 m; 151 54.0 81 1 230 345 193 290 15g 229 "130 195
i> 26 97.7 147 53.1 79.8 217 326 183 275 i45 218 •124 ' 186
M 27 94.7 142 52.1 78.3 205 308 173 260 137 .206 n7 176
,1 28 91.6 138 51.1 76.9 193 290 163 246 130 ,195 111 167
29 88.4 133 50.1 75.3 182 273 154 231 123 184 105 158
£ 30 128 49.0 73 7 170 256 145 ,217 116 174
4
99.1 149
32 77.3 116 46.7 70.2 149 225 127 191 102 . 153 i-87.5 131
34 70.0 105 44.2 66 4 132 -199 113 169 90,2 136 .-77.5 116
36 62,9 94.5 41.4 62.2 118 177 m 151 80.5 121 6kl 104
38 '56;5' .84.9 38.4 57 7 106 159 90.2 136 72.2 •109 .62.0 93,2
40 51S0 76.6 35.0 52.6 95.6 144 81.4 122 65.2 98.0 56.0 841
Properties
An. m.^ 6.06 4.09 16.4 13.5 10.4 8 .76
78.2 53.5 146 125 100 85.6
0(=rj„in. ' 3.59 3.62 2.99 3.04 ! 3.10 3.13
ASD LRFD ' Shape is slender for compression with fy= 46ksi.
1.67 (|)c = i 0.90
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-57
Fy = 46 ksi
Table 4-^4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
HSS8-HSS7
HSS8x8x HSS7x7x
V4 3/16' Va' «/8 '/s
'designi 0:233 0.174 0.116 0.581 0.465 0.349
lb/ft 25.8 19.6 13.3 50.8 42.1 32.6
PJ^C PnlSlc P„/ilc ^cPn p„/nc ^cPn flf/Oc ^Pn PnlQc i>oPn
uesign
ASD LRfD ASD mFD ASD . LRFD ASD LRFD ASD. LRFD ASD LRFD
0 196 294 130 195 63.0 ,94.7 386 580 320 480 •247 371
6 •189 284 127 • 191 62.2 , 93.5 366 550 304 457 235 354
7 186 280 126 . 1.90 61.9 93.0 359 540 298 448 231 348
8 184 276 125 188 61.6 92.5 351 528 292 439 227 341
9 181 272 124 186 61.2 .:.92.0 343 515 285 429 •222 333
10, -177 267 122 184 60.8 91.3 333 501 278 417 216 325
1
11 174 .261 121 " 182 60.3 90.6 323 486 270. 405 210 316
i.
12 170 255 119 -179 59,7 89.8 313 470 261 393 204 306

13 166, 249 117 176 59.2 '88.9 -302 ,453 252 379 197 296
"S
M U 162 243 •115 174 58.5 88.0 290 436 243. •365 190 286
3
••s
15 157, 236 113; 170 57.9 87.0 278 418 233 350 •1S3 275
£
16 •152 229 111 167 57.2 85.9 266 399 223 336 264
i 17 147 222 109 163 56;4 S4.7 253 381 2t3 -320 .res 252
i
18 143 214 106. 159 55.6 •• 83.5 241 362 203 305 J 60 241
i
19 13/ 207 103 155 54.7 82.2 228 343 .193 290 .152 ' 229
f
20 132 , .199 100 151, 53.7 80.8 215 324 182 ' 274 t45 217
21 •127 191. 97!.0 146 52.7 79.3 203 ,305 172 259 137 206
§
22 122 183 \'93.0 140 51.7-- 77.7 191 287 162 244 129 194
23 175 -89.1' •134 50.6 76.0 179 •• 268 15? ,229 122 183
•K.
24
111,'
168 85.2 123 49.'4' 74.3 167'- 251 143 214 f14 172
V
25 106 .. 160 81.3 122 48.2- 72.4 155. ;233 m,' '200 .•107 161
f.
26 101 152 77.4 116 46.9. 70.5 144 . 216 124 .186 -100 150
a 27 •96.0, 144 73.6' 111 45.5 68.4 133 201 115 173 ' 92.9 140
.1 28 9i:o 137 69.8 105 44:1 66.2 124 186 107 161 86.4 130
29 86.0 129 66.1 99.3 42.6 64 0 116 . 174 «9.6 150 80.6 121
S 30 81.2 122 62.5 93,9 41.0 61.6 108 162 93.T 140 75.3 113
32 71.8 108 55.4 83,2 37.5 56.4 95.0 143 - 81.8 ,123 66,2 99.4
34 63.8 95.6 49.0 73.7 33.'7. 50.6 84.1 •126 72.4 109 58.6 88.1
36 ^56.7 85.3 43,7 • 65.7 30.0 45,2 75.1 113 €4.6 97.1 ,52.3 78.6
38 " 50.9 76.5 39.3, 59.0 27.0 40.5 67.4 101 58.0 87.2 •46.9 70.5
40 46.0 69.1 35.4 53.2 24.3 36.6 60.8 91.4 52.3 78.7 •-42.3 63,6
Properties
-4,, in; 7.10 5.37 3.62 14.0 11,6 8.97
70.7 54.4 37.4 93.4 80.5 65.0
fx-ry, in. 3.15 3.18 3.21 2.58 2.63 2.69
ASD LfiFD ' Shape is slender for compression with 7y= 46 ksi.
1.67 <t)c = 0,90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-58 DESIGN OF COMPRESSION MEMBERS
HSS7-HSS6
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy = 46 ksi
HSS7x7x HSS6x6x
anape
5/16 V4 . w Vz
'detijn. ifl' 0.291 0.233 0.174 0.116 0381 0.465
Ih/ft 27.6 22.4 17.1 11.6 42.3 35.2
Pn/Qc PnlClc Pa/Cic « M Pa/Qc <t>cfli p„/nc
Design
ASO LRFD ASO' LRFD ASD LRFD ASD . LRFD ASD? LRFD ASD LRFD
0 209 314 170 255 124 . 187 61.7 92.7 -322 .484 268 403
6 199 300 162;- 244 120 ' 181 60.5 90.9 299 450 250 376
7 196 295 160 240 119 179 60.0 90.2 291 ,438 244 ' 367
8 132' 289 f57-' 235 117 177 59.5 89.5 283 425 -237 356
9 188 283 153^' 230 116 174 59.0 88.6 273 •410 '229 344
10 183: , 276 150 225 113 . 170 58.3 87.6 262' .394 ,221 , 332
g
11 178 268 146: 219 110 166 57.6 86.6 251 378 '212: 319
1 12 •'173 260 141-' 212 107 161 SO.B 85.4 240 360 203 305
S
13 1.68' 252 137 206 104 ^ 156 56,0 84.1 228 842 193 290
•s
14 162 243 -T32f;: 199 100 151 55.0 82.7 215 324 183 275
1
15 'isa;- 234 127 191 96.8 146 54.0 81.2 203 .305 •173 ' 260
s
ti 16 ntf : 225 184 ''93.1 140 52.9 79.6 190 286 .5163 245
%
17 143: .215 t.l7 176 89.3 134 51.8 77.8 178 267 1.53 < 230
18 137 : 206 112 169 85,5- 128 50;5 75.9 165' 249 •143 ' 215
19 :i3ff ; 196 107i 161 81.6 123 49.2 73.9 153 231 133 200
a 20 .124 1:86 102 153 77.6- 117 47.8 71.8 142 213 11-23 185
§
21 117 176 96.6 145 73> 111 46a 69.5 130 196 114 171
S
s 22 111 167 91,4 137 69.8 105 -44.7 67.1 119 179 157
23 '1:05 157 is863 130 66.0 99.1 43;0.' • 64.6 109 163 .:95.6 144
£
24 98.3 148 81.3 122 >62.2- 93.4 41.2 61.9 99.8 150 •:87.8 132
Si
25 92.2 139 76.3 115 58,4' 87.8 39.3 59.1 92.0 138 •mg 122
f
26 1-30 '71L5 107 54.8 82.4 374' 56.1 85.1 128 r74.8 112
J 27 121 66.8 100 51.2 77.0 35.2 52.9 78.9 119 6^.4 104
.1 28 74.8 112 62.1 93.4 47.7 71.7 33.0- 49.6 73.4 110 64.5 96.9
1 29 69.7 105 57.9 87.0 44.5 66.8 30.7 46.2 68.4 103 60.1 90.4
Ul 30 -m
97.9 .54ji 81.3 41.6 62.5 28.7. .43.2 63.9 96.0 •> 56.2 84.4
32 -srM 86.0 47.6 ;71.5 36 5 54.9 25.3 38.0 56.2 84.4 ^9.4 74.2
34 76.2 42.1 63.3 32 4 48.6 22.4 33.6 49 7 74.8 65.7
36 : 68.0 37.6 56.5 28.9 43.4 20,t)" 30.0 44.4 66.7 • '39.0 58.6
38 40.6 61.0 ,3J.7 50.7 25.9 38.9 17.9 26.9
40 36.6 55.1 30:4 45.8 23.4 35.1 16.2- 24.3
Properties
Aa, in.2 7.59 6.17 • 4.67 3.16 117 9.74
/x^/yJn." 56.1 46.5 36.0 24.8 55.2 48.3
2.72 2.75 2.77 2.80 2.17 2.23
AbO LRFD =Shape is slender for compression with />= 46 ksi.
Note: Heavv line indicates KUr, equal to or greater than 200.
1.67 <t)c = 0.90
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-59
Fy = 46ksi
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
HSS6
HSS6x6x
anape
'/8 V4 3/16 Va'
fdraigni in. 0.349 0.291 0.233 0.174 0.116
lb/ft 27.5 23,3 19.0 14.5 9.86
Design
Pnlilc « p„/nc 't'c'n Pnlilc M p„/ac
Design
ASD LRFD ASD. I.RFD ASD LRFD ASD LRFD ASD LRFD
,0 209 ' 314 177 266 144 217 lHjO : 165, 59.6 89.6
. 6 195 . 293 ,166 249 135 204 5^103 155 57.8 86.8
7 191 286 162 244 132 199 qoi ; y 151 57.1 85.8
8 185 • 279 158. 237 <29 • 194 98.2 148 56.3 84.6
9 180 . 270 '153 • 230 125 188 95.3 143 55.4 83.3
10 -173 ' 260 148- 222 '121 182 ; 92.3-^ 139 54.4 81.8
1
11 '167 » 250 ;i42- 214 117 175 K89.0- 134 53.3 80.1
i
12 •160^ • 240 ise-;- 205 112 168 • 85.5-; 129 52.1 78:3
•s
13 "152" 229 .130> 196 107 161 •' 81.9 123 50.7 76.2
1
14 145 218 nil' 187 102 153 78.2 118 49.3 74.0
1
15 137 206 118 ' 177 96.9 146 . 74.4 ; 112 47.7 71.6
ts 16^ 130 • 195 167 91.8 138 106 46:o. ' 69.1
s
17 122 • 183 105' 158 •86.6 130 66.6 100 44.1 66.3
i
18 114 172 g8-.4 148 81.4 122 1 62.7 ^ 94.2 42^2 63.4
1 19 •107 160 •ko 138 :-'76.2 115 58.8 • 88.4 40.1 60.2
1
20 9ar 149 85.7 129 ••71.1 107 I 55.6 82.7 37.7 56.7
£ 21 91.8 138 79'.5 120 'k? 99.4 51.2'' 77.0 35.2 52:9
g
22 , 8f7 127 73'.6 , 111 61.3 92.1 71.5 32.7 49.2
g 23 77.8 117 67.7 102 .56.6 85.1 'iJibj 66.2 30.3 45:6
24 71.4 107 ' 62.1 93,5 52.0 78.1 40.5 60.9 27.9 42.0

25 65.8 98.9 57.3 86.1 47.9 72.0 ; 37.3 56.1 258 38.7
f 26 60.8 91.4 53.0 79.6 -44.3 66.6 34.5' 51.9 23:8 35.8
i 27 56.4 84.8 49.1 73.8 41.1 61.7 ; 32.0 , 48.1 22.1 33.2
1
28 52.5 . 78.8 45.7 68.7 38,2 57.4 29.8 44.7 20,5 30.9
UJ 29 48.9 73.5 42.6 64.0 J5.6 53.5 , : 27.7 41.7 10.1 28.8
30 45.7 68.7 39.6 59.8 33.3 50.0 25.9 39.0 17.9 26.9
32 40.2 60.4 35.0 52.6
.29.?
44.0 ' 22.8 34.2 15.7 23.6
34 35.6 53.5 31.6 46.6 , '25.9 38.9 20.2 30.3 13.9 20.9
36 31.7 47.7 27,6 41.5 •23.1 34.7 . 18.0 27.1 12;4 18.7
38 28.5 42.8 24;8 37.3 20.7 31.2 16.2 24.3 1^.1 16.8
Properties
Ag, in.2. 7.58
39.5
2.28
6.43
34.3
2.31
5.24
28.6
2.34
3.98
22.3
2.37
2.70
15.5
2.39
LRFD ' Shape is slender for compression witfi /y= 46 ksi.
0^=1.67 (t)c = 0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-60
DESIGN OF CX)MPRESSION MEMBERS
HSS5V2-HSS5
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy = 46 ksi
HSSSVzxSVzx HSS5x5x
anape
3/8 5/16 V4 3/16 w Va
'desisn, in- 0^49 0.291 0.233 0,174 0.116 0.465
lb/ft 24.9 21.2 17.3 13.3 9.01 28.4
<t>cf?. PJOc PnlCic Pniac fcPn
Design
usa LRFD ASD LRFD -ASD LRFD ASD LRFD ASD LRFD Asb LRFD
0 190 , 285 161 242 131 197 100 150 58.0 87.2 f^17 1 326
1 189 284 •161 242 '131 197 99.8 150 58.0 87.1 216 ' 325
2 188 • 282 160 240 130 196 99.2 149 57.8. 86.9 215 322
3 186. 279 158 237 129 194 98,1 147 57.5 • : 86.4 •211 318
4 183 275 •• 156 234 127 191 96.7 145 57.0 85.7 'go? 311
e' 5 179 269 153 229 125 187 94.9 143 56.4 84.8 !202 303
i
6 175- , 263 149 224 122 183 92 8 139 5?.7 83.7 155 294
S 7 170 255 145 218 118 178 90 3 136 54.8 ,82,4 188 283
3:
8 164 247 140 211 115 172 87.5 132 53.8. 80,9 m 271
"S
9 158: 238 135 203 1-11 166 -84.5- 127 5?.7 79.2 257
1
10. 151 228 130 195 106 160 81.2 122 51.4 77.3
m
244
E
"ES
11 145 217 124 186 101 153 77.8 117 50.01 75.2 152 ' 229
1
12 137 206 118 177 96.6 145 74.1- 111 ,4l5 72.8 .142 , 214
A
o 13 130 195 112 168 91.6 138

106 46.7" 70.3 ^32 199
14 122 184 105 158 .86.61 130 66.6 100 4i.g 67.5 322 ; 184
s
IS 115 ' 172 98.8 148 81.3 122 65.7 94.2 42.9 .64.5
m
169
f— 16 107 161 i2.3 13S -,7ai 114 58.8 88.3 40.4 60.7 ,103 154
ia
S
17 99.2 149 85.9' 129 "^0.9 107 82.5 Z7.6 .56.8 .93.2 140
sf 18 •91.7 138 ' i^9.6 120 ,65.8 98,9 M.o 76.7 , 3^2 ; 52.9 ."84.1. 126
£
19 M.5 127 ' 73.5 110 60,8 91,4 47','3 71.0 32.7 49.1 75.5 113
20 77.4 116 67.5 101 ^55.9 84.1 4^6 65,5 30.2 45.4 68.1 102

21 70.5 106 61.6 92.7 51.2 77.0 40.0 60.2 27.8' 41,8 61.8 92.9
J 22 64.2 96.5 56.2 84.4 •46.7 70.1 36.5 54.9 25.f 38,2 56.3
51.5
84,6
> 23 58.7 88.3. 51,4 77.2 42.7 64.2 33.4 50.2 23.3 35.0
56.3
51.5 77,4
1 24 53.9 81.1 47.2 70.9 • 39.2 58,9 30.7 46,1 21.4 32.1 47.3 71,1
£ 25 49.7 74.7 43.5 65.4 • 36.1 54,3 28.3 42.5 19.7
*
29.6 43.fi 65,5
26 46.0 69,1 40.2 60.4 33.4 50,2 26.2 39.3 18 2 27.4 40.3 60,6
27 42.6 64.1 37.3 56.0 'si.d 46,6 24.2 36.4 169 25.4 37.4 56,2
28 39.6 59.6 34.7 52.1 '28.8 43.3 22.5 33,9 ^5.i• 23.6 '34.8 52,2
29 36.9 55.5 32.3 48.6 -26.9 40,4 21;0 31,6 14.8 22,0 32.4 48,7
30 34.5 51.9 30.2 45,4 :!25.1 37,7 19.6 29.5 13.7- 20.6 30.3 45.5
Properties
Aa: in; 6.88 5.85 4.77 3.63 2,46 7.88
/x^/y.in." 29.7 25.9 21.7 17.0 11.8 26.0
2:08 2.11 , 2.13 2.16 2.19 1.82
ASD LRFD ' Shape is slender for compression witii Fy= 46l<si.
nc= 1.67 <l>c = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-61
Table 4-4 (continued)
F - 46 ksi Available Strength in
Axial Compression, kips
Square HSS
HSS5-HSS4Y2
HSS5x5x
OII<l|JC
'/a «/l6 1/4 '/I6 VB' Va
'aesigiii in- 0.349 0.291 0.233 0.174 0.116 0.46S
lb/ft 22.4 19.1 15.6 12.0 8.16 25.0
p«iac AcPn PnlQc « Pnlilc M PnlQc I^Pn p„iac <kPn
uesigo
ASD LRFD ASD LRFO ASD Lara ASD LRFB ASD LRFD ASD LRFD
0 170 256 145 218 118 178 90.3 136 "56.4 84.8 191 288
1 170 255 144' 217 118 178 •90,1 135 56.4 84.7 191 287
2 16& 253 143 215 117 176 89.4 134 56.1 84.3 189 283
3 166 250 141 . 213 116 174 88.3 133 55.7 83.7 185 278
4 163 •245 139 209 1t4 171 86.8 130 55.1 82.8 180 271
5 159 .239 135 204 111 • 167 84.8 127 54.3 81.6 174 262
§
6 154 232 132, ' 198 108 162 82.5 124 53.4 80.2 -167 252
g, 7 149 223 127 191 104 157 79.8 120 52.,3 78,5 "159 240
•g 8 143 214 122' • 183 100 151 -76.9 116 51.0 76.6 i151 227
9 136- 204 117 175 '-95:9 144 73.7 111 49.S 74.4 141 213
i 10 129 T94 111 167 91.3 137 70.2 106 ^•47.8 71.9. 132 198
w 11 122. 183 '105 157 '86.5 130 66.6- 100 45.7" 68.7 122 183
J 12 114, 172 98.5' 148 81^4 122 94,4 •43.2- 64.9 •112 168
2 13 107 160 92.1 138 76.3 115 59.0 88.7 40.6 61.1 102 153
•s
s
14 98.9 149 «5.6 129 71.r :107. 55.1 82.8 38.0' 57.2 '92.0 138
Q.
£
15 '91.3
j .
137 79.2 119 66,tf 99.2 "51.2- 77.0 35.4 53.2 • 82.6 124
e 16 83.8 126 72.9 110 - 60'.9 91.5 47.4 71.2 32.r •49.4 73.5 110
"S 17 '76.4 115 '66,7 100 -'55.9 84.0 '43j6 65.5 30.3- 45.5 65.1 97.8
e 18 69'.4 104 60.7 .. 91.3 5f.O 76.7 39.9' 60,0 27.8> 41.8 58.0 87.2
ss 19 '62.5 93.9 54.9' 82,5 46.3 69.6 36.4 54.6 25.4 38.2 52.1 78.3
20 56.4 848 49.6 74.5 41.8 62.8 32.i9 49.4 23.0i 34.6 47.0 70.:^
21 51.2 76.9 44.9' 67.6 37.9 57.0 29.8' 44,8 20.9 31,4 42.6 64.1
i
22 46.6 70.0 41.0 61.5 34.5- •51.9 27.2 40,8 19.0 28.6 38.9 58,4
1 23 42,6 64.1 37.5 56.3 31.6 47.5 24.9 37,4 17.4- 26.2 35.5 53,4
24 39.2 58.9 34,4' 51.7 29:0' 43 6 22.8 34,3 16.0 24.1 32.6 49,1
25 36,1 54.2 317 47.7 26.7 40,2 21.0- 31,6 14.7 22,2 30.1 45,2
26 • 33.4 50.2 29.3 44,1 37,2 19.5' 29,2 13.6 20,5 '27.8 41.8
27 30.9' -46,5 27.2' 40,9 22'.9 34.5 18.0 27,1 12.6 19,0
28 28'.8 43.2 25.3; 38.0 21.3 32.1 16.8 25,2 11.8 177
29 26.8 40,3 23,6 35.4 19.9 29.9 15.6 23,5 11.0 16.6
Properties
AgM 6,18 5.26 4.30 3.28 2.23 6.95
21.7 19.0 16.0 12.6 8.80 18.1
rx==ry, in. 1.87 1.90 1.93 1.96 1.99 1.61
ASD LRFD ° Shape is slender for compression with Fy= 46 ksi.
Note: Heavy line indicates KL/rveau al to or greater than 200.
1.67 (t)c = 0.8Q
HSS4V2X41/2X
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-62 DESIGN OF CX)MPRESSION MEMBERS
HSS4V2-HSS4
Table 4^4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy - 46 ksi
HSS4V2X4V2X HSS4x4x
Sn ape
'/8 '/16 V4 '/16 Vs' V2
^deslgnl•n• 0.349 0.291 0.233 0.174 0.116 0,465
lb/ft 19.8 17.0 13.9 10.7 7.31 21.6
PnlClc ticfl. Pn/Oc M pjac P„IQc J>oPn PnlClc ticfl.
Design
ASD LRFD ASD, LRFD ASD LRFD ASDC LRFD ASD LRFD M LRFD
0 151 227 129 194 106 159 ao.7 121 54.4 81.8 m' 249
1 150 226 128 193 105 158 80.5 121 54.3 81.6 ,165 i 248
'2 149 224 127 191 104' 157 79.7 120 54.0 81.1 163 244
3 146 220 125 188 103 154 78.4 118 53.4 80,3 159 239
4 143 -215 122 r 184 100 .151 76.7 115 52.5 .78,8 153 ' 231
138 208 119 178 97.5 147 74;6 112 51.0' ,76.7 d47 , 221
i
6 133 ^ 200 114 172 94.1 141 72.0 108 49.3 .74.2 J39 ; 209
i. 7 127 ' 191 109 164 90,3 136 •69.1 104 47.4 71.3 131 ' 196
•s
8 121 -182 104 156 86.0 129 65.9 99,1 45.3 68.1 121 182
: 9 114 , 171 98,3 148 •81.4 122 62.5 93.9 43.0 64.6 J12 168
i '
10 107 160 ^2.2 139 76.5 .115 58.8 ,88.4 40.6 61.0 102 153
•a 11 99.2 149 85'.9 129 71 107 55.0 82,7 38.1 57.2 92.0 138
J 12 9i:5 138 79.6, 120 66.4 . 99.8 51.2- 76.9 35.5 53.3 S2.2 124
a 13 83.9 126 73.2 110 61,2 92.0 -47.3 . 71.1 32.9 49.4 '.72.8 109
g 14 7a4 115 66.8 100 56!I- 64.3 43.4 65.3 30.3^ 45.5 63.7 95.8
%
15 69.1 104 60.6 91.1 5i.r 76.7 39.6, : 59.5 27.7- 41,6 • .55.5 83.5
1
16 62.0 93.2 54.7 82,1 46,2 69.4 35.9'i 54.0 25.2 .37.9 -48.8 73.3
t
17 55.2 83.0 48.8 73.4 41.5 62.4 32.4- 48.6 22.8- 34.2 .^43.2 65.0
t 18 49.2" 74.0 43.6 65.5 •37-,0 55.6 28.9- , 43.4 20.41. 30.7 -38.6 58.0
si 19 44.2 66.4 39.1 58.8 33.2 49.9 25.'9- 39.0 18.3', 27.5 .34.6 52.0
20 39.9 59.9 35.3 53.0 30.0 45.1 23.4 35.2 .16.5 24.9 ,-31.2 469
J
21 36.2- 54.4 32.0 48.1 27.2 40.9 21.2 31.9 15.0 22.5 •28,3 42.6
22 33.0 49.5 29.2 43.8 24.8 37.3 19.4 29.1 13,7 20.5 •25.8 38,8
23 30.2 45.3 26.7 40.1 22.7 . 34.1 17.7 26.6 12,5 . 18.8 23.6 35.5
24 27.7. 41.6 24;5 •36.8 20;8' 31.3 16.3 24.4 11,5 17.3
25 25.5 : 38.4 22.6 34,0 ia2 -28.8 15.0 22.5 10,6 15.9
26 23!6 35.5 20.9 .31.4 17,7 26.7 13..9 20,8 9.78 14.7
27 21.9^ 32.9 19.4. 29.1 > 16,5; 24.7 12.& 19.3 9.0Z 13.6
28 18.0 27.1 15.3 •23.0 11.9. 18.0 8.44 12.7
29 11.1 16.7 7.^6 •11.8
Properties
A, in.2 5.48 4,68 3.84 2.93 2,00 6.02 .
in." 15.3 ,13.5 11.4 9.02 6,35 11.9.
rx-ry,. . 1.67 1.70 . 1.73 1.75 1,78 1.41
AbU LRFD Shape is slender for compression with fy = 46 ksi.
1.67
Note: Heavy line indicates equal to or greater than 200,
1.67 (|)c = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-63
Fv = 46 ksi
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
HSS4
HSS4x4x
% 5/16 V4 3/16 Va
titestgn) in- 0.349 0.291 0.233 0.174 0.116
Ib/tt 17.3 14.8 12.2 9.42 6.46
Pn/flc <i>c«. Pnlilc PnlO-c ^Pf, Pnl^c ^cPi,
Design
ASO LRFO Asg LRFO ASD LRFD ASO LRFD ASD LRFD
0 132 198 113:: 170 92.8 140 71:.1 107 4818 73,3
1 131 197. 112 169 92.4 139 7G.8. 106 48.6 73.0
2 129 194 m . 167 91.3r 137 69.9 105 48.0 72.1
3 126 190 109' 163 89.4 134 68.5 103 47:1 70.8
4 123i; 184 105P 158 86:8 130 . 66.6 100 45.8 68.9
5. 118 177 101': 152 83.6 126. 64.2 96,« 44.2 66.5
1 6 112 168 96.5 145 79.8 120 61.5' 92,4 42;4 63.7
Bl
7 106 159 91.2 137 75.6 114 58.3 87,7 40.3 60.6
•s
8 98:8 149 85.4 128. 71.0^ 107 54.9, .82.5 38.0 57,2

9 91.6 138 79.3 119 66.1 99.3 51.3 77:1 35,6 53.5
1
10 84.1 126. 73.0 110 61.0 91.7 •47.5 71.4 3m 49:7
s 11 76.5 115 66.6 100 55.9 84,0 43.6 65.6 30.5 45.8
i 12 69.0 104 60,3 90.6 50.8 76.3 39.8 59.8 27.9 41,9
13 61.7 92:8 54,0 81.2 45.7 68.7 36.0 54.0 25.3 38,0
% 14 54;? 82.2 48.0 72:2 S0.8 61.3 32.2 48:5 22.8 34,3
15 47v9 72.0 42.2 63.5 36.1 54.3 m 43,1 20.4 30,6
16 42,1 63.3 37.1 55.8 31.7 47,7 25.3 38.0 18-0 27.1
§ 17 37.3 56.1 32.9 49.4 28.1 42.3 22.4 33.6 16:0 24.0
a 18 33.3 50.0 29.3 44.1 ZKI 37,7 20.0 30,0 14.2 21,4
£ 19 29.9 44.9 '26.3 39.6 22,5 33,8 17.9 26.9 12.8 19.2
f
20 27.0 40.5 23:8 35.7 20.3 30.5 16.2 24.3 ir.5 17,3
•1
21 24.4 36.7 21:5 32.4 18,4 27.7 14.7 22.1 10vS 15.7
s 22 22.3 33.5 ,19.6 29.5 "l6,8 25.2 13.4 20.1 9J3 14.3
Ul
23 30.6 18,0 27,0 15,4 23.1 12.2 18,4 8.72 13.1
24 18.7 28.1 16.5 24.8 14,1 21.2 11.2 16,9 8:01 12,0
2S 13.0 19.5 10.4 15,6 7.38 11.1
26 6.82 10.3
Properties
/Is, in; 4,78 4.10 3,37 2,58 1.77
10.3 9.14 7.80 6,21 4,40
1i = ry,in. 1.47 1.49 1.52 1.55 1.58
ASD LfiFD Note: Heavy line indicates KL/r, equal to or greater than 200.
1.67 0.90
K.
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-64 DESIGN OF CX)MPRESSION MEMBERS
HSS3V2
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
/=y = 46 ksi
HSS3V2X3V2X
snape
3/8 s/ie V4 '/16 Va
''deslani in. 0.349 0.291 0.233 0.174 AII6
lb/It 14.7 12.7 10.5 8.1S 5.61
Design
p„/a. <l>cP« Pn/Oc M Pn/iic M Pn/ilc P„/Qc M
Design
ASD LRFD m LRfD ASD LRFO ASD LRFD Asb LRFD
0 113;. 169 97.0 146 80.2 120 61:7 92.7 42.4 63.8
1 112 168 96.4, 145 79.7 120 61.4 92.2 42.2 63.4
2 110 165 94S': 142 78.4 118 60.4' 90.8 4U6 62.5
3 107;: 160 92.0 138 76.2 115 58,8 88.4 40.5 60.9
4 102 154 88i3' 133 73.3 110 56.7 85.2 3ft1 58.7
1
5 96.7 145 126 69.8 105 54;0^ 81.2 37.3 56.0
6 -.90.4 136 78:6 118 65.6 98.6 51.0' 76.6 35.2 52.9
7 83:5 126 72.9 110 61.0 91.7 47.6 71.5 32^9 49.5
•s
8 76.2 115;: 66.5 100 56.2 84.4 43.9 66.0 3a5 45.8
9 68.7 103 60-5 90.9 51.1 76.8 40.1:: 60.3 "27:9 42.0
2 10 61.2 92.0 31.4 46.0 69.1 36:3 54.5 25.3 38:i
1 11 '53:8 80,9 47.9- 72.1 4o:9 61.5 32.4- 48.7 22.7 34.1
S 12 -46,8 70.3 »1.9 63.0 36:0 54.1 28.7 43.1 2a.2 30.3
M 13 60.3 36.2 54.4 31.3 ,47.1 25.1 37.8 17.7 26.7
14 "34:6 52.0 31.2 46.9 27:o' 40.6 21:7 32.7 15.4 23.1
15 30.1 45.3 27.2 40.8 23;5 35.4 18;9- 28.5 13.4 20.2
^
16 25.5 39.8 '23.9 35.9 20.7: 31.1 TO6 25.0 11.8 17.7
M 17 23.5 35.2 21.2 31.8 =18.3 27.5 22.2 10.4 15.7
s^ 18 20.9 31.4 M9 28.4 16.3 24.6 13:2 19.8 9.31 14.0
s 19 18.8 28.2 •16.9 25.5 .14:7 22.0 1:1.8 ' 17.7 S.36 12.6
M
20 16.9 25.5 15.3 23.0 13:2 :i9.9 10.7 16,0 7.S4 11.3
1
21 1fr.4 23.1 13.9 20.8 :i.2.o 18.0 9j66 14.5 6.84 10.3
22 16.4 .8.80 13.2 6.23 9.37 22
ftj-
Properties
Ag, in.^ 4.09 3.52 2,91 2.24 1.54
6.49 5.84 5,04 4.05 2.90
/> = /y,in. 1.26 129 1.32 1.35 1.37
ASD LRFD Note: Heavy line indicates/a/fj, equal 10 or greater than 200.
Qc= 1.67 4l(; = 0.90
Note: Heavy line indicates/a/fj, equal 10 or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-65
Table 4^4 fcontinued^
Fy
Available Strength in
~ 46 ksi
Axial ComDression. kios
Square HSS
HSS3
Shape
HSS3x3x
Shape
5/16 V4 3/16 Va
'design, i"- 0.349 0.291 0.233 0.174 0.116
lb/ft 125 10.6 8.81 6.B7 4.7S
PJS^ic Pnliic ^cPn Paliic ^cPn Vtio <i>c''« PnlS^ic ^Pa
Oes ign
ASO LRFD ASD LRFD LftFD ASO LRFD ASD LRFD
0 93.4" 140 81 122 67.2 101 52.1 78.2 3S:8 53.8
1 92.6 139 80.3' 121 66,7 100 51:7; 77.7 35.6 53.4
2 90.2 136 783. 118 65.1 97:9 50:5 75.9 52,3
3 86.4 130. 75.1 113 62.6 94.1 48.7 73.2 33.6 50.5
4 8I.3: 122 70.9 107 • 59.3i 89.1 46.2 69.4 32;0 • 48.1
e 5 75.3 113 65.8- 98.9 55.2 83.0 43.2 64.9 30:0.: 45.1
6 68.5 103 60.1^ 90.3 50.6 76:1 39:8 59.8 27).8'. 41.7
en
7 61.2. 92.0 53.9 81.0 45.7 68:7 36.1^ 54.3 25.3 38.1
0
1
8 53.8 80.8 47.6 71.5 40.6; 61.1 32:3-' 48:6 22:8: 34,2
0
1
9 46.4 69.8 41.;3- 62.1 35.6 53:4 28.5 42.8 20:2. 30,3
2 10 39.4 59:3 35.3 53:0 30.6 46.0 24.'7- 37.1 17,6 26,5
1 11 32.9 •49.4 29.6: 44.5 25.9 39.0 21.1 31.8 15.& 22,9
i 12 27:6 4i:.5 24;9f 37.4 32.8 17.8 26.8 12.9 19,4
8 13 •23.5 35.4 21.2" 31.8 18.6 27.9 15.2' 22.8 itii'- 16.5
&
£
14 20.3 30.5 18:3 27.4 i:6;0 24.1 13.T , 19.7 9.48 14.2 &
£
IS 17.7 26.6 J5.9 ,23-9 13.9 . 21,0
11.4 17.1 8,26 12.4
g
16 15.5,. 23.3 14.0 21.0 12.3 18.4 10.0 15.1 7.26 10.9
g
17 13.iB 20.7 12.4 18.6 10.9 16.3 8.87 13.3 6.43 9.66
18 11.0 16.6 9.69 14.6 7.91 11.9 5.73 8 .62
e 19 7.10 10.7 5.15 7.73
i
1
£
UJ
Properties
Ag.in.^ 3.39 2.94 2.44 1.89 1,30
Ix^ly, in." 3.78 3.45 3.02 2.46 1.78
rx=ry,m. 1.06 1.08 1.11 1.14 1,17
ASD LRFD Note: Heavy line indicates KL/ry equal to or greater than 200.
1.67 0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-66 DESIGN OF COMPRESSION MEMBERS
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
HSS2y2-HSS2V4 Square HSS
Fy = 46 ksi
HSS2V2X2V2X HSS2V4X2V4X
®/l6 % '/16 Va V4
^desigm 0.291 0.233 0.174 0.116 0.233
lb/ft 8.45 7.11 5.59 3.90 &26
W P„/Oc M M Pn/Qc ^cPn
uesign
ASJ} LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 64.7 97.3 543 81.6 42.4.f 63.8 29.5 44.3 47.9 72.0
1 63.9 96.1 53:6 • 80.6 42:0? 63.1 29.2 43.8 47:2 71,0
2 61.6 92.5. 51j8 77.8 40.6; 61.0 28.3- 42.5 4S;2 67.9
3 57.8. 86.9 48.8 73.4 38.4 57.7 26.8 40.3 41.9 63.0
JK
4 53.0 79.6 4RQ 67.6 35,6 53..4 25.0 37.5 37.8 56.7
5 47,3. 71.2 40,4 60.8 32:2 48.4 22.7 34.2 33:0;.. 49.6
i 6 41,3 62.0 35:5 53.4 28.5 42.9 20.3 30.5 28.0 42.1
Ol 7 3S.1- 52.7 3a;5- 45.9 24.7 37. T 17.7 26.6 23.1 34.7
•s
8 29.1 43.7 25:6 38.5 20,9;. 31.5 15,1 22.8 l|4 27.7
3
9 23.5 35.2 20.9 31.5 1.7.4 26.1 12.7 19.1 146 21.9
M
10 19.0 28.6 17.0 25:5 1*1 21.2 10.4 15.6 17.7
M
1
11 15.7 23.6 14;0 21.1 11.7 17.5 8.60 12.9 9^75 14.7
12 13.2 19.8 11.8 17.7 9.80 14.7 7.22 10.9 8.19 12.3
«
13 11.2 16.9 ip;0 15.1 8.35 12.6 6.15 9.25 6-.98 10.5
14 14.6 8.65 13.0 7.20 10.8 5.31 7,98
13 7.53 11.3 ,6.27 9.43 •4.62 6.95
•g
16 •,4.06 6.11
g
.... 'Ci,;-.
1
Properties
Ag, in.^
fx = ry, in.
ASD
a.=1.67
2,35
1.82
0.880
LRFD
. = 0.90
1.97
1.63
0.908
1.54
1.35
0.937
1.07
0.998
0.965
1.74
1.13
0.806
Note: Heavy line indicates KLIry equal to or greater ttian 200.
AMERICAN. INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-67
Table 4-4 ^continued)
Fy
46 ksi Available Strength in
Axial Comoression. kiDS
Square HSS
HSS2y4-HSS2
HSS2V4X2V4X HSS2x2x
, '/18 Va V4 »/l6 Vb
'design, in. 0.174 0.116 0.233 0.174 0.116
lb/ft 4.96 3.48 5.41 4.32 3.0S
PJCio W ^cPn Pnliic ^cPn Pn/Clc « PJCic
uesign
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASb LRFD
0 37.7 5.6,7 26.3 39.6 41.6 62.5 32.8 49.3 23.1 34.8
1 37:2 55.9 j26;o' 39.1 ~40.8 61.3 32.2' 48.4 22.8 34.2
2 35.7- 53.6 25 0 37.6 38.5 57.8 45.8 2f.e. 32.5
3 33.3 50.0 :23.4 35.2 ,34.9 52.4 -'27.9: 41.9 lis. 29.9
4 30.2 45.4 32.1 '30.4 45.7 :.24.6 36,9
it7 . 26.6
i
5 26.7 40.1 ilAo' 28.6 "25.5 38.3 ^ 20.9 31,4 1^2 22.9
i
6 22.'9 34.4 •hci;' 24.8 ,20.6 30.9 .17.1. 25,7
123^ : 19.0
•s
CO
7 19.1, 28.7 20,9 r1S.9. 24.0 .13.5" 20,4 10 . 2. ^ 15.3
•s
CO
8 23.3 .11.25s 17.2 .12.2 18.3 : 10,4 15,7 7.93 11.9
s 9 12.3,. 18.5 4-9.18 . 13.8 9.64 145 • 8-24 .12.4 6.27 9.42
2 10 9.97,, 15.0
iW-
11.2 7.81 11.7 10.0 5-P8. 7.63
1 11 8.24 12.4 9.23 "6.46 9.70 • 5.-5'2 8:29 4.20 6.31
i 12 6.92 • 10.4 7.76 ^ 4.63 6.97 3.53 5.30
1 13 5.90' 8.87 1 4;40'^ 6.61.
5 • l ? ' •"
s
14 • 3.7S 5.70
f
•t
g
• •
Properties
1.37 0.956 1.51 1.19 0.840
0.953 0.712 0.747 0.641 0.486
rx=r„. 0.835 0.863 0.704 0.733 0.761
ASD LRFD Note: Heavy line indicates KLIr, equal to or greater ttian 200.
a<; = 1.67 <1>C = 0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-68 DESIGN OF CX)MPRESSION MEMBERS
o
HSS20-HSS16
Table 4-5
Available Strength in
Axial Compression, kips
Round HSS
Fy = 42 ksi
Shape
HSS20X
0.500 0.375
HSS18X
0.500 0.375
HSS16X
0.625 o;5oo
tdesign. 'W- 0.465 0.349 0.465 0.349 0.581 0.465
lb/ft 104 78.7 93.5 70.7 103 82.9
Design,
PnlS^c
ASD LRFD ASD
yn Pal^c «>cPn
LRFD ASD
PnlQ.c
LRFD ASD LRFD ASD^
ilcP« Paliic
LRFD ASD LRFD
g
i
s
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
32
34
36
38
40
717
712
710
708
706.:
7b4.
701.
695
691
688
684
679
675
670
666
661
655
650
644
638
632
626
620
613
607
593
579
564
549
533
1080
1070
1070
1060
1060
1060
1050
1050
1040
1040
1030
1030
1020.
1010
lOlO
1000
993
985
977
968
960
.951
941
932
922
912
891
870
847
824
801
541 :.
537 r
536
534..
533
531
529
527
524
S22-
519;;
516
513T
510
'506
503
499
495
491
487
482
478
473
468
464
459
448
438
426
4I5
403
813
807
805
803
801
798
795
792
788
784
780
775
771
766
761
755
750
744
738
731
725
718
711
704
697
689
674
658
641
624
606
644
639^
637
634
632
629
626
623
619
615
611^
607
€02
"598
593-
587
582;
576
570
564'
558'
551.
544
538:
531 i
523'
509i
493;
478'
462^
446
968
960
957
954
950
946
941
936
931
'925
919
912
905
898
891
883
874
866
857
848
838
828
818
808
797
787
765
742
718
694
670
488
484
483.
481
479
477
475
47i
470
467
464
460
457
453
449
446
441
437
433
428
423
418
413
408
403
398
387
375
363
351
339
733
727
725
723
720
717
713
710
706
701
697
692
687
681
676
670
663
657
650
643
636
629
621
614
606
598
581
564
546
528
510
^07;
im
693;
690
dse:
882
677'"
672'
667
649r
642J
635
'628
620
612
604-
596
587
578
569
560
551
541
d22
5(i2
481
460
440
1060
1050
'1050
1040
1040
1030
1020
1020
1010
1000
994
984
975
965
954
943
932
920
908
895
882
869
856
842
828
813
784
754
723
692
661
>571,
i565:
-563^
' 560:
; 557!
554;
551 i
"547^
' 543:
539
-534'
-^530
i524.
•;619;
514
608
502
495;
489
482:
475;
468'
461;
454
446'
438:
423:
407;
390'
374:
357
858
849
846
842
838
833
828
823
817
810
803
796
788
780
772
763
754
744
735
725
714
704
693
682
670
659
635
611
587
562
537
Properties
Ag, in.2
/.in."
r, in.
28.5
1360
6.91
21.5
1040
6.95
25.6
985
6.20
19.4
754
6.24
28.1
838
5.46
22.7
685
5.49
ASD LRFD
He =1.67 (l)c=0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-69
Fy = 42ksi
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS o
HSS16-HSS14
HSS16X HSS14X
Shspc
0.438 0.375 0.312 0.250 0,625 0.5(K1
^design. 0.407 0.349 0.291 0.233 0.581 0.465
lb/ft 72.9 62.6 52.3 42.1 89.4 72.2
PnlOc ifcPn Pnliic P„/Qc i^Pa PalClc IfcPn Pn/Oc Po/Qc <fcPn
De; •ign
ASD LRFO ASD LRFO ASD LRFO ASD LRFO ASD LBFD ASD LRFD
0 500 752 433 ' 650 .362- 544 • 289 i 435 616 926 498 748
6 495 744 428 643 358 539 286 - 430 608 913 49V 738
7 493 742 426 641 357 537 285 429 604 908 •489 734
' 8 -491 738 425 ' 638 356 534 284 427 601 903 •.486 730
9 489 - 735 423 635 35/t 532 283 425 597 897 '483 725
10 •486 731 420 632 352 529 281 423 592-.891 479 720
1 11 483 726 •418 628 350 526 279 420 '588 883 475 714
2
12 480 721 415 624 347 522 278 417 582 875 471 708
en
•jr 13 476 716 412 619 345 519 276- 414 577 > 867 467 701
o
14 473- 710 409 . 614 342 515 274 411 571 858 462 694
15 469 -704 405 609 339 • 510 271 408 564 848 -457 686
s
16 465 ' 698 402 -604 336 506 269 ! 404 557 838 •451 678
g 17 •460' - 691 398 598 333 501 266 •400 550 827 •'445 670
i 18 455 684 394 592 330 -496 264'^ 396 543 816 439 661
s
19 451 '677 390 586 . 326 •491 261 • 392 535 -804 433 651
1 20 445 669 385 579 323 485 25§ • 388 527 -792 427 641
£
21 440 662 381 •572 •319 480 255 384 518 •420 631
S 22 435 653 376 -565 315 474 252 379 510 - 766 .413 621
g 23 429 . 645 371 558 311 • 468 249 374 501 753 J-406> 610
24 . 423 -B36 366 550 307 - 461 246 369 492 . 739 ^399 599
*
25 417 •627 361 . 543 -303 • 455 •242 364 48i2 725 •391' 588
26 411 618 356 ' 535 29*8 448 239 ' 359 473- 711 -384: 577
u
27 405 608 350 527 294 442 235 353 463 696 376 565
28 398 599 ,345 5 518 289 435 231 : 348 453 681 368, 553
£
29 392 589 339 510 284 : 428 = 228.: 342 44P 666 •'560 541
U
30 -385^ 579 333 501 280 420 f~224 > 337 433 651 352 529
32 ^373 : 558 322 484 270 406 325 412 620 336 504
34 .'35^ ' 537 310 ' 465 260, 391 20i3 • 313 392 589 -319 479
36 343-: 516 29T 447 250 375 20b • 301 371 : 557 '302 454
38 329 494 285 428 239 360 192 288 350 526 285 429
40 314 472 272 : 409 229 344 184 276 329 495 269 404
Properties
19.9 17.2 14.4 11.5 245 19,8
I.in." 606 526 443 359 552 453
r,m. 5.51 5.53 5.55 5.58 4,75 4.79
ASD LfiFD
1.67 <tic=0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-70 DESIGN OF CX)MPRESSION MEMBERS
o
HSS14-
HSS12.750
Table 4-5 (continued)
Available Strength in ^ ^^ ^si
Axial Compression, kips ^
Round HSS
Shape
HSS14X HSS12.7S0X
Shape
0.375 0.312 0.250 0.500 0.375 0.2S0
'design) <n. 0.349 0.291 0.233 0.465 0.349 0JW3
lb/ft 54.6 45.7 36.8 65.5 49.6 33.4
Design
Pn'^c i^ePa^ p„iac (jiePn fli/n. <l>cPa Pn/dc <l>cPr Pn'dc ^Pn
Design
ASD LRFD ASD I LRFD ASD LRFD ASD LRFD ASD. LRFD Asn LRFD
0 377 567 314 ' 472 254 382 4Sb 677 342 514 230 346
6 . 372. 559 3ip . 466 ,251 377 443 665 33fe 506 227 341
7 370 557 309 464 249 375 440 661 334 , 503 225 339
8 36p 553 307 461 248 373 437 657 -332 499 224 336
9 •366 550 305 458 246 370 433 651 330 495 222 334
w.
10 363 546 303 455 .245 368 430 646 327 ; 491 220 331
g
•<5 11 360 542 300 451 243 1 365 425 639 32^ 486 218' 328
s
12 357 537 298 448 241 362 421 633 320; 481 216 324
CO
13 35S» 532 295 443 238 358 416 625 317 476 213 321
o
14 • 350 ! 526 292 ; 439 236 355 411 617 313' 470 211 317
i 15 346 . 521 289 434 234- 351 .40? 609 308 ~ 464 • 208 313
s
16 342 515 ' 286' 429 231 r 347 600 304 457 5205; 309
s 17 338 .508 282 , 424 228' 343 393 591 300 450 -202 304
e 18 334 501 278 418 >225 338 387 582 .:295 443 ?,199 299
1 ^
19 329. 494 274 . .413 .222 334 380 572 290 436 196 294
1 ^
20 324 487 27P 407 219- 329 373 561 285 428 ' 192 289
21 519 480 266 400 ' 215 324 366 : 551 .279 420 189 284
f 22 '314 472 262 394 212 319 359 540 274 , 412 IBS 278
B
23 '•309 ; 464 258 • 387 20p 313 35& 528 268 403 182 273
24 .303 456 253 380 205 308 345} • 517 263 395 J78' 267
s
xT
25 -298 447 249 374 201 302 336 • 505 '257- 386 174 261
26 292 439 244 366 197 297 ^28 493 251 f 377 170 255
a
27 286 430 239 359 • 194 291 320 481 245 368 ,166 249
.1 28 280 421 234 352 190 285 312 469 239 359 162 243
» 29 274. 412 229 344 186 279 304 457 233 .349 158 237
£
30 ^ 26S 403 224 337 .>182 273 296 444 226 340 ' 154' 231
32 •256: 385 214. 322 173 261 279 419 .214 . 321 145 218
•34 •243 366 204 -306 •165 248 262 394 •201 • 302 ^ 137 206
36 •231 347 193 290 157 .235 246 369 189 284 -128 193
38 218 328 183 275 148. 223 229 345 176 265 120 181
40 20b 309 172 • . 259 140 210 213 320 -164 247 112 168
Properties
Ag, ?
/.in,''
f, in.
15.0
349
•4.83
12,5
295
4.85
10.1
239
4.87
17.9
339
4.35
13.6
262
4.39
9.16
180
4.43
r" jvsD LRFD
ac=1.67 <l>c=0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-71
Fy = 42 ksi
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS o
HSS10.750-
HSS10
HSS10.7505< HSSlOx
0.500 0.375 0.250 0.625 0.500 0.375
'desigm in. 0.465 0.349 0.233 0.581 0.465 0.349
lb/ft 54.8 41.6 28.1 62,6 50.8 38.6
/?,/£ic PalClc ifcPn PnlCic ^cPa P„IQc ^cPn PnlCic ^cPn /5,/Sic ^cPn
Def ign
ASD IRFD ASD LRFD ASD LRFD ASD LRFD ASD'. LRFD Ai$D LRFD
0 567 -287 431 i94 291 433 650 350 .525 267 401
6 368 554 280 421 i89i 284 420 632 340 511 259; 390
7 365 549 278 417 188, 282 416 625 337 506 257 386
8 361 543 275 .413 186' 279 411 618 • 333 500 254: 382
9 357 537 272 409 184 276 406 610 328 493 251 377
k.
10 353 530 <269 404 '182 273 400 601 '324 486 247 • 371
.2
11 348 523 265 .398 '179 269 393 591 318 478 243 365
12 343 515 261 392 177 265 386 580 313 470 •239 359
f=
13 337 -507 257 386 174 261 378 :569 307 . 461 234 352
o
m 14 331 497 252 • 379 171 257 370 557 300 451 230 345
a
1
15 -.326 488 248 372 sre8 252 .362 544 294 441 225 338
•s 16 318 478 .243 365 164 247 353 531 •287 431 219 330
s 17 311 468 •237 :357 161 242 344 • 517 280 420 ^214 • 322
e 18 304 457 '232 349 157' 237 335 503 272 409 m • 313
19 296 446 226 340 154 231 325 488 264 397 203 ' 304
1 20 "289 434 -221 332 150 225 315 473 256 385 197 »6
£
21 "281 422 215 323 146 • 220 :!305.^ 458 248 373 f91 287
SSL
S 22 273 410 209 314 142 214 . 443 240 361 a 84 277
£• 23 '26S .398 203 305 138' • 208 284 ' 427 232 349 1-78 ' 268
H 24 •257 386 r97 296 134 201 274 412 224 336 1.72 259
<
25 '249 374 191 287 130 195 •'.264 396 215 324 166 249
c 26 240 361 184 277 t26 -189 253 380 207 311 •159 • 240
27 232 349 178 268 122 183 243 365 199 299 1^3 230
J 28 224 336 172 258 117 176 .232 349 191 286 147 221
1 29 215 323 166 249 113 170 222 334 '182 274 T41 211
£
30 207 311 159 239 109 164 212. 319 174 262 134 202
32 190 286 14> 221 101,' 151 289 158 238 122 184
34 174 262 •135 203 •92.5 139 173 260 ••143 215 111 166
36 159 239 '123 185 • 84.6 127 ;TS5': 232 128 192 99.3 149
38 144 216 112 168 -77.0 116 i39 208 115 173 •89.1 134
40 130 195 101 .151 69.5 104 125-, 188 104 156 80.4 121
Properties
15.0 11.4 7.70 17.2 13.9 10.6
/, in." 199 154 106 191 159 123
f, in. 3.64 3.68 3.72 3.34 3.38 3.41
Ki ASD LRFD
1.67 (|)c = 0.90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-72
DESIGN OF CX)MPRESSION MEMBERS
o
HSS10-
HSS9.625
Table 4-5 (continued)
Available Strength in
Axial Gompression, kips
Round HSS
Fy = 42 ksi
HSS10X
Shape
0.312 0.250 0.188 0,500 0.375 0.312
fdesign, in-
0.291 0.233 0.174 0.465 0.349 OJ291
lb/ft 32.3 26.1 19.7 48.8 37.1 31.1
/•fl/Qc ipcPn <fc/'i. Pn/Qc ikPn PaJQc PalQc "Ite''/, Pnl0.c
Design
ASD . LRFD ASD LRFD ASD LRFO ASD LRFD ASD- LRFD ASO LRFD
0 223 336 180 270 135 203 337 507 257 •386 215 , 322
6 217 , 327 175: ; 263 :132. 198 327 491 249 .374 208 313
7 215 324 173: i 261 130 196 323 486 246 ^ 370 206 310
8 213 320 171 258 129- 194 319 .480 243 366 s204 306
9 210 316 :169: . 254 127 191 315 473 240 361 •201 302
10 207 = 311 1B7: ; 251 125 189. 310' 466 236, 355 198 297
.3
11 204 306 164. f 247 124 .186 304 457 232 349 194 292
,12 200^ 301 162 : 243. ;121 183 299 449 228 343 J91 287
s
13 197 296 ^159r : 238 ::t19i 179 292 439 223 336 ,187 281
o
CA 14 :193 ' 290 155 . 234 .117: 176 286 429 218 328 183 275
3
••5 15 189 283 .152p > 229 .114, 172, 279 : 419 213 320 179 269
S
16 184' • 277 •149' 223 -112 168' 272 -.408 208 J 312 ,1-74 • 262
i 17
.180
-270 218 109 164 264 397 202 304 170 255
i 18 175 : 263 141 212 M6: 160 257 • 386 197 295 165 248
19 170 256 138 207 104: 156 249; •374 191 287 1B0 240
1 20 165; • 248 :134 201 101 151 241 362 185' 278 155 233
21 160 ; 241 130 . 195 m 147 232 349 179' 268 .150 225
f
22 155: 233 126 189 94.6 142 224 337 172 -259 145 ' 218
23 150: 226 .,12lf • 182 .91:6 138 216 324 166 250 140 210
H 24 1:45;: 218 rW'^ 176 88.5 133 207. 312 160 240 134 202
se
25 1.40 !210 113 170 128 199 299 153" , 231 129 194
1 26 134 202 109: , 164 : 82:2 124 191 287 147 .221 124 186
a
27 129 194 105 : 157 79.1 119 182: 274 141 . 212 119 178
1
28 124 186 100 151 75.9 114 174 262 135. -202 113 171
1
29 1.19 178 96:3 145 72.8 109 166 249 128: 193 108 163
1
30 114 171 :-92^ 138 69,7 105 158- , 237 122 184 103 155
32 vtoal:; 155 mxi: 126 63:7 95.7 142 214 111 166 93.4 140
34 r'93ir 141 76.2 114 :57ia- 86.8 127 191 99.1 149 . 83.9 126
36 84;1 126 68.5 103 :521i 78.3 113 170 133 '•f74.8 112
38 75.5. 114 61i5 92.5 46.7 70.2 102 153 79i3 119 67.1 101
40 68.2 102 55.5 83.4 ,42.2 63.4 91.8 138 71.6: 108 60.6 911
Properfies
8 .88 7.15 5.37 13.4 . 10.2 8.53
105 85.3 64.8 141 110 93.0
r, in. 3.43 3.45 • 3.47 3.24 3.28 3.30
ASD LRFD
1.67 (|)c = 0.90
HSS9,62Sx
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-73
Fy - 42 ksi
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS o
HSS9.625-
HSS8.625
HSS9.625X HSS8.625X
0.250 0.188 0.625 0.500 0.375 0.322
^design) in. 0.233 0.174 0.581 0.465 0.349 0.300
lb/ft 25.1 19.0 53.5 43.4 33.1 28.6
PnlClc •^cPn Pn'^c P^IClc ^cPn Pnll^c 'i'cPn P„/Qc AcPn PnlClc i>cPn
Design
ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD ; LRFD ASD LRFD
0 173 260, 130 195 370 556 299: 450 228' 343 197 297
6 168' 252 • 126 190 355; :534 288' 433 220 330 190 286
7 :166 250 HI25 188 350 527 r284: '427 217 326 188 ; 282
8 164 247 '124 186 •345' 518 280 420 214! 321, ^85 278
9 162 243 122 183 338 ,509 275 413 210; 315 182 273
10 ;:t59; 240 120- 181 332 498 •269 405 .206 309 178 J 268
1
11 :157i 236 178 324 487 263; '396 ;201 = •303 175 1 262
12 154 231 i116 , 174 316 475 257 . 386 197- 296 171 : 256
O)
•ft
13 1S1 227 ni4i :171 308 462 250: . 376 192 288 166 250
o
M 14 222- 111; .167 299; 449 243 ; 366 186' 280 ^62 ! 243
s
1
15 •1,44; ,217 109 163 289 435 236 354 1'81. .272: ;157 : 236
16 ,141 211, 1.06; ;160 280 420 228 343 .1y!5: 263 152 ; 229
ra
£
17 sl37i 206 103- 155 270 406 .220; :; 331 169 255 •m ' 221
18 133: 200 .101.,; :ii51 260 390 212 319 163^ 246 142 : 213
•g 19 194 iffliT 147 250 .375 204 307 1:57' 236 137 ^ 206
s- 20 .125;., 188 ;,:94i7 142 239,, 359 196 S 294 ::1.5tr 227 d3i : 198
21 -121^ •182; vOliT.^ 138 229-,' 344 ;188' • 282 145 ; 218 126 i 190
"1 22 176, 88.6 133 218: .328 H79 269: 139® 208 121 ' 181
B
23 rm 170 85.5- 128 ;208' ; 312 171 257 ^132'€ 199 173
rj 24 !l;09 ^ 164 82.4-•124 197; fc 297 163 ;244 126 189 .110 ; 165
«
25 IflSj. •157 79.2 119 ;187i S 281 154 232 •120! ; 180 105 : 157
c 26 olOoU 151 76.1 114 1:77; . 266 146 220 114 171 99.3 149
•2
27 96.3 145 72.9 110 1671; 251 i138 208 108 ;: 162 ,94.1; 141
J 28 92:1,; :138 69;8 10b 157 : 237 130 r '196 102 153 -89.0 134
1
29 88iO 132 66.8 100 148 222 123 185 95.9. 144 84.0 126
lU
30 ' ;83.?, 126 63.7 95.7 138: 208 115 173 90,3 136 79.1; 119
32 76.0 .114 ,57:7;: 86.8 122: : 183 101; r 152 79.4' 119 69.6 105
34 68.3 103 •••'52:0, ,78.2 108; 162 ; 89.K; •135 ; ;70.3' 106 92.7
36 61.0 91.7 '69.8 .;96:2; 145 ;8o:o 120 .r 62:7! 94.3 ;3fi5.0 82,7
38 54;7: 82.3 41.7 62.7 86:3 130 71.8: 108 , ,56.3; 84,6 49.4 74,2
40 494 ?4;2 37.6 56.6 77.9 .117 ;64,8:; 97,5 50.8' 76.3 44.6 67,0
Properties
>45, in.' 6.87 5.17 14.7 11.9 • 9.07 7.85
/.in.'' 75.9 57.7 119 100 77.8 68.1
Mn. , ,3.32 : 3.34 2.85 2.89 2.93 2,95
ASO
a<;=1.67
LRFD
<|)c = 0,90
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-74 DESIGN OF CX)MPRESSION MEMBERS
o
HSS8.625-
HSS7.500
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy = 42 ksi
HSS8.625X HSS7.6Z5X HSS7.500X
Shape
0.250 0.188 0.375 0.328 0.500 0.375
fdeslgni in. 0.233 0.174 0.349 0.305 0.465 0.349
lb/ft 22.4 17.0 29.1 25.6 37.4 28.6
Pn/Oc p„iac i^cPn PnKlc P„IQc ifcPn ikPn PnlSla ifcPn
Design
ASD LRFD ASD LRFD m LRFD ASD LRFD ASD LRFD ASD LRFD
0 154: 232 .-116. 175 201 302 .176' 265 259 389 197 296
6 149 224 112 169 191; 288 168 253 246' 370 188 282
7 147' 221 111 166 i188 283 165, 248 242 363 184 277
8 145;: 218 109: . 164 184; 277 162- 244 236 355 180 271
9 142 214 107 161 180 >271 158 238 231 347 176 265
10 140 210 105: 158 176 264 155' 232 225 338 172 258
11 137, 206 103 155 171 257 150; 226 218 328 167 251
2
12 '134i 201 101 151 166: 249: ,146;.; 219 211 317 "162 243
D>
13 130 196 98.3 148 160 241' 141 212 204 306 156 235
52 14 127. 191 95.7 144 155 232 136 205 196 294. ISO 226
s
1
15 123 185 93:0 140 149 224 131 197 188 282 144 217
16 119 .180 90,2 136 143 215 126 189 180 270 138 208
i
17 116 174 • 87.3 131 137 205 120 181 172 258^ 132 199
s 18 112 .168 v84.3 127 130 196 05; . 173 163 245 !126 189
19 108 162 81.3 122 124 187 110/ 165 155 233 120 180
1 20 103^ .155 78.2 118 118 177 104 156 146 220 113 171
s
21 99.2 149 :75;i 113 112 • 168 98,6 148 138 208 107 161
•g 22 '95.0 143 72:0 108 105 159 ,93,1 140 130 195 101 152
g 23 '90.9 137 68:8 103 99,4 149 87:8 132 122 183 ••'94.9 143
H
24 •mx 130 65.7 98.8 93:4 140 82.5 124 114 171 •89.0 134
ie
25 82.5 124 62;6 94.1 87:5 131 77.3 116 106 160 83.1 125
1" 26 78,4 118 59.5 89.5 81.7 123 72.3 109 9816 148 -77.5, 116
- 27 74:3 112 56,5 84.9 76;i 114 67.3 101 •91.4 137 71.9 108
,1 28 70.4 106 53.5 80.4 70.7 106 62;6 94,1 85.0 128 66.8 100
1
29 66;4 99.9 50.6 76.0 65.9 99.1 58.4 87.7 79;3 119 ;62.3 93.6
lU 30 62.6 94.1 47,7 71.7 61.6 92.6 54:5 82;o 74.1 111 S8.2 87,5
32 55,2 83.0 42,1 63.3 54:1 81,4 47.9 72.0 65.1 97:8 51.2 76.9
34 48,9 73.5 37.3 . 56,1 48.0 72,1 •42.5 63.8 57.7 86.7 •45.3 68,1
36 43.6 65.6 33.3 50.0 42!^ 64.3 37.9- 56.9 51.4 77.3 40.4 60.7
38 39 2 58.8 29.9 44.9 38:4; 57,7 34.0 51.1 46.2 69.4 36.3 54.5
40 35.3- 53.1 26.9 40.5 34.7 52,1 30.7 46.1 41.7 62.6 32.7 49.2
Properties
Ag, in.2 6.14 4.62 7.98 7.01 10.3 7.84
/.in.' 54.1 41,3 52.9 47.1 63.9 50.2
r, in. 2.97 2.99 : 2.58 2.59 2.49 2.53
ASD inFD
1.67 ()ic=0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-75
Fy = 42ksr
Table 4^5 (continued)
Available Strength in
Axial Compression, kips
Round HSS o
HSS7.500-
HSS7
HSS7.500X HSS7X
0.312 0.250 0.188 0.500 0.375 0.312
fdesignt in. 0.291 0.233 0.174 0.465 0.349 0.291
lb/ft 24.0 19.4 14.7 34.7 26.6 22.3
Pn/iic M Pn'Oc <i>cPn PnlSia ^pPn <fePn Pniac M
oesign
ASD LRFD ASO LRFD ASD LRFD ASD' LRFD ASD'- LRFD ASD LRFO
0 166. 249 '134 201 101 151 240 361 183' 276 '.154 ' 232
6 158 237 • 127 192 9519 144 226 ' 340 173 260 .146 219
7 155 233 125 188 • 94:3 142 222 333 170 255 143 • 215
8 152 228 123 185 92.5 139 216 325 165 249 139 210
9 148 223 120 180 90.4 136 210 316 161 242 136 204
10 145 217 117 176 88.2 133 204 '306 156 235 •'132 198
.2
11 141 211 114 171 85,8 129 •1'97 296 15l' 227 127 • 192
12 136 205 110 166 83.2 125 190' 285 146. ' 219 123 • 185
•g
13 132 198 107 160 80.5 121 182' 273 140 : 210 i«B 178
14 127 191 103 155 77.7 117 174 262 134 201 113 170
f '
15 122 183 99,0 149 74.8 112 166' ' 249 128' ' 192 '108 163
16 117 •176 ^95;0 143 71.8 108 158 237 122 -183 103 155
CO
£ 17 1T2 168 9019 137 687 103 149 225 115 173 97.8 147
S 18 107 160 86.7 130 •65.6 98.6 141 212 109' 164 '92.6 139
19 101 • 152 "82,5 124 62.5 93.9 133 199 103 i •155 '87,3 131
1 20 96.2 145 78.3 118 '59.4 89.2 124 . 187 96.6 145 •82.1 123
1 21 910 137 74.1 111 56.2 84.5 116 • 175 90,5- 136 .77.0 116
'g 22 85:8 129 70.0 105 '53.1 79.9 tfflS' • 163 84;5.. 127 ' 71.9 108
23 80.7 121 65.9 99.0 50.1 75.3 101 -151 78;e '118 67.0 101
aj
24 75.7 114 61:9'- 93.0 47.1 70.8 93.1 140 72.9' 110 62.2 93.6
*
25 70.8 106 57.9 87.1 i 44.1 66.3 85.8' 129 67,^' 101 575 86.4
e 26 66.1 99.3 ^54.1 81.3 41.3 62.0 79.4 119 62,2 93.4 5^-53.2 79.9
®
27 !61.4 92.2 50.3 75.6 . 38:4 57.7 73.6 111 -57.6 86.6 49.3 74.1
28 57.1 85,7 46.8 70.3 35:7 53.7 68.4 103 53.6 80.6 45.8 68.9
J
29 53.2 79.9 43.6 65.5 33.3 50.1 63.8- 95.9 50.0 75.1 •42,7 64.2
Ul
30 49.7 74.7 40.8 61.3 31 .T 46.8 59.6 89.6 46.7 70.2 •39.9 60.0
32 43.7- 65.7 35.8 53.8 27.4 41.1 52.4 78.8 41.0! 617 35.1 52.8
34 38.7 58.2 -31.7 47.7 24.2 36.4 46,4 69.8 36.4 54.6 31.1 46.7
36 - 34,5"< 51.9 ^8.3 42.5 21.6 32.5 41.4 62.2 32:4, 48.7 •277 417
38 3i:o 46.6 25.4 38.2 19.4 29.2 37:2 55.8 29.1 43.7 24.9 37.4
40 28:0 42.0 22i9 34.5 17.5 26.3
Properties
6.59 5.32 4.00 9.55 7.29 6.13
/,in,i 42.9 35.2 26.9 51.2 40.4 34.6
f, in... 2.55 2.57 2.59 2.32 2.35 2.37
LRFO Note; Heavy line Itidicates ((L/r equal lo or greater than 200.
1.67 (|)c = 0.9Q
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-76 DESIGN OF CX)MPRESSION MEMBERS
o
HSS7~
HSS6.875
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy = 42ksi
HSS7X
anape
0.250 0.188 0.125 O.SOO 0.375 0.312
fdeslgii, in. 0.233 0.174 0.116 0.465 0.349 0.291
lb/ft 18.0 13.7 9.19 34.1 26.1 21.9
Design
Pnl^c i>cPn PnlO^ <|)oP» <t>cPn Pn/ne
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD AST LRFD
0 124 187 03.8 141 •63.1 94.9 235; 354 WO 271 ;151 ; 228
6 118 177 88.8 133 59 8 89.9 221 333 170 255 s143 i 215
7 115 173 87.1 131 58 7 '88.2 216: 325 166 250 140 : 210
8 113 169 85.1 128 574 86.2 211 317 162 243 ,136 i 205
9 110 165 • 82.9 125 55 9 84,0 '205: .308 157: 237 133 199
V,
10 107 160 80.6 121 54 3 81.7 19& 298 153 229 129 ; 193
11 103 155 78.0 117 52 7 79,2 191V ,287 147: 221 124 i 187
1 12 99.6 150 75.3 113 50 9 ;76.5 184 276 142 212 •120 180
13 95.8 144 72.5 109 49,0 73,7 176; 265 .136 205 ill 5 1 173
o
14 91.9 138 69.6 105 471 70.7 1:68. .253 130: 196 .110 ! 165
f
15 87.9 132 66.6 100 451 67.7 160;u 240 124 186 ^05 i 158
to
16 83.8 126 63.5 95,5 43.0 i 64.7 152 y 228, 118i: 177 150
a
17 79.6 120 60.4 90,8 40 9 61.5 143; 5 215 31:12! 168 94.5 142
z 18 75.4 113 57.3 86,1 38 9 58.4 135: ' 203 •105'': 158 '89.3 134
8
19 71.2 107 54.1 81,4 36 8 55.3 127 ? 190 99.0 149 .84.1 126
t
20 67.Q 101 51.0 76.7 34 7 52.1 :118; 1,78 92.8 139 78.9 119
21 62,9 • 94.5 47.9 72.0 32 6 49.0 r110-> 166 :.86X 130 73.8 111
I 22 58.8 88.4 44.9 67.5 306 46.0 103, ,154 1.21 688 103
23 54.9 ,82:5 41.9 63.0 286 43.0 = ;:94.9? 143 113 ,64.0' 96.1
fc
H
24 51.0 76.7 39.0 58.7 266 40.0 . 87!4; 131 69.2 104 592 89.0
%
25 47,2 71.0 36,2 54.4 248 37.2 mi ,121 95.9 '54.6 82.0
c 26 43.7 65.6 33,5 50,3 229 34.4 74.5: :112 sao 88.7 60.5 75.8
27 40.5 60.8 31,0 46.6 21,2 31,9 69.1 104 54.7. 82.2 468 70.3
J 28 37.6 56.6 28,8 43.4 19.7 29.7 : 64.2- 96,5 50:9 76.5 435 65.4
V 29 35.1 52.7 26.9 40.4 18,4 27,6 59:9 90,0 47.4 71.3 i06 61.0
E 30 32.8 -49.3 25.1 37.8 172 25,8 55,9 84.1 44.3 66.6 ^7.9 57.0
32 28.8 43.3 22..1. 33.2 151 22.7 49,2 :73.9 38.9 ,58.5 33.3 50.1
34 25:5 38.4 19,6 29.4 134 20,1 43.5 .65.5 34.5 51.9 '295 44.4
36 22,8 34.2 17.4- 26.2 11,9-' 17,9 38,8 58.4 30.8 46.2 .263 39.6
38
40
20,4 30.7 15.7
14,1
23.5
21,2
10,7 ;
9.67-
16,1
14,5
27.6" 41.5 23 6 35.5 38
40
15.7
14,1
23.5
21,2
10,7 ;
9.67-
16,1
14,5
HSS6.e75x
Properties
Ag, in/
/, in."
r, in.
4.95
28,4
2.39
3.73
21,7
2.41
2.51
14.9
2.43
9.36
48.3
2.27
7.16
38.2
2.31
-ASO
ac=1.67
LRFD Note; Heavy, line indicates KUr equal to or greater ten 200.
(])<;= 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SI TITIL COMFKKJJSLON—MEMBER SELECTION TABLES 4-77
Fy 42 ksi
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS o
HSS6.875-
HSS6.625
Shape
HSS6.875X HSS6.625X
Shape
0.250 0.188 0.500 0.432 0.375
ti Bis
0.233 0.174 0.465 0.402 0.349
lb/ft 17,7 13.4 32.7 28.6 25,1
Design
Pa/iia Pa/Slo ^cPn Pa/Sic Pa/Slc PalClc ^Pa
Design
ASO LRFD ASD: LRFO ASD LRFD ASD LRFD ASD LRFD
0 122 • 184 92,0; 138 226 340 198;" 297 173 260
6 115 : 173 87,0 131 212 318 185 278 162 244
7 113 170 85,2 128 207 311 272 158 238
8 110 166 83,2 125 2Q1 302 176 264 154 232
9 107 161 8M: 122 : 195:: . 293. 170 256 150 • 225
V,
£
10 104 157 78,6 1t8 188;' 282 165 247 145 217
p
11 101 151: 76,1 ;• 114 181 272 158 f 238 139' 209
1
12 97.1 146:, 73J 110 173 260 152: 228 134 201
"S 13 93,2 140 ' 70:5 106 165 248 145 218 128 192
14 89.3 134 67:6: 102 157 236 138; 208 122 183
1
15 85.2 128 64-6! 97,1 149 224 131', 197 116:- 174
%
16 .81:1 122 61,5: 92,5 141" 211 .124. 186 109 164
i
17 76.9 116 58/4 87,8 132 199 117 175. 103 155
i
18 •72.7 109 55.3 83,1 124 186 109, 164 9.6:7 145
8 19 J8.6 103 52«1 :78,4 116; 174 102 154 90.5': 136
£
20 96,8 49.0 73,7 108 162. 95.2 143 8it:4 127
g 21 60,3 90,7 ,46.0 69,1 ;: 99,6 150 88,3 133 78;'4 118
22 .56,3 84,6 43.0 64,6 92.0 138 816 123 , 7216 109
g 23 •52,4 78,7 .40.0 60,1 MA 1.27 75 1 113 6.6;9 101
24 .48,6 ,73,0 37.2 .5:5,9 r'/TS 116 68 9 104 6T.4 92,4

25 •44,8 67,4 34.3 51,6 71A 107 63.5 95.5 56:6 85,1
1 26 62,3 i3t7 47.7 66.0 99,3 58;7 88.3 52,4 78,7
•1
27 38.4 57,8 29,4 44,2 6.1.2 92,0 54.5 81.9 48,5 73,0
« 28 35.7 53,7 27,4 41.1 56,9 85,6 50:6 76.1 45,1 67,9
£ 29 33.3 50,1 25.5 38,3 53,1 79,8 71.0 42:,1 63,3
30 3t1 46,8 53.8 35,8 : 49,6 74,6 .44.1 66.3 39.3 59,1
32 •27!i4 41,1 21.0 31,5 ;:43:6 65,5 38.8 58.3 34:6 51,9
34 24,2 36,4 18,6 27,9 38,6 58,0 mA 51.6 30,6 46,0
36 21,6 32,5 ::16.6 24,9 S;34.4 51,8 30.6 46.1 27,3 41.0
38 1:9,4 29,2 14,9 22,3
Properties
»g, in.
I, in."
f.in.
4.86
26.8
2.35
3.66
20.6 .
2.37
9.00
42.9
2,18
7,86
38.2
2,20
6.88
34.0
2.22
LRFD Note: Heavy line indicates KL/r equal to or greater than 200,
£lc=1.67 , = 0,90
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

4-78
DESIGN OF CX)MPRESSION MEMBERS
HSS6.625
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy = 42ksi
HSS6.62SX
snape
0.312 0.280 0.250 0.188 0.125
fdeslgm in.
0.291 0.260 0.233 0.174 0.116
lb/ft 21.1 19.0 17.0 12.9 8.69
P„IQc ^Pn Pfl/Clc ^Pn PnlCic /fcPn Pn/Slc «
Design
ftSD LRFD ASD UtFD ASD LRFD ASD LRFD ASD' LRFD
0 146 219 131 197 118 177 88.8 133 59:6 89.6
6 137 :: 205 123 185 ; 111: 166 83.5 126 56.1 84.4
7 134 201 120 180 : 108 163 81:7 123 54.9 82.5
8 130^' 196 117 176 : 105 158. 79.6 120 53.6 80.5
9 126, 190 114 171 102 154 •im 116 52.1 78,2
tf
10 122 • 183 110, 165 99:0 149 74.9: 113 50.4 75.8
o
11 116 : 177 106 159 95.5 143 , 72.3: 109 48.7 73:2
1
12 113 170 102 : ' 153 ^ 91.7 138 69.5 104, 46.9 70.4
•5
13 108 162 97.3 146 , 87.8 132 66.6 100 44.9 67.5
14 103!: 155 9i9 140 83.8 126 63.6 95.6 43.0 64.6
£
15 97:9 147 88.3 133 79.7 120 60.5 91.0 40.9 61,5
•a
16 92;7 139 83:6 126 75.6 114 57.4 86:3 35.9 58,4
i
17 87.5. 132 78.9 119 71.4 107 54.3i .81.6 36.8 55,3
i
18 82:3 124, 74.3 112 67.2 101 51:.2' ••76.9 34:7 521
8 19 116, 69.6 105 ^ 63.0 94.7 48J)f •72.2 32.6 49,0
1
20 71.9 108 65.0 97.7 58.9 88.5 45.0 67,6 ac.? 45.9
s
21 66.9 ^ 101 605 91.0 ^: 54.8 82,4 41.9 63.0 28.5 42.9
22 62.0 93.3 5B.i 84,4 50.9 76.5 39,0 58.6 26.S 39.9
g
23 57.3 86.1 51.9 78.0 47:1 70.8 361 54.2 24.6 370
i 24 52.6 79.1 47.7 71,7, 43.3 65.1 : 33.3 50.0 22.7 34.1
1
25 72.9 44.0 66.1 39.9 60.0 30.6 46.1 20.9 31,5
1
26 44:9: 67.4 40.6 61.1 36:9 55.5 28.3 42.6 19v4 29.1
1
27 41^6 62.5 37.7 56.7 34.2 51.4 26.3 -39.5 18.0 270
28 38.7 58.1 35.0 52.7 31.8 47,8 24.4 36,7 16:7 25.1
29 36.1 54.2 32.7 49.1 ,29:7 44,6 22.8 34,2 15.6 23.4
30 33.7 50.6 : 30.5 45.9 27.7 41,7 21.3 32,0 14.5 21.9
32 29:6 44.5 26.8 40,3 •24e4 36,6 18.-7 28.1 12.8 19.2
34 26:2 39:4 23.8 35.7 2t6 32.4 16:6 24.9 11.3 17.0
36 23.4 35.2 21.2 31.9 19.3 28.9 14.8 22.2 10.1 15.2
38 13:3 19.9 9:t)6 13,6
Properties
Ag, in.2 5.79 5.20 4.68 3.53 2.37
29.1 26.4 23.9 18.4 12.6
r, in. 2.24 2.25 2.26 2.28 2.30
ASD LRFD
Note: Heavy line indicates ((i/r equal to or greater than 200.
1.67 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-99
Fy = 42ksi
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS o
HSS6
Shape
HSS6X
O.SOO 0.375 0.312 0.280 0.250 0.188
0.465 a34g 0.291 0.260 0.233 0.174
lb/ft 29.4 22.6 19.0 17.1 15.4 11.7
Design
p„ia.
ASD
't>cPfl p«/ao
LRFD ASD
Pnlilc
LRFD ASD
Pnlilc
LRFD ASD
iltefir
LRFD ASD LRFD ASD LRFD
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
28
30
32
34
203
203
202
199
196
192
187
182
176'
169
162
154
146 :
138
130 ;
121
113
105
96.5
88.6
81.0
73.6
67.0
61.3
56.3
51 .S
48;0
41:4;
36.0
31.7
306
305-
303
300
295
289
281
273
264
254
243
231
220
207
195
1B2
170
157
145
133
•122
111
101
92.2
84,6
78.0
72.1
62.2
54,2
47.6
156
156
155 "
153
151
148
144
140
135
130
125
119
113
107
101
94.8
88.5
-82.3
76.2
70.2
64;4
58.7
53.5
48:9.
44.9
41.4
38.3
33.0
28.8
25:3
234
234
232
230
226
222
216
210
203
196.
188
179
170
161
152
143
133
124
114
105
96.8
55.2
80.4
73.5
67.5
62.3
57.6
49.6
43.2
38.0
131
131
130
129.
127
124
121
118
114
110
106
W1
96,1..'
91.0
85.8
-80.6
75.4
70.2
65.0
"60.0
55.2'
504
45:9
42.0
38.6
35.6
•32!9
28.4
24.7
21:7
197
197
196
194
191
187
183
177
172
166
159
152
144
137
129
121
113
105
97:8
90.2
82.9
'75.8
69.0
63.2
58.0
53.5
494
42.6
37.1
32,6
118
118.
117
116
114
112,
109!
106
103
99.1
95.2
91.0
86.6
82:1
77.4
72.8
68.1
63.4
58.8
54.4
: 50«
45.7
^ 4i;7?
- 38ii:
35.0
32.3
29.8
25.7
22.4
1917
177
177
176
174
17t
168
164
160
155
149
143
137
130
123
116
109
102
95.3
88.4
81.7
75.1
68.8
62,6
57,3
52.6
48.5
44,9
38.7
33.7
29.6
106
106:
105'
104;
103
101
98:3
.95,6,
92.6
89.3
;:85:8
82:1
78.2
74:t
-70:0
65;8i
61,6
•57=4
5313
49:3
45.4
4i:6
37.9
34:7
31.8
29.3
27,1
23:4
20.4
17;9
15.9'
160
159
158
156
154
151
148.
144
139
134
129
123
117
111
105
98.9
92,6
86,3
80,1
74.1
68.2
62.5
56,9
52,1
47,8
44,1
40.8
35,1
30.6
26.9
23,8
79.8
79.3
:78.5-
;77.4
74.2:
72:2^
i70.0
67.6
'64.9:
62,1,
59,2
'56,2
53,2
•30;0i
46.9
.43:8=
a40.7
mJi
31.9
:29.i:
26.6
24.5
-22.5;
20,8
18,0
15.7
13.8
12,2
120
120
119
118
116
114
112
109
105
102
97,6
93.4
89,0
84.5
79,9
75,2
70.5
65.8
61.2
56.6
52.2
47.9
43.7
40,0
36.8
33.9
31.3
27,0
23,5
20,7
18,3
Properties
/, in.''
f, in.,.-.
Qc=1.67
8,09
31.2
1,96
LRFD
. = 0,90
6,20
24,8
2,00
5,22
21.3
2.02
4,69
19.3
2.03
4,22
17.6
2,04
3,18
13,5
2.06
Note:: Heavy line indicates KL/r equal to or greater ttian 200,
AMERICAN INSTITUTE OF STEEI. CONSTRUCTION

4-80 DESIGN OF COMPRESSION MEMBERS
o
HSS6-
HSS5.563
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy = 42 ksi
HSS6X HSS5.S63X
anape
0.125 0.500 0.375 0.258 0.188 0.134
fdesigni i"- 0.116 0.465 0.349 0.240 0.174 0.124
lb/ft 7.85 27.1 20.8 14.6 10.8 7.78
Design
Pn/Clc ifcPn Pnliio ^cPn P„iac ^cP, PnlClc ^Pn p„iac
Design
ASD. LRFO ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASfl" LRFD
0 53.8 80.9 ,187; 282 144' ' 216 101 152 74.2 112 53.3 80.1
1 53.7 80.7 187 :-281 143 216 101 151 74,0 111 53.2' 79.9
2 53.4 80.2 185 279 _M2. 214 '99:8 150 73,5 110 52.8 79.4
3 52.8 79.4 .183 275 141 211 98.6 148 72.6 109 52.2 78.4
4 52.r 78.3 179 :270 138' 207 96:9 146 71.4 107 $1.3, 77.1
5 51.1 76.9 175 263 135 203 •94;7 142 69.8 105 •50.2 J 75,5
•1 6 50.0 75,2 170 256 131 197 92.2 139 68.0 102 i48.9i 73.5
i. 7 48.7 73.2 164 247 127 191 89.2 134 65.9 99,0 '47.4 71.2
•B: 8 47.2 ' 71,0 158 237 122 :183 85.9 129 63.5 95,5 45.7, 68.7
o
9 45.6 68,5 151 . 226 117 175 82.3 124 61.0 91,6 43.9 66.0
1
10 43.9 65,9 143 215 111 167 78,5 118 ,58,2 87,5 -41.9 63.0
•a
11 42.0 y 63,2 135 203 105' 158 74.5 112 '55.3 •83,2 39.9, 59,9
I
12 40.1 -60,3 127 191 99.2 149 70.3 106 52.3 78,7 37.7 • 56,7
s 13 38.1 57,3 1,19 178 93.0 140 66.1 99,3 49.3 74,0 35.5' 53,4
ts 14 36.1 i 54,2 110 -166 86.7 130 61.8 92,8 46.1 69,3 33.3 50,1
§
15 34,0 51,1 102 153 80.4 121 57.4 86,3 43.0 64,6 31.1; 46,7
s
16 31.9 47,9 93,9 141 74.2 1:12 53,1 79,9 39.9 59,9 28.8' 43.4
1 17 29.8 44,8 -85.9 129 68:2 102 48.9 73,5 36.8 55,3 26.7 J 40.1
18 27.8 41,7 78.r 117 62.3 93,6 44.8 67,4 33.8- ; . 50,8 -24,5, 36.8
19 25.7.. 38,7 70,6 106 56.6 85.1 .40,9 61:4 30.9 46,5 22,4' 33.7
•c
20 23.8 35,7 63.7 95 7 51.1i , 76,8 37.0 . 55.6 28.1 42,2 20,4 30.7
21 21.8 • 32,8 57.8 86.8 46:3 69,6 33.5 50.4 25,5 • 38,3 1.8.5 27.8
®
22 20.0 30,0 52.6 79.1 4Z.Z 63.5 30.6 45,9 23,2 34,9 16.9 25.3
23 18.3 27,5 48;2 72.4 38,6 58.1 28.0 42,0 21,2 31.9 1'5.4 23.2
si
24 16.8 25,2 44.2 66.5 35,5 53.3 25.7 38,6 19,5 29,3 14,2 21.3
U4
25 15.5 23.2 40.8 61.3 32.7 49.1 23 7 35.6 18.0 27.0 13.1 19.6
26 .14.3 21.5 37.7 56,6 30.2 45.4 21.9 J 32,9 16,6 25,0 •t2.1 ' 18.1
28 12.3 ^ 18.5 J32;S 48,8 26,1 39.2 18.9 28,4 14.3- 21,5 '10.4 15.6
30 10.7: . 16.1 ,28.3 42,5 22,7 34,1 16.4 24,7 12.'5 18,8 9.06 13.6
32
34
•9.44
8.36
14.2
12,6
7.97 12.0 32
34
•9.44
8.36
14.2
12,6
Ag. in;
/, in.''
r, m.
2.14
9.28
2.08
7.45
24.4
1.81
5.72
19.5
1.85
4.01
•;14:2
1.88
2.95 2,12
10,7 7,84
1,91 1,92
A3D LRFD Note: Heavy line Indicates W./r equal to or greater than 200.
= 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-81
Fy = 42ksi
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS , o
Hssasoo-
HSS5
HSSS.500X
ana)je
0.500 0.375 0.258 0.500 0.375 0,312
'deslgm
in. 0.465 0.349 0.240 0.465 0.349 0.291
lb/ft 26.7 20.6 14.5 24.1 18.5 15.6
Pnliic <kPn Pn'Ci, <!><;/'» ft/a. PnlSio ^cPn PJClc PnlClo -fcPfl
Destgn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 185 278;: 142-, 214 99.8 150 166 250 128 ' 193 108 ' 163
1 185 •277 • 142:., 213 99.6 150 166 249 128: 192 108 : 162
2 183 275 ,141t; 211 :98.8,' 149 164 247 127 . 190 107 ; 160
3 181 271 139 209 97.6,; 147 161 243 C125! c 187 105 : 158
4 177 266 205 95.8 144 158 237 122; ^ 183 103 ' 154
5 173 260 133 200 93.7 141 153 • 230 lis:. 178 99.9 150
1
6 168 252 129: 194 91.1 137 147: 221 ,114: ; 172 96.5 145
7 162 243 125 1,88 88.1 132 141 212 109 164, 92,^ 139
•s
8 155 233 120!,., 180 84.8. 127 134 201 104 157 88.3 133
ji 9 148 222 115! 172 81.2 122 126 190 98:6 148 : 83,6 126
s 10 140 211 ,109 164 77.3 ,116 118 178 92.7 139 78.8 118
1
11 133 199 103 .155 73.3, 110 110 166 86.6 130 .73,7 111
2
12 .187 146 '69,1;' '104 102 153: 80.3 121 68.5 103
13 174 '90.9: 137 97.4 93.5 141 74.1, 111 63,3 95,1
& 14 108 -162 84.7 127 ,60.5;: 90.9 85.3 128, 67.9 102 58,1 87.3
15 99.5" 150. 78i4 118 :S6.2:; -84.4 77.3 116 61.8 92.8 53,0 79,6
as
•i 16 91.3 137 72:3 109 78.0 69.5 104 55.8 83,9 48,0, 72.2
g
17 83.4', 125 66.2 99.6 '47.7- 71.7 62.0 93.2 50.2 75.4 43.2 65,0
18 75.7 114 60.4 90.8 43.6 ' 65.6 55.3 •/83.1 44.7 67.2 38,6 58,1

19 68.2 102 ':54;7, :82.2 39.7! 59:6 49.6 74.6 40.1 :60!3 34,7 52.1

20 - 61.5 92.5 ,:49!4 74.2 ' 35.S;': 53.9 44.8 67.3 36.2 54.5 31.3 47.0
f
21 55:8 83.9 44.8 67.3 32.5 48.9 40:6, 61,0 32=9' 49.4 28,4 42.7
1 22 50.9 76.4 40:8 61.3 29.6 44.5 37,0 55.6 29:9 45.0 25,9 38.9
23 46.5 69.9 37.3 56.1 27.1 40.7 33.9 50,9 27.4 41.2 23,7 35.6
24 42.7 64 2 343 51.5 24 9 37.4 ;3i.i; 46.7 25.2 37.8 21,7 32.7
25 •••59,4- 59.2 316 47.5 22 9 34,5 ,28J: 43.1 23.2 34.9 20,0 30.1
26 36.4 54.7 29i2 43.9 212 31.9 26:5 39.8 21:4 32.2 18,5 27.8
28 31 i4 47;2 25 2 37.9 18.3 27,5
30 21.9 33.0 159 23,9
Properties
7.36 5.65 3.97 6.62 5.10 4,30
1, in.l 23.5 18. 8 13.7 17.2 13.9 12,0
r, in. 1.79 1.83 1.86 1.61 1.65 1,67
ASD LRFD Note: Heavy line Indicates equal to of gr eater than 200.
1.67 (jl(;=0,90
HSS5X
AMERICAN INSTITUTE OF STEEL CoNsTruCTioN

F
a
S
3 1..
-^0 03
-1. CD CO
OS CO lu
Effective length, KL (ft), with respect to least radius of gyration, r
--4 N3
'<Si
<o ^
cn
^
oa ^ CO
^SiS^g giSa-SSS gssyg -SS^S'g s
V. Xj, Lat ijj-fo ^ W .CO-b> Ci J<>- bi CO T^ CaJ —<3^ oa -O CO CO po O CO
eg a 2
UTCO ~NjcO-t»rOC7J 050-p>.coc0
S'gfSJSSg fe^iSgg esgggg 3
loja. bi'-^-lcjioj obo^io^^ ~-i«orJ« j>.coo-&oi co
to i. o —^ a^ c/J CJ1
to CO CO
W> W to --4
0> -J 03 -to
tn —I oo o
--4 to ro CJ1 --4
fSSsSS^ jSfSS^S SSSSS g
OT-^IOSO^O a)CA50>0>^3 Jh.
_L <o js.
Q rt
-i N3 N3 ro hO
cn CO ^ ro ^ ^
'ji^ CO ^ O to 'o C71
W <55
CO .Ci> CO -Pk
P CO ^ OT
w cn OT o
cn ci oi a> 0>
P C7I CO fO
cn ro CO 'a> 'ro
CO CO 03
CO CO ro 05 CO
'-.J Ko o CJ1
to to to CO CO
CJJ -J CO CO
tTj '—I ^ b^ tn
3;
r .. ••.•..•••. ..i i V, KA . •O'-'PO'CD; ••CO;
ss.
. : oS Ol <D ^ - . . . .
b>bicnb5 o-^ro-oa'cj —^ "vj ro
oS s^s^iiss s y ^ "^a^t ^ gaass sssssj s
i^tnbotoo ^Kjcoa>a> cn^boo^ -^o-^hooi oiiMcncn-' w
co^^ro to ^^jsi.'^ cn^jr* os w cocn-^ o-u.^cnco
ro rv5 CO CO
to —^ CJ1
CO rs5 CO o
g s a s g y . p IS g
S^Sti S^k'igfS'g" SSfeSS g!SSSS g
ba en ba ba o <D b5.„r\s o o o> co. .
^roococn -^o^ococn C7>
b^ CO CO •—t Ko o ba CD a> —^ cn
$
s
£
u
tt
O
o
3
•o
cn 5.
3
33
O
c
3
a
L
I!
i
cn <D
2f
11
(Q C
^ (D
5 a
6
3r
n
§
D
rj
ii
-2 -r^^
Oi
cn CO
ro CO
2 :
^ to
^ 03 05
Effective length, /fi (ft), with respect to least radius of gyration, /
SSSSRg^? SS^^ioS si^sSSti 3 oo-^ioi tn^wro-* otDooMa> at w ro b
4Sk .iSfc {S3
ro fo po
CO fO
00 <ad <3 ^ <0 <n r^ CD <£> o3 00 <3^ 05 <£>' cb. co: KS
^ « g fs
K? b> CO ro CO CD la CO
cn cn o>
N3 CO Jii O
•loba, OTCjrii. col^OTbacn
> o ^ ro
CD p 65
to CO o 'to: CO bs
^ ji. cn
p CO <0, —'
pS bjk' bq
cn CO
O c6
CO CJl CO
^ o ^ CO ^
ro ro N3 CO CO
p p CO
<1 o bo o tp
S ife g
cn CO cn
OT -J
cn o -u
ro O. N3 CO to
p p -vJ i co to
o 4ik- CD >1 05. p 05 ^ 00 CO CO CO b» fo ^ <0 <0 ^ iv3
CO o ro CO
p cn It» cn ^
NJrocococo
ppppco OTcofocnco
to CO bo cn o
cn cn cn cn
p "-sj CO CO p
ts3 o cn bi 05
o <3 bi 'r^- ' jsii-irt Ki ci
2 2 §> ^
05 cj\ bi bt o
p —
b> cri CO
— N3 ro' is> ro CO CO
p ^ p p CO ro C7>
la o to -y b> ^
2 2 g
fsj bj CO ^ CO
—' —^ TO ro fo
CO CP to c?> --J
p ^ rS? p p;
iy) <j (SS.'co
. _ _ . CO CO .-vi
Cpj o c6 CO ^
I O) O) O)
i -IV 0>; 03 CO
4M Jv ,CO 0 03 -A ^ o
^ -i. -»• ro N3 ro ro
^ p ^ to p CO.
^ fo bi <0
g . g S ^ , .
o -»• 03 ba o
a> a^ ^ CO CO
CO CO cn —^
bi a> ^
g
u
y
a
<0
? i I:
§ -o ® ii
S » s §
8 2. i I
- 3-S
TT
w

4-84
DESIGN OF COMPRESSION MEMBERS
HSS4
Table 4-5 (continued)
Available Strength In ^ ^^ ksi
Axial Compression, kips
Round HSS
Shape
HSS4K
Shape
0.237 0.226 0.220 0.188 0.125
'design, in-
0.220 0.210 0.205 0.174 0.116
lb/ft 9.53 9.12 8.89 7.66 5.18
Design
ttePn P„/Qc
Design
ASO LRFD ASO LRFD ASO LRFD ASO LRFD ASO LRFD
0 65,6 98,7 62 9 94.S 61.4; 92.2; 52.6 79.0 357 53.7
1 65,3 98,2 62,6:, 94.0 61,1 91.8 52:1: 78.6 35:5 53.4
2 •6m 96.7 61.6; 92.7 60.2 90.4 51.6: 77.5 35.0 52.7
3 62.8 94,4 60.1 90,4 58.7 88.2 50,3 75.6 34,2 51.4
4 60.7 91,2 58.1 87,3- 56;7s 85,2 : 48.6;' 73.1 33.1 49.8
g- 5 58.0 87,2 55.6^ 63,5, 54.3 81,5, 464?: 70.0 31.7 47.7
1 6 55,0 82.6 : 52.7 79.1: 51:4 77,2 '44.1 66.3 30.1 : 45.3
7 51.6 77.5 49.4 , 74.2 48.2 72,5 41.4 62.3 28:3 42.6
"S
8 47.9 72,0 45.9 68,9 44;8 67,3 38.5 57.9 26.4 39.7
'1 9 44.0 66,2 42,2 V 63,4 41.2i 61,9 35.5 53.3 24.4 36.6
%
10 40.1 60,3 38.4 57,7 37,5 56.4 32.4 48.6 22.3 33.5
1 11 36.2 54,4 L 34.6^ 52:1 33,8 50.8 29J 43.9 20.2 30.3
12 ^2,3 48.5 i 30.9 46.5 30.2 45.4 26:1 39:3, 18.1 27:2
M 13 28.6 42,9 ' 27.4 . 41,1, ^ 26,7 40.1, 23.1 34.8: 16.1 24.2
M 14 25.0 37,5 23.9 , 35,9 23.3 35.1, 20.3 3Q.5 14.2 21.3
S 15 21.7 32,7 : 20.8 31,3 20,3 30.5 17.7 ' 26,6 12.4 18.6
16 19.fl 28,7 18.3 V 27,5 17.9 26,6 15.5 23,3 10.9 16,3
g
17 16-9 25,4 16.2 24,4 15,8 23,8 ! 13.8 20;7 9.63 14.5
18 15,1 22,7 14.5 21,7 21,2 ! 12.3 18.4 8:59 12.9
^
19 13,6 20,4 13.0 19.5 12;7 19:0 11.0 16.6 7.71 11.6
1 20 12,2 18,4 11.7 17,6 11.4 17,2 9.94 14.9 6:95 10.5
1 21 :11,1 16,7 10.6 16,0 10.4 15.6 ,9.02 • 13,6 6.31 9.48
SS
22 10.1 15.2 9.68 14,6 9.45 14.2 8.21 12.3 5;75 8.64
lU
.a.,:
Properties
Ag, in;
/, in."
r, in.
2.61
4,68
1,34
2,50
4,50
1,34
2.44
4.41
1,34
2,09
3.83
1.35
1,42
2,67
1,37
ASO
£2^=1,67
LRFD Note: Heavy line indicates ML/r equal to or greater than 200,
(|)c=0,90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-85
Fv = 35 ksi
Table 4-6
Available Strength in
Axial Compression, kips
Pipe o
PIPE 12-PIPE 8
Shape
Pipe 12 Pipe 10 Pipe 8
Shape
XS Std XS Std XXS XS
fdeslgiK in-
0.465 0.349 0.465 0.340 0.816 0.465
lb/ft 65.5 49.6 54.8 40.5 72.5 43.4
Design
1>cP„ J>„/Qc -t-cR, (t'cPn if/cPn Pniac ^Pn Pn'iic (^cPn
Design
ASD LRFD i «D LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 367 551 287 432 316, 476 , 24^: 362 4^9 i 630 249 ; 375
6 362 544 ; 283 426 310 466 236 355 • 405 . 609 242 363
7 360 541 282 424 308 463 ^ 23,5=:, 353 400^ 601 239 ; 359
8 358 538 ^ 280 421 305' 459 233 350 394 , 593 236 : 354
9 355 534, 2/8 418 303 455 231 347 388 583 232 ; 349
V.
10 353 530 276 415 299 450 228 343 381 . 573 228 343
1 11 350 ^26.. 274 412 .,296 445 226 339 373', 561 224 ' 337
£ 12 341 521 ^ 272 408 292 439 223 335 365 549 220 i 330
O)
13 343 516 : 269 405 288 433 220 330 . 357 536 215 323
o
14 340 511 ^ 266 400 .284 427 217 326 348 523 210 315
.2
•o
n
15 ^ 336 -505. 263 ; 396 279 420 213 320 338 508 204 307
M
16 332 499-: ieo 391 274 413 210 315 :. 328 494 199; 299
a
S.
17 328 493 257 386 269 405 2,06t- 310 31(5 478 193 • 290
S 18 323. 486 254 381 264 397 202.' 304 : 308 : 463 187 : 282
19 319 479., 250 376 259 389 198 298 ' ; 297 • 447 181 273
g
20 314 472- 246 370 -253 381 291 ; 286 430 175 i 263
£
21 309 464 ^ 243 : 365 248 372 190 285 275 414 169 254
•f 22 304 457 239 359 242 363 185 278 2B4 397 •163 245
g
23 298- 449. 235 353 • £36 354 181 272 2^3 ; 38Q 156 : 235
H
24 293 440- 230 346 230 345 176 265 242 364 150 225
%
25 288; 432 226 340 224 336 172 258 , 23t, 347 144 ' 216
c 26 282 424 222 333 -217 327 : 167 251 220 331 137 206
£
27 276 415 217 327 211 317 162 244 : 209,, 314 131 ^ 197
1
28 270 406 213. 320 205 308 157-: 236 19a 298 125 188
29 264- 397 208 313 198: 298 153 229 188 283 119 178
i
30 258 388 204 306 192 288 ; 148, 222 , 178;, 267 113 ; 169
32 246 370. 1'94 292 179' 269 138 207 158 237 toi , 152
34 234 351 m 277 166 250 128 193 140 210 89.7 135
36 221 333 •175; 263 154 231 Tfg 179 li24 187 80.0 120
38 209 314 165 248 142 213 110 165 112 168 71.8 108
40 197 296 156 234 130 195 101 152 101, 152 64.8 97.5
Properties
I, in/
r, in.
f
17.5
339
4.35
13.7
262
4.39
15.1
199
3.64
11.5
151
3.68
20.0
154
2.78
11.9
100
2.89
ASO
iJc=1.67
LRFD
.= 0,90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4^86 DESIGN OF COMPRESSION MEMBERS
o
PIPE 8-PIPE 5
Table 4-6 (continued)
Available Strength In
Axial Compression, kips
Pipe
Fy = 35 ksi
Pipe 8 Pipes Pipe S
snape
Std XXS XS Std XXS
fdesign. in.
0.300 0.805 0.403 0.261 0.699
lb/ft 28.6 53.2 28.6 19.0 38.6
PnlO^c ^cPn P»/£ic ^cPn Pnlilc PnlClc <kPn Pn'ilc <ttPn
Design
ASD LRFD ASD LRFD f'ASD LRFD ASD LRFD ASD LRFD
0 165 247 308 463 164 247 109 ; 164 224 337
6 160 " 240 290 436 155 233 103 155 205 309
7 '158 237 283. 426 "152. 229 101 153 • 19'9 299
8 156 234 2/6 415 '149 224 : 99.3 149 192 288
9 154 231 268 403 145' 218 96,9 146 184 277
10 151 227 260 391 141 212 94.2 • 142 •176 264
I 11 148 223 251 377 136 205 91.4- 137 167 251
12 146 . 219 24-1. • 362 ^ 132 198 - k4' 133 158- 237
CJl
13 .143 214 231 347 1'27 191 :85:2 128 149 223
14 139 209 221 332 f22. 183 81.9 123 139 209
'•3 15 136 204 210 316 116 175 • 785- 118: 130 195
!S
16 132 199 199 299 111 167 ^ 75',1" 113 120 181
i 17 129 194 188 283 106 159 • ne-' 108 111 167
i 18 125 - 188 177- 267 100 151 M.O 102 102 153
19 121 182 167 250 94.7 142 • 64.4.'' 96,8 93.1 140
i
20 •117 " .176 156 234 89.2 134 • •• 60.9 91,5 84.5 127
21 113 170 145- 218 ':g3.8 126 "57.3 86,2 76.7 115
s 22 109 ; 164 135 • 203 78.5 118 53,9 81,0 6ff.9 105
23 105 158 125 . 188 73.3 110 50:5, 75,8 63.9 96.1
H
24 101 -J 152 115 173 ' 68.3 103 47,1 ' . 70,8 58.7 88.2
25 •96.9^ 146 106 160 63.3 95.1 43.ff 65.9 54;i 81.3
g>
26 92.8' 139 98.2 148 . 58.5 88,0 40.6 61,1 50.0 75.2
s
27 88.7 133 91.1 137 • 'S4.S 81,6 37.7 56,7 46.4 69.7
S
28 SO- 127 84.7 127 50,S 75.8 35.0 52,7 43.1 64.8
g
29 SO.? 121 78.9 119 47.0 70.7 32.7 49.1 40.2 60.4
s 30 76.8 115 73.8 111 44,0 66.1 30,5.. 45.9
32 69.1 104 64.8 97.4 ,38.6 58.1 40.3
34 61.7 -92.7 57.4 86.3 -34.2 51.4 35.7
36 55.0 82.7 '30.S 45.9 21.2 31.9
38 74.2 i'
40 " 44®; 67.0 •
Properties
Ag, 7.85 14.7 7.83 5,20 10.7
68.1 63.5 38.3 26,5 32.2
r, in. 2.95 2.08 2.20 2,25 1.74
A&D LRFD Note: Heavy line indicates tt/r equal to or greater tlian 200.
1.67 0.90
AMERICAN INSTITUTE OF STEBL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-87
Fy = 35 ksi
Table 4-6 (continued)
Available Strength in
Axial Compression, kips
Pipe o
PIPE 5-PlPE 4
Shape
Pipes
XS Std
Pipe 4
XXS XS Std
fjesUiH i"- 0.349 0.241 0.628 0.315 0,221
lb/ft 20.8 14.6 27.6 15.0 10.8
Design
PnlS^c
ASD
PnlOc
WFD ASD
^cPn Pniac
LRFR ASO
PJQc
LRFD ASD
<ltP» PalOc
LRFD ASD LRFD
s;
•B
£
1
g
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1Z0
111
108
105
101
96.8
92:5
83.1
83.5
78.7
74'.0
69.2
64.4
•59.8
55.2
50.7
46.4
42.3
38.7
35.5
32.8
30.3
28.1
26.1
24,3
22.7
180
167
162
157
152:
146
139
132
125
11,8,
111
104
96.9
89.8
83.0
76.3
69.8
63.6
58.2
53.4
49.2
45.5
42.2
39.2
36.6
34.2
84.0
78.0
75,9
73.5
71.0
68.2
65,3
62.2
59.,1
55,8
^2.6
49.3
46.0
42.8
39.6
36,5
33.5
30.6
28.0
25.7
23.7
21.9
20.3
18:9
17.6
16.4
126
117
114
111
107
103
98.1
93.6
88,8
83.9
79.0
74.1
69,1
64.3
59.5
54,9
50.4
45,9
42,0
38.6
35.6
32.9
30.5
28,4
26,4
24.7
161
140
133.
126
118
110
101
92,7
^3
76,0
B8,1
60,3
53.5
47.7
42.8
38.6
.35,0
31.9
29,2
241
210
200
189
177,
165.;
152
139
127,
114
102
90.7
80,3
71,7
64,3
58,0
52.6
48,0
43.9
86,8
76,9
73.6
70.0
66.1
62.0
57.7
53.4
t49,1
:44,9
40 J
36.7
32.8
29.2
26.2
23,7
21.5
19.6
17.9
161.4
130
116
111
105
99.3
93.1
86.8
80.3
73:8
67.4
' 61.2
55:1
49.2
43.9
39.4
35.6
32.3
29.4
26,9
24.7
62,0
55.2
52,9
50.4
47,7
44:9
#o;
38,9
35.9
32,9
3ao
27.1
m:
21,7
19.5
17.6
16.0
I.4.6
13.3
12.2
II,3
93.2
83.0
79,6
75,8
71,8
67.5
63.1
58,5
54.0
49.5
45.1
40.8
36.6
32.7
29.3
26.5
24,0
21.9
20,0
18.4
16,9
Properties
/, in."
f, in
5,73
19,5
1,85
4,01
14,3
1.88
7,66
14,7
1,39
4,14
9,12
1,48
2,96
6,82
1,51
ASD LKFD Note: Heai(y line indicates /OL/r equal to or greater than 200.
0^=1,67 (l)c = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4^88 DESIGN OF COMPRESSION MEMBERS
Table 4-6 (continued)
(
T
Available Strength in
C - Vi k<ti
/ Axial Compression, Icips
' — vv IVOI
PIPE 3V2-PIPE 3 Pipe
PipeSVz
Pipes
anape
XS Std XXS XS std
fdesig n,in. 0.296 0.211 0.559 0.280 0.201
lb/ft 12.5 9.12 18.6 10.3 7.58
Pn/flc Pn/iic ^oPn Pn'Oo ^oPn
Design
ASO LRFD ASD? LRFO ASD LRFD im: LRFD ASD LRFD
0 71:9 10a 52.4 787 10»' 163 59:3; 89;i' 43.4 65.2
6 61.6 92.6 45;2 67.9 85.6 129 48* 72.7 35.7 53,7
7 58.2 87.5 42,8: 64.4 78,6 118' 44,9' 67.5 33.3 50.1
8 54.6 82.1 40,3 60.6 71.2 107; 41:3 62:o 30,7 46.2
9 '50;8 76.3 37>6 56.5 63.7 95.7 37» 56.3 28.0 42.2
10 46:8 70.3 34,8 52.2 56.2 84:5 33.Bi "50:6 25.3 38.1
Si
11 42.8 64.3 31.9 47:9 49:0 73:6 29.9 44.9 22.6 34,0
cn
12 38.7 58.2 29.0 43:6 42,1 63,3 26.5 39.4 20.0 30.0
a
vt 13 34.8 52.3 26.2: 39.4 359 53.9 22:7 341 ir.5 26.2
.3
•o 14 31 lO 46.6 • 23:4 35.2 309 46:5 19.6; 29.4 1S.1 22.7
2 15 27.3 41.0 20;8^ 3i:3 26 9 40:5 17.1 : 25,6 13.1 19,8
1 16 24.0 36:1 18.3 27.5 237 35,6 15.0 .22:5 It.B 17.4
S 17 21.3 .32.0 16;2 24.4 21.0 31.5 13.3 20.0 10.2 15.4
ffl 18 49.0 28.5 14.5 21.7 11.8 -17:8 9.33 13.7
8 19 17.0 25.6 13;0 .19:5 10:6 16.0 8.,19 12.3
20 15,4 23.1 11,7 :17.6 ro
21 13.9 20.9 io;6 16;0
§ 22 '9;68 14.6
- ;
Properties
Ag, in} 3.43 2.50 5.17 2.83 2.07
/, in." .. 5.94 452 5.79 3.70 2.85
r, in. 1.31 1.34 11.06 1.14 1.17
ASD LRFD
Note: Heavy line indicates /ft/r etiual to or greater tiian 200.
Clc = 1.67 0,90
AMERICAN INSTITUTE OF STEBL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-89
Fv = 50 ksi
Table 4-7
Available Strength in
Axial Compression, kips
WT-Shapes
WT18
Shape WT18X
lb/ft 151' 141= 131" 1215' 115.5'
ttPn P„IQc (^cPn ft/Oc IkPn ft/He PnlQc tfeP/.
liesigr
ASD LRfD ASD LRFD ASD LRFD ASD LRFD ASD' LRFD
0 1210 1810 1050 1580 921 1380 813 1220 "712 1070
10 1170 175D 1020 1530 894 1340 791 1190 694 1040
12 1T50 17.30 1000 1510 '883 1330 781 1170 ;686 1030
14 1130 1700 987 1480 870 1310 770 1160 677 1020
16 1110 1670 969 1460 « 1280 758 1140 667 1000
18 1080 1630 949 1430 838 1260 744 1120 •655 985
.!S
20 1060 1590 ^927 1390 i8l9 1230 729 1090 643 ! 966
22 1030 1540 i:9D3 1360 799 1200 712. 1070 629 • 945
X
24 997 1500 ••878 1320 778 1170 694 1040 614 ' 924
26 964 1450 851 1280 756: 1140 675 1020 599 900
s
28 031 1400 823 1240 732! 1100 656 986 •583 876
1 30 «96 1350 794 1190 708 1060 635 '955 56^ 850
i 32 860 1290 764 > 1150 682 1030 .614 923 <548 824
1
34 823 1240 733 1100 B57 987 592 890 .530 796
s
36 786 1380 .!702 1060 630 947 570 857 '511 768
s
40 711 1070 B39 961 576 866 524 , 788 473 711
i 0 1210 1810 1050 , 1580 921 1380 ®3 .. 1220 •••712 1070
g 10 1040 1560 >899 1350 778; 1170 681? 1020 •592 889
si 12 1020 1540 887 1330 769 1160 674: 1010 586 881

14 1000 1500 870 1310 756 1140 664 998 :-578 869
1
16 m 1460 m 1270 738 11 TO 630 977 568 853
1
18 953 1400 817 1230 .715 1070 832 950 .354 832
1 V. 20 892 1340 784 1180 687 1030 6t0 917 -•536 . 806
u § 22 1847 1270 747 1120 657 987 585 880 516 ; 776
5:
24 m 1200 708 1060 624 938 558 839 ;494 742
26 749 1130 667 1000 589 886 529 795 470 706
28 699 1050 625 939 : i5S4 832 '499 750 445 669
30 f649 975 t582 875 518 778 468 704 419 630
32 699 900 '540 811 481 723 437 657 393 591
34 550 826 '498 749 44S 669 406 611 367 551
36 502 754 457 687 410 616 376 565 .341 512
40 412 619 379 569 342 514 317 477. 290 436
Properties
Ag, in
2
44.5 41.5 38.5 36.3 34.1
fx, in. 5.37 5.36 5.36 5.36 5.36
fy,m. 3.82 3.80 3.76 3.74 3.71
ir m LRFO ' Shape is slender for compression witti F, •• = 50 l(Si.
0^=1.67 <|)C = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4^90 DESIGN OF COMPRESSION MEMBERS
WT18
Table 4-7 (continued)
Avaiiabie Strength in
Axial Gompression, kips
WT-Shapes
Fy - 50 ksi
WT18X
lb/ft 128= 116-^ 105° 9r 91
Pn/Qc 4cPn ^Pn PJQc PnfClc AcPn Pn/Oc tte/'n
Design
ASD LRFD ASD LRFD ASO LRFD ASD LRFD ASO LRFD
0 1040 1560 839 1260 {735 1100 m 900 509 765
10 1000 1510 SI 6 1230 1080 585 879 499 749
12 :992 1490 806 1210 •707; 1060 579 870 494 743
14 :976 1^70 795 1190 698: 1050 572 860 489 734
16 959 1440 :782; 1:1.80 687 1030 564 848 •482 725
18 .939 14T0 768 1150 675 1010 555 835 476 715
•H
20 918 1380 752 1130 662 994 545 820 46£i 703
.<s
22 :895 1340 735 1100 647 973 535 804 460 691
.<s X
24 C07O 1310 716 1080 632 949 523 787 451 678;
CO
26 844 1270 697 1050 615 925 511' 769 ;,441, 663
£
28 817 1230 677 1020 598 899 499 ;749 648
30 789 1190 • 656 985 580 872 485- 729 •421, 633
i 32 s76D 1140 ;634: 953 562 844 471' 708 -.430 616
g
34 1100 611 919 543; 816 457 687 V399 599
& 36 700 1050 588 •884 523 •786 442- 665 f387 582
1
40 ?®38 960 541 814 483 726 412 619 363 546
5 0 1040 1560 839 1260 735 1100 599 900 509 765
g
10 838 1260 680 1020 •575; 864 472. 709 402 604
Si 12 j797 1200 650 978 552 830 456 685 ^390 586
£ 14 747 1:120 614 923 523- 787 435 655 '375 563
C3)
B
16 .,690 1040 572 860 490 736 411 617 356 535
JS
§
18 630 947 527 792 452 680 •383 576 334 503
w 20 569 -855 •480 721 .413 620 353 531 311 467
IS § 22 507 762 432 650 372 560 322; 485 286 430
24 447 672 385 579 333 500 291 438 261 393
>-
26 389 585 340 511 294 442 261, 392 236 355
28 338 508 296 445 257 386 231 347 .2.12 319
30 296 445 260 391 -226 339 203 306 188 283
32 ^61 393 230 345 200 300 180 271 M67 251
34 232 349 204 307 1:78 267 161 242 149 224
36 208 312 183 275 160 240 144 217 .134 201
40 .169 254 149 224 130 196 118 177 109 164
Properties
in.' 37.6 34.0 30 .9 28.5 26.8
h, in.
5.66 .5.63 5.65 5.62 5.62
Cf, in. 2,65 2.62 •2.58 2.56 2.55
ASO LRFD ' Shape is slenOer forcompression with F, = 50 ksi.
He =1.67 0.90
AMERICAN INSTITUTE OF STEBL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-91
Fy = 50ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
y
WT18
Shape WT18X
Ib/ft 85" 80' 75' 67.5'
P„IQc i/cPn <t«cPn P«/Qc <t>cPn P„IQc <t>cPn
Desigi
-ASD LflFD ASO • LRFD ASD LRFD ASO LRFD
0 '424 ; 637 367 , 552 324t 486 1 271. 407
10 'J416 625 ' 3?1i - 542 3t8 478 267 ; 401
12 412 J -620 •358 ' 538 316 475 265 • 398
14 408 614 355 -- 533 .313 471 2631 • ; 395
16 404 • 607 351 527 310- 466 261 • 392
18 398 599 347 521 307 461 258. 388
20 •393 1 590 342, 514 3Q3 , 456 • 255 . 383
5 22 ,387 ' 581 337 507 299 449 252 . , 379
i
24 380 , 571 332, 499 '295 443 248 A 373
26 =373 560 326 490 290 436 368
B
28 365 . 549 .320 481 -285 428 241 362:,
1 30 .357 ) 537 314 471 m 420 . • 237.' 356
i 32 .349 ,525 307'' - 461 ZlA 412 232i ; 349:-
®
34 340 ' 512 • 360 -, . 451 268 403 228 342"
36 ,331 .498 293 .>. 440 262 394 . 223 335 .
40 .313 470 278 417 249 375 213" 320'
g
0 .J424 -, 637 367 , 552 324 486 •271 • 407
g 10 335 ! 503 288 432 249 375 ','>197 i , 295
si 12 327 . 491 281 422 ,244 367 , 193 290
d 14 315 i 474 272 410 237' 357 188- 282
J
16 302 i 453 262 393 229 344 181 272
s
18 ,286 i 429 249-, 374 218 328 173 261
1
20 m , 402 234 , 352 206 310 165 247
u i| 22 249 . 374 219 329 194 291 155 233
%
24 229 344 203 305 180 271 144 217
26 209 315 186 , 280 1§6 250 133 201
28 190 2«5 170 • 255 1,52 229 122- 184
30 •1.71, 256 154. - 231 138 208 111 . 168
32 152 , 228 138 - 207 125 187 100 151
34 136 204 123 • 185 112 168 , 90.5 i 136
38 122 183 111 167 101 151 81.9 123
40 59,9 150 91,1 137 82,9 125
Properties
Ag, in 2
fj, in.
ry in.
25,0
5.61
2,53
23.5
5,61
2.50
22,1
5.62
2.47
19.9
5.66
2.38
ASO
nc=1.67
LRFD
it)c=0.90
' Shape is slender for compression witli Fy= 50 l<si.
Note: Heavy line indicates W,//- equal to or greater than 200.
AMERICAN INSTITUTE OF STBEL CONSTRUCTION

4-92 DESIGN OF COMPRESSION MEMBERS
WT16.5
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fv = 50 ksi
WT16.5X
lb/ft 193.5" 177" 159 145.5= 131.5«
1/cPn p„iac iloP, p„/nc P^liic <S>cPa P„/Cic
Design
ASD LRFD m LRFD ASD LRFD ASD LRFD ASD LRFD
0 •: 1710 2570 1560 2340 1400 V 2110 1270 1910 9040 1570
10 ?;i640 2460 isoo 2250 1340 2020 1220 1830 9000 1510
12 1610 2420 1%70 2210 1320 1980 1190 1800 986 1480
14 '<1570 2370 1440 2160 12905 '1940 • 1170; 1760 966 1450
16 i1540 2310 r40'0 2110 1260 . 1890 1140! 1710 '944 1420
18 •1490 2250 1360 2050 1220" 1840 r 1110-, 1660 919 1380
.2
20 S1460 2180 1%20 1980 1180 i; , 1780 ':1070! : 1610 89^ 1340
% 22 1400 2100 1280 1920 1140' .1720 .1030:,; 1550 .',863 ' 1300
i %
24 Sl:350 2030 1230 1840 1100-.' 1650 •995,. 1490 -833 , 1250
26 SI 290 1940 IMO, 1770 1050 rf: 1580 953 1430 .801 ' 1200
1
28 51240 1860 1130 1690 lOlOv 1510 • 911 1370 768 1150
1
30 S1180 1770 •tsro 1610 1958' 1440 867i 1300 •734 1100
i 32 51120 1690 1020 1530 !909V 1370 823 1240 . 700 1050
34 1060 1600 S64 1450 ilsgw 1290 778 1170 •B64 999
36 ^1000 1510 mo 1370 ^^810' 1220 733 1100 &629 946
£
40 S 1330 802 1200 1070 644 968 -559 840
s 0 1710 2560 1560 2340 1400:. 2110 '1270 1910 ;1040 1570
g 10 f1530 2300 . 1390 ' 2090 1230' 1850 -> 1100 1650 ' 899 1350
St 12 ••14130 2230 1340 2020 1200: 1800 1080 1620 v883 1330
14 1430 2150 :i300: 1950 1150,1 1730 1040* 1570 -861 1290
i
16 ; 1370 2060 1240 1860 ilOo' 1660 1000; 1510 •'831 1250
1
18 '1300 1960 1180 1770 1050-; 1580 956 1440 1200
1
v> 20 . 1230 1860 1120 1680 992: 1490 904 1360 •757 1140
UJ 1 22 '1160 1750 1G50 1580 933:: 1400 849 1280 714 1070
24 1090 1630 983 1480 872 1310 792 1190 •670 1010
26 ; lOitO 1520 914 1370 jsio ^ 1220 734 1100 .625 939
28 ; 9 36 1410 844 1270 :748«. •1120 676 1020 --679 871
30 860 1290 775 1170 1030 618 929 1534 802
32 ' m 1180 708 1060 940 562 845 735
34 714 1070 •6'42 965 ;'567s , 852 508 763 '445 670
36 644 968 578 869 S509: 766 455 684 •403 606
40 523 786 470 706 '414.:^ 622 371- 557 328 494
Properties
in.' 57,0 52,1 46,8 42,8 38.7
fx, in. 5.07 5,03 4,99 4.96 4 .93
A,, in. : 3,77 3,74 3,71 3.68 3.65
ASD LRFD Flange thickness is greater tha n 2 in. Special requirements may apply per AISC
0,90
Specification Section A3,1c,
0,90
" Shape is slender for compression with F,-= 50 ksi.
——
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-93
Fy = 50 ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
WT16.5
Shape WT16.5X
lb/ft 120.5' 110.5" 100.5' 84.5=
PalQc P„/iic ^Pn Pnlilc PjSlc i <l>cP«
uesign
' ASD LRFD ASD LRFD ASD LRFD ' ASD LRFD
0 921 1380 780 1170 638 960 ' 466 ' 700
10 887 1330 754 1130 619 930 454 683
12 . 873 1310 742 1120 611 918 449 675
14 857 1290 729 1100 : 601 903 443 666
16 838 1260 • 714 1070 590 887 437 656
18 817 1230 . 698 1050 578 868 . 429 • 645
2 20 794 1190 680 1020 564 848 . 421 • . 633
s 22 • >70 1160 " 660 '' 993 ^50 826 : .412 620
•R
>f
24 • 744 1120 . 640 • 962 - 535 803 403- 605
1
26 717 1080 £il8 929 - 518 779 393S' 590
o
28 689 1040 596 . 896 ^01 753 ' 382.: ' 574
••5
S
30 . 660 992 i-573 861 484 727 37t 558
B 32 • 948 i 549 825 466 700 ' 360". 540;
34 • 601 903 • ^24 788 ' 447 672 348' 523
36 570 857 - 600 751 428 - 643 336 504
1 40 -510 766 . 450 677 . 390 586 - 311 467
0 921 1380 . 780 1170 638 960 466 700
g
10 774 1160 ' ' 648 974 S24 787 382 574
12/ 763 1150 640 962 518 779 369 555

14 746 1120 , 628 944 510 767 3S3 530
1
16 = 724 1090 611 919 499 751 333 501
s
18 • 696 1050 691 888 485 729 I 312 468
1 i2
20 664 997 ' 566 851 468 703 288 433
w i
22 628 945 538 809 448 673 264 397
24 591 889 509 ' 765 426 641 : 240 i 361
26 ~ 553 831 , 478 719 403 606 : 216 325
28 . 514 772 446 671 379 570 193 290
30 474 713 415 623 354 533 171 256
32 436 655 .. 383 575 330 496 151 227
34 398 598 352 528 305 459 134 202
36 361 543 321 ' 483 281 . 422 i 120 ^ 181
40 "^295 443 264 397 234 352 98.1 147
Properties
35.6
4.96
3.62
32.6
4.95
3.59
29.7
4.95
3.56
24.7
5.12
2.50
ASD
a<;=1.67
LRFD ' Shape is slender for compression witfi Fy~ 50 Icsi.
(tic = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-94
DESIGN OF COMPRESSION MEMBERS
WT16.5
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fv = 50 ksi
Shape
WT16.5X
Id/ft 76' 70.5' 65" 59"
Pn/Oc (^cPn <kP«
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 S ;390 ' , 586 325 V i 489 2?4 426 235 353
10 ; 381 r 573 : 3J9 ;, 479 278 418 231 347
12 , 377 , 587 ; sis 475 276 415 229,, 344
14 ^•373 560 312 : 469 273 410 227 341
16 553 : 3b8 ^ :. : 464 • 270 406 225 338
18 • 362 544 304 457 J 266 400 222 334
« 20 ,, 356 ' 535 299 . 450 , , 262 . 394 219 • 329
§
22 349 524 . : 294 442 258 388 , 216 • 324
•i
•S
X
24 342 513 • 289 434 • 254 • 381 212 319
•i
•S
X
26 . 334 502 : 283 , • 425 ; 249 374 209 • 314
s
28 ' 325 489 i 276 5 415 , 244 • 366 ^ 205 . 308
30 317 47S 270 405 • . 238 358 201 . 302
i 32 308 463 263 395 232 349 196 295
s
34 299 449 "256 ^ 384 i 226 340 192 288
36 289 435 = -; 248 'fv: 373 220 331 If 281
40 270 405 233 350 268 • 312 177 267
•f
0 -. 390 586 325 f": 489 284 426 235 353
g
10 467 . < 2^7'w 386 . 216 ' 325 172 < 259
12 302 454 " 250 376 - 212 318 • ' 169' 253:

14 437 242 364 •205 308 : 164;,, ' 246
g 16 S--277 416 231 348 197 295 • 158" 237
i
18 •'260 391 219 329 1^7 281 151,-. . 227
'g
« 20 242 364 • 205 : 308 176 264 . 143 214
w §
22 224 336 ; 191 286 164 246 134 201
24 S 205 308 175 264 151 227 124 187
26 i 186, 279 160 241 • 138 208 . 114 . 172
28 -167 251 •145 218 . 125 189 104-1- 157
30 223 :» 1^0 ^ 196 113 170 94J5 ' 142
32 198 116 174 1(31 • 152 - 84;s 127
34 f 118 177 • 104 A 156 90.3 136 76.3 115
36 ? 106 159 93.2 140 81,3 122 s 68.9 103
40 86.3 130 , 76.3': 115
Ag, in.^
r„ in.
ty, in.
Properties
22.5
5.14
2.47
ASD
!;1c=1.67
LRFD
ll)<;=0.90
20.7
5.15. .
2.43
19.1
5.18
2.38
17.4
5.20
2.32
' Shape is slender for compression wltti Fy^ 50 l(Si.
IVote: Heavy line indicates KL/r equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-95
Fy = 50 ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
WT15
Shape WT15X
lb/ft 195.5'> 178.5'' IBS'- 146 130.5 IIT-S-^
PnlCic <!>(!«> PnIO, Pn/Clc <kP« Pnl^o Pn'Cic
1
ASD. LRFD ASD LRFD ASD LRFD ASD LRFD lASDi LRFD ASO LRFD
0 1720 2590 1570 2360 1440, 2160 • 129Q; 1940 1150: 1730 988 1480
10 ; 1640; 2470 1490 2250 1360; 2050 : 1220 1840 1090' 1640 r 938 1410
12 Li 61 a 2410 1460 2200 v1330 2010 119® 1790 1070 1610 917 1380
14 1560 2350' 1420 2140 ,1300 1950 1W0 1750 ,1040S 1560, 893 1340
16 1520 2280:: ;1380; 2080 a260 1890 1130; 1690 1010: 1510 ¥ 866 1300
18 1470. 2210 1330 2010 ;1220 1830 : 1090 1630 9711 1460 836 1260
20 1410 2130 •1280 1930 >1170^ 1760 : 1040 1570 933 1400 .: 804 1210
22 1360 2040- ylZSO 1850 1680 ; 999 1500 892, 1340 770" 1160
24 1300 1950 1170 1760 1070 1610 95,2 1430 850 1280 734- 1100
26 1230 1850 1120 1680 1010 1520 ^ >903: 1360 g06:: 1210 698 1050
28 1170 1760 ;-1060> 1590 :;"959; 1440 8,53 1280. 761 • 1140 ? 660 '992
30 1100 1660 997 1500 904 1360 ^ 803 1210 716 1080 • 622 934
32 1040 1560 936 1410 5^848 1270 752 1130 670: 101,0; 583 877
34 973 1460 . 875 1320 ">792 1190 702, 1060 625 940 545 819
36 907 1360 815 1230 737 1110 i 652, 980 580 -872 507 762
40 781 1170 699 1050 630 947 |56„ 836 494 743 . 434 652
0 ,1720 2590 1570' 2360 3440; 2160 1930 1150. 1730 "988 1480
10 1560 2340 1410 2120 •1280 1930
1140:
1710 .1010 1510 833 1280
12 1510 2260 1370 2050 iiS4bi 1860 1100 1660 972 • 1460 835 1250
14 1450 2180 1310 1970 1190 1790 ; 1060, 1590 932 1400 808 1210
'16 ,1380 2080 1250 1880 rtisol 1710 '1010' 1520 889 1340 ' 774 1160
18 1310 1970' 1190 1790 1080 1620
1 956
1440 841: 1260 i 735 1100
20 1240 1860 1120 1680 1010 1520 : 900. 1350 791, 1190 ' 693 1040
22 M160 1750 1050 1580 :T948; 1420 : 8» 1260 739: 1110 648 974
24 1080 1630 : 977 1470 ;88V 1320 7g2 1180 686 1030 602 905
26 1000 1510 903 1360 814 1220 : 722, 1080 632 950; : 556 835
28 922 1390. 830 1250 -747: 1120
W-
995 579 „ 870 "509 765
30 843 1270. 1140 681 1020 603 906 526 791 ; 464 697
32 ; 7 66 1150 688 1030 617 927 546 820 475 714 : m 630
34 692 1040 620 932 »555. 834 490 737 425 639 , 376 566
36 619 931 555 834 495 744 438 658 380. 571 337 506
40 503 755 450; 677 ,t402 604 356: 535 309 464 274 412
Design
Properties
r„in.
57.6
4.61
3.67
52.5
4.56
3.64
48.0
4,52
3.60
43.0
4.48
3.58
38.5
4.46
3.53
34.7
4.41
3.51
ASD
nc=i.67
LRFD
= 0.90
• Flange ttiickness is greater than 2 in. Special requirements may apply per ABC.
Specification Section Pa.H.
= Shape is slender for compression with /j. = 50 ksi.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-96
DESIGN OF COMPRESSION MEMBERS
y
WT15
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy = 50 ksi
Shape
1VT15X
Ib/fl 105.5" 95.5' 86.5" 74" 66"
Pn/Cic ^cPn FCFLR PnH^ic
Design
ASO LRFD ASD' LRFD ASD LRFD ASD LRFD ASD LRFD
0 1250 -687 1030 557 838.. 469 704 384 577
10 794 1190 557- 987 536 805 452 680- '372: 558
12 778; 1170 ;644 968 527 791 445 669' 366! 551
14 759': 1140 630 946 516 775 '437 657 360' 542
16 737 1110 1613: 922 504 757 428 644 354 531
18 713 V 1070 595 894 '490 737 418 628 346 520
V) 20 ESSES 1030 575 865 476 715 .•407 612 338 508
22 661: 993 555 833 460 692 395 594 329 494
24 632 • 950 532 800 444 667 382 575 319 480
"S
26 . 602 i 905 509 766 427 641 369 555 309 465
28 I572 '- 860 486 730 • 409 615 355 534 299' 44?
•S
.1
30 813 ..482 694 '39I; 587 341 ' 513 ' 288 433
32 .•510 : 766 437> 657 372 559 327 . 491 277 416
34 478-^ : 719 412 620 T353 531 312 469 265 399.
§ 36 447 672 387 582 334 502 297 446 254 382
s
£
40 • 387'^ 581 339 509 •296 445 '267 401 230 346
•i 0 833I • 1250 "687 1030 557 838 '•469 704 384, 577
g
10 704 1060 574 862 460 691 • 374 561 : 297 447
12 692R 1040 565 850 455 683 >355 533 284 428
£ 14 1010 553 831 446 671 331' •498 .268 403
g 16 . 649 975 536- 805 IC435 ^ 654 305 459 . 249 374
18 • 620 931 514 773 420 632 • 277 4-T7 228' 343
f
M 20 882 '490 736 - 403 ' 606 249 374 207 310
g 22 551 829 '463 696 383 576 : 221 332 185 278
24 5I5.- 773 43'4 653 362 544 193 290 m 245
>•
26 477 717 I405 609 'I340 511 . 167 251 •142 214
28 439 660 375- 564 317 477^ 145 2T8 124 186
30 402' 604 340 520 295 443 127 191 109 164
32 365 " 549 316 476 '272 408 ' 112 168 ' -96.3 145
34 330 496 288 433 -249 375 99.6 150. , .85.8 129
36 296. 445 : 260 391 228 342 89.1 134 = 76.8 115
40 241: > 362 ^ 212 319 187 281
Properties
Aa, in} 31.1 28.0 25.4 21.8 19.5
in. 4.43 4.42 4 .42 4.63 4.66
fy, in. , 3.49' 3,46 3.42 2.28 2.25
ASD LRFD ' Shape is slender for compression witli fj. = 50 ksi.
0.90
Note: Heavy line indicates Ki/r equal to or greater ttian 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-97
Fy = 50 ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
WT15
Shape WT15X
lb/ft 62= 58= 54'' 49.5= 45=
PnlO.0 <t>c/'n P„IClc PnlSlc ^cPn PnlS^lc fcPn
Oesigt
ASD LRFD ASD LRFD ASD LRFO ASD LRFD ASD LRFD
0 327 • 492 292 439 256 384 214 322 159; 239
10 318 • 478 • 284 427 "249 374 209 314 156 i 235
12 314 472 280 422 246 370 • 207 311 155 233
14 309 465 277 416 243 365 204 307 153 231
16 304 457 272- 409 239 360 202 303 152, 228
18 298 448 267 ' 401 235 • 354 '198 298 150' 225
•a 20 291 438 261 ' 393 . 231 347 195 293 f47 222
« S" 22 284 427 255 384 226 339 191 287 145. 218
1
>< X 24 277 • 416 249- 374 220 331 187 281 143! 214
1
26 269 404 242 364 2f5 323 183 275 140 210
<s
& 28 261 392 235 353 209, 314 178 268 137 206
1
30 252 379 228' 342 203 ' 305 173 261 ik 201
£
32 243 365 220 331 , T96, 295 168 253 i?i; 196
s.
34 234 ' 351 212,, 319 '190 285 163 245 1 w
192
£ 36 224 337 204 307 .183 275 158 238 186
i 40 205 - 309 WC : 282 169 255 447 221 W'. 176
s?
0 327 492 292 439 256 384 2U; 322 • 159 239
jC.
s^
10 25^ 381 221 332 ,187 282 152i , 229 T'15' 173
12 ,244 " 366 21^- 320 t'si 272 147 ' 222 ip.
169
14 ^31 . 347 203 J 305 173 ' 260 141 212 163
£
16 -216 ': 325 19,0" 286 ,163 245 134 201 104' 157
1
18 199 300 17B' 265 152 228 125 188 kg 149
i 1
20 182 273 161 242 139 209 116 174 .92.9 140
<
22 164 247 146.:, 219 126 i 190 106 159 .86.4 130
si.
24 146 220 130 196- H14 171 95.3. 143 79.6 120
26 129 194 115 173 101 152 85.1 128 72.6 109
28 '113 169 101 152 88.5 133 75.2 113 65.7 98.7
30 99.1 149 8^.8 133 ^8.2 118 66.6 100 ,58.7 88.3
32 87.7,. 132 7M 118 69.5 105 59.4 89.3 52.5- 79.0
34 - 78.2-.- 118 70.3 106 J62.2 93.4 53.2 80.0 47.2 70.9
36 70.1 105 63.1 94.8
Properties
/Ijjn.^
fjJn.-
fy, in.:.
18.2
4.66
2.23
17.1
4.57
2.19
15.9
4.69
2.15
14.5
4.71
2.10
13.2
4.69
2.09
LRFD
ac=1.67 (l)c = 0.90
° Shape is slender for compression with Fy= 50. ksi.
Note: Heavy line indicates /a/f equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-98
DESIGN OF COMPRESSION MEMBERS
y
WT13.5
Table 4-7 (continued)
Available Strength in
Axial Gompression, kips
WT-Shapes
Fy = 50 ksi
Shape
WT13.5X
lb/ft 129 117.5 108.5 9r 89= 80.5'
Pnl0.c PnlClc 'kPn PnlCia PnlO.0 1fcP« <^cPn Pn/Cl, "t-cPn
Design
ASD LRFO ASD LRFD ASD LRFD ASD- LRFO ASD LRFD m LRFO
0 ; 1140: 1710 •1040 1560 958 1440 819 1230 736 .1110 605 909
10 ; 1070 1610 973 1460 .0896: 1350 7^7 1150 692 1040 1571 859
12 ^ 1040 1560 • 945 , 1420 p870: 1310 746 0 1120 673 1010 L557 837
14 1000 1510 : 913 1370 840: 1260 721 1080 651 979 ' S41 813
16 965: 1450 878 1320 807 1210 693 1040 943 • 522 785
18 ^ 924
1390 839 : 1260 771 1160 663,, 997 601 : 904. r 502 755
20 879- 1320 798 1200 732, 1100 , 632 949 573 862 481 723
a 22 832; 1250 756 1140 692- 1040 59,8, 899 5:44; 818 689
•s 24 784 1180 711 1070 651 978 5^3 847 514: 772 435? 654
26 734 1100 666 1000 609 915 528 794 4:83 , 725 i4ii'' 617
u
28 684, 1030
j ®20 ..
932 566 851 492 740 45t, 678 386 580
1
30 ^ 635r. 954 ,:575i: 864 .524 787 457 686 420 631 S361 543
s 32 ; 585 : 880 ' 530 , 796 il'82' 724 421 633 388': 584, . 3;36 606
^
34 ^ 537 807 ::486 : 730 .441 663 387" 581 358: .538 r3i2 469
CL
P.
36 737 •4443 666 401 603 ' 353. 531 328 493 288 433
£
4o ' ti.
604 362 544 327 492 29d 435 270 406 .;242 364
3 0 1710 1560 •'.958 1440 '819' 1230 1110 '^eos'- 909
E 10 i 1010 1510 908 1360 832 1250 703 1060 925 ,5b2 755
^ 12 : 96?; 1450- •872^ 1310 1200 683 1030 6bl;' 904 i493 740
s 14 9^2 1390 ':832, 1250 763 1150 657. 987 580 872 '478 719
f
16 : 8|4 1310 1180 7i2, 1090 624 938 553 831 •459 690
i
18 8?2 1230 '740 1110 6t9 1020 • 568 884 522- 784 : 436 655
1 t/i 20 ' 767 1150 690 1040 633 951 ; 549 825 4i88 733 411 617
i 22 711 1070 639 960 •886 880 508 764 452; 679 '•383- 576
24 653 982 ' 587 882 538 808 467 702 416 625 : 355;- 534
>•
26 . 596 896 535 804 490 737 426 640 .379 570 = 326 491
28 ' 54b' 812 484 727 443 666 386 579 343 516 1298 448
30 : 486 730 434 653 393 598 346 • 520 308 463 270 406
32 ; ^33'
651 581 •353 531 308 463 271;:' 412 365
34 '384 577 343 515 314 472 in 411 366 326
36 .343 515 ,306. 460 280 421 245 368 2ll8- 328 194 292
40 : 278 418 249 374 •228 342 199 299 178 267 158 238
Properties
Ac. m} 38.1 34.7 32.0 28.6 26.3 23.8
h, in.
4,02 4.00 3,96 3.94 3.97 3.95
ry, in. 3,36 3,33 3.32 3,29 3.25 3.23
LRFO ' Shape Is slender for compression with Ff-50 ksi.
He =1.67 (tic =0,90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-99
Fy = 50 ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
WT13.5
Shape Wn3.5x
lb/ft 73' 64.5'= ST' 51' 47'= 42^
Pnliic PnlCio PalQa 'l/cPn Pn/a^ ^Po PJCic
D^igt
ASO LBFD ASO LRFD ASD f LRFD ASO LRFO ASD LRFD ASD LRFD
0 493'. 742 432 : 649 351 527 ,262T 394 217 326 176 264
10 469 704 412'^ 619 336 505 253 380 210 ; 316 171 257
12 •458 689 403 606 330 : 496 249 374 207 ^ 311 169 253
14 446, 670 394 592 322 485 244 367 204 306 166 250
16 433 650 •383 • 575 314 472 239 359 200 : 300 <163 245
18 . 418 628 371V .557 305! 459 233 ' 350 196 294 160 241
M 20 .402' 604 ,358: 538 .296 • 444 227 341 191 : 287 157 235
a 22 385 578 344' 517 285 429 Z20' 531 186 I: 279 153 230
J
><
24 367 F 551 329 495 •274' , 412 213 520 .180 , 271 149 : ; 224 J
26 '348 524 •314; 472 263 ? 395 206 309 175 : 263 •145 218
f
28 330 495 298: . 449 251; 377 198 297 169 : 254 140 211
1 30 310 467 283 425 239: F -359 190 : 285 163 245 136 204
i 32 291 . 438 267 I 401 227. ; 341 ,181: 273 156 • 235 131 197
1
34 272 . 409 376 214 322 173; :: 260 150 : 225 126 190
36 25^; 381 :.235! • 352 202 303 165 .247 •143 216 121 182
£
s
40 216 : 325 305 m i 266 148 222 130 196 111 167
5 0 493- 742 J432 649 351, C 527 262 394 217 .326 176 264
t 10 406 610 S341; T 513 .270; 406 204 :: 306 1G7 . 251 I130 196
^ 12 399 • •600 ,32i; 482 :256I 385 195 294 161 242 126 190
14 390 586 296:;-» 445 239 359 185 277 153: 230 121 182
s
16 •377 566 269" T 405 220 330 172 , 258 144 : .216 115 172
1
18 361 542 : 242 ^ 363 199 298 158 238 133 . 200 107 161
CO 20 342 514 214'.* 321 177 < .266 143 I .216 122 : 183 98,7 148
§ 22 321 . 483 186 280 156 0 234 129 i 193 110 .,: 166 3 90.1 135
24 300 451 160 240 135: = 204 ,114 : 172 98.9 149 ': 81.3 122
26 278 418 ;137; 206 117 175 100 150 87.7 132 72.7 109
28 256 385 1I19I.i 179 101 152 ,87:1 131 76.8 ,115 - 64.1 96,4
30 -234 352 104!' 156 88.9 134 765 115 67.6 102 R- 56.6 85,1
32 212 319 ; 91I8. 138 "78.6. .118 67 7 102 59,9 •90.0 t 50.3 75,7
34 192 288 123 69.9 105 603 90,6 • 53.4 80.3 45.0 67,6
36 172' 258 • 72.9 110 62.6 94.0
40 140 211
Properties
21.6
3.95
3.20
18.9
4.13
2.21
16.8
4,15
2,18
15.0
4.14
2.15
13.8
4.16
2.12
12,4
4.18
2,07
) LRFO
C=0,90
Shape is slender for compression with Fy= 50 i<si.
Note: Heavy line indicates tt/r equal to or greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-100 DESIGN OF COMPRESSION MEMBERS
y
WT12
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy = 50 ksi
Shape WT12X
lb/ft 185" 167,5" 153" 139.5" 125 114.5
PnlOc 4cPn Pn/Oc <HcPn PJClc i^cPn PnlClc <|)cPo P„IQo M P«/Qc
Design
ASD LRFD Asn LRFD ASD LRFD ASD LRFD ASD LRFD ASD' LRFD
0 1630 2450 n'afi-.2210 1340 2020 1230 1850 1100' 1660 1010 1510
10 1520 2280 2050 1240 1870 f130 1700 1020' 1530 - 1390
12 1470 .2210 :132'0, 1980 1200 1810 1100 1650 981 1470 • ^94. 1340
14 .1410 2120 127:0 1900 1160 ,1740 1050 1580 940 1410 • 856 1290
16 M350 2030 •421:0; 1820 1100 1660 1000 1510 896 1350 815 1230
IS mo 1930 1730 ^1050 1570 950 1430 84I8- 1270 '771 1160
20 1220 1830 •109,0; 1630 987 1480 895 1340 798 1200 724 1090
22 1140 1720 1020 1530 925 1390 837 1260 • 745 1120 676" 1020
1
><
24 1070 1600 -851 1430 861 1290 779 1170 692 1040 627 942
**
26 099,2 1490 881 1320 797 1200 719 .1080 633 .959 ' 577 868
f
28 916 •1380 1220 733 1100 661 ,993 585 879 528 794
1 30 1260 1120 670 1010 •603 906 532 800 480 722
i 32 767 1150 •'677I 1020 915 546 821 4812 724 " 434 652
M
34 696 1050 ?tf6lj3r • 921 3550: 827 492 740 433 .651 389 584
ss
36 627 943 '550 827 492 -740 44,0 661 386 < 581 • 347 521
40 508 .764 670 399 599 356 .: 536 -313 470 281 422
S
0 1630 2450 1470 2210 1340 2020 1230 1840 1100 1660 1010 1510
t 10 i 14610 2200 a 31-0: 1970 1190 1800 1090 1630 969 1460 - 879 1320
^ 12 1400 2110 1260 1890 1140 .1720 1040 1,560 926 1390 839 1260
14 1330 2000 119*0 1790 1080 1630 < 984 1480 877 1320 . 794 1190
g
16 1260 1890 1120 1690 1020 1530 •925 1390 823 1240 745 1120
i
18 '1180 •1770 IO# 1580 952 1430 1300 W
1150 693 1040
1 tti 20 10^ 1640 ?'97|2 1460 881 1320 797 1200 708 1060 639 961
g 22 LOL'O 1510 •5894 1340 f 809 1220 731 1100 -648 974 584 878
24 919 1380 815 1230 737 1110 i 664 998 588' 884 529 796
26 833. 1250 738 1110 66.5. 1000 599 900 529 796 476 715
28 75Q 1130 662 995 896 535 805 472 710 424 637
30 669 1010 589 '886 796 474 713 • 417- 627 373 561
32 -'591 889 781 ---466 700 417. 627 ,.367J 552 ' 328 493
34 524 788 460 692 621 370': 556 325 489 .291 438
36 468 703 411 618 •3695 554 330 496 290 437 •'260 391
40 379 570 333. 501 299 449 2^ 402 ' 236 • 354 211 317
Properties
Ag, in.^
r,, in.
ry, in..,
54.5
3.78
3.27
49.1
3.73
3.23
44.9
3.69
3.20
41.0
3.65
3.17
36.8
3.61
-3.14
33.6
3.58
3.11
ASD
£2C=1.67
LRFD
(l)c = 0.9
' Range thickness is greater than 2 in. Special requirements may apply per AiSC
Spectoton Section A3.1 G.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-101
Fy = 60 ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
y
WT12
Shape wn2x
lb/ft 103.5 96
Pn/Go PnlClc (kPn (HcPn Pjnc i>cPn PN/n,
Desigi
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 •• 9Q7 1360 844 1270 772 1160 716 1080 605 909
10 834 1250 ' 776 1170 . 709 1070 657 987 ^58 839
12 804' 1210 : 748 1120 ^ 683 1030 632 950 539 810
14 ' 770 1160 : 715 1080 ; 653 982 605 909 , 516, 776
16 733' 1100 680 1020 621; 933 574 863 :492 740
18 692 1040 ; 642 965 586 880 542 814 466 700
•sa 20 649 976 602 905 549 825 '507; 763 438 658
h 22 ^ 605I 910 set 843 511' 768 472 709 '409 615
i
24 ; 561 843 519 780 : 472 710 : 436 656 380 571
a
26 ; 516 775 : 477 717 I 433 652 ^ 400 602 350. 527
i
28 : 471: 708 ; 435 654 : 395 594 365^ .548 ^321 483
1
30 : m 643 : 395 593 358 538 330: 496 292' 440
i 32 386 580 i 355 534 322 484 : 297 446 ;265; 398
34 ; 345'; 518 : 317 477 287 431 : 264 397 •238 357
f
36 : 308 462 283 425 256 385 : 236 354 , ^212 319
40 249. 374 229 345 207, 312 ; 19T: 287 ; '172 '258
"S 0 907 1360 : 844 1270 772 1160 ; 716 1080 605 909
e
10 . 787 1180 728 1090 ; 660 991 605 909 '504 758
Si 12 751 1130 1 694 1040 629 945 i: sm 867 -488 734
14 710 1070 ^ 657 987 594 893 546 821 . :466! 701
JW
16 665 1000 : 616 925 557 837 512 770 :439: 660
18 618 929 572 860 517 777 : m 715 410, 616
1
« 20 570:. 856 ^ 527 792 475 715 438 659 378' 568
UJ 22 520 781 481. 722 433 651 400 602 345 519
24 470 707 435 653 391 588 362 544 313 470
26 422 634 390 586 350 526 ^ 324 488 281' 422
28 375 563 346 520 310 467 288 433 '250, 375
30 329 495 304 457 : 272 409 253 380 •'220 330
32 290 436 : 268 402 : 240 360 223 335 194 291
34 257 387 237 357 : 320 198 297 .172 259
36 230 345 212 319 190 286 177 266 154' 231
40 186 280 172 259 1S4 232 144 216 125 188
Properties
Ag, in
'I
30.3 28.2 25.8 23.9 21.5
h, in. 3.55 3.53 3.51 3.50 3.50
FY,m, . 3.08 3.07 3.04 3.05 3.01
ASD LRFO ® Shape is slender tor compression with Fy -= 50 ksi.
0.90
81 73'
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-102
DESIGN OF COMPRESSION MEMBERS
y
WT12
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy = 50 ksi
Shape
WT12X
lb/ft 65.5" 58.5' 52" 51.5'
47c
p«iac ^ePn P„IQ.c P»/£Jc (kPn PnlO.0 1>cP»
Design
ASD LRFD ASD LRFO ASD LRFD ASD LRFD ASD. LRFD
0 769 ; 409 :; 615 317 ^ 476 : 349:;. 525 292 439
10 .474 713 K382I! 574 299 • 449 329 494-: 276 415
12 459 : 690 k371:: 557. 291; 438 : 32tt : : 481 270 405
14 441 > 663 .358 538 282 • 424 310 467 262 394
16 422 634 " 344: 517 275 410 299 450 254 381
18 ; :.40i: 602 i 328: 493 262 , 393 : 287. :. 432 244 367
« 20 i379 569 ^ 312 : 468 250- 376 274 412:: 234 352
22 ;355 534 : m 443 238: 358 261 : 392 224 336
•R
><
24 332 498 277: 416 225 339 : 247: :: 371 212 319
"S
26 .308 462 .258 388 : 213 319 232 349 201 302
28 : 28 4 426 • 240. 361 199 300 " 218- :, 327 -189 285
1
30 260 : 391 222 334 186: 280 \203:: 305 178 267
i 32 356 : 204.. 307 173' 260 :188: 283 166 249
34 . 2 T4 322 280 160 240 M74: ::. 261 154' 232
s
.36 193 289 170 255 147- 221 160 . 240 143 215
s
40 L: 1S6. 234 ; 138 208 123 ; 185 133 199 121 181
s:
0 ST1 769 409 615 : 317:?. . 476 . 349 525 '292' 439
g
10 • 41.6 : 625 ,. 327- . 491 249:: 375 267 401 223 335
12 ; ^405 608 : 320;: ,: 481 246:' 369 246 369 207, 311
£ 14 ; 389 585 ^•310i : 466 240 360 222 333 189 284
g
16 : 369 : 554 ; 297 446 232 348 :197 r : 296 169 . 255
i
18 345 519 1 280 422 221 333 : 1-71: 258 149 225
CQ 20 :-320 481 ' 262 394 209 314 147 221 130 195
§ 22 294 442 243- 365 ; 196 294 • 124 , 186 110 166
24 267 402 223 335 182 273 105 157 o93.7 141
26 241 362 203 305 167 252 89:6 135 f 80.4 121
28 215 323 183 275 : 1-53 230 77.6 117 69.7 105
30 ;::i:90 286 . 1.64 . 246 139 208 67,8 102 161.-0 91,7
32 168 252 : 145: :; 218 -12S= 188 59.8 89,8 .53.8 80,9
34 224 129 194 111 167
36 134 201 lie 174 ; 100 150
40 109 164 '94.5 142 • 81.7 123
Properties
>4„, in.^ 19.3 17.2 15.3 15.1 13.8
rx, in.
3.52 3.51 3.51 3.67 3,67
fy, in. 2.97 2.94 2.91 1.99 1.98
ASH LRFD ' Shape is slender for compression witii Fy = 50 ksi.
0.90
Note: Heavy line indicates /a/requal to or greater than 200.
n<;=i.67 <t>c =
0.90
___
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-103
Fy = 50 ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
y
WT12
Shape WT12X
lb/ft
42^
38" 34'= 31' 27.5"
PJiic ^cPn Pnll^c PalOc Pn'Cic i^cPn
uesign
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
• 'fir-i
ASD LRFD
0 '225 is 338 480 , 271 i146 219 . 142 214 109 163
10 215 '" 323 173 ~ 260 140 211 137 206 105. 158
12 210 " 31« 170 255 138' 207 •135 203 104 156
14 205 308 166 249 •'135 203 132 ' 199 102. 153
16 199 300 162^ 243 ^132 199 ltl9 194 •99,9 150
18 193 290 157 236 129 194 126 189 • 97.7 147
20 186 280 229 125 188 122 184 ,95,3 143
«
22 179 , 269 147 221 121' 183 118 . 178 92,8 , 139
CO
3 2ft
171 257 142 • 213 117' 176 . 114 172 'ko 135
ra
26 163 245 136 204 f13 170 110 165 87.1 131
s 28 155 233 130 195 109 163 105 159 84.1 126
i
30 •'147 221 1?4 186 104 156 101 152 81.0 122
ts
a>
32 139 208 117 176 99,2 149 96,2 145 '77.8 117
&
£
34 130 196 111 ; 167 -94,5 142 - 91,5. 138 74.5' 112 &
£
36 122 . 183 105 158 89,6 135 86.7 130 71.1 107
f
40 "105 158 92.3 139 . 80,0 120 rrz 116 64.V' 96.8
e 0 225 • 338 180 271 J , 219 142 214 109 163
s
10 -172 " 258 136 205 107 160 90,2 136 •-'^8,2 103
fi 12 162 244 130' 195 i02, 154 ' 80,9 122 "62,0 93.2
s 14 150 • 226 121 182 96,3 145 70.4 106 '54,9 82.6
.1
16 '137 • 205 112 168 - 89,3 134 • 59.7' 89,7 '47,4 71.3
£
V)
18 122 , 184 101 152 ^81.5 122 49.3 74,1 39,9 59,9
£
20 108 J 162 90.4 136 73,4 110 . 4.1.0 61.6 33,4 50,2
22 94.6; 141 79.8 120 65,2 98,0 34.6: 51,9 28,3 42,5
24 80.5 121 69.3 104 ; 57.2 85,9
26 69.3 104 • 59,8 89,9 49,5 74,5
28 60.2 90,4 52.1
"V
78,3 43,3 65,1 • '
30 79.3 45.7 68,7 . 38,1 57,3
32 46,6, 70.0 40.4 60.7
Properties
Ag,m
2
12.4 11.2 10,00 9.11 8,10 ,
/>, in. 3.67 3.68 3.70 3;79 3.80
/>, in. 1.95 1,92 1.87 1,38 1,34
ASD LRFD ' Shape is slender for compression with Fy-= 50 ksi.
a c=1.67 <t'c =
0,90
Note: Heavy line indicates KL/retiual to or greater ttian 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-104 DESIGN OF COMPRESSION MEMBERS
WT10.5
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy = 50ksi
Shape WT10.5X
lb/ft 100.5 91 83 73.5 66 61
Pni^c m PJOc ifoPn PnlClc p„/ac ^oP, PnlClc Pnliic ^cPn
Design
ASO LRFC ASD LRFD ASD LRFD ' ASD LRFD ASD LRFD AS'O LRFD
0 886 1330 B02 , 1210 731 1100 647 , 972 581 873 535 804
10 794: 1190 718 1080 mz 980 579 870 - 519 .•-780 m 717
12 757 1140 683 1030 620 932 551 828 494 742 4^4 682
14 715 1070 .645 969 584 878 520 782 466 700 ,428 643
16 669, 1010 .. 603 906 546 820 487 ,. 732 436 655 •400 601
18 621, 934 559 840 •505 759 451 , 678 403; 606 "370 556
20 572 859 513 . 771 .463 696 415 624 370 557 339 510
22 521,:, 784 467 702 421 633 378 568 337 507 308 464
1
24 471: 709 422 634 ,379 570 341 • 513 304 457 , 278 418
26 42S' 635 377 567 338 508 305 459 272 408 "248 373
i
28 3ft', 564 334 502 ,299 449 27t 407 241 362 219 330
1
30 ,330,' 496 293 440 262 393 238 357 211 317 192 288
i 32 290 ^ 436 ' 257 387 '230 345 209- 314 1,85 278 •1^9 253
34 257' 386 , 228 • 343 ^04 306 185' 278 164, 247 149 225
w 36 229 " 344 203 • 306 182 273 165 248 146 220 133 200
1
40 186 279 165 -248 -147 221 134. 201 118 178 '408 162
•g 0 886 1330 802, 1210 I3t„ 1100 .Ml-972 873, ..535 804
t 10 774 1160 697 1050 6ZZ 949 548 824 486 730 439 660
Si 12 737 1110 663 996 601 903 52) 783 462 694 423 636
£ 14 6^5 1040 625 939 566 851 491 738 435 654 401 603
0}
16 649 975 583 877 '.528 794 458 688 406 610 375 563
w
1
18 601 903 540 811 .489 734 423 636 _375 563 346 519
w
1
20 551 828 494 743 448 673 387- 582 • 343 515 315 474
lU 22 501 753 449 675 ,406 611 351 527 311 467 285 -428
>-
24 451 678 404 ' 607 '365 549 315 473 27a' 419 254 • 382
26 4Q2 605 •360 •541 :325: 489 280 420 247 372 •225 338
28 355 534 317 477 '28K 431 246, 370 217 326 1^6 295
30 ,311 467 , i7i [ 417 377 215 323 1,90" 285 172 258
32 In 411 -367 :22o: 331 189 284 167 251 151 227
34 242 364 216 325 .^95 294 ; 168 252 14^ 223 '134 202
36 216 325 193 290 '175 262 150 225 132 199 120 181
40 175 264 157 235 142 213 122 183 108 162 97.6 147
Properties
ko, in.' 29.6 26.8 24.4 21,6 19,4 17.9
h, in. 3.10 3.07 3.04 ^ 3.08 3,06 3.04
fy, in. 3.02 3,00 2.99 2,95 2.93 2.91
k ASD^ LRFO
ac=i.67 (t)c = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-105
Fv = 50 ks
Table 4-^7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
WT10.5
Shape WT10.5X
lb/ft 55.5° 50.5' 46.5' 41.5= 36.5" 34'
Design
Pn/Oe
ASD
<l>cPn
LRFD ASD
PnlCic
LRFD ASD
Pnl^c
LRFD ASD
fli/nc fcPn
LRFD ASO LRFD ASD LRFD
447
402
384
364
341
318
294
269
244
22a
146'
T74
153
135
121
97.6
671
604
57/
546
513
478
441
,404
367
330
295
261
229
203
181
147
334
320
305'
288
270
251 '
231
212
192
174
155
'138
122
109 ^
88.1
552
502
481
458
432
405
377
348
318
289
261
233
207
183
163
132
396
360 :
345
328 ;
310
290 ,
270 ,
,249
•^228
207,
186 '
167 ,
148
131
117
94.4
596
541
518
493
465
436
405
374
342
311
280
250
222
196
175
142
312
286
275
263
m •
236
221
205
^189 '
174
158
143
128
114 •
102
82.5
469
430
414
396
376
354
331
308
285
261
238
215
193
172
153
124
233
217;
210
202
.193
183
173
163
152
141
130 ,
119;
109
98.7
88.8
71.9
351
.325
315
303
290
275
260
245
228
212
196
179
164
146
133
108
197
1^4
.178
'172
165
I158
.ido
142?
133
125
116
107
98.5
^0.1
52.0
66.8
296
276
268
259
249
238
226
213
200
187
174
16i:
148
135
123
100
ms
364
354
,-338
-318 ,
296
'272 •
248:
223 •
199
176
154
136
121:
108
8il
.671
547
531
508
478
44S
409
372
336
300
265
232
205
182
163
132
298
292
281
267
251
233
214
:195
176
157,
139: :
123^
109
97.9
7917
552
448
438
422
401
377
350
321
293
264
237
210
185
165
147
120
396
276
243;
209 •
175 .
142 I
117 !
97.0
81i9
70.1
60.6:
52.9
596
415
366
314
263
214
175
146
123
105
91.1
79.6
.^12 •
222
199
174 •
149 .
124
102
84.9
71,8
61.4
532
46.5
469
334
299
262
223
186
153
128
108
92.4
79.9
69.8
233
170
155
138
121
103
86.4
72.2
61.1
52.4
.,.:3A7-
351
256
233
208
181
155
130
108
91.9
78.8
68.2
59.7
I45
134
121
,107
92.6
78.9
66.2
56.1
48.2
41.8
36.5
296
218
201
181
160
139
119
99.5
844
72.4
62.8
54.9
Properties
AaAn?
in.
r., in.. :
16.3
3.03
2.90
14.9
3.01
2.89
13.7
3.25
1.84
12.2
3.22
1.83
10.7
3.21
1.81
10.0
3.20
1.80
ASD
nc=i.67
LRFD
(t)c = 0.90
Shape is slender for compression witli Fy- 50 l<si.
Note: Heavy line indicates KL/r equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-106
DESIGN OF COMPRESSION MEMBERS
y
Table 4-7 (continued)

Strenath in
Axial Compression, kips
Fy-= 50ksi
y
WT10.S
WT-Shapes
Shape WT10.5X
lb/ft 31' 27.5" 24= 28.5' • 25= 22=
<t>cP« PafQc <l>cP« Pn/Oc p„/ac P^/iic <t>cPa Pn/iic ^Pn
Design
ASD LRFD ASD LRFD ASD LRFD ASD> LRFD ASD LRFD ASD LRFD
0 158 238 •127 190 98.0 147 150 225 117 177 90.0 135
10 149 224 120 181 93.6 141 141 212 112 168 86.1 129
12 145 218 117, ' 176 91.7 138 138 207 109 164 f84.4 127
14 i'4l' 212 -114: 172 89.6 135 134 201 106 i60 82.5 124
16 136 204 ill 166 87.1 131 129 194 i03' -155 '80.3 121
18 131; 196 107: 160 84.5 127 124 186 99.4 149 77.9 117
« 20 125 188 103^ • 154 81.6 123 t19 178 95.6 144 , 113
22 119 179 98,1 147 78.5 118 113 170 "91.5 138 :72.S 109
<0
13
><
24 113 169 93.5 140 75.3 113 107 161 87.3 131 69.6" 105
1
26 106:/ 159 : • 88;7 133 71.9 108 101 "152 82.9 125 66.6 100
1
28 gas; 150 83:8 126 68.4 103 94.9 143 78:4 118 63.5 95.4
30 140 78:8 .1,18 64.9 97.5 88.7 133 73.9 111 '6P,3 90.6
ts 32 ;.:86.4 130 73.8 111 -61.^ 92.1 82,5 124 69.3 104 57 J3 85.7
w 34 -79.9 120: 68;9 103 57.7 86.7 76.5 115 64!7 97.3 ?53.8 80.8
£
36 73.5, 111 64l(> 96.1 54.1 81.3 ,70,5 106 60.2 90.5 5b.5 76.0
1
40 61.4 92.2 54.5 81.9 47.0 70.7 59.1 • 88.8 • eiiiT 77.4 -mi -66,4
g i 0 158i 238 127, 190 98.0. 147 150. 225 J17
177 135
^
10 176 90.7 136 66.7 100 • '96.2 145 73.3 110 55.'3 83.1
i 12 '109 164 .8514 128: 63.S 95.1 •83.4 125 €4,3 ' 96.6 "49.2 74.0
s
14 99.6 150 -78.8 118 58.9 88.5 70.1 105 '54.6 8-2.0 42.5 63.9
s 16 89:2 134 71.3 107 53.7 80.8 57,1 85.9 44,9 67.5 '3k7 53.6
I
18 ::78;5 118 = 63;4 95.3 48.2 72:4 46.0 69.2 36.5 54;8 ,•29.3 44.0
UJ
f 20 67=9 102 55:i 83.3 42.4 63.8 37.8 56.8 30.1 45,3 24.3, 36,6
>•
22 57.7 86.7 47.6 71.5 36,7 55.2 31.5 47.4 i.
24 .. 49;o .73.7 40.6 61.1 31,6 47,5
26 ;42,# 63.4 35.1 52:7 27.4 41,2
28 55,0 • 3m 45.9
Properties
9.13 8 .10 7.07 8.37 7.36 6.49
in. 3.21 3.23 3.26 3.29 . 3.30 3.31
Ay, in. . 1.77 1.73 1.66 1.35 1.30 1.26
ASD
nc=1.67
LRFD
(t>c=0.90
"Shape is slender for compression with ^=60k5i.
Note; Heavy line indicates 7f/./r equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-107
Fy = 50 ksi
Table 4-7 (continued)
Avaiiabie Strength in
Axiai Compression, kips
WT-Shapes
WT9
Shape WT9x
lb/ft 87.5 79 71.5 65 59.5 53
PnlClc ^Pn P„/Slc i}oPn PnlUc ^cPn /•n/Hc "Ite/'n PalSlc <l>cP» /•n/fic
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 769 1160 695 1040 629 945 575 864 ,527 ' 792 467 702
10 663 •997 597 897 538 809 •491; 738 45r 678 399 600
12 621 933 558 839 .502 755 V458 688 421 633 ';373 560
14 575 864 515 . 775 ,463 696 422.. . 634 388 584 516
16 526 790 ::476: ^ 707 422 634 383 576 S354 532 1313 470
18 475 714 , m: 638 380 571 344 ; 518 .3ia 478 281 422
.a 20 •424 638 . 378 568 337 507 305 459 283 425 ::249»: 375
S 22 374 563 • 332 500 296 445 267 402 <248 373 .219 328
iS
K
{Q
24 327 • 491 28&: •,434 256 385 231 •347 '21,5: ,: 323 si $9 r 284
26 281 422 ^48 .372 219 329 '197; 297 ::i84;: 276 fn62 243
i
28 242 364 321 189 284 m • 256 31;58i': • 238 209
1
30 211 317 280 165 247 14& ' •223 • 207- 021 . 182
i 32 185 279 -^^ejtft 246 145 217 \i3o; 196 182 107 160
8
34 164 .247 218 128 193 •:n5 173 .107 f •161 •94.5 142
w 36 146 . 220 194 114 ; 172 •103^ . 155 . ^gas: 144 84.3 127
40 ,119 178 157 92.6 139 ; '83:4 •;.125 rt:77i6 117 ••|8.3: 103
•| 0 769 1160 •:695;! 1040 629 945 ,864 792 .467 , • 702
g
10 661 993 : 594: 892 535 804 730 ::44i' • 662 578
12 622 936 559 840 503 756 686 414 622 362 544

14 580 871 520 782 468 703 • 638 385; 578 336 505
16 534 803 479 720 430 . 647 .mj 586 S354 r: 532 308 464
18 487 732 436 655 391^ •588 mil, 532 321 483 280 421
1 m 20 .439- 659 392" 589 •352 528 <318^ ' 478 t88 :: 433 251. • 377
u 1 22 391 588 :;345 525 312 470 '282-, 424 256 385 222 & 334
>•
24 545 518 30? 462 274 412 .247 372 224- 337 •194 292
26 300 452 267 401 238 358 214 322 •194; 292 168 252
28 •25? 390 346 20Es,l 309 7185 278 252 145 218
30 226 340 201 302 179 " 269 ..i16li • 242 t46 220 •126 190
32 199 299 177 266 158 * 237 142 213 129: 193 •111 167
34 176 265 157 235 ri 40 " 210 126' 189 114' ' 172 ; 98.7 148
36 157 236 140 210 125 187 112 169 102 153 88.2 133
40 127 191 113 170 101 : 152 91.0 137 82.6 124 71.5 108
Properties
Ag, ln.2
Of, in.
ASD
25.7
2.66
2.76
23.2
2.63
2.74
21.0
2.60
2.72
19.2
2.58
2.70
17.6
2.60
2.69
15.6
2.59
2.66
fie =1.67
LRFD
c = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-108
DESIGN OF COMPRESSION MEMBERS
WT9
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy = 50 ksl
Shape WT9x
lb/ft 48.5 43° 38= 35.5' 32.5' 30°
Pn/Clc ^cPn Pn/Qc AcPn p„/ac ^cPn P^/Oc i>cP« PnlS^c "ticPfl
Design
ASO LRFO ASfil'i LRFD ASD. LRFD ASO LRFD ASO LRFD A^ LRFD
0 425' 639 534: .274t 412 299 • 450 250 376 210 315
10 362 544 306^ 459 239 360 262 • 393 "221 . 332 ;187 281
12 337 507 286 430 226 339 246 • 370 209 314 178 267
14 310 466 i264,; 397 :210 ' 316 230 ,345 196 295 168 252
16 282 424 \24lr 363 1:94 292 212 319 182 273 f157 235
16 253 380 '218 : 327 266 193 291 167 251 -145 218
20 224, 336 194 292 160.; 240 175 262 •152: 1 229 . 133 . 200
22 -195 294 •171,- 257 ?14r 215 156 234 137 206 121 " 182
'i
X
24 169 253 149' 223 :126: 190 138 207 122 184 109 -164
•a 26 144 216 128 ^ .192 ;110 : 166 120 • 181 108' , 162 •• 97.T 146
o
28 124 186 .110, 165 143 104 ^ 156 84,1 141 85.9 129
'•S
.E
30 108 162 ?i95i8 144 ;,i83;f 125 90.6. 136 81.9 123 75.1 113
3 32 94.9 143 84,2 127 K73.0 110 79.6^ 120 72.0 108 66.0 99,2
t
34 84.0 126 74.6 112 97,2 70,5, 106 ' 63.8. 95,9 i>58.5 87:9
t
36 75,0 113 100 57.7 86,7 62,9 94,5 56,9 85.5 • 52.2 78,4
£
40 60.7ij 912 81.0 46.7 .70,2 -50.9 76,6 46.1 69.3 42.3 63,5
S 0 425'•• 639 534 274 412 299 450 250 • 376 21,0 315
t 10 347 . 522 ,287;- 431: :219 330 200 301 •171 . 258 H47 221
Si 12 ^327 491 274 412 212.^ 319 173 . 259 150 225 '130 195
s 14 303; 456 258,:;, 387 j2p2 304 144 . 217 127 , 191 •112 168
g 16 279 41ft 238!| 358 189 ,284 117 •. 176 105 -158 • 93.7 141
i
18 253^ 380 217:; 326 174 262 93.5 140 84.4 127 76.6 115
n 20 226' 340 v185 ' 293 159 238 76.3 115. •68.9 104 . 62.6 94,1
w % 22 200 301 ,173; 260 143, 215 63.3 95,2 57.3 86.1 52.1 78.3
24 175 263 152 229 127 191 53.4' 80.3 48.4 72.7 44.0 66,1
26 151; 227 .132; 198 112 169 45.7 68,6 41.3 62.1 37.6 56,6
28 ilSli 196 114; 172 147 39,5 59,3 35,7 53.7 32.6 48.9
30 ac 171 99.8 150 128
' , 1
32 100 151 : 88.0 132 113
34 890 134 M17 :66;9 .101
36 79.6 120 ,69.8 105 59;9 90,0
40 . 64^6 97.0 56,7 85.2 48.7 73.1
ProperHes
An, in.2 14.2 12.7 11.1 10.4 9,55 8,82
Or, in. 2.56 2.55 2.54 2,74 2,72 2,71
/>, in. 2.65 2.63 ; 2.61 1.70 1,69 168
i
ASO LBFD ' Shape is slender for compression with Fy= 50 ksi.
ac
Note: Heaw line indicates /ft/r equal to or greater than 200.
ac = l,b/ (t>c = U.9U
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-109
Table 4-7 (continued)
1 /
A%feiiioKiA QtfAnnth in
Fy = 50 ksi Compression, kips
WT-Shapes
y
WT9
Shape WT9x
lb/ft 27.5' 25' 23" 20? 17.5=
vnc M M M M Pn/Oc M
Design
ASD.= LRFD ASO LRFD ASD LRFD ASD . LRFD ASO' LRFD
0 178 267 136 • 205 ' 129 193 p.3 131 •mg 107
10 lio 241 5125 187 177 ?81.5 123 '66,6 100
12 153 ' 230 120 • 180 ii4 171 • 79.r" 119 .'64,8 97,4
14 '145 • 218 114 172 id9 163 tf 76.3 115 62,7 94.3
16 •136 204 108 163 .103 155 73.3 110 90.8
18 127 -190 102 153 "97.1 146 69,9 105 •S7.9 87,1
20 1'17 176 95.2 143, S0.8 137 ''66.4 99.8 83.1
•g 22 107 " 161 88.3 133 84.4 127 62.7 94.2 . 78.8
J
24 97,1 146 81.3 122 "77.9 117 ; 58.8 88.4 49.5 74.5
26 8W 131 74.4 112 71.4 107 54.9 82.6 &,6 70,0
i
28 78.0 117 67.5 101 65.0 97.7 51.0 76.7 43,5 65,4
i
30 69.0, 104 kffl 91.5 58.8 88.3 y 47.1 ' 70.8 40,^ 60,9
g 32 60.6 91.1 54.5 81,9 52.7 79.3 . 43.3,,. ,65.0 |7-5 56,4
s
34 53.7 80.7 48.3 72,6 46.9 70.5 39.5 59.4 r34,5 51,9
J 36 -47.9| 72.0 4il 64.8 '41.8 62.9 35.r • 54.0 47.6
•|
40 38 8 58.3 52.5 33.9 50.9 ••29.2 43.9 •26-2f- 39i3
g 0 178 267 136- 205 1^9' 193 87.3 131 .70,9 107
10 •125 • 188 98S 149 80.0 120 58.3 87.7 'itS.O 67.6
fi 12 •112 168 90.0 135 101 '^51.0 76.6 39.6 59,4
1 14 147 > 80.8- 120 <55,0 82.6 --43,3 65.1 ^3.7 50,6
1
16 82.8 125 •69.6 105 43.4 65,2 '35.8 53.7 27.9 41,9
1
w
18 • 68 J; 103 59.3 89.1 34.7 52,2 28.8 43.4 22.6 , 34,0
UJ
20 56.3 84.7 49.4 74.2 28.4 42,6 ' 23.6 35.5 28.0
>-
22 47.0: 70.6 41.2 62.0
24 39.7 59.7 |4.9 52.5 1
26 34.0 51.1 29.9 45,0
1
- '
Properties
Ag, in
,2
8.10 7.34 6.77 5.88 5,15
h, in. 2.71 2.70 2.77 2.76 2,79
fy, in. 1.67 1.65 1.29 1.27 1,22
ASO LRFD ' Shape is slender for compression with fy= = 50 ksi.
n
Note: Heavy line indicates KUr equal to or greater ttian 200,
n c = 1.67 <t>c = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-526
DESIGN OF COMPRESSION MEMBERS
WT8
Table 4-7 (continued)
Available Strength In
Axial Compression, kips
WT-Shapes
Fy = 50ksi
Shape
WT8x
lb/ft 50 44.5 38.5° 33.5= 28.5" 25'
FT/OC /5,/nc 4c/'« p«mc PnlS^c
Design;.
ASD LRFD ASD LRFD •ASD LRFD ASD LRFD ASD LRFD ASb~ LRFD
0 440 662 .392 590 334 501 252C' 379 236 • 355 182 273
10 359 540 5320: 481 271 408 210- 316 199 299 156 235
12 329 494 292 439 248 372 194 , 291 185". 278 146 220
14 296 445 263 395 222 334 176 265 169 254 .135 203
16 262 ^ ^ 394 2312 349 196 295 158 237 153 ; 229 •124 186
18 228 ^ 343 202 304 171 256 139"V. 209 136 204 112 168
<A 20 196 ?94 173 . 260 146 : 219 121 182 1T9 , 180 99.5 150
3 22 165, 248 146 219 122 184 104 156 104 156 87.7 132
I
24 138 208 122 184 103 154 87.6 132 88.3 133 76,4- 115
26 118 177 104 157 87,5 132 74.7 112 75,2. 113 . 65,5 98,5
S
28 102' 153 89.9 135 75:5 113 64.4 96,7 64.9 97.5 • 56,5 84,9
'•5
.S
30 ^ 88.6 133 78.3 118 65,8 98,8 56.1 84,3 56.5 84,9 49,2 74,0
I 32 . 77,9 117 68.8 103 %.8 86.9 Mi 74,1 49,7 74,7 43.3 65,0
34 69.0 104 ^ 91,6 76,9 43.7 65,6 44.0' 66.1 38.3 57.6
I-
36 61.5 92,5 ^ 54.4 ' 81,7 I 45.7 68,6 3^9 58,5 39.2 59,0 34.2 51:4
1
40
- 31.18 47,8 27.7 41,6
s 0 44Q„. 661 589 501 252 .379 236 . 355 182 273
e
10 362 545 '3II9 480 269 404 204'' 306 153 230 1^2 184
si
12 337, 507 297 447 379 194 292 130 195 .106 159'
g 14 310 466 273 410 349 1«2 273 106 160 . 88,7 133
1
16 281 . 423 247 372 ao., 316 167 251 84.4 127 72.4' 109
JS
18 252 378 332 188 282 151 . 227 67.2, ,101: R57.9 87,0
1
« 20 222 334 195 293 165 248 135 203 54,8 82,3 ' 47.2, 71,0
§
22 193 291 255 143 215 119 179 45.5 68,3 ^9.2 59,0
24 166 249 145 218 122 184 104 157 38.3 57.6 33.1 49,8
>-
26 142 213 124 186 105 157 89,6 135 32.7 49,2 28.3 42.5
28 122 184 107 161 90,4 136 m 117
30 107 160 93,4 140 78.9 119 '67,7 102 j
32 93.8 141 82,2 123 69.5 104 59.7 89,7
i
34 83.2 125 72,8 109 61.6 92,6 52,9 79,6
36 74.2 112 65,0 97.7 55,0 82,7 47,3 71,1
40 60.2 90,5 52,7 79,3 44,7 67,1 38.4 57.7
Properties
14,7 13.1 11,3 9.81 8,39 7.37
h, in.
2,28 2,27 2,24 2,22 2,41 2.40
fy, in. 2,51 2.49 2,47 2,46 1.60 1,59
ASD LRFD =Shape is slender for compression with F, = 50 l<si.
Note: Heavy line indicates «L/r equal to or greater ttian 200,
OC=1.67 (|)c = 0.90
AMERICAN INSRRRUTE OF STEEL CONSTRUCTJON

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-111
Fy = 50 ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
WT8
Shape WTBx
lb/ft 22.5° 20" 18» 15.5" 13"
p^iac fcPa Pninc PnlOic ^cPn Pn/Clc ^cPn
uesign
LRFD ASO LRFD . ASD LRFO ASD LRFD ASO LRFD
0 144 -216 102.-. 153 S7.6 132 , 65.4 98.3 46.6 70.1
10 126 .. 189 91.6 138 t9.2 119 .60.1 90.4 S43.5 65.4
12 -118 178 87.3 131 75.8 114 • 57.9 . 87.1 42.2 63.4
14 -111 166 82.5 124 •72.0 108 55.5 83.4 40.7 61.1
16 102 153 •77i3 116 67.? 102 •52.7 79.3 39.0 58.6
18 ,•93.2 140 : 71.8' 108 63.3 95.1 49.8 74.9 37.2 55.9
.52 20 '84.2' 127 '66.()> 99.4 <58.7 88,2 " 46,7 70.2 •35.2 53,0
CO
•R
5 22 ^ 75.3 > 113 60.4- 90.8 53.9 81,0 43.5 65.4 33.2 . 50,0
m X
>< 24 66.6 100 54,6 82.1 49.2 73.9 • 40.3 60.6 31.2 46,8
1
26 5k-3' 87.6 49.0 73.7 44.5 66.8 37.1 5'5 7 29.1 43,7
S
c
28 50.4' 75.8 . 43.6" 65,5 ,39.9 60:0 33.8 : 50.9 ;26.9 40,5
i
30 43.9 : 66.0 ; 38.4 57.7 35.5 53.4 30.7 46.1 24.8 37.3
®
32 38.6 58.0 33.7 507 31.3 471 27.7 41.6 22,8 34.2
a- 34 34.2 51.4 29.9 44.9 27.7 41.7 24.7 37.1 20,8 31.2
^ 36 30 5 45.8 '26.6, 40.0 24 7 37.2 '22,0 33.1 18:8 28.3
1 40 - 20:0 30.1 ' 17.9 26.8 15.3 23.0
t 0 f44 , 216 102 153 ;87.6 132 65.4 98.3 ire.e 70.1
^
10 99.0' 149 74.4 112 -.61.4 92.3 •41.7 62.7 m2 43,9
fi 12 ail'' 131 ;-67.3 101 55.8 83.9 . 35.7 53.7 25.5 38.3
1 14 74.5 112 ^59.4- 89.2 •49.4 74.3 '29.6 44.6 21.6 32.4
•1
16 62.1 93.3 51.2 77.0 .42.7 64.2 23.8 35.7 .-37.6 26.5
g 18 „ 56.3 75.7 65.1 36.2 54.3 19.1 28.7 14.3 21.5
£
1 20 4i.2 61.9 . 35.8 53.8 29.9 45.0
>-
>
22 34.2 51.5 •29.8 44.9 25.0 37.6
24 28.9- 43.5 25.2 37.9 21.2 31.9
26 24.7 37.2 21.6 32.5
. !
Properties
'/Is.in.^ 6.63 5.89 5.29 4,56 3.84
2.39 2.37 2.41 2,45 2.47
1,57 1.56 1.52 1,17 1.12
ASD IRFD ' Shape is slender for compression witti Fy -= 50 ksi.
nc=i.67 (|)c = Q.90
Note: Heavy line indicates KUr equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-112
DESIGN OF COMPRESSION MEMBERS
y
WT7
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy = 50 ksi
Shape
WT7x
lb/ft 66 60 54.5 49.5 45 41
PnKlc <l>rPfl Pn/Qc P„IQc <>cPn Pn/CJe tfoPn fli/Oc
Jesigti
ASD< LRFD ASO LRFD ASO LRFD asd: LRFD ASD LRFD ASD LRFD
0 581 873 ,530 797 479 720 437 657 395 594 359 540
10 409 ' 614 370 556 330 496 300 450 270 405 264 397
12 350 526 316 474 280 : 421 254- 381 228 . 343 231 347
14 291r 438, -262 393 231 347 209 313 •187 281 197 295
16 236 355 211 317 184 ' 277 166 250 148 ' 223 -163 246
18 187 281 167 251 145 219 131 197 117: 176 132 199
20 1S2 228 135 203 .118 177 106 160 94.9 .143 '107 . 161
CO
>f
22 125 188. 112 168 "97.4 146 87.8 132 78.4. 118 ^8.6 133
CO
24 105." 158 93.8 141 81.8 123 73.6 111 65.9 99.1 74.4 112
1
26 89:7 135 79.9 120 •69.7 105 62.9 94.5 56 j2. . 84.4 63,4 95.3
28 77.3 116 68.9 104 60.1 90.4 54.7 82.2
i
30
' 47 6 71.6
i
11
1
i
0 .873 530'j; 796 479 720 -437- 657 395-' 594 359 540
s
10 m - 802 '485 729 438 658 397 597 357 536 446
12 517/ 777 470 706 424 637 384'- 577 345 519 276 415
s
14 497.. 747 452 679 -.408 612 370 556 332-. 500 •253 380
§
16 m 715 432 650 390 586 353 • 531 31,8 • 478 ••228 343
I 18 453- 680 411 618 371 557 336 505 302- 454 .204 306
I
20 428' 643 388 584 350 526 317 ' 477 286"^ 429 269
g
22 4(32 604 -365 549 "329 494 298 • 448 268 403 •155 234
UJ
t
24 376 565 341?^ 512 307 461 278 418 250 376 133 199
26 349 525 3T6 475 285 428 258> • 388 232 349 113 170
28 322 484 292 439 263 395 238 357 214 321 97.7 147
30 296 444 -268 402 241 362 218 327 196 294 85.2 128
32 270 405 244 367 219 330 IPS 298 178 268 t4.9 113
34 245 368 221 332 199 299 179 270 161 242 66.4 99.8
36 220 331 199 298 178 268 161 242 145 217 59.2 89.0
40 178 268 161 242 145 217 130 196 117 176 48.0 72.2
Properties
Ag, 'm.' 19.4 17.7 16.0 14.6 . 13.2 12.0
/>, in. 1.73 1.71 1.68 1.67 1.66 T.85
ry,m.. 3.76 3.74 3.73 3.71 3.70 2.48
ASO LRFO
Note; Heavy line indicates (ft/r equal to or greater than 200.
£2^=1.67 lt)<;=0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-113
Fy = 50 ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
y
WT7
Shape wnx
lb/ft 37 34 30,5° 26.5'' 24" 21.5'
Pnl^ic i^cPn fli/Oc Pnl^c ^cPn Vflc
Design
ASO. LRFD .ASD LRFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD
0 326 . 491 299 450 260 392 '223' 336 186 • 280 146 219
10 237 357 217 326 190 286 168 252 143 215 115 173
12 206 310 . 1^8- 283 165 249 148 223 128 192 104 156
14 175 263 159?' 240 140 211 128 192 111 167 92.1 138
16 145 217 , 132 198 116 175 108 162 95.2 143 80.0 120
18 116 175. 106 159 .fl3.5 141 887 133 7;9.7 120 ^8.1 102
20 94.2 142 85.5 128 75.fi 114 71.9 108 65.2 98.0 57.0 85.6
•s
><
X 22 77.9 117.• 70,7 106 62.6 94.1 89:5 89,4 53.9 81.0 47.1- 70.8
CO
T3
24 65.4 98.3 59.4 89;2 52.6 79.1 50.0 75.1 45.3 681 39.6 59.5
26 55.7 83.8; 50.6 76.0 67.4 42.6 64,0 38.6 58.0 33.7 5Q.7
1 28 4».1 72.0! 43.6 65;6 38.7 58.1 36.7 55.2 33.3 50.0 29.1 43.7
i
30 41.9 62.9 38.0 57.1 33.7 50.6 32.0 48.1 29.0 43.6 25.3 38.1
1
0 326 490 299 450. 260 . 392 223 336 186 280 146 219
lb 269 404 245 368 '21T 318 166'.,-' 249 14b" 211 112 " 169
£
12 250 376 227 342 199 299 148 222 126 189 102 154
^
14 229 344 208' 313 183 275 128 193 111- 166 91.0 137
f, 16 207 311 188' 283 165 249 109 164 95.2 143 • 79.5 120
f 18 185- 278 168 252 148 222 90.5 136 M.f' 120 68.2 103
1
.2 20 163 244'^ : 147 221 130 195 73.8 111 66.0 99.2 i. 57.4 86.3
£ 22 "141 212 127 191 113 169 61.2 92.0 54.8 82,3 47.?. 71.7
lU >-
24 120 181 109 163 '96.0 144 51.5 77.5 46.1 69.3 40.2 60.4
26 103 154 92.6 139 82.0 123 44.0 66.1 39.4 59.2 34.3 51.6
28 88.7 133 80.0 120 • 70.9 106 38.0 57.1 34.0 51.1 ' 29.7 44.6
30 77.3 116 69.7 105 61.8 92.9 33.1 49.8 29.7 44.6 25,9 38.9
32 : ; 68.0 102 61.3 92.2 54.4 81.8 29.1 43.8
34 60.3 90.6 .54,4 81.7 48.2 72.5
36 53.8 80.8 48.5 72.9 43.1 64.7
40 43.6 65,5 39.3 59,1 34.9 52.5
Properties
Ag, in}
rx. in.
fy, in.-
10.9
1.82
248
10,0 8.96 7.80 7.07 6.31
1.81 1.80 1.88 1.88 1,86
2.46 2.45 1.92 1.91 1.89
AiO
A<;=1.67
LRFD
(l)c = 0.90
' Shape is slender for compression with fy= 50 l(si.
Note: Heavy Bne indicates «L/requal to or greater than 200.
AMERICAN INSTITUTE OF STBEL CONSTRUCTION

4-U4
4-530 DESIGN OF COMPRESSION MEMBERS
WT7
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fv = 50 ksi
Shape
WT7x
lb/ft 19^
Design
P^IClc <i)<;''fl
ASD . LRFD ASD-- LBFD ASD LRFD ASD LRFD ASD
ir
Pn'S^c
1S=
PnlQ, (ttePn
13'
Pnl^c
11"
Pn/ilc
LRFD
X
10
12
14
16
18
20
22
24
26
28
30
32
34
127
•IDS
96,1-
87.0
77.5
68.0
58.8
50.'1'
42.1
35.9
30.9
26.9
23.7
21.0
190
157
144
131
117
102
88.4
75,2
63.2
53.9
46.5
40.5
35.6
31,5
99,9'
84.3
78.3
71.7
64t8f
57.8
50.8
44.1-
37.7
32.1
27.7
24.1
21.2
'l8.8
150
127
118
108
97.4
86.9
76.4
66.3
56.7
48.3
41.6
363
31.9
28.2
80.9
69.6
65.1
60.2
'55.1
'49.7
44.4
^39.1
34.1
29.2
25.2
22.0
19.3
17.1
122
105
97.9
90.5
82.7
74.7
66.7
58.8
51.2
44.0
37.9
33.0
29.0
25.7
• 61.9
•54.6
"51.6
48.4
44.9
•41.2
37,4
33.7
30.0
26.4
23.0
20.1
' 17.6
15.6
93.0
82.0
77.6
72.7
67.4
61.9
56,2
50.6
45.1
39.7
34.6
30.2
26.5
23.5
-43.6
39.4
•37.6
35.6
33.5
31.2
28.9
26.5
24.1
21.7
19.4
.17.3
15.2
13.4
65.6
59.1
56.5
53.6
50,4
47.0
43.4
39.8
36.2
32.7
29:2
25.9
22.8
20.2
10
12
14
16
18
20
22
Z4
127
86.5,
75.2.,
63.4
52.1
4T«
34.1'
28.3
23.9
190
130
113
95.4
78.3
62.8
51.2
42.5
35,9
99,9'
69:5
-61,5
52.8'
44.3
36?1
29.5
24.5
20.7
150
104
92.4
79.4
66.5
54.2
44.3
36,9
31,1
S0.9
55.2
49.3
42.7
36.1
29.7
24.4
20.3
17.2
122
82.9
74.1,
64.2
54.2
44.6
36.6
30.S
25.9
61.9
35.8,
29.0
.22.6
17.5
14.0
93,0
53,,8
43,6
33,9.
26,4
21,0
43.6
25.7
21.4
17.1
13.4
65.6
38.6
32.2
25,8
20,2
Ag, ih,^
rx, in.
ry, in.
Properties
5.58
2,04
1,55
ASD LRFD
HE =1.67 c = 0,90
5,00
2.04
1.53
4.42
2.07
' 1.49
3.85
2.12
1.08
3.25
2.14
1.04
' Shape-is slender for compression with Fy-50 Iffii.
Note: Heavy line indicates KC/requal to or greater tftan 200,
AMERICAN INSRRRUTE OF STEEL CONSTRUCTJON

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-115
Fy = 50 ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
WT6
Shape WT6x
lb/ft 29 26.5 25 22.5 20" 17.5=
PJClo Pn'^c <!)<!/'« Pn/Hc fePn Pnl0.c i?cPn P„IQa IfcPn p„/ac <kP->
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LflFD AS) LRFD
0 255- 383 233 ' 350 ;219: . 329 295 155' i 233 132 199
4 '237 -356 216 325 •205: : 308 .183 ••276 146! 219 lie- 190
6 216 324 . 197 296 188^ : 283 :169': 254 135 i 203 no 179
8 189 • 284 173 261 ,.168' i 252 150: 226 .121 183 110: 165
10 .160 . '240 147. 221 !145 f 218 .194 106 159 98,9 149
m
12 130 < 195 120 180 :i21i t 182 sios • :162 8918: 135 • 87,0 131
;§ •
14 102 153 • 94.2, 142 147 86.8 130 ?:73:8: 111 iAS 112
CO
•s
16 '.78.2 117 72.3, 109 wm 115 67.6 102 •88.2 62 9 .94.5
IS
18 61.8' 92.8 ' sr.1 85.9 60:2 90.5 53.4 80.3 ':.46l4' 69.7 516 77.6
s 20 50,0 75.2 '46.3 69.6 3M8i8' 73.3 : 43;3 . 65.0 37}6- 56,5 418 62.8
i 22 41.3 62.1 38.3 57.5 • 40;3^ 60,6 35.8 53.8 ,'3tio:: •'"46.7 34 5 51.9
i
24 34J 52.2 32.1 48.3 33:9V 50,9 45.2 :26;1< • 39.2 290 43.6
26 • ' ,;28i9' 43.4 25.6 38.5 !.2212' 33.4 247 • 37:2
1
28 Sl.. II,
213 32.0
1 0 255,;^ 383 238 350 219-• 328 295 155; 233 :132 199
4 242 364 2V9 ' 329 202' 304 :255 l3f~ ,200 'w 169
E.
^ 6 235 353 212 • 318 289 251 :i31: ' 197 108 163
8 524'-: 337 202 : 304 178: J 268 159: • 239 M26: ; 190 99.4 149
€ 10 •211 •: 318 191 ; 287 .162 r 244 218 >117: ; 176 87.4 131
I 12 197 296 177, 267 t44 s 217 129 j 194 i:o6; 159 74.2 112-
1
14 iai 272 I'B3 • 245 • 188 : 168 9314: 140 ,61.1 91.8
g 16 246 UT-' 221 107; ' 160 95.0 143 80;6 121 73.1
UJ s-
>- 18 147 220 131 198 oBs^s: 133 78,8 118 68;2 102 : 38.7 58.1
20 129 194 116 174 72,5 109 64.2 96,5 84.8 47,3
22 113 169 100 151 60,0 90.2 53:.2; 79.9 46.% 70.3 26.1 39.2
24 96.5 145 85.8 129 50,5 75:9 "44v8: 67.3 'M4: 59.2 ' 22.0 33.0
26 82.3 124 73;2 110 43,1 64.7 •38,2^ 57:4 33:6 50,5
28 71.1 107 63,2 95,1 37-.2 55.8 .33® 49.6 29S0: 43,6
30 62® 93,1 5il 82.9 32,4 48.7 28i 43,2 25:3 38.0
32 54.5 81.9 48.5 72.9 28:5 42.8 25,3 38.0 22.3 33.5
Properties
/Ij, in.2 8.52 7.78 7.30 • 6.56 5.84 5.17
fx, in. 1.50 1.51 1.60 1.59 1.57 1,76
Cy.in 2.51 2.48 1.96 1.95 1.94 1.54
m ASD LRFD
' Shape is slender for compression witli Fy= 50 ksi.
Qc
Note; Heavy line indicates KI/T equal to or greater than
Qc :=1.67 (t)c=0,90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-116
DESIGN OF COMPRESSION MEMBERS
y
WT6
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
/v = 50 ksi
Shape
VKT6X
lb/ft 15° 13" 11= 9.5'' B" : T
p„/ac <!>cPn P„/Qc Pr/Oc <l>cP« p„/nc Pn/iic <l>c''<i ft/flc
Design
ASD LRFD ASD^ LRFD ASD' LRFD ASD LRFD ASD LRFD ASd LRFD
0 93.1 140 64J 97.3 •68.6 103 49.9 75,0 37.9 57.0, 28.1 42,2
4 89.6 135 '62.7 94,3 • 66:4 99.7 48.5 72,9 37.0 55,6 27.5 41,4
6 85.3 128 60.4 90,7 63.7 • 95,7 46.8 70,4 35.'9 54,0 26.8 40,3
a 79.7 120 57.2 . 85,9 60.1 90,3 -44.6 67.0 34.4 51,7 25.9 38,9
10 73,0 110 53.3 80,1 55.8 83,9 41.9 63.0 32.5 48,9. 2^.7 371
12 65.6 98,6 48.9 73,5 51.0 76,6 38.8 58,3 30.4 145,7 23.3 35,1
« 14 57.8 86,9 44.2; 66,4 45.S, 68.8 35.5 53,3 28.3 42,2 21.8 32,8
16 50.0 75,1 39.3, 59,1 40.5 60.8 31.9.- : 48,0 25.6 . 38,5 . 20.2 30,4
1
S
1
B
18 .42.4 63,7 34.5 51,8 35.2 52,8 28,4 42,6 34.7 ' ip.5 • 27,8
1
S
1
B
20 35.2 52,9 29.7 44,7 30.1' 45,2 24.9 37,4 20.5. .30,9 1B.8 25.2
1
S
1
B
22 •59.1 ' 43,7 25.2, ,37,9 25.5. 37,9 21.5- 32,3 18.1' 27,1 .15.1 22.6
1
S
1
B
24 24.4 36,7 21.2 31,9 21.2: 31,9 18.3 27,4 15.7 23,6 ' ,13.4 20,1
1
S
1
B
26 '20.8^ .31,3 18.1 • 27,2 18.1= 27,1 15.6 23,4 "13? 20.2 •11.8 17.7
% 28 17.9 27,0 15.6 23,4 15.6" 23,4 13.4 20,2 11.6 17,4
•!}).2
15.3
30 •13;6 20,4 m . 17,6 101 •15,2 'm 13.4
f 32
i
'8.87 13.3 7.82 11.7
g 0 -93.1 140 64.7 97,3 ,'68.6 .103 49.9 75,0 37.9 57,0 28.1 42,2
4 78.1 117 •53,9 81,0 52.1 78,3 37.0 55,6 •.^5.6 . 38.5 18.6 27.9
§> 6 76.1 114 53,0 79,6 43.5 65,4 31.9 47,9 22.^ 33.5 . 16.5 24.9
M a 71.5 107 50,8 76.4 32:9 49,4 25.0 37.5 i26,5 '13.6 20,4
M
10 64.5 97,0 47.2 70,9 22.B 34,3 17.9 27,0 12.7 19,2 J 0.2 15,3
«
u
12 56.4" 84.7 42.5 63,8 16.2 24,3 f2,8 .19,3 9.28 14,0 7.54 11,3
S
u
14 47.8 71.9 37.2 56,0 12.0 18,0
.
>-
si 16
18
20
22
24
39.5
31.8
25.9
18.1.1
59,4
47.8
38.9
32,3
27,2
31,9
26.8-
22.0
18.3,
15.4 ,
48.0
40,2
33.1
27,5
23.2
Properties
A„, in.2 4,40 3.82 3,24 2,79 2. 36 2,08
rx, in.
1.75 1,75 1.90 1,90 1,92 1,92
ry, in. 1.52 1,51 0,847 0,821 0.773 0.753
Qc
ASD
= 1.67
LRFD
(|)c = 0.90
"Shape is slender for compression witli/y^ 50 ksi,
Note: Heavy iine indicates ra.//-equal to or greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-117
Fy = 50 ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
y
WT5
Shape virrsx
lb/ft 22.5 19.5 16.5 15 13"
p„iac Pnliic P^lilc M P„/Qc tfoPi,
Desigi V
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD ' LRFD
0 199 298 172;; 258 145 218 132 199 103' 154
4 178 267 • 154 i 231 131 196 122; 184 •95.4 143
6 155 233 ; 134; 202 114 172 111 r 166 .fl7.1 131
8 128 192 11 1 > 166 95.0 143 : 96:0 144 76.6 115
10 100- 150 : 86;5 130 ^74.8 112,, ;8&2 121 65.0 97,7
.2
12 ,73.9 111 63.9 96.0 55.6 83.9 •64.3 96.7 •53.2 79,9
X
<
14 54.3 , 81.6 46.9 70.5 41.0 61.6 49.5 74,4 41.9 63,0
16 41.6 62.5 35.9 54.0 '31.4 47.2 57.0 32.2 ; 48.4
•n
18 3215 49.4 <28.4 42.7 24.8 37.3 : ,29.9 45,0 25.5 38.3

20 26.6 40.0 23.0 34.6 20.1 30.2 24.3 36.4 •20.6 31,0
f
22 > i20;0 30.1 •17.0 25,6
i
24 16.8 25.3 •14.3 21.5
1
• - -
1
0 298 172 . 258 y5 218 , 132 , 199 103.' 154
4 187' 281 160 241 133 199 115 173 .'86.7 130 .
&
H 6 178 267 152, 229 126 189 t03. 155 :81.3 122
8 166 249 141 213 117 176 89.0 134 ,71.5 107
10 151 227 ; 129 193 IO6 160 73.3 110 ;59.7 89.8
1 12 135 203 1*45 172 :94.4 142 :57:7 86.7 "47.S 71.8
s
S 14 118- 177 99.9 150 ; 82.0 123 43.5 65.3 36.6 55,0
jg 5 16 101 152 85.3 128 69.6 105 33.4 50,2 28.2 42,4
lU
J
18 84.8 127 ' 71.2 107 5?;8 86.9 26.5 39.8 22.4 33,6
20 69.5 105 58.2 87,5 47.1 70.8 21,5 32.3 18.2 27,3
22 57.5 86,4 48.2 72.4 39.0 58.6 17.8 26,7 1.5.1 22,6
24 ;t8.4 72,7 40.5 60.9 32.8 49.3
26 62.0 34.5 51.9 2S.0 42.1
28 35:6 53,5 29.8 44.8 24.2 36.3
30 31.0 46,6 26.0 39.0 21.1 31.7
32 27.3 41.0 22.8 34.3 18.5 27.8
Properties
6.63 5.73 •4:85 4.42 3.81
fx, in. 1.24 1.24 1.26 1.45 1.44
fy.in- 2,01 1. 98 1.94 1.37 1.36
ASD LRFD Shape is slender lor compression with F,--s 50 ksi.
• , Note: Heavy line indicates KL/r equal to or greater than 200.
(t)c=0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-118
DESIGN OF COMPRESSION MEMBERS
y
WT5
Table 4-7 (fcontinued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy = 50ksi
Shape WT5x
ibm ir 8.5" IS'
PnlClc PJiic •fcfl, PnlClc /foPa P„IO.o Pn'^c ^cPn
Design ,
ASDJ LRI^D ' ASD LRFD ASD LRFD ASD! LRFD ASO LRFD
0 80.9 122 73.2 110 62.8 94.4 ; 53.5 80.5 -31.4 47.2
4 114 68.8 103 59.3 89:1 ' 50.7 76.1 30.1 45.3
6 69.8 105 63.7 95.7 55.1 82;8 : 47.3 71.0 28.6 43.0
8 62.2; 93.4 57.2 85.9 49.8 74.8 42;9 64.5 26.7 40.1
10 53.6; 80.5 49.7^. 74,8 ' 43.7. 65.7 37:3 56.9 24.4 36.6
12 44;7:. 67.2 ,-42i0 63.1 37.2 56.0 32.5 48.9 21.8 32.8
CA
'S 14 36.1 54.2 34.3 •51.6 30.8 46.3 27.2 40.9 .19.1 . 28.7
X 16 28.2 42.3 : 27;2 40:8 24.8 37.3 -22.1 33,2 •16.4 24.7
id
1
K 18 22.2 33.4 : 21.5 32.3 19.6 29.5 17.5 26.4 13.8 20.8
id
1
20 18.0 27.1 mA 26.1 15.9 23.9 14.2 •21.4 11.4 17,1
i
22 14.9 22.4 r .14.4 21.6 13.1 19.7 ll.7 17.7 9.41 14,1
C5
i
24 18.8 12.1 18.2 11.0 16,6 9.87 14.8 7.91 11.9
26 9.39 14.1 8.41 12.6 , 6.74 10.1
1
^
0 122 73.2V: 110 62.8 94.4 53.5 80:5 31,4- 47.2
J
4 65;j' 97.8 .55^ 83.5 45.3 68.0 35.7 53.7 20.8 31.3
6 82.0 93.2 ,44j; 67.2 36...6 55.0 29.0 43.5 18.0 27.1
c 8 83.4 '32.^1 48.4 26.2 39.3 30.9 i;4.o 21.1
£
10 70.5 : 21.5 32.3 17.5 26.3 13.9 20.9 ' '9.99 15.0
1
12 37;9 57.0 15.1 22.7 12.4 18.6 9.93 14.9 7.25 10.9
g 1 14 ks 44.1 11.2 16.8 9.21 13.8
£
16 22,7 34,1
18 18.0 27.1
20 •22.1
22 1^2 18.3
-
--
I
Properties
Ag, in}. 3.24 2.81 2.50 2.21 1.77
/>, in. 1.46 1.54 1.56 1.57 1.57
/>. in. 1.33 >«.874 0.844 .0.810 0.785
ASI) LRFD
' Shape is slender for compression with Fy = 50 Iffii.
iwie; ncavy Hue lliui^dius nuji cquai lu ui yictiLci mail iuu.
a c=1.67
<t>c = 0.90
AMERICAN iNsrrRuTE OF STEEL CONSTRUCTJON

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-119
Table 4-7 (continued)

Ai/ailoKIA Q+fAnnth !n
= 50 ksi J Compression, kips
WT-Shapes
y
WT4
Shape WT4x
Ib/ft 33.5 29 24 20 17.5
P«iac i^aPn PJQc i/cPx Pn'Ch •tfePi. PnlClo <l>oP» P./ac <l>cP«
uesign
' ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 295 443 : 256 384 211 • 317 176 i 264 ;.. 1i54; 231
4 •253 380 218 328 177 267 148 222 129 193
6 •209 314 179 269 143 -215 ,119 :, •179 103 • 154
8 160 240 •135 204 106 V 159 88.1 132 ; =75.0 113
10 •113 170 •'S4.6 142 71.5 108 •59.3' 89,9 50.3 75,6
«
12 78.6 118 ?,65.7 98.7 49,7'; : 74.7 !:i4i.S .62,4 •';;34.9 52.5
14 57.8' 86.8 48.2- 72,5 .36.5 54.9 r:30.5 45,9 25.6 38.6
CA
'S
16 44.2 66.5 36.9 55,5 '27.9' 42.0 SS23,4 • 35.1 19.6 29.5
n
i
t
j
1
SI
1
0 295 443 2561. 384 211 317 M76.L
264 231
5
4 ;283 425 i^245 368 202 -303 ^ler J 251 'l45i 219
£
H
6 ,270 405 233 351 192 : .289 S1S9 238 :$38' 208
8 253 380 iei8. 328 180- 270 148 t 222 129® 194
i 10 232 349 200 , 301 165 K- 247 .135-i 203 1,18 i 177
1 12 .210 315 181 - 271 148^ 222 182 , 105 f 158
1 •S
14 186 279 f160 240 130'.: 196 M06 ' 160 <92.5 139
£ 16 161 243 138 208 113 • 170 ,137 119
lU >«•
18 138 207 118' 177 95.7 144 -x77.-ir 116 100
20 115 173 98.1 147 79.4 119 .•;63.5 95,4 ^55.0 82,7
22 95.3 143 .81.1 122 65.6 98.7 52.5 78,9 :ji5.5 68,4
24 80.1 120 ..S68.2 102 55.2 82.9 .:44.2 66,4 : 38.3 57.5
26 68.2 103 '.58.1 87.3 47.0 -70.7 37.6 56.6 : 132.6 49.0
28 58.8 88.4 •""so.r 75.3 •40.6" 61.0 32.5? 48.8 mi 42.3
30 51.3 77.0 43.6 65,6 35.3 53.1 = •28.3 42.5 24.5 36.9
32 45.1 67.7 38.4 57.7 :31.1 46.7 .24.9: 37,4 21.6 32.4
Properties
9.84 8.54 7.05 5.87 5.14
in. 1.05 1.03 0.986 0.988 0.968
/>. in. 2.12 2.10 2.08 2.04 2.03
ASD LRFD
Note; Hea iV line indicates KL/requal to or greater than 200.
nc=i.67 <l>c = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-120 DESIGN OF COMPRESSION MEMBERS
WT4
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy = 50 ksi
Shape WT4x
lb/ft 15.5 14 12 10.5
'^cPn P„IQc <i>cPfl ^Pn Pnlilc
Desigr
ASD LRFD ASD LRFD USD LRFD ASD LRFD
0 137 205 123 185 106 159: - 92.2 139
4 114 .171 105 157 : 89;5 135: 80.6 121
6 i 137 85.1 128 '72.5' 109 68.2 102
8 • 66:6: 100 63.7 • 95.8 ,,54,0 81,1 53.9 81,0
10 ; . -R? ; 67.2 43.9. 85.9 36.9 55,4 39.8^ • 59,9
12 31.0; 46,6 30.5 45.8 25.6 38,5 28.0 42,1
14 22.8 34.3 22.4 • 33.8 18.8 28,3 20.6 30,9
16 17.5 26.2 17.1 - 25:8 • 14.4 21,7 15.8' 23,7
•S
18 12.4 18,7
•g
U' ^
4
1
O 137 . ^ 205 '123 185 106- 159 92.2 139
g
s
4 128 192 rii3 170 96:4 , 145: 79.3 119
g
s
6 ; i 183 105 157 89.2 134 - 69.9 105
g
s
8 ; 114 ; 171 93.8 141 79.9 120 vf 58.5 87.9
f> 10 104 156 81.4 V 122 • 69.3 104 . 4B.4 69.8
1 12 92.8 140 68.4- 103 58.2 87,4 34 9 52,4
1
.2 14 81.4 122 55.7 83.7 . 47.2 71,0 • 25.7 38.7
£ 16 69.8' 105 43.8-^ 85.8 37.1 55,7 19.8 29.7
>
18 58.7' 88.2 34.6 52.1 '29.4 44,1 • 15.6 23.5
20 '48.2 72.5 28.1 42.2 23.8 35,8 12.?. 19,1
22 39.9 60.0 23.2 34.9 19,7 29,6
24 33.6 50.5 19.5'^ 29.4 16.6 24,9 ' ."I
26 28.6 43.0 16.7 25.0 14.1 21.2 1
28 37.1
.30 21.5 32.4 'f: •
32 18.9 : 28.4
& VK :
Properties
4.56 4.12 3,54 3.08
h, in. 0,969 1.01 0,999 1.12
ry, in. 2.02 1.62 1,61 1.26
-ASO tRFD
Note: Heavy line indicates /ft//'equal to or greater thai 1200,
ac=i.67 = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-121
Fy = 50 ksi
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
WT4
Shape
lb/ft
Design
Ag, in.2
rxM
fy.Jn,
WT4X
/5,/fic
^ ASO
- 78.7
69.2
58.8
46.9
;35.D
248
18.2
13.9
- 11.0
•78.7
65.2
57.5
48.0
37.9
28.1
20.8
16.0
12.7
10.3
LRFD
118
104
88.4
70.5
52.8
37.2
27.4
20.9
16.5
118
98.0
86.4
72.1
56,9
42,3
31,3
24,1
19,1
15.5
7.5
ASD
66.5
59.4
51.5
42.3
32:8
24.0
17.6
13.5
10.6
8.62
48.1
37.6
'26.3
17.3
12.1
• 8.94
LRFD
99,9
89,2
77.4
83.5
49.2
36.0
26.4
20,2
16.0
13,0
99,9
72.3
56.6
39.6
25,9
18,2
13.4
6.5
Pn/fic
ASO
57.5 !
51.4
44.7
36.8
•28.7
21.1
15.5
11.8
9.36
7.58
• "57.B
38.5
30.1
20.7
13.6
9.60
7.11
LRFD
88.4
77.3
67.3
55,3
43,1
31,6
23.3
17,8
14,1
11.4
86.4
,57,8
45.2
31.2
20.5
14.4
10.7
P„/£lc
29.8
26V8
23.1,
19.0
15.0
113
8.69
, 6.87
5-56
"ZiS
23.0 •
19.5
14;7
10.1
7:21
5,37
Properties
2,63
114
1,23
0^=1.67
LRFD
<])<;= 0,90
2.22
1.22
0.876
1.92
1.23
0.843
LRFD
44,8
40,3
34,7
28,6
22,6
17.1
13,1
10,3
8,36
(
34,5
29,3
22,1
15,2' •
10.8 :
8.07
1.48
1.20
0.840
' Shape is slender tor compression witii f, = 50 l(Si,
Note: Heavy line indicates W./r equal to or greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-122
DESIGN OF COMPRESSION MEMBERS
X
2L8
Table 4-8
Available Strength in
Axial Compression, kips
Double Angles—Equal "Legs
Fy = 36 ksi
2L8x8x
Shape
IVB
1 »/4 =/8
H- 0
lb/ft 114 102 90.0 77.8 65.4 59.2
0 «
ii
Pnlilc tkPn Pn/Hc M p„/ac « P„IQc W P„/Qc « Pniac <l>c''n
0 «
ii
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 .724' 1090 651;' 978 573 862 496., 745 417 627 3B2 544
9 1080 1648 i 973 571 857 493' 741 415 ; 624 360 541
4 17D9V
1070 i 638; 959 mi 845 486." 730 .409 614 355 534
fi fifll:. 1040 622: 934 6148 824 474 712 399 600 347 521
8 fiRfi 1000 600; 901 529 795 458-, 688 385 579 336 504
10 636i ,955 573! 861 505 760 437 ' 657 369 554 322 484
1? 600' 902 •541 i 813 478 • 719 414' 622 -349 525 306' 459
14 561: 843 . .50fi; 761; ;448 0 673 388- 583 328 493 287 432
(0
Ifi 519 779 4R9; 704 415 624 360 541 304 f 458 268 403
(0
IB 713 479i 646' 381 ; 572^ 330 497 280 421; 247. 372
20 ..430 646 390". 586 346 , 520 300 451 255 383 226 . 340 b
•n 79 '<386 579 350: 526 311 : 468 270 406 230 346 205.' 308.
Si 74 w 513 311 467 277 416 2,41 362 205- 309 184 277
76 451 273 .411 .244.;, 367 213 320 182 i 273 164 246
•o
78 ?fiO 391 237;. 357 213 320 185 279 159 239 144 217
o
30 226 340 207: 311 185 278 161 243 138 ; 208 126 189
JS
32 199 299 182! 273 i63 245 142 213 122 . 183 111 166
s.
34 176 265 161 i 242 144 217 126 189 108 i 162 98.0 147
m
36
38
157 236 144'; 216 1'29 193 112 168 96.1! 144 87.4 131
1
36
38 212 129 194 115 173 101 151 86.2 130 •784 118
1 40. :-i27.-: 191 116 . 175. .104 157 90,.a 136 77.8 J 117 . J0.8 106
??
0 , 724? 1090 B51; 978 573 ; 862 496 • 745 417 , 627 362 544
&
6 689 1040 613! 922 532 800 449 . 674 ,334 502. 280 420
Se
9 671- 1010 597; 898 518 779 437 657 332 499 278" 418
j;
12 647t 972 '576i 865 500 751 422 634 328. 493 •275" 413
15 927 549 825; 477 716 403- 605 321 483 270. 406
i! 18 874 ,518; 778 438 658 371,, . 557 304 -456 258i . 388
2
01
21 799 •m- 711 405 609 343". 515 284 ' 426 243 365
'•S
24 "4i38 733 434; 652 370 556 313 471 260 ; 390 225 337
£
i
27 <;442 664 393i 591 333 501 282 424 234 352 204^ 306
3
30 • • 595 •352^- 529 296 446 251' 378 208 • 312 182. 273
33 351 • 527 312 468 260 391 221 332 182 273 160 241
36 307 461 272 410 237 356" 200 301 165 : 247 139 209
39 265 398 235- 353 204 307 172 259 ;142 . 213 126-
42 229 344 203 305 176 265 149 224 123 185 109 164
45 199 300 177 266 154 231 130 196 108 162 95.8 144
48 175 264 156;; 234 135 204 115 ' 173 94,9. 143 84.6 127 3
51 •156 234 138 ^ 208 120 181 162 153 82.3 127 75.2 113
54 139 209 123 185 T07 161 9ia 137 75.4 113 67.3 101
57 125 187 111 166 :96.4 145 81.8 123 67.8; 102 60.6 91.1
Properties of 2 angles—% in. bacli to back
in.' 33.6 30.2 i 26.6 . 23.0 19.4 17.5
fx. in- . 2.41 2.43 2.45 2.46 2.48 249
ry, in. 3.54 3.52 3.50 3.47 3.45 3.44
rz, in. 1 1.56 1.56 1
1 .. w , 1 ...J-5''
. 1.58
1 1.58, :; 1 _
ASD LRFD • For Y-Y axis, welded or pretensioned boited intermediate connectors must be used.
' For required number of intermediate connectors, see tiie discussion of Table 4-8.
1.67 1|)C = :0.90 "Shape is slender for compression with fy= 36 ksi.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-123
Fy = 36 ksi
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
2L8-2L6
2L8x8x 2L6x6x
Miape
"a 1 '/4 S/8
Ib/K 52.8 si
74.8 66.2 57.4 48.4
•sg
M
si
M PnlOc PnlCic ^cPn mc M
•sg
Design
ASD LRFD ASD LRFD ASP LRFD ASD LRFD ASD LRFD
0 309 464 474 713 420 632 364, 548 308 463
2 307 462 470' 706 416 626 361* 543 , 306'. 459
4 =303 ' 456 4S7 686 405 609 351 528 297 ' 447
6 ,297-''/ 446 V436 655 387 581 335 504 284 ; 427
8 287 • 432 408 613 362 545 315 • 473 267 401
10 1276 415 574, 563 334 501 290 436 246 . 370
12 '263 , 395 '337 507 301 453 262 394 223 336
14 248, • 373 ••298 448 . 401 233 350 i 199 299
16 232 349 259 389 Z32 349 203 305 174 261
"i
18 215 323 220 331 199 299 174. 261 143 224
•R
<
20 •Ids 297 b 184, 276 167 250 146 219
121
189 b
es
X 22 .1&,. 270 152 228 J38 207 124" 181 104 157
£ 24 lea- 244 •128' 192 116 174 101 152 87.7 132
S 26 rn 218 '109 164 98.6' 148 86.4 130 74.8 112
•g 28 129 194 93,8 141 85.1 128 74.5 112 64.5 96.9
g
30
1131
170 74.1 111 64.9 97.6 56.1 84.4
32 •99,2 149
ffl 34 : 87,9 132
a
36 78.H 118
38 70-4
106 • . J
'i
40 . 635 95.4 ,
£
0 •309 464 ,474 713 420 632 • 364 548 308" 463
MJ 6 227 341 :.449I 674 395 593 338 508 280 421
s 9 225 339 429 644 377 567 323 485 268 402
£ 12 223 336 402 605 .354 532 303, 455 251 377
B
15 •220 331 371 558 326 490 27S 419 231 347
£ 18 212 319 2
327 491 287 431 2'45- 368 203^ 306
J
21 202' 304 287 432 252 379 2^5' 323 178 268
s
24 189 284 248 372 217 326 184 277 153 230
3
£ •S 27 174 261 '_'209 314 183 275 155 233 129 194
iU
<
30 156 235 173 260 t51 227 128. 192 106. ^ 159
>
33 .139 209 143 215 125 188 1'06^ 159 87,8 132
36 122- 183 120 181 105 158 • 89.0 134 74,0 111
39 110- iT6 103. 154 89.6 135 75,9 114 94.9
42 • ma 145 88.5 133 77.3 116 65.5 98.5 54.5 82.0
45 8'4,5 127 77.R 116 67 4 101
48 112
3
51 '66.6 100 ,
1 54 59.7 89.7
57 53.8 80.8
Properties o( 2 angles—^/s in. back to back
15.7 22.0 19.5 16.9 14.3
% in. 2.49 1.79 1.81 1.82 1.84
'y, in. 3.43 2.72 2.70 2.67 2.65
Properties of single angle
'z,Vl. 1 1.59 I. 1.17 1
1 1 - 1 1
LRFD
(t)e = 0.90
For Y-Y axis, welded or pretsnsioned bolted intermediate connectors must be used.
»For required number of intermediate connectors, see tiie discussion of Table 4-8.
= Stiape is slender for compression with Fy=36 ksi.
Note; Heavy line indicates KL/requaito or gre'Jiter than 200.
AMERICAN iNsirtUTE OF STEEL CONSTRUCTION

4-124
DESIGN OF COMPRESSION MEMBERS
X
2L6
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angies^Equai Legs
Fv = 36 ksi
2L6x6x
Sha pe
'/16 V2
•ft s
lb/ft 43.8 39.2 34.4 29.8 24.8
® Ts
Pnl0.c ^cPa PnlQc « i>cPn P„IQc ^cPn
® Ts
Design
ASD LRFD ASD U?FD ASD LRFD ASD LRFD ASO> LRFD
0 278 418 373 214, 322 172, 259 131 196
2 276 414 246 369 212 • 319 171 257 130.'.' 195
4 268 403 -239 • 360 207 311 167 251 127 . 191
6 257 386 "229 344 198 298 160 241 123"! 184
8 241 363 215 324 187 1 281 1S2 228 ^17 175
10 223 335 199 299 173 260 141 212 109 165
12 202- 304 181 272 157 237 130 195 '101-:^ ' 152
•a
14 180' 271 16^ 243 1'41 212 117 176 92.4; 139 .
b
16 158 237 141 213 124 186 104, 156 83.0 125
'I
X
18 136 • 204 122 183 107 161 ,90.8 136 73.6 111
i
20 115 172 ;163' ' 155 ,91.2 137 -78.1 117 64.3 96.7
22 9^2 143 . 85.8 129 76.1 114 66.1 99.3 55.4 83.3
«
24 80.0 T20 • 72.1 • 108 63.9 96.1 ,5D5 83.4 47.0 70,7
M 26 68.2 102 61.4. 92.3 54.5 81.9 47.3 71.1
io;t
60.2
E
28 58.8 88.3 53.0 79,6 47.0 70.6 40.8 61.3 34.5 51.9
1 30 51.2 77,0 46.1 69,4 40.9 61.5 35;5 53.4 30.1 45.2
t
0 278 418' •248 ' 373 E14 322 -172 259 131 196
6 243 373 215 323 167 250 126 190 88.CF 132
S
9 23? 357 206, ' 310 164 247 '125 188 87 2 131
g
12 218 328 190 286 58 238 121; 182 S5 4 128
15 199' 299 174' 261 48 223 116 174 82.5" ,124 2
I 18 177 . 267 155 233 134 202 106 160 77.9 117
s 1
21 'L55 232 136 204 117 177: ^ 94.6 142 71,3, 107
>-
24 132 198 116 174 100 151 81.8 123 63.2 95.0
27 115" "T73'"'
......
87.^ "TaT""" 69.0 104 54.5 82.0
30 94.5 142 83.1 125 72.0 108 "MI" •"9oro" ~487o" "ur
33 78:5 118 69.1 104 60.0 90.3 50.2 75.4 40,6. 61.0
36 --^6.1 99.4 58.3 87.6 50.8 76.3 .-42.6 64.0 34.6 52.1
3
39 56.5 84.9 49.8 74.9 •43.5 65.4 "'36.5 54.9 29.9 44.9
42 48.8 73.3 43.1 64.7 37.6 56.6 31.7 47.6 ' 26:o 39.0
Properties of 2 angles—% in. bacic to back
Ag, in.^
ff, in.
ry, in.
12.9
1.85
2.64
11.5
1.86
2.63
10.2
1.86
2.62
8.76
1.87
2.60
7.34
1.88
2.59
Properties of single angle
h, in. 1.18 1.18 <t,18 1.19 1.19
-JSjL.
nc=i.67
LRFD
(|)<;=0.90
® For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used,
' For required number of intermediate connectors, see tiie discussion of Table 4-8.'
«Shape is slender for compression with fy=36 ksi. ^
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-125
Fv - 36 ksi
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles-^Equal Legs
2L5
2L5x5x
Shape
'/A «/8 Vi Vn '/a" 5/16'
•5; 0
lb/ft 54.4 47.2 40.0 32.4 28.6 24.6 20.6
0 *5
PnlSlc <IV>Pfl PnliXc « p„/nc ifcPn Pnl0.c W Pnl^c P„IQc M P»IOc t^eP,
0 *5
uesign
ASD LRFD ASDi LRFD ASD IRFD ASD, LRFD ASD LRFD ASD LRFD ASD LRFD
0 345 518 302 454 254 ^ 382 207 ' 310 182., 273 155' 232 121- 181
2 340 511 298 448 • 251 ' 377 204, 306 180 270 153, 230 119 179
4 327 491 286 430 241 . 363 196 295 173 260 147 221 iir 173
6 305 458 267 402 226 340 184' 276 162 244 138 208 109. 164
8 277 417 243 366 206 310 168 252 148 223 127 191 101 151
M
10 245 368 216 324 183 275 149, 225 132 199 113 170 90.9 137
12 "211 317 l'86 279 1-59 238 130 195 115 173 99.0 149 80.2 121
b
X
14 177 265 156 234 134 201 109 165 97.2 146 84.2 127 69.2 104
.s
>!e
16 144 ' 216 1?7 191 110 165 •§0.1 135 80.3 121 69.9 105 58:3 87.7
C9
18 114 172 101 153 87.8 132 7l2 109 64.5 96,9 56.5 84.9 •48.1 72.3
1
20 92.7 139 82.2 124 fl.1 107 58.5 88.0 52.2 78.5 45.8 68.8 39.0 58.6
22 76.6 115 67.9 102 58.8 88.4 ^8.4 72.7 ' 43.2 64,9 37.8 56.8 -'32.2 48,4
E 24 64.4 96.7 57.1 85.8 49.4 74.3 40.6J 61.1 36.3 54,5 31.8 47.8 27.1 40.7
s 26
-. -, . -
34.7
I 0 345 518 302" 454 254 382 207' 310 18'2 273 1*55 232 121 181
g 2 •337 507 293 440 2'44 366 192 . 289 165 248 123 185 #2 134
i 4 332 496 288 433 239 360 189 284 162 244 123 . 184 88a 134
s
6 322 484 280 420 233 ' 350 184- 276 158 237 122 183 88.4 133
g 8 310 466 269 ' 404 223 336 177 266 152 228 120 181 132
10 295 443 25S 383 212 319 168 252 142 . 213 175 128
2
s
12 277 416 239 , 360 199 299 157 237 132 198 110 166 82.4 124
14 251 377 217 ' 326 180 271 143 ' 215 12i 182 I'tf2 154 77.9 117:
J m 16 229 344 197 297 164 . 247 130 195 no 165 93.1 140 72.1 108
§
18 206- 310 177 • 267 147 221 117 175 98.0 147 83;1 125 65,3 98.2
1
20 183 275 157 ' 237 151 196 .103 • 155 86.2 130 73.0 110 58.1 87,4
lU
>-
22 16T 242 138 207 114 172 90.1 135 74.8 112
.63.2
"ii
J1.0 76,6
24 140 210 119 179 98.6 148 77.5 117 "671 Tof" 56.7 46.1 "69:3
26 119 180 102 153 84.2 127 66.3 99,6 57.6 86.6 48.7 73'2 39.8 59.8
28 103 155 87.9 132 72.7 109 57.3 86,1 49.8 74,9 42.2 63.5 34.7 52,1
30 •89.9 135 76.7 115 63.4 95.3 ,50.0 75.2 43.5 65,4 37.0 55.6 ,50.4 45,7
3
32 •79.0 119 101 S5.8 83.9 •44.0 66.2 38.4 57.6 49.0 26.9 40.4
34 70.U 105 .59.8 89.8 .49.5 74,4 39.1 58.7 51.2 29.0 43.6 36,0
36 62.5 93.9 53.3 80.2 ."44.2 66.4 52,4 30.4 45,7 25.9 39.0 2r4 32.2
38 56.1 84.3 •
Properties of 2 angles—in. back to back
fx, in.
fy, in.
16.0
1.49
2.30
14.0
1.50
2.27
11,8
1.52
2.25
9.58
1.53
2.22
8.44
1.54
2.21
7.30
1.55
2.20
6.14
1.56
2.19
Properties of single angle
0.971 0.972 0.975 0.980 0.983 0.986 0.990 1
ASD
fie =1.67
LRFd
(tic=0.90
' For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
' For required number of intermediate connectore, seettie discussion of Table 4-8.
"Shape is slender for compression with Fy - 36 l<si, .
Note: Heavy line indicates KL/r equal to or greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-126 DESIGN OF COMPRESSION MEMBERS
2L4
Table 4>8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
Fy = 36 ksi
2L4x4x
snape
3/4 . V2 '/16 3/B Vie I/4C •
lb/ft 37.0 31.4 25.6 22.6 19.6 16.4 13.2
oJ
si
PJiic P»/Qc Rr/Oc ft/CSc « Pn/Oc M Pn/0. ^cPo
Z s
Design
ASO LRFD ASO LRFD ASO LRFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD
0 235 ; 353 1«9' 299 162' 243 214 123 185 103 155 75.9 114
2 230 ' 346 195 293 158 238 ml" 210 121 ^ 182 101 152 74.6 112
4 215 324 183 275 149 224 1-31 197 11.4,' 171 •98.4 143 7d.-7 106
6 193 : 290 164 247 134 202 118 178 t03' 155 8a)t 130 64,7 97.3
la 8 1:66 249 142 213 116- 174 103 154 89.5 134 753 113 57^ 85.9
10 136 205 117 176 96.3 145 85.5 128 74.7 112 . 63.1 94.8 43,8 73.3
b
u
1
><
12 107 161 140 ^6.7 115 68.3 103 59,9 90.1 50.8 76.4 /d.'i 60.3
to
"S
14 80.8 121 70.7 106 58.S 87.9 52.3 78.6 46.1 69.3 39:3 59.1 319 47.9
s
16 61.9 93.0 54.1 81.4 44.8 67.3 40.1 60.2 35.3 53,0 30.1 45.2 24.6 37.0
r> 18 48.9 73.5 ,42.8 64 3 35;4 53.2 31.6 47.6 27.9 41.9 23.8 35.7 19.4 29.2
S
i
20
{
: 34.6 521 28.7 43.1 ,25.6 38.5 22.6 33.9 19.3 28.9 15.7 23.7
S
i
1
0 235 353 1S9 299 162' 243 142,, 214 123j 185 lOf 155 75.9 114
1 2 230 345 . 193 290 1.54: 232 134 201 113 170 32.9 125 ^ 55.9 84.1
5 4 224 336 188 282 150 226 130 196 110 ' 166 82.4 124 55,7 83.7
e
6 215 : 323 180 270 144 216 '125 188 106 159 81.4 122 55.1 82.8
a
8 262 304 169 254 135 204 117'"' 176 99:5 150 792 119
54,1 81.3
io 187 282 156 235 125 188 108 ; 163 92.1 138 ^75.1 113 78.5
1 </»
12 166 : 249 138 208 1M 166 95,8 144 81.5 122 67.2 101 48.9 72.6
1
3
14 147 221 122 184 97.6 147 84.5 127 71.9 108 59.4 89,3 43.6 65.6
0
1
sp 16 128 192 106 159 84.5 127 73.0 110 62.2 93.5 "5112 77.0 38.4 57.7
0
>-
18 109 164 90.1 135 71.7 108 61:8 92.9 5i7 79.2 43:2 64.9 32.9 49.5
20 • 91.6 138 75,0 113 59.5 89.5 51.2 76.9 43.6 65.5 35.6 53.5 27.6 41.5
22 75.7 114 62.1 93.3 ,49.3 74.1 42.4 63.7 36.2 54.4 29.7 44.6 23.1 34.8
24 63.7 95.7 52,2 78,5 41 5 62.4 35.7 53.7 30.5 45.9 25.1 37.7 19.6 29.5
26 •54.3 81.6 ,44.5 66.9 35.4 53.2 30.5 45.8 26.1 39.2 21.5 32.3 16.9 25,3
28 •46.8 70.4 38.4 57.7 30.6 46,0 .26.3 39.6 •22.5 33.8 -.18.6 27.9 14,6 22.0
30 40,8 61.3 -33.5 50.3 2«.7 40.1 •23.6 34.5 196 29.5 }T
Properties of 2 angles—^/s in. bacl( to back
Ag, in.'
r„ in.
ty, in.
10.9
1.18
1.88
9.22
1.20
1.85
7.50
1.21
1.83
6.60
1.22
1.81
5.72
1.23
1.80
4.80
1.24
1.79
3.86
1.25
1.78
/>, in. 0.774 0.774
Properties of single angle
0.776 0.777 0.7J9 0.781 0.783
ASD- LRFD
(|)c = 0.90
= For Y-Y axis, welded or pretensioned bolted iirtennediate conneetprs must be used.
' For required number of irtermediate connectors, see the discussion of Table 4-8.
' Shape is slender for compression with 5,= 36 ksi.
Note: Heavy line indicates (a/r equal to;or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-127
Fy = 36 ksi
Table 4-^8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
X
2L3V2
2L3V2X3V2X
anape
1/2
7/16 '/a 5/16
I/4C
ibm 22.2 19.6 17.0 14.4 11.6
•ss
si
Pal^c W PntQc M M P„/Ck s
uesign
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 tytO„ 211 125 187 , 108 162 -90.5 136 70.7 106
1 139. 209 124 186 107 161 ,90.0 135 70.3 106
2 T3P. 205 121 182 :105: . 158 88.2. 133 69.0 104
3 132 198 - 117 176 102 153 85.4 128 66.9 101
4 1'26 189 112 168 • 96,9 146 81.6 123 64.1 96.3
5 118" 177 105 158 91.3 137 77.0 116 60.6 91,1
6 109 164 97.7 147 ' 84:9 128 71.7 108 56.7 ' 85.2
CA
'3
7 100 150 89.5 135 77.9 117 65.8 99.0 52,3. 78.6
'3 8 90.2 136 . 80.9, 122 70.6 106 59,7 89.8 47.7 71.7
<
9 80.3 121 -72.1 108 63.0 94.8 53.5 80.4 43 0 . 64.6 b
U
10 70.4 106 63.5 95.4 55.6 83.6 47.3- 71.0 38.2 57.4
1 11 6l'0 91,6 . 55.1 82.8 . 48.4 72.7 41.2 • 62.0 33.6' 50.5
o 12 51.9 78.1 ' 47.1 70,8 4,1.5 62.4 35.5 53.4 29.1 43.8
13 44.3 66.5 40.1- 60,3 , 35.4 53,1 30.3 45.5 24.9 37.5
s.
14 38.2 57:4 , 3i4.6, 52,0 . 30.5 45.8 26.1 39.2 21.5. 32.3
^
15 33.2 50.0 _ 30.1 45.3 26.6 , 39.9 22.7 34.2 18,7, 28.2
g
16 292 43.9 . 26.5 39.8 , 23.3 35.1 20.0 30.0 16,5 24.8
s
17 38.9 23.5 35.3 '20.7 31.1 17.7 . 26.6 14,8 • 21.9
s 18 . - ts" 15.8 •23.7 : 13,0 19.6
^ 0 f40 , 211 125 187 108 162 90.5 , 136 fO.7 106
% 2 135 203 119 178 101"' 152 '82.1 123 55,1 82.8
s 4 130 196 115 172 ^ 97.6 147 79.5 120 54.7 82.3
§
6 123 185 109 163 92.3 139 75.4 . 113 53 9 80.9
'•p
8 114 172 100 151 85,4 128 69.8 105 51.9 78.0
£
Si
10 101- 151 88.3 133 : ,75.3 113 61,8 92.8 47,3 71.1
S,
12 88.1 132 77.1 116 ' 65.7 98.8 54.0 81.2 41,8 62.8 3
>-
14 75.1 113 65.8 98.6 ; 55.9 84.0 46.0 69.2 35,6 53.6
16 62:5 93.9 54.4 81.7 46.3 69.6 38.2 57.4 29.5 44.4
18 50.6 76.0 43.9 65.9 37.4 56.1 30.8 46.3 23.9 35.9
20 61.7 35.6 53,5 30.4 45.6 25.1 37.7 19.5 29.3
22
28.6
51.0 •• 29.5 44.3 , 25.2 37.8 20.8 31.3 16.2 24.4
24 28.6 42.9- . 24.8 37.3 21.2 31.8 17.5 26.3 13.7 20.6
26 •~24.4 36.6 21:2 31,8 18.^ 27.2 i5.0 22.5 11.7 17.6
Properties of 2 angles-^% back to back
/>, in.
ryjn.
6.50
1.05
1.63
5.78
1.06
1.61
5.00
1.07
1.60
4.20
1.08
1.59
3.40
1.09
1.57
Properties of single aiigle
'zJn 0.679 0.681 0.683 0,685 0.688
Sic =1.67
LRFD
it)c = 0.90
' For Y-Y axis, welded ot pretensioned bolted intermediate connectors must be used,
' For required number of Intermediate connectors, see the discussion of Table 4-8.
' Shape is slender for compression with Fys 36 ksi.
Note: Heavy line indicates «l/requai to or greater than 200.
AMERICAN iNsirtUTE OF STEEL CONSTRUCTION

4-128
DESIGN OF COMPRESSION MEMBERS
Table 4-8 (continued)
x—
— ,—
—X Available Strength in
l-v
Axial Compression, kips
ry — 00 ivoi
Y
2L3
Double Angles—Equal Legs
2L3x3x
Shape
Vz . Vn 3/8 5/16 Vi
<£• 0
lb/ft 18.8 16.6 14.4 12.2 9.80 7.42
ts
Pniac 6>cPn I'cPn p«iac P„/Qo W <^cPn p„iac ^Pn
Design
-ASD LRFD ASD LRFD ASD LBFD ASD LRFD -ASD LRFD ASD LRFD
0 119 179 157 91.0 137 76.7 115 62.1 93.3 42.3 64.4
1 118 . 177 ;i04; -156 90.1 135 76.1' 114 ,61.5 92.5 42.5 63.9
2 115 172 :ioir' 152 87J
132 '74.0 111 59,9 90.1: 415 62.4
3 109 164 . :9e;4, 145 83,8 126 70.8 106 57,3 86.2 39.S 60.0
4 102 154 ; 90.3: 136 : 78.6 118 66,5, 99.9 53.9 81.0 37.-7 56.7
5 93.9, 141 ,83,0, 125 72.4 1,09 61.3 92.1 ,49.8 74.8 35.,1 52.8
M
03 6 84.6 127 ' 75.0 113 65.4 98.3 55.5 83.4 45.2 67,9 32.2 48.4
CQ
7 74.8 112. 66.4 99.8 58'.i 87.3 49,4 74.2 40.3 60,5 29.0 43.6
b
1
8 64.9 97.6 : 57.8: 86.9 50,6 76.1 43,2 64,9 35.3 53.0 2*5.8 38.7
.H
T3
9 55.3 83.1 49,3 74.2 43,3 65.1 37,0 55,7 30.3 45.6 22.5 33,9
•E
o
10 • 46.2 69.4 • 41;.3 62.1 . 36.4 •54.7 31,2 46,9 25.6' 38.5 19.4 29,1
a
•5 11 38,1 57.3 ^ 342? •51.4 30.1 45.3 25.9 38,9 21.3 32.0 16.4 24,6
S.
</3 12 32.1 48.2 ' 28.7 43.2 ••25.3 38.1 21.7 32,7 ' 17.9' 26.9 -13.8 20,7
a
13 27.3 41.0 24.5 36.8 21.6 32.4 18.5 27,9 '15.3 22.9 •11.7 17,6
s
14 23.5 35.4 ^ 2I!.1=I 31.7 .1B.6 28.0 16,0 24,0 13.2 19.8 •10:1 15,2
15 27.6 16.2 24.4 13.9 20,9 11.5 17.2' ,8i0 13,2
0 119 179 157 aw- 137 76.7 115 62.1=- 93.3 42:9' 64,4
€ 2 115 -173 Wf^: 151 86.3 130 71.1 107 54.8 82,3 3%1 46,7
J 4 110 165 i 96.2 145 8i6 124 68.1 102 52.6 79,0 30.8 46,3
.2
6 102 154 ' :8g.4' 134 76.7 115 63.3 95,1 49.1 ,73,8 30:2 45,4
a>
8 90.4 136 78'. 9 119 67.7 102 55.9 84,0 43.6 65.5 28.g 43,0
£
1
10 78.3 118 ' 6^3^ 103 58,6 88.0 48.3 72,5 37.8 56.8 25.? 38.8
3
£ 12 65.6 98.6 " 57.1' 85.9 49.0 73.6 40.3 60,5 31.7 47,6 '2il 33.3
14 53.3 80.0 46.3, 69.6 3^.6 59.5 32.5 48,8 .25.6 38.5 18.2 27.3
16 41.8 62.8 .36,2; 54.4 31:.0 46.5 25.3 38.0 : 20.0. 30.1 144 21.7
18 33.0 49.7 28.7 43,1 24.5 36.9 20.1 30.2 15.9 23.9 •11.6 17.4
20 26.8 40.3 35.0 29.9 '16.3 24.5 •^2:9 19.5 9.48 14.3
22 •22.2 33.3 ^lEt?'' 28,9
HP
248 'lis 20,3 lo'? 16.1 7«9 11.9
Properties of Z angles—' ig in. back to back
Ac. in.2 5.52 4. 86 4.22 3.56 2. 88 2.18
h, in. 0.895 0.903 0.910 0.918 0.926 0.933
ry, in. 1.43 1.42 1.41 1.39 1.38 1.37
Properties of single angle
in. 0.580 0.580 •0.581 0.583. . 0.585 , 0.586
ASD
Qc=1.67
LRFD
(l)c = 0.90
" For required number of intermediate connectors, see ttie discussion of Table 4-8.
' Shape is slender for compression with Fy=36 ksl.
Note: Heavy line indicates KL/requal to or greater tlian 200.
AMERICAN iNSrrRUTE OF STEEL CONSTRUCTJON

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-129
Fy = 36 ksi
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
X
2L2V2
2L2V2X2V2X
snape
V2 '/a ®/l6 V4
"ST fi
lb/ft 15.4 11.8 10.0 8.20 6.14
PnlClc p„/ao ^oPn PnlQo <^cPn Pnliic <icPn p»fac ^cPn
uesign
ASD LRFD ASD LRFD ASD> LRFD ASD LRFD ASD LRFD
0 97.4 146 74.6 112 62.9 94.6 51.3 77.1 38.1. 57,3
1 96.1 144 73.6,, 111 62.1 93.4 50.6 76.1 37.7- 56,6
2 92.1 138 70.7' 106 59.7 89.7 48.7 73,2 36.3. 54,5
3 '85.9 • 129 56.0 99,3 • 55.9 84.0 45.6 68,6 34.1 -51,2
4 •77% ^ 117 60.1 90,3 509 76,5 41.7 62,6 31.2-'- 46,9
•i
5 68.6 103 53.2 80.0 45.2 67.9 37.1 , 55,7 27.9 41,9
X 6 58.8 88.4 45.9 68,9 39"0 58.7 32.1 48.3 24.3« 36,5
b
>< 7 49>0 73.6 38.5 57.8 32.9 49.4 27.2 40.8 •20.6 31,0
•iS 8 a9.7 59.7 31.4 47,2 26.9 40.5 22.3 33.6 17.1 -25,7
<a
9 31.5 47,3 25.0 37.6 21.5 32.3 17.9 26.9 13.8 20.7
10 25.5 38.3 20.a 30,5 17.4^ 26.2 14.5' 21.8 11:2 16,8
o
11 21.1 31.7 16.7 25,2 14.4 21.6 120 18,0 • 9.23 13,9
i
12 26.6 ,14.1 21.1 1Z1- 18.2 10.1 15.1 7.76 11.7
i
0 '97.4 146 74.6 112 62.^ 94.6 51.3 77.1 38.1 57,3
s.
1 144 72:4 109 60 3 90.6 47.8 71.8 29.^' 45.0
£ 2 94.3 142 7t3 107 59.4 89.2 47.1 70,7 29.9.: 44.9
£ 3 92.0 138 69 5 105 '57.9 86.9 45 9 69,0 29 7 44.6
i
4 ,88.S 134 67.1 101 55.8 83.9 44.3 66.6 29.4- 44.2
i 5 85,0 128 64.1 96.4 533 80.1 42.3 63.6 28,9 43.5
a 6 -80.5 121 60.7 91.2 503' 75.7 40.0 60,2 '28.1 42.2
i
7 73^ 111 53,4 - 83,3 45.9 ' 69.1 36.6 55.0 •26.3; 39.5
Si
X
8 ' 67.8 102 51.0^ 76,6 42.2- 63.4 33.6 • 50.5 24 4 36.6
J Si
X 9 61.8 92.9 46.4 69.7 38.3 57.5 30.5 45.9 22.2: 33.4
1
<
10 5.5.7. 83.7 '41.7 62,6 34.3 51,6 27.4 41,2 '19.9 30,0 3
1
11 49.6 74.6 37.0 55,7 ,30.4 45.7 24.3 36,5 17.7 26.6
U1
12 43.7 65.8 32.5 48,9 26.7 40.1 21.3 31,9 15.4 : 23.2
13 38:1 57,3 282 42,4 23.0 34.6 18.3 27,6 13.3 20.0
14 32.9 49.5 24:4 36.6 199 29.9 15.9 23,8 '11.6 17.4
15 28.7 43,1 21.2 31.9 17,3 26.1 13.9 20.8 10.1 15.2
16 •25.2 37.9 18.7' 28.1 15.3 22.9 12.2 18,3 . 8.95 13.5
17 22.3 33.6 16.5- 24,9 13.5 20,3 10.8 16.3 7.96 12.0
18 , IS.9' 30,0 14.8 22.2 12.1 18,2 9.66 14.5 7.12 10,7
19 17.9 26,9 13.3^ 20,0 10.9 16,3 8.68 13.1 6.40 9.62
20 16.2 24,3 12.0 18,0
Properties of 2 angles—% in. back to t)ack
4.52 3.46 2.92 2.38 1.80
in; 0.735 0.749 0.756 0.764 0,771
Ty, in. 1.23 1.21 1.19 1.18 1.17
Properties of single angle
li,!!! 0.481 0.481 1 0.481 1 1 0.482 0.482
, ASD LRFD
® For Y-Y axis, welded or pretensioned bote id intermediate connectors musf be used. '
° For required number of intermediate connectors, see the discussion ot Table 4-8.
Qc=1.67 <t)c=0.90
" Shape is slender for compression with Fy = 36 ksi.
Note: Heavy line indicates KL/r equal to or greater than 200,
{
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-130
DESIGN OF COMPRESSION MEMBERS
2L2
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
/y=36ksi
2L2x2x
Shape
S/t6 V4 '/I6 Va=
"SS
lb/ft 9.40 7.84 6.38 4.88 3.30
si
P„IQc ^cPn <l>cfli M P„/Qc «
Design
ASD LRFD ASD- LRFD ASD . LRFD ASD LRFD ASO LRFD
0 88.8 50,0 75.2 40.7 ' 61.2 31.0 46.7 19.3 29.0
1 57.8 86.9 49#''.' 73.6 39.9, 60.0 30.4 • 45,7 19^0 28.5
2 54;2 ' 81.4 45.9 ' 69.1 37,5, 56.4 28.6 43,0 .ISO., 27.0
3 -48.6 73.0 41.3 62.1 '3%8 50.8 25.9 38.9 24,7
to
4 41.7 62.7 35.6 53.5 213.- 44.0 22.5 337 14.5 21,8
<t
S 34,3 51.6 29.4 44.2 24.3 ^ 36.5 18.7 28.1 12.3 18,5
b
.2
X
6 27,0 40,6 23.3 , 35.0 15.3 29.1 15.0 22.5 10,1 15.2
<0
7 ' 20.4 30.6 17.7 26,6 147 22.1 11.5 17.3 8,00 12.0
a 8 .15.6'' 23,5 13.5, 20,3 11.3 17.0 8.80 13.2 6.16 9.25
9 , 12.3 18,5 10,7' 16.1 8.91 13,4 6.95 10.4 4.86 7.31
"O
c
10 7.22 10.9 5,63 8.46 3.94 5,92
0 tsr.i- 88.8 yO.O 75.2 ;4t).7 61.2 310 467 19.3, 29,0
1 1 ' 57i8. 86,9 48.6 73.0 39.0 58.6 28.5.- 42.9 14.1- 21,2
£
2 56.5" 85.0 47.5 71.4 38.1 57.3 27,9 42.0 14.1 21.2
s 3 S4.5'; 81,9 45.7 68.7 36.7- 55.1 26.9 40.5 14.0 21.0
g 4 .51'8 77.8 43.4 65.2 34.8 52.3 •25.6 38.4 •13.8 20.7
5 48.5" 72.9 40 6 61.0 32.5 48.8 23.9 35,9 Il4 20.2

6 43.5 65,3 36.3., 54.6 2^.1 43.7 21.4 , 32,2 12.6 19.0
1"
•i
7 pa 58,8 32.6 • 49.0 •'26,1 39.2 19.2 28,9 11.6 -17.5
§ 8 M.6 52.0 28.8 43.3 23.0 34.5 16.9 25.4 10.4 157 3
1
Ul
£ 9 , ao'.i" 45.3 25:0- 37.6 19.9 29.9 14.6- 22.0 9.14 13.7
1
Ul 10 25.8 38.8 21.3 32.0 16.9 25.4 12.4 18.7 _ 7M 11.8
11 21.7 32.6 17.9 26.8 14.1 21.2 10.4 15.6 6.62 9.94
12 18.2 27.4 15.0 22.6 11:9 17,9 8;75 13.1 5.62 8.45
13 15.5' 23.4 12.8. 19,3 10.1 15,2 7.47 11.2 4.83 7,26
14 20,1 11.1 16.6 8J6 13.2 ' 6.46 9.71 . 4.19 6,30
15 11:7. 17,6 9.63 14.5 I 7,64 11.5 5ja4 8,47 3.67 5.51
16 10.«. 15,4
,
12.7 : 6.72 10.1 7.46
Properties of 2 angles—^/g in. bacis to back
Ag, in.^
r*, in.
ry, in.
2,74
0.591
1.01
2,32
0.598
0.996
1.89
0.605
0.982
1.44
0.612
0.967
0.982
0.620
0.951
Properties of single angle
/V, in.
0.386 0,386 0,387 0.389 0.391
n,= i.67
LRFD
<1,^=0,90
»For Y-Y axis, welded pr pretensioned bolted intermediate connectors must be used.
" for r^uired :nuniber;(S,intermediate coniiecfors. see the discussion of Table 4-8.
' Shape Is slender for compression with Fy= 36 ksi.
Note: Heavy line indicate /(Ureqit^ to pr greater than 200.
AMERICAN iNSrrRUTE OF STEEL CONSTRUCTJON

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-131
Fy = 36 ksi
Table 4-9
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Y
2L8 LLBB
in.2
fjr, in.
I'z.m.
2L8x6x
Shape
1 3/4 5/8 9/16'^
i/jc
lb/ft 88.4 78.2 67.6 57.0 51.4 46.0 40.4
1>cPn PnlOic P^ICic <kPn PnlQo <t>cfli Pal^c M ViJc ^cPn PnlQc W
Design
ASO LRFD ASO LRFD ASO LRFD ASO LRFD ASO LRFD ASO LRFD ASO LRFD
0 5» 849 496 745 431 648 361 543 314 472 267 402 220 330
4 55A.'
832 486 731 423 636 354. 533 309 464 263 395 216 ' 325
6 812 475 . 713 413 621 346 520 . 302.
293
454 257 : 387 212 319
8 785 459 690 399 600 335' 503
302.
293 440 250 ; 375 206 310
10 580 751 439 660 383 575 321 ' 483 281 422 240 361 199' 300
12 474 712 4t6'' 626 363 546 305 458 268 , 402 229 345 191 287
14 444 668 391' 588 341 513 287 431 252- 379 217 326 181 273
16 413 621 363 546 318 • 477 268 402 236 ' 355 204 : 306 171 257
18 380 571 335 503 293; 440 247 371 219 329 189 285 160 240
•s
20 §46 521 305 • 459 267 402 226 340 20^ 302 175 263 148 223
22 470 276 414 242 364 205 , 308 . 183 275 160 240 137 .205
24 279, 420 247 371 217- 326 184 276 165 . 248 145 218 125 188
26 247' 371 218 328 192 289 164 246 148- 222 130 196 113 170
28 216 325 191 i 288 169 254 144, 217 131 197 116J 175 lfl2 153
30 1158 283 167 251 147 221 126 189 115 172 103 154 136
32 166 249 147 220 129 195 110 166 ioi: 151 90.1 135 %02 120
34 220 130 195 115 172 979 147 '89,2 134 •79.9 120 710 107
36 1131 197 116 174 102 154 87.3 131 79,6 120 712 107 633 95,2
38 117 176 104 • 156 91.8 138 •78.3 118 71.4 107 .63.9 96.1 568 85,4
40 iq6 159 93.S 141 .82.9 . 125 .70.7 106 64.5 96.9 57.7 86.7 • 51.3 77,1
42 •75.2 113 64,1 96.4 B85 87.9 '52.3 78.6 465 69;9
0
W
849 496 745 431 648 361 543 314 472 267 402 220 330
4 528 794 456 685 385 579 302 453 254 382 2{jg 312 162 ' 244
6 516 776 446 670 377 566 299 449 252 , 379 206 310 161- 242
8 •6oo 752 432 649 365 549 •294 442 245 373 203 306
159 239
10 480 722 415' 623 351 , 527 286 430 243 365 199 300 235
12 457 686 394' 593 334 502 275 414 234 352 194 291 fe' 229
14 420 631 363 545 ®7 462 255 383 2W 329 183 274 146 1 219
16 585'
m
505 285-, 428 236 355 204 307 171 258 . 138 207
18 536 308 463 261 393 216 325 282 159 239 129 194
'O
20 486 273 420 237 356 195, 293 170 256 145 218 119 179
22 437 251 377 212 ^ 319 174 262 153 230 131 197 109 163
24 258 388 223 334 188 283 154 231 135 . 203 117 176 979 147
28 227 ' 341 195 294 165 248 134 201 118 178 103 155 87,2 131
28 197 296 169 255 143 215 116 175 m. 155 90.0 135 76.8 115
30 172 258 148 222 125 188 1-02 153 :,80.7 136 793 119 ,68.0 102
32 151 227 130 196
11P
166 90.1 135 ,80.3 121 70.4 106 r605 90,9
34 'isit- 202 1.1'§ 174 .98.1 147 80.1 120 71.5 107 62.8 94.4 541 81.3
36 120 180 103 155 87.7 132 71.7 108 64.-( 96.3 56.3 84.7 '48 7 73,2
38 162 92.9 140 78.8 118 64.6 97.1. 577 86.8 50.8 76.4 440 66,1
40 97? 146 BS.'S 126 •71,3 107 58.4 87.8 52 3 78.6 •46.1 69.2 39 9 60.0
42 - 88.3 133
Properties of 2 angles—^/s in. bacic to bacl(
26.2
2.49
2.52
23.0
2.50
2.50
20.0
2.52
2.47
16.8
2.54
2.45
15.2
2.55
2.44
13.6
2.55
2.43
12.0
2.56
2.42
Properties of single angle
Q<;=1.67
1.28
LRFD
C = 0.90
1.28 1.29 1.29 T3ir~] oiT 1.31
" Por Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
' for required number of intermediate connectors, see the discussion of Table 4-8.
° Shape Is slender for compression with fy = 36 ksi.
Note: Heavy line Indicates W./r equal to or greater than 200.
i
AMERICAN iNsirtUTE OF STEEL CONSTRUCTION

4-132 DESIGN OF COMPRESSION MEMBERS
.Y
2L8 LLBB
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy = 36 ksi
2L8x4>c
Shape
1 '/4 5/a
VJC
Vw'
•5; 0
lb/ft 74,8 66.2 57.4 48.4 43.8 39.2 34.4
0
Pniao fcPfl P^IQc p„iac ^oPa PnlClc Pn/ac « P„IQc <kPi
0
Design
^SD. LRFD ASD LRFD ASD LRFD .ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 479 719 423 635 366 551 307 462 269, 404 228 343 187 281
4 4^9 706 415 623 360 541 302 453 2'64 397 224 337 1-84' 277
6 458 • 689 405 609 351 528 295 443 2S8 388 , 220 330 181 271
8 44^ 666 392: 589 340 !i11 285 429 250 376 2T3 321 176 264
10 424- 638 375 564 326 490 ^ 274 ; 412 241 362 206, 309 170 255
12 402' 605 356: 535 310 466 260 391 229 345 196 295 163 245
14 378 568 335. 503 292 438 245 368 217 326 186 280 155 ' 233
16 3S2 529 312 469 272 409 229 344 . 203 305 175 263 146
137
220
18 324 487 288: 433 251 378 212' 318 188 283 163 245
146
137 206
re
20 296 444 263: 395 230 346 194 291 173 260 151 226 127 191
1
X
22 m 402 238 358 208: 313 176 264 158 237 138 207 117 176 b
>c 24 239 360 214 321 W' 281 158 238 143 214 125' 188 107 162
26 2F2 319 190, 285 1^7 250 1.41
212 128 192 113- 170 97.6 147
S 28 186 280 167 251 147 221 124 187 113 170 101
,6
152 88.0 132
•y 30 162 244 146 219 128 193 109 163 <99.6 150 '8S ,6 135 787 118
& 32 143 214 128' 192 113 169 95.5 144 •87,5 132 78.7 118 697 105
34 126 190 113 170 99,8 150 84.6 127 77,5 117 697 105 61.8 92.9
36 W 169 101 152 89,0 134 75.5 113 6gf2 104 62.2 93,5 55.1 82.8
38 101 152 90.7 136 '79,9 120 67.7 102 ^ 62,1 93,3 55,8 83,9 49.5 74.3
40 912 137 123 72,1 108 J1.1 91,9 56,0 84.2 .SQU 75,7 44.6 67:i
42 -7.4.2 112 ,65,4 98.3 83,3 50,8 76.4 ,457 68,7 40.5 ,60.9
€ 0 479 719 423 635 366 551 307 462 269 404 228 343 187 281,
M 4 429 645 3Z0 557 3l 467 256 385 218; 327 178, 268 140 210
u 6 406 i 610 350 526 294- 442 245 368 209 i 314 TO; 258 135 203
TS 8 375 564 323 486 272 408 227' 341 195 293 16T, 242 128 192
£ 10 330 496 284 427 239 359 198 298 ; 171 258 t43' 216 115 173
tu
12 288: 432 247 371 208 312 170- 256 148 223 12P 188 102 153
>• 14 244 367 209 314 176 264 142 213 124 187 106 159 87.5 131
2
16 202 304 172 259 145 217 115 172 101 152 87.0 131 72.9 110
18 163 245 138 208 116 174 92.1 138 81,6 123 70,6 106 597 89.7
20 132 199 112 169 94.6 142 75,5 113 . '67,1 101 58,3 37.6 ,49.5 74.4
22 11,0 165 93.3 140 78.6 118 94,6 56,1 84.3 48,8 73.4 417 62,6
24 •92,5 139 78.7 118 •66 3 99.7 53,2 80.0 '47,5 71.4 ^ 41,4 62.3 35.5 53,3
26 119. 67.2 101
Properties of 2 angles—^/s in. bacl< to bacl<
Ag, In.'
rx, in.
ry, in.
22.2
2.51
1.60
19.6
2.53
1.57
17.0
2.55
1.55
14.3
2.56
1.52
13.0
2.57
1.51
11.6
2.58
1.50
10.2
2.59
1.49
Properties of single angle
O-i in.
0.844 0,846 0.850 0.856 0.859- 0.863 | 0.867
ASD LRFD ' For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
' For required number of intermediate connectors, see the discussion of Table 4-8.
' Shape is slender for compression with fy = 36 ksi..
Note: Heavy line indicates W-/r equal to or greater than 200.
He =1.67 (|)c = 0.90
' For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
' For required number of intermediate connectors, see the discussion of Table 4-8.
' Shape is slender for compression with fy = 36 ksi..
Note: Heavy line indicates W-/r equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-133
Fy = 36 ksi
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles-^LLBB
2L7 LLBB
2L7X4K
Miape
3
«/8
1/2= Vn' "e
lb/ft 52.4 44.2 35.8 31.4 27.2
o «
S c
PnlO., PnlClc ^cPn PJSlc ^Pn PalSl, Pnl^c ifcPi,
5! g
uesign
ASD LRFD Aso ; LBFD ASD LRFD ASD LRFD m LRFD
0 334 502 280 ' 421 :218 ; : 328 .182 274 145" 218
4 326 490. 273 i: 411 ,213 ^ 321 ^178 268 142--, .213
6 316 475 265 • 399 207 312 \i73 261 139. 208
8 303 455 254 i 382 m ,, 299 167 251 134." 201
10 286 , 430 m : 362 :189 : 284 159 239 128' 192
12 267 402 2i5 : 338 •177 : 267 J 50 225 12f 182
14 246: 370: 208 : 312 M65 , 247 140: 210 114 171
'5
M 16 225 338 190 i 285 il51 - 227 "129, 193 106 159
n
18 202 304 171 , 257 !137 206 117 176 97:1 146
ii >< 20 180 270 152 : 229: :123 • 184 '106 159 88:4 133
D
1
22 158' • 237 134 201 :109 : 163 •94.6 142 79.7 120
o
24 137 - 205 116 : 175 95.6" 143 -83.5 125 71.1 107
Si
26 117 176 99,8 150 82.1: 123 ' 72.9 110 62.8 94,4
I
28 101 151 86.1 129 70.8 106 - 63.0 94.6 -.54.9 82,5
1
30 87,8 132 75.0 -113 1.61.6. 92.7 54.9 82,4 .•47,.8 71,9
Im
32 7J.2 116 65.9; 99.0 : 54.2 81.4 482 72.5 '42.0 63,2
'1
34 68.4 103 = 58.4 87.7 • 48.0 721 42.7 64.2 55.9
-
§
36 61.0 91,6 52.1 78.3 42.8 64.3 "58.1 57,3 33.2 49,9
0 334 502 280 • 421 218 328 182 274 145' 218
|>
4 295; 443 238 357 178 268 J.143 215 108.' 162
£
6 279 420 225 339 172;;,.. 259 ••^38 208 158
%
8 259 389 209 f 314 1161 :: 243 ^31 197 100 150
1
10 228 343 185 ' 277 1143 ' 215 117 177 91^ 137
s
.a
>< 12 200 300 161 ' 243 :125 188 104 156 81.7 123
•a
14 171 256 138 1 207" M 06 - 159 "88.6 133 7'l.1 107
2
lit
16 142 213 114 , 171 87.3 131 73.8 111 60.1 90,4
18 115 • 172 91.9 i 138 : 70.4 106 ' 60.1 90.3 . 49:6 74.5
20 93.3: . 140 75.0 113 57.8: 86,9 49.6 74.5 41.2 62,0
22 77.4 116 62.4' 93.7 : 48.3, 72.6 :41S 62.4 34.7 52,2
24 98.1 52 6 79.1 : 40.9 61,5 5 35.2 53,0 ZQ.Q 44.4
26 •55f 83.8 450 67.6 1 3lp,
52.7
Prapemes of 2 angles—^/s in. back to back
Ag. in,^
h, in.
/>, in.
15.5
2.21
1.61
13,0
2.23
1.58
10.5
2.25
1.56
9,26
2,26
1,55
8,00
2,27
1,54
Properties of single angle
h, in. 0,855 .0.860 0.866 0,869 0,873
hM^- LRFD ' For Y-Y axis, welded or pretensions) bolted intetmediate connectors must be used,
' For required number of intermediate conneclots, see the discussion of Table 4-8,
' Shape is slender for compression with />=36 ksi.
Note: Heavy line indicates KL/r equal to or greater than 200.
ac=i.67 (|)c = 0,90
' For Y-Y axis, welded or pretensions) bolted intetmediate connectors must be used,
' For required number of intermediate conneclots, see the discussion of Table 4-8,
' Shape is slender for compression with />=36 ksi.
Note: Heavy line indicates KL/r equal to or greater than 200.
AMERICAN INSTITOTE OF STEEL CoNsmucnoN

4-134 DESIGN OF COMPRESSION MEMBERS
Table 4-9 (continued)
X— :X
Available Strength in
C - kci
-1 -v Axial Compression, kips ^
— OU IVOI
Y
2L6 LLBB
Double Angles—tLLBB
2L6x4x
Shape
3/4 5/8 "/te
O
lb/ft S4.4 47.2 40.0 36.2
<3
si
Pn'^c •foPn PalQc PnlQc ifcPn ifePn
<3
si
)esi gn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 • 345 518 ••300 450 379 229 > 343
4 > ^33 501 ••'290 ' 435 366 221 332
6 jpSM- 479 • 277 417 :r234,'^ 351 212 318
8 :300 451 : •',261 393 V220" : 331 200 300
10 '277 416 242 383 12cSi • 307 185 , 278
12 252 378 220 331 ; ^36, 279 169 254
14 224 , 337 197 296 i 166:, i 250 15i ? 228
1
<
X
16 197 296 , 173 260 220 133 201
b
X
18 170 , 255 150 225 ; :127 191 116 , : 174
§
20 , 144- • 216 3127 191 108 162 98.6 148
1 22 119 179 ...106 • 159 i-904; ^ 135 . 82.5 „ 124
24 100 151 89.0 134 ' 'K m7 i 114 69.3 104
1
26 ' >85.5 128 75.9 114 - 64:5 97.0 59.1 ' 88.8
s
28 ; 7^:7 111 65.4 98.3 ; 5^ ^ 83.6 . 50.9 • 76.6
i
30 64.2 96.5 • 57.0 85.6

72.9 44.4 66.7
g
0 , 345 518 -,-300 450 ' ;
r252-:M
379 229 343
4 " Sin 480 .-273 410 '224' 336 "199 298
6 304 456 259 390 ; i 320 189 284
"c B ' 28,3--' 425 ' 241 363 19S r; *! 298 265
«
10 378 ^ ^"214 " 322 264 156 ; : 235
•s
«
12 334 -'"189 284 T155"; 1 233 - 138 . 208
1
UJ
1 14 ' 192 289 163 244 133'= ; 200 119 179
2
>-
16 162 244 -.J37 205 : 112- . 168 99.8 , 150
18 134 201 168 91.5 138 81.5 ^ 123
20 109 163 91.1 137 74.5 112 66.5 99.9
22 89.9 135 • 75.5 113 61.9 93.0 55.2 83.0
24 » 75.7 114 63.5 95.5 52.1 78.3 46.6 70.0
26 97.0 81.5 44.5 66.9 39.8 ' 59.8
28 . 55.7 83.7 46.8 70.4
Properties of 2 angles—^/a in. back to back
In.^ 16.0 13.9 11.7 10.6
h, in.
1. ,86 1, ,88 1.89 1.90
ry, (in. 1.71 1.68 1.66 1.65
Properties of single angle
'>. in.
0.854 0.856 0:859 0.861
a, = 1.67
LRFD
(!)<;= 0.90
For Y-Y axis, welded or pretensioned bolted intermediate connectors must tSe tised.
' For required number of intermediate connectors, see the discussion of Table 4-8.
Note: Heavy line indicates KL/r equal to or greater tlian 200.
AMERICAN INSTRRUTE OF STEEL CoNSTRUcrtON

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-135
Fy = 36 ksi
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
2L6 LLBB
2L6x4x
Sha
V2 Vk"
3/jC
= 1
lb/ft 32.4 28.6 24.6 20.6
= 1
M PalStc PnlQc tOcPa PnlClc ifcPn
Desi an
ASD LRFD ASD LRFD . ASD LRFD ASD > LRFD
0 ' 205 308 175?) 264 142 213 108'- - 162
4 198 298 170 : : , 255 ,138 207 105.'; 158
6 Sl90 286 163 . 245 133 2QQ 102 153
8 179 269- 154 232 126 189 . 97.0 146
10 166 250 : 144 K; 216 118 177 91.4'f 137
12 ; 152 228 131 rv, 198 109 163 84.8, 128
„ „ 14 ,136 205 118.:;, 178 98.7 148 77.9, 117
i 16 .120 181 105 158 ; 88.3 133 70.5 - 1:06
b
1
18 ,104 157 91.7. 138 77.8 117 62.9' 94.6
s 20 89.2 134 78.8' 118 67.6 102 55.5- 83.4
1 22 74.7 .112 , 66.5,,,^ 99.9 57.8 86.9 48.2 72.5
24 62.8 , 94.4 55.8. 83.9 : 48.7 73.2 41.3 62.1
s.
26 53.5 80.4 71.5 41.5 62.4 35.2 52.9
£
28 . 46-1 69.4 - 4Y.I3 61.7 35.8 53.8 30.4 . 45.6 .
£ 30 40.2. 60.4 53.7 31.2 46.9 56.5 ,39.8
32
. 33-t
47.2 27.4 41.2 23.2 34.9
g
ti 0 • 205 • 308 264 ;'.1-42 213 ins 162
4 173 260 " 143' ' 215 166 78.6 118
6 '164 247 . 139 - • 209 108 162 77.fl ' 116
a
8 •'154 231 132 T98 ' 103 ' 155 74.2 112
.1 10 • 137 206 118 • 177 93.7 141 68,9" 104
1 1
12 •121 ' 182 ; 104-• 156 83.6 126 62.7 94.2
U1 s
>-
14 104 : 157 89.0 134 72.5 109 55.4 ' 83.3
2
>
16 87.7 132 - 74.3" 112 61.2 92.0 71.7
18 ^ 71.6 108 60.3 90.7 50.3 75.6 40.0 60.1
20 58.5 88.0 49.5 74.4 41.5 62.4 33.3' 50.1
22 r 48.7
. 1-
73.2 . . 41.3 62.1 34.8 52.3 28.1 42.2
24 41.1 61.8 35.0 52.6 : 29.5 44.3 ^24.0" 36.0
26 35.1 : 52.8 30.0- 45.0 25.3 38.1 20.7. 31.0
Properties ot 2 angles—% in. back to back
9.50
1,91
1.64
8.36
1.92
1.62
7.22
1.93
1.61
6.06
1.94
1.60
Properties.of single angle
0.864
!
Qc=1.67
LRFD
(t)c = 0.90
0.867 0.870 0.874
" For Y-Y axis, welded or ptetensioned bolted intermediate connectors must be used.
° For required number of intermediate connectors, see the discussion of Table 4-8.
' Shape is slender for compression with fj,=36 ksi.
Note: Heavy line indicates KL/r equal to or greater than 200.
{
AMERICAN iNsnruTE OF STEEL CoNsmucTioN

4-136 DESIGN OF COMPRESSION MEMBERS
2L6 LLBB
Table 4-9 (continued)
Availabie Strength in
Axial Compression, kips
Double Angles—LLBB
Fy = 36 ksi
2L6X3V2X
Shape
Vz
e
"ft S
lb/ft 30.6 23.4 19.6
0 ^
PnlQc •fcPn Palilc <t><;Pii
0 ^
Design
ASO LRFD ASD LRFD ASO LRFD
0 ,194.... 292 ' 135 203 103 •155
2 192. 289 • • 134 202 102 154
4 188 282 131 197 100 151
6 180 271 - 127 190 S6.9 146
8 170 • 256 120 181 92.5 139
10 158 - 237 < 112 169 87.1 131
M
'S <A 12 '144" 217 104 156 81.0 1 122
ra
•a
1 14 •130 195 - 94.0 141 ' 74.3 112
b
><
16 '115 ' 172 ' 84.1 126 67.2 . 101
18 99.6 150 74.1 iir 60.0 i 90.2
20 85.2" 128 • 64.4 96.8 52.9! 79.5
22 71.6 108 , 55.1 82.8 69.1
24 .-601 90.4 • 46.4 69.8 S9.4 59.2
£
28 , 4'4.2;, 66.4 34.1 51.3 29.0 43.5
30 38.5 57.8 29.7 44,7 •'•'25.2 37.9
32 , -.33.8 50.8 ; .•;26.1 ,

39,3 . ::,.33.3
0 194 292 135 203 103 155
€ 2 166 250 107 161. 76,5 • 115
s 4 160 - 240 158 ^ '75.2 : 113
.>
6 ISO - 225 . 101 152 7i6 109
g 8 ;i33 200 91.9 138 67.3 : 101
UJ
1
10 •116, 175 81.0 1?2 60.6 91.0
2
J
12 98.0' 147 68.7 103^ 52.5; 78.9
14 79.8 120 56.3 84.6 43.9 . 66.0
16 62,8 ; 94.4 44.7. 67.2 35.6 53,5
18 5o.r. 75.3 • 36.1 54.2 -29.0 43.5
20 40.9 61.4 29.6, 44.5 24.0 36.0
22 34.0 51.0 24.7 37.2- . 20.1 . 30.2
Properties of 2 angles—'/a in. bacl( to bacic
Ag, In.^
/V, in.
9.00
1.92
1.40
6,88
1.93
1.38
5.78
1.94
1.37
Properties Of single angle
0.756 0.763 0.767
£1.= 1.67
' For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used..
• For required number of Intermediate connectors, see the discussion otTable 4-8.
- Shape is slender for compression wltti Fy= 36 ksi.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-137
Fy = 36 ksi
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LL.BB
-V
2L5 LLBB
2L5x3V2x
snape
3/4 5/8 Vz
I2
lb/ft 39.6 33.6 27.2 20.8 17.4
0
ji
M Pn/Oc P„/Q, Pa/Oc Pn/Oc <t>cPn
® c
s
uesign
ASD. LRFO ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 252 • 379 213 319 172 . 259 i129 . 194 101- • 151 ^
2 249 > 374 210 316 170 256 128 192 99.6' 150
4 240-f. 360 202 304 .164 , 247 123 185 96.4' 145
6 225 338 • 190 286 '155 232 . 116 175 91.3 137
8 206 X- 310 174 282 . 142 • 213 107 161 84.7 127
2
10 184 276 156 " 234 127 191 96,3 145 76.8. 115
•s
1
12 160. 241 1 sa- 204 111 • 167 84.6 127 '68.2 103 b
s
14 136 204 ils' 173 >95.1 143 ,72.5 109 59.3 89.1
f 16 112 169 , 95.7 144 79.3 119 • 60.8 , 91.4 50:4 75.8
i 18 90.6 136 77.3 116 64.3 96,7 49.7 ^ 74.7 42.0 63. t
i
20 ' 73.4 :110 : 62.6 94.1 52.r 78,3 40.2. 60.5 34.2 51.4
i
22 '60.6 91.1 51.7 77.8 : 43.1 84.7 33.3' 50.0 28.3 42.5
s
24 '50.9 , 76.6 •43.5 65.4 36.2 54.4 27.9 42.0 23.8 35.7
e

•1 0 379 213 319 172 259 129 194 101 151
g
2 241 . 362 199 300 157 235 108-'' 162 , 79.1'" 119
a
4 232 348 192 289 151 227 106,. 159 78.0 117
f> 6 21g .327 180 . 271 , 142 213 102^^' 153 75.5 •113
J 8 ; •293 161. 242 127 -190 ' 9Z6. 139 69.9 105
J Ui
10 17? 258 212 HI. 167 • 81.6 123 62.5 94.0
1
1
12 147. 221 ;i2o 181 94.8 143 69.3 104 ' 53S . 809
2
£ 14 122 183 99.6 150 70.4 lie 56.9 85.0 44,8 G7.4
16 , 98.6 148 79.8 120 , 62.6 94.1 ' 45.2 68.0 136.1 54.2
18 81.9- 123 , 63.3
95.2 : 49l8 74,9 36.2 54.5 29.1 43.7
20 66.5 99.9 1
1
1 51.4 77.3 40.5 60.9 29.6 44.5 23.9 35.9
22 ; 55.0- 82.7 1 L42.6 64.0 33,6' 50,5 '24.6 37.0 ' 19.9 30.0
24 46.3 69.6 37.5 56,4 ' 28,3 42,5 ,_20._8_ __J_6.9_
properties of 2 angles—^/s in. back to back
flg, in/
tx. in,
fy, in.
11,7
1.55
1,53
9,86
1.56
1,50
8.00
1.58
1.48
6.10
1.59
1.46
5.12
1.60
1.44
PrpperBeSfOf single angle
fj.in. 0,744 0,746 0,750 0,755 0,758
ASD LRFD • For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used:
' Fflr required number of intermediate connectors, see the discussion of Table 4-8,
' Shape is slender for corripression with 36 ksi.
Note: Heavy line indicates KL/r equal to or greater than 200,
ac=1,67 (tic =0,90
• For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used:
' Fflr required number of intermediate connectors, see the discussion of Table 4-8,
' Shape is slender for corripression with 36 ksi.
Note: Heavy line indicates KL/r equal to or greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-138
DESIGN OF COMPRESSION MEMBERS
2L5 LLBB
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angies—LLBB
Fy = 36 ksi
Shape
2L5x3x
V2 '•/16
Ib/ff 25.6 22.6 19.6 16.4 13.2
Design
/yot
ASO LRFD ASD
P„/Qc
LRFD ASD LRFD ASD
p„/ac
LRFD ASO LRFD
162 •
160
154
145
.133"
119;'
104
89.2
74.3
60.3
48.9
40.4
33.9
243
240
231
218
200
179
157
134
112
90.7
73.4
60.7
51.0
143
'141.
136
128'
118
106
92.7
79.3
66.2
53.9
43,7
36.1
30.3
214
212
204
193
177
159
139
119
99.5
' 81.0
65.6
54,2
45,6
121-
120
116
109
101
90.6
79.7
68.5
57;5
47,?
38,2
31.6
26.5
182
180
174
164
151
136
120
103
86.5
70,9
57.4
47.5
39,9
94.8
93.8-
90.8^
86,1
79.8
72,6
64.5
: 56.2-
47.9
39.9
32.6
26,9
22.6'
142
141
136
129
120
109
97.0
84.4
72,0
60,0
49,0
40.5
34.0
67.2
,66.6
,64.8
61,9
58.0
'53,3<
48.1
'42.7
37.1
31.7
26.6
22.0
18.5
101
100
97,4
93.0
87.1
80,1
72,3
64,1
55.8
47.6
39.9
33,0
27.7
162
145-
137
125
107 •
89.1
71,0
54,0
^ 41.7
. 33:1
26,9
243
218
206
189
161
134
107
81,2
62,6
49,7
143
124
118":"'
108
: 92,2
76,8
• 61.2
46,6
36,0
28,6
23.3
214
186
177
162
139
115
92,0
70.0
54.1
43,0
35,0
121 -
102 •
I 98,5
91.7
78.6
65.0
51.2'
38.8'
30.2
24.1
19,6
182
153
148
138
118
97.7
77,0
58,4
45.4
36,2
29.5
94.8
75,1-
73,1
68.9
60,4"
•50,8
40,8
31,4
24.6
19.7
16.1-
142
113
110
104
90,7
76,3
61,3
47,2
36,9
29.6
24,2
67?
'49.3
'48,2'
46.0.
41.4-
135.8.
29.6
.23.4
18.5
15.0
101
74,1
72.4
69,1
62,3
53,9
44.5
35,1
27,8
22,5
•f..
Properties of 2 angles—^/s in. back to bacit
Ag, ij^} 7.50 6,62 5,72 4.82 3.88
Or, in. 1,58 1,59 1,60 1,61 1.62
ry, in. 1,24 1,23 ' 1,22 1,21 1.19
Properties of single angle
f;, in. 0,642 0,644 0,646 0,649 0.652
fi.= 1.67
LRFD
(])c=0,90
' For V-Y axis, welded or pretensioned bolted intermediafe connectors must be used,
'For required number of intermediate connectors, see ttie discussion of Table 4-8,
" Siiape is slender for compression Willi fys 36 ksi.
Note: Heavy line indicates ffi/r equal to or greater than 200
AMERICAN INSTITUTE OF STEEL ConsTRUcTIOn

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-139
Fy = 36 ksl
Table 4-9 (continued)
Available Strength In
Axial Compression, kips
Double Angles—LLBB
• Y
2L4 LLBB
2L4X3V2X
snape
Vz 5/18'' V4=
M i
lb/ft 23.8 18.2 15.4 12.4
M i
Pn/Clc <kPn Pn'Qc p„/n. « Pn'Cic <hPn
c
uesign
. AStJ LRFD ASD LRFD ASD LRFD ASD •: LRFD
0 151 , 227 116 174 96.7 145 71.6 J 108
2 148 222 113 170 ^ 94.9 : 143 70.3 106
4 139 209 107 161 89.5 135 66.7 100
6 126 189 97.0 146 81:3' i 122 B1.2 92.0
8 109-* 165 84.7 127 ;i 71.0: 107 54;2 81,4
10 91.4 137 71.1 107 ' 59.6^ 89,6 46.3 69.6
.2 %
12 ' 73.3 110 " 57.5 86.4 - 48.2 ; 72.4 38.2' 57.5
b
•o 14 56.4 84.8 "44.6 67.0 •i 37v4 • 56.3 30.5 45.8
ra 16 43.2 , 64.9 L34.1 51.3 28.7 43.i; 23.6. 35.4
1
18 • 34,1 51.3 •27.0 40,6 22.7 34.0 18.6-/ 28.0
o
20 27'.6 41.5 •21.9 32.8 • 18.3 27.6 15.1 • r 22:7
is
• ¥ • . • .• " '
§ 0 • 151 . 227 .1.16 • 174 96.7 145 ,.-71.€ 108
1 2 1^3 215 105 158 79.6 120 54;6 82.1
B 4 138 207 102 153 78.8 118 '54.2 ' 81.4
S
6 130 196 95.9 144 ' 76.7/ ! 115 53.1 > 79.8
8 m 176 86.3 . 130 70.9 107 50.2 • • 75.5
2
f
10 103 156 76.6 115 63.2 95.0 45.9. 69.1
f
12 89.2 134 • 66.1 99.3 54.3 81.6 40^4 60.7
1
14 74.7 112 55.4 83.2 45.1 • 67.9 34I2- ^ 51.5
u £ 16 60.8 ; 91.4
...iMl.
67.7 36.3 54.6 28? 42.3
18 51.0 76.7 37.8 56.8 30.5 45,8 35,7
20 41.4 62.3 30.7 46.2 • : 24.9 37.4 19.5'" 29,3
22 .34.3 51.6 25.5 38.3 ; 20.7 : 31.1 16.3" 24.5
Q
24 -28.9 43.4 ' 21.5 32.3 17.5 26.2 "13,8 • 20.7
0
26 24.6 37.0
Properties of 2 angles—Vs in. back to bacit
Ag, in/
Or, in.
ry, in.
7.00
1.23
1.57
5.36
1.25
1.55
4.50
1.25
1.53
3.64
1.26
1.52
(i,in.
Properties of single aiigie
0.716 0719 0.721 0.723
f2c=1.67
LRFD
(|)c=0.90
' For Y-Y axis, welded or pretenskmed tolled intermediate connectors must be used.
" For required numter of intermediate Connectors, see the discussion of Table 4-8,
' Siiape is slender for compression witti Fy = 36 ksi.
Note: Heavy line indicates equal to or greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-140 DESIGN OF COMPRESSION MEMBERS
Table 4-9 (continued)
X— -X
Available Strength in
c _ . oc ifci
Axial Compression, kips
ty -• OO KSI
Y
2L4 LLBB
Double Angles—LLBB

2L4x3x
Shape
s/a V2 % 1/4'
% o
lb/ft 27.2 22.2 17,0 14.4 11.6
o
ie
Pfl/Oc <l>cPn ^oPn PnlCic W ^cPo
Design
ASO . LRFD ASO LRFD iASD LRFO ASD LRFO ASD LRFD
0 172 ' 259 140 ! 211 107 161 •89.8 135 66.5 99.9
2 169 253 137 : 206- '105 158 88.2 133 65.3 98.2
4 159 . 239 129 195 : 99.5 ; 149 83.3 125 62.0 93.3
6 144 216 1.17 : 176 i 90.4 136 75.9 114 56.9 85.6
8 125 188 t02 i 154 .:79.i;. 119 66.6 100 50.5 75.9
1
10 104 157 85 6 129 i 66.6 100 '56.2 84.5 43.3 65.1
•g
•al
><
12 83.6 , 126- ^ 68 9 104 • 54.0- 81,1 45.8 68.8 35.8 53.9
b
rk
14 64.3 96.6 53.2 80,0 ; 42.1. 63.3 35,9 53.9 28.7 43.1
16 49.2 74.0 • 40.8 ^ 61.2 ; 32.2 : 48.5 27.5 41.3 22.2 33.4
.!sl
xs 18 38.9 58,5 32.2 ; 48,4 1 25.5 38.3 21.7 32.6 17.6 26.4
o
20 31.5 . 47.4 26.1 39.2 4 20.6 31.0 • 17.6 26.4 14.2 21.4
-it '
.... ...
1 0 172 259 140 . 211 1107 161 89;? 135 66.5
{
99.9
g
2 164 : 247 131 ; 198 96.5 145 75.3 113 5?.t- 78.2
S
4 157 , 235 125 J 188 ' 91.9 • 138 -,73.8 111 51.1 76.9
xf
6 144 . 217 115 173 i 84.7 127 69.7 105 49,0,- 73.6
8 125 -188 99.2 ' 149 i 73.2 110 • 60.8 91.4 43.8:. 65.9
®
10 106 159 83.7 • 126 ; 61.8 92.9 51.1 76.8 37.6 56,5 2
CA
12 86.3 130 67.9 102 ^ ;5Q.1: 75.4
41.1
61.7 30.8 46.3
§
14 67.9 102 52.9 79.5 39,0' 58.5 -31.6 47.5 24.1 36,3
>•
16 54.9.. 82.4 42.7 64.1 3"1.4.: 47.3 i'-24.5 36.9 18.9 28,4
18 43.4- 65.3 33,8 ^ 50,8 25,0 37.5 19.5 29,4 15.1 22.7
20 35.2 52.9 27.4 41,2 20.3 30.5 15.9 23.9 12:4 18,6
22 29.1 43:8 : 22.7 34,1
3
Properties of 2 angles—S/s in. baclc to bacl<
Aa, in; 7.98 6.50 4.98 4.18 3.38
h, in. 1.23 1.24 1.26 1,27 1.27
/y, in. 1.35 1.32 1.30 1.29 1.27
Properties of single angle
h, in. 0.631 0.633 0.636 0.638 0.639
ASO 1 LRFD " ForY-Y axis, welded or pretensioned bolted intermediate connertots must be used.'
" For required number of intermediate connectors, sec 1 the discussion of Table 4-8,
nc= .1.67
<|lc = = 0.90 ' Shape is slender for compression with F. = 35 ksi.
Note: Heavy line Indicates /(t/r equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-141
Table 4-9 (continued)
Available Strength in
Fy=36 ksi ^jgj Compression, kips
I——. 1
)C
-
)(
-V
Double Angles—LLBB
2L3V2 LLBB
Shape
2L3V2x3x
Va 7/16 '/a V4«
lb/ft 20.4 18.2 15.8 13.2 10.8
PnlCic
ASD
^cPn PalQc
LRFD ASD LRFD ASD LRFD ASD
PnlClc
LRFD ASD. LRFD
130
127
117
103
85.2
67.2
50.1
36.8
28.2
196
191
176
154
.128
101
•75.3
55.4
42.4
115
112
1B4
91.1
75,9
60.1
.45.2
33.2
..25,4
20.1
173
169
156
137
114
90,3
67.9
49,9
38,2
30,2
.ilOO
97.5'
i 90.3
79,5
' 66,5
52.8 '
39.9
29.4
22.5
17.8
150
147
136
119
99.9
79.4
60.0
44.1
33.8
26.7
84.1
•82.0
75.9
66.8
,55.9
= 44.4
33.5
24.7
18.9
'14.9
126
123
114
100
84.0
66.8
50.4
37.1
28.4
22.4
65.7
64.2
59..7
52.9
,44,6
.35:9
27.5
20.4
'15.6
12.3
98.8
96.4
89.7
79.5
67.1
54.0
41.4
30.6
23.4
18.5
124
119
110
94.9
80.7
.66^2
""54'8"
42.5
33.7 .
27.3;
22.6
196
187
178
165
143
121
99.5
"Ea
63.9
50.6
41.0
34.0
115. .
109
104
,95.9
83.0
70.5
57.8
• 47.7
37.0
29.3
23.8
19.7
173
163
156
144
125
106
86.8
7T'8
55.6
44.0
35.7
29.6
,too_
, 92.7
' 88.5
81.9
70.9
i 60.3
• 49.4
38.9~
"31,Te"
• 25.0
20.3
; 16.8
150
139
133
123
107
90.7
74.2
58.5
'T7"4'
37.6
30.6
25.3
84,1
'75.5
72.1
S '66.7
•57.9
, '49.2
-40.3
:31.6
'YsTe"
20.4
.16.6
13.7
126.
113
108
100
87.0
74.0
60.5
47.5
"si's"
30.6
24.9
20.6
65.7
52:8
52.1
50.1
44.8
38.4
31.4
24.6
"2Q.T
16.0
13.1
lO.fl
98.8
79.4
78.3:
75.3
67.3
57.7
47.2
37.0
'30"2"
24.1
19.7
16.3
Properties of 2 angles—% in. hack to back
Ag. in.2
r,, in.
6.04 5.34 4,64 3.90 3.16
1.07 1.08 1.09 1.09 1.10
1.37 1.36 1.35 1.33 1.32
Properties of single angle
h, in. 0.618 0.620 0.622 0.624 0.628
r-ASD LRFD ' For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
' For required number ot intermediate connectors, see the discussion of Table 4-8.
' Siiape is slender for compression with fy= 36 ksi.
Note: Heavy line indicates ffi/r equal to or greater than 200.
ac= 1.67 <|ic = 0.90
' For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
' For required number ot intermediate connectors, see the discussion of Table 4-8.
' Siiape is slender for compression with fy= 36 ksi.
Note: Heavy line indicates ffi/r equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Effective length, KL (ft), with respect to indicated axis
Y-YAxis
o> o) cnxkUM-^ o<aaa^ai ui i. LO ro o
K> ^ W ba CO to
o tn ro o O:
OS b? Ks ^ ik oj CO
s =i s a ssisj» s s 5 a y s ?5 s 2
0> W W b> b> Ja. ja^ <0 03 O CO
Kss sj^tfeg sssss -^isassy y
CO b? CT> in bi|b> o. co W ^
lOO—^roco
O CO 0>0c04^<£>r0 CO
^S5..SI5S
CO «3 C3 is. Ki.U o.«b o 'lOi^ M
- ro ro
—' -fc- ->41
1-1 CO o wi
sssas SSSSg S
.co4::.ro-»- i-coo oj^^^ro
Icn^o cr>c7)loboci» '-^obscnoa oojo>row w
IS?'-^
SESSii^ S^aSS S
ikcobsfobi roobscoco —i^oi—1042^
co-^ ai Ul CO ro ->- o to 00 o oi^oto-^ o
s^s^si^ s
Sioi^ ^^oo-S coro«£>oioo to
X-XAxis
to to
ba^^^co cooroKaco
p;co g- Eg y 2 y e fe a 2 5 g s a. p t
fo >0 OJ oj 4:^ 42^ (>i 0> ->JCo<oo-^ —i-rocoosost^
l^p::}^ w^w-^o
CO COJS^ OS ^ OT ^ 4i ^ O
Kj'jio o tn bi ro be ^ ^ ob ro tOsO c6t---4 ro
i^isy gss^^a ssssss SSS3S s
c»co<ob3—^ -«jyirooo<o CJl
SSISSS fSgsagg g;
U^Lcbs -^ooitocD -».ofO<oo OJ:
6:: ":
Kss^^s gassa asssg e
b5.>jco ji'-*-03 bo bo ooii:^—^Ln 4:iO>oa>—^ ->4
"S 8.
No. of
connectors'
<0
&
Q) 0 SL
1 o
s o
® 3 S.
Q)
o;
o
cn
(A W
i 2
00
CD
3
•a
(0
v>
o
•o =
3
(Q
5*
a-
ro
4i>
<b
cT
o
S
3'
c
(p
a
11
«
o
£
3
^ p 01
L ic O
03—^0
o
—^ O 4i.
Effective length, KL (ft), with respect to indicated axis
y-yfiMS
^ p ho
IJ. to b>
—^ o ivi
<000-401 U1JVCJN-' O (O 03 -40> o
S^piK Jg^SftS saas^ ISSSSS s
Ui -•• o 01 -f d io'^ b -ija ba *"
rocjiojLO cn too —^oj ojj^oioicn tn
.-J.-'J^tc j^-^tocnoo coStpcD=i mSi^SS M
tcocorobiKico^'rocoho
T
cSN^fS sasgsi 'g
<D » {O Ji "Ol to t£> JM-C' <S <D K>fo Q aj-
o CP '-vi ^ Id ^ Ol O C7t
KKsgiy feiia'ss sasiss d
W O —^ CO to b>|'—^ JS' to- 'o> b> b> xn (D to O W fxi
ho ro ro ro CO CO tnlo
P{N:>CJI03 CO OiO. — .w^^^w
cn 03 cn 03 ^ bi oijM 03 o Ko ro ^
S« SfS g feS,Ki g S 2 S S
40 03. O <5> 03 b0|^ —^ fo CDr^ W C*3Aj ji. bi
tolifo j^pTO^iCO
•>1 o cc>' o o cn-^bijos
CnCJlO>-'4->J 03CDCOCDCD o
. . _ _ to p p JO p o ^ CO ai
o CO, co'fo 03 05 o io CO ^ ro CO w
pp.p
^ to--^ co- o^- ^ "cn CO bif xo
cn cn o CO
05->J->J->J->J CO
-^05—'•05—'- *-«Joro^05 cn
ocococoo cn
TO S o ^ C3yco}s4^.o- o$o><oc6bi oo>ofs>^ CO
o ro CO oi
bo o cn CO
roiTO ro rocococojskjs^j^jskjskjsk cji
pgo p propp^ co4>pcntncD
oj^ cn 0 to CO 4^ cn cn ^ ui 05 '—«•
X-XAxis
uiAuro-.- otDoo-4cn cn^buro-.. o
SfSSSa i
ro —»• o^^o io ba o 03 cn W '-^'ba ''
rocjcj4i>.cn cn->jcoo-^ ro4^4^cn<35 o^
oacjcocncj 4^'o co-j cooSo5^ ro
CO ^ 4a. ^ ^ tororo
gfeSSS ^SSgfSS
coco—to-^cobifo If* to ttf CO ^
rorocoj^kj^cnoic
pp4^pp ppc
o ^ ->4 ^ OJ 03
CO b> lu CO
_
hocTi-^toja. cji Ka coCia at tvi
H^gsgg ^
o 05 tb "-vi cn ^ CO to 03
t CJl .p^; . CO CO . 0-l0>r>} CO
CO to C35 c
W co co .^
»cno:)0:)-N4 _ _ _
^ ro cn
P{0 45kpp ppfOCn
— Va. to Li U^ isi.:^© bo tO b> ^ O CO'
^-^roroco co.^4ikcno5 o>-«j—40300 co
05 CO —^ cn o a> ro to o> ro to to ro cn
co->j~>j4^ro co->J4^roco oo5ro~sico cn
g
M ^ CDCO -J^dioji. 63t\3<ji^03 S
Inita-^bllo CO^^Ulbo ^hol^COOJ ^
<n
s
D
s
No. of
connectors'
ii
D
o
c
o;
(0
^
(Q
Q) L
o
cn
<o
m
03
•o
w
3
3
•5- =
w
^ S ^ O
T 8 3 i
ls>
G
r-
CD

4-15(3 DESIGN OF COMPRESSION MEMBERS
2L3LLBB
Table 4-9 (continued)
Available Strength in ,r _ 35 ksi
Axial Compression, kips ^"
Double Angles—LLBB
2l3x2x
Shape
V2 3/8 5/16 V4
lb/ft 15.4 11.8 10.0 8.20 6.14
0 W
Pn/S^c (fcfi, « « p„iac t/cPn p„/ac i>cPn
Design
ASO LRFD ASD' LRFD ASD LRFD ASD LRFD ASD LRFD
0 97.4 146 , r7S.4 113 63.8 95.9 -51.7 ' 77.8 36.0 54.1
1 '96.6 145 74.8 112 63.3 95.1 51.3; 77.1 35.7 53.7
7 94,0 141 72.9 110 61.7 92.7 '50.0 75.2 34.9 52.5
3 89.9 135 105 59.1 88.8 '48.0' • 72.1 33.6 50,6
4 84;5' 127 65.7 98,8 i55.7 837 '45.3 ' 68,0 31.9 48,0
5 78.0 117 60.8 91.4 51.6 77.6 42.0 • 63,1 29.8 44,8
6 70.7 106 55.3 83,1 .AtO 70,7 38.3 : 57.6 27.5 41,3
.a 7 62.9 94.6 49.4 74.3 ,42.1 63,3 34.4 51.7 24.9 37,5
.£2
*>< 3. 8 •55.1 82,8 -43.4 65.3 37,1 55,7 30.3 45.6 22.3 33.5
b
ra ><
9 47.3 71.1 37.5 56.3 32.1 48,2 26.3 39.5 19.6 29.5
1
X
10 39.9 ' 60,0 -31.8 47.8 ;27.3 41,0 22.5 : 33.7 17.0 25,6
1
11 33.1 49.8 26.5 39.8 2Z6 34,3 i,8.r • 28.3 14.5 21,9
.s
12 27.9 41.9 22.3 33.5 19.2 28.8 15.8 23.7 12.3 18,4
s 13 23.7 35.7 19.0 28.5 • 16.3 24.5 13.5 20.2 1,0.4 15,7
a 14 20,5 30.8 16.4 24.6 il4.1 21.2 11.6 17.4 9.00- 13,5
o. 15 17.8 26.8 —14.3 21.4 18.4 .aOrli-'i 15.2 7.84 11,8
S
16 6 89 10,4
1 0 97.4 146 -75.4 113 63.8 95,9 51.7 'i: 77.8 36.0 54.1
e 1 940' 141 107 58.6 88,1 68,0 28.6- 43.0 .
2 91.7 138 69.3 104 ;57;i, 85.8 .at.!!;-:' 66,3 28,3 42,6
3 88.0 132 66.4 99.7 :54:7'' 82,2 42.3 63,6 27:8 41,7
g
4 83.0 125 '62.4 93.8 : 5i:4 77,3 39.9 59,9 26.8 40,3
s
5 74.8 112 ' '56.1 84.4 46.3 69,5 36.0 54,1 24.8 37.2
.2
6 67.3 101 50.3 75.7 62.3 32.3 48 5 22:5 33.8
m
'1
7 59.5 89.4 44.2 66.5 i36;4 54.7 :28.4% 42.6 19,9 29.9
2
ffi 8 51.5' 77.4 38.1 57.2 ! 31.3 47.0 24.<; 36.6 17.2 25.8
9 43.7 65.7 32.1 48.2 -26:3 39.6 20.5-S : 30.8 14.5 21.8
10 '"3^3" •"•57.6" 27.8 41.8 22.7 34.1 "ire";,' "26.5"' 12.0 18.1
11 31.7 47.7 . 23,0 34.6 18.8 28.3 14.7 , 22,0 10,1 15.2
12 26.7, 40.1 19.4 29.2 ,15.9 23.9 '1:2.4;. 186 8.57 12.9
13 ,22.8 34,2 16.6 24.9 :13.6 20,4 - iO.6 i ,15,9 7.36 11.1
14 19.7 29,5 14.3 21.5 11,7 17,6 13,8 6.39 9.60
15 17.1 25,8: 12.5 18.8 ....
Properfies of 2 angles—% in. back to back
Ag. m}
rx, in.
ry, in,
4.52
0.922
0.940
3.50
0,937
0.911
2,96
0.945
0.897
2.40
0.953
0.883
1,83
0.961
0.869
Properties of single angle
/>, in. 0.425 0.426 0.428 0.431 0.435
ASD. „
ac=i.67
LRFD
.= 0.90
' For axis, welded or pretensioned bolted intermediate connectors must be used;.
I? For required number of intermediate connectors, see the discussion of Table 4-8.
' Shape is slender for compression with Fy = 36 ksi.
Note: Heavy line indicates KL/r eciual to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-145
Fy = 36 ksi
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
2L2Vz LLBB
212V2X2X
snape
3/8
S/16 %
I2
lb/ft 10.6 9.(H> 7.24 5.50
p„/a<, ^cPn P„IClo PJ^c
uesign
ASD LRFD ASD LRFD m . LRFD ASD LRFD
0 ••-66.8 100 56.9 85.5: 46.1 69.3 34.8 52 2
1 ' §6.0 99.2 56\2 84.5 • 45.6' 68.5 34.3 51,6
2 63.5 95.4 54.1 81.3 43.9 66.0 331 49.8
3 ••-S9.5 89.4 50,8 76,3 41.3, 62.0 31.2 46.9
4
. $4.3
81.7 4B.5 69,9 37.8. 56.9 28.7 43.1 ,
„ 5 48.4 72.7 ' 41,5, 62,3 33.8 50.9 25.8 38.8
«
1
6 'J 42.0 63.1 , 36,F 54,2 29.5 44.4 22.6 34,0
b
><
7 - 35.5 53:3 30^6 46.0 25.1 37.8 19.4 29,1
•o 8 .,29.2 43.9 25.3^ 38.1 20.9 31.4 16.2 24,3
9 T23.4 35.2 20.4 30.6 16,9 25.3 , 13.2 19,8
f 10 ,190 28,5 16,5 • 24.8 13.7, 20.5 10.7 . 16.1
i 11 • 15.7 23,6 '13.6 20.5 11.3 170 8.83 13,3
%
12 -13.2 19,8 17.2 , 9.49 14 3 7.42 11.2
1 13 „ 8.08 12.1 6.32 9,50
i
0 66.8 100, 56.9 85.S 46.1 69,3 34.8 , 52,2
i
1 ' ^64.4 . 96,7 54.0 81.1 42.4 63.8 28.4 42,7
t 2 62,8 , 94,4 52J; 79.2 - 41.4 62,3 28.2 42,3
3 \,60.4 90,7 . 50^ 76.0 39.8 59,8 27.7 41,7
4 55.7 ' 47.8, 718 37,6 56.5 26 9 40,4
2
f
5 ...53,1 79,7 43.1 ' 64.8 34.0 . 51.1 24.8 37,3
i .2
6 'C47.4 71,3 38.9 58,5 30.7 " 46.1 22.6 . 33,9
5 7 •42,3 63,6 -, 34.4 51.7 27.1 40.8 ' 2ao ' 30,0
Sf
8 ' 371 55,7 "29.9 • 44,9 23.5 35.4 • 17.3 25.9
9 31,9 48,0 , 25.4 38,2 20.0'' 30.1 146
10 27,0 40.6 22.3 ^ 33.5 17.5 26.3

"T9.O
11 22,4 33.7 18.5 27.8 14.5 ^ 21.8 10.6 15.9
12 18,9 28.4 . ^ 15:6 23.4 12.3 18.4 8.97 13.5
3
13 .^,16,1 24.2 13=3' 20.0 10.5 15.7 ' 7.68 . 11,5
14 13,9 20,9 11.5 17.3 9.05' 13.6 6.66 10.0
15 ' 12.1 18.2 i6;o 15.1 7.89 11.9 S82 8,75
Properties of 2 angles—Vs in. back to back
3.10
0,766
0.957
2.64
0.774
0.943
2.14
0.782
0.930
1.64
0.790
0,916
Properties of single angle
0:419 0,420 0.423 0.426
ASD
ac=i.67
LRFD
(|)C=0.90
" For Y-Y axis, weWed or pretensioned bolted intermediate connectors must be used,
' For required number of intermediate connectors, see the discussion of Tabic 4-8,
' Siiape is slender for compression witii /y = 36 ksi.
Note: Heavy line indicates,/a/requal to of greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
213 SLBB
Table 4-10
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy = 36 ksi
2L8x6x
Shape
1 '/8 3/4 5/8 '/16'
1/jC
'/16"
0 s
lb/ft 88.4 78.2 67.6 57.0 51.4 46.0 40.4
ii
PnlQ^ ifcPn p«tac •licPn M M ^Pn Pn/Oc Pa/Oc
ii
Design
ASD LRFD ASO LRFD ASD LRFD ASD LRFD ASD LBFD ASD LRFD ASD LRFD
0 565 849 496 745 431 648 361 1 543 314. 472 267 402 220 . 330
4 ,•14? R15 476 , 716 414-) 623 Mln: 522 303. 455 258 388 213 ' 320
6 ••ilS 774 453 681 394 s 593 331 i 498 289 435 247 372 205 • 308
R 479 720 42? 635 368 i 553 309.- 465 271 408 233 350 4.94 291
in 437 fi.S7 386 580 337 , 506 28?i:: 426 250 375 215 324 180 • 271
12 391' 587 3|6 520 302 454 383 226' 339 196 295 165 : 248
.s
E 14 342 514 304: 456 399 338 200 301 175 263 149 ' 224
M X 16 293 441 261 . 393 229 344 195 293 175 262 154 231 1'32 ' 199
b
>< 18 246 370 220 331 193 291 ief 248 14& 225 •133 , 200 rii5 174
20 202 304 182 273 160'' 240 137 206 126' 189 113 170 •99.2 149
•is 22 167 251 ISO 226 1326 199 114 171 104 156 94.0 14t ••83.8 126

24 14Q 211 126 190 111' 167 •95.4 143 87.3 131 '79.0 119 •705 106
•S
o 26 120 180 108 162 ,94.6 142 "81.3 122 74.4 112 67.3 101 •60.0 90,2
28 103 155 9?,7 139 81.5 123 70.1 105 64.1 96.4 58.0 87;2 51.8 77,8
i.
30
45.1 67:8
§
0 849 745 431 . 648' gSTT 543 314 472 2^7 ~ 402 220 330
e
•g
4 552rv 829 4ii-: 723 414! 622' 300 451 253 380 206 310 160- 241
6 546 821 476 ^ 716 410, 616 3061' 451 252 379 206 310 160 • 241
g
8 538- 809 469 705 404 607 300 450 25?: 379 206 309 160 241
10 528 793 461 692 396 595 299 449 251' 378 205 309 160 240
£ 12 516r 775 4S0 676 387 J 582 298 447 251 377 205 308 f59 240
s 16 731 m 638 ®51 548 292"' 439 247' 371 203 304 fssi 238
3
V .<2 20 438 659 382 574 329 494 2723. 408 234 352 1-95 293 154. 232
24 394 593: 344 517 296 r 445 246 -369 214 322 182 273 147 ' 221
M
28 34S 523 303 456 261 S 392 217,' 326 286 164 246 135 203
Ul >i.
32 30f 453 262 394 225 339 1.87 J. 281 166 249 144 216 120 181
36 25^ 385 223 335 wi- 287 158 238 141 212 123 185 105 157
40 222' "334" T93" ~290" re's" •248' "136 • 205' t2"2"" 183"' <104 156 89,3 134..
44 184. 276 160 240 137 „ 205 113 170 101 152 ,89.7 135 77.6 117
48 155 232 134 202 ^15:; 173 95:1 143 85.5 128 75.7 114 •65.7 98,7
52 ,132:. 198 Its 172 98.1 147 81..2 122 73.0 110 64.7 97.3 56.3 84.6 4
56 114 171 ^8.8 148 84.6 127 m 105 63.1 94.8 p56.0 84,1 ,'48.7 73,2
60 99,1 149 .:s6.i 129 ' 73,'B 111 61.2 91.9 55.0 82.7 48.9 73.4 42.5 63,9
Properties of 2 angles—% in. back to back
Ag, in.^
h, in-
ry, in.
26,2
1,72
3.77
23.0
1.74
3.75
20,0
1.75
3.72
16.8
1.77
3.70
15.2
1.78
3.69
13,6
1,79
3,68
12,0
1,80
3,66
Properties of single angle
fz, tn.
1,28 1,28 1.29 1,29 1.30 1.30 1.31
ASD LRFD
£2c = 1,67 (l)c=0,90
»For Y-Y axis, welded or pretensiohed bolted intem^iate connectors must be used,
' For required number of Intermediate connectors, see ttie discussion of Table 4-8,
' Shape is slender for compression with 36 ksi.
Note: Heavy line indicates KL/requal to or greaterttian 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-147
Fy = 36 ksi
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB 2L8 SLBB
2L8x4x
Shape
1 '/8 3/4 ''hs' e
lb/ft 74.8 66.2 57.4 48.4 43.8 39.2 34.4
0 •§
ii
P„IQc « PA p„/ac <l>cP, PJOc M P„/Qc « P,/Oc (t-cPn fli/fjJ «
uesign
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 479 719 423. 635 366 551 307 462 269: 404 228 343 187 281
4 427 642 378 568 328 493 276 415 243i 365 i207 • 312 171 258
6 370 556 328 493 286 430 241 363 214; 321 184 277 154 231
V
8 3b3 455 270 405 236 355 200 300 179 269 156: . 235 132 199
k
10 234 352 210 315 184 277 157, 236 .142: 214 126 189 109 163 b
X
12 171 257 154. 231 136 204 1,16 175 108 162 97.1 146 85.6 129
ca 14 125 189 113 170 99.8 150 85,6 129 79.3 119 72,1 108.. 64.5 97.0
CO 16 96.0 144 86.4 130 76.4 115 '65.5 98.5 607 91.2 55.2 82.9 49.4 .74.3
T3
18 : 43.6
65.5 39.0 58.7
1
0 479 719 423 635 366 551 307 462 269.,,. 404 . 343 187 281
o 4 474 712 417 627 361 542 258 " 388 218 328 178 268 139 209
6 469 705 413 621 358 537 258 387 218 328 178. 268 139 209
n. 8 463 .. 696 408 614 353 531 258 387 218 328 178:- : 268 13^9 209
§
10 456 , 685 402 604 347 522 258 387 218 328 178:, 268 139 . 209
1
12 447 . 672 394 592 340 511 257 387 218 328 178,: 268 139 209
sf 16 425 638 374 562 323 485 256. 385 217 327 1781- 267 139 ^ 208
^
20 389 585 343 515 296 445 245,. 369 215 323 176 265 1.38 207
24 356 535 313 471 270 406 225 339 198, 298. 168 253 135 ! 203
fi 28 320 481 282 423 243 365 202 304 179 269 154: 231 127 i 192
6
1 >-
32 283 426 249 374 21^1 322 179 268 159, 239 '137,=- 206 174
1
>-
36 247"., 371 217 325 186 280 155 233 138 208 120," 181 S)2 : 154
8 40 211 318 185 279 159 239 132 199 119 179 104 156 89.3 134
£ 44 182' • 274 m~ ""240" 137" 205" 11 i' 166 100 150 88-3 133 76.8 115
48 153'- 230 134 202 115 172 93.0 140 8411 126 74:3 112 64.9 97.6
52 131 196 114 172 97.8 147 79.2 119 71.7 108 63.4 95.3 255.4 83.3
56 113 169 98.6 148 84.4 127 68.4 103 61 Ig 93.0 54.7 82.2 47.8 71.9
60 98.1 147 85.9 129 73.5 110 •"6T:O "ai?? 53.9 81.0 47.7 71.7 .41.7 62.7
64 8b 3 .130 7S.5 113 64.6 97.1 53.6 80.6 :47i4 71.3 41 63.0 36.7 55.1
68 •Ma 115
1 7
Properties of 2 angles—'/a in. Iiack to bacic
Ag, in.^ 22.2 19.6 17.0 14.3 13.0 11.6 10.2
rx, in. 1.03 1.04 1.05 1.06 1.07 1.08 1.09
in. 4.08 4.06 4.03 4.00 3.99 3.97 3.96
Properties of single angle
rz, in. 0.844 0.846 0.850 0.856 0.859 0.863 0.867
LRFD
ac=i.67 i!)c = 0.90
for Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
" For required number of intermediate connectors, see the discussion of Table 4-8.
Shape is slender for compression with Fy = 36 ksi.
Note: Heavy line indicates /a/r equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
2L7 SLBB
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy = 36 ksi
2L7x4x
Shape
'/4 5/a
% 0
lb/ft 52.4 44.2 35.8 31.4 772
0
P„/Qc P„IQc (fcPfl PalQo p„iac ihPn PalQt
0
Design
ASD LRFD ASD LRFD ASD LRFD ,sASO LRFD ASD LRFD
0 334 502 280 421 218'"' 328 182- 274 145 f 218
4 301 453 554 • • 381 199' ; 299 ••167 251 134- 201
6 565t -397- 224' 336 176 -265 149 224 123 181
8 220 331 188 282 143 ^ 225 128 192 105 '' 157
10 174 -262 150 225 121-', 181 "105 • 158 87.2 131
t)
>< 12 •131' 197 114 171 92.9, 140 82.3 124 69.7 105
X
14 ' 96.3 145 83.8 126 68.9 104 61.9 93.0 53.4" 80.3
«
16 73.7 111 64.1 96.4 -r52.7> 79.3 47.4 71.2 40.9 61.5
B
18 -58.2 87.5 50.7 76.2 '41.7 62.6 37.4- . - 56.2 32.3 48.6
•JJ
i
0 334 502; 280 421 218- 328 -182., 274 ; 145 218
i
4 3|8 493 273 411 179>' 269 214 107 161
a- 6 324 487- . 270 406 179- ' 269 '142 21# 107 161
8 318 479 265 399 179 268 '^142 214" 107 160
"I 10 311 468 260 390 268 • 142 214 . 107 160
t
12 303 455 253 ' 380 i178" ll 267 142 213. • 106 ' 160
si 16 •283 425. 236 354 17^; 264 141 212 '10B 159
g- 20 251 378 209 ' 315 163 • 245 '135 203 104 _ • 156
1" 24 222 334 195. 278 i145'^ 218 ,122 184 97.8" 147
5
09
28 192 289 160 ' 241 126 189 107 161 87.7 132
5
.2
32 •163 245 ' 1,35: 204 107.-' 161 92.0 138 76.2 115
i 36 145 203 112 168 88.6 133 •..V7.1 116 64.7 97.3
40 113 169 93.4 140 72.2 108 63.2 94,9 53.8 80.8
44 . 93.1 140 77.3 116 ;59.7 89.8 52.3 78.6 44.6 • 67.0
48 78.3 118 65.0 97.6 50.2 75.5 :44.0 66.2 37.6 56.4
52 66.7 100 55.4: 83.2 42.8 64.4 - 37.6 56.4 32.1 48.2
56 57.5 86.5 47.8 71.8 ^7,0 55.5 32.4 48.7 ?n 41.6
1
1
i 6
Properties of 2 angles—'/e in. back to back
Ag, in/
r*, in.
ry, in.
15.5
1.08
3.48
13.0
1.10
3.46
10.5
1.11
3.43
9.26
1.12
3.42
8.00
1.12
3.40
Properties of single angle
in. 0.855 0.860 0.866 . 0.869 0.873
AStI .
ac=i.67
LRFD
(|)c=0.90
® For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
S For required number of Intermediate connectors, see tiie discussion of Table 4-8.
' Shape is slender for compression with f,=3e ksi.
Note; Heavy line indicates Kl/r equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-149
Table 4-10 (continued)
F - 36 ksi Available Strength in
^ ^ Axial Connpression, kips
Double Angles-~SLBB
X
2L6 SLBB
2Lex4x
bnape
'/e 3/4 "z
lb/ft 54.4 47.2 40.0 36.2
dlaPn <l>cP« P.tQc Pnt^c W
uesign
ASD LRFD ASD. LRFD ASD LRFD ASD,;. LRFD
0 345 '' 518 300 ~ 450 252 379 229 343
4 312 469 272 409 229 345 . 208 313
6 275 414 241 362 204 • 306 185 . 278
8 231 347 2:04 :: 306 172 259 157 . 236
M 10 184 " 277 164 246 139 209 128 192
12 ; 140'',, 210 126 189 107' 161 98.6 148
b
1
><
14 103 155 92.9 140 79.€ 120 73.'4 • 110
•g
16 78.9 119 71.1 107 609- 91.6 56.2 - 84.4
1
18 62.4 93.7 56.2 84.4 48.1 72.3 44.4: 66.7
0 345 518 300 . 450 , 252 379 229 I 343
c
4 338'- 508 293 440 245 368 221 . 331
g
6 332 " 499 288 432 240 361 217 ^ 326
g 8 324-^ 487 281 422 235 353 211 318
10 314-.--. 473 : 272 . ^ 409 227 342 205 308
4

12 303 . 455 262 394 219 329 197 296
1
.2
16 268' f. 402 231 • 348 193 290 174 262
a 20 233. 350 201 302 168 252 151 227
1
>•
24 197- .f 296 169 255 141 212 127 191
s 28 16V 242 138 208 115 • 172 103. 155
32 132J : 198 113 • 170 93.1 140 83.7 126
36 104 156 89.2 134 73.6 111 66.2 99,5
40 84.3 127 72.3 •: 109 59.7 89.7 53.7 . 80,7
5
44 69.7 105 59.8 89,8 49.3 74,2 44;4' 0 66,7
48 ss^e 88.0 '50.2 75.5 41.5 62,3 56,1
0.854
LRFD
5=0.90
0.856 0,859 0.861
Properties of 2 angles—% in. back to back
16,0 13.9 11.7 10.6
fx, in. 1.10 1.12 1.13 1.14
fy, in. 2.96 2.94 2.91 2.90
Properties of single angle
' ForY-Y axis, welded or pretensioned bolted intermediate connectore must be used.
' For required number of Intermediate connectors, see ttie discussion of Table 4-8.
Note: Heavy line indicates KL/r equal to or greater than 300.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
2L6 SLBB
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles^SLBB
Fy = 36 ksi
2L6x4x
Shape
Vz
5/18'= O
lb/ft 32.4 28.6 24.6 20.6
o ^
dl
Pn/^c M P„/ilc Pn/Qc M /1/flc «
o ^
dl
Design
ASD LRFD ASD LRFD ASO LRFD ASO LRFD
0 205 308 175 264 142 i 213 108 162
4 187 260 160 • . 241 131 1-. 197 100 ^ 151
6 166 249 143 • 216 118 177 91.5.-' 138
8 141 • 212 123 184 102 • 154 ' 80.5 121
w 10 114 - 172 100 , • 151 84.9 128 68.3'-; 103
12 88.-4 . 133 78.5 118 67.7 • 102 55.8"'." 83.9
b
f
><
X
14 '65.7 . 98.8 58.9 88.5 51.7 ' 77.8 44.0- 66.2
•a 16 50,3'- 75.7 45.1 67.8 39.6 " 59.5 33.8 50.8
18 39.8- 59.8 35.6 53.5 31.3 47.0 26.7 40.2
i

s
0 205 308 175 264 142 . 213 108 .,1 162
e
4 196 295 143 215 1.10 166 77.9" 117
s
6 193 289 143 215 110 165 77.8"': 117
8 168 283 143 215 110 165 77.7^-- - 117
J 10 182 274 142 214 109 165 .77.5.- 116
4
12 175 263 141 • 212 109 V 164 77.2 116
g 16 155 233 132 198 lbs / 157 75.7.-f' 114
g
J 20 134 - 202 116 174 94.4- 142 71,4'>; 107
1
5: 24 113 • 170 97.7, 147 80.8 121 63,3^;; 95.1
S
>-
28 91.8 138 79.7 120 66.7 100 53 5 80.4
32 72.Z 108 62.8 94.4 53.3 , 80.1 43.8. 65.9
36 57.1- 85.9 49.8 74.8 42.3 63.6 35.0- 52.7
40 47.8 71.8 40;4 60,8 34.4 51.7 28;5 42.9
5
44 "39.5 59.4 33,5' 50.3 28.5 42.8 23.7. - 35.6
5
48 33.2 50.0 28.1 : 42.3
Properties of 2 angles—% in. back to back
/•„ in.
fy, in.
9.50
1.14
2.89
8.36
1.15
Z.88
7.22
1.16
2.86
6.06
1.17
2.85
Properties of single angle
r- in 0.864 0.867 0.870 0.874
ac= 1.67
U?FD
<t)c=0.90
• For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
^ l=or required number of intermediate connectors, see ttie discussion of table 4-8.
" Stiape is slender for compression with Fy = 36 l<si.
Note: Heavy line indicates XL/r equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-151
Fy = 36 ksi
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB 2L6 SLBB
Shape
lb/ft
Design
rx, in.
fy, in.
in.
2L6X3V2X
V2
30.6
PnlClc
'ASD
V194
192
188
180
-170
J5S
'L45
• • 1.1,6
101
F «6.4
! -61.1
S2.1
='44.9
5 39.1
34.4
' If ,
••--iss™
- 180
i-trs
169
, 161
• 150
:.T41
'ir
111
101
91.0
"81.5,
72.3
•64.1
'51.3
42.0
35.1
32.2
LRFD
292
289
282
271
256
238
218
196
174
151'
130,
109
91.9
78.3
. 67.5
58.8
51.7
292
278:
271 -
263
,253
242
225
211.
197
182
166
151
137
122
109
96.3
77.1.
63.2
52.7
48.4
23.4
Pfl/Oc
ASO
135
J34
131 •
127
121
113
105
95.3
85.6
75.9
66.2
57.0 •
48.3'
41.1
35.6
30.9
27.2
135
10,
105
105 I
105
104
102
98.1
92.8
86.6
80.1
73.4
66.8
60.4
54.2
48.1
38.6 .
31.7
26.5
24.3
LRFD
203
202
198
191
181
170
157
143
129
114
99.5
85.7
72.6
61.8
53.3
46.4
40.8
203
158
158
158
157
156
153
148
139
130
120
110
100
90.8
81.4
72.4
58.1
47.6
39.8
36.5
5/16'
19.6
PnlClc
ASD
;103: :
102
100:,>
I 97.2:
: 92.9>
; 87.8;
^ 81.8
75.3?
: ,68.4,;
61.4
; 54:4
• 47.6
' 41.1:
i 35;!
30.2^
26.3
23.1
vt03-

: 74:6
I 74.S,;
74.3
• 74.1;;
; 7314-
72.3.;
: 70.2,
• 66.8;:
62.7
! 58.1
53.4
• 48.8
' 44:2
; 397 .
31,9'
26.2
i
! 2ai
^cPn
LRFD
155 ,
154
151
146
140
132
123
113
103
92.3
81.8
71.5
61.8
52.7
45.4
39.6
34.8
155 '
112
112
112
112
111
110
109
106
100
94.2
87.4
80.3
73.3
66.4
59.7
48,0
39.4
32.9
30.3
Properties of 2 angles—'/a in. back to bacl(
9.00
0.968
2.96
0.984
2.94
5.78
0.991
2.92
0.756 0.763 0.767
0^=1.67
LRFD
= 0.90
' For, Y-Y axis, welded or pretensioned bolted intermediate connectore must be used.
^ For required number of intermediate connectors, see the discussion of Table 4-8.
' Shape is slender for compression witti Fy= 36 l<si.
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Effective length, KL (ft), witti respect to indicated axis
Y-Y Axis
g ^ISS^Si ^i^^coa.
ai co'pi en <o '•CO ro
O ........
—1.^—L rococococo co
OJ CCUD —ro ji^ "Vj CD —' O CO CO J:^ CD
CO. ^corococD —'cn cotnoj.ooo co
Go w
-L w ba fo in
cn -si CO CD O ro 03 oa o ^^ o> to o
^ ho—"-ho-^joj ro—'(vifo —'ji^cororo co
CD OS 05 CO
3 4a. jivcn at CO ID o —^ ro ^ ^ yj at "vj.
3CO<D.ojcn tnt7)0>-sjoa os—^tooj^
-i-i —i-i—^ ro ro ro ro ro
^ cn 03 —' ro ^ Oi —^ ro co oi
05 -Sj 4S» T^J CO CD Ol OJ rO Ji. Ji-W CD
o ..j:^ ^ cn 4s» ba ....
T^ - ya, . sw T-Nj . -f
o lo fo cn In- c»!
CO js^ji-o^o^-vj cocDOroco ^cnoioicn. io
4s» tops^foro wpioaofo WOJ-VJIDCD
ro b?^b>b54s»
^ <31 O (D
<o tn CO bjfvj ^
. _ <71 p>
^ CO" ^ CD ^
js^ 4s» CD CO CO bo OS o ba
CD 4S» 0> —^
X-XAxis
a> o<eo»MO> c;i ^ m ro ^ o
^ g § g g , a S 2 i s B § S g
• -
_i,_i._L -i-ifororo CO CO CO CO CO CO
-4 CO cn -vj
o CO -J 03 CD
ho i3> fo CO Ci CD b>
^ -X ^ ro {o ro
_L -1. ^ _L ^^ ^^
CTJ 0>~>lCOOrO 4^--JCD—
CO "vjocDcncn -«jo-t»co—»•
CD O CD fo
^^ ro ro CO CO co
CO CD —' —
CO ro 03 o -J CD
_L _L_j._L_L_L rororororo foc
_ o ^^ o>-si CD ^coj^-cncn oi 30
(D cn Ji-JS'ji. -^oocD-«j ji-oro-^-sj CD TJ
^ cn o> --4 03
CD pi Ji^ ^ T^J
o bo o CO fo
^ CO ba fo :o 0» . O ib-
cn CD
tn tn o> CO CD O fO CO en 03co co cd <p
j^ococD—^ ji-toco-sjo rocorocDCO
oj bo CD ^ '<£)
CD
fo^
to ro CO CO ui'Cn co cd cd cd o o
^>iaitDb>o bo ba bo ^ fo CO bo o
coj^j^iCnCT? "VJCOCDO—i rocojiijiicr) t?)
^ jo S CO-si -sj » 03 CD CD OO 03 CO-sj O
"-LOJ^o^ baco^
ro
5 #
00 '
O iS.
g
g;
(D
a
<D
Ho. of
connectors'
Q)
o
o
> 3
5 TO
W
(/>
MSB
o
3
€0 5
CD
CD
TT
CO
£ »>
=: o-
Q} ®
cr
® S
S I
(Q i
Et (D
3
CO
O)
S"
o
II
ll
%
2
If??
.S'.S'V
tS5 O ^
ssg
MOOT
bo b?
o
2
ro o en
ba ^
•-J CO ro
tS^I
fO p CO
' Co CO
. tn CO
Effective length, KL (ft), wfth respect to indicated axis
Y-Y Axis
S S^ggg^ SfKS^si
Si? ^ cn 0> -si CO. CD CD CD CD o ro
pa ro a> . _cn ro o .--J ji. iij co cd o ^
CO en —* cjt CO -CO b> o tjv-^.^ to )(::>. ro co •
OJ fo* o CO —i • ba o-bs • ..•:•.•
^ cncn-sJoacD ^ m ^ ^ « o to ^
p .-^j^oajs.-^ tOOT^SI^ Swcojoo w
•ta. CO -si o> CO
K ^^JjSSS' SSiSgg gHSSgg
o> roc7>b>tDb> boba^iDb>
^tooatn o5-4oacDo
p pp^cocn -vjoco-vjo -
CO jii CJ1 CD -kJ -co CD o —' ^^ co cn cn t»
^ rop^jo}o co^c3io>^ ^ScDoo ro
CO CO CO CD CD ^ 'ro '—I
. - A . . i.— , .-•• . .">*• ' l-V
i-k t- CO GO CO O • CO-CO-CO—-4'-CJ1 ^ tii'
ro co4s»45>.cno> oj-sIoocdo ocp—' 4s»
CO piocjiroo coo>Js»roo O5tjpo—^
•— ^ CO -si '-i '-i w -sj bo
„ ^ti^j^jg S3
ro ro CO CO ji-Jja^ tn cn o^ O^ o> -si--j-si--j-g o
o p ^ p r^ir^^ PP^r*'?^^ o-^rororo —»•
Ka CO o k|cD CO ^ CO o ^ en o 'ro co
X-XAxis
e (s ce ^ o» ui 4k u Me
C7I CO to 'Ka jsfc '-»• 'a> --
4s» cn o>
-sj cn o>
CO cn o CD
ro ro ro ro ro
CO o ro CO
CO o ro o CO
hOCO-CO
p CO p
ro jsi. ^ kj ^ ba
4s»4s»cn -sicooroji- OJCOCDO-^
rococo -^coo5cj)4;a. cooj^s-cnro
jia. ba ba ^ ro
to to CO *»cnc3>'-Jco coo-»--».ro ro
-I ro ro CO 10 io o5 o ^
cojs.cn 05p-sitDoro
-sicoro co-sjroooj^
CO ba o tea.,
cn o ro
C5n CD o> CO i
o CO o CO
, .CD
> -J. CO - JSi.
k o CD Ja. JO CO N5 ba • bo
rococo^ cno5-Jcoo -^rococoji.
-P>.cncnp—i roro~^-sj—I.
oiOOT-sj ^^ba^
K^Si&S SSSgg S3
-J. «». to o> ^ bo o ^ fo
rorococo 4;a.cncno5-si cococdcoo
ro p p p p -J. p ^ jCa. fo p w ^ o
o> ro cobi ^ba^obo
CO
O)
No. of
connectors'

4-15(3
DESIGN OF COMPRESSION MEMBERS
Y Table 4-10 (continued)
X—

X Available Strength In
c
yv Axial Compression, kips ^
OD fVOl
2L4 SLBB Double Angles—SLBB
2L4X3V2X
Shape
V2 S/16 V4'= S
lb/ft 23.8 18.2 15.4 12.4
a A
JI
PnlQc Pn/Oc Pn/Oc W •tfefi,
a A
JI
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 151" , 227 116 174 967 145 71.6 108
1 ' 150 ' 225 '115 172 961 144 71 .R 107
? 147 221 '112 169 94,1 142 69.9 105
3 142 213 109 163 ' 91.0' ; 137 67.8 • 102
4 135 203 104 156 ' 86.8 ; 131 65.0 97,7
5 127 190 97.3 146 \ 81/7 ^ 123 61.5" 92,5
6 117 176 90.2 136 ! 75.9 : 114 57.6 - 86,5
w 7 107 . 161 82.5 124 ; 69.6 105 53.2 80.0
n 8 96:4 145 74.4 112 ; 6L9 94.5 48.6 'J 73.1
•o
X 9 85.5 129 •"66.2 99.5 I 56:1 ; • 84.3 43.9 65.9
1 «
10 74.9 113 58.1 87.3 : 49.4 I 74.2 39.1" 58.8
.1 11 64.6 97.1 50.3 75.6 ' ; 64.4 34.^- 51.8
i 12 • 54.9 82.5 42.8 64.4 . 36.7 ; 55.1 30.0 45.1
13 ' 46.8 70.3 36.5 54.9 46.9 25.7 38.7
g.
14 .40,3
60.6 31.5 47.3 26.9 40.5 22 2 33.4
£ 15 35.1 52.8 27.4 .41.2 ; 23.5 35.3 19.3 29,1
16 30.9 48.4 24.1 36.2. • 20:61 • 31.0 ' -17.0 25.5 .
17 27.3 = 41.1 21.3 32.1
r •'8;3, ^
27.4 ^ 15.1' 22.6
0 151 227 116 174 ' : 96.7 ' ; 145 „ 71i6 ,
108:

6 137. . 205 102 153 • 78:3 ' 118 • 53.6 • ,80.6
8 129; • 194 • 96.2 145 ; 7&7,: i' 115 52.9 79.5
ffl
10 117 176 ' 87,4 131 i i 108 . 50.9 76.5
12 106. 159 78.9 119 i 65.4;' i 98.3 47,6.' •
71.5
a; in
14 ^3.8 141 69.9 105 , 58.0; ; 87.1 43.1 64.7
18 81.6 ' 123 - 60.7 91.3 ; 50:3 1 75,6 38.0 ' 57.0
3
>•
18 69.7 105 51.7 77.7 42.7 64,2 32.7 49.2
20 58:3 87,7 . 43.1 64.8 35.4 . 53,3 27.6 41.5
22 48.3 72.6 , 35.7 53.7 29.5 44,3 23.0 34.6
24 40.6 61.1 30.1 45.2 24.8 37,3 19.5^ ' 29,3
26 34.6 52.1 "2^7 38.6 21.2 31,9 16.7 25,1
28 29.9 44.9 22.2 33.3 18.4 27,6 14.4 . 21,7
30 '26.1 39.2 •19.3 29.1 = 16.0 ; 24,1 12.6' ' 19,0
Properties of 2 angles~^8 in. back to back
Aa, in.2 7.00 5.36 4.50 3.64
rx, in. 1.04 1.05 1.06 1.07
ry.
in. 1, ,89 1.86 1.85 1.83
Properties of single angle
h, in. 0.716 0.719 0.721 0,723
ASO
£ic=1.67
LRFO
(t)c=0.90
' For required number of intermediate connectors, see tlie discussion of Table 4-8.
' Siiape is slender for compression with fy=36 lei.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-155
Fy = 36 ksi
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
-v
T
2L4SLBB
2Ux3x
bnape
Vs Vz 3/8
1/4« I2
lb/ft 27.2 22.2 17.0 14.4 11.8
3 i
Pfl/Oc fcPn P^IOc Pn/Oa <l>cPa P„IQc
5E s
uesign
ASO LRFD ASD LRFD ASQ LRFD ASO LRFD ASD LRFD
0 172,1 259 140-' 211 107 161 89,8 . 135 66,5 99.9
1 •170" 256 139 , 208 106 160 89.0 134 65,9 99.0
2 ,165 248 ,134, •• 202 103.. 155 86.4 130 64,2- 96.4
3 156. 235 • •128- 192 98.2 148 82.3 124 61,4 92.3
4 ,145 218 •119 179 91.6 138 76.8:; 116 57,7 86.8
5 198 ,108 . 163 83.7 128 70.4 106 53.3 80.2
m
.S3
5
6 117 • 176 -' 96.7 145 ' 75,-0 113 63.2. 95.0 48.4 72.8
1 ><
7 102% 154 84i6 127 65:9 99.1 55.7. 83.7 43.2 64.9
b
t3
8 , 87.2 131 72.5^ 109 56.8 85.4 , 48.1 72.3 37.9 56.9
s
9 72.8 109 • e0;8 91.5 48:0 72:1 40.7- 61.2 32.6 49.0
f 10 59.5 89.4 49.9 75.1 39.6 59.5 33.8 50.8 27.6 41.5
i 11 49.2 73.9 41.a 62.0 32.7 49.2 27.9 42.0 22fl 34.5
s 12 41.3 62.1 34.7 52.1 27.6 41.3 • 23.5, 35.3 19.3 29.0
§• 13 35.2< 52.9 29,6 44.4 ' 23.4 35,2 20,0 30.0 16.4. 24.7
1
14 30.3 45.6 25.5 38.3 . 20.2 30.4 1-7.2 25.9 . 145 21.3
0
.172
259 .140 , 211 161 89.8 135 99.9
g
6 159 239 129 • 193 , 97:0 146 74,1 ) 111 51.1 76.8
Se
8 151 v 227 122 183 ' 91.8 138 73.0. 110 50.7 76.1
S 10 ;i4i 212 '113 171 85.5 129 68.4, 103 49,0 73.7
g 12 126 189 10^ 152 7M 115 "62.3 93,7 46,0
'41.7
69.1 3
14 •113 .f 170 90.5 136 103 55.4 83.2
46,0
'41.7 62,6
1 1
16 99.4 149 f9.6 120 59.9 90.0 48.2' 72.4 '36.8 55.3 ,
IS 18 85.1. 129 68.6 103 51.6 77.5 lJII..
61.7 31.9 47.9 ,
>-
20 73.3 110 58.2 87.5 43.7 65.6 35.8. '"53.8" 27.-1. . iOJ
22 61.3 92.1 48.5 72.8 36.3 54.6 29.7 44.7 ""3575""
24 51.5 77.4 40;8 61.3 30.6 45.9 25.1 37.7 19.9 29.9
26 43.9' 66.0 34.7 52.2 26.1 39.2 , 21.4 32.2 '17.0 25.6
4
28 37.9 56.9 30.0 45,1 22.5 33;8 18.5 27.8 1.4 J 22.1
30 3M 49.6 .'126:1 ' 39.3 29.5 He.i 24.2 12.9 19.3
32 ' 29,0 43.6
-F-gg-Q
34.5 '17,2 25.9
Properties of 2 angles—^/s in. back to back
AqM.'
rx, in.
fy, in.
7.98
0.845
1,98
6.50
0.858
1.95
4.98
0.873
1.93
4.18
0.880
1.91
3.38
0.887
1.90
Properties of single angle
r,, m. 0.631
A&D
0^=1,67
LRFO
c=0.90
0.633 0.636 0.638 0.639
" ForY-Y axis, welded or pretensioned bolted intermediate connectors must be used.
' For required number of intermediate connectors, see the discussion of Table 4-8.
' Siiape is slender for compression with Fj,= 36 ksi.
Note: Heavy line indicates /CL/f equal to or greater than 200.
I
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
2L31/2SLBB
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles~~SLBB
Fy - 36 ksi
2L3V2X3X
Shape
1/2 '/16
% VA"
"55
Ib/n 20.4 18.2 15.8 13.2 10.8
0
ii
Pall^o P„l(ic i^Pn PoKlc PnUlo PnlO.^ ^cPa
0
ii
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 130 196 ;ii5' 173 100 150 84.1- 126 •65.7 98.8
1 129 194 h14 171 i 99® f 149 83.3 125 65.2 ' 97.9
2 125 188 '111 • 166 96.3 145 81 .ff 122 63.4 . 95.4
3 119 179 106- 159 9118' 138 77.3 116 60.7 91.2
4 111 167 98.6 148 ; 85i9 129 72.4 109 57.0 85.7
5 102 153 : 90.4 136 im 118 66.5 100 : 52,7 79.1
1
6 137 : 81.2" 122 \ 71 iO 107 60.0 90.2 47:8'. 71.8
1 §
7 . B'd.av 121 71.6 108 62.7 94.3 53.1 79.9 42.6 64.0
b
•g
e 69:3-• 104 62.0 93.1 : 54i4 81.7 46.2 69.4 37.^' 56.0
s X
9 58:6 88.1 ' 52.6 79.0 4E2 69.5 39.4 59.2 32,0 48.2
i 10 48 5 72.9 ; 43.7 65.6 ^ 38:5 57.9 33.0 49.6 27,1 40.7
^
11 40;fc 60.2 36.1:. 54.2 ' 31:8 47.9 27.3 41.0 •22;5 33.8
1
12 33,7 50.6 } 30.3 45.6 : 26:8 40.2 22,9 34.4 i8.g. 28.4
g-
13 28:7 43.1 i25;8 38.8 22.8 34.3 19,5 29.3 16,1-' 24.2
H
14 24 7 37.2 22.3 33.5 19.7 29,6 16.8 25.3 13,9. 20.9
£
•g
15
•14.7" 22.0 • 111;"' 18.2
g
0 130 196 . 115 173 100, 150 84.1 126 , 65 Jr
98,8
6
i-llfC:-
175 102: 154 879 132 72.6 109 Isi.T^ 77,7
8 108 163 . 95.0 143 81.6 123 67:5 101 50.2^' 75,5
J
10 ^ 95;7 144 . 83.7 126 72.0 108 59.6 89.5 45.9- 69.1
J
12 ; m- 126 : 73.4 110 ear 94,9 52.3' 78,6 -40.-7' 61.2
1
14 72 2 109 ; 62.9 94.5 . 54.0 81,2 44:8 67.3 35^) 52.5
£ 16 ; eo.s- 91.0 i 52.6 79.0 451 67.8 37.4 56.2 29.1 43.9
3
18 74.4 428 64.3 • 36:7 55.1 ; 30:4 45.6 • 23.8 35.7
20 41.7 62.6 36.0 54.1 29.8 44.7 24:7' 37.1 19.4 29.1
22 : 34.5' 51.8 29,8 44.8 24.6 37.0 20.4: 30.7 le.'T 24.2
24 43.6 251 37.7 20.7 31.2 17.2 25.9 13,6 20.4
26 24 7 37.1 21.4 32.1
1 ^^^
26.6 14.7 22.1 :ii.6 17.4
28 213 32.0
4
Properties of 2 angles—in. back to back
Ag, in/
tx, in.
Ty, in.
6.04
0.877
1.69
5.34
0.885
1.67
4.64
0.892
1.66
3.90
0.900
1.65
3.16
0.908
1.63
Cz, in.
Properties of single angte
0.618 0,620 0.622 0.624 0.628
ASO
He =1.67
LRFO
(|)c=0.90
' For y-y axis, -weldftd or pretensioned bolted intermediate connectors must tw used:
' For required number of intermediate connectors/see tlie discussion of Table 4-8.
' Siiape is slender for compression with F^ = 36 Ksi.
Note: Heaw line indicates KL/r equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-157
Fy = 36 ksi
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
X
2L3V2 SLBB
2L3V2X2V2X
snape
Vz 5/16 1/4" e
lb/ft 18.8 14.4 12.2 9.80
i 1
PB/HC Pfl/Hc <l>c''» PJOic VHc (fcfi, U
uesign
ASD LRFD ASD LRFD -ASD LRFD ASD • LRFD
0 ;ii9 179 '91.4 137 ..772 116 60.3 90,7
1 177 90.1 .. 135 •• 76.1 114 S9.5 89,4
2 112 169 ; 86.2 129 72.8 109 57.1 85.8
3 10.4 156 - 80,0 120 67.7 102 53.3" 80.2
4 ' 93.3 140. 72.1 108 61.2 92.0 48.5 72.8
« S 81.2 122 63.2 • 94.9 • 53.7 80.7 42.8 64.4
>< 6 . .68.5 103 S3.7 80.7 45.8 68.8 36.9 • 55,4
b
«
XJ X
7 " 58.1 84.3 44.3 66,6 - 37.9 57.0' 30.8 46.4
1
8 .>.44.4 66.7 35.5 53,3 , 30.5 45.8 25,1 37.8
g 9 n 35.1 52.7^ 28.0. 42.1 •24.1 36.2 20.0 30.0
c
o
10 •28.4 42.7 22.7 34.1 19.5 29.4 16.2 24,3
**
11 23.5 35.3;. 18,8 28.2 '.1,6.1 24.3 13.4 20,1
1
12 ' 1 . 1 13.6 20.4 11.2 16,9
g 0 119 179 , . 91,4 137 , 116 60,3 90.7
%
2 •117. 176 88.§ 134 ' 74.1 111 48,6 73.0
4 ,114^, 171 86,2 . 130 72.0 108 ; 48,5 72.9
6 108' 163 " 82,1 123 68,5 103 4S,2 72.4
€ 8 101 152 76.5 115 • 63.9 96,1 47,3 71.1
1 10 'S0.4 136 . 68,i 102 57.0 85,7 44.0.. 66.1
1
iS
12 '80.3 121 '60,4 ' 90.8 ' '50.5 75,9 39.4 ' 59.2
£ >-14 69.8 105 52,3 78.6 43.7 65.7 34,2 51,5
4
lU
16 59.3 89.2 ' 44,3 66.6 37.0 55,6 29.0 43.7
18 49.4 74.2 36,7 ' 55.1 30,6 46,0 24.t 36.2
20 40.3 60.5 29,8 44.8 24.9 37.4 19,6 29.5
22 33.3 50.0 24,7 37.1 20.6 31.0 16,3 24.4
24 -' 28.0 42.0 20,7 31.2 .17,3 26.0 13.7 , 20.6
26 23.8 35.8 17,7 26.6 , 14.8 22.2 11.7 17.6
28 20.6 30.9 '15.3 22.9 12.7 19.2 10.1 - 15.2
Properties of 2 angles—% in. back to back
h, in.
ry, In.
5.54
0.701
1.76
4.24
0.716
1.73
3.58
0.723
1.72
2.90
0.731
1.70
Properties of Single angle
h, ini 0.532
ASO S .
ac=i.67
LRFO
(!><;= 0.90
0.535 0.538 0.541
' For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
" For required number of intermediate connectors, see the discussion of Table 4-8.
' Shape Is slender for compression witli f,=36 ksi.
Note; Heavy line indicates ffi/z-equal to orNgreater ttian 200.
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
2L3 SLBB
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles^LBB
Fy = 36 ksi
2L3X2V2X
Shape
V2 '/le 3/8 5/W V4
lb/ft 17.0 15.2 13,2 11.2 9.00 6.78
il
Pn/iic ^cPa P„IQc "fcfli Pnl^c Pnliic PalQe ^oPn P„IClc «
il
)esi gii
ASD LRFD tmi LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFO
0 108 : 162 95.7 144 83.2 125 70.3 106 56.9 85.5 39.3 59.1
1 106: 160 94:3 142 82.0 123 69.3 104 56.1 84.4 38.8 58.4
2 102' 153 90.3 136 •78.6 118 .61.5 99.9 53.9 81.0 37,4 56.3
3 94,4 142 84.0 126 73.2 110 62.0 93.2 50.3 75.7 35.2 53.0
4 fii2 128 75.9 114 99.7 56.3 84.6 45.8' 68.8 •32.4 48.6
u
5 74.6 112 66.7 100 58.4 87.7 49.7 74.7 40.5 60.8 29.0 43.6
1
6 63.5: 95.4 56,9' 85.5 49,9 75.0 42.6 64.1 34.9 52.4 •2^.3 38.1 b
w
s
7 78.8 47,1' 70.8 41,5 62.4 35.6 53,5 29.2 43.9 21.6 32.5
•i 8 63.2 37.9' 57,0 33,6 50.4 28.9 43.4 23.8 • 35.8 18.0 27.1
9 33.2 .49,9 30.OV: 45,1 26,6 39.9 22.9 34.5 18.9 28.5 14.6 22.0
3
10 26.9 40.4 24.3 36.5 M-5 32.4 18,6 27.9 15.3 23.0 11.8 17.8
i 11 22,2 33.4 2(j.1" 30.2 17.8 26.7 li4 23.1 12.7 19.0 9.78 14.7
1
12 16#- 25.4 22.5 12.9 19.4 10.6 16.0 8.22 12.4
0 .108-.; 162 95,7 144 83.2 125 . 70.3 106 56.9: 85.5 39,3 59.1
B
mmi Z 105 < 158 93.1 140 S0.4 121 67:1 101 52.9 79.5 29.9 44.9
a
4 101 152 89,4: 134 77.1 116 64.3 96.7 50.8 76.4 29.7 44.7
Ol 6 94:5 142 83 5 125 71.9 108 60.0 90.2 47.5 71.4 29.3 44.1
s
8 83.5 126 73 7 111 • 63.4 95.3 53.0 79.6 42.0' 63.1 , 27.9 42.0 3
.1 (A
10 72.8 109 64.1 96.5 ;,55,i 82.7 46.0 69.1 36.5 . 54.9 25.2 37.9
1 12 61.5 92,4 54.1 : 81.3 46.3 69.6 38.6 58.0 30.7 46.2 21.6 32.5
lU >-
14 50.4 75.7 ,44.2 66.5 37.7 56.6 31.4 47.2 25.0 37,5 17.9 26.8
16 4J.6 62.6 36.5 54.8 •30.9 46,4 25.7 33.6 20.4 30.6 14.2 21.4
18 32.9 49.5 28.8 43.3 24.4 36.7 20.3 30.5 16.2 24.3 'Tfj'
20 26.7 40.1 23.4 35.1 19.8 29.8 ia5 24.8 13.1 19.7 -9.59 14.4
22 22.1 33.1 19,3" 29.1 16.4 24.6 lie 20.5 10.9 16,3 -'7.96 12.0
4
24 18.5 27.9 24.4 13.8 20.7 11.5: 17.2 9.15 13.8
t>-
Properties of 2 angles—s/e in. bacic to bacic
f>, in.
ry, in.
5.00
0.718
1.49
4.44
0.724
1.48
3.86
0.731
1.46
3.26
0.739
1.45
2.64
0.746
1.44
2.00
0.753
1.42
Properties of single angle
f„ in. 0.516
ASD
£Jc=1.67
LRFD
(|)c = 0.90
0,516 0.517 0.518 0.520 0.521
" For Y-Y axis, welded or pretsnsioned bolted intermediate connectors must be used.
" For required number at intermadiafe connectors, see the discussion of Table 4-8.
' Shape is slender for compression with Fy=36 ksi.
Note; Heavy line indicates Xl/r eoual to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-159
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
T
Double Angles—SLBB 2L3 SLBB
Fy = 36 ksi
2L3x2x
Sha pe
V2 ?/8 ®/l6 V4
9
5
lb/ft 15.4 11.8 10.0 8.20 6.14
O
Si
1
P„/Qc M P„/Qc ^oPn P„/Qc PatOc ^cPn PJClc ^cPn
O
Si
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 97.4 146 113 63.8 95.9 ^ 51.7 77.8 36.0 54.1
1 95.0 143 : ^ 73:6 : 111 62.3 93.6 .50.5 76.0 35,2 53.0
2 87.9 . 132 • 68.4 103 i58.0-- 87.1 47.1 70.8 33.1 49.8
3 77.3 116 60.5 90.9 51.4 77.3 41.9 63.0 . 29.8 44.9
4 64.6 97.1 50.9 76.5 43.5 65.3 35.6 53.5 25.8 38,8
5 51.2 77,0 40.8 .61.3 35.0 52.6 28.8 43.3 , 21.4 32.2
K
><
6 38.6 58.0 ' 46.8 26.9 40.4 22.3 33.5 17.0 25.6
D
CO
•a 7 28.4/ 42.7 ;.23.0 : 34.5 19.9 29,9 16.6 24.9 13.0 19.5
« 8 21.7 . - 32.7 :17.6 I 26.4 22.9 12.7 19,0 9.94 14.9
9 17.2 25.8 13.9 = 20.9 12.0' 18.1 10,0 15.0 7.85 11.8
i
i 0 97.4 146 75.4 113 i63.8 95,9 51.7 77.8 36.0 54.1
1
2 •lis 144 as 111 '62.0,:' 93,2 49,6 74.6 27.9 41.9
g
4 9^3 . 139 107, .!59.7, 89.7 47.8 71.8 2^.8 41,8
6 86.7 130 6^,7 : 100 i56.p 84,1 . 44.8 67.3 27.7. 41.6
*
8 774 " 116 ' 6^4 ' 89.3 49.8 74.8 39.9 60.0 26.8 40.3
4
f
10 68.2 103 ,52.2 : 78.5 43.7 65.6 ; 38.0 52,6 24.5 36.9
1
X
12 58.4 87.8 •iKei 67.0 37.2 55.9 29.8 44,8 21.3 32.0
1 3
14 48.fi 73.1 37.0 : 55,6 ,30.7 46.2 24.6 37,0 17.8 26.8
u
si-16 40.7 ; 61.1 30.8 i 46.3 25.5 "Tal"^ 19.7 29.6 14.5 21.8
18 32.4 48.6 :|4.4 36.7 20.2 30.3 ,16.1 24.3 11.9 17,9
20 26.2 39.4 19.8 : 29.8 16.4 24.6 .13.1 19.7 ^'69 14,6
22 21.7 32.6 . 16.4 , 24.6 13.5 20.3 , 10.8 16.3 . 8.03 12.1
g
24 . n.2' 27.4 20.7 11.4 17.1 9.11 13.7 6.76 10.2
26 lb.5 . 23.3
Properties of 2 angles—^/s in. bacl( to back
flj, in.
fx, in,
fy, in.
4.52
0.543
1.56
3.50
0.555
1.54
2.96
0,562
1,52
2.40
0.569
1.51
1.83
0.577
1.49
Properties of single angle
h, in. 0.425 0.426 0.428 0,431 0,435
a<;=1.67
LRFO
(|)c=0.90
' For Y-Y axis, welded or pretensioned bolted intsrmediate connectors must be used.
' For required number of intermediate connectors, see the discussion of Table 4-8,
" Shape is slender for compression witfi Fy=36 l(si.
Note: Heavy line indicates «L/r equal tn or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
2L2V2 SLBB
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy = 36 ksi
2L2VJX2X
Shape
5/8 ®/l6 1/4
lb/ft 10.6 9.00 7.24 S.50 O 1
3: g
Pn/Cic PnlClc Pn/iio
Design
ASD. LRFD ASO LRFD ASD LRFD ASD • LRFD
0 ' 66.8 100 'S6.9 85.5 46.1 69.3 34.8 J'.' 52.2
1 65,3 98,2 55.6 83.6 45.1 ! 67.8 34.0 = 51.2
2 61.0 91,6 • -52,0 78.2 42.3 63,5 32.0 • 48.0
3 54.3 81.7 • 46,5 69.9 37.9 57.0 28.8 43.3
4 ' 46.2 69.5 .39.7 59,7 32.5 48.9 24.9 , 37.4
"1
5 37,6 56,5 32.5 48.8 26.7 40.2 20.6
i .
31.0
•G X
6 • 29.2 43.9 25.4 38.1 : 21.0 ' 31.6 16.4 24.6 b
•o
>!
7 21.8 32,7 ' 19.0 28.5 ; 15.8 • 23.8 -12.5 18.7
8 , 16.7 25.0 14.5 21.8 12.1 ' 18.2 9.53 14.3
s 9 13.2 19.8 11,5 17.3 9.57 14.4 7,53 11.3
S
s
0
1
» 1
- - :

s 0 66.8 100 56.9 85.5 46.1 69.3 -34.8 , 52.2
e 2 64.8,' 97.4 54;8 82.4 43.8 65.9 28.0 " 42.0
4 61.3 92.2 ' ,51.8 77.9 4,1.4 62.2 27.7 41.7
6 55.9. ' 84.0 47.2 71.0 36.8 55.3 39.9 3
F 8 . 47.7' 71.7 40.3 60.5 31.6 47.5 23.5 • 35.3
1
10 39.7 59.7 • 33.5 50.3 ! 26.0 39.0 .19.4 •• ^ 29.1
1
1 12 31.8 47,7 26.7 40.1 20.4 30.6 15.2 22.9
£ >-
14 24.3 36.5 20.4 30.6, 16.0 24.0 11.9 , 18.0
16 18.6 28.0 .15.6 23.5 ; 12.3 18.4 9.20, , 13.8
18 14.7 22.1 12;3 18.6 9.71 14.6 7.29 11.0
20 11.9 17,9 10.0 15.0 7.87 11.8 5.92 8.90
4
-
•• i i
r,, in.
ry, in.
Properties of 2 angles—jn. back to back
3.10
0.574
1.27
2.64
0.581
1.26
2.14
0.589
1.24
1.64
0.597
1.23
Properties of single angle
/>,in. 0.419 0.420 •0,423 0.426
ASD LRFD ' ForY-Y axis, welded or pretensioned bolted inteimediate connectors.musf bSii^.
' For required number of intermediate connectorB, see the discussion of Tahfe 4-8.
' Siiape Is slender for compression with Fy ~ 36 ksi.
Note; Heavy line indicates /a/f equal to or greater than 200.
nc=i.67 (t)c=0.90
' ForY-Y axis, welded or pretensioned bolted inteimediate connectors.musf bSii^.
' For required number of intermediate connectorB, see the discussion of Tahfe 4-8.
' Siiape Is slender for compression with Fy ~ 36 ksi.
Note; Heavy line indicates /a/f equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-161
Fy = 36 ksi
Table 4-11
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
X —
L8
L8x8x
snape
1V8 1 V4 5/8 '/16'
lb/ft 56.9 51.0 45.0 38.9 32.7 29.6
p„/a.
M W « Pn/Cic <t>cPn
Des
ign,
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 ;362j. 544 326 489 i287r 431 248, 373 208; 313 181 272
1 361; ; 543 ' 324! 488 286 430 247! 371 208- 312 181 272
2 358! 538 321' 483 ;283: 426 245! 368 206! 309 179 • 269
3 352; 529 317 476 279; 419 241 362 203, 305 177 265
4 .345: 518 310: 465 273 410 236 355; JiSBl' 298 173 260
b 5 335!, •504 ^01 453 265 399 230! 345 .193! 290 169 253
i. 6 324; 487 291 437 257 386 C222,j ,334 187 281 163 245
•s 7 311: 467 279 420 247 371 215! 320 180 270 157 236
§ 8 297' 446 267^ 401 235 354 204; : 306 172 258 150 226
1
9 281 423 253 380 223 336 193!- 290 163; •• 245 143 • 215
•K
fO
10 i265F .399 238 358 211 317 182 274 231 •435 204
a ,
p
11 "248f 373 223 336 f198 297 171 i' 257 mAf': 217 127 192
^
12 231 348 208 312 T84 277 159!^ 239 .1;35H 202 119 179
o. 13 322 192 289 (170 256 iwr 222 188 111 167
2 14 197 296 177 -266 157 236 136':. 204 173 •102 154
1 15 ;18b| ^ 270 161 243 144 216 124 :: 187: losr- 158 94.2' 142
g
16 245 •147,' 220 130 196 :ii3i- 170 95.9 .144 m.o 129
^ 17 221 132". 199: 118 177 102 153 86.8 130 78,1 117
18 ^32: r •198 118" 178 106 -159 -.91i3' 137 77.9 .117 70,5 106
1"
19 178 106' 160 94.8 142 82;0; 123 69.9 105 63.3 95.1
20 Wj'O 160 95;9- 144 85.5 129 74,0: 111 63;1 94.9 .57,1 85.9
21 - 96i8:; 145 87;0 131 77.6 117 101 57:3' 86.1 51,8 77.9
1
22 ' 88;2~ 133 79.2 119 70.7 106 '61 91,9 , 52.2 78.4 47,2 71.0
23 80:7 121 72,5 109 64.7 97.2 55i9 84.1 47.7 71.7 43,2 64.3
24 74.1 111 66j6 100 59i4 89.3 51 ;4 77,2 65.9 -39.7 59.6
25 68j3 103 61.4 92.2 54i8 82.3 47:3 71.2 60.7 36,6 55.0
26 6311 94.9 56:7 85.3 50:6 76.1 43.8 65.8 37i4: 56.1 33,8 50.8
Properties
Ag, in.2 16.8 15.1 13,3 11.5 9.69 8 .77
f;, in. 1.56 1.56 1.57 1.57 1,58 1,58 ,
ASD LRFD ° Sfiape is slender for compression with Fy= 36 l(si.
1.67 (t)c = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
L8
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy = 36 ksi
LBx8x LBx6x
Shape
W
1 Vi V4 5/8 9/16°
lb/ft 26.4 44.2 39.1 33.8 28.5 25.7
Pfl/ne ifcPi, p„/ac « Pn'Sic ^Pa P«/(ic ifcPn Pfl/Qc <kPn Pn'ac <l>c/?,
uesign
ASDs LRFO ASD LRFO ASD LRFO ASO LRFD ASD LRFD ASD LRFO
0 154; 232 282 424 248 373 215' 324 181 272 157 236
1 154, 231 281 422 247 371 -214 322 180 270 157 235
2 152 229 277 417 243 366 211 318 177 267 155 232
3 150) 226 271 407 238 357 207 311 174 261 151 227
4 148 222 262 394 230 346 200 301 168 253 147 221
I
S 144 216 252 .378 221 332 192 289 161 243 141 212
1
6 140, 210 239 359 -^10 315 183 275 153 231 135 203
•s 7 135 203 225 338 198 297 172 259 145; 217 127 192
8 129 194 210 316 184 277 161 242 135 203 119 180
1 9 124, 186 194 292 170 256 149, 224 125 188 111 167
i
10 ,117 176 ,178 267 156 235 137 205 172 102 154
o .11 111 166 161 242 142^ 213 124 187 104 ' 157 !93.5 141
12 104 156 145 218 127 191 112 168 94.0 141 84.7 127
1-
13 97;i 146 129 194 113 170 99.7 150 83.9 126 . 76.0 114
£ 14 - .90:2 136 114 171 100 150 88,2 133 74.2 112 67.7 102
>
15 83.3 125 99.6 150 87.4 131 77.1 116 97.6 59.7 89.7
g ^ 16 .t76;5 115 87.5 132 76.8 115 67.8 102 85.8 52.4 78.8
17 09° 105 77.5 117 68;1 102 . 60.0 90.2 50.5 76.0 46.5 69.8
*
ge
18 63A 95.5 69.1 104 60.7 91.2 53.6 80.5 si45'1 67.8 .41.4 62.3
t
c
19 57:3 86.1 62.1 93.3 54.& 81.9 48.1 72.2 40.5 60.8 -37.2 55.9
»
V
20 si;7' 77.7 56.0 84.2 49.2 73.9 43.4 65.2 -36.5 54.9 33.6 50.4
21 46.9 70.5 50.8 76.4 44.6 67.0 39.3 59.1 33.1 49.8 30.4 45.8
E
22 42.7 64.2
23 39.1 58.8
24 35.9,- 54.0
25 3.1.1 49.8
26 >30.6 46.0
Properties
Agjn}
fi. in.
7.84
1.59
13.1
1.28
11.5
1.28
9,99
1.29
8.41
1.29
7.61
1.30
ASD
fit =1.67
LRFD
it),; =0.90
'Shape is slender for compression with f,=36 ksi.
Note: Heavy line indicates equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-163
Fy 5= 36 ksi
Table 4-11 (continued)
Available Strength In
Axial Compression, kips
Concentrically Loaded Single Angles
X-
18
lBx6x L8x4x
V2' Vis' 1 7/8 'A =/8
tb/fl 23.0 20.2 37.4 33.1 28.7 24.2
Pn'Cic PnlOc ^Pn ft/fic "Mi Pn/dc P^ia,
M ^cPn
uesign
ASD LRFD ASO LRFD ASD LRFD ASO LRFD ASD LRFD ASD UIFD
0 134 • 201 110 165. 239 360 211 317 183 275 154 231
1 133 200 • 109 164 237 i 356 209 314 181" 272 152 229
2 132 198 108 163 229 345 202 304 175. 264 148 222
3 129 194 106 '159: 217 327 192 288 167 250 140 211
A 125 188 103 155 202 303 378 268 155 .233 130 196
1
5 121- 181 99.9 150 183 276 162 . 243 141 212 119 179
1 6 115 , 173 95.9 144 163 245 144 • 217 125 189 106 160
•s 7 109 164 91.3 137 142 214 126- 189 109 . 165 92,8 140
M
S 8 103 155 86.3 130 121 182 107 161 93.S 141 79.5 120
1
9 96.0 144 81.0 .122 101 • 152 89:5 135 78:2 118 -66.7 100
<n
10 88:8: 133 • 75.4 113 82.5 ,124 73.1 110 64.0 96.2 54.8 82.3
&
p
11 ' 81:5- 122 69.7 105 •68.2 103^ 60.'4 90.8 52,9 79,5 45.3 68.0
^
12 111 '63.9 ^ 96,1 57.3 86.1 50.8 76.3 44,5 - 66:8 38.0 57.2
g. 13 67.0 101 58.2 87.5 48.8' 73.4 43.3 65.0 37,'9. 56:9 32.4 48.7
£ 14 60.0' • 90.1 52.6 79.0 42;1 63.3 37.3 56.1 32.7 49.1 27.9 42.0
•i
s
15 53.3 80.0 47:2 70.9
g 16 46i9 70.4 41 ;9 63.0
^
17 41.5 62.4 37:1 55.8
18 37.0 55.6 33.1 49.8
e
19 33.2 49:9 29:7 44:7
o
20 30.0 45.1 26.8 40.3
1 21 27:2 40.9 24,3 36.6
Properties
6.80 5.99 11.1 9.79 8.49 7.16
fi. in. 1.30 1.31 0.844 0.846 0.850 0.856
ASD LRFD ' Shape is slender for compression witti Fy- 36 l<si.
Note: Heavy line indicates ffi//> equal to or greater than 200.
^£=1.67 (|)c = 0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
Y
Z i
X
y
L8-L7
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy = 36 ksi
L8x4x L7x4x
anape
9/16' V/ 3/4
lb/ft 21.9 19.6 17.2 Z6.2 22.1 17.9
M P„/Oc t>cP/> Pn/Qc <t>cPl. P„/Qc <l>cP« P^lOo
Design
ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 134' 202 •114 171 93.P 1,41 467 251 •140 211 109 164
1 133 200 113 170 92.8 140 16S 248 139 208 108 163
2 129. 194 110 , 165 136, 160 241 t34 202 105 158
3 123 185 .105 158 86.7 130 >152 .228 128 192 •100 151
V?
4 115 172 '98.3 148 .81.6 123 141 212 119 179 93.6 141
1 5 105 158 9014 136 75.6 114 129 194: 108 163 .'85.7 129
1 6 .94,1 141 81 .'6 123 68.8 103 115' 173 96.9 146 77.0 lie
•s 7 -62.8 124 72.4 109 61.5 92,5 100 151 84.8 127 67.8 102
8 71.4 107 62.9 94,6 54.1 81,3 85.9 129 72.7 109 .,58.6 88.1
•o
2
9 60.4' 90.8 53.8 80.8 46.8 70,3 72.0 108; 61.1. 91.8 =49.7 74.6
•o
2
10 50.0' 75.1 45.r 67.7 39./'- 59,7 59.1 88.8 50.2 75.4 41.2 61.9
i :
11 41.3 62.1 37.3 56.0 33.12 .. 49:8 48,8" 73.4 ,41,5 62.3 "34,0 51.1
i :
12 34.7- 52.2 31.3 47.1 •27.8 • 41,8 41.0 61.6 34.8 52.4 .28.6 43.0
13 29.6 44.5 26.7 40,1 23.7, 35,7 • 34-9 52.5 29.7 44.6 • 24.4 36.6
e
14 25.5 38.3 23.a 34.6 '20.5' 30,7 30.1, , 45;3 25.6" 38:5 '•21.0 31,6
1 •
Ag, in/
/V, in.
Properties
6.49
0.859
5.80
0.863
5.11
0.867
7.74
0.855
6.50
0.860
5.26
0.866
ASD
He =1.67
LRFD
<t)c = 0.90
' Shape is slender for compression with Fy=3S fei.
Note: Heaiy line indicates KL/fi equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-165
Fv = Se ksi
Table 4-t1 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
L7-L6
L7x4x L6x6x
1 Va y*
lb/ft 15.7 13.6 37.4 33.1 28.7 24.2
PnlO-c ^cPa Palac « PnlCic P„/S^c « PalClc « Pn/ac i/oPn
Oes
w
• ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
•iilsi
ASO LRFD
0 91.0 137 72.4 109 237 356 210 316 182 274 154 231
1 90.2 136- .71.8; 108 236 354 209^ 314 :18i: : 273 153 230
2 87.8 132 ;70.i- > 105 232 349 206- 309 :178'.: 268 •150 226
3 83.8. 126 67.2 ' 101 226 339 ;200: 301 174: 261 146 • 220
4 78.6 • 118 63.4 95:2 217 326 192; 289 167 251 ,141 • 211
1
5 72.4 109 58.8 88.3 206' 310 1:831 275 159: 239 134 201
1 6 65.5 98.4 53.6 • 80.6 194 ' 292 1-72: 259 149 , 225 126 ' 189
•s 7 58.1 87.4 48.il .72.3 181 . 272 :t60;:K 241 139 209 117 176
.1 8 50.7 76.1 42.4 f . 63;8 166 250 m' S 222 •128rt 192 108 162
2 9 43.4 65.2 36.8 r 55.3 151 228 134 < 202 116 175 98.1, 148
ts
S
10 36.4 54;8 31.4. 47,2 136 ,205 121;:. 182 105:' -158 88.3 133
i 11 30.2. 45.3 26.3 39:5 121 182 .1:08'} 162 93.3 140 78.6 118
12 25.^ 38.1 22.1 33.2 107 161 142 82:2 123 •69.2 104
.13 21.6 32,5 18.8 28.3 93.0 140 ; 82.4: 124 : 71.5 108 60.3 90.6
£
14 18.p 28.0 16.2 24.4 80.2 121 . 71i1£ 107 61.7 92.7 -52.0 78.1

15
1
69.9 105 '6lj9; 93.1 53:7 80,7 .•45.3 68.1
t
16 •61,4 92 3 54:4:: 81.8 47.2 71,0 ^ 39.8 59.8
17 54.4, 81.7 48.2 •72.5 . 41i8 62,9 35.3 53.0
e
18 48.5 72.9 43 0 64.6 -fS?® 56,1 '31.4 47,3
ra
g 19 43.5 65.4 38.6 58.0 33;5 . 50,3 28.2 42,4
S
1
Properties
Ag, in/
in.
4.63
0.869
4.00
fl.873
11.0
1.17
9,75
1,17
8.46
1.17
7.13
1.17
ASD
a<;=1.67
LRFD
(|)c=0,90
' Shape is slender for compression witfi 36 ksi.
Note: Heavy line indicates /Ci/zi equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-166
4-15(3 DESIGN OF COMPRESSION MEMBERS
X -
I z
y
L6
Table 4-11 (continued)
Available Strength in
Axial Gompression, kips
Concentrically Loaded Single Angles
Fy = 36 ksi
L6x6x L6x4x
:>nape
9/16 Va Vis" w VB
lb/ft 21.9 19.6 17.2 14.9 12.4 27.2
PJCl, <!><•«( PatOc P„iac P^IClc (fcft P„/Qc fePn
Design
ASD: LRFD ASO LRFO ASO LRFD ASD LRFO Asp; LRFD ASD LRFO
0 139 209 124 187 107 160 •86.J 129 65.31 98.2 172 , 259
1 138' 208 .124' 186 •106 159 55.7. 129 -65.1- 97,8 171 257
: 2 136 204 122 183 104 157 84.4 127 64.2! 96.5 165 249
3 132 199 118. 178 102 153 82.4 124 •62.8, 94.4 157 ' 236
J? ,
4 127 192 114 171 97.9 147 79.6 120 • 60.9 91.5 146 , 219
g
••s
121 .182 109^ 163 93.3 140 76.2 115 , 58.5 87.9 .133 -200
O) 6 114 172 102 154 88.1 132 .72.2. 109 •S5.7.. 83.8 119 • 178
•s 7 106 160 95.3 143 82.2 124 67.8 102 52.6 79.1 104 ' 156
.1 8 98.1 147 87.8 132 75.9 114 63.0 94.7 49.2" 74.0 88.7" 133
1
9 89.5 .134 80.0 120 69.4 104 58.0? 87.2 45.7 68.7 174.3 112
i
10 80.7 .121 72.2 108 62.7 94.3 52.8 79.4 • 42.0 • 63.1 60.9 91.5
Q 11 72.0 108 -64.4 96.7 -56;1 84.4 47,71 71.7 -'38.3. 57.5 50.3 75.6
ts 12 63.5 95.4 56;8, 85,4 49.7 74,7 • 42.6 64,1 !,34.6i 52.0 42.3 63.8
(U
13 55.4 83.3 49.6 74,5 43.5 65.4 ..37.7 56,7 31.0-, 46.5 36.0 54.2
§ i
14 47.8 71.9 42.8 64.3 37.7, 56,6 33.0 49.6 •27.5, 41.3 •31.1 46.7
S :
15 41:7 62.6 37.3 56.0 f32;8 49,3 28.8 43.2 '247I 36.2
^ •
16 36.6. 55.0 32.8 49.2 28.8 43,3 25.3 38.0 21.2 31.8
J 1? 32.4 48.8 29.'0~. 43,6 .25.5 38,4 22.4 33.7 18.8 28.2
18 28.9 43.5 25;9 38.9 22,8; 34,2 20.0 30.0 16.7 25.2
1" 19 26.0 39.0 23.2 • 34,9 •.-20,5 30.7 17,9 27.0 15.0 22.6
Properties
Ag, in.2
rz, in.
6.45
1.18
S.77
1.18
5.08
1-.18
4.38
1.19
3.67
1.19
8.00
0.854
AM
ac=i.67
LRFD
(t)c = 0.90
' Shape is slender lor compression with f,=36 ksi.
Note: Heavy line indicates KL/rz equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-167
Table 4-11 (continued)
F - 36 ksi Available Strength in
^"" Axial Compression, kips
ConcentHcally Loaded Single Angles
X -
L6
Shape
L6x4x
V4 Vl6 V2
lb/ft 23.6 20.0 18.1 16.2 14.3
Design
ASD
PnlClc
LRFD ASD
PJOc
LRFD ASD
PnlQc
LRFD ASD
Pn/Qc IfcPn
LRFD ASD LRFD
1
2
3
4
5
6
7
S
9
10
11
12
13
14
150
144
136
127
116
103
90.1
77.2
64.7
53.1
43.9
36.9
31.4
27.1
225
223
216
205
191
174
155
135
116
97.3
79.8
65.9
55.4
47.2
40.7
126
125 .
121
115
107
97.7
87.3
76.4
65.5
55.0
::45;V
37.3
31.3
26.7
23.0
190
188
182 ^
173
161 .
147
131
115
98.4
82.6
67.8
56.1
47.1
40.1
34.6
1143
ITS.
no
104
97.2
88;6
79;2
69.4
59:5
50.0
41.1
3«0
28.5
24.3
21;0
172
170
165
157
146
133
119
104:
89.4
75.1
61.8
51.0
42.9
36.5
31.5
102
101 ^
983
'93:5
87:0
am
i71.0
623'
Vi53:5
•;45.0
30.6
25.7
'21.9
18.9
154
152
148
140
131:
119
107
93.6
80.3
67.6
55.6
46,0
38.6
32:9
28.4
87.7
86.8
84.3
80:3
74:9
68.6
61,6
5^1:2::
39.6
32:8
27;i
22.8
19:4
16.7
132
130
127
121
113
103
92.6
81.5
70.3
59,5
49,3
40.7
34.2
29.2
25.1
Property
-4B, ln.2
r/Jn.
6.94
0.856
5.86
0.859
5,31
0.861
4.75
0.864
4.18
0,867
ASD
Qc=1.67
LRFD
(|)c = 0,90
Shape is slender for compression witli 36 lei.
Note: Heavy line indicates KL/ri equal to or greater tfian 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
Z, I
X
i z
Y
L6
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy = 36 k^i
L6x4x LSxSVax
bnape
V2 Vn'
lb/ft 12.3 10.3 15.3 11.7 9.80
m Pn/iic •^cPn Fnia, PJCla ^cPi, p„iaa
design
ASD. LRFD ASD LRFD LRFD m (.RFC ASO LRFO
0 71.0 107 54.0 81.1 97.0 146 mx 102 51.5 77.3
1 ! 70.3 106 53;5 80.4 95.7: 144' 66.8 100 • 50.9 76.5
2 68.4 103 52.2 78.5 : 92.0 138 64.5, 96;9 49.3 74.1
3 65.4 98.3 50;1 75.3 86:1' 129 60.8; 9i:3 46.8 70.3
4 61.3 92.2 47;3^ 71.1 78;5 118 55.9 84.1 43.4 65.2
1 5 56i5 84.9 : 44.0 66.1 69.6 105 50.3 75.5 39.4 59.3
1 6 51, t 76.8 40.2 60.4 60.2 90.4 443 66.3 35.1 52,7
•S 7 45.4 68,2 36.1 54.3 50.6 76.1 37.8 56.8 : 30.5 45.9
I 8 , 3916 59.5 31.9 48.0 41.5 62.4 31.6 •47,5 26.0 39.1
s 9 • 33.9 50.9 27.8 41.7 •33.1 49.8 25.8 38.8 21.7 32.7
s 10 28.S 42;8 23.8 35.7 26.8 40;3 20.9 31.4 17-7 26.7
i
11 23i6 • 35.4 20.0 30.0 22.2 33.3 ;l7i3 26:0 14.7 22.0
i
12 19.6 29.8 16.8 25.2 18:6 28.0 14.5 21.8 12:3 18.5
« 13 16.9 25.4 14.3 21.5 •
J
14 14.6 21.9 12.3 18.5
g
i
1
Properties
/Ij, in.2
in
3.61
0,870
3.03
0,874
4.50
0.756
3.44
0.763
2.89
0.767
ASO LRFD ' Shape Is slender tor compression with /j, = 36 ksi.
Note: Heavy line indicates «.//> equal to or greater than 200.
He =1.67 (|)c=0.90
' Shape Is slender tor compression with /j, = 36 ksi.
Note: Heavy line indicates «.//> equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-169
Fy = 36 ksi
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
X
L5
Shape
L5X5X
% 'U 5/8 V2 7I6
lb/ft 27.2 23.6 20.0 .16.2 14.3 12.3
P„/ac
ASO
P„IClc
LBFO ASD
^cPn p„iaa
LRFD ASD
p„/ac
LRFD ASD
PnICi,
LRFD ASD
Pn/Oc
LRFD ASD LRFD
1
2
3
5
6
7
8
9
10
11
12
13
14
15
16
172
171
167
160
152 .
141 •
129 .
116
103'
89.9
77.2
.-65.1
54,7.
46.6
40.2
35.0
30.8
.259
257
251
241
228
212
194
175
155
135
116
97.8
' 82.2
70.0
60.4
52.6
46.2
150 '
149 ;
146 1
140
132
123
113 i
102
90.0
- 78.6
67,4
56.9;
.47.K
'40'.7-
35.T;
30.6
26.9
226
224
219
210
199
185
169
153
135
118
101
85.5
71.8
61.2
52.8
46.0
40,4
127
126
123
118 .
112
104 -
95,4
86,0
76,3
66.7
57.3
48.4
' 40,7
ke'
29,9
26i0
22,9
191
190
185
178
168
157
143
129
115
100
86.1
72,7
61.1
52.1
44,9
39.1
34.4
103
102
100
96.2
91.0
84.8
77.7
70.r
62.3
54.5
46.9
39.7
33.3
28.4
2415
21,3
18.8
155
154
150
145
137
127
117
105
93.6
81.9
70,5
,59.6
50.1
42.7
36.8
32.1
28.2
91.0
90,3
88.2
84^
;80.2'
74.8
68.6
61.9
55.1
48.2
41.5
35,2
29,6'
25,2
.21,7
18,9
16.6
137
136
133
127
121
112
103
93.1
82.8
72.4
62.4
52.9
44.4
37,9
32,6
28.4
25.0
{s77.3
76.8
v75,0
«7Z.2;
68.4
63.9
•<58.7;
53,1
f47,4i
41.6
«35.9;
! 30.6
S25.7;
l;21,9|
»18.9|
16.5
I
116
115
113
109
103
96.0
88.2
79.9
71.2
62.5
54.0
46.0
38.7
32.9
28.4
24.7
21.7
Properties
L m.' 8.00
0,971
6.98
0,972
5.90
0.975
4.79
0.980
4.22
0.983
3.65
0.986
ASD
£2^= 1.67
LRFD
(t)c=0.90
' Shape is slender for compression with /> = 36 tei.
Note: Heavy line indicates KL/r^ equal to or greater than 200.
AMERICAN INSTITUTE OF STBEL CONSTRUCTION

m^f
4-170 DESIGN OF COMPRESSION MEMBERS
i Z
k
L5
Table 4-11 (continued)
Available Strength in ^ ^^
Axial Compression, kips
Concentrically Loaded Single Angles
Shape
L5x5x
Vie"
L5x3V2X
3/4 Vs V2
lb/ft 10.3 19.8 16.8 13.6 10.4 8.70
Design
PnlO.,
ASO.
PnlOi
LRFD ASD'
p«/ac
LRFD ASD
PJiic
LRFD ASD
P„/Qc
LRFD ASD
PnlClo
LRFD ASD LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
60.41
59,9
58,7 J
56.6:
53:9:
50.6;
46.8;
42.7:;
384
34.1^
29.81
25.7;
21.8?.
18.6
16.0 i
14.0;
90.7
90.1
88.2
85.1
81.0
76.0
70.4
64.2
57.8
51.2
44.8
38.6
32.8
27.9
24.1
21,0
18.4
126
124
119
111
101 '
89.5
77.0
64.5
52.5
41.7
33.8
27.9
23.5
190
187
179
168
152
135
116
96.9
78.9
62.7
50.8
42,0
35,3
106
105
101
940
85.5
75.6
65.1
54.5
44.4
35.4
28.6
23.7
19.9
160
158
151
141
128
114
97.8
81.9
66,8
53,1
43,0
35.6
29,9
86.2
85.1
81.7
76.4
69.5
61.6
53.1
44.6
36.4
29,0
23.5
19.4
16.3-
130
128
123
115
104
92.5
79,8
67.0
54.7
43.6
35,3
29,2
24,5
63.8
61.3
57.5
'52.4
46.6
40.4
34.1
28.0
22.4
18.1
15.0
12,6
97.1
95.9
92.2
86.4
78.8
70.1
60.7
51.2
42.1
33.7
27.3
22.5
18.9
•50,3
49,7
48,0
45.2
41.5
^37.3,
-32.6
27.9
•23.3
. 19.0
15.4
.12.7
s-10.7
75.6
74.7
72,1
67,9
62.4
56.0
49.1
41,9
35.0
28.5
23.1
19,1
16,0
Properties
Ag,
r;, in.
3.07
0.990
5.85
0.744
4.93
• 0.746
4,00
0,750
3,05
0,755
2,56
0,758
ASO LRFD
a,; =1.67 ,= 0,90
' Shape is slender for compression with Fy=36 ksi.
Note; Heavy line indicates KL/rz equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-171
Table 4-11 (continued)
F - 36 ksi Available Strength in
^ Axial Compression, kips
Concentrically Loaded Single Angles
X
L5
Shape
L5x3V2X
V/
L5x3x
Vz W Vie" 'h"
Jb/ft 7.M 12.8 11.3 9.80 8.20 6.60
Design
P„l£lc
ASD
PJClc
LRFO ASD
P„/Qc
LRFD ASD LRFO ASD
ifcPn PnlSic
LRFD ASD LRFO ASD LRFO
1
2
3
4
5
6
7
8
9
10
11
12
35.9
35.5
34.4
32.6
30.3
27.6
24.6'
21.4
18.3
15.3
12.5
10.3
8.69
53.9
53.4
51.7
.49.0
45.6
41.4
36.9
32.2
27.5
23.0
18:8
15.5
13.1
80.8
79.4
75.1
68.5
60.2
51.0
41.7
32.8
25.2
19.9
16.1
122
119
113
103
90.5
76.7
62.7
49.3
37.9
29.9
24.2
-71.4
70.1
66.3
60.5
53.'3
45.2
37.0
29.1
22.4
17.7
14.3
107
105
99.7
91.0
80.0
67.9
55.5
•43.8
33.7
26.6
21.5
60.6^
59.5
56.4
51.6
'45.5
38.8
31.9
25.3-:
19.5:
15:4:
12:5'
91.1
89.5
84.8
77.6
68.5
58:3
47.9
38.0
29,3
23.1
18.7
47.4
46.6
44.4
40.9
36.4
31.4'
26.2
21.2
16.6.
13.1
10.6,
71.2
70.1
66.7
61 ;4
54.8
47.2
39.4
31.9
24:9
19.7
15.9
33.6,
.33.1
;31.7
29.6
26.7
.23.5'.
•20.1
16.7
•13.4
•10.6
- .8.61
50.5
49.8
47,7
44.4
40.2
35.3
30.2
25.0
20.2
16,0
12.9
Properties
Ag, in.^
/>, in.
2.07
0.761
3.75
0.642
3.31
0.644
2,86
0.646
2.41
0.649
1.94
0.652
ASD
He =1.67
LRFD
(|)c = 0.90
' Shape Is slender for compression with F, - 36 ksi.
Note: Heavy line indicates KL/r^ equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
X
I
L4
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy = 36 ksi
L4x4x
Shape
V4 Va Vie V16
lb/ft 18.5 15.7 12.8 11.3 9.80 8.20
Pnl^c ifoPn PnfClc <fcPn P„/£ic Pn/Cic M PnlCic PnlClc
Design
ASO. LRFD ASD LRFD ASD LRFD Asa LRFD ,ASO LRFD ASD LRFD
0 117 176 . 99.4. 149 80:8 122 71 .r 107 61.7 .92,7 51.6 77,5
1 174 147 79.8. 120 70^3 106. -60.9 91,5 50.9, 76,6
2 .111' 168 :,94,5; 142 76.9. 116 67.7 102 58,6 ,88,1 •49.1 73,8
3 105 -157 88.7. 133 72.2 c 108 63,5 95.5 •55.1 82,8 46.1 69,3
£ 4 95,8 144 v8l5. 122 66.1 99,3 58,2 . 87:5 50.5 75.9 42.3 63,6
5 85.5 128 72^ . 109: 59.0 88,7 52.0 78,1 45.1 67.8 37.8 56.9
1 6 74.4 112 63,0 94,7 51.4 77,2 ,45.3 68,0 39.3 59,1 33.0 49,6
•S
.i
7 63.1 94.8 .. 53.5t: 80,3 43.6' 65,6 38.4 57,8 33.4 50,2 28.1 42.2 •S
.i 8 52.2 78,4 .44.2S 66,5 36.1 54.3 31.8 47,9 '277 41,7 23.3' 35,1
1 42.0 63.1 i:35i6;. 53.5 29^ 43,7 25.7 38,6 22.4 33,6 18.9 28,4
i
10 . 34.0 5l'l 43,3 23.6 35,4 20.8 ,31,3 18.1 • 27,2 15.3 23.0
i
11 28.1 42,3 23.8 35,8 19.5^ 29,3 17.2 25,8 15.0 22,5 12.6 19,0
i
12 23.6 35.5 20.0 30.1 16.4 24,6 14^4 21,7 12.6. 18,9 10.6 15,9
§ 13
• r-; 9.04 13.6
sa
.
i
^
a
1
1
Properties
Ag, in,2
/i,in.
5,44
0,774
4.61
0.774
3,75
0,776
3,30
0.777
2,86
0,779
2,40
0.781
ASD LRFD Note: Heavy line indicates KL/rz equal to or greater than 200,
(t)c=0.90
Note: Heavy line indicates KL/rz equal to or greater than 200,
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-173
Fy = 36 ksi
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
X
L4
• L4x4x UxaVax L4x3x
V4' Va Vl6 w Vs
lb/ft 6.60 11.9 9.10 7.70 6.20 13.6
W PnlO.0 p„/ai, P„/Slo PnfO., P„/Qc ^Pn
uesign
ASO LRFD ASD LRFD Asn LRFD ASD IRFD ASD LRFD AST LRFD
0 37.9 . 57.0 75.4 113 57.8 •86.8 48.4 72.7 35.8i 53.8 86.0 129
1 37.5- 56.-4 74.3 112 •50.9 85,6 47.7 71.6 35.3 53.1 84.4 127
2 36.3 54.5- 71.1 107 54,5 81,9 45.6 68.6 33.9 51,0 79.7 120
3 34.3 : 51,5 66.0 .99.3 50.6' 76.1 42.4 63.8 31.8 47,7 72.5 109
4 31.7 47.6 59.6 89,5 45.7 68,7 38.3 57.6 29.0 43.5 163.4: 95.3
i
5
28.6 43.0 •52.1 78,4 40.0 60.2 33,6 50.5 r25.7 38,6 53.4 80.3
S 25.3 38.0 44.3 66,6 •34.1 51.2 28.7 43.1 -22.2 33.4 -f'43.3; 65,1
B
7 21.8- 32.8 36.6 • 54.9 28.2 42,3 23.7 35,6 18.7 28.1 33,8 50.9
1
8 18.4 27:7 29.3 44,0 ,22.6 34,0 19.1 . 28.7 15.3 23:1 25,9 38,9
£ 9 15.2: 22.9 23.1 34,8 17.9 26,8 15.1 22.7 •12.3 18.4 -20.5 30,8
10 12.4 18.6 28,1 14.5. 21,7 12.2 18.3 9.93 14.9 _16.6 24,9
i
11 10.2 . 15.3 15S 23,3 12.0 18.0 10.1 15.2 8.21 12.3
1
12 Isa 12.9 8.48 12.7 6.90 10.4
13 7,31 11.0
g
;
i;
Properties
4gJn.2 1.93 3.50 2.68 2.25 1,82 3.99
liJil. 0.783 0.716 0.719 0,721 0.723 0.631
1 ASD LRFD ' Shape is slender for compression with 36 ksi.
Note; Heavy line indicates M./r2 equal to or greater than 200.
ac=1.67 i|)c=0.90
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
L4-L3V2
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentricaliy Loaded Single Angles
fy = 36 ksi
Shape
L4x3x
V2 "/s Vl6 V4'
L3VZX3V2X
Vz
lb/ft 11.1 8.50 7.20 5.80 11.1 9.80
Design
fi,/!^
ASD
<i>cP„ PnlClc
LRFD ASD'
(fcAii Wc
LRFD ASD LRFD ASD
<t>cPn PnlCle
LRFD ASD
^cPn p„ia.
LRFD ASD
^cPn
LRFD
1
2
3
4
5
6
M-
8
9;
10
11
70.1
68.7
65.0
59.1
51;8
43 J,
35.5
27.7
21.2
16;8
13.6
105
103
97,6
88.8
77.8
65.6
53,3
41.7
31.9
25.2
20.4.
53.7
52.7
"49.8
45.3
39.8
33.6
27.3
21.4
16.4
13.0
10.5
80.7
79.2
74.8
68.2
59.8
50.5
41.1
32.2
24.7
19.5
15.8
44.9 •
44.1 •
41.7
38.0
-33.4
28.2
23.0
18.1
13.9
11.0
8.88
67.5
66.3
62.7
57.1
50.2
42.4
34.6
27.2
20.9
16.5
13.3
33.2 •
32.7 -
31.0 •
28.5
25.3
21.8 ^
18.1 .
14.5
11.3
8.89
7.20
49.9
49.1
46.7
42,9
38,1
32.7
27.1
21.8
16.9
13,4
,10.8
70.1
68.9
65.6
60.4
53.9
46.4
38:8
31.3
24.4
19.3
15.6
12.9
105
104
98.6
90.8
80.9
69,8
58.3
47,0
36.7
29.0
23.5
19.4
62.3
61.3'
58.4
53.8
48.0
41.4
34.6
28.0
21.9
17.3
14.0
11.6
93.6
9^1
87.7
80.8
72.1
62.2
52.0
42.0
32.9
26,0
21,0
17.4
Properties
Ag, in.2 3.25 2.49 2.09 1.69 3.25 2.89
/>, in. 0.633 0.636 0.638 0.639 0.679 0.681
ASD LRFD = Shape is slender for compression wiUi Fy= 36 ksi.
Note: Heavy Ime indicates WL/rz equal to or greater than 200.
n,=i,67 il)c = 0,90
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-175
Fy = 36 ksi
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
i X
L3V2
UVjxSVZX L3V2X3X
'/16 Vt' Va '/16
lb/ft 8.50 7.20 5.80 10.2 9.10 7.90
PnlClc PJQa ^cPn Pn'Cic ^Pn Pfl/fic ^cPn Pa/Qc M PJQc ^cPi,
ASD LRFD ASD. LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 53.9 81,0 45.3 68.0 35.4 -53.2 65.1 97.8 57.6 86,5 50.0 75.2
1 53.0 79.7 44.5 66.9 34.8 52.3 63.8 95.9 56.4 84.8 49.0 73.7
2 50.5 75.9 42.4 63.8 ,33.2 50;0 60.1 90.4 53.2 79.9 462 69.5
3 46.6 70.0 39.1 58.8 30.8 e 46.3 54.5 81.8 48.2 72.4 41J9 63.0
4 ,,41.6 62.5 35.0 52.5 27.6 41.5 47.4 71.2 42.0 63.1 36.6 54.9
•1
5 35.9 54.0 :30,2 45.4 24.6 36.1 39.6 59.6 35.2 52.8 ,30.6 46.1
6 30,0 45.1 25.3 38.0 20.3 30.5 31.9 47.9 28 3 .42.5 24.7 37.1
•s
7 24.3 36.5 , 20.5 30.8 16.6 24.9 24.6 36.9 21.9 32.9 19.1 28.7
J 8 19,0- 28.6 16.1 24.2 13.1 19.7 •18.8 28.3 16.7 25.2 14.6 22.0
s 9 15.0 22.6 '12.7 19.1 10.4 15.6 14.9 22.3 13.2 19.9 yti.6' 17.4
t>
eg
10 12,2 18.3 10.3 15.5 8,40; 12.6 .12.0 18.1 10.7 16.1 9 37 14.1
i 11 10.1 15.1 8.50 12.8 6,94 10.4
t3
1
£
g
, 1 '
£
1
,in.
ASD
0^=1.67
Properties
2.50
0.683
LRFO
<i!c=0.9Q
2.10
0.685
1.70
0.688
3.02
0.618
2.67
0.620
' Shape is slender for compression with 36 l<si.
Note: Heavy line indicates KL/r^ equal to or greater tfian 200.
2.32
0.622
(
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
iT
y
L3V2
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy = 36 ksi
L3V2X3X L3V2X2V2X
anape
Vl6 74" V2 Va Vtfi V4»
lb/ft 6.60 5.40 9.40 7.20 6.10 4.90
M tVifi, Pn/Oc P„/Cic M W
Des ign
ASD LRFD ASO LRFD ASD LRFD ASD. LRFD ASD LRFD m LRFO
0 42.0 63.2 32.9 • 49.4 59.7 89.7 45.7 68.7 38.6 ^58.0 30.2 45.3
1 41.2 62.0 32.ii 48.5 58.1 i 87.4 • 66.9 37.6 0 56.5 29.4; 44.2
2 38.9 58.4 30.5 45.9 53.6 80.6 41.1 61.8 34.7 .52.2 27.3 41.0
3 35.3 • 53.0 27.8 41.8 ,46.9^ 70.5 .36.0 5.4.1 30.5 45.8 24.1 36.2
4 30.8 46.3 24.4 36.7 38.9 58.5 29.9 45.0 .25.4^5 38.1 20.2 30.4
1 ,5 25.8 38.8 20.7 31.1 30.6 45.9 23.6 35.4 20.0 30.1 16.1 24.3
1 6 20.9 31.3 16.9 , 25.3 22.7 34.2 17.6 26.4 15.0 :22.6 12.3 18.4
•s 7 16.2 24.3 13.i, 19.9 16.7 25.1 12.9 19.4 11.0 16.6 ,9.04 13.6
.1 8 12.4 18.6 10.2 S 15.3 12.8 19.2 9.90 14.9 ,8.45: 12.7 6.92 10.4
1 9 9.78 14.7 8.03 12.1 5.47 8.22
n
10 7.93- 11.9 6.50 9.78
.IF...
i
1

€ r
J
u
I''
Properties
Ag, in.2
in.
1.95
0.624
1.58
0.628
2.77
0.532
2.12
0.535
1.79
0.538
1.45
0.541
ASD LRFO Shape is slender tor compression with Fy= 36 l<si.
Note: Heavy line indicates KL/r, equal to or greater than 200.
nc=i.67 <()c=0.90
Shape is slender tor compression with Fy= 36 l<si.
Note: Heavy line indicates KL/r, equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-177
Fy = 36 ksi
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
! i
L3
Shape
L3x3x
Vz 5/16 V4
Jb/ft 9.40 8.30 7.20 6.10 4.90 3.71
Pn/Clo
ASO
'^cPn P„IQa
LRFD ASD LRFD ASO
P„IClc
LRFD ASD
<^0pa P„/Cic
LRFD ASD
PatClc
LRFD ASD LRFD
1
2
3
4
5
6
7
8
59.5
58.2
54.4
48.6
41.5
33.9
26.4
19.8
15.1
12.0
89.4
87.4
81.7
73.0
82.4
50.9
39.7
29.7
22.8
18,0
52^4
51 k
47.9
42.8
36.6
29i8
23^3
17.4
:13i3i
•ib.r
78.7
77.0
71.9
64.3
54,9
44.8
35,0
26,2
20.0
15,8
45,5
44.5
.41,6
37,2
31.8
25.9
20.3.,
15,2
11.6
9.18
68.4
66.8
62.5
55,9
47.7
39,0
30.5,
22.8
17,5
13,8
38.4
37.5
35.1
31,4
26,9
22.b
17.2
12,9
9.87
7,80
57,7
56.4
52.7
47.2
40,4
33,0
25.8
19,4
14,8
11,7
31.0
30.4
28,4 ,
25.4
21,8
17,8
14.0
10.5
8.04
6,35
46,7
45.6
42.7
38,2
32.7
26.8
21,0
"15,8
12.1
9.54
21.4:
21.0
19.8
17.9
15.5
13.0
10.4
7.97
; 6.10
4.82
32.2
31.6
29.7
26.9
23.3
19.5
15.6
12.0
9,18
7,25
Properties
Iff, in.'^
in.
2,76
0,580
2,43
0,580
2,11
0,581
1,78
0,583
1,44
0,585
1,09
0,586
ASD
fi<;=1.67
LRFD
(|)c=0.90
" Shape is slender for compression with Fy= 36 ksi.
Note: Heavy line indicates /Ci/zi equal to or greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
Y
Z I
X--
i z
y
L3
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy = 36 ksi
Shape
L3X2VJX
V2 7I6 V4
lb/ft 8.S0 7.60 6.60 5.60 4.50 3.39
p„iac
ASO LRFD ASD LRFD ASD' LRFD ASD LRFD ASD
i/cPn Pfl/Oc
LRFD A^b LRFD
53.9
52.4
48.1
41.7
34:2
26.4
19.3
14.2
10.9
81,0
78.7
72:3
62;7
51.4
39.8
29.0
21.3
16,3
47.9
46.5
42.7
37.0
30.3
23.5
17.1
12.6
9.64
71.9
69.9
64.2
55.7
45.6
35.3
25.8
18.9
14.5
41.6
40.4
37.1
32.2
•26.4
20.5
15.0
11.0
8.41
62.5
60.8
55.8
48.4
39.7
30.8
22.5
16.5
12.6
35.1
34.2 r
31.4
27.2
22.4
17.3
12.7
9.32
7.13
52.8
51,3
47,2
41.0
33.6
26.1
19,1
14,0
10.7
28.5
27.7
25.4
22.1
18.2
14.1
10.3
7.60
5.82
42.8
:41.6
38.2
33.2
27.3
21.2
15.6
11.4
8,75
•.19.7
19.2
17.8
•15.6
13.1
10.4
7.86
5.78
4.43
29.5
28.8
26.7
23.5
19.7
15.6
11.8
8.69
6,65
Properties
Ag, in.2
Ji, in.
2.50
0.516
2.22
0.516
1.93
0.517
1.63
0.518
1.32
0.520
1.00
0.521
ASD
a.=1.67
LRFD
. = 0,90
' Shape Is slender for compression with Fy=36 ksi.
Note: Heavy line indicates KL/rz equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

STEEL COMPRESSION-^MEMBER SELECTION TABLES 4-179
Fy = 36 ksi
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
ConcentricaHy Loaded Single Angles
L3-UV2
Shape
L3x2x L2Vjx2V2X
V2 5/16 V4 "he' Vi
lb/ft 7.70 5.90 5.00 4.10 3.07 7.70
Design
P„/a,
ASO
^aPn PnlClc
LRFD ASD
PnlSLc
LRFD ASO
^cPn PnlO-c
LRFD ASD
P^IQc
LRFD ASD
PnlCic
LRFD ASD URFD
,0
1
2
3
4
5
6
7
8
48.7
46.7
41.2
33.4
24.9
17,0
11.8
8.70
73.2
70.2
619
50.2
37.4
25.6
17.8
13.1
37.7
36.2
31.9
25.9
19.3
13,3
9.21
6,77
56.7
54.4
48.0
38.9
29.1
19.9
13.8
10.2
31.9
-•30:6
27.0
22.0'
16.5
ir.3
7,86
5,78
48.0
46.0
40.6
33.0
24.7
17.0
11.8
8.68
25;9'
24.8 •
22,0
17.9
13.5
9.31,
•B.46
4.75
38.9
37.3
33.0
26.9
20.2
14.0
9.71
7.14
18.0
17,4
15.6
13.0
10.0
7.23
5.03
3.70
27.1
•26.1
23.4
19.5
15.1
10.9
7.56
5.56
m8,7'
37,1 :
?42,7:
':36,31
<28.8
i2i.5:
35,2^
11.1;
; 8.53
73.2
70.9
64.2
54.5
43.3
32,3
22.8
16.7
12.8
Properties
r^in.
2.26
0.425
1.75
0.426
1.48
0,428
1,20
0,431
0,917
0,435
2,26
0,481
ASO
ac=1,67
LRFD
c=0.90
" Shape is slender for compression with /y=s 36 l<si.
Note: Heavy line indicates7(L//i equal to or greater than ZOO,
AMERICAN INSOTUTE OF STEEL CONSTRUCNON

4-15(3 DESIGN OF COMPRESSION MEMBERS
X
Y
L2V2
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy = 36 ksi
Shape
L2V2X2V2X LZVzxax
5/16 V4 Vie' VB
lb/ft 5.90 5.00 4.10 3.07 5.30
PnlClc
ASD '
PolO.0
LRFD ASD
PnlOc
LRFD ASD
PnlClc
IRFD ASD
PnlClc i>cPa
LRFD ASD LRFD
1
2
3
4
5
6
7
8
37.3
36.1
327
27:8
22.1
16.4 .
11.6
8.53
6.53
56.1
54.2
49.2
41.7
33.2
24.7
17.4
12.8
9.81
3R;5;
30.5
27.6
23.4
18.6
13^9
9.79
7I20
5.51
47.3
45.8
41.5
35.2
28.0
20.9
14.7
10.8
8.28
25.7
24.8
22.5
19.1
15'.2
11.3
8.02
5.89
4.51
38.6
37.3
33.8
28.7
22.9
17.1
12.0
8.85
6.78
19.1
18.5
16.8
•14.3
11.4
8.56
6.07
4.46
3.41
287
27.8
25.2
21.5
17.2-
12.9
9.12
670
5.13
33.4
32.0
28.1
227
16.7
11.4
7I89
50.2
48.1
42.3
34.0
25.2
17.1
11.9
Properties
15, in."^
rz, in.
1.73
0.481
1.46
0.481
1.19
0.482
0.901
0.482
1.55
0.419
ASD LRFD
HE =1.67 (])c = 0.90
' Shape is slender for compression with fy- 36 l<si.
Note: Heavy line indicates KUri equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-181
Fv - 36 ksi
Shape
lb/ft
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
X-
L2V2
LZVzxax
Vl6
4.50
PnlClc
ASD
28.5'
27.3
24.0
19,3
14.3
;9.72
16.75
4:96
LRFD
42.a
41.0
36,0
29.0
21.5
14.6
10.1
7,46
V4
3.62
P„IQo
ASD
23.1
22.1
19.5?
15.8
11.7
7.99
5.55
4:d8
LRFO
34.7
33.2
29;3
23.7.
17.6
12,0
8,34
6.13
Vie"
2.75
P^IClc
ASD
17,3
16,6:
14,7.,
12,0
8,99
6.20
4.30
3.16
LRFD
26.1
25.0
22.1-
18.0
13.5
9.32
6.47
"4.75
LZVzxlVax
V4
3.19
PJClc
ASD
20.4^
19,0
15.2'
10.5;
6.37
4,07
LRFD
30.7
28,5
22,9
15.8
9,57
6,12
2.44
Poiac
ASd
15:3
14:3
1«5
8:10
^m
3.17
LRFD
23.1
21.5
17,4
12.2
7.45
4.77
Properties
1.32 1.07 0.818 0.947 0.724
h, in. 0.420 0.423 0,426 0.321 0.324
ASD LRFD ° Shape is slender for compression with F, •• = 36 ksi.
n,= i.67 (l>c=0.90
Note: Heavy line indicates KL/r^ equal to or greater than 200.
<
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-182
DESIGN OF COMPRESSION MEMBERS
X—-
L2
Table 4^11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy = 36 ksi
Shape
L2x2x
78 Vl6 Va"
lb/ft 4.70 3.92 3.19 2M 1.65
Design
PJttc
ASO
Pn/Oc
LRFD ASO
P„/Qc
LRFD ASO LRFD ASO LRFD ASD LRFD
29.5
28.1
24.1
18,7
13.1
8.52
5.92
44.4
42.2
36.2
zai
19.7
12.8
8.90
25.0
23.8
20.4
15.8
11.1
7.22
5.01
37.6
35.7
30.7
23.8
16.7
10.8
7.53
20.3
19.3
16.6
12.9.
9.05
5.90
•4,10
30.6
29.1
25.0
19.4
13.6
8.87
6.16
15.6
14.8
12.7
9.92
6.98
4.56
3.17
23.4
22.2
19,1
14.9
10.5
6.86
4.76
•9;65
9;23
8.06
6:43
4.«8
3.13
2-18
14.5
13.9
12.1
9.66
7.04
4.71
3.27
Properties
fz, in.
1.37
0.386
1.16
0.386
0.944
0.387
0.722
0,389
0.491
0.391
ASD
£2^=1.67
LRFD
r = 0.90
' Shape is slender for compression witti Fy=36 l(si.
Note: Heavy line indicates Al/r^equal to or greater than 200.
AMERICAN INSTTTOTE OF SIBEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-183
I ~k7To.7i
Fy = 36 ksi
Table 4-12 jequal. equal
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles LB
L8x8x
iVs 1 78 '/4 VB '/16'
lb/ft 56.9 51.0 45.0 38.9 32.7 29.6
Design
fn/Oc ^cPn Pn/Oc M P„/Q, <I><;P» P„/Qe M Pn/tlc <hPn
Design
ASD LRFD ASO LRFD ASD LRFD ASO LRFD ASD LRFD ASD LRFD
0 •174, 262 167 251 159, 240 149 224 127 191 109 f 165
1 173 261 •166 • 250 159 239 149 223 127 190 109 i 164
2 172 258 165 248 157 237 147 221 126 190 109 164
3 169 254 162 244 155 233 145 217 125 ' 189 108 163
4 165 249 158 238 151 227 141' 212 124 187 107 161
J
a
5 161 242 154 232 147 221 137 206 123^ 185 106 159
o
6 155 234 148 224 141' 213 132 199 121 181 103 154
i
7 149 225 142 215 136 205 126 191 115 174 99.4 149
•s 8 143 216 136 206 129 195 120 182: 110 166 96.1 144
3 9 136' 206 129 196 123 186 114 .172 104 157: .92.7 139
1
10 129. . 195 •122' 185 116 176 107 163 97.8 148 89.4 134
1
11 122, 185 '115' 175 109 -166 101' 153 91.7 139 84.6 128
a
12 114: , 174 108 -165 102 155 94.2 143 85.6 .130 79.0 120
ts 13 107 .-163 101 ' 154 95.5 .145 87.8 134 79.6 121. 73.6 112
S. 14 100; . 153 94I6:- 144 89:0 .136 81.6 124 73.9 113 68.3 104
i 15 • 93.7 143 88.1'. 134 82.7 126 75.6 116 68.4 104 '63.2 96.5
f
16 87.3 133 81 i9 125 76.7 117 70.0 107 63.1 96.5 58.4, 89.2
g "
17 81.1 124 75,9 116 71.0 109 64.6 98.8 58.'1 88.9 53.8 82.3
18 75.1 115 70.1 107 65.5. .100 59.4 90.9 53.4 81.6 • 49.5 75.7
19 69.6 106 64.9 99.3 60.5 92.5 54.7 83.7 49.0 75.0 45.4 69.4
f
20 64.7 99.0 ,60.2: 92.1 56.0 85.6 50.5 77.3 45.2 69.1 41.8 63.9
i
21 60.3 92.2 ' 56>0 85.7 52.0 79.5 46.8 71.6 41.8 63.9 38.6 59.0
U 22 56.3 86.1 52;2 79.9 4^4 74.0 43.5' 66.5 38.7 59.2 35.7 54.7
UJ
23 52.6 80.5 48;8 74.6 45.1 69.0 40;5 62.0 36,0: 55.0 33.2 50.7
24 49.3 75.5 45.7 69.9 42.2 64.5 37j8 57,8 33.5 51.3 30.9 47.2
25 46.3 70.9 42.-8 65.5 39i5 60.4 35j4 54.1 47^ '.28.8 44.1
26 ^37:1 56.7 33:1 50.7 29.3 44.8 27.0 41.2 26
Properties
16.8 15.1 13.3 11.5 9.69 8.77
h, in. 1,56 1.56 1.57 1.57 1.58 1.58
ASD LRFD ' Shape is slender for compression wlUi Fy= 36 ksi.
Note: Heavy line indicates KUfz equal to or greater than 200.
Oc=!l.67 (tic = 0.90
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
equal, equal
L8
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy = 36 ksi
L8x8x L8x6x
Shape
1 Vs V4 %
lb/ft 26.4 44.2 39.1 33.8 28.5 2S.7
PntCic M M P„/Qc M PJCic M
uesign
ASD LRFD ASD'. LRFD ASO LRFD ASD LRFD ASD LRFD ASO LRFD
0 91.0 137 161. -241. 158 238 157 236 153' 231 155 233
1 137 1-60! -240 158! 237 156 235 152 229 153 ' 230
2 90.4 136 158 238 155: 234 154! 231 148 224 148 223
3 89.8 135 155 . :234' 152i 229 iso; 226 142- 215 141 • 213
4 89.0 134 151. 228 147 223 144 218 135 204 133 . 201
5 87.9 :132 146 221 138 . -209 136 206 126 192 .124 189
•3 6 85.6 129 135 205 128 194 125 190 118 181 115 175
7 -82.7 124 124 189 118' .180 115 175 108 165 104 159
•s
8 7.9.8 120. 114! 174 1®8i 165 104 159 97.1 149 93.4 143
•s
9 76.8 115: 105! 160 98.3 151 • 94.2 ^144 87.1 •134 83.6 129
1
10 '73.86 111 95.5 146 89.3 137 85.0 131 78.0 120 74.7 115
•g
11 70.9 106 87:0 134 81.0 124 76:7 118 69.8 108 66.7 103
o
12 87.9 101 79;iv 122 ; 73.3 113 69:1 106 62.6 96.7 59.7 92.3
a
13 96.6 110 66.3 102 62:2 : 96.0 56.1 86.7 "53.4 82.7
i. 14 62.0 91.9 : eslfl 100 60.0. !: 92.4 56.0 86.5 50.3 77.8 •'47.9 74.2
e 15 >58.2' 87,2 58:9 90.7 54.1^ •83.4 50.4 77.8 45.0 69.7 42.9 66.5
f
16 53.9 82.3 53.6 82.5 49.0 75.6 • 45.5 70.3 405 62.7 ..38.5 59.7
g 17 49.7- 76.0 48.9 75.2 44.6 68.8 41.3 63.8 367 56.7 •34.8 53.9
a
18 '45.8J' 70.1 44.8 68.9 40:8 62.9 37.7 -58.2 334 51.6 •31.6 48.9
a
19 42.1; 64.4 41.2 63.4 37,4 57.7 ; 34.5 53,2 305 -47.1 28.8 44.6
20 38.7: 59.2 38.0 58.5 34:5 53.1 31.7 48,9 27 9 43.2 26.4 40.8
g
21 35.7: 54.6 35.1 54,1 31.9 49,1 29.2 45.1 25.7 39.7 24.3 37.5
22 •33.0 50.5
23 30.6: 46.8
24 28.5 43.6
25 26.6 40.6
26 24.8 .37.9

Properties
7.84 13.1 11.5 9.99 8.41 7.61
h, in-
1.59 , 1.28 1.28 1.29 1.29 1.30
ASD LRFD " Shape Is slender for compression with Fy=36 l(Si.
1.67 <|)c = 0.90
' Shape exceeds compact limit for flexure with /y=. 36 ksi.
Note: Heavy line indicates KL/fz equal to or greater tlian 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-185
Fy = 36 ksi
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentricaliy Loaded Single Angles L8
L8x6x L8x4x
snape
Vie"-'
1 '/a Ve
lb/ft 23.0 20.2 37.4 33.1 28.7 24.2
PnlClo W Pn/Qa Pnliic /{./Qc fcPn Pn/dc ikPn P«IClo i^cPn
ign
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 122 184 89.5 134 68.2 102 65.8 98,8 63 6 95.6 93.0
^. 122 183 89.5' 134 67.6 102 65.1 97,9 630 94.7 61.2 92.0
2 121 182 .89.2 134. 65.8 .99.0 63.3 95,2 613 92.2 59.3 89.3
3 121, 181 V88.11 132 63.0 94:9 60.4 91,1 58 5 88.2 56.3 84.9
4 121 180 •86.9.i 130 59.4 .89.7 57.0 86,1 548 82.9 52.4 79.3
S 119 181 86.0: 128 55.5 84.0 53.0- 80,3 .mir? . 76.9 48.1 73.0
s 6 108, ' .165 127 51.2 77.7 48.7 73.9 70.4 43.6 66.3
s
7 37.6 149 88.1 128 '46.9 71.3 44.3 67,5 41.9 •63.8 t39.1 : 59.7
•s a 87.5 134 82.8 127 42.5 64,8 40.0. 61,0 37.6 57.4 634.9!. 53.3
1 9 78,1- 120 114 38.3. .58.4 35.9 54,8 33.5 51.2 30.9 47.3
1 ;
10 ,69.6 107 -165:5 ^ 101 34.2 . 52.2 31.9 48,8 296 45.4 R27.2i: 41.6
t5
11 62.1^ 96.0 68.3- 90.3 30.6 46.8 28.4 43,5 26.3 40.3 24.0 36.8
£
12 55:41 85.8 v51.9i . 80.6 27.5 42.1 25.5 39.0 23.5 i 36.0 21.3 32.7
13 49:5. 76.8 .0(6.11: 72.1 24.9 38.0 22.9 35.1 .'21.1 c 32.3 19.0 29.2
i
14 44,3 68.8 .'•41.5 i 64:5 22.5 34.5 20.7 31.8 .29,1 17.1. 26.2
1
is 'isii 61.7 37.2 57.9
1
16 35.6 55.3 33.4 51:9
g
17 32.1 49.9 300 46.7
•••' ; ; ,'i
s
18 29:1 45.2 42^2
19 26:5 41,1 24.7 38.4
1
20 24:3 37.6 22.6 35.0
i
21 22:3 34.5 20.7 32.1
%
> ^
/
Properties
Ag, m? 6.80 5.99 11.1 9.79 8.49 7.16
1.30 1.31 0.844 0,846 . 0.850 0.856
, ASD LRFD ' Shape is slender for compression with f,=36 l<si.
' Shape exceeds compact limit for flexure with f, = 36 ksi.
n<;= 1.67 0.90
: Note: Heavy line indicates KL/r^ equal to or grea iter than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
fequal equal
T0.75<
i
X
L8-L7
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy = 36 ksi
Shape
L8x4x
9/16"
L7x4x
3/4 5/8
lb/ft 21.9 T9.6 17.2 26.2 22.1 17.9
Design
PnlStc
ASD
PnlOc
LRFO ASD
"tfefi, PnlCic
LRFO ASD
Pnlil,
LRFO ASD
Pniac
LRFD ASD
Pniac
LRFD ASD LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
60.0
59.3
57.4
54.4
50.5':
46.2
41.7
•^Ai
33.2
29.4
25.8
22.7
20.1.
17.9
16.1
90.2
89.2
86.4
82.0
76.4
70.1
63.6
57.0
50.8
45.0
39.6
34.8
30.8
27.5
24.7
57.5.
56.8
54.9.
-51.9]
43.9
39.5
35.3;
31.3
27.6
24.3;
21.3
18,8.
16.7
149
86.4
,85.4
82.6
?8.3
?2.8
66,6
.60,2
53.9
47.9
42.4
37.3
32.7
28,9
25.7
23,0
54.7
54,1
52.1 ,
49.2
45.5
41.4
.37.2
33.1
29.3
25.8
22.7
19.9
17.5
15.5
13.8
82,2
81,3
78.5
74,3
68.9
62.8
56.6
50,6
44,9
39.6
34,9
30,5
26,9
23.8
21.3
65.2
64.4
62.2
58.8
54.9
50.4
45.8
41.1
36.7
32.6
28.7
25.3
22.5
20.1
18,1
98,0
96,9
93.6
88.7
83.0
76.5
69.6
62.7
56.1
49.8
43.9
38.8
34,5
30.9
27,8
62.1
61.4
59.4
,56.2
52.1
47.5
42.7
38.1
33.8
29.7.
26.0
22.9
20.2
18.0-
16.2,
93.4
92.4
89.5
84,8
78.8
72,1
65.1
58.2
51,7
45.6
39.9
35.1
31.1
27.7
24.8
59.2
58.5
56.3
52.8
48.6
43.8
39.1
34.6
30.4
26.6
23.2
20.2
•-17.8
15.8
14.1
89.0
87.9
84.8
79.8
73.6
66.7
59.7
52.9
46,6
40,9
35,6
31.1
27.4
24.2
21.6
Properties
Ag, in.? 6.49 5.80 5.11 7.74 . 6.50 5.26
rz, in. 0,859 0,863 0.867 0.855 0.860 0.866
ASD LRFD ' Shape is slender for compression with Fy = 36 ksi.
nc=i.67 (|)c=0.90'
' Shape exceeds compact limit tor flexur® with 36 Ksi.
• Note: Heavy line indicates /fL/r>. equal to or greater ttian 2(X),
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

STEEL COMPRESSION-MEMBER SELECTION TABLES 4-187
Fy = 36 ksi
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
equal, equal
y
L7-L6
Shape
L7x4x
Vie''' W'
L6x6x
Va V4
lb/ft 15.7 13.6 37.4 33.1 28.7 24.2
ASO
PnlSlc
LRFD ASD LRFD ASO LRFD ASD
Pn'^o
LRFD ASD
PJQc
LRFD ASO
ilcPn
LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
56.3
55.6
53.4
50.0
45.'8
41.2
36.6
32.3
28.3
24.7
21.5
18.7
16.4
14.5
12.9
84.6
83.6
80.4
75.6
69.4
62.7
55.9
49.4
43.4
38.0
33.2
28.8
25.3
22,3
19.9
53.1s
52.4
50.3
47.0
42.9
38.4
34.0
29.9
26.1
. 22.8
19.8
17.2
15.1:
13.3
11.8
79.9
78.8
75.7
71.0
65,0
58.5
52.0
45.8
40.2
35.1
30.6
,26.6
23.2
20.5
18.1
102
101
99,5
96.9
93,4
89.1
84.4
79.3-
,73.9
68.5
63.2
58.0
53.r
48.3
43.8
39.8
36.4
33.4
30,7
28.3
153
152,
150
146
141
135
128
120
112
104
96.3
88.5
81.0
73.8
•66.9
60.9
55,7
51.0
46.9
43.3
98.9
98.3
96.7
94.0,
90.4
86.1
81.3
76.1
70.7
65.3
60.01
54.9
50.0
45.3
40.9 i
37.1
33.8
30.9
28.4
26.1
149
148
145
141
136
130
123
115
107
99.3
91.4
83.7
76.3
69.3
62.6
56.8
51.7
47.3
43.4
39.9
93.5
92.9
91.3
88.6
85.1
80.9
76.2
71.1
65.9
60.6-
55.5
50.6
45.9
41.4-
37.3
33.7
30.6
.27.9
25.6
23.5
141
140
137
133
128
122
115
108
100
92.2
: 84.6
77.2
70,1
63.4
,57.1
51.6
46.9
42.8
39.1
36,0
87.3
86.7
85.1
^2.5
79.1'
75.0
70.4
^65.5
60.4
55.4
50.5
45.8
41.4
37.2
-33.4
30.1
.27.2
^24.7,
S22.6i
.20.7:
131
130
128
124
119
113
106
99.2
91.8
84.3
77,0
69.9
63,2
56,9
51,0
46.0
41.6
37,8
34,5
31.7
Properties
in.
4.63
0.869
4.00
0.873
11.0
1.17
9.75
1.17
8.46
1.17
7.13
1.17
ASD
nc=1.67
LRFD
(l)c = 0.90
' Shape is slender for compression with fy = 36 ksi.
'Shape exceeds compact limit for flexure with Fy=36 ksi.
Note-. Heavy line indicates KL/h equal to or greater than 200.
AMERICAN INSTITUTE OF STBEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
jequal, equal
L6
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentricaliy Loaded Single Angles
Fy = 36 ksi
Shape
L6x6x
9/16 V2 Vie"
3/3M
5/16'''
L6x4x
Vt
lb/ft 21.9 19.6 17.2 14.9 12.4 27.2
D^ign
Pnliic
ASO LRFD ASD
Pi,fac
LRFD ASD
Pn/Oc
LRFD ASD
<l>i.Pii Pn/Oc
LRFD ASD
Pnl£h
LRFD ASD LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
83.3
82.B
81.3
78.8
75.5
71.6
67.2
62.4
57.6
52.7
4S.0
43.5
39.2
35.3
31.6
28.4
25.6
23.3
21.2
19.4
125
124
122
119
114
108
102
94.6
87.4
80:2
73.2
66.4
60.0
53:9
48.3
43.4
39.2
35.6
32.5
29.7
77.6
77.4
76.9
74.8
71.6
67.8
63.5
58.9
54.2
49.6
45.0
40.7
36.6
32:8
29.3
26.3
23.7
21.5
19.5
17.9
•117
116
116
113
108
102
96.1
89.3
82.4
75.4
68.6
62.1
55.9
50.2
44.8
40.2
36.2
32.8
29.9
27.3
64.8
64.6.
64.2.;
-63.51!
62.5*
59.9
57.3 ;
-53.7^
:49.4;!
45.1
40.95:
37.0
33.2
29.8
26.6
23.8
21.4<
19.4''
:17.6'
16.1
97.4
97.1
96.5
95:3
93.8
89.8
85.8
81.3
75.0
68.6
62.4
56.4
50.8
45.6
40.6
36.4
32.8
29.6
26.9
,24,6
^50.7
50.6
::50.2
49.6
46.6
;44.4
42.2
40.0
37.8
35.5
33.3
30.2
27.1
24.|;
21.7
19.i
17.6
15.9
14,5
76,2
76,0
75.4
74.5
73.2
70.0
66,7
63.3
59,9
56.4
-52,9
49,3
45,7
41.5
:37,1
33.1
29.7
26.8
24.3
22.2
36.0
35.9
35,6
35.2
34.6
33.9
33.0
31.8
30.0
28.3
26.5
24.7
23.0
21.2
19.4
17.5'
15.7
14.2
12.9
11.7
54.0
53.9
53.5
52.9
52.0
50.9
49.5
47.7
45.1
42.4
39.7
37.0
34.3
31.5
28,7
25,9
23.3
21.1
19,1
17.4
71.9
71.0
68.3
64.2
59.3
.53.9
48.5
43 5
387
34.2
30.0
26.5
23.5
21.0
18.9
108
107
103
96,9
89,7
81
73.9
66.3
59.1
52.4
46,1
40,6
36.1
32.2
28.9
Ag, in,2
rz, in.
_ MD
He = 1.67
6,45
1,18
LRFD
. = 0,90
5,77
1,18
5.08
1,18
4,38
1,19
3,67
1,19
8,00
0,854
' Shape is slender for compression witli Fy=36 i(Si,
' Shape exceeds compact limit for flexure with f,= 36 tei.
Note: Heavy line Indicates /CMv equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-189
Fy = 36 ksi
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
fequal^ equal
IlimzsL
..-ff^r
L6
Shape
L6x4x
Shape
S/4 V8 Vie V2 VK'
)b/ft 23.6 2ao mi 1 16.2 14.3
Pntiic M Pn/Oc Pnlao ft/Oc M
uesigii
ASD LRFD ASO LRFD i ASD LRFD ASD LRFD ASD LRFD
0 : 70.1 105 67.4 101 s 6R2 99,5 : 640 96.2 ; 62.4 93.7
1 69.1 104 66.3 99.7 1 65.1 97,9 • 63:T^ 95,0 ; 61,4 92.4
z 66.2 99,8 J 63,2 95.3 i 61:3 93,2 1 60,5 91,1 58.6 88,4
3 61.9 93,5 ' 58i7 88,7 • 57.8 87.3 : 56,2 85,0 ; 54,2 82,0
4 56.7 85,9 ' 53i8 81,6 52.7: 79,9 ' 50.9 77,3 ; 48.8 -741
c
5 51.4 78,0 48:5 73,7 47.1 71,7 ; 45:3 69,0 43,1 65.7
6 46.1 70,2 i 43t1 : 65,8 41,6 63,6 39:7 60,7 37,6 57.5
St
7 41.0 62,6 i 38,o: 58,1 36,5 55,9 ; 34.6 53,1 i 32,5 50.0
"S 8 36.2 55.4 ! 33,3 51,0 31,8 48,8 30.0 46,1 28,1 43.2
a
9 31.8 48.8 i 29;tt 44,6 27,6 42,5 39.9 i 24,2 37.3
E
10 27.8 42,6 ; TSiS. 3^8 23.9 36,8 . 22.4 34.4 ; 20.8 32.1
1
11 ' 24.4 37.4 22,0 33,8 , 20.8 32,0 19.4 29.9 ' 17.9 27.7
i
12
13
21.5
"19.2
33.1
29.4
; 19,4
iS
29,8
26,4 161
28.0
24.8
: 17.0
15.0
26,1
23,0
15.6
! 13.8
24.1
21.2
i. 14 17,2 26,4 15.3 23,5 143 22,1 ; 13.3 20,5 12.2 18.8
1
1
rz, in.
. ASO
nc=i.67
ProperHes
6.94
0,856
LRFD
c=0.90
5.86
0.859
5.31
0.861
4.75
0.864
4.18
0.867
' Shape is slewief for compress wilh 36 ksl.
Note: Heavy line indicates /ftAi equal to.or greater than 200.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
h, in.
ASD
He =1.67
fequal equal
i --k~Tii.7H
L6
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
= 36 ksi
L6x4x L6x3V2X
anape
Vz 5/16"-'
lb/ft 12.3 10.3 15.3 11.7 9.80
PnlClc Pn/Clo « Pfl/Oc Un PnlSic i/oPn P^lilc
bes •gn
i ASD LRFD ASD LRFD ASD LRFD ASD LRFD USD' LRFD
0 58,9 : 88.5 : 53,3 80.2 1:47:1: 70.8 43.6 65,6 40.4 60,7
1 ; 57:9; 87.1 : 53.3 80,1 : 46.4 69.8 42.9 64,5 39.6 59,6
2 ; 55;2 83.2 >51.0 77.0 44,3 66,7 40,6 61,3 37.5 56.5
3 . 50.9 77,0 . 47.0 71.1 41.0 61,9 37.3 56:4 • 34;3 51,9
4 • 45.6 69.3 ; 4Z0-; 63.8 : 37:0 56,1 33.2 50,5 30.5 46.3
5 i 40.1: 61.2 ; 36.7 56.1 32:7 49,8 29.1 44,4 26.6 40.6
1
6 1 34^8 53,3 31.7 48,7. 28,6 43,7 25.2 38.5 22.^ 35,1
1
7 ; 3o:o 46,1: ; 27.2 41,9 ; .24:8 • 37,9 ' 21:6 33,2 19.6 30.1
•s 8 25:8 39,8 23.3 36,0 21:3 32.7 18.5 28,4 i 16:7 25.7
9 , 22,2 34.2 : 20.0 31,0 18,2 28,0 , 15,7 24.2 14,2 220
1
10 19,0 29.4 17.2 26,6 ' :15:7 24,1 : 13.4 20:7 12.1 18,7
11 ? i:6;4 25.3 14.8 22,9 i 13:7: 21,0 116 17,8 10.4 16,1
o
12 14.2 22.0 12.8 19.8 12:0 18,4 10.1 15,6 9.03 13,9
13 12.5 19,3 11.2 17:3
i
14 • 11.0 17,0 9,83 15.2
J
1 -
f
:
Properties
3.61
0.870
LRFD
(l)c=0.90
3.03
0.874
4.50
0.756
3.44
0,763
2.89
0,767
' Shape Is slender for compression.witli Fys 36 ksi.
' Shape exceeds compact limit for flexure witti Fy=36 ksi.
Note: Heavy line indicates KL/r^ equal to or greater tlian 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-191
J—ipsist
Fy = 36 ksi
Table 4-12 (continued) JfeguaL. equal
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles LS
Shape
L5x5x
«/8 Va
lb/ft 275 23.6 20^ 16.2 14.3 12,3
Design
P/i/CJc
ASD
PalUc
LRFD ASD
PnlClc
LRFD ASD,
<l>cfl, p„iac
LRFD ASD
Pnliic
LRFD ASD,
P„/Qc
LRFD ASD
iloPa
LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
108
107
104
101
95,8
90.0
83.7
77,0
70.3
63.8
57.4
51.3
45.8
41.0
36.9
33.4
30.4
68.a
68.4
66.7
64.1
60.7
56.7
52.4
47.9--
43:5
39,1
35.0
31.1
27.6
24.7
22,1
20,0
18,1
104
103
100
96.6
91.6
85.8
79.4
72.8
66.2
59.7
53.5
47.6
42.2
37.7
33.9
30.5
27.7
65.7
65,1
63.4-
60.8
57,4
53:4
49,1
44,7-
40:3
36.1
32.1
28.4
,.25,1.
"22,3
19.9
17i9
16.2
98.7
97.9
95.5
91.6
86.7
80.8
74.5
67.9
61.4
-55.1
49.1
43.4
38.4
34.1
30.5
27,4
24.7
60.6
(
60.0
58.4.
55.9
52.6
48,8
44.7
40.'5
36.3
32.3"
28.6
25,1
•22.1.
19.5
17,3
15,5
14,0
91.0
90.2
87.9
84.2
79.5
73.9
67.8
61.5
55.3
49.3
43.7
38.5
33.7
29:8
26.5
23:8
21.4
56.6
56.1
54.6
52.2
49;1
45.5
41.6
37.6
33.;6
29.8
26.3
23.1
20.2
17,8
15.8
14,1
12.7'
85.1
84.3
82.2
78.7
74.1
6B.B
63.0
57.1
51^2
45,6
40.3
35.3
30.9
27,3
24.2
21.6
.19.4
46.5
46.3
45.8
45.1
43-4
412
38.3
34.6
30.9
27.4
..24,1
21,1
• 18,4
16,1
14,3
12.7
-11,4
69.8
69.6
68.9
67.7
65.1
61.7
58.1
52.5
47.0
41.7
36.8
32.2
28.1
24.7
21.9
19.5
17.5
Properties
rz, in.
nc=1.67
8.00
0.971
LRFD
<l)c=0.90
6.98
0.972
5.90
0.975
4.79
0.980
4.22
0.983
3.65
" Shape is slender for compression with fy = 36 l(si.
Note: Heavy iine indicates ,/(i//>eaual to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
lequal. equal Table 4-12 (continued)
Available Strength in
Axial Compression, kips
L5 Eccentrically Loaded Single Angles
Fy = 36 ksi
Shape
LSxSx L5X3V2X
Shape
3/4 5/8 Vz w
lb/ft 10.3 19.8 16.8 13.6 10.4 8.70
P»/nc ^oPn P„IQc ft/Oc p„iao fefl, PnlOc
Design
ASD LRFD Asn LRFD ASD,' LRFD im: LRFD ASD' LRFD ASD LRFD
0; 35.4 '53.2 55.4 83,3 54.6 82,0 52.9 . 79.5 49.7 74J "46.9 70.5
1 35.2 53.0 54 9 82,6 54,0 81,3 51.6 77.7 48.7 J 73.2 45.9 69,1
2 34.9 52.4 53.4 .80.5 51.3 77,3 48.1 72.6 45.6 68.8 42.8 64,7
3 34.3 51.5 49.0 74.1 46.6' 70,5 43.6 66,1 40.9 62.0 38.2 57.9
. 4 32.8 . 49.3 43.9 66.6 41.3 62,7 38.6 58.7 35.4 54.0 32.8 50.1
J?
. 5 31.0 46,5 38.7 59.0 36.3 55,4 33.5 • 51.1 30.1 46,1 .27.7, 42.4
1
6 29.1 43.7 33.9 51.8 31 ;5 48.2 28.7 r 43.9 25.3 38.9 •23.1 35.6
l
7 27.3 40.8 29.5 45.1 27.1 41,6 24,4 37.5 21.2 . 32.7 19.2 29,7
•s 8 25.4 37.8 25.4 39.0 23.2 35.7 20.7 31,8 17.8 27.5 16.1 24.9
9 23.5 34.9 21.8 33.5 19.6 30.4 17.5 26.9 14.9 1 23.0 513.4 i 20,8
1
10 21.1 31.8 18.9 29.0 17,a 26.1 14.9 23,0 12.6 < 19.4 11.3 17.5
1
11 18.5 28.3 16.5 25.3 14:8, 22.7 12.9 19,8 10.8 3 • 16.6 >9.62 14.9
i
12 16.2 24.7 14.5 22.3 12.9 19,9 11.2 17,3 9.34" 14.4 8.30 12,8
i
13
14
14.2
12.5
21.7
.19.1
-
, ,
1 •
1
15
16
11.1
9.96
17.0
152
-
g

t
J
• i'
Properties
/I9, 3.07 5,85 4.93 4,00 3.05 2,56
h, in.
0.990 . 0,744 0,746 0,750 0.755 0,758
ASD LRFD ' Shape is slender for compression with f,= 36 tisi.
' Shape exceeds compact limit forHexure with fy=36 ksi.
(|)c = 0,90
Nots: Heavy line indicates KUh equal to or greater than 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-93
Fy = 36 ksi
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Jequaj. equal
Mist
L5
L5x3Vzx L5x3x
Vi Vn'-'
lb/ft 7.00 12.8 11.3 9.80 8.20 6.60
PnlQc P„IQ, « PnlCic iS^Pn P„IQc W P«/Qc
De sign
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD m' LRFD
0 31.0 46.5 35,9 54,0 34,7 -52,2 33,8 50,7 31,8: :47,7 '.28.8! 43,3
1 31.0 46-.6 35.0 52J 34.0 t 51,1 33.0 49,6 31,0 46,6 28.1 J 42,2
2 30.9 46.3 32,8 49,5 ,31.9 48.1 30.7 46,3 28.;f 43,3 as-gj 39.2
3 30.8 45.8 29,7 45,0 28.7 ' 43.5 27,4 41.5 25.4 -38,6 22.9, 34.7
4 29.2 44.6 26.2 39,8 25.0 38.1 23,7 36,1 21.8 • 33,3 29,8
5 24.5 37.6 22.6 34.5 21.4
t
32,7 20,1 30.7 18.4 • 28,1 •16:3 25.0
.1
6 20.3 31.4 ,19,3 29,5 18,1 27,7 16,8 .25,8 15.^ • 23.5 20,8
1
7 .16.9 26.1 16,2 24,9 15.2 23,3 14,0 21,5 12.7 19.5 '11,2. 17,2
•B 8 14.0 21,8 13,6 . 20,9 12.6 19.4 11,6 17.8 10.5: 16:1 ! 9.22 14,3
.1
9 11.7 18.2 11,5 17;7 10.7 . 16,4 9,72" 15,0 • 8.74 .13.5 •7.63 11,8
1
10 •9.85 15,3 9,90 15,2 9,12. 14.0 8,28 12,7 7.40 :11,4 -6,43 9,93
to
S
11 .8.36 13,0
i ^
s
12 7.18 11,1 i ^ Ill
i;.
i

1.-
1
. f
-
r
is
i
Properties
2.07 3.75 3.31 2,86 2.41 1,94
rz.in. 0.761 0.642 0.644 0,646 0,649 0,652
. ASD LRFD ' Shape Is slender for compression with f.= 36 l(si.
0^=1,67 4)c=0,90
' Shape exceeds compact limit for flexure with f, = 36 ksi.
Note: Heavy line indicates equal to or greater than 200,
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
fequaf equal
-L
L4
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy = 36 ksi
Shape
L4x4x
3/4 7I6 VIS
H)/ft 18.5 15.7 12.8 11.3 9.80 8.20
Design
ASD
Pnl^c
LRFD ASD LRFD ASD LRFD ASD.
W6
LRFD ASD
Pn'^c
LRFD ASD LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
45.8
45.3
43.7
41.3
38.3
-.34.9
'31.4
27.9-
"24.5
21.3
18.6
16:3
14.4
68.9
68.1
65.9
62.4
57.9
52.9
47.7
42.4
37.4
32.5
28.4
24.9
22.0
44.5
43.9
42.3
39.8
36.6
33.1
29.5
26.0
22.7
19.6
169
14.7
13.0
66.9
66.0
63.7
60.0
.55.4
50.3
44.9
39.6
34.6
29.9
25.8
22.6
19.8
41.2
40.7
39,1
36.6
33,5
30.1
26.7
23.3
20.1
17.2
14.8,
12:8
11.2
62.0
61.2
58.8
55.2
50.7
45.7
40.6
35.5
30.8
26.4
22.6
19,6
17.2
39.6
39.0
37,4
35.0
315
28,6
25.1
21.9
18,8
16.0
13.7
11.8
10,3
59,5
58.7
56,3
52.8
48,3
43.3
38,3
33,3
28,7
24.5
20.9
18,1
15,7
36,9
36.3
'34,8
32.5
29.6
26.4 i
23,2
20.0 i
17.2
14.5 ;
12,4 *
107 ;
926?
55,4
54.7
52,4
49.0
44.8
40.1
35.2
30.6
26.2
22.3
18.9
16.3
14,2
31,9
31,8
31,3
29,3
26,6
23,7
20.7
17.8
15,2
12,81
10.9
9.33
8.08;
7,06
48,0
47.7
47,0
44.2
40.3
35.9
31.5
27.2
23.3
19.6
16.6
143
12.4
10.8
Properties
h, in.
5,44
0,774
4,61
0,774,
3.75
0.776
3,30
0,777
2,86
0,779
2,40
0,781
ACO LRFD Note: Heavy line Wic3tes.Al//> equal toor greater than 200.
Qc=1,67 (t)c=0.90
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-195
Fy = 36 ksi
Table 4-12 (continued) feguai equ.i
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles l4
L4x4x L4X3V2X L4x3x
Shape
V2 V8 Vl6 Vs
lb/ft 6.60 11.9 9.10 770 6.20 13.6
p„iac ^cPa PnlQc Pnt^c « PnlQc PnlClc Pn'^c t'cft
uesign
ASD LRFD LRFD ASD. LRFD ASD LRFD ASD LRFD ASD LRFD
0 22.5 33.8 50.4 75.7 .478 , 71.9 35.7 . 53.6 24.5 36.8 39.1' 58.8
1 22.3 33.6 49.7 74.8 48 0 72.1 35.6 53.5 24.4 36,7 •38.6 58.1
2 22.0 33.0 47.7 72.0 481 72.9 35.4 : 53.0 23.6 J 35.4 37.2 56.2
3 21.2 31.8 m 67.8 43 3 661 34.3 51.0 22.3 ; 33,4 34.4 52,2
4 19.7 29.6 40.7 62.3 37 7 57 9 35.1 51.0 21.1 31,5 5 29.5 45.0
5 18.2 27.3 35.0 . 53.7 32 2 49.7 29.7 ;46.1 20.4 29.8 25.0_ 38,2
1
6 25.0 28.7 44.3 258 39.9 23.9 • 37.2 21.1 32.9 21.0 32.2
1
7 15.2 22.7 23.6 36.5 20 7 32.2 19.0 29.6 16.6 26.0 17.5 26,9
•s 8 13,0 19.9 jigifc 30.0 168 26.1 15.3 i 23.8 13.3 ; 20.8 14.6 22,4
9 11.0 16.9 24.8 137 21.3 12.4 19.3 10.8 16.8 > 12.3 18,9
1
10 9.29 14.2 20.9 114 17.7 10.3 15.9 8.86 13,8 10.5 16,1
-s
ss
11 i-fiM' 12.1 T1.5 17.8 9.68 15.0 8.^4 13.4 7.44 11.6
p 12 10.5 : 7.38 11.4 6.33 9.86
A
1
13 5.96 9.10
J
1
1

1
r
[
Properties
Ag, in.^ 1.93
0.783
3.50
0.716
2.68
0.719
2.25
0.721
1.82
0.723
3.99
0.631
ASD
£lc=1.67
LRFD
(|)c = 0.90
" SHape is slender for compression with F, = 36 ksi.
' Shape exceeds compact iimit for flexure with Fy= 36 l(si.
Note: Heavy line indicates /ft/fi equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
"k—70.75!
L4-L3V2
Table 4^12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy = 36 ksi
L4x3x LSVaxaVzx
anape
Vz Va Vz 7I6
lb/ft 11.1 8.50 7.20 5.80 11.1 9.80
Pfl/Hc <t><!fll PnlCio <|)cP» Pnliic ^cPn Pn/Clc Pnl^c ^cPn
uestgn
ASD LRFD ASD LRFD ASD: LRFD ASD.' tRFD ASD" LRFD ASD LRFD
0 39.1 58.8 38 2 57.4 37.6 56.5 30.6 46.0 33.3 50,1 32.0 48.1
1 38.5 58.0 57.4; i 56,4 36.3 54,7 30.4 45.6 32.8 . 49,3 •31.5 47,3
2 36.8 55.7 35 2 .53,3 32.9 49,9 30.4 45.2 312 46,9 -29.9 45,0
3 32.? 49,6 30,6 46,6 29.0 ,44.1 26.4. 40.3 28 7 43,4 27.5 41,5
•4; 27.8 42.3 25.4 38.8 23.6 36,2 21.3' .32.6 25.8 • 39,1 <24.6 37,2
5 23.2 35,5 20.7 31.8 19.6 : 29,2 16.9 .26.0 22.7 H 34,4 21.5 32,7
1
6 19.2 29.5 16.8 25.9 15.2 23,5 13.4 20.7 19.6 29,8 18.5 28,2
1
7 15.8 24.3 13.6 .21.0 12.2 18.9 10.7 16.6 16.7 25,5 15.7 23,9
•5 8 13.6 20.0 11.0 17,0 9.83 .15.2 8.57 13.3 14.0 . .21,5 13.1 ' 20,0
9 10.8 . 16,7 9.13 14.1 8.09 12.5 7.00 10.9 11.9 18,2 11.0 16,9
2
10 9.20. 14,2 7.68 11,8 6.78 10.5 5.84 9.04 10.2- 15,5 9.41 14,4
1 . 11 8.78' 13,4 8.11 12,4
a
s
i'
i •..
si i
1
i
®
I
1
Properties
Ag, in.^
/i, in.
. 3,25
0,633
2,49
0,636
• 2,09
0.638
1,69
0,639
3,25 .
' 0,679
2,89
0,681
ASD LRFD ' Shape is slender for comoressloti with 36 ksi.
ac=i,67 4ic=0.90
' Shape exceeds compact limit tor itexure witn 36 Ksi,
Note: Heavy line indicates «.//> equal to or greater ttian 200,
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-197
Table 4-12 (continued)
Available Strength In
fequal. equal
F — 36 ksi
^ ~ Axial Compression, kips
Ecqentrically Loaded Single Angles isVa
Ag, in.^
rz, in.
nc=1.67
LaVzxSVzx L3V2X3X
% =/l6 1/4' Vz 7I6 Va
lb/ft 8.50 7.20 S.80 10.2 9.10 7.90
P«IQc m PalCic ^cPn PnlSic ^cPa PnlQc PnfClc <t>c'!>
uesign
• ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD. LRFD ASD LRFD
0 30.6 4B.0 28 0 42.1 ,21.2 31.8 36.8 55.2 37.9 56.9 88.7 58.1
1 30.1 45 2 27.5 .41.4 21 6 31.6 36.2 54.5 37.2 56.0 37.8 57.0
28.5 42.9 26.0 .39.2 206 30.9 34.6 52.3 35.2 53.3 35.4 53.7
3 26.1 .39.4 23 8 35.9 19 3 29.0 32.1 48:9 32.3 49.3 31.8, 48.6
4 23.? 35.2 21.1 32.0 17.9 26.7 28.5 .43,7 28.2 .43.3 27.3 42.1
5 20.2 30.7 18.3 27.8 16.0 24.2 23.2 35.7 22.6 34.8 •21.5 33,2
1
6 17.3' 26.3 15.5 23.6 135 20.6 18.8 29,0 18.6 27.9 17.0 26.3
CB
7 14.5 22.2 13.0 19.8 11 3 17.2 15.2 23.4 14.4 22.3 13.4.1 20.8
•s 8 12.1 18.5 10.7'. -16.4 9.30 14.2 •T2.3 • 19.0 11.6. 18.0 10.8' 16.7
.1
9 10.1 15.5 13.7 7.89 11.8 10.2 . 15.8 9.59 14.8 8.81 13.6
T3
n 10 8.S7 13.1 7.M 11.5 6.46 9.88 6.62 13.3 • 8.04- 12.4 -7.36 11.4
1 : 11 7.36 11.3 6.45 9.86
f
5.50 8.41
1
.s
s
1

F
! .
1
5 ^ >
g
. i
i
:
1
1
i
1
J.
Properties
2.50
0.683
LRFD
4ic=0.90
2.10
0.685
1.70
0.688
3.02
0.618
2.67
0.620
2.32
0.622
' Shape is slender for compression witli fy=36 l(sl.
Note: Heavy line indicates Ki/f; equal to or greater tiian 200.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-198
DESIGN OF COMPRESSION MEMBERS
fequal. equal
~k~T0.75fl
L3V2
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
= 36 ksi
L3V2X3X UVzxZVax
anape
Vl6 V2 ®/L6 Vi'
lb/ft 6.60 5.40 9.40 7JM) 6.10 4.90
P„iac ^cPn PJilc <t>cfll P„IQc M Pnlilc (l>cPn p„/nc «
Design
ASD3 LRFD ASD LRFD , ASt) LRFD m LRFD ASD. LRFD M LRFD
0 51.8 24.3 36.5 28.1 : 42.3 27.5
I .
41.4 27.2 40.9 26.0 39.1
1 34.6 52,0 24.3 36.4 27.6 • 41.6 26.9 40.5 25.9 38.9 '24.9. 37.5
2 35.3 53.1 23.3 34.8 25.5 38.6 23.6 35.8 .22.8 345 .21.7. 32.9
3 30.2 ^ 46.3 22.4 33.3 21.7 33.0 19.9 .30.2 18.9 28.8 17.6 26.8
4 2S.5 : 39.3 22.8 344 18.0 27.4 16.1 24.7 -15.1 23.1 13.7 21.1
I? ,
5 20.0 31.0 18.1 28.1 14.7 22.5 12.9 19.8 •11.9 18.3 10.6 16.4
1 • 6 15.5 24.1 13.9 21.6 11.8 18.2 10,2 15.7 9.^0 14.3 8.26 12.8
i. 7 ,12.2 18.9 10.8 16.8 9.55 14.7 .8.12 12.5 7.33 11.3 6.44 9.96
•5 S 9.67 15.0 8.49 13.2 .7.86 12.1 6,61 10.2 5.93 9.14 5.17 7.98
§ 9 i 12.2 6.87 10.7 . 4.24 6.54
CO 10 10.1 5.68 .8.82
• ' •
i
£
S
1
; i •
• ^
1
%
e
i
i
1
£
lU
J.-
Properties
Ag, in.2
in.
1.95
0,624
1,58
0.628
2.77
0.532
2.12
0.535
1.79
0.538
1.45
0.541
ASD LRFD 'Shape is slenderfwcompression witti f,= 36ksi. ^
. Note: Heavy line indicates KL/rz equal to orarealer man 200.
(()c=0.90
'Shape is slenderfwcompression witti f,= 36ksi. ^
. Note: Heavy line indicates KL/rz equal to orarealer man 200.
AMERICAN INSTTTOTE OF SIBEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-199
Fy = 36 ksr
Shape
lb/ft
Design
h, in.
. ASD
0^=1.67
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
equal, equal
L3
L3x3x
Vz
9.40
Pnl^c
ASD
25.3
24.8
23.2
21.0
18.3
15.7
13.1
10.8
8,99
7.58
LRFD
38.1
37.3
35.0
31.7
27.8
23.8
20.0
16.5
13.7
11.6
8.30
ASD
24.3
23.8
22.2
19.9
17.3
14.7
12.2
io:o
8.27
6.93
LRFD
36.5
35.7
33.5
30.2
26.3
22.4
18.7
15.3
12.6
10.6
7.20
ASD
23.2
22;7
21.1
18.9
18.3
13.7
11.3
9.19
7.55
6.30
^cPn
LRFD
34.9
34.1
31.8
28.5
24.7
20.9
17.3
14.1 .
11.5
9.64
=/l6
6.10
P^iac
ASD
21.7
21.2
19.7
17.5
4s;o =
12.5 ;
10.3
8.27
6.75
Km
^cPn
LRFD
32.6
31.9
29.7
26.5
22.8
19.1
15.7
12.7
T0.3
8.57
V4
4.90
PM
ASD
19.4
19.1
17.7
15.7
nm
11.1
8.97
7.17
5.80
4.79
LRFD
29.2
28.7
26.7
23.7
20.3
16.9
13.7
11.0
8.88
7.32
3.71
PnlQc
ASD
12.7
12.6
12.2
11.2
10.0
8.95
7.29
5.83
-4.68
3.84
^cPn
LRFD
19.1
18.9
18.3
16,7
15.0
13,3
11.1
8.92
7,16
5,86
(
Properties
2.76
0.580
LRFD
(tic = 0.90
2.43
0.580
2.11
0.581
1.78
0,583
1.44
0.585
1.09
0.586
' Shape is slender for compression with 5,=36 ksi.
' Shape exceeds compact limit for flexure with Fy= 36 l(5i.
Note: Heavy line indicates KL/r^ equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
equal equal Table 4-12 (continued)
^^ Available Strength in
Axial Compression, kips
L3 Eccentrically Loaded Single Angles
Fy = 36.ksi
Shape
L3x2Vzx
V2 Vie 5/16 V4
lb/ft 8.50 7.60 6,60 5.60 4.50 3.39
Design
Pn/iic
ASD LRFD ASD
i^cPn Pn/Clc
LRFD ASD
P„/Qc
LRFD ASD
PnlO.0
IRFD ASD
P„IQo
LRFD ASD LRFD
i
S
£•
S
24.8
24.4
23.2
21.3
17.4
13.8
10.9 •
8.70
7.09
37.3
36.7
35.1
32.5
26.6
21.2
16.8
13.4
,10.9
25.5
25.0
23.5
21,3
16.9
13.2
10.3
8.15
6.61
38.4
37.6
35.6
32.5
25.9
20.4
15.9
12.6
10.2
26.1
25.5
23.7
20.9
16.3
12.5
9.65
7.56
6.08
39.3
38.4
35.9
31.9
25.0
19,3
14.9
11.7
9.38
26.7
25.9
23.6
20.1
15.4
11.7
8.84
6.85
5.46
40.2
39.0
35.9
30.8
23.8
18,0
13,7
10.6
8.44
24.2
24.5
22.0
18.t
14.0
10.4
7.77
5.96
4.72
36.4
36.7
33.5
27.9
21.7
16.1:
12,1
9,24
7,31
14.7 •
14.5
13.7
13.3
=11.9
, 8.70
6.47
4.91"
-3.86
22.2
21.7
20.4
19.5
18.6
13.6
10.1
7.66
6.00
Properties
Ag. in.2 2.50 2.22 .1.93 : 1.63 1.32 1.00
r^, in. 0.516 0.516 0.517 ' 0.518 0.520 0.521
ASD LRFD ' Shape is sjemler for compression with f,= 36 ksi.
£ic=1.67 <1)^ = 0.90
'Shape exceeds.,compact limit tortlexutB witn KSI.
Note: Heavy.line.indicates Kt/r^equal to or flreaterthan 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-201
Fy = 36 ksi
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
equal
U-L2V2
Shape
L3x2x
VJ 3/8 5/16 V4
L2V2X2V2X
Va
lb/ft 7.70 5.90 5.(K) 4.10 3.07 7.70
Design
Pa/Qo PJQc
LRFD ASO
P^/Qc
LRFD sASO LRFD ASD
^cPfl
LRFD ASO
Pn/Qc
LRFD ASD LRFD
18.3
17.4
15.3
12.7 :
10.2
7.97
6.29
5.08
27.5
26.2
231
19.3:
15.5
12.2^
9.65
7.79
17.6
16.6
14.2
11;.5
9.04
5.38
4:28
26.4
25.0
21.5
17.5
13.8
10.6
8.26
6.58
17.0
15.9
13.5
10.8
8.35
6.32
4.85
3,84
25.5
24.0
20,5
16,5
12.8
9.72
7,46
5,90
16.3
15,4,
12,9
10.0
7.58
5,64
4,27
3.35
24.5
23,2
19.6
15,4
11,6
8,69
6,58
5,15
15.3
14.3
•,11.8 ^
8,95
6.61
4.87
3.63
2.81
23.0
21,6
17,9
13.7
10.2
7.53
5,61
4.34
18.1 ;
17.6
16.1
14.1
,11.9 i
9.78;
7.85
- 6.38:
5.28;
27.2
26,4
24,4
21,4
18,1
14,9
i4o
9,76
8,07
Properties
'>,in. ^
2,26
0,425
1,75
0,426
1,48
0,428
1.20
0.431
0.917
0.435
2.26
0,481
ASO LRFD
0^=1.67 c = 0.90
Shape is slender lor compression with F,=36 l(si.
'Shape exceeds coinpact limit for flexure with Fy = 36 lai.
Note: Heavy line indicates KL/r^ equal to of greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
_iaisL®9ysL
i
i
L2V2
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy = 36 ksi
Shape
L2V2X2Vjx
'/8
lb/ft 5.90
Design
LRFD
'/le
5.00
ASD LRFO
V4
4.10
ASD LRFD
Vis"
3.07
P«/Qc
ASD
't'cfli
LRFD
L2V2x2X
5.30
P„/£ic
ASD LRFD
17.0
16.4
14.9
12.9
.10.6
8.55'
6.73
5.39-
4.40
25.5
24.7
22,5
19.5
16,2
13.1
10.3
8.24
6.74
16.0
15.5
14.0
11.9
9.77
'7.76
6.04
4.80
' 3.'89
24.1
23,3
21.1
18,1
14,9
11,9
9,24
7.34
5.96
14.«
14.3
12.6,
10.8
8.77
6.88
• 5,29.
4.16
136
22.2
21.5
19.3
16.4
13.4
10.5
8.10
6.37
5.13
11.7
i .
11.5 .
10,9
9,16
7.33
5.68
4.32
3.36
2.69
17,5
17.3
16.4.
13.9
11.2
8,69
6,61
5,14
4,11
16.9
164
15.0
11.9
8.94
6:65
5X)6
25.4
24.7
22.8
18.1
13.7
10.2
7.79
Properties
h, in.
ASD ^
1.73
0.481
LRFD
ac=i.67 i|)c=o.go
1.46
0.481
1.19
0.482
0.901
0.482
1.55
0,419
' Shape is slender for compression Mth fy= 36 Icsi.
Note: Heavy line indicates KLfh equal to or greater lhan 200.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-203
Table 4-12 (continued) jequal. equal
A *! L_ 1 .1.1 * i -ts-
Fy
36 ksi MvaiiaDie oirengin in
Axial Compression, kips
fk-y
i
X
Eccentrically Loaded Single Angles L21/2
L2V2x2x L2V2XIV2X
s/ie V4 V4 3/16=
lb/ft 4.50 3.62 2.75 3.19 2.44
PnlQc M P«lilc 4cPa p„/ac ^cPn PnfClc
Oe£ sign
ASD LRFO ASO IRFO ASD LRFD ASD LRFD : ASD LRFD
0 ' 17.5 26.3 17.4 26.2 15.4 23.2, ; 9.06 13i6 ; 8sB3;v 13,0
1 ! ms • 25.4- 16.6 25.1 15.4 23.0 ! 8.27 12.5 ; 7.84 11,8
2 ! 15:1^. 23.0 14.3 21.8 1Z.7 19.4 6.61 10.1. ! 6f04 9,21
3 : 11.5 17.7 10.7 16.4 9.55 14.7 ' 4.66' 7.44 4.29 6,58
4 ' 8.46 13.0 11.8 6.63 10.3 ; 3.43 5.27 2.95 4,54
5 6.18 9.53 i 5.49 8.49 4.67 7.25 ; 2.50 3.84 i 2?ll " 3,25
6 ! ii«64 7.15 i 4.07 6.29
. 3.41
5.29
7 r 3.14 4.84 ' 2.61 4.03
•S
1
i
1
•C
g
1
Properties
1.32 1.07 0.818 0.947 0.724
A;, in. 0.420 0.423 0.426 0.321 0.324 .
ASD LRFO " Shape is slender for compression with Fy = 36 ksi.
Note: Heavy line indicates KL/r^ equal to or greater than 200.
1.67 1>c = 0,90
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
fequal. equal
IL-3H53
^Uv ^
L2
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy = 36ksi
Shape
L2x2x
3/8 V4 Vl6 Va"-'
lb/ft 4.70 3.92 3.19 2.44 1.65
Design
Pk/OC
ASD LRFO ASO LREO ASD
Pa/Qo
LRfD ASO
P„/Qc
LRFO ASO LRFD
11.6
11.1
9.70
7,93
6.T8
4.67
3.62
17.5
16.7
14.7
12.0
9:42
7.14
5.54
11.2.
10.6
9.21
7.42
5.69
4.24
3.25
16.8
16.0
13.9
11.3:
8.69
6.48
4.97
laSi
9.95
8.52
6.76
5.09
3.74
3.83
15.a
15.0
12,9
10.3
7.78
5.71
4.33
9.44
8.91-
7.57
5;90
4.37
314
2.35
14.2:
13:4
11.4:
8.98
6.67
4.81
3.59
5.58
5.45
4;88
4.12
3.36
2.39
1.76
8.39
8,19
7.32
6.16
4.95
3.64
2,B7
Properties
Ag, in,^
r,, in.
ASD
nc=i,67
1,37
0,386
LRFO
(l)c=0.90
1.16
0.386
0,944
0.387
0,722
0,389
0,491
0.391
' Shape is slender for compression with 36 ksi,
' Shape exceeds compact limit for flexure witfi f, = 36 ksi.
Note: Heavy line indicates ffi/r^ equal to or greater than 200,
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-205
Table 4-13
Fy = 46 ksi Available Strength in
u = 4 ksi Axial Compression, kips
4'
Concrete Filled Rectangular HSS ^^ao'-Hssfe
Shape
HSS20x12x HSS16x12x
Shape
5/8 Va % 5/8 V2 Va
ftlesigiii in. 0.581 0.465 0.349 0.581 0.46S 0,349
Steel, lb/ft 127 103 78.5 110 89.7 68.3
Design
P^ISic « p„/ac <i'cP« p„/ac ^cPn PnlClc ^cPo « P»/Cic '^cPn
Design
ASD LRFD ASO LRFD ASO LRFD MB LRFD ASD LRFD ASD LRFD
0 '.1150 1730 1010 1510 •865 1300 : ^70 1450 ,S49i; 1270 724 1090
6 1130 1700 • Ma- 1490 850 1280 ^54, 1430 : 835 /: 1250 711 1070
7 1130- 1690 1480 ^845 1270 948 1420 . 8301 1240 707 1060
8 1120 1680 980 1470 839 1260 : 941/ 1410 • 824 : 1240 702 1050
9 1110 1660 972 1460 832 1250 934;, 1400 • 817: 1230 696 1040
10 1100 1650 S64- 1450 825 1240 925 1390 810 1210 690 1030
11 1090 1630 i455. 1430 817 1230 ; 916 1370 802 1200 683 1020
12 1080 1620 .-945; 1420 ,808; 1210 906 1360 793 ,1190 675' 1010
'R 13 1070 1600 •,934: 1400 798 1200 '896 = 1340 784 1180 em 1000
Z 14 1050 1580 922 1380 : 78Sv 1180 885 1330 774 1160 65C 987
s 15 1040 1560 vflo; 1360 777 1170 >873 1310 763. 1150 64® 974
s
16 •1020 1540 897 1350 766 1150 •860 1290 752 1130 639 959
s
17 1010 1510 1883: 1330 . 754., 1130 847 1270 741 1110 6295 944
s.
18 994 1490 •869^ 1300 741 1110 1250^ 728 1090 6l9s 928
£ 19 977- 1470 ;:855i; 1280/ 728 1090 819 1230: 716- 1070 608i 911
g: 20 960 1440 ; 839j 1260 715 1070 804 1210 703 1050 59fe 894
t 21 942 1410 : 824:: 1240 701 1050 788 1180 689 1030 584 877
^ :
22 , 924 1390 : 807; 1210 687 1030 773 1160 675 1010 572", 858
SS ••
23 , 905. 1360 i 7918 1190 672 1010 756 1130 661 992 560'' 840
24 . 886 1330 c"t74. 1160. 986, 740 1110 647 970 547 '821
f '
25 866- 1300 i 757: 1130 642 964 723 1080 632 948 53^: 802
g.;
26 ' Me 1270 -739;- 1110 627 940 706 1060 617 925 521® 782
'S 27 , 826 1240 ? 721: 1080 917 689 1030 602 902 508:' 762
28 - 806 1210 : 703 1050 ; 595 893 671 1010 586 879 495 = 742
29 785 1180 ; to 1030 : 580, 869 653 980 571 856 461" 722
30 764 1150 666 1000 ' 563 845 636 953 555 832 468 701
32 722 1080 : 629 944 . 531, 797 600 899 523 785 440 661
34 680 1020 f 592 888 .499 748 564 845 . 492 737 413 620
36 638 957 r:555:> 833; rte: 700 528 791 .460 690 386 579
38 §97 895 519 778 435 652 ' 492 738 429 643 359 539
40 556 834 '483 724 404: 605 457 . 686 398 598 333 499
Properties
/Wm/Oi,
Mnyl^h
i^bMax kip-ft
kip-ft
589
401
885
603
491
331
738
498
;386
260
581
391
.416
; 335
626
504
347
279
521
420
274,
219;:
412
329
'WfxWVlO^ kip-in.2
PeAKyLyflW kip-in;
rmy, in.
W'm)'
72300
30500
4.93
1.54
62800
26400
4.99
1.54
52500
21900
5.04
1.55
40300
24900
4.80
1.27
35200
21600
4.86
1.28
29300 ,
18000
4.91
1.28
(|),= 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
4'
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
HSS^eSIsM Concrete Filled Rectahgular HSS
Fy = 46 ksi
fc' = 4 ksi
Shape
HSS16x12x HSS16x8x HSS14x10x
Shape
«/l6 VB V2 3/8 Vl6 VB
(design, in.
0.291 0.581 0.465 0.349 0.291 0.S81
SteeMb/«
57.4 93.3 76.1 58.1 48.9 93.3
Design
P.ICic Paldc ^cPa P«ICh ^cPn P„IQo (fcPn PnlQoi <t>cP« PnlCla ^Pa
Design
ASD I.RFD ASD LRFD ASD I.RFO ASD LRFD ASD LRFD ASD LRFD
0 660 990 1140 662 992 558 837 •5031 754 783 1180
6 649 973 '7i36. 1100 ; 838 : 957 538 807 484 726 765 1150
7 644 967 '726 1090 ^630, 945 • 531 796 •478 717 758 1140
8 840 959 .715 1070 dio-. 931 523 784 471 706 750 1130
9 634 951 >,703' 1050 610 915 514 771 462/ 694 742 1110
10 628 942 1030 598 898 504 756 •453 680 732 1100
11 622 933 '675 1010 586 879 493 740 .444 666 722- 1080
E. :
12 615 922 ' r,659 989 : 573' 859 482 723 433' 650 711" 1070
tn
K 13 607 911 !643; 964 558 838 470 705 422 634 69?. 1050
.CO
14 599 898 625 938' S43 815 457 686 411 616 686 1030
s 15 590 886 911 792 444 666 399' 598 673 1010
s
V
16 581 872 : {:S8&: 883 ; 512;;: 768 430 645 386. 579 659 988
s
V
17 572 858 854 495 743 416 624 •373-i 560 644 966
1 18 562 • 843 i549 824 • 478; 717 402 602 360 r 540 629- 943
£ 19 552 828 1529. 793-; ;;461.; 691 387 580 347;; 520 613' 920
1
20 541 812 : ^08 . : 763 ; 443'; 664 372 558 333 500 597^ 896
3
21 530 796- 731 ; hs-i 638 357 535 319? 479 58l" 871
S'
22 319 779 ?4e7- 700 611 341 512 306 V 459 564- 846
23 508 761 669 389 584 326 489 292£ 438 547 821
i
24 i496 744 '425" 638. ; 37lc i 557 311 467 2781 417 530 795
I
25 • 484 726 405 607 353 530 296 444 264S 397 513 769
> 26 472 708 384 577 336 504 281 422 251 ~ 376 495 743
27 460 689 366 550 318 478 266 400 238 T 356 478^ 717
28 447 671 348 523, 301 452 252, 378 225- 337 460 691
29 435 652 330,: 497 285 427 238 357 212 318 443 664
30 422 633 . 313 471 268 402 224 336 199'; 299 426 638
32 ; 397 595 280 421 ; 236 355 197 296 175 263 391 587
34 . 372 558 :24& 373 • 209:i 314 175 262 155 233 358 537
36 1347 520 221 333 ; 187 280 156 234 139 208 325 488
38 483 199 299. 168 252 140 210 124 187
..211.
440
40 J 298: 447 179 269 151 227 126 189 112' 168 266 "399
Properties
Mi^ltii,
(|)(,M« kip-ft
<^t,M„f kip-ft
235
187
353
281
322
i92
484
288
270,
160
406
241
215
126
323
190
185
108
278
162
300
233
450
351
kip-in.2
Pey{KyLyf/W kip-IR.^
rmy, in.
^mf^my
26200
16000
,4.94
1.28
29100
9060
3.27
!1.79
25700
7950
3.32
1.80
21600
6630
3.37
1.80
19200
5900
3.40
1.80
24500
13900
3.98
1.33
ASD
He =2.00
LRFD Note: Dashed line indicates the KL beyond which bare steel strength controls.
c=0.75
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-207
Fy = 46 k§i
fc = 4 ksr
4'
Table 4>13 (continued)
Available Strength in
Axial Compression, kips
Concrete FiHed Rectangular HSS ^s^frSlsfa
Shape
HSS14x10x HSS12x10x
Shape
V2 ye =/l6 1/4»,f
Vz
fdeslgn, in. 0.465 0.349 0.291 0.233 0.465 0.349
Steef, lb/ft 76.1 58.1 48.9 39.4 69.3 53,0
Design
Pn/Cic ^Pn PnfCic M P«/Cic ^cPn Pn/Clo
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 •682 1020 578 667 523 784 ,468 ^ 701 607 911 ::514 772
6 "666 998 564 846 510 765 i:456 684 593 889 502 752
7 660- 990 559 839 505 758 -452- 677 587 881 497 746
8 '653 980 553 830 500 750 447 670 581 872 492 738
9 646 969 547 820 494 741 441 662 574 862 486 729
10 638 957 540 810 488 732 653 567 851 480 720
ST
11 •'629 943 532 798 481 721 429 643 559 838 473 709
£ :
12 619 929 524 786 • 473 709 V422-. 633 550 825 465 698
i
13 609 913 515 773 465 697 5 414' 621 541 811 457 686
ra
Jg
14 598 897 ; 506 758 4'56 684 406 610 531 796 449 673
n
1
15 586 880 496 744, 447 670 398= 597 520 781 440 660
s
16 574 862 485 728 -437 656 i 389, 584 509 764 430 645
17 562 843 474 712 M27. 641 . 380 , 570 498 747 421 631
s. 18 549 823 463 695 417 626 371 556 486' 729 410 616
£
19 535 803 452 677 407 610 <361 542 474 711 400 600
20 •^22 782^ 440 660 396 593 527 461 692 389/ 584
21 -.507 761 428 641 385 577 ' iti v 511 449 673 378 567
S"
22 493 740 415 623 373 560 ,:331: 496 436' 653 367' 551
23 478 718 4'03 604 542 s320 480 422 633 356" 534
i
24 695 390 585 350' 525 309 464 409 613 344 516
1
25 ."'449 673 377 565 ^38 507 299 448 395 593 333 499
26 '434 650 364 546, S26 490 ^88 432 382 573 321. 482
27 418 628 351 527 315 472 277^ 416 368 552 309 464
s
28 403 605 338 507 303 454 ^267; 400 •354 532 298 447
29 388 582 325 488 291 436 256- 384 341 511 286 429
30 373 560 312 468. 279 419 245 368 327 491 275 412
32 343 515 287 430 256 384 . 224, 337 , 300 , 451 252 378
34 314 471 262.. 393 234 350 204 306 274 412 230 345
36 266 429 238 357 212 318 485 277 249 374 208 313
38 '259 388 215 322 191 286 166' 249 225 337 188 281
40 ' 234 350 194 291 172 258 •150 224 203 . 304 169 254
Properties
M„y!at,
(!.(,«„ kip-n
(|)i,M„y kip-ft
451
:165
377
293
199
154
298
231 132
257
198
,141
108
212
163
198
173 260
157.:
137 =
236
206
PMLx)W kip-in;
Pey{KyLyfnO* kip-in;
Cm/rin.
Wf/ny
21600
12300
4.04
1.33
18000
10200
4.09
1.33
16000
9040
4.12
1.33
14000
7860
4.14
1.33
14500
10700
3.96
1.16
12100
8900
4.01
1.17
Q<;=2.00
LRFD
(tic = 0.75
«Shape is noncompact for compression with fy= 46 t<si,
' Shape is nomampact (or flexure with fy=46 iffii.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
4"
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
cofgJjl'TE Concrete Filled Rectangular HSS
Fy = 46ksi
Shape
HSS12x10x HSS12X8X
Shape
6/16 V4 Va
1/2
VB V4
fitesitdi. in- 0,291 0.233 0.581 0.465 0,349 0,233
Steel, lb/ft 44.6 36.0 76,3 623 47,9 32.6
Design
Pn'^c ihP" Pn/Cle ^cPa Pn/iic <M'fl W W M
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 463 695 622 608: 913 528 793 444 666 354 531
6 452 678. -4043 606 ;586 878 509 763 427 641 340 510
7 ,448 671 400 600 578 866 502 753 422 632 335 503
8 443: 664 396 • 594 . •568 853 494 741 415 622 330 495
9 438 656 391 586 558 837 485 728 408 611 324 486
10 648 . 386; 578 547 821 476 714 400 599 317: 476
11 425 638 380 570 535 803 466 698 391 586 310 465
E
12 419 628 373 560 522 783. 455 682 582 572 303 454
"S 13 411 617 367 550 • 508 763 443 664 •372 558 295" 442
14 •404; 605 360 539 494 741 . 431 646 361 542 286. 429
S 15 1395 593 352 528-479 718 418 627 351 526 277- 416
s 16 = is7:; 580 ,344, 516 .463 695 404 607- ',339 509 268 * 402
17 378 567 ; 336 504 447 671 391 586 328 • 492 259 388
s
18 369 553 ; 328; 492 431 647 377 565 316 • 474 249J 374
g
19 539 319 479' 414 622 362 544 . 304 ' 456 239 359
g 20 349 524 310 465 398 596 348 522 292 438 229.:
344
21 340 509 301 452 381 571 333 500 280 420 220-' 329
S"
22 329 494 292 438 364 545 319 478 267 401 210 314
23 V319 479 282 424 347 520 304 456. 255 . 383 200 299
•E 24 309 463, "273V 409 •33T" Tg"' 290 434 243 -364 190 • 285
i"
25 298 447 263 395 315 474 275 413 231 346 180 ' 270
i 26 288 432 254 381 300 451 261 391 219 328 170.' 255
is
27 ;277: 416 . 244. 366 285 429 247 370 •207 310 161 -241
28 267 400 ; 235. 352 270 406 233 350 195 293 151 227
29 256 384 : 225- 338 256 385 220 329 184 276 142 214
30 J46 368 216 324 242 363 •206 310 173 259 133 200
32 , 225 338 . 197 296 214 321 181 272 152 228 117 176
34 205 308 ; 179, 269 189 285 161 241 .135 202 104 156
36 • 186 279 162^ 243 169 254 143 215 120 180 92.6 139
38 167 251 1i45 218 152 228 129 193 108 ^ 162 83.1 125
40 t51 226 : 1,31: 197 137 206 116 174 97.3 146 75.0 113
Properties
MJOiti
M„y/Ch,
%Mnx kip-ft
(fftMnj, kip-ft
B5
117
203
176
112
97.0
168
146
202
150
304
226
171
126
257
190
136 !
IliO >
.204
150
97.3
7.1.t_
146
107
PeAWW
PeyiKyLyf/W
•my,
in.
kip-in.^
kip-in.2
fmxfi'my
10800
7920
4.04
1.17
9390
6890
4.07
1.17
13600
6900
3.16
i:40
12000
6100
3.21
1.40
10100
5110
3.27
1.41
7880
3940
3.32
1.41
ASD
i^<;=2.00
LRFD Mote: Dashed line Indicates (he KL beyond which hare steel strength cotilrols.
^c = 0,75
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-209
Fy = 46ksi
fc = 4 ksi
4'
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS Hss^Slsfo
HSS12x6x HSSIOxSx
snape
% Vz '/8 V4 5/8 V2
'designj in. 0.581 0.465 0.349 0.233 0.581 0.465
SteeUb/ft 67.8 55.7 42.8 29.2 67.8 55.7
Pn/Qc IfcPa PalO^ M ^Pi, P„/iia M ft/Oc •fePfl P„/nc
Design
ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD "m LRFD
0 778 447 670 373 560 293 440 532 799 461 691
6 •465 728 419 628 350 525 275 412 512 767 443 665
7 474 712 •409 614 342 513 268 402 504 756 437 655
8 462 695 398 597 333 499 . 261 391 496* 744 430 645
9 .449 675 386 579 , 323 484 253 380 u487f 730 422 633
10 435 653 373 559 • 312 468 244 367 477' 715 413 620
5J3-' 11 4S0 631 359 539 301 451 235 353 466 699 404 606
£
12 403 606 344 517 289 433 2^6 339 . 454 681 394 591
13 387 581 329 494 276 414 216 324 442 663 384;- 576
14 369 555 313 470 263 394 205 308 429 643 373 559
i
15 352 529 297 446 250 375 195 292 •415- 623 361 -542
a' •
16 334 502. 281 422 •236 354 . 184 276 401 602 349 524
17 316 474 265 397 223 334 •173 260 387 580 337 506
s. 18 297 447 249 374 . 209 314 163 244 372 558 325 487
i 19 279 420 234 -352 •196 294 152 228 "357" '"537" 312 468
£ 20 261 393 ;220- 330 '183' 274 142 ' 213 -343 516 299 449
fi. •
21 244. 366 206 309 -470 .i 255 , 132 197 329 495 286 429
S"
22 227 341 192 288 !357r,; 236 122 183 .315 474 273" 410
23 210 316 178 268 -il45?: 218 112- 168 301 453 260' 390
24 194 291 165. 248 . •333J 200 103 154 '287 432 247 371
1
2S qa 268, 152 229 184 94.9 142 273 411 235 352
S 26 165 248 441 211 ; 114 170 •B7.7 132 ' 259 390 222'- 333
1 •
27 153 230 330 196 105 158 : . 81.3 122 f246 370 210 315
g 28 142 214 121 ' 182 • 97.9 147 75.6 113 233 349 198 296
29 133 199 113 170 91.2 137 •70.5 106 219 330 186" 279
30 124 186 106 159 : 85.3 128 65.9 98.8 207 311 T74"
32 109 164: 92.9 140 74.9 112 57.9 86,8 482 274 ^SA 231
34 96.4 145 82.2 124 i,66.4 99.6 51.3 76.9 161 242 136 205
36 86.0 129 73.4 110 . 59.2 88.8 45.7 68,6 144 216 121 183
38 77.2 116 65.8 99.0 S3.1 79 7 41.1 61.6 129 194 109 164
40 59.4 89.3 48:0 71.9 37.1 55.6 116 175 98.4 148
Properties
Mm/Qb
Mny/nj,:
i^tiMnx kip-n
kip-ft
168 ;
101 s
253
151
143
85.0
215
128
114
67.8
171
102
82.2
48.2
124
72.5
.152:
129
229
194
129 ,
109
194
164
PexiKxUm* klp-in.2
P^(KfLy)W kip-in.2
fmy, in.
10800
3380
2.39
1.79
9520
2980
2.44
1.79
8120
2520
2.49
1.80
6330
1950
2.54
1.80
8440
5820
3.09
1.20
7480
5140
3.14
1.21
fl<;=2.00
LRFD
(|)c = 0.75
Note: Heavy line indicates equal to or greater than 200. •
Dashed line indicates the KL beyond which bare steel strengtti controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-624 DESIGN OF COMPRESSION MEMBERS
Table 4-13 (continued)
Available Strength in
Axial Gompressioh, kips
COMPOSITE Concrete Filled Rectangular HSS
Fy = 46 ksi
fc' = 4 ksi
HSSIOxSx HSSIOxSx
Shape Shape
3/8 '/18 r V4 Va Vz
'deslgniin. 0.349 0.291 0.233 0,174 0.581 0.46S
steel, lb/ft 42.8 36.1 29.2 22.2 S9.3 48.9
fli/Oc « PnlQc M P«IOo « PnlQc i/oPn M «
Design
ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 387 580 347 520 307 460 265." 397 452 . 679 .388 583
6 372 -558 334 500 '295 442 254 381 424 637 363 545
7 367 550 329 493 291 -436 250 376 414 623 354 531
8 361 542 324 486 286 429 246 369 403 606 345 517
9 355 532 318 477.. S81 ^ 421 241 362 391 588 334 501
10 348 521 311 467 275 412 236 354 378 H 569 322 483
11 340 s 510 304 457 268 403 231 346 365 548 310 464
S ••
12 332 497 297 445 262 393 225 337 350 ' 526 297? 445
13 323 484 289 • 434 255 382 218 328 335 • 504 283- 425
14 m 470 281 421 247 371 212 318 319 480 269 404
IS •364 456 272 • 405 239 359 205 307 303 • 456 382 _
s
16 294 441 263 395 2§1 347 198 297 887 432 241"" 362
s
17 426 254 381 223 335 : 190 . 286 271 407 228 342
& 18 410 245 367; 215 322 183 274 255 383 215" 323
19 263 394 235 353 206 309 175 263 239 ' 359 202 303
20 ;252£ 378 225 338 198 296 168 252 223 335 189^ 284
3
• 21 362 216 324 189 283 • 160 240 207 311 176- 265
22 ;23i t 346 206 309 480 270 152 229 192 288 164 246
23 220 330 196 294 171 257 145, 217 ' 177 266 152 228
• t • '
24 209 313 187 280: 163 244 137 . 206 245 140 210
1
25 198 297 177 265 .154 • 231 130- 195 ISO . 225 129." 194
g: ,
26 188 282 167 251 146 219 122-- 184 139 208 119 " 179
••g
27 177 266 158 237 1138 206 115 173 129 193 110/ 166
28 167 251 149 224 129 194 . rOB' 162 120 180 103 • 154
Ui
29 a|7 : ^ 236 140 210 122' 182 101 152 111 168 95.7 144
30 148 221 131 197 114 171 94.6 142 104 157 89.4 134
32 130 195 115 173 99.9 150 83.1 125 .91.5 138 78.6 118
34 172 102 153 88.5 133 73.7 110 81.1 ,122 69.6 105
36 103 154 91.2 137 79.0 118 65.7 98.5 72.3 109 62.1 93.3
38 92.0 138 81.9 123 70.9 106 59.0 88.4 64.9 97.6 55.7 83.8
40 83.0 125 73.9 111 64.0 95.9 53.2 79.8
Properties
M^fUh
Mny/Cfy
(tuMm kip-ft.
^oMny kip-ft
PexiKMnO'
'my in-
(mxlfmy
kip-in/
kip-in;^
£Jc = 2.00 $, = 0.75
103
86.9
154
131
6340
4360
3.19
1.21
88.5
74.8
133
112
5660
3880
3.22
1.21
62.1
111
93.3
4910
3360
3.25
1.21
57.5
48.2
86.4
72.4
4100
2800
3.28
1.21
125
85.6
187
129
6600
2810
2.34
1.53
106!, 159
109
5860
2500
2.39
1.53
Note: Heavy line indicates /a/r^ equal to w greater ttian ,200.
Dashed line Indicates tiie M, beyond wiiicii bare steei strengtii controls.
V
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-211
Fy = 46 ksi
fc = 4 ksi
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
COMPOSITE
HSS10
Shape
HSS10x6x
Vs 5/16 V4 3/16
HSS10x5x
=/8 S/16
filesigni in. 0.349 0.291 0.233 0.174 0.349 0.291
Steel, lb/ft 37.7 31.8 25.8 19.6 35.1 29.7
Design
ASD
PM
LRFD ASD
<t>c/?, Pn/a,
LRFO ASO
ft/O,
LRFD ASD
Pn/Qo
LRFD ASO LRF()
Pn/tic
lib
'fcPn
LRFO
g
I
S
s
i
s,
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
32
34
36
38
40
323 i
302
295
287
278
269
259
248
237
225
214
202
490
178
167
155
144
133
122
112
104
•95.7
88.8
82.5
76.9
71.9
63.2
56.0
484
453
443
431
418
403
388
372 •
355
338
321
303
285
268
250
233
216
200
183
169
155
144
133
124
116
108 .
94.9
84.0
49.9
44.8
40.4
75.0
67,3
60.7
- 288
' 270
264
256
249
240
• 231
222
212
202
191
181
170
^60
149
'-.139
129
119
,110
101
93.0
^86.0
79.7
74.1
69.1
64.6
56.7
50.3
44.8
40.2
36.3
432 •
405
395
385
373
360
347
333
318
303
287
271 .
255
240
224
209
194
179
165
151 .
139
129
120
111 '
104
96.9
85.1
75.4
67.3
60.4
54.5
253
237
231
225
218
2k
202
194
185
176
167
158
148
139
130
121
112
103
•95.0
•87.2
80.4
74.3
68.9
64.1
59.7
55.8
49.1
43.5
38.8
34.8
31.4
379
355
347
337
327
315
303
291
278
264
250
236
222
208
195-
181:,
168
155
142
131
121
111
103
96.1
89.6
83.7
73.6
65.2
58.1
52.2
47.1
216
202
197 i
191
185
179
172
164 i
157
149
141
133 .
125
116
109
93.2
85.8
78.6
72.2
66 5
61.5
57.0
530
49.4
46.2
40.6
32.1
28.8
26.0
324
303
295
287
278
268
257
246 ^
235
223
211
199
187
175
163
151
140
129 ::
118
108 •
99.8
92.3
85.6
79.6
74.2
69.3
60.9
54.0
48.1
43.2
39.0
290 «
264
266
246 •
235 •
224
212 .
200
187
175
162
150 •
f37"
126
116
106 .
96.2
87.6-
80.2
73.6
67.9
62.7
58.2
54.1
50.4
47,1
41.4
36.7
435
397
384
369
353
336
318
300
281
262
243
224
206"
190
174
159
145
132
121
111
102
94,3
87.5
81,3
75.8
70,8
62,3
55,2
259
236
228
219
210
200
190
179
168:-.
156
145"
134.
123'
113' =
103-
92,6
84.0
76.5
70.0
64.3
59.3
54.8
50.8
47.?
44.0
41.2
36.2
32-0
388
354
342
329
315
300
284
268
252
235
218
201
185
169
154
139
126
115
105
96.5
88.9
82.2
76.2
70.9
66.1
61.7
54.3
48.1
Properties
kip-ft
Vl„y kip-ft
85.2
58.1
128'
87.4
73.7
50.0
111
75.2
.6t.6
41.6
92.6
62.6
48.3
32.4
72.6
48.7
76.2
45.4
115
68.2
66 2
39.2
99.5
58.9
fMUfnO* kip-in.^
P^KyLyfno^ kip-in-'
''W.i'i-
5020
2130
2.44
1.54
4530
1910
2,47
1.54
3920
1650
2.49
1.54
3270
1370
2,52
1.54
4320
1350
2.05
1,79
3930
1220
2,07
1.79
! ASO
Qc = 2.00
LRFD
(|ic = 0.75
Note: Heavy line indicates KL/rmy equal to or greater than 200.
Dashed line indicates the KL beyond which bare steel strength controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
4'
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
HssloSfssI Concrete Filled Rectangular HSS
Fy = 46ksi
fc' = 4 ksi
Shape
HSSIOxSx HSS9x7x
Shape
V4 Vl6 V2
(teslgm in. 0.233 0.174 0581 0.465 0.349 0.291
Steel, lb/ft 24.1 18.4 59^ 48.9 37.7 31.8
Pn/Qc « ^cPn p«tac t>cP« ft/Oc (fcfi, p„/ac flr/Hc ^cPn
Design
mo LRFD ASD LRFD ASD. LRFD ASD' LRFD ASD LRFD ASD LRFD
0 226 339 192 288 454 682 393- 590 •328 -492 293 440
6 206 309 174 261 .431 647 374:' 561 312 . 468 279 418
7 199 299 168 253 423 636 367 550 306 459 274 411
8 192 287 162 243 414 623 359 ; 539-.. 300 = 450 268 402
9 483 275 • 155 232 405 609 351 526 293 439 262 393
10 175 262 147 221 395 593 341 t 512 285 428 255 383
11 165 248 139 ^ 209 384 577 33I -497 •277 416 248., 372
12 156 234 131 196 3T2 559 320 481 . 268 402 240" 360
13 146 219 123 184 360 541 309 464 259 389 232 348
«
14 136 205 114 • 171 347 521 297 446 • 250 -374 223 ; 335
1
15 127 190 106 159 334 501 285 428 ' 240 359 214. 322
s
16 117 175 •97.4 146 320 481 273 410 230 • 344 205 308
17 107 161 •89.2 134 306 460 260 391 ; 219 -329 196:r 294
a. ; 18 .k2 147 r'81.3 122 292 439 248 372 209 313 187 280
S ' 19 89.3 134 73.6 110 278 417 235 " 353 ;198 297 177' 266
jg 20 80.6 121 ..66.5 99.7 263- 396 V
W--
334_. 188 282 168 252
. 21 73.1, 110 60.3 90.4 249 375' 210 315 177 ; 266 159 238
S"
22 66.6 99.9 54.9 82.4 235 353 198 298: 167 . 251 1501 224
23 61.0 91.4 50.3 75.4 221 333 187- 281 157 235 140 -211
24 -56.0 84.0 46.2 69.2 208 312 : 176 264 . 147 220 132; 197
1" 25 51.6 77.4 42.5 63.8 194 292 165 248 . ,137 • 206 123 184
26 47.7 71.6 39.3 59.0 182 273 154 • 232 128 192 114 172
27 44.2 66.4 36.5 54 7 169 253 144 217 118 • 178 106 -159
£ 28 4T,1 61.7 33.9 50.9 157 236 134 201 110 -165 98.7 148
29 38.3 57.5 31.6 47.4 146 220 125 188 103 . 154 92.0 138
30 35.8 53.7 29.5 44.3 137 205 117 175 95.9 144 86.0 129
32 31.5 47,2 26.0 38.9 120 180 103 154 84.3 126 75.5 113
34 27.9 41.8 • 23.0 34.5 106 160 . 90.8 137 74.7 112 66.9 100
36 94.9 143 81.0 122 666 99.9 59.7 89.5
38 85.1 128 72.7 109 598 89.7 53.6 80.4
40 76.8 115 65.6 987 540 80.9 48.4 72.5
Properties
M0/ap
<t,i,Mm kip-ft
<j)(,Mny kip-ft
55.3 83.1
49.1
43.6
25,4
65.5
3ai
117 .
97.5
176
147
99.7
82.8
150
124
19.9:
66.1
120
99.4
104
85.9
69.1
57.1
"3880
2540
2.81
1.24
PeAKMW
PeyiKyLyflW
fmyM-
I'mxl^m
'ASD
kip-in.2 3430
1060
2.10
1.80
2860
873
'2.13
1.81
5690
3740
2.68
1,23
5080 ,
3320
2.73
1.24
4330
2840
2.78
1,23
file =2.00
LRFD
<t)c = 0.75
Note: Heavy line indicates KL/ra^ equal to or greater than 200.
Dasiied line.lndicates the KL beyond whicti bare steel strength controls.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-213
Table 4-13 (continued)
Fy =:A6 ksi Available Strength in
fj = 4 ksi Axial Compression, kips
Concrete Filled Rectangular HSS
4"
COMPOSITE
HSS9
HSS9x5x
5/8 Va '/16 V4
fdesigm <n. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 50.8 42.1 32.6 27.6 22.4 17.1
Design
Pn/Oc Pn/Clc Pn/Clc fcPfl PalCio PJSic ^Pn PnfO-c
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 386 580 322 483 267 400 238 357 208 311 176 264
6 351 527 292 439 243 364 216 325 189 • 284 160 240
7 339 510 283 425 235 352 209 314 183 274 154 231
8 326 490 272 409 225 338 201 302 176 • 264 148 222
9 312 468 261 392 ,216 323 193 289 '"iqs 252 142 212
10 2*^7 446 '249 374 205 308 183 275 160 ; 240 135 202
e 11 .^81 422 236 ' 355 ,194 291 . 174 260 151 227 127 ^ 191
u
•s
12 264 397 223 335 183 274 163 245 143 . 214 120 180
10
M: '
13 247 372 210 315 171 257 153 230 134 • 201 112 168
a
i
14 230 346 196 294 159 239 143 214 125 . 187 104 ' 156
3
15 214 321 182 : 274 , 148 221 132 199 116 173 96.4 145
3
16 197 • 296 169 253 136 2g4__ 122 ' 183 107 160 88.8 133
§
17 180 271 155 233 lis" Tis"' 112 168 '97.8 147 81.3 122
£
18 ,165 247 , 142 214 115 • 173 102 154 '89.3 134 74.1 111
S
s
19 149 224 130 195 106 159 93.0 140 , 81.1 122 67.5 100
20 ;i35 202 • 117 177 96.5 145 ^83.9 126 73.1- 110 80.5 90.7
21 122 184 107 160 87.5 131 ^ 76.1 114 ,66.3 99.5 54.8' 82.3
22 111 167 97.1 146 79.7 120 .69.4 104 60.4 907 50.0 75.0
1"
23 '102 153, 88.8 134 72.9 110 • 63.5 95.2 -55.3: 82.9 45:? 68.6
i
24 93.5 141 81,6 123 67.0 101 58.3 87.4 •50.8 , 76.2 42.0 63.0
25 86.2 130 75.2 113 61.7 92.8 53.7 80.6 46.8 70.2 38.f 58.0
1 26 79.7 120 69.5 104 57.1 85.8 • 49.7 74.5 43.3 64,9 35.8' 53.7
27 73.9 111 64.5 96,9 : 52.9 79.5 ; 46.1 69.1 40.1 60,2 33.2 49.8
28 68.7 103 59.9 90.1 49.2 74.0 42.8 64.2 37.3 56,0 30.8 46.3
29 64.1 96.3 55.9 84,0 45.9 69.0 39.9 59.9 34.8 52,2 28.8 43.1
30 59.9 90.0 52.2 78,5 42.9 64;4 ; 37.3 56.0 32.5 48,8 2^9 40.3
32 52.6 79.1 45.9 69.0 37.7 56.6 : 32.8 49.2 28.6 42,9 23.6 35.4
34 • ," 29.0 43.6 25.3 38,0 20.9 31,4
Properties
(|)(,/lf™ kip-ft
^t,M„y kip-ft
PMKxLxfm' kip-in.2
Pey{KyLyfno' kip-in,2
ASD
ac=2.oo
LRFD
(|)c = 0.75
92.8
60.0
140
90.2
4270
1600
1.92
1.63
79.4
51:.S
119 .
77.4
3840
1430
1.97
1.64
64.1,
41.5
96.4
62.4
3280
1220
2.03
1.64
55.7
35.8
83.7
53.8
2960
1100
2.05
1.64
46.7
29.8
70,2
44.7
2600
961
2.08
1.64
36.6
23.S;
55.0
35.0
2160
794
2.10,
1.65
Note; Hea«y line indicates ML/rm/equal to or greater than 200.
Daslied line indicates the KL beyond which bare steel strength controls.
(
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

Wf"
4-214 DESIGN OF COMPRESSION MEMBERS
4'
Table 4-13 (continued)
Available Strength in
Axial Gompression, kips
coMgl'TE Concrete Filled Rectangular HSS
Fy = 46ksi
/b' = 4 ksi
HSS8x6x
snape
Vs V2 3/8 5/16 V4 '/16
fesigm 0.581 0.465 0.349 0.291 0,233 0.174
Steel, lb/ft S0.8 4Z1 32.6 27.6 22.4 17.1
Pn^iic M PnlOc « PnlSl, W fli/ac i/cPn Pal^o <l>cPfl p«iac ^ePn
Design
ASO LRFD ASO LRFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD
0 3f6" 580" 327 491 272 408 243 364 213 319 181 271
6 360 542 305 458 .254 381 227 340 199 298 169 253
7 352 529 298 446 248 372 221 332 194 291 164 247
8 342 514 289 433 241 361 215 323 188 283 160 240
9 .331 498 280 419 233 350 208 313 182 274 155 232
10 320 480 269 404 225 337 201 302 176 264 149 223
52*
11 307 462 259 388 216, 324 193 290 "169 254 143 214
12 294 442 247"" '37T"' 207 310 185 278 162 243 137 205
.S
13 281 422 236 354 •197 296 177 265 155 • 232 130 195
14 267 401 225 337 187 281 168 252 147 -220 124 185
15 253 380 213 • 320 . 177 266 159 239 139 208 117 -175
• £
16 238 358 • 202 303 •167 • 251 150 225 131 197 110" 165
17 224 -337 190 285 157 236 141 212 •123 185 103 155
18 210 315 178" 268 . 147 221 , 132 198 115 173 96.4 145
19 196 294 167 251 '137 206 , 123 185 107 161 89.7 135
20 ,182 273 156 234 1?7 191 114 172 99.8 150 83.1 125
21 168 253 144 -217 118 177 106 159 -92.4 139 76.8 115
S"
22 155 • 233 134 201 109 163 97.8 147 85.1 128 70.6 106
23 142 214 123 185 100 • 150 •89.6 134 78.0 117 64.6 96.9
24 1?1 196 113 170 92.1 138 82.3 123 71.7 107 59.3 89.0
g 25 ,120 181 104 157 84.9 128 75.9 114 ,'66.0 99.1 54.7 82.0
26 111 167 96.4 145 78.5 118 to.i 105 61.1 91.6 50.5 75.8
27 103 155 89.4 134 72.8 109 65.0 97.6 56.6 84.9 46.9 70.3
28 96.0 144 83.1 125 67.6 102 60.5 90.7 ks 79.0 43.6
65,4
lU
29 89.5 135 77.5 116 63.1 94.8 56.4 84.6 49.1 73.6 4a6 60.9
30 83.7 126 72.4 109 58.9 88.6 52.7 79 0 45.9 68.8 38.0 56.9
32 73.5 111 63.6 95.7 , 51.8 77.8 46.3 69.5 , 40.3 60.5 33.4 50,1
34 65.1 97.9 56.4 84.7 45.9 69.0 41.0 61.5 35.7 53.6 29.6 44.3
36 58.1 87,3 50.3 75.6 40.9 61.5 36.6 54.9 31.8 47.8 26.4 39.5
38 45.1 67,8
, ,30.7
55.2 32.8 49.3 ,28.6 42.9 23.7 35.5
40 -29.6 44.5 25.8 38.7 21.4 32.0
Properties
M„/Q» kip-ft 87.0: 131 • 74.5 112 i 60.0 90.2 52.0 78.1 43.4 65.3 34 2 51.4
MnylQt, (|)(,M„y kip-ft 7&.5 106 60.2 90.4 • 48.6 73.0 41.9 63.0 35 0 52.6 27 4 41.2
P [KDlW klp-in.2 3650 3270 2790 2520 2200 1830
PeAKvLvm* kip-in.2 2260 2020 1730 1560 1360 . 1120
rmy, in-
2.27 2.32 2.38 2.40 2.43 2.46
^mx^^my
1.27 1.27 1.27 1.27 1.27 1.28
ASO
r~
LRFD Note: Heavy line indicates equal to or greater than 200.
Dashed line indicates the fOL Deyond which Dare sieei strength controls.
ij>c = 0.75
.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-215
Fy = 46 ksi
fc' = 4ksi
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
4-
COMPOSITE
HSS8
HSS8x4x
=/6 Va 5/16 'A Vl6
fdesisn.'"-
0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 42.3 35.2 27.5 23.3 19.0 14.5
Design
^cPa p„iac P„/Clc ^cPn Pn/Qc •ttfli P„l£lc <^cPn
Design
ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 322 484 . 268 403 , 2150^ 323 191" 286 166 249 139 209
6 277- 416 232 349 .185' 278 165 247. 143 215 120 180
7 262 > 393 221 ^ 332 176 264 ' 157 235 • 136 204 114 171
8 246' 369 208 ' 313 ' l65'-' 248 •147 221 128 ' 192 107 161
9 "228 343 194' • 292 T54"" 23^" 138 206 120 ' 180 100 150
10 211 317 ifeo' 271 216 127 191 111 • 166 92.7 139
g
CO
11 193 ' 290 166 249 133 200 •117" 175 102 153 85.2 128
1 12 175' 263 : 227 122 183 107 160 ; 93.0 139 77.6 116
13 157 236 :i37,: 206 111 167 ,96.3 144 .84.1 126 70,2 105
S 14 140 , 211 185 fioo 151 •"se"? 'Tso' •75.S 113 62.9 94.3
s 15 124 186 110"' 165 \90.i 135 78.0 117 67.2 101 55.9 83.9
1
16 109 163 145 120 ;69,6 105 . 59.2 88.8 49.3 73.9
£ 17 96.4 145 ; b.fe 129 71.0 107 61,7 92.7 ,52.4 78.7 43.'6 65.5
18 S5.9 129 115 , 63.3 9^1 55,0 82.7 46.8 70.2 38.9 58.4
19 77.1 116 68.5 103 . 85.4 49.4 74.2 42.0 63.0 34.9 52.4
1
20 69.6 105 61.9 93.0 V:5i|; 77.1 44,6 67.0 37.9 56.8 31.5 47.3
21 63.1 94.9 56.1' 84.3 46,5 69.9 40.4 60.8
i . ^
UA:
51.5 28.6 42.9
g 22 57.5 86.5 76.8 42.4 63.7 36.8 55.4 .31,3 47.0 26;i 39.1
•1
is
23 52,6 79.1 70.3 -38,8 58.3 33.7 50.7 28.6 43.0 23.8 35.8
•1
is
24 48.3 72.7 43.0 64.6 35,6 53.5 31.0 46.5 26.3 39.5 21.9 32.8
25 44.6 67.0 89.6 59.5 32.8 49.3 28.5 42.9 24.2 36.4 20.2 30.3 UJ
26
27
28
36.6 55.0 30.3 45.6 26.4
24.5
39.6
36.8
22,4
20,8
33.6
31.2
18.7
17.3
16.1
28.0
25.9
24.1
UJ
26
27
28
26.4
24.5
39.6
36.8
22,4
20,8
33.6
31.2
18.7
17.3
16.1
28.0
25.9
24.1
UJ
26
27
28
18.7
17.3
16.1
28.0
25.9
24.1
UJ
26
27
28
Properties
Ma/ilb
M^ISlt
:(tif,Mm kip-ft
(pfj/Wny kip-ft
65,5
39.1
98.4
58.7
56.8
33.9
85.4
51.0
46.3
27.6
69.6
41.5
40.2
24.0
60.5
36.1
33.9
20,f
50.9
30.2
26.7 40.1
23.6
kip-itl.?
Pv[KyLyflW kip-in.2
fmy il-
''mitmy
2570
800
1.51
1.79
2330
727
1.56
1.79
2010
628
1.61
1.79
1820
568
1.63
1.79
1610
498
1.66
1.80
1350
414
1.69
1.81
0^=2.00
LRFD
(tic = 0.75
Note: Heavy line indicates KL/r^y equal to or greater than 200.
Dastied line indicates the KL beyond wtiich bare steel strengtti controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
4"
COMPOSITE
HSS7
Table 4-13 (continued)
Avaiiabie Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy = 46ksi
U = 4 ksl
HSS7x5x
snape
Va Ve S/l6 V4 Vie
fiteslgihin. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 35.2 27.5 23.3 19^0 145 9.86
PaHi^ Pn/ila Pn/fto Pn/Clc <l>cPn PJCio
Design
ASO LRFD ASD LRFD -ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 268 403 220 330 196 294 I7i ' 256 '144 216 117 ; 175
6 244 366 200 299 178 267 • 155 233 181 : 196 105 158
7 236 354 193 289 172 257 150 225 126 189 102 152
8 226 340 185 277 .165 247 J44 . 216 121 . 181 ::97.3 146
9 216 325 176. 264 fS7 236 137 . 206 115 173 92.7 139
10 206 309 167 251 149 224 131 196, 110 164 87.7 132
g 11 195 292 158 237 141 212 123, 185 103 155 82 6 124
12 183 275 148 222 : 133 199 '116 174 .97.1 146 77.3 116
13 171 -257 138 208 124 186 1Q8 163 , 90.7 136 720 108
S 14 159 240 : -129 193 115 173 101 151 ,84.2 126 66.6 99.9
s.
15 148 222 l79" 107 160 93.3 140 77,8 117 61.3 91.9
16 136 204 110 166 97.9 147 85.9 129 71.5 107 56.1 84.1
17 125 187 101 153 89.6 134 78.6 118 65.3 97.9 51.0 76.5
. r* 18 113 171 93.0 140 • 81.5 122 71.5 107 59.3 89.0 A&'i 69.2
•5 19 103 154 84.8 127 73.5 110 64.6 97.0 80.2 41 .-4 62.1
20 92.7 139 76.8 115 66.4 99.9 58.3 87.5 ,48.3 72.4 37.4 56.0
21 84.1 126 69.6 105 60.3 90.6 52.9 79.4 43.8 65.7 33.9 50.8
£ 22 76.6 115 63.4 95.4 54.9 82.5 48.2 72.3 39.9 59.8 30.9 46.3
23 70.1 105 58.0 87.2 50.2 75.5- 44.1 66.2 36.5 54.7 28.3 42.4
i
24 64.4 96,8 53.3 80.1 46.1 69.4 40.5 60.8 33.5 50.3 25s9 38.9
s
V.
25 59.3 89.2 49.1 73.8 42.5 63.9 37.3 56.0 30.9 46.3 23.9 35.9
E 28 54.9 82.5 45.4 68.3 39.3 59.1 34.5 51.8 28.6 42.8 22.1 33.2
27 50.9 76.5 42.1 63.3 36.5 54.8 32.0 48.0 26.5 39.7 20.5 30.8
28 47.3 71.1 39.2 58.9 33.9 51.0 29.8 44.6 24.6 36.9 19.1 28.6
29 44.1 66.3 ',36.5 54.9 31.6 47.5 27.7 41.6 23.0 34.4 17.8 26.7
30 '41.2 61.9 34.1 51.3 29 5 44.4 .25.9 38.9 21.5 32.2 16.6 24.9
32 .,30.0 45.1 260 39.0 22:8 34.2 18.9 28.3 1it.fi 21.9
34 16.7 25.1 12.9 19.4
Properties
ll>/! kip-ft 53.0 79.7 43.1 64.8 37.4 56.3 31.5 47.3 24.8 37.2 26.5
mi^ii
kip-ft . 41.4 62.3 33.5 50.4 29.2 43.9 24.4 36.7 19.2 28.8 13,5 20.2
PMUflW kip-in.2 1960 1690 1530 1350 . 1120 , 872
kip-in.2 1120 967 872 766 634 491
fmy, in.
kip-in.2
1.91 1.97 1.99 2.02 2.05 2.07
fntxifmy
1.32 1.32 1.32 1.33 1.33
1.33
ASD LRFD ' Shape is noncompact for compression with Fy ~ 46 ksi.' Shape is' noneompact for flexure with fy=46 la-
Note; Heavy, line inaicaies Ai./rmi.equai ro ui grcaier man cuu.
Dashed line indicates the KL beyond wtiich bare steel strength controls.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-217
Fy = 46 ksi
fc' = 4ksi
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
4-
COMPOSITE
HSS7
HSS7x4x
V2 Va ®/l6 V4 '/16 Ve'.'
fdeslgm in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 31.8 24.9 21.2 17.3 13.3 9.01
Pn/^c P.ICic Pn/iic i/cPn P„/Clc 1'oPn p„/nc ^cP, Pn'Clc
Design
ASO LRFD ,ASD LRFD ASD.. LRFD Asn LRFD ASD LRFD ASD LRFD
0 243 365 193 290 172 258 149 223 125 187 99.9 150
6 209 314 366 249 1^8 222 1?9 193 ,108 ' 161 85.7 128
7 198 298 157 236 140 210, 122 183 302 153 81,0 122
8 186 280 148, 222 1^2 ' 198 , 115'. 172 ,95.9 144 76.0 114
9 174 261 •138 208 . 123 184 107 161 •89.4 134 70,7 106
10 itPO . 241 129- 193 -114 170 99.1 149 82.7. 124 65.2 97.7
E,
11 221 119 178 104 156 90,9 136 75.9 114 59,6 89.4
& 12 201 108 163 "94.7 142 82,8' 124 69.0 104 54.0 81,0
13 181 98.4 148 . 85.7 129 74.8 112 62.3 93.5 48 5 72.8
14 108 162 88,6 133 77.5 116 67,0 100 55.8 83.6 43.2 64,9
15 95.6 144 ;79.2 119' 69.5 104 ^59.5 89.3 49.5 74,2 38.1 57.2
16 ;84.j 126 70.0 105 61,8 92,9: '52,4 78.6 43.5 65.3 33.5 50.3
17 74.5 112 62.0 93.2 54.8 82.3 46.4 69,6 38.6 57.9 29.7' 44.5
i 18 66.4 99.9 55.3 83,2 48.9 73,4 41,4 62,1 • '34.4 51,6 26.5; 39.7
s

19 59.6 89.6 49.7 74.6 43.8 65.9 37,2' 55 8 30.9 46.3 23 8 35,7
i
20 53.8 80.9 44.8 67.4 39.6 59.5 33,5 50,3 27.9 41.8 21,5-', 32,2
•5. 21 73.4
w.? 61,1 •35.9 53.9 30,4 45,6 25.3 37.9 19.5- 29,2
O)
g
22 44.5 66.8 37.0 55,7 32.7 49.2 27.7 41,6 .23.0 34.5 17.7 26,6
23 40.7 61,2 33.9 50.9 29.9 45.0 25,4 38,0 31,6 162 24,3
24 37.4 56.2 31.1 46,8 27.5 41.3. 23,3 34,9 19.4 29,0 14.9 22,3
25 34.4 51,8 28,7 43,1 25.3 38.1 21.5 32 2 J7.S 26,8 13.7 20,6
28 26.5 39;9 23.4 35.2 19.8 29,8 16,5 24.7 12.7 19.0
27 18.4 27,6 15.3 22.9 11.8 17,7
28 1019 16,4
1 '
Properties
i^bMnx kip-ft 45.3 68.1 37.0 55.7 32.5 48.9 27.3 41,0 21.6 32.5 154 23,2
iit,M„f kip-ft 29.9 44.9 24,5 36,8 21.4 32.2 18.0 27,0 i4.t 21,2 9 9a .14.9
PMurno' kip-in.= 1620 1410 1280 1130 . 946 735
P^Kylym' kip-in.2 637 553 501 440 366 282
1.53 1,58 1.61 1.64 1.66 1.69
''mg/rmv 1.59 1.60 1.60 1.60 1.61 1.61
nc=2.oo
LRFD
(|)C = 0.75
= Shape is noncompact for compression with 46 l«i. ' Shape is noncompact for flexure with = 46 ksi.
Note: Heavy line indicates KL/r„y equal to or greater than 200.
Dashed line indicates the KL beyond which bare steel strength controls.
AMERICAN INSTITUTE OF STEEI:, CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS6
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy = 46 ksi
fc' = 4ksi
HSS6x5x
anape
Vz % V16 V4 V16 Va
ftiesigni in- 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 31.8 24.9 21.2 17.3 13.3 9,01
p„/a„ Pnl^c <|)(!P« P„IQc Pnlilo i/cPa Pnlilc ^cPn
uesigti
ASD LRFD ASD LRFD ASD LRFD ASD
0 243 365 137 295.; ^75 X 263 "" 152 228 1"28 • 192 103 155
1 242 364 196 g 294 475 262 152 228 128 192 103 155
2 S40 ' 361 155 i 292 .! ilV3 , 260 1 151 228 .127 , 190 102 153
3 i237 i 356 192 i 288 171' • 256 149 . 223 125 187 101 151
4 2S2 -1 349 i ^ 88 282 1 167 251 146' 219 123 184 98,6 148
5 226 340 : 183 1 275 245 142 213 120 179 96,1 144
6 220 330 ih'l 267 ! lb 238 138 207 116 • 174 93,1 140
g
7 212 318 i . .i 257 1 229 1^3 200 112 168 89,6 134
.S2
K
1
8 203 1 305 164 246 1 1'47 220 128 . 192 107 161 85,8 129
«a
1 . 9 194 1 291 156 : 235 140, 210 122 183 102 153 81,7 122
R
10 184 ! 276 148 222 ,133:;; 199 118 174 97.0 146 77.3 116
11 ii?4,i 261 Tito: ' 210 , 125'; 188 109 164 , Si .5 137
72« 109
12 163 245 ' -131 196 1 117; • 176 103 154 85.8 129 68,0 102
L 13 152 228 ! T22"" Tari 109 164 ^5.7 144 80.1 120 63i3 94.9
s 14 212 >i 113 170 101; 152 b.9 133 74.3 111 58:5 87.7
i
j 15 130 196. i 105 158 93.6 140 .82.0J 123 68.5 103 53.8 80.6
3
16 119 179 96.7 145 ' '85.8 129 75.31 113 62.9 94.3 49:1 73.7
S"
IT.
109" 164 ,: 887 133 117 68.81 103 57.3 86.0 44:6 67.0
18 •98.9 149 80.9 122 71.0 107 62.5 93.8 52.0 78.0 403 60,5
€ IS 89.1 134 73 3 110- ""64'.2 "96.6" 56.3 84.5 46.8 70,3 36.^ 54.3
I
20 ' ;,;;8d.4 121 B6.2 99.5 58.0 87.2: 50.8 76.3 42.3 63,4 32.-7 49,0
a
21 72.9 110 60.0 90.2 52.7 79.1 46.1 69.2 38.3 57,5 29;6 44,4
••g
22 66.4 99.9 54.7 82.2 48.0 72.1 42.0 63.0 34.9 52,4 27.0 40,5
£
[ ' 23 60,8 91.4 50.0 75.2 43.9: 66.0' 3,8.4 57.7 32.0 47,9 24.7 37.0
UJ 1
24 55.8 83.9 46.0 69.1 40.3 60,6 35.3 53,0 29.4 44,0 22,7 34,0
25 51.5 77.3 42.4 63.7 37.2 55.8 -32.5 48.8 27.1 40,6 20.9 31.4
26 K47.6 71.5 39.2 58.9 34.3 51.6 30.1 45,1 25.0 37,5 19.3 29.0
27 '44.1 66.3 36.3 54.6 31.9 47.9 27.9 41.8 23.2 34.8 17,9 26.9
28 -'41.0 61.6 33.8 50,8 29.6 44,5 25.9 38.9 21.6 32 3 16.7 25,0
29 : m2 57.5 31.5 47.3 27.6 41.5 24.2 36,3! 20.1 30.2 15.5 23,3
30 :35.7 53.7 29.4 44,2 25.8 38.8 22.6 33,9 18.8 28.2 14.5 21,8
Properties
Mw/Slsj M„y kip-ft 41.4 62.2 33.8 50.8 29.5' 44.3 24.8 37,3 19.6 29.5 13.9 21,0
Mhy/^ M„y kip-ft 36.4 54.7 29.6 44.5 25.8 38.7 21.7, 32.6 25.7 12.1,
18.2
PMUf/W kip-in.^ 1310 1130 1030 905 755 584
PeAKyLym" kip-in.^ 968 838 758 668 555 429
rmy, in-
1.87 1.92 ,
1.95 1.98 2.01 2.03
frfix^fwy 1.16 1.16 1.17 1.18 1.17 1.17
ASD 1 LRFD 1 Note: Dashed line indicates the KL beyond wlilch bare steel strength controls.
Jl<;=2.00 = 0.75
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-219
Fy = 46 ksi
U = 4 ksi
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
COMPOSITE
HSS6
HSS6x4x
V2 5/16 V4 3/16 Va
'desijin in- 0.465 0.349 0.291 0,233 0.174 0.116
Steel, lb/ft 28.4 22.4 19.1 15.6 12.0 8.16
Design
p„iac M Pa/Qc fePfl Pn/Qc ifc/?. P„/Qc ^Pn Pn/^c p„iaa fcfl,
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 217 >.-326 172 258 152 229 '198 aiotv 166 88.2 132
1 216 325 171. 256 152 228 132>; 197 <110 , 165 87.8 132
2 213 321 169 . 253 150 225 195 :109 ( 163 86.7 130
3 209 314 165- 248 ' ,147 220 191 • 160 84.8 127
4 203 305 160 240 142 214 185 m-x 155 82.3 123
5 ,195 293 154 231 .137 • 206 178 149 79.2 119
6 186 279 147 221 131 196 ii4 , 170 i95.1; 143 75.5- 113
s.
7 176 264 . 140 210 . 124 186 108 ,, 161 135 71A 107
<0
JC 6 165 248 132 198 116 174 101 152 84.6 127 86.& 100
9 "153 230 123 185 108 : 162 94.1 141 , 78.8; 118 62.1 93.2
s. !
10 141 212 114 171 99.7 150 86.9 130 72.8 109 57.| 85.8
11 129 194 105 157 91.2 137 79.6 119 66.7 100 52.2 78.4
12 117 176 95.3 143 •"82.9 125"" hs 108 : 60.6 91.0 47.$, 70.9
13 ,105 158 m 129 75.2 113 65.1 97.7 •54.6 82.0 42.4 63.7
14 140 77.2 116 67.7 102 58> 87.2 73.2 37.8; 56.6
15 82.3 124 -68.7 103 60.5 91 ;0 .Jlv5 _77.3 64.9 33.2 49.9
16 ii.% 109 60.5 91.0 53.5 80.5 fm 68.3 •38.0 . 57.0 29.2 43.8
17 64.0 96.2 53.6 80,6 47.4' 71.3 60.5 33.7 50.5 25.9 38.8
18 p.r 85.9 47.8 71.9 42.3 63.6 35.9 54.0. 30.0 45.1 23.1" 34.6
19 .51.3 ?7.1 4^9 64.5 38.0 57.1 32.2 48.4 27.0 40.4 20.7 31.1
20 46.3 69.5 38.7 58.2 , 34.3 51.5 43.7 24.3 36.5 18.7: 28.0
21 ' 42.0 63:1 35.1 52,8 31.1 46.7 • 26.4 39.7 22.r 33.1 17.0 25.4
22 38.2 57.5 32.0 48,1 28.3 42.6 , 24:0 36.1 .20.ti 30.2 15.5 23.2
23 35.0 52.6 29.3 44.0 25.9 38.9 22.0 33,1 18.4 27.6 14.1 21.2
24 32.1 48.3 . 26.9 40.4 23.8 35.8 20.2 30.4 16.9 25.3 13.0 19.5
25 29.6 44.5 ^4.8 37.3 21.9 33.0 28,0 156 23.4 12.0 17.9
26 20.3 30.5 25,9 : 14.4 21.6 11.1 16.6
27 13.4 20.0 10.3 15.4
Properties
-Wffir/Q(, CfbMm kip-ft- 35.0 52,6 29.0 43.6 25.4 38.2 32.1 16.9 25.5 12,1 18.2
.it)i,M„y kip-ft 26.1. 39.2 32.3 18.8; 28.2 15.8i 23.8 ;JI2.5 18.8 8.85 , 13.3
kip-in.^ 1070 935 849 752 634 489
kip-in.' 546 475 433 380 320 246
fmy.in- 1.50 1.55 1.58 1.61 1.63 1.66
Wfmy

1.40 1.40 1.40 1.41 1.41 1.41
ASO LRFD Note; Heavy line indicates /GL/rmy equal to or greater ttian 200.
Daslied line indicates tfie ifX. beyond which bare steel strength controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
4'
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
COMPOI'TE Concrete Filled Rectangular HSS
Fy = 46 ksi
fc' = 4 ksi
Shape
HSS6x3x
V2 =/l6 V4 Vl6 Va
0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
Design
Pfl/n,
ASD LRFD ASD
P«IClc
LRFD ASO
P„l£lo
LRFD ASD
Pnlac
LRFD ASD
^Pn Pnlili
LRFD ASD LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
191
190
186
179
169
158
iks'
131
117
102
88.4
75.2
63.2
53.8
46.4
40.4
35.5
31.5
28,1
288-
286
279"-
268
254
237
218
197 ,
176
154
133
113
95.0
80.9
69.8
60.8
53.4
47.3
42.2
151
150
147
142
135
126
^07
96.0
85.1
64.1
' U.4
46.3
39.9
"34.8
3Q.6
27.1
'2A2
21.7
227
225-
221
213
203
190
176;
160
144
128
112
9B.4
81.7
69.6
60.0
52.3
46.0.
40.7
36.3
32.6
130
129 '
126
m?'
116
109
101
S2.2
83.2
'74.1:
65.0
56.3
48.0
40.9
35.3
30.7
27.0
23.9-
21.4
19.2
195
193
189
182"
174
163
151
139
125
111
97.8
84.7
72.2
61.5
53.0
46.2
40 6
36.0
32.1
28.8
112
111
109
105
•99.8
93.5
86.3
78.5
70.4
•"6T.4
55.2
48.1
41.4
35.3
30.4
26.5
23.3
20.6
18.4
16.5
14.9
168
167
163
157
150
140
129
118,
106
"93.8'
82.9
72.3
62.3
53.1
45.7
39.9
35.0
31.0
27.7
24.8
22.4
-92.8
92.2
90.2
87.1
82.8
77.7
71.9
65.5
58.9
52.2
45.6'
39.3';
33.3;
'28.4;
24.4 j
21.3
18.7;
I6.61
14.8
13.3
12.0,
139
138
135
131
124
117
108
98.3
88.3
78.3
68.4
58.9
49.9
42.5
36.7
31,9
28.1
24.9
22.2
19.9
18.0
73.1
72.6
71.0
68.5.
65.1;
61.0
56.3
51.2
45.9
40.6
35.4-
30.4
25.7'
21.9;
18.8
16.4.,,
14.4
12.8
11.4
10.2
9.23
8.38
110
109
107
103
97.6
91.5
84.4
76.8
68.9
60,9
53.0
45.5
38.5
32.8
28,3
24.6
21,6
19.2
17.1
15.3
13.9
12,6
Properties
Mm/Clb
Mny/Qt
^bMnx kip-ft
tl,t,M„, l(ip-ft
28.8
17.1
43.3.
25,7
23,9
14.3
36.0
21.5
21.1
12.6
31,7
18,9
17.9
10.6
26.9
16.0
14.2
8.45
21,4
12,7
10,2
6,00
15,4
9,0
Pey{K,Lym'
'my, in,
^mxl^my
l<ip-in,2
kip-in,^
833
260
1.12
1.79
736
230
1.17
1.79
673
210
1.19
1.79
597
186
1.22
1.79
507
157
1.25
1.80
395
121
1.27
1.81
Q<;=2.00
LRFD
(t)c = 0,75
Note; Heavy line indicates equal to or greatei- than 200,
Dashed line indicates the /(/; beyond which bare steel strength controls.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-221
Fy = 46 ksi
U = 4 ksi
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
COMPOSITE
HSS5
HSS5x4x
Va 3/8 5/16 V4 Vie VB
FIE «i9n. in. 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
Pesign
PalCio P«IO.c Pnl^o ^Pn /5,/a, i>cPn PN/OC ^cPn P„/Qa <t>C«l
Pesign
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 191 288 151 227 133 200 '115 173 96.2 144 76.5 115
1 .191 286 150- 226 133 199 115 172 • 95.8 144 76.2 114
2 188 283 148 223- 131 196 113 170 94.6 142 75.2 113
3 184 276 145 218 128 192 111 167 -92.6 139 73.5 110
4 .178, 268 141 212 . 124 186 108.- 162 -89.9 135 71.3 107
5 171 257 J36 204- 119 179 . : •104- 155 86.5 130 68.5 103
g
6 '163 244 -130 195 114 170 . 98.8. 148 82.5 124 65.3- 97.9
.83
' X 7 153 230 123 185 107 161 93.4 140 78.1 117 61.7 92.5
W
8 143 215 t?5 173 : 100 150 87.6 131 73.2 110 57.7" 86.6
W
9 132 199 . -107 162 93.1 140 ^1.4 122 68.1' 102 53.6 80.3
s
10 122- 183 99.3 149 "85.7 T29"" 75.0 112 62.8 94.2 49.3 73.9
11 110 166 90.9 137 78.6 118 68.5 103 57.4 86.2 44.9 67.4
§
12 99.5 150 124 71,6 108 62.0 93.0 52.T 78.1 40.6' 60.9
JTi 13 ~88.8 133 74.3 112 64.6 97.2 . 55.6 83.4 46.8 70.2 36.3 54.5
33
14 78.6 118 •66.4 99.7 57.9 87.0 49.5 74.2 41.7 62.6 32.3"^ 48.4
15 68.7 103 58.7 88.3 51,4 77.3 '737' "65." 36.8 55.2 28.3 42.5
g.
16 60.4 90.8 51.6 77.6 45.3 68.0 ?8.6 58.0 32.4 48.5 24.9'- 37.4
17 53 b 80.4 45.7 68.7 40.1 60.3 34.2 51.4 28.7 43.0 22.1-' 33.1
1
18 "47.7 71 7 40 8 61.3 35.8 53.7 30.5 45.8 25.6 38.4 19.7 29.5
1
19 42.8 64.4 36.6 55.0 32.1 48.2 27.4- 41.1 22:9' 34,4
17-7;'
26.5
f
20 38.7 58.1: 33.0 49.7 .?9.0 43.5 ,24.7 37.1 20.7 31.1 15.9- 23.9
i 21 52.7 30.0 45.0 26.3 39.5 22.4 33.7 18.8 28.2 14.5- 21.7
22 31.9 48.0 27.3 41.0 B.9 36.0 20.4 30.7 17.1 25.7 13.2 19.8
23 29.2 43.9 25.0 37.5 21.9 32.9 18.7 28.1 15.7 23.5 12.1 18,1
24 26.8 40.4 22.9 34.5 20.1 30.2 17.2 25.8 14.4 21.6 11.1 16.6
25
26
27
31.8 18.5 27.9 15.8
14.6
23.8
22.0
13.3
12.3
19.9
18.4
10.2
9.43
8.75
15,3
14.1
13,1
25
26
27
15.8
14.6
23.8
22.0
13.3
12.3
19.9
18.4
10.2
9.43
8.75
15,3
14.1
13,1
25
26
27
10.2
9.43
8.75
15,3
14.1
13,1
Properties
^njctCiij-
MnylQt,
kip-ft
i^bMn/ kip-ft
26.0
22.2
39.1
33;3
21:7
18.4
32.6
27.7
19.0
16.2
28.6
24.3
16.1
13.7
24.2
20.5
12.8 19.2
16.3
9.17
7.73
13.8
11.6
Pex(Kxixmo' kip-in.=
PeylKyLy'iW kip-in.2
/•m/.in-
fmxlfniy
658
456
1.46
1.20
579
400
1.52
1.20
527 ^
363
1.54
1.20
468
322
1.57
1.21
397
272
1.60
1.21
306
209
1.62
1.21
ASO
n<;=2.00
LRFD
(t)c = 0.75
Note: Heavy line indicates Kt/fmy equal to or greater tlian 200.
Dashed line indicates the n. beyond whicli bare steel strength controls.
AMERICAN INSTiTuTE OF. STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
4'
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
coUIII'TE Concrete Filled Rectangular HSS
Fy = 46 ksi
fc' = 4 ksi
HSS5x3x
anape
V2 % 5/16 V4 3/16 Va
fdeslsn.in. 0.465 0.349 0.291 0.233 0.174 0.116
SteeMb/tt 21.6 17.3 14.8 12.2 9.42 6.46
Pn'Cio ifoPn PnlCic PnlQc PnlOc <t>cP« Pn'l^ic M
uesign
ASD LRFD ASD LRFD m LRFD ASD LRFD ASD LRFD ASD LRFD
0 166 -249 132 198 113 170 97.0 145 80.3,: 120 63.1 94.7
1 164 247 131 196 . 112 169 96.2 144 7k7 120 62.7 94,0
2 160 ' 241 128 192 110 165 94. t 141 78.0'. 117 61.3 91.9
3 154 • 232 123 185 159 90.7? 136 75.2 113 59.1 88.6
4 146 219 .117 176 101 152 86.0 129 7T.4" 107 56,1 84.1
5 135 203 109 164 94.6 142 '80.4 ' 121 '66.9 • 100 52.5 78.7
&
6 124- 186 101 151 87.5 132 74.1 111 ,61.7- 92.6 48.4 72.6
i 111 167 91.4 137 79.8 120 67.3 101 B6.1 • 84.2 43.9 65.9
8 98.4 148 81.7 123 ^ 71.8 108 60.1 90.2 50.3; 75.4 39 3 59,0
1 9 85:7 129 72.0 108 95.7 53.3 80.2 44.4,: 66.6 34.7 52.0
s
iW
10 73.4 110 62.5 93.9 55.7 83.7 46.8 70.4 38.7 58.0 301 45,2
u
11 61.7 92.7 53.4 80.3 48.0. 72.1 40.6 61.0 33.2 49.8 25 8 36,7
12 51.8 77.9 ,45.0, 67.7 40.7 61.1 34.6 . 52.0 28.0 42.0 21.8 32.7
§ 13 ka 66.4 38.4 57.7 34.7 52.1 29.5 44.3 23.9 35.8 185 27,8
s
3; 14 38.1 57.2 33 J 49.7 29.9 44.9 25.4 38.2 20.6 30.9 16.0 24.0
15 3^2 49.9 28:8 43.3 26.0 39.1 22.1 33.3 17.9; 26.9 139 20.9
£ 16 29.2 43.8 25;3 38.1 22.9 34.4 19.5 29.2 15.8 23.6 122 18.4
g
17 25.8 38.8 22.4 33.7 20.3 30.5 17.2 25.9 14.0 20.9 108 16.3
•s:
18 23.0 34.6 20.0 30.1 18.1 27.2 15.4 23.1 12.5 18.7 9.68 14.5
19 18.0 27.0 16.2 24.4 13.8 20.7 11.2 : 16.8 868 13.0
20 10.1 15.1 784 11.6
Properties
kip-ft 20.9 31.5 17.7 26.5 15.6 23.5 13.3 -19.9 10.6 16.0 7.65^ 11,5
iH^/Qfi; <t>i M„y kip-ft 14.3 21.5 12.1 18.2 10.7 16.1 9.11 13.7 7.26 10.9 5.19 7,80
kip-in.® 503 450 413 367 313 245
PMKMVW' klp-ln,2 214 192 176 157 132 103
r„y,In. 1.09 1.14 1.17 1.19 1.22 1.25
^mt^my
1.53 1.53 1.53 1.53 1.54 1.54
ASD LRFD Note: Heavy line indicates tt/rmy equal to or greater tlian 200.
£2^=2.00 = 0.75
Dashed line indicates the KL beyond whien Dare steel strength controls.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-223
Fy = 46ksi
fc' = 4 ksi
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
4"
COMPOSITE
HSS5-HSS4
Shape
HSS5x2V2X
V4 Vn Va
HSS4x3x
5/16 VA
0.233 0.174 0.116 0.349 0.291 0.233
Steel, lb/ft 11.4 8.78 6.03 14.7 12.7 10.5
Design
p„/ac
ASO
Pn'Oc
LRFD ASD
pja.
LRFD .ASD
P„iac
LRFD ASD
P„/Qc
LRFD ASD
P„ISic
LRFD ASD
^Pn
LRFD
1
Z
3
4
5
6
7
8
9
10
11.
12
13
14
15
16
17
18
19
87.8;
86.9
84.1
79.8
74.0"
67.8
61.0:
53.8
46.5
39:4
32.7
27.0
22.7!
19.4
16,7i
14.5
•12,8
132
•130
126
120
......
102
91.7.
80.8
69.8
59.2
49.2
40.6
34.1
29.1
25.1
21.9
19.2
72.4
71.7
69.5
,6^.0
61.3
55.9
49.9
43.6
37.3
31.3
"26":2"
21.6,
18.2
15.5'
13.4
11.6
10.2
9.06
109
107
104 ,
98,9.
92.0
83.8
74.8
65.4
56.0
47.0
J£z
32.5
27.3
23.3
20.1
17:5
15.4
13.6
•56.3
.55.7
54.0
51.3
47.7
43.5
38.9
•.34.0'
-29.1
24.4
20.1
16.6
13.9
111.9 •
10.2
8.91
7.84
6.94
84.5
83.6
81.1
77.0
71.6
65.3
58.3
51.0
43.7
36.7
30.1
24.9
20.9
17.8
15.4
13.4
11.8
10.4
113
112
109
105.
99.3
92.5
84.9
76.6
68.1
59.6
51.3
43.51
36,5*
'31.1-
26.8
23.4:
20.5::
18.2
16.2
169
168
164
158
149
139
128
115
102
89.6
77.1
65.3
54.9
46.8
40.3
35.1.
30.9
27.4
24:4
97.0
96.2
94.1
90.6
85.9
80.2

7?.8
66.9
59.7
52.4
45.4
38.7
32.6
27.8
23.9-
20.9.
18.3
16.2-
14.5
146
145
141
136
129
121
111
100
89.7
78.8
68.2
58'^2
49.0
41.7
36.0
31.3
27.5
24.4
21.8
82.1
81.4
79.5
76.5
72.4
61.9
56.3-
50.6
44.7-
39.0.
33.5
28.4'
24 2
20.3
182
16.0>
14,R
12.6"
11.3'
123
122
119
115
109
101_
93.0
84.7
76.0
67.2
58.6
50.4
42.7
36.3
31.3
27.3
24.0
21.3
19.0
17.0
Properties
.<|)/,M„x Wp-ft 11.9
7.06
17.8
10.6
9.50
5.65
14.3
8.50 4«:
10.4
6,10
12.2
sg.91
18.4
14.9
10.9
8.82
16.3
13.3
9.30
siS4
14.0
11.3
Pa(Kx^y^o' kip-irt.2
P^Kybyf/W Idp-in.^
rmyiin.
Wjffly
317
99,3
0.999
1.79
271
84.3
1.02
1.79
214
65.9
1.05
1.80
248
153
1.11
1.27
229
142
1.13
1.27
205
127
1.16
1.27
fit =2.00
LRFD
(|)C=0.75
Note: Heavy line indicates /(l/r;^ equal to or greater than 200.
Dashed line indicates tiie KL beyond wtiicii bare steel strength controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
4'
COMPOSITE
HSS4
Table 4-'13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy = 46 ksi
fc' = 4 ksi
HSS4x3x HSS4x2V2X
bnape
3/16 Ve Vs ®/l6 V4 V16
tdesign, in. 0.174 0.116 0.349 0.291 0.233 0,174
SteeMb/ft 8.15 5.61 13.4 11,6 9.66 7.51
PJQc p„iac ^cPn p„iac Pn/Oc Pn/Hc ^cPa PalQc
ue^ign
ASD LRFD ASD LRFD ASD LRFD ASD LRFDj ASD LRFD ASD LRFD
0 «7.9 102 53.t 79.7 IDS 'iTs'o' IW T34" .73.6.. 1JJ___ 60.7 91,0
1 101 52 7 79.1 102 153 88.0 132 72.8 109, 60.0 90,1
2 ••65.9- 98.9 515 77.3 •98.4 148 •85.2 128 70.6 106 58.1 87,2
3 63.5 95.2 49.6 74.4 93 0 140 80.7 121 67.1 101 55.1 82.7
4 560.2- 90.3 471 70.6 '85 8 129 74.8 112 62.4 93.8 51.1 76.7
S se.2- 84.3 440 65.9- 77.5 116 -67.9 102 56.9 85.6 46.4 69.6
g.
6 •61.7 77.5 40 5 60.7 -68 4 103 ^0.3 90:6 50.9- 76.5 41.3 61.9
7 70.3 "367 55.0 589 88.6 52.4 78.8 44.5. 67.0 35.9 53.9
a ;4i8 62.7 327 49.1^ 497 74J 4f6 67.0 38.2 57:4 30.6 45.9
s 9 55.1 28 8 43.2 40 9 61 ;5 •37,1 55:7 •32.1 48.3 '25.9'' 38'9"
s 10 47.7 249 37.4 332 49,9 30.2 45.4 2k4 39.7 21.5"' 32,3
11 40 7 21 3 31.9 274 41.2 •2^0 37.6 •21.8 32.8 17.7 26,7
s 12 'zSF' 'sTe' 179 26.8 .23-0 34.6 21.0 31.6 18.3 27.5 14.9 22,4
13 29.4 152 22.9 196 29.5 17.9 26.9 15.6 23.5 12.7. 19,1
14 96.9' 25 4 131 19.7 169 25.4 15.4 23.2 13.5- 20.2 10,9 16,5
15 221 114 172 147 22.2 13.4 20;2 11.7 17.6 9.54^ 14,3
16 >i2i9 194 101 15.1 10.3' 15.5 8.38 12,6
17 172 891 13.4
„ T
-
0) 18 ;f6;2j 154 795 11.9
19 9;i7 13.8 7.14 10.7
20 6.44 9.66
UJ
i
.•i
1
Properties
Mhx/Clti <t>6 Mm kip-ft 7 AY 11.2 5.42, 8;15 10.7 16.0 9154 14.3 : 8.22 12.4 6.62 10:0
Miiy/Qo ^t,M„y kip-ft 6.04, 9.08 4.35 6.54 7;54 11.3 6.76 10.2 5.82 8.75 >:4.69,, •7,P5
PeAWW kip-in; 174 137 210 195 175 150
PeAKyLyflW kip-in; 108 84.6 95.5 88 .8 80.0 68.3
r^fi in. 1.19 1.21 0.922 0.947 0.973 0,999
f^im^fmy
1.27 1.27 1.48 1.48 , 1.48 1.48,
ASD LRFD Note; Heavy line indicates KL/r„y equal to or greater tiian 200.
fic=2.00 = 0.75
Dashed line indicates ttie KL beyond wtiich bare steel strength controls.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-225
Table 4-13 (continued)
Fy = 46 ksi Available Strength in
fc = 4 ksi Axial Compression, kips
Concrete Filled Rectangular HSS
4"
COMPOSITE
HSS4
Shape
in.
SteeMb/tt
Design
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
HSS4X2V2X
Va
0.116
5.18
PnIO,
ASD
47.2
46.7-
45.2.
42.9,
39.8
36.2
32.2-
28.1
24.D
20.0
i3;5
11.4
9.69
8.36
7.28'
( '
e.m
5.67
LRFO
70.8
70.0
67.8
64.3
59.7
54.3
48.4
42;1
36.0
30.0
24.6
20.3
17.1
14.5
12.5.
10.9
9.60
8J0
HSS4x2x
%
0.348
12.2
ASD
93.4
91.7"
8f a
79.2,
69.7
59.2
48.4
38.2
29,4
23.2
15,5
13,1
LRFO
140
138,
130
119
105
89,0
72.8
57,5
44.2
34.9
28.3
23.4
19.6:
=/l6
0.291
10.6
Pn/Oc
ASD
81.0
79.6
75.6
69.5
61.7,
52.9
43.9
35.1
27.3
21.5:
17.4
14.4
'm
^cPn
LRFD
122
120
114
104
92.7
79.5
65.9
52.8
41.0
32.4
26.2
21.7
18.2
'A
0.233
8.81
ASD
67.2
66.1:,
63.0
58.2
52.1
'45.1
37.8
30.7'
24.1
.19.1
15.5
12.8
10.7
LRFO
101
99.4
94.8
87;5
78.2
67.8
56.9
46.2
36.3
28.7
23.2
19.2
16.1
V16
0.174
6.87
Pniac
ASD
53.7
52.8
50.2 .
;46,3
ll-L:
,35.8,
•25.0 •
19,9''
15.7'
12.8-
•L6.5F
8.86
7.55
M
LRFD
80.5
79.2
75.4
69.4
61,8
53"8"
45.6
37.5
29,9
23.7
19.2
15.8
13.3
11,3
Vs
0.116
4,75
PJ^c
ASD
41,2
40.6
38.6
35.7
31.9
27.6
23.2
18.8
14.g1
11.1
9 46
7.82
.6 57
5.60
<kPn
LRFD
61,8
60,8
58,0
53,5
47,8
41.4
34,8
28,2
22,2
17.5
14,2
11,7
9,85
8.39
{
Properties
if„M„, kip-ft
ttbMny Kip-ft
UrnxflW Kip-in.2
Pey(K^Ly)VW kip-in.2
'my, in.
W'my
nc = 2,00
LRFD
(|)C = 0,75
4,82.
3.38
7,24
5,08
119
53,8
1.03
1.49
9.10
k40
13.7
8.12.
172
53,3 '
' 0.729
1,80
8.20
4.89
12.3
7.36
161
50,2
0,754
1.79
7.11
4.25
10,7
6.38
146 .
45,6
0.779
1.79
5.77:
3.43
8,67
5.16
125
39.1
0.804
1.79
4 23
2 50.
6.35
3,75
100
31,1
0,830
1,79
Note: Heavy line indicates ffi/fmy equal to or greater than 200,
Dashed line indicates the KL beyond which bare steel strengtti controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
Table 4-14
Available Strength in
Axial Compression, kips
tfsSSIsfe Concrete Filled Rectangular HSS
Fy = 46 ksi
fc' = 5 ksi
Shape
HSS20x12x HSS16X12X
Shape
5/8 V2 % '/8 Vz Vs
'design, l"- 0.581 0.46S 0.349 0.581 0.465 0.349
Steel, lb/ft 127 103 78.5 110 89.7 68.3
Qesign
M P«/Oc Pfl/fic M
Qesign
ASO LRFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASO LRFD
0 1240 1860 1650 •^58 1440 1040 1560 1,920 1380 797 1200
6 1220 1830 1080 1620 940 1410 1020 1530 904 1360 783 1170
7 1210 1810 1070 1610 '934 1400 1010 1520 898 1350 777 1170
8 '1200 1800 1070 1600 927 1390 1010 1510 '891* 1340 771 1160
9 1190 1790^ 1060 1580 919 1380 998 1500 '883- 1330 765 1150
10 •1180 1770 vtp50 1570 910 1370 ?88 1480 •875 1310 757 1140
11 1170 1750 1550 900 1350 ''978 1470 '866 1300 749 1120
E,
12 1160 1730 1020 1540 890 1330 967 1450 '856 1280 740-^ 1110
M
1
13 <1140 1710 1010 1520 879 1320 955 1430 "846 1270 731' 1100
BJ
14 11?0 1690 :99,9 1500 867 1300 943 1410 ."834 1250 72a 1080
1
15 1110 1670 1480 854 1280 /929 1390 ..f22 1230 710 1060
s .
16 1100 1640 1450, 841 1260 J 91,5 1370 '810,' 1210 egsr 1050
17 iOSO 1620 • 954" 1430 826 1240 901 1350 796' 1190 68? 1030
i. 18 1060 1590 i,938 1410 .812 1220 • 885 1330 783 1170 674 1010
i 19 1.040 1560 921 1380 '797 1190 r-S69 1300 768 1150 661 992
§ 20 1020 1530 1360 781 1170 "853 1280 754 1130 648 972
1
21 1000 1500 886 1330 -765 1150 836 1250 738 1110 635 952
3
22 982 1470 868 1300 748 1120 BIB 1230 723 1080 621 931
23 1440 849 1270 731 1100 'm 1200 707 1060 606 910
£ 24 •940 1410 1329 1240 714 1070 782 1170 .690* 1040 592 888
§
25 1380 iiSIO 1210 696 1040 Hi 1150 ^674 1010 577 865
s 26 •B96 1340 790 1180 678 1020 745 1120 657 985 562 843
'S 27 .874 1310 :770 1150 660 990 726 1090 640 959 54f 820
i
28 .851 1260 749 1120 642 963 706 1060 §22 933 531 797
29 i328 1240 >29 1090 624 935 687 1030 605 907 516 774
30 805 1210 708 1060 605 908 :g67 1000 587 881 500 751
32 759 1140 666 1000 568 852 628 941 552 828 469 704
34 712 1070 625 937 531 796 S88 882 517 775 438 657
36 B66 999 583 875 494 741 549 824 482 723 408 612
38 621 931 543 814 458 688 511 766 448 672 378 566
40 576 864 503 754 423 635 473 709 414 621 348 522
Properties
Mm'Cib
May/Qb.
((.iflC kip-ft
<t)i,M„y kip-ft
599
405
901
609
500
.335
752
503
394 •
263
593
395
423
339
636
509
353.,
M-
530
425
PeAKxixfntf" kip-in.2
Pe,(K,LyflW kip-in,2
rmy, in.
74500
31200
4.93
1.55
64900
27100
. 4.99
1:55
54700
22600
5.04
1.56
41400
25500
4.80
.,1'.27
36300
22200
1.28
ASO
nc=2.00 (|)c=0.75
LRFD
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-227
5"
Table 4-14 (continued)
Fy = 46 ksi Available Strength In
fc' = 5 ksi Axial Compression, kips
Concrete Filled Rectangular HSS ^SSTHIS
Shape
HSS16x12x HSS16x8x HSS14x10x
Shape
Vl6 =/8 V2 '/8 5/8
fdesigti,in. 0.291 0.581 0.465 0.349 0.291 0.581
Steel, Ib/ft 57.4 93.3 76.1 58.1 48,9 93.3
Design
^cPn P„IQc Palilc <t>cP/( p„/ac '^cPn PutClc «
Design
>ASD LRFO ASO LRFO ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 735 1100 806 1210 -707. 1060 605 90-8 551- 827 832 1250
6 721, 1080 776 1160: 681 1020 :S82 873 530 795 811, 1220
7 716 1070 765 1150 671 1010 : ;574 : 861 522. 783 803 1200
8 710- 1070 753 1130: 661 991 565 848 514 771 795 1190
9 704 1060 740- 1110 649 974; 555 832 504 757 785 1180
10 697- 1050 725 1090 636 95^ 544 816 494 741 -775 1160
11 689 1030 709 1060 622. 934 532 797 483 724 763 1150
E-
12 681 1020 692 1040 608 911 $19 778 - 706 751- 1130
13 672 1010 674 1010 592 888 505 757 458 687 738: 1110
z 14 662 993 655 983 575 863 490 736: • 445 667 724 1090
s 15 652 978 636 953 558 837 : 475 713 431 646 709 1060
s 16 .641 962 615 923 • 540 810 ;460: 690 416 625 694 1040
17 630 945 594 891: 522 783 444: 666 402 602 678 1020
o. 18 618 928 573 859 503 754 428 641 387. 580 661' 992
§ 19 606 909 551 . 826 ' 484 726 411 616 371 557 644 967
£;. 20 594 891 -^28 793 464 697 591 356- 534 627. 940
21 . 581 871 506 759 445 667 iki 566: 340 510 609 914
S' 22 '568 852 484 725 425 638 360 540. 324- 487 591 886
23 554 832 461 • 692 • 406 608 343r 515 309 463 572 858
£
24 541 811 439 650 386 079 326 490 293 440 554" 830
JB'
25 -^27 790: 417 625 367 550 310 464 278 417 535 802-
26 §13 769 395 592 348 521 293 440 263- 394 516 774
? 27 498 747 373 560- 329: 493 277 415 248 372 497 745
iS 28 '484 726. 352 528 310 465 r 261 392 234 351 478 717
29 469 704 332 4981
-47"
292 438 246 368 220 329 459 689
30 455 682 "Tis"
4981
-47" 275 412 230 345 205 308 440 661
32 426 639 280 421 241* 362 202 303 181 271 403 605
34 397 595 248 373 , 214 321 : 179 269 160 240 368 551
36 368 552 221 333 191 286 : 160 240 143 214 333 499
38 340 510 199 299 171 257 • 143i- 215 128' 192 299 449
40 313 470 179 269 154 232 129 194 116- 173 270 405
Properties
•Mnx/Slb i^bMnx kip-ft
^b^ny kip-ft
239
190
359
285
327
193
492
291
275
162
413
243
219
127
329
191
189.
109-'
284
164
304
23i.
457
355
P^KyLyflW
%in.
fmxii'my
kip-in.^
kip-in.2
27300
16600
4.94
1.28
29700
9200
3.27
1.80
26400
8110
3.32
1.80
22300
6800
3.37
1.81
20000
6070
3.40
1.82
25000
14200
3.98
1.33
fie =2.00
LRFD Note-. Dashed line indicates the KL beyond which bare steei strength controls.
.= 0.75
AMERICAN INSTITUTE OE STEEL CONSTRUCTION

4-228
DESIGN OF COMPRESSION MEMBERS
Table 4-14 (continued)
Avaifabfe Strength in
Axial Compression, l^ips
Hssu-Hlsf2 Concrete Filled Rectangular HSS
Fy = 46 ksi
fc' = 5 ksi
HSS14x10x HSS12x10x
Shape Shape
Vz Ve Vie
1/40,1 Vi 3/8
tdesisn, in.
0.46S 0.349 0.291 0.233 0.349
SteeUb/tt 76.1 58.1 48.9 39.4 W.3 53.0
Pesign
P«IQ.o /"n/Oc •Dcfl, PnlQc Pn/Oc «
Pesign
ASD LRFD ASD LRFD ASD- LRFD ASD LRFD •ASD LRFD m) LRFD
0 1100 631.i'- 946 577- 865' ~522 784 650 975 ,55? 838
6 tl4' 1070 •614:: 922 56f 842 508 762 633 950 544 817
7 : 707 . 1060 : 609 • 913 ; 556 • 834 50a 755: 627'- 941 539 809
8 700 1050 903 550 825 497 746- 621 931 533 800
9 692 1040, : 595' 892 • 543 814 491 736 613 920 527 790
10 683' 1020 880 1 535 803: 484 726. f05 907 51 a 779
11 -•673 1010 :;578. 867 527 790:, • 476 714 ,596 894 511 767
&
12 .062 993 : 568 852 518 777 468' 701 586 ' 879 503 754
•s 13 . 650 : 975 558 837 508 763 .459' 688 S76 863 494, 740
<0 . .
ML ' 14 638 957 - 547 821 498 748 449 674 : 565 847 484* 726
<0
13 '625 938 536 804, 488 732 439 659 553 829 474^ 711
s
16 il2: 918 ,524' 786 477 715 429 643 '541' 811 463? 694
s
17 897 511' 767 465 698 418 627 528 792 452 678
a. 18 583 875 499-' 748 453 680 407. 610 515" 772 440 661
S
19 568- 852 :485" 728 441 661 395 593 501 752 429 643
s 20 829, 5:472^ 708 428 642 384 576 488 731 416 625
5
21 806' •458?: 687 415 623:, • .372-. 558 473 710 404' 606
S" 22 : 521^ 782.; : 444 : 666 402 603 360 539 459 689 3915 587
*
23 505:: 757 430.: 645, 389 583 347. 521 444. 667 379-
36r
568
•B . 24 489; 73J. J^i. 623 S7B 563. 335 • 503 430 645
379-
36r 549
s 25 472 708. :r4dtK 601 362 543 323 484 415, 622 353 529
1
26 495: 683" i'386? 580 349 523., 310 465: 400. 600 340 510
27 439 658 372 558 335 503 298 447: 385 577 327 490
£ 28 422: 633 357 536 322 483 285 428, 370 555 314* 471
lU
29 406 608 '343 514: 308 463 273 410- 355 533 301 452
30 389. 584 328 493 295 443 261 391 340 511 288 432
32 357 535 300 450 269 404 237 356 311 4b/ 263 395
34 325 488 273 409 244 366 214 321 283 425 239 358
36 295: 442 246 370 .220 329 ,192 288 256 384 215 323
38 .?65 397 221 332 197 > 296 \72 258 230 345 193 290
40 r239 359 200"- 299
197 >
267 155- 233 208-" 311 174 261
Properties
M„,/Q6
<t)6/W„j kip-ft
kip-ft"
25S;:
197-
383
297
202
156
304
234
174
133
262
200
144
1ia
217
165
201
i7S
302
264
160^:
139:.
240
209
PexiKxLxfnO' kip-in.^
Pey(KfLyf/1Q' kip-in.'
in-
22200
12600
; 4.04
1.33
18600
10500
4.09
1.33
16700
9340
4.12
,1,34
14600
8160
4.14
1.34
14800
10900
3.96
1.17
12500
9160
4.01
1.17.
LRFD
(t)c = 0.75
' Shape is noncompact for compression with /y= 46 ksi.
' Shape is noncompact for flexure with 46 l(si.
AMERICAN INSTRRIRRE OP SIEBL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-229
Fy = 46 ksi
fc' = 5ksi
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
5-
COMPOSITE
HSS12
Shape
HSS12x10x HSS12x8x
Shape
V4 Va V2 Vs V4
fdesign. 0.291 0.233 0.581 0.465 0.349 0.233
Steel, lb/ft 44.6 36.0 76.3 62.5 47.9 , 32.6
Design
PnlQo ^cPn PnlOc PJQc Pn/Clc Pn/Hc « P„/Qc W
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 509 763 461 692 640 960 •562 842 479 718 391 586
6 495- 743 449 673 615 922 540. 810 460 690 375 562
7 491 736 444 666 606 909 532 799 454 680 369 554
8 485 728 '439 658 596 894 524. 786 446 669 363 544
9 479 718 "433' 650 •585 878 514 771 438 657 356 534
10' 472 708 427 640 573 860 504 755 429 . 643 348 522
11 465 697 420 630 560 840 492 738' 419 ' 629 340 509
12 457 685 412., 619. '546 819 •480 720 409 613 331 ' 496
13 448 673 , 404 607 531 797 467 701 397 596 321 = 482
<0
14 439 659 396 594 516 773 454 680 386 579 31 467
15 430 645 387 581 499 749 440 659 374 ^ 561 301'^ 452
16 420 630 378 mi ;483 724 -425 637 361 ... 542 291 , 436
ts 17 410 615 368 553 465 698 -410 615 348 : 522 280/. 420
S. 18 399 599 ^359 538 448 672 395 592 335 -.i 503 269; 403
19 388 582 348 522 430 645 379 569 '322 -4 433 257'. 386
£ ' 20 .377 566 338 507 412 618 |63 545 308 : 462 246;' 369
21 366 548. 327 491 394 590 •347 521 295 442 235 352
22 -354 531: 317 475 375 563 332 497 281 421 223":- 335
*
23 '?42 513 306 458 357' 536 316 474 267 • 401 212 318
24 330 496 295- 442 339 509 300 450 254 381 201:- 301
1-
25 319 478 284 425 321 482 284 427 241 361 19D 284
i 26 : 307 460 273 409 304 456 .269 404 227 341 179^ 268
27 295 442 262 392 287 430 254 381 215 322 168- 252
u
28 283 424 251 376 "m" "406' 239 359 202 -303 158 237
29 271 406 240 360 ?56. 385 '225 337 190 284 147" 221
30 259: 389 229; 344 242 363 210 316 177 266 138 207
32 236. 354 208 312 214 321 185 277 156 234 121 182
34 214 321 •188 281 1.89: 285 164 246 138 207 107 161
36 192 288 168 252 169: 254 146 219 123 . 185 95.7 144
38 173 259 151.: 226 152. 228 131 197 Ill • 166 85.9 129
40 156 234 136: 204 137v 206 118 178 99.7 150 77.5 116
Properties
JWOs ^t)Mnx kip-ft
^t,M„y kip-ft
206
179.
114 171
148
205
151
308
228
173
128
261
192
138
101
208
152
99 2
719
149
108
PeyiKyLym'
fmy/rn.
kip-in.'
kip-in.'
11200 , ^
8180
4.04
1.17
• 9770
7150 .
4.07
1.17
13900
7000
3.16
1.41
12300
6220
3.21
1.41
10500
5240
3.27
1.42
8180
4070
3,32
1.42
£1^=2.00
LRFD Note; Dashed flne indicates the KL beyond wtiich bare steel strength controls.
c=0.75
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-230 DESIGN OF COMPRESSION MEMBERS
5'
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Hs^fa'-SSsfo Concrete Filled Rectangular HSS
Fy = 46 ksi
U = 5 ksi
Shape
HSS12x6x HSSIOxBx
Shape
5/8 V2 '/8 V4 % V2
'design, in. 0.581 0.465 0.349 0.233 0.581 0.465
Steel, lb/ft 67.8 5S.7 42.8 29.2 67.8 55.7
Design
<|lcPfl P„/Qc •ttePn PVOc M (^Pn Pfl/Qc «
Design
-ASD LRFD ASD LRFD 'ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 541 811 471 706 399 598 320 480 558 837 488 732
6 505 757 440' 660 3?3 559 299 •• 448 535 803 468 703
7 493 739 429 644 364 545 , 291 437 528 791 462 693
8 479 718 417 626 354- 530 ,: 283 425 •• 519.? 778 454 681
9 463 695 404 606 3^3 514 274 . 411 509 763 445 668
10 447,' 670 390 585 331 496 264 396 498 747 436 654
11 429 644? 375 563 • 318 477 254 380 486 729 426 639
E.
12 411 616 359 539 305 457 243. 364 473 710 415" 623
•s 13 •392 587 343 514 . 281 436 231 347 460 690 404 605 •s
14 ,372 558 326 489, 276 414 219 329 446- 669 391 587
i
15 '•35T" "529" 308' 463. 262 393 207>. 311 432-- 648 379 • 568
s '
16 334 502 291 437 •247 371 195 293 417 625 368 549
s '
17 316 474. 274 410 232 348 183.- 275 401 602 353 529
s. 18 297 447 256 384 •218-. 326 171 257 • 386 578 339 509
E 19 279 420 239 358 203 305 160 239 370- 555 325 -488
20 261 393 222 333__ 189 283 148- 222 354" 530 311 467
s
21 '244 366 206 309 175 262 ' 137. 205, 337, 506 297 446
22 227 341 192 288 • 161 -242- 126 169 •321 482 283' 425
23 210 316 178 268 148 222 115 173 305 458 269 404
C
24 194 291 .. 165-: 248 .136 204 106 159 289 434 256 383
g 25 178 268 152 229 125- 188 • 97.5 146
.211. Jli.
242 363
s 26 165 248 HI- 211 116. 174 . 90,2 135 I59" 390" 228 343
1
27 153 230 ISO 196 107 161 83.6 125 246 370 215 323
* 28 142 214 121 182 99.9 150 77.7 117 , 233 349 202 304
29 133 199 113 170 93.1 140 72.5 109 ' 2ia- 330 190 285
30 124 186 106 159 , 87.0 130 67.7 102 207 311 177 266
32 409 164 92.9 140 76.5 115 59.5 89.3 182 274 156 234
34 96,4 145 82.2 124 67.7 102 52.7 79.1 161, 242 138 207
36 S6.0 129 73.4 110, 60.4 90.6 47.0 70.5 144' 216 123 185
38 •77.2 116 65.8 99.0 64.2 81.3 42.2 63.3 129 194 111 166
40 59:4 89.3 48.9 73.4 38.1 57.1 116 175 99.7 150
Properties
MnlQb
M„m
kip-ft
^t,IVl„y kip-ft
il71 .
101,.
256
152
145
85.7
218
129
116 :
68.4
175
103
84.0
' 48.7
126
73.2
154.
130
231
196
131
110 .
196
166
PeviK.UYnO' kip-ln.2
PeyiKyLyflW kip-in.^
tmy, in.
rmxlrmy
10900
3410
2.39
1.79
9730
3020
2.44
: 1.79
8350
2570.
2.49
1.80
6560
2000
2.54
1.81
8590
5900
3.09
1.21
7640
5240
3.14
1.21
ASD
n<;=2.oo
LRFO
.= 0.75
Note: Heavy line indicates KUrm, equal to or greater than 200.
Dashed line indicates ttie /fl. beyond which bare steel strengtti controls.
AMERICAN INSXITTITE OF STEEL CONSTRUONON

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-231
Fy = 46 ksi
fc = 5ksi
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
COMPOSITE
HSS to
Shape
HSSIOxflx HSS10x6x
Shape
VB 5/16 V4 Vl6 5/a V2
fttesign. i"- 0.349 0.291 0.233 0.174 0.581 0.465
Steel, lb/ft 42.8 36.1 . 29.2 22.2 59.3 48.9
Design
p„/ac « PalCla Pfl/Oc <t><!Pn P./Cic P„ICla <l>«Pn P„/ac
Design
ASD LRFO ASD LRRD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 •416 623 376 565 337 . 506 296 444 467 • 701 408 612
6 399 599 361 542 323 485 283 425 435 653 380 570
7 393 590 356 534 318 478 , 279 418. 424 636 371, 556
8 387 580. 350 525 313 469 274 411 412 . 618 360 540
9 379 569 •343 • 515 •307 , 460 268 : 402 398 ' 597 349 • 523
10 371
557 336 -504- 300 450 262 393 383 575 336 504
11 363 • 544 328 492 '293 439 2^5 383 368 . 552 323 484
E-
12 354 530 320 479 285 427 .248 372 351 527 308 463
•s 13 344 516 311 466 277. 415 241 . 361 •335'T "504" 294-' 441
TO
14 334 i 500 301 452; 268 402 • 233 . 349 319 • 480 279 ' 418
i
15 3|3 484, -292 437- 259 389 225. 337 303 456 264,. 395
s
16 312 468 •281 422, 250 375 216 324 287 • 432 248 -372
s
17 301 451. 271 . 407 ?40 361 208 312 271 407 233 349
i. 18 289. 434, 260 391 231 346 199- 298 255 • 383 218 326
19 277 416 250 375 221 331 190 285 239 359. 203 S 304
20 265 , 398 239 358 211 317 181 • 272 , 223 335 T89'" m"
21 254 380^ 228 342 201 302 172 258 , 207 , 311 265
22 242 362 217 326 191 287 163 245 • id2 • 288 164'-' 246
23 '230 345 206 310 182 272 155 232 177 266 152 J 228
c
24 218:. 327 196 293 172 258 146 • 219 : 163 245 140, 210
g' 25 206 310 185 278 162 243 . l'37 206 150 225 129 • 194
"i 26 19S • 292 175 262 153 229 129.' 194 139 208 119; 179
27 184 275 '164 247 144 . 215 121 181 129 193 110'" 166
28 173- 259 154 -232 135 202 113 169 120 ' 180 103 .. 154
29 162 243 145 217: 126 189 105 158 111 • 168 95.7 144
30 151 227 135 203 117 176 , 98.3 147 104 157 89.4 134
32 133 200 119 178 103 155 , 86.4 130 §1.5 138 78.6 118
34 118 177 105 158 91..4 137 76.6 115 81 .T-122 69.6 105
36 105 158 93.8' 141 81.6 122 68.3 102 72.3 109 62.1 93.3
38 94.3 141 84.2 126 73.2 110 61.3 91.9 64.9. 97.6 55.7 83,8
40 85,1 128^ 76.0 114 66.1 99,1 ^5-3 83.0
Properties
Mr^iap
MnylQi
i>l>Mnx kip-ft
<|)l,M„y kip-ft
104
88.0
157
132
89.9
75.8
135
114
74.9
62.9
113
94.6
58.5
48.8:
87.9
73.4
128,
86.2
190
130
108
73,4
162
110
rmy, in.
^mlfmy
kip-in.^
kip-in,^
6520
4470
3.19
1.21
5830
3990
3.22
1.21
5080
3470
3.25
1.21
4280
2910
3.28
1.21
6700
2840
2,34
1.54
5970
2540
2.39
1.53
0^ = 2.00
LRFO
<|)c = 0.75
Note: Heavy line indicates /a/fm/equal to or greater than 200.
Dashed line indicates the Kl beyond which bare steel strength controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
5'
COMPOSITE
HSS10
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy =: 46 ksi
fc = 5 ksi
HSS10x6x
bnape
% «/l6 V4 3/8 Vie
fileslgniin. 0.349 0.291 0.233 0.174 0.349 0.291
Steel, lb/ft 37.7 31.8 25.8 19.6 35.1 29.7
M PnlQc i^cPn PnlClc Pn'i^c 'SfoPn P„/Qc (fcPn P„/Qc
uesign
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD W LRFD
0 344 516 310 465 275 • 413 i 239 359 307 461 276 414
6 321 481 289 434 257 385 2l22 334 279 418 251 376
7 313 470 . 282 423 250 375 217 325 269 404 242 363
8 304 456 274 411 243 364 210 315 259 -388 233 349
9 294 442 . 265 398 235 352 203 304 247 370 222 333
10 284 426 2S6 384 •226 340 195 293 235 . 352 211 317
11 273- 409 246 369 217 326 187 280 222 • 333 200., 299
12 261 392 ^ 235 353 . 208 312 178 268 '208 313 188- 282
•5 13 249 373 224 336 198 297 169 . 254 .195 292 176.' 263
14 236 354 213 319 . 188 281 160 241 •181 • 272 163,; 245
15 224 335 201 302 •177 266 151 ' 227 168 251 151 227
s 1 16 211 -316 1^0 285 167 250 142, 213 . ,154 231 139;, 208
17 .198 297 •178 267 J 56 • 235 133 199 141 212 127 > 191
18 185 278 167 250 146 219 123 185 328 192 116 ; 174
19 172 259 155 233 136 204 114 172 m" '174'" 105 157
20 160 240 144 216 • 126 189 106 159 106 , 159 94.5 142
s
21 148 222 133 200 116 174 97.2 146 : ,:96.2 145 85.7 129
B
22 136 204 123 184 107 .. 160 '88.8 133 , ?87.6 132 78.1 117
23 125 187 112 169 97.6 146 81.3 122 80.2 121 71.4 107
24 115 172 103 155 . 89.6 134 74.6 112 -73.6 iir 65.6 98.4
25 fjoe 158 95.2 143 82.6 124 ,-68.6 103 -67.9 102 60.5 90.7
1
1
26 97.6 146 88.0 132 ;76.4 115 • 63.6 95.4 kx 94.3 55.9 83.9
27 90.5 136 81.6 122 70.8 106 . 59.0 88.4 S8.2 87.5 51.8 77.8
28 84.2 126 •75.9 114 •65.9 98.8 .k8 82.2 54,1 81.3 48.i 72.3
29 78.5 118 .70.7 106 61.4 92.1 S51.1 76.7 50.4 75.8 44.9 67,4
30 73.3 110 66.1 99.1 57.4 86.1 '47.8 71,6 47.1 70.8 42.0 63.0
32 64.4 96.7 - 58.1 87.1 50.4 75.6 = 42.0 63.0 ,41.4: 62.3 36.9 55.4
34 §7.1 85,6 51.5 77.2 44.7 67 0 37.2 55.8 36.7: 55.2 32.7 49.0
36 50.9 76.4 45.9 68.9: 39.8 59.8 • 33:2 49.7
38 : |5.7. 68.6 41.2 61.8 35.8 53.6 29.8 44.6
4b '41.2 61.9 37.2 55.8^ 32.3 484 26.0 40.3
Properties
Mm/Qt, Mm kip-ft 86.6 130 75.0 113. 62,8 94.4 49.3 74.1; - 77.5' 116 67.4 101
Mny/ai, (|)i,M„j, kip-ft 58.7 88.2 50.6 76.0 42,1 63.3 32.7 49.2 45.8 68.8 39.5; 59:4
PeAKxLxfno' kip-in.^ 5150 4670 4060 3410 4430 4040
PeAKvUm* kip-in.^ 2170 1950 1700 1410 1370 ' 1240
r„, in. 2.44 2.47 2.49 2.52 2.05 2.07
I'mxll'my
1.54 1.55 1.55 1.56 1.80 1.81
ASO LRFD Note: Hea\/y line indicates KLAm, . equal to or greater than 200:
£Jc=2.00 <t)c = 0.75
Dashed line indicates the KL beyond which bare steel strength controls.
HSSIOxSx
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-233
Fy = 46ksi
fc' = 5ksi
5'
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS gg^^SSf^^l
Shape
HSSIDxSx
V4 3/,6
HSS9x7x
Vb Va '/8 5/16
faeslgn. 0.233 0.174 0.581 0.465 0.349 0.291
Steel, lb/ft 24.1 18.4 59.3 48.9 37.7 31.8
Desi0n
ASD
^cPn PntCi,
LRFD ASO
P./Qc
LRFD ASD LRFD ASD
li/ePn PJClo
LRFD ,ASD
pja.
LRFD ASD LRFD
6
7
8
9
10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
28
29
30
32
34
36
38
40
244
214
205 ,
196'
186
176
165
154 ,
144
133
122
111
•91.5
82,6
74.9
68.3
62.5
iaig
4^.9
45.3
42.1
39:3
36.7
32.3
28.6'
366:
332.,
321 .
308
294
279
264
248
232
215 :
199
183 -
167
152
137
124
112 .
102
93.7
86.0
79.3
73.3
68.0
63.2
58.9
55.1
48.4
42.9
211
190
184
176
168
159
150
140
131
121
112
102
93.2
84.4
.75.9
'68.5.
62.1
56.6
'51.8
47.5
43.8
40.5
37.6
34.9
32.6
30.4
26.7
23.7
316
286
275
264
252
238
225
211
196
182 :
167
153
140
127 ;.
114
103
93.1
84.9
77.7
71.3
65.7
60.8
56.3
52.4
48.8
45.6
40.1
35.5
474
449
440
^30 :
419
408 •
395
•381
367
353 :
338 •
^22
W"
m
263
2'49
235
221
208.
194
182
169'
157 .
146
137
120
106
94.9
85.1
76.8
711
673
660
645
629.
611
592
572
551
529
506
483
460
"439
417
396
375
353
333
312
292
273
253
236
220
205
180
160
143
128
115
414
,393 .
'385
377
367
357
346
335
3^3
310
297
•284
270 ,
257
243
229
216
203
190 -
177
T65~
154
144
134
125
117
103
9o:8
81.0
72.7
65.6
621
589
578
565
551
536
520
502
484
465'
446
426
405
385
364
344
324
304
284
265
248
232 •
217
201
188 .
175
154
137
122
109
98.7
350 ••
332
326
319
311
303
294
284
274
263 •
252 •
241
230
218
207
196
184
173
162 ••
151 •
141 '
131
121
113
105;
^8.1;
86.2
76.3
68.1
61.1
55.2
525
498
489
478
467
454
440
426
411
395
378
362
345
328
310
293
276
260
243
227
211
196
182
169
157
147
129
115
102
91.7
82.7
316
300
294
288
281
273
265
256
247,
237
228'
217
207
197
186
176 -
166
156
146--
136 ,
127,
117.
109='-
101"
94.4
88.2
77.5
687
61.2
55,0
49.6
474
450
441
432
421
410
397
384
370
356
341
326
311
295
280
264
249
234
219
204
190
176
163
152
142
132
116
103
91.9
82.5
74.4
Properties
%,IQb I^b^m kip-ft
.(tl(,M„y Wp-ft
$6.4
33.0
84.8
49.6
44.5
25.6
66.9
38.5
119
98.4
178
148
101
'83.7
152
126
81.1 122
101
70 2
578
106
86.£
kip-in.2
Pe^K^Lyfm' kipMn.2
V.in.
Wfrny
3550
1090
2,10
1.80
2970
899
2.13
1.82
5780
3790
2.68
1.23
5180
3380
2.73
1.24
4440
2900
2.78
1.24
4000
2610
2.81
1.24:
«c=2.00
LRFD
<t)c = 0.75
Note: Heavy line indicates KL/rmy equal to or greater than 200.
naslied line indicates tiie KL beyond wtiicli bare steel strengtli controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
5'
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
COMPOS'TE Concrete Filled Rectangular HSS
Fy = 46 ksi
fc' = 5ksi
Shape
HSS9x:Sx
Vs V2 5/16 V4 3/16
fdesian. in.
0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 50.8 42.1 32.6 27.6 22.4 17.1
Design
ASD
<l>cPn Pn/Oc
LRFD ASD
PnlQc
LRFD ASD.
P,ICic
LRFD ASD
Pnlilc
LRFD ASD
<t>cP« Pn/n,
LRFD ASD LRFD
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
32
34
386
351
339
326
312
2f
281
264
247 >
230
214
jl? '
110
165
U9
135
122 ;
111
102^
93.5
86.2
tni
73.9
68.7
64.1
59.9
52.6
580
527
510
490
468
446
422
397
372
346
321
296
271
247
224
202
184.
167
153
141
130 .
120
111
103
96.3
90.0
79.1
336
^04
293
281
268
•254';
240:-;
225-
210
196
182
169 '
155
142:,
130
107
97.1
88.8
81.6
75;2
69.5
64.5
59.9
55.9
52.2
45^
504
456
440
422 -
402
381
359
337
sTr"
294
274
253
233
214
195
177
160
146
134
123
113
104
96.9
90.1
84.0
78.5
69.0
282
256
247
237
226
215
203
190
178
165
152
140
128
116
423
383
370
355
339
322
304
285
266
247
229
210
192
174
106
>6.5
87.5
,79.7
72.9
67,0
-61.7
52.9
49.2
45.9
42.9
37.7
159
145
131
120 =
110-
101 .
92.8
85.8
79.5
74,0
69,0
64,4
56.6
253
230
222 .
213
203
193
182
171
160
149
138.
126
116
105
94.9
85.6
77.6
70.8
64.7
59.5
54.8
50.7
47.t)
43.7
40.7
• 38.0
33.4
29.6
380
345
333
319 .
305
290 •
274
257
240
223
206
190
173
158
142
128
116
106
97.1
89.2
82.2
76.0
70.5
65.5
61.1
57.1
50.2
44,4
224
^03 1
196
188 '
179 ,
170
161 -
151
141
131
121
111;
101 •
92.1
83,0
749
68.0
61.9
56,7;
52.0
47.9:
44,3
41.1
38.2
35.6
33.3
. •
29.3
25,9
336
304
294
282
269
255
241
226
211
196
181
166
152
138
125
112
102
92,9
85,0
78,0
71,9
66,5
61,7
57,3
53.5
49,9
43.9
38,9
193
174'
168
161
153
145
137
128
119
111
102
93.2
84,8
76.8
69,0
62.3
56.5
51.5
47,t
43.2
39.9
36,9
34,2
31,8
29.6
27.7
24:3
21.5
289
261
252
241
230
218
205
192
179
166
153
140
127
115
104
934
84.7
77.2
70.6
64.9
59.8
55.3
51.3
47.7
44.4
41.5
36,5
32.3
Properties
<))(,M„x l<ip-ft
(|>sM„y l<ip-ft
93,8
60,4
141
90.8
80.4
51.9
121
78.0
65,1
.41,9
97,9
62.9
56.6
36.1
85.1
54.3
47.6
30.1
71.5
45.2
37.4
23.5
56.2
35,4
PexiWW kip-in.^
Pey{KyLy)yw' kip'in.^
in.
4330
1610
1,92
1,64
3900
1450
1,97
1,64
3350
1240
2,03
1,64
3040
1120
2,05
1,65
2680
2,08
1,65
2240
818
2,10
1.65
ASD
a.=2.00
LRFD
(|)c = 0,75
Note: Heavy line indicates KL/r^y equal to or greater than .200.
Dashed line indicates 1tie KL beyond which bare steel strength controls.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-235
Table 4-14 (continued)
Fy = 46 ksi Available Strength in
u = 5 ksi Axial Compression, Icips
Concrete Filled Rectangular HSS
5-
COMPOSITE
HSS8
HSS8X6X
Oliapc
Vs Vz Va 5/16 V4
fdesistii in. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, Ib/fl 50.8 42,1 32.6 27.6 22.4 17.1
Design
P„lQc fePn Pnl^c P„IQc itfePn P„ICic VHo ikPa p„ia.
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ;ASD LRFD ASN LRFD
0 392 588 343 ' 514 • 2?8 433 . 260 390 230 346 199 299
6 364, 545 319 .. 478 269 403 242 363 214 322 185 277
7 354 531 Sio 466 262 393 236 354 209 313 180 270
8 343 515 301 452 254 381 229 344 '203 : 304 175 262
9 33T" "498" 291 437 246 369 222 332 196 " 294 168 253
10 320 480 ~ 280 420 ^37 355 '213 320 189 • 283 162 243 .
11 307 462 269 403 227 341 205 307 181 272 155- 233
£
12 294 442 256 385 217, 325 196 294 173 259 148 ' 222
1
13 281 422 ^ 244' 366 207 310 186 280 164 . 247 140 « 211
CO
14 '267 401 231 346 196 294 177 265 156 234 133. 199
i
15 253 380 218 327 185 277 167 250
H7
221 12^f 188
16 238 358 205 307 .174 261 157 236 138 ' 207 117. 176
•G 17 224 337 191 287 163 244 147 221 129 • 194 109,: 164
a.' i 18 210 • 315 Tfa"' 268"" 152 228 137 •206 •121 181 102^' 153
£ 19 196 294 167 251 141 . 212 128 192 112 168 94,3 141
20 182 . 273 m
234 131 -196 118 177 104 156 87 0 130
21 168 253 144 217 121 181 109 164 95.6 143 79.§ 120
22 155 233. 134 -201 111 166 100 150 , 87.6 131 72:9 109
23 142 214 123 185 101 152 91.7 138 80.2 120 66.T 100
£ 24 '131 s 196 113 170 93.1 140 84.2 126 73.6 110 61.3 91.9
J
25 120 181 104- 157 85.8 129 7/.6 116 fi7.8 102 56.5 84.7
g 26 111 167 96.4 145 79.3 119 71.8 108 62.7 94.1 52,2 78.3
S 27 103 155 89.4 134 73.5 110 66.5 99.8 58.2 87.3 48.4 72.6
28 96;0 144 83.1 125 • 68.4 103 61.9 92.8 .54.1 81,1 45.0 67,5
29 89.5 135 77.5 116 63.7 95.6 57,7 86.5 50.4 75,6 42:0 63,0
30 83.7 126 72-4 109 -59:6 89.3 53.9 80.8 47.1 70,7 39.2 58,8
32 73.5 111 63.6 95.7 52.3 78.5 47.4 71.1 41,4' 62.1 34.5 51.7
34 65.1 97.9 §6.4 84.7 46.4 69,6 42.0 62.9 36.7 55,0 30.5 45.8
36 •58.1 87.3 S0.3 75.6 41.4 62,0 #.4 56.1 32.7 49,1 27.2 40.9
38
40
45.1 67.8 37.1 55.7 43.6
30.3
50.4
45.5
29.4
26.5
44,0
39,8
24.4
22.1
36.7
33,1
38
40
43.6
30.3
50.4
45.5
29.4
26.5
44,0
39,8
24.4
22.1
36.7
33,1
Properties
%/ai,
kip-ft
^tiMny Wp-ft
87.9
71^1
132
107
75.4
60.?
113
91,3
60.9
4ai
91.5
73.8
52.8
42.4
79.4
63.8
44.2
35.4
66.4
53.2
349
27 8
52:4
41.7
kip-in.2
Per{K,L,rnQ' kip-in.'
V, in.
^mx^^wy
3700
2290
2.27
1.27
3320
2050
2.32
1.27
2860
1760
2.38
1.27
2590
1590
2.40
1.28
2270 .
1390
2.43
1.28
1900
1160
2.46
1.28
ac=2.00
LRFD
.l>c = 0,75
Note: Heavy line indicates KL/tmy equal to or greater than 200.
Dashed line indicates the KL beyond which bare steel strength controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
5-
COMPOSITE
HSS8
Table 4-14 (continued)
Available Strength In
Axial Compression, kips
Concrete Riled Rectangular HSS
Ay = 46 ksi
/c' = 6ksi
HSS8x4x
Shape
Vs V2 6/16 V4 '/16
'deslgm
0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 42.3 35.2 27.5 23.3 19.0 14.5
Pnlao ipcfh M Pnliic P^liic Pfl/SJc •tePn
Design
"ASDj LRFD ASO LRFD ASO LRFD ASO LRFD ASD LRFD ASD LRFD
0 322 ' 484 270 405 338 202 302 177 265 151 226
6 277 416 232 349 193 ' 290 .173
260 228 129 194
7 "262 -393 . 221 332 183 274 , 246 , ;i44 216 122 183
8 246 369 208 . 313 171 257 , 154 231 ' 135 . 203, 115 172
9 228 r: 343 j|l4 292 -159 239 143 215 . ,126 189 107 160
10 211 317 271 147 221 .,132 198 116 . 174 98.3 147
f
11 193 ' ?9n ififi • 249 134 202 121 182 106 • 160 89.9 135
f 12 175' 263 5151 ' 227 'T22" is"" 110 165 • 96,6 145 81.4 122
13 157 236 137 206 111 , 167 99.0 148 • 87.0' 131 73.2 110
i 14 Mo 211 123 185 100 151 88.3 133 '77,7 117; 65.2 97.8
15 124'" 186 ; 165 ,30.1 135
Jll ,111..
103 57.5 86.2
16 163 (96.6 145 So.1 120 "69.6 105 60.45 90'6 50.5 75,8
17 S6.4 145 ^85.6 129 71.0 107 .61 .r 92,7 53.3.] 80.3 44.S 67,1
18 s-85.9 129 :!7e.4' 115 63.3 95.1- 55.0 = 82,7 47.7' 7i:6 39.9 59,9
19 t7.1 116 68.5 103 •56.8 85.4 49.4 74,2 64.2 35.8 53.8
20 69,6 105 61.9 93.0 • 51.3 77.1 •U4.6 67,0 '38.7 58:0 32.3 48.5
21 ^ ^3.1
94.9 :56.il 84.3 '46.5 69.9 40.4 60.8
r'
'35.1 52.6 29.3 44.0
22 ?7.5 86.5 51.1;., 76.8 f2.4 63.7 ^6.8 55.4 -31.9 47.9 26.7 40,1
23 79.1 46.8 70.3 38.8 58.3 33.7 50.7 k2 43.8 24.5 36,7
>
1 24 48.3 72.7 .43,0 64.6 35.6 53.5 31.0 46,5 26.8 40.3 22.1 33.7
25 44.6 67.0 39.6 59,5 32.8 49.3 28.5 42.9 24.7 37.1 20.7 31.0
U,
26 36.6 55.0 30.3 45.6 26.4 39,6 22.9 34.3 19,1 28.7
27 24.5 36,8 21.2 31.8 17.7 26.6
28 16.5 24.8
28
V '
Properties
MnS/Qj, M„x kip-ft 66.1 99,3 57.5 86.4 47.0 70.6 • 40.9: 61,4 34.5 51.8 •27.2 40.9
Mnym
(j)(,/Wnj, kfp-ft : 39.3 59.0 34.1 51.3 27.8 41.8 36,4 20.3 30.4 15.9 23.9
PM,] kip-in.2 2600 2360 2050 1860 i 1650 1390
PeyiKylyfnO' kip-in.^ 805 733 636 577 508 425
1.51 1.56 1.61 1.63 1.66 1.69
fml I'm
1.80 1,79 1.60 1.80 1.80
1.81
ASO LRFD Note; Heavy line indicates KL/tmy equal to .or greater than ZOO: .
(l)c = 0.75
Dashed line indicates the beyond wnicn care steel strengtn controls.
(l)c = 0.75
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-237
ry : 46 ksi
: 5 ksi
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Hilled Rectangular HSS
5-
COMPOSITE
HSS7
HSS7x3x
Shape
Vz % Vie V4 V16
V8C,f
'design. In- 0.465 0.349 0.291 0.233 0.174 0.116
Steel,lb/ft 33.2 27.5 23.3 19.0 14.5 9.86
Design
P„IQc VHc Un ma W p„iac « P„IQ.c IhPn Pfl/Jlc
Design
ASD LRFD LRFD m LRFD ASD LRFD ASD LRFD ASD LRFD
0 276 414 348 312 275 157 236 131 196
6 248 • 373 iig- 314 .188 282 166 249. 142 212 117 175
7 '239 359,. 202 302 181 : 272 •160, 240 136 • 205 -112 168
8 .229 343 : 290. 174 260 153 230 .131 .:. 196 107 161
9 218 327 '184: 276, ,165 248 ,146 , 219 124 e 186 102 153
10 206" •309"' 262
W
235 .1^8 208 118 176 95,9 144
% 11 ,
195 292 246 . 148 222 130 196 111 166 89,9 135
s 12 183 275 , .154 231 139 208 122 183 104 .. ,155 83,7 126
a 13 171 257 215 1:29 194 ,il4 . 171 • 96.i 144 77 5 116
i
14 159 240 133 199 .120': 179 158 iS9,d 134 71.3 107
s ,
15 148 222 iJ22:-; 183 ^ijo 165 , 97,i 146 81.8 123 65:2 97,8
s
16 136 204, 168 101 152 89,2 134 74.8 112 59,2 88.8
17 125 187' M-< 153 92.0 138 81.3 122 67J;' 102 53.5 80.2
£ ;;
18 113 171 :"93'o' 'i40" sy 125 73.6 110 61,4 92,1 47,9 71,8
§
19 f03 154 •,84.8 127^ 75 0 112 66,2 99,3 55,1 82.6 43,6 64.5
20 92.7 139 76,8 115 101 •£;59,7' 89,6 ;|9,7 ' 74.5 38,8 58.2
21 84,1 126 69.6 105 61c4 92,0 54,2 81,3 .:;45,t 67,6 35,2 52,8
i' ^
22 76,6 115 13.# 9S.4 55,9 83,9 74.1 41 if 61,6 32,.1 48.1
23 70.1 105 ... 87,2 51 2 76,7 45,2 67,8 37 6 56,4 29;?, 44,0
24 64,4 96,8 v^SSiS 80.1 : 47,0 70,5 41,5 62,2 34 5 5r,8 26,9 40,4
25 '59.3 89,2 • 49.1 73.8 ka 64,9 38.2 57,4 31,8 47,7 24,'8 37.2
i 26 54,9 82,5 45:4 68.3 46,0 60,0 i5;4 53,0 29 4 44.1 23,0 34.4
27 50.9 76,5 42.1, 63,3 37.1 55.7 32,8 49.2 27 3 40.9 21,3 31,9
28 47,3 71.1 39.2 58,9 14,5 51.8 30,5 45,7 25,4 38,0 19,8 29.7
2§ 44,1 66,3 '36,5 54.9 32,2 48.3 28,4 42,6 23,6 35.5 18,5 27,7
30 '41,2 61,9 51.3 3.0.1 45,1 26,6 39.8 i22,1 33,1 17,2 25.9
32
34

: .30,0 45.1 26,4 39,6 23,3 35.0 :i9,4
17.2
29.1
25,8
15,2
13,4
22.7
20,1
32
34

:i9,4
17.2
29.1
25,8
15,2
13,4
22.7
20,1
Properties
l^rnm (ftiWrn kip-ft
kip-ft
53.6
41,8
80.5
62.8
43.7;
33.9
65.7
50.9
38.0
29.5
57.1
44.4
32.0
24.7
48.1
37.2
25.2
19.4.
37.9
29,2
= 18,0.
MSifi:
27.0
20.5
PMUfnO". kip-in,2
PeriKyLyfno" kip-in,2
W. in.
Wrjm,
1990
1130
1,91
1.33
1720
982
1.97
1.32
1570
1,99
1,33
1390
785
2,02
1,33
1160
653
2.05
1,33
910
510
2,07
1.34
a, = 2.00
LRFD
. = 0,75
' Shape is noncompact for compression with f,=46 i(si, ' Sliape is noncompact for flexure with f, & 46 ksi.
Note: Heavy line indicates KC/fmj. equal to or greater than 200.
. Dashed line Indicates the KL beyond which bare steel strength controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS7
Table 4-14 (continued)
Available Strehgth in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy = 46 ksi
fc' = 5 ksi
HSS7x4x
bnape
V2 % Vts V4 V16
1/sM
'desijn. in-
0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 31.8 24.9 212 17.3 13.3 9.01
PnlSio Pn/Oc « PUJQc P«ISic «
Ue Sign
ASD LRFO ASD LRFD ASD LRFD ASD- LRFD ASO LRFO m LRFD
0 ila" •365" '502.. 303 272 159 238 135 203 111 166
6 209 = 314 173 259 233 '136 204 '116 173 •93.9 141
7 198 298 163 i 245 147 220 129 193 109 164 88.5 133
8 fS&i' 280 •153 230 138 206 12t 181 102 153 82.6 124
9 :1?4 = 261 142 213 128 • 192 112 169: :95.i 143 76.4 115
10 lifO • 241 ,196_. 177 104 155 •87.5 131 70.0 105
S ;
11 147 221 1'19 179 108 ' 162 ; 94.8 142 79.9 120 63$ 95,4
12 134 201 108 163 :97.6 146 ,85.9 129 72.3' 108 57.2 85,9
•g 13 :i21 . 181 ;98.4 148 :;:87.6 131 '77.3 116 ,64.9 97.4 51.0 76,5
1
1 . V
14 108:: 162 133 ''78.1
IIL.
68.9 103 •57.7 86.6 45.1 67,7
s 15 95.6 144 J9.2 119 "69.5' To"' '60.8 91.2 50.8 76.2 39.4 59,1
u
s. , 16 ,: 84.3 126 -70.6 105 :'61.8 92.9., kl 80,2 44.7 67.0 345 52,0
17 74.5 112 fe.o 93.2 54.8 82.3 47.3 71,Q 39.6 59.3 30.7 46.0
18 66.4 99.9 55.3 83.2 48,9 73.4 42.2 63.3 35.3 52.9 27.4 41,1
19 89.6 i9.7 74.6 43.8 65.9 37.9 56.8 31.7 47.5 24.6 36.9
J
20 S3.8 80.9 44.8 67.4 39.6 59.5 34.2 51.3 28.6 42.9 22.2 33.3
xS
21 73.4 •407 61.1; 35.9 53.9: 31.0 46.5 25,9J 38.9 20.1 30.2
22 44.5 86.8 37.0 55.7 32.7 49.2. 28.3 42.4 23.6 35^4 163; 27.5
23 40.7 61.2 .33.9 50.9 29.9 45.0 25.9 38.8 21.6 32.4 16l 25.2
24 37.4 56.2 : 31.1 46.8 ?7.5 41.3 23.7 35,6 19.8' 29.8 154 23,1
1 25 . 34.4 51.8 , 28.7 43.1 45.3^ 38.1 21.9 32,8 18.3 27.4 14.2 21,3
u
26 26.5 39.9 23.4 35.2 20.2 30.4 16.9 25.4 13.1 19,7i
27 18.8 28.1 15.7 23,5 12.2 18,3'
28 11.3 17,0
Properties
^bMnx kip-ft : 45.8 •68,8 37.5 56.4 33.0 49.6 27.8 41.7 22.0; 33.1 IS.® 23,7
M„y kip-ft 30.1 45.2 24.7 37.1 21.6 32.4 •i8.T 27.3 14.3' 21.4 10.?)i 15,1
kip-in:' 1640 1430 1300 1160 977 766
kip-in.' 642 560 508 449 375 291
r^y, in. 1.53 1.58 1.61 1.64 1.66 1.69.
fimll^my
1.60 1.60 1.60 •1.61 1.61 1.62
ASO LRFD Shape is noncompact for compression with fy=46 ksi. ' Shape is noncompad for flexure with J>~ 46 Itsi.
(|)C = 0,75
Note: Heavy line indicates KtAm/equal to« greater than zou.
(|)C = 0,75
Daslied line indicates the KL beyond which tare steel strength controls.
.
Si
Sife
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-239
Fy = 46 ksr
fc' = 5ksi
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
5'
COMPOSITE
HSS6
HSS6x5x
Chano
onape
V2 Va Vl6 V4 V8
in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 31.8 24.9 21.2 17.3 13.3 9.01
p„iac « PnlClo (tic/J. Pn/ac <l>c''n P„/Qc
Design
ASD LRFD >ASD LRFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD
0 246 , 369 206 , 310 185 • 278 ' :163 n: 244 139 209 115 172
1 245 . 368 2Q6 309 lis 277 162 244 139 208 115 172
2 243 . 365 204w 306 275 161 242 138 207 114 1/0
3 239 359 201 , 302 .i§o: 271 159 , 238 136 . . 204 112 168
4 234 352 197 : 296- 1?7: 265 .156 ' 233 • 133 199 109 164
5 228 342 , :i92' 288 172 259 152. 227 129 194 106 160
6 221 331 186 279 167 250 147 • 220 125 188 103 154
7 318" 179 268 161, 241 142 ^ 212 121 181 98.7 148
(A
"i
8 203 305 171 i-257 ;i||4 231 136 -203 115 173 94J2 141
« ..
9 '194' 291 163 244 147 • 220 194 110 . 165 89.4 134
1
10 184 276 n54 % 231 iS9j: 208 •122 183 104 156 84.2 126
s
11 174 • 261 '145 • 217 131 196 115 • 173 97.6 146. 78.9 118
s
12 163 245 ;135 , 203 , 122 183 108 .162, 91.2 137 73 4 110
s. 13 152 228 , ' lis.; .189 114 ; 170 ido 150 84.8 127 67.9 102
£ 14 141 212' :li6 : 175 105 . 158 92,8. 139 78.3 117 62.5 93,7
e 15 130 196 , 160 ^ 96.| 145 S5-4 128 71.9 108 57.1 85,6
16 119- 179 i: i'97.6: 146 88.4 133 t8.t 117 65.7 98.5 51.8 77.7
17 109 164 "BB.T 133" 80.3 120 71.0 107 59.6 89,4 46.8 70.1
18 98.9 149 80.9 122 72.6 109 ' 64.2 96.3 53.7 80,6 41.8- 62.8
s 19 89.1 134 73.3 110' • 65.1 97.7 57.7 86.5 • 48.2 72,3 37.6 56.3
g 20 80.4 121 ; 66.2 99.5 68.8 88.2 •52.0 78.1 43.5 65,3 33.9 50.8
g
21 7^9 110 60.0 90.2 • 6i3 80.0 47.2 70.8 39.5 59.2 30.7 46.1
o 22 66.4 99.9 54.7 82.2 .iag 72.9 43.0 64.5 36.0 53.9 28.6 42.0
£ 23 60.8 91.4 50.0 75.2 j4.4 66.7 39.3 59.0 32.9 49,3 25.6 38.4
24 55.8 83.9 : 4C0 69.1 4d:8 61.2 36.1 54.2 30.2 45.3 23,5 35.3
25 51.5 77.3 "4^4 63.7 : 37.6 56.4 33.3 50.0 27.8 41,8 21.7 32,5
26 47.6 71.5 ;39.2 58.9 • 34.8 52.2 30.8 46.2 25.7 38,6 20,1 30.1
27 44.1 66.3 36 3 54.6. 32.3 48.4 28.6 42.8 23.9 35.8 18.6 27,9
28 41.0 61.6 33.8 50.8 30:d' 45.0 26.S 39,8 22.2 33,3 17,3 25,9
29 38.2 57,5 31,5 47.3 ,28.0 41,9 24.7 37,1 20.7 31.0 16,1 24,2
30 35.7 53,7 29.4 44.2 26,1 39,2 23.1 34,7 19.3 29.0 15.1 22,6
Properties
i^tiMm kip-ft
^t,M„y kip-ft
41.8
36.7
62.8
55.1
34.2 51.4
29.91 45.0
29.9
26.1
44.9
39.2
25.2
22.0
37.9
33.0
19.9
17.3
30.0
26.0
14.2
12a
21.3
18.4
PMUm' kip-in.2
'my. in.
1330
978
1.87
1.17
1150
850
1.92
1.16
1050
772
1,95
1.17
928
684
1,98
1.16
779
571
2.01
1.17
445
2.03
1.17
Qc=2.00
LRFO Note: Dastied line indicates ttie KL beyond wlilcti tiare steel strength controls.
([.<;= 0.75
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
5'
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
COMPOSITE Concrete FHIed Rectangular HSS
Fy = 46 ksi
U = 5 ksi
HSS6x4x
sinape
Vz % 5/16 V4 '/16 Ve
fdeslsn. i"-
0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 28.4 22.4 19.1 1S.6 12.0 8,16
/•fl/Oc M fli/flc W Prliio (Hcfi, W « fli/Oc W
Ue iign
%ASO LRFDJ ASO LRFD »ASO LRFD ASD LRFD ASD LRFD ASD LRFO
0 326 179 269 160 240 140 211 119 179 97.4 146
1 216 325 178 267 •159 239 Uo 210 -119 178 97 0 145
2 213' 321 . 176 264 167 236 138 207 .117 176 95.7 143
3 209 : 314 172 258 154 231 135 202 115 172 93,5 140
4 203 ; 305 167 250 I49' 224 131 196 111 167 90 5 136
S 195 293 160 240 144 215 126 189 107 160 86.8 130
g 6 279 152 229 137 , 205 120' 180 102 ' 153 82 5 124
7 176 264 144 216 129 194 113 170 96,2 144 777 117
a 165 : 248 134 202 , 121 181 106 159 90.1 135 72 5 109
9 illS3 230 124 187 112 168 ' •98,6 148 83.6 125 67,0 100
S
10 212 Tf4"' '17?" 103 155 ,90.7 136 76.9 115 613 92,0
11 194 105 " 157 J4.1 141 82.8 124 70.f 105 55 7,' 83,5
12 .117; 176 • 95.3' 143 :85.1 128 74.9 112 63.4 95,1 500 75,1
13 105 158 86.1 129 ?6.3 114 67.1 101 56.8 85,2 446' 66.9
£
•5 14 93.3 140 17.2 116 "67'.7 '102" 59.7 89,5 50.5 75,7 393" 59.0
15 82.3 124 68.7 103 60.5 91,0 78,7 44.4 66,5 34 3 51.5
s
16 ; t2.3 109 50.5: 91.0 ' 53.5 80.5 46,1 69.2 39.0 58.5 30 2 45,3
17 i 64,0 96.2 53.6 806 47.4 71,3 40.9 61.3 34.5 51.8 26 7 40,1
18 57.1 85.9 47.8 71.9 42.3 63.6 36.4 54,7 30,8 46.2 23.9' 35,8
19 ms 77.1 42.9 64.5 38.0 57.1 32.7 49.1 27.6 41.5 214 32,1
u: 20 69.5 38.7 58.2 34.3 51,5 29,5 44,3 25.0 37,4 193 29.0
21 42.0 63.1 35.1 52.8 31.1 46,7 26.8 40.2- 22.6 33 9 175 26,3
22 38.2 57.5 32.0 48,1 28.3 42,6 24.4 36.6 20.6 30,9 16.0 24,0
23 35.0 52.6 29.3 44,0 25.9 38.9 22.3 33.5 18.9 28,3 14.6 21,9
24 32.1 48.3 26.9 40.4 23.8 35,8 20.5 30,8 17.3 26,0 13,4 20,1
25 i9:6 44.5 24,§ 37.3 21.9 33,0 18:9 28.3 16.0 24.0 12.4 ; 18.5
26 ;20.3 30 5 17.5 26.2- 14.8 22,1 11,4 17,1
27 13.7 20,5 10.6 15.9
Properties
•MJClb h
kip-ft 35.3 53.1 29.3 44.1 25.7 38,7 . 21.7 32.6 17.2 25,9 12.4., 18,6
M„ylQfi Mny kip-ft 26.3 39.5 21.7 32,5 19.0 28,5 16.0 24.0 12.6 19,0 :8i95 13,5
PeAWno' kip-ln.2 1080 950 865 770 654 509
PMLyf/W kip-in.2 551 481 440 388 328 254
rmy, in-
1.50 1.55 1.58 1.61 1,63 1.66
I'mxfi'my
1.40 i;4i 1.40 Ii41 1.41 1.42
Asn 'MM LRFD . Note: Heavy line indicates equal, to or greater than 200.
= 0,75
Dashed line indicates the HL beyond WHICH bare steel strengtn controls.
= 0,75
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-241
Table 4-14 (continued)
Fy = 46ksi Available Strength in 5-'
5ksi Axial Cdmpression, kips
Concrete Filled Rectangular HSS

Axial Cdmpression, kips
Concrete Filled Rectangular HSS
COMPOSITE
HSS6
Shape
HSS6x3x
Shape
Va Ve Vl6 V4 Vl6 Ve
fdeslsm In. 0.465 0,349 0.291 0.233 0.174 0.116
Steel, lb/ft 25.0 19.8 17,0 13,9 10.7 7.31
p„iac « PnlCic ^oPn « PnlOc Pnl^c ^cPl, Pa/Uc M
UKign
ASO LRFD •ASO LRFD 'ASD LRFD ASD LRFD -ASD LRFD ASO LRFD
0 191" 288 352 228 135 > 203 118 177 99,2. 149 79.9 120
...
1 190 • 286 151 ' 226 134 201 117 176 98.4. 148 79.3 119
2 186 279 147 221 131 197 115 172 96.3 144 77,5 116
3 179 268 142 213 126 189 110 165 92.8 139 74,5 112
4 •159 254 135 203 120 180 105 157 88.0 132 70,6 106
g
OT
5 158 237 126 190 112 ' 168 97.8 147 82.3 •• 123 65,9 98.8
g
OT 6 145 218 117 176 103 154 90.0 135 ^ 75.9 114 60.5 90.8
K
C9 7 131 197 •107: 160 '92.9 139 81.6 122 . 68,9 103 54.7; 82.1
W 8 117 176 96.0 144 •"83".2 12"" 72.9 109 61.6 92 ,4 48.7 73,1
i 9 102 154 " 85.1 128 74.1 111 64.1 96.2 5f3" 81.4 42.7.; 64.1
S 10 88.4 133' 112 • 65.0 97.8 __5_5_.6 ,_83.4_ 47.1 70.7 36.9; 55.4
u
11 ?5.2 113 f4.i . 96.4 S6:3 84.7 48.1 72.3 40.3' 60.4 31.-; 47.1
§ 12 63.2 95.0 ; 54:4 81.7 - is.O 72.2 41.4 62.3 34.0 50.9 26.4- 39.6
13 53.8 80.9 46.3 69.6 40.9 61.5 35,3 53.1 28.9' 43.4 22.5' 33.7
14 46.4 69.8 39.9 60.0 : :35;3 53.0 30.4 45.7 24.9 37.4 19.4 29.1
g
15 40.4 60.8 34.8 52.3 46.2 26.5 39.9 32.6 I6.9" 25.3

16 35.5 53.4 30.6, 46.0 27.0 40.6 23.3 35.0 iii 28.6 14.8 22.2
Q> 17 31.5 47.3 27.1; 40.7. ; 23.9 36.0 20.6 31.0 16.9 25.4 13.1,- 19,7
mm
18 38.1 42.2 •24.2 36.3 21.4 32.1 18.4 27.7 15.1 22.6 11.7 17.6
1 19 21i.7 32.6 19.2; 28.8 16.5 24.8 13.5 20.3 10.5- 15.8
M 20 14.9 22.4 12.2 18.3 9.49 14.2
21 8.61 12.9
Properties
^wilQi, kip-ft
i^My kip-ft
Pex{KxLy)W
PeAKyi^y-SO'
rmy.rn.
'mlfmy
ASD
kip-in.2
kip-in;
nc=2,00
LRFD
<|)c = 0.75
29.1
17.2
43.7
25.8
841
261
1.12
1.80
24.2
14.4
36.4
21.6
746
232
1.17
1.79
21.3
12.7
32.1
19.t
685
213
1,19
1.79
18.1
iO.7
27.3
16.1
609
189
1.22
1.80
14.5
8.52
21.8
12.8
521
161
1.25
1.80
10.5
SM
15.7
9.10
410
125
1.27..
1.81
Note: Heavy line indicates KL/r^ eqgai to or greater tlian 200.
Dashed line indicates the ML beyond whicti bate steel strength controls.
I
I
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

wr
4-242 DESIGN OF COMPRESSION MEMBERS
5-
COMPOSITE
HSS5
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy = 46ksi
fc' = 5ksi
HSS5x4x
anape
Vz % Vl6 V4 VK Va
'design. in-
0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 25.0 19.8 17.0 " 13.9 10.7 7.31
Pp/Cio ft/Oc PnlQc i^cPn Pn/Oc /•n/n. '^oPn fll/Oc ^cP,
Design
Asn LRFD Asor LRFD •ASD LRFD AASO LRFD ASO LRFD ASO LRFD
0 191 288 156. 234 140 . 209 122 183 103 : 155 84.2 126
1 191 285 155 233 139 ! 208 122 • 183 1 103 154 83.8 126
2 ;188 283 153 230 137 206 120 , 180 102 152 82.6 124
3 184 276 150 224 134 • 201 117 176 99.4 149 80.7 121
4 il78 268 145 217 . 130 195 114 171 96.3 144 78.1 117
5 257 139 208 187 109 164. 92.5 139 74.8 112
g
6 m 244. 132 198 118 178 104 156 88.1 132 71.1- 107
7 153 : 230, 124 ,. 186 112 ,. 167 . 98.1 147 83.1 125 66.9 100
8 143 215 116 ^ 174 104 . 156 . 91.7 138 77.7 117 62.3 93.5
9 132 199 .107 ; "m" i96.4. 145 . 85.0 127 72.0 108 57.6 86.3
• S ,;
10 iz?: 183 99.3 149
1 W
133 78,0 117 • 66.1 99.2 52.6 79.0
11 110" 166 90.9 137 80.3 120 71.0 107 60.2 90.3 47.7- 71.6
12 '99.5 150 82.5 124' 72.3 108 ' 64.0 96.0 54.3 81.5 42.8 64.2
f 13 88.8 133 74.3 112 64.6 "97r2' 57.2 85.8 48.6 72.9 38.1 57.1
a
14 78.6 118 66.4 9^.7 57.9 87.0 50.7 76.0 43.1 64.6 33.6 50.3
15 68.7 103 :58.7 88.3 5f.| 77.3 4f4 66.6 37.7 56.6 29.3 43,9
i''
16 60.4 90.8 51.6 77.6 ^5.3 68,0 ' 39.0 58.5 33.2 49.8 25.7 38,6
17 53.5 80.4 45.7 68.7 40.1 60.3 34.6 51.9 29.4 44.1 22.8 34,2
18 47.7 71.7: 40.8 61.3 35.8 53.7 30.8 46.3 26.2 39,3 20 3 30.5
19 64.4 36.6 55.0 32.1 48.2 27.7 41.5 . 23.5 35.3 18.2 274
20 38.7 58.1 33.0 49.7 29.0 43.5 25.0 37.5 21.2 31.8 16.5 24.7
21 35.1 52.7 30.0 45.0 26.3 39,5 22.7 34.0 19.5 28.9 14.9 1 22.4
22 ^1.9 48.0 27.3 41.0 23.9 36.0 20.6 31.0 17.5 26.3 13.6 20.4
23 29.2, 43.9 ko 37.5 21.9 32,9 18.9 28.3 16.1 24.1 12.4 18,7
24 26.8: 40.4 22.9 34.5 20.1 30.2 17.3 26.0 14.7 22.1 11.4 17.2
25 21.1 31.8 18.5 27.9 16.0 24,0 13.6 20,4 10.5 15.8
26 14.8 22.2 12.6 18,8 -9.74 14.6
27 9.03 13.6
Properties
MmfQb (bft/Wm kip-ft •26.2 39.4 21.9 32.9 19.3 29.0 16.3 24.5 13.0, 19,5 9.33 14.0
(ft 'Mny kip-ft 22.3 33.5 18.6 27.9 16.3 24.5 13.8 20.8, 11.0 16,5 7.83 11.8
kip-in; 654 587 536 478 409 317
PMKM/W' kip-in; 459 404 . 368 328 279 216
r„y,. 1.46 : 1.52 1.54 1.57 1.60 1.62
tmll'my s 1.20 : 1.21 1.21 1.21 1.21 1.21
ASO LRFD Note; Heavy line indicates /a/rmy equal to or greater than 200.
Qc=2.00 <|)c
= 0.75
Dashed line indicates the KL beyond which bare steel strength controls.
<|)c
'F V
-
AMERICAN INSTITUTE OF STEEL EONSXRUCNON

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-243
Fy = 46 ksi
fc = 5 ksi
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
5"
COMPOSITE
HSS5
HSS5x3x
Dnapc
Vz Va =/l6 V4 Ve
tdeslgm in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 21.6 17.3 14.8 12.2 9.42 6.46
De$ign
P„IQc P«t0.c ^oPn PnlO.^ ^cPn Pnlac (ficPn Pnfilc ^cPn
De$ign
ASO LRFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD m LRFD
0 aee 249 132 198 117 175 102 153 85.5 128 68,7- 103
1 164 247 •131 196. 116 174 101 152 84.9 127 68,2 102
2 160 241 128 192 113 170 98.7 148 82.9 124 66,6 99.9
3 354 232 123 185 109 163 95.0 142 79.8- 120 64,1: 96.1
4 146 219 mi 176 103 154 90.0 135 75.7 114 60.6 91.0
5 135 203 ' 109 164 95.9 144 83.9 126 70.7 106 56.5 84.8
g
.a 6 iki: 186 101 . 151 87.9 132' 77.1 116 65.0. 97.5 51 .C; 77.8
s •
7 111 167 91.4 137 "79.8 125" 69.7 105 58.8 , 88.3 46.8 70.2
t
8 98.4 148 81.7 123 71.8 108 62.1 93.1 52.5: 78.7 41.63 62.5
3 9 85.7 129 •- 72.0 108 63.7 95,7 54.4 81.7 46.1 69.1 36.5 54.7
B 10 73.4 110 62.5 93.9 55.7 83,7
•iZA.
_70^5_ 39.9 59.8 31 47.1
1 11 61.7 92.7 53.4 80.3 •48.0 72,1 40.6 61.0 34.0 51.0 26.6 39.9
i 12 51.8 77.9 ,45.0 67 7 40.7 61.1 34.6 52.0 28.6 . 42.9 22.4 33.6
t
13 44.2 66.4 38.4 57.7 34.7 52.1 29.5 44.3 24.3 36.5 191 28.6
5
a
14 38.1 57.2 33.1 49 7 29.9 44,9 25.4 38.2 21.0 •• 31.5 I6.4;' 24.7
i
15 332 49.9 28.8 43 3 26.0 39,1 22.1 33.3 18.3 27:4 14% 21.5
fi 16 29.2 43:8 25.3 381 22 9 34.4 19.5 29.2 16.1 24.1 12,6 18.9
i"
17 25.8 38.8 22.4 33.7 20.3 30.5 17.2 25.9 T4.2 21.4 11.i| 16.7
O) • 18 23.0 34.6 "20.0 30.1 18.1 27.2 15.4 23.1 12.7' 19.0 9.94 14.9
i
19
20
1
18.0 27.0 16.2 24.4 13.8 20.7 11.4
10.3
17,1
15,4
8 93
8.06
13.4
12.1
i
19
20
1
11.4
10.3
17,1
15,4
8 93
8.06
13.4
12.1
i
19
20
1
, 1
Properties
M„'<2
kip-ft
<l)i,M„y kip-ft
kip-in.?
Pe){KyLyflW kip-in.=^
V, in.
Wfm/
£1^=2,00
LRFD
c=0.75
?1.1
:14.4
31.7
21.6
507
215
1.09
1.54
17,8
12.2
26.8
18.3
455
194
1.14
1,53
15.8
10.8
23.7
16.2
420
178
1,17
1.54
13,5^
i9.19
20:2
13.8
374
159
1.19
1.53
J 0.8
7.33
16.2
11.0
321
135
1.22
1.54
7.8Qi 11.7
7;89
253
106
1.25
1.54
Note; Heavy line indicates ffi/r^ equal to or greater than 200.
Dashed line indicates the ML beyond which bare steel strength controls.
I
AMERICAN INSTiTUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
5"
COMPOSITE
HSS5-HSS4
Table 4-14 (continued)
Available Strength in Fy = 46 ksi
Axial Compression, kips fc = s ksi
Concrete Filled Rectangular HSS
Shape
HSSSxZVzx
V4 V8
HSS4x3x
5/16 V4
(lesigni In.
0.233 0.174 0.116 0.349 0.291 0.233
Steel, lb/ft 11.4 8.78 6.03 14.7 12.7 10.5
Design
Pnlilc
ASD
PalCic
LRFD ASD
'^cfn
LBFD •ASD
Pnliio
LRFD ASD
Pnia,
LRFD ASD
tfcPn
LRFD ASD LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
91.7
90.7
87.8
83,1
76.9
69.6
61.7
53.8'
4^5
39.4
32.7
27.0
22.7
19.4
16.7
14.5
12.8
138
136
132:
125
115
104
92.6
"sors"
69.8
59,2
49,2
40,6
34,1
29.1
25.1
21.9
19.2
76.6
75.8
73.4
69.6
64.5
58,5
52.0
45.2
38.5
32.0
261"
21.6
18.2
15.5
13.4
116
10.2;
9.06
115
114
110
104
96,8^
87.8
78.0
67:8
57,7
4'8.0
m
32:5
27,3
23.3
20.1
17.5
15.4
13.6
60.9
60.2-
58.3
512
51.2^
4^4
41.2
35.7
3^4.:
25.2i
20.e
17,0;
T4.3,
12;2
10.5
9.13
8.03
7.11
91,4
90.4
87.5
82,8
76.8
69.6
61,8
53.6
45.5,
37.9
30,8.'
25,5
21.4
18.2,
15.7
13,7
12.0.
10.7
113 •
112
109
105 >
^9.3
92.5
•84.9
76.6,
68.1
5!9.6
51.3
43;5
36.5
31.1
26.8;
23.4
20.5
18.2
16.2
169
168
164
158
149
139
128
115
102
89.6
77.1
65.3
54.9
46.8
40.3
35,1
30.9
27.4
24.4
98.4
97.6
9^2
91.3
86.1
80.r
73.8
66.9
59.7
52.4
45.4
38.7-
32.6
27.8'
23.9
20.9
18.3
16.2
14.5
148
146
143
137
129
121""
111
100
89.7
78.8
68.2
58.2
49,0
41.7
36,0
31.3
27,5
24.4
21.8
85.9
85.2
83.1
79.8
75.5
70.2
64.2
57.8
51.2
44.7'
39.0"
33.5
28.4 •
24.2
20.9
18.2
16.0
14.1
12.6
11.3.
129
128
125
120
113
105
96.3
86,7
,76,9
"67,2
58.6
50.4
42.7
36,3
31,3
27,3
24,0
21,3
19.0
17,0
MnylClt
(ftiMm kip-ft
(|>oW„y kip-ft
1I0
7:11
18.1
10,7
9.66
5.70
14,5
8.57
7.02
4.10
10.6
6,16
12.3
9.98
18,5
15,0
11.0';
8.89
16,5
13,4
942
7.61
14,2
11,4
P,y{KyLyfnO'
r^y, in.
''mx^ ''my
kip-in.^
kip-in,^
323
100
0.999
1:80
277
85,7
1,02
1,80
221
67.5
1,05
1.81
250
155
1.11
1.27
232
143
1.13
1.27
208
128
1.16
1-27.
ASD
£2c=2.00
LRFD
(t>c=0,75
Note: Heavy line indicates KL/fmy equal to or greater than 200,
Dashed line indicates the KL beyond which bare steei strength controls.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-245
Fy = 46 ksi
= 5 ksi
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
5'
COMPOSITE
HSS4
HSS4x3x HSS4X2V2X
Vie Vs % 5/16 V4 '/16
'designi <n. 0.174 0.116 0.349 0.291 0,233 0.174
Steef, lb/ft 8.15 5.61 13.4 11.6 9.66 7.51
Pesign
Pn/Qa PnlStc 4cP« Pn/Clc PnlQc p„/ac W
Pesign
ASD LRFD ASD LRFD ASD LRFD ASD LRFD fiASD LRFD ASD LRFD
0 72.0 108 : 86.3 103 155 89.0 134 76.6 115 64.0 96.0
1 ?1.5 107 •57.1 85.7 102 153 68.0 132. 75.7 114 63.3 95,0
2 69,8 105 55.7 83.6 98 4 148 Si2 128 73.2 110 61,2 91,9
3 67.1 101 . 53.6 80.3 930 140 •80.7 121 69.1 104 57.9 86,9
4 63.5 95.2 •50.7 76.0 858 129 112 63.8 ,-95.7 53.6 80,4
5 '59.1 88.7, 47.1 70.7 77 5 116 • 67.9
j
102 _57.6_.
.331.
48.5 72,7
g
M
6 54.2 81.3 43.2/ 64.8 684 103 60.3 90,6 50.9 76,5 42.9 64,3
1 7 48.9 73.4 38.9 58.4-. 58 9 88.6 ,514 78.8 44.5 67.0 37.1 55,7
8 43.5 65.2 34.5 51.8 497 74.7 :44.6 67,0 38.2 57.4 31.4. 47,1
9 38.0 57.0 30.1 45.2 40 9 61.5 37.1 55 7 32.1 48.3 26.0 39.0
TO 32.8 49.1 2^.9 38.9 33 2 49.9 30.2.
;
45,4 26.4 39.7 32.3
11 27.7 41.5 21.9 32.8 27.4 41.2 25.0- 37.6 21.8 32.8 17.7, 26.7
£ 12 23.3 34.9 18.4 27.6 230 34.6 21.0 31.6 18.3 27,5 14.9 22.4
13 19.8 29.7 15.7 ^ 23.5 19.6 29.5 17.9 26.9 15.6 23,5 12.7 19.1
"i '
14 17.1 25,6 13.5 20.3 1'6.9 25.4 lg.4 23.2 13.5 20,2 10.9 16,5
g
15 14.9 22.3 11.8 17.6 14.7 22.2 ll4 20.2 11.7 17,6 9.54 14,3
1
16 13.1 19,6 10.3 15.5
-
10.3 15,5 8.38 12,6
Cti
g 17 11.6 17.4 9.16 13.7 . ; V
•w
18 10.3 15.5 8.17 12.3 •i 'r
19 9.28 13.9 7.33 11.0
20 6.62 9.92
?
Properties
i^bMm kip-ft
^l,M„y kip-ft
PexiKMnO'
P^{KyLyf/W
''my, in.
'mltmy
klp-in.^
kip-In.'
0^=2.00
LRFD
c = 0.75
7.58
6.11:
11.4
9.18
178
110
1.19
1.27
5.52
4.41
8.29
6.63
141
86.9
1.21
1.27
10.7
•7.581
16.2
11.4
212
96.1
0.922
1.49'
9.63
6.80
14.5
10.2
197
89.5
0.947
1.48
8.32
i87
12.5
8.82
178
80.9
0.973
1.48
Note: Heavy line indicates equal to or greater than 200.
- Dastied line indicates the M. beyond which bare steel strength controls.
6.72^
4.7a.
10,1
•7.11
153
69.4
0.999
1.48
i
AMERICAN INSTITUTB OF SXEET CONSRAUCNON

4-15(3
DESIGN OF COMPRESSION MEMBERS
5'
Table 4^14 (continued)
Available Strength in
Axial Compression, kips
COMPOS'TE Concrete Filled Rectangular HSS
Fy = 46ksi
fc = 5 ksi
Shape
HSS4X2V2X
Va
HSS4x2x
V8 Vie V4 Vl6 Va
fdesigm in.
0.116 0.349 0.291 0.233 0.174 0.116
SteeMb/ft 5.18 12.2 10.6 8.81 6.87 4.75
Design
ASD
PA
LRFD ASD
Pnlilc
LRFD ASD LRFD ASD
PnlClc
LRFD ASD
^Pn PJClo
LRFD ASD LRFD
g
m-v
S
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
50.8
50.2
48.6
46.0
42.5
38,5
34.0
29.5
24.9
20.6
16.8
13.9
11.7
9.93
8.56
6.55
5.81
76.2
75.3
72.9
68.9,
63.8
57.7
51.1
44.2
37.4
31.0
25.2
20.8,
17.5
14.9
12.8
11,2
9.83
8.71
93.4
91.7
86.8
79.2
69.7
59.2
48.4
38.2
29.4
23.2
18.8
15.5
13.1
140
138
130
119
105
89.0
72.8
57;5
44.2
34.9
28.3
23.4
19.6
81.0
79.6
•75.6
69.5
61.7-
52.9
43.9,
35.1
27.3
21.5
17.4
14.4
12.1.
122
120
114
104
92.7
79.5
65.9
52.8
41.0
32,4
26,2
21,7
18,2
67.5
66.4
eio
58.2
52.1
45.1
37.8
30.7
24.1
19,1
15.5
12.8
•10,7
101
99,5.
"9'4"8"
87,5
78,2
67.8
56.9
46.2
36.3
28,7
23,2
19,2
16,1
56.2
55.3
52.5
48.2
42.8.
BZ.
30.4
25:0
19.9.-
15,7
12.8"
10.5 "
8.86
'7-55
84.4
82.9
78.8
72,3
64.1
55£_
45.6
37.5
29.9
23.7
19.2
15.8
13.3
11,3
44,0
43.3
41.2
37.9
337
29.0
24.1
19.4-
15,1-
11.9
9,65
7,98
6:70
5,71
66,0
64,9
61,8
56.8
50.5
43.4
36,1
29,1
22.6
17.9
14.5
12,0
10,1
8,57
Properties
Mi&ISU
MnylSip-
tf^Mm kip-ft
kip-ft
4.90
3,42
7,37
5,13
9.16
5,42
13,8
8,15
8,27
.4,92
12,4
7,39
7,19
4.27
10,1
6,42
5,85
3.46
8,7S
5,20
4,30
2,52,
6,47
3,79
Pey{KyL,)W
rrny.in,
I'mxll'my
kip-in,2
kip-in,^
123
55,1
1,03
1,49
i173
53,5
0,729
1,80
163
50.5
0.754
1.80
148
46,0
0,779
1,79
128
: 39,6
0,804
1,80
103
31,7
0,830
1,80
ASD
£2^=2.00
LRFD
(tic =0,75
Note: Heavy line indicates KL/fmf equal to or greater than 200,
Dashed line indicates the KlL,beyorid.wliict( bare steel strength controls.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-247
Fy = 46 ksi
fc' = 4ksi
Table 4-15
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS16-HSS14
Shape
HSS16x16x HSS14x14x
Shape
Va Va 5/16 =/8 Vz '/s
'design) in- 0.46S 0.349 0.291 0.S81 0.465 0.349
Steel, lb/ft 103 78.5 65.9 110 89.7 68.3
Design
PnlO-c M PnlQc ^Pn Pfl/Oc ^Pn p„iac ^Pn P«ICic •kPn PnlClc W
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 1040 1550 892 1340 820 1230 977 1460 856 1280 731 1100
6 1030 1540 ^883' 1320 -812 1220. 964 1450 , 845 1270 721 1080
7 1020 1530 ::880 1320 ::808 1210 959 1440 841 1260 717 1080
8 1020 1530 876' 1310 ' 6 0-ff 1210 954 1430 836 1250 713 1070
9 1010 1520 872 1310 801 1200 948 1420 831 1250 709 1060
10 1010 1510 867 1300 •796; 1190 942 1410 '825-- 1240 704 1060
11 1000 1500 862: 1290 /:79i; 1190 935 1400 . 819 1230 698 1050
12 996 1490; ^856 1280 786 1180 927 1390 812 1220 693 1040
13 989 1480 850 1270 • 780 1170 919 1380 805- 1210 686 1030
14 • 981 1470: ^^843 1260 774, 1160 910 1360 797- 1200 679 1020
15 &73 1460. ^836 1250 .767;: 1150 901 135,0 789 1180 672 1010
16 965 1450 828 1240 1140 891 1340 780. 1170 664 996
17 .:-956 1430 821 1230 -753-. 1130 880 1320 771- 1160 656 984
18 • 946- 1420 . 812i- 1220 .745 1120 869 1300 <7611 1140 648 971
£ 19 '937 1410 i .804:- 1210 :737'i 1100 857 1290 751 1130 639 958
f
20 926 1390 |95 1190 728. 1090 845 1270 740 1110 629. 944
.1 21 916 1370 785 1180 719 1080 833 1250 729 1090 620 930
§ 22 905 1360 775 1160 710 1070 820 1230 718 1080 610 915
£ 23 894 1340. 765 1150 :70J; 1050 807 1210 706 1060 600 900
24 882 1320 fss 1130 691 1040 793 1190 694 1040 589 884
25 870 1300 744 1120 : 681 1020 780 1170. 682 1020 579 868
26 857 1290 7ZZ-1100 671 1010 765 1150 669 1000 568 852
27 845 1270 722 1080 660 990 751 1130 657 985 557 835
28 832 1250 ,•711 1070 649 974 736 1100 644 965 545 818
29 8t9 1230 •699 1050 638 958 721 1080 630. 946 534 801
30 -806. 1210. ?i87 1030 627 941 706 1060 617 926 522 784
32 778 1170 .i63:. 994 605 907 .§75 1010 590 885 499 748
34 749 1120 638 957 581 872 644 966 562 843 475 712
36 •720 1080 613 919 557 836 612 918 534 802 451 676
38 691 1040 587: 880 533 800 §80 870 506 760 426 640
40 661 992. 561 841 509 764 549 823 478 718 402 604
Properties
M i (j)j,W„
ki p-fl 422 634 498 life.: 425 378 569 316/ 475 248 373
PMfm' kiprin.^ 44500 37100 33200 32700 28400 23600
nc=2.00
LRFD
<t)c = 0.75
AMERICAN INSTITUTE OF STEEI:, CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
Table 4-15 (continued)
Available strength in
Axial Compression, kips
Fy = 46 ksi
fc' = 4 ksi
COMPOSITE ^ ^^
HSS14-HSS12 Concrete Filled Square HSS
Shape
HSS14x14x HSS12x12x
Shape
«/l6 «/8 V2 ®/l6 V4
Wignt id' 0.291 0.581 0.465 0.349 0.291 0.233
SteeMb/ft 57.4 93.3 76.1 58.1 48.9 39.4
Design
PnlClc M PalClc PnlOo « p„iao Pn/Oc W Pn'Qc
Design
ASD LRI=D ASO. LRFD ASD LRFD ASD LRFD • ASD LRFD ASD LRFD
0 667 1000 790 1190 ; 689 1030 585- 877 -530" 795 474 712
6 658 987 776 1160 1010 575 862 ^20 780 466 698
7 655 982 771 1160 672 1010 571 856 "517, 775 462 694
8 651 976 766 1150 i 667 1000 ; 567 850 .513 769 459 688
9 647 970. 759 1140 m- 993 : 562' 843 508 762 455 682
642 963 752 1130 656 984 556 835 503 • 755 450 675
11 637 955 744 1120 649 973 551 826. .498- 747 445 668
12 631 947 736 1100 963 544 816 492- 738 440 660
13 625 938 727 1090 634:: 951 537, 806 486. 729 434 651
14 -619 929 717 1080 626! 938 530 795 -479- 719 428 642
15 • 612 918 707 1060 925 • S23 784 472 709 422 633
16 605 908; 696 1040 •.607- 911 515, 111. '465, 697 415. 622
& 17 597 896: 685 1030 698. 896 : 506 m- 457 686 408' 612
18 690 884; 673 1010 587 881 497 746. 449- 674 601
19 581 872 661 991 577 865 488 732 '441-7 661 39^, 589
20 573 859 648 972 566: 849 "479 718 432" 648 38| 577
21 564 846 635 953 555 832. •489 703 423 635 377 565
22 555 832 622 933 543 r 815 459 688 414-. 621 368': 552
£ 23 545 818 608 912 531: 797 449 673 4050 607 360'. 539
24 536 803 594 891 519 779 438 657 395:- 593 351 526
25 526 788 580- 870 . W 760 428 641 385' 578 342 513
26 516 773 565 848 : 494 741 417 625 375 563 333 499
27 ! 505 758 551 826 482 722 406 609 365- 548 324 486
28 495 742 536 804 469 703 395 592 355 533 315 472
29 484 726 521 781 456 684. 384 57£ 345" 518 305 458
30 .m 710 506 759 443 664 373 559 335 502 296 444
32 677 476 714 417^ 625 • 350 525 314;,. 472 277 416
34 429 644 446 669 390. 586 §28 491 294< 441 259 388
36 407 611 416 624 365 547 305 458. 274 . 411 240 361
38 ,385 577 386 580 339 508 284 425 254 381 223 334
40 363 544 358 537 314 471 262: 393 234. 352 205 308
Properties
klp-ft 319 27Q_ 406 226 339 176' 268 153' 230 • K6.'
190
PemW kip-in.2 21100" 19200 16900 14100 : 12500 10900
LRFD
Qc; = 2.00
(t'c
= 0.75
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-249
Fy = 46 ksi
fc' = 4ksi
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS10
HSSIOxlOx
anape
Ve 1/2 Vl6 V4 3/16
fdeslgmin. 0.581 0,465 0.349 0.291 0.233 0.174
Steel, lb/ft 76.3 62.5 47.9 40.4 32.6 24.7
Design
PnlUc <kPn
Pfl/Hc ^Pn P„IQc ^aPi, P^IQc ^cPn p„iac Pniao M
Design
>ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 ! 615 923 535 803 451 676 406 609 361 541 314 471
6 '599 899 522 782 439 659 . 396 593 351 527 305 458
7 •'594 891 517 775 435 653 392 588 348 522 302 453
8 587 881 511 767 .430 646-. 388 581 344 516 299 448
9 580 870 505 758 425 638 383 574 340 509 295 442
10 572 859- 498 748 420 629 378 567 3?5' 502 291 436
11 564 846 491 736 413 620 372 558 330 495 286 ; 429
12 554 832 483 725 407 610 366 549 324 486 281 421
13 545 817 474 712 399 599. : 35^ 539 318 477 276 413
14 534 801. 465 698 392 588 352 529 312 ' 468 270 405
15 523' 784 ^456 684 .384 576 345- 518 305 458 2M 396
16 511 767 ,446 669 '376 563 337 506 298 448 258 387
17 .499 749. 436 653 367 550 330 494 291 437 251'' 377
18 •487 730 .425 637 358 537 321 482 284 . 426 245 ^ 367
19 •474 711 414 621 . 348 523 313 469 276 -' 414 238; 357
20 461 691 403 604 •-339 508 ?04. 456 268 402 231 ~ 346
21 .447 671 391 587 329 494 295 443- 260 390 224" 335
22 •434- 650 379 569 319 479 :: 286: 429 252 • 378 216;, 325
23 •420 630 ,367 551 309 464 « 277 416 244. 366 209 313
24 406 609 355 533 299 449 ; 268 402 236 . 353 202 302
25 392 587 343 515 -?89 433. : 259 388 227 341 194 291
26 '377 566 331 496 279 418 249 374 219 328 187 280
27 363 545 319 478 .268 402 240 360 210 . 316 179 269
28 349 524 306 459 258 387 230 346 202 303 172 258
29 335 503 294 441 248 372 ; 221- 332 184 ^ 291 164 247
30 321 482 -282 423 -238 356 . 212') 318 185 278 157- 236
32 294 440 258 387 217 326 194 291 169 254 143 214
34 •267 400 235 353 198 297 ^ i76i 264 153 i 230 129 194
36 "W "364" 213 319 :179 269 159 239 138 , 207 116 173
38 219 329 191 287 i161 242 143- 214 124 186 104 156
40 198 297 173 259 145 218 129 193 112 168 93.7 141
Properties
<1. ^bMn kip-ft "179- 27.0 15r 227 120 180 : 103 155 129 66 3 99.7
PeiKmO" kip-in.^ 10300 9070 7640 6780 5880 4920
_ ASD LRFD Note: Dashed line indicates the M beyond which bare steel strength controls.
nc=2,oo
<t)c = 0.75
Note: Dashed line indicates the M beyond which bare steel strength controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-250
DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS9
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy = 46 ksi
fc' = 4 ksi
HSS9x9x
:>nape
% Vz % 5/16 V4 'In
'desijn, in-
0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 67.8 55.7 42.8 36.1 29.2 iZ2
Design
M fePfl P„IQ.c P^IClc
Design
ASD LRFD ASD LRFD ASD LRFD .ASD LRFD ASD LRFD ASD LRFD
0 534 801 462 693 388 583 349 523 308 463 267 400
6 .517 776 448;. 672 376 565 3k 506 •299 448 258 387
7 511 766 ' 443 664 372 558 334 501 295 , 443 255 382
8 '504 756 437 655 367 551 329 494 291 f' 437 251 377
9 ,496 745- 430 646 362 543 324 487 287 430 247 371
10 488 732 423 635 356 534 319 479 282 • 423 243 364
11 479 718. 416 623 349 524 313 470 277 415 238 357
12 '^169 704 407 611 343 514 307 460 271 406 233 350
13 459 688 ; 398 598 335 503 300 450 265 397 228 342
14 .448 671 389 583 327 491 293 440 259 388 222 333
15 436 654 379 569 319 : 479 286 429 252 378 216 324
16 -424 636' 369: 553 311 466 278 417 245 367 210 315
£
17 '412 617 358 538 302 453 270 405 m 357 204 305
1, 5
18 399 598, : 347:; 521 .293 439 262 393 230 346 197' 296
19 386 579 •336 505 283 425 254 380 223 • . 334 190 286
20 372 559 325 487 274; : 411 245 367 215 323 184 275
21 359 538 313 470 264 • 396 236 354 207 311 177 265
22 345 518 ,302 453 255 382 227 341 200 299 170 255
£ 23 .332 497. 290 435 245 367 219 328 192 • 287 163- 244
24 W "478" 278 417 235 352 210 315 l84 ^ 276 156 234
25 305 459 267 400 225 338 201 301 176 264 149 223
26 292 439 255 382 215 323 192 288 168 , 252 142 213
27 280 420 243 365 •206 308 183 275 160 240 135 203
28 267 401 232 348 •196 294 175 262 152 229 128 192
29 255 383 220 331 186 280 166, 249 145 217 122 182
30 242 364 209 314 177 266 158 236 137' 206 115 • 173
32 218 328 188 281 159 238 141 212 123 184 102 154
34 195 293- 167 250 141 212 126 188- 109 163 90.7 136
36 174 262 149 223 126 189 112 168 97.1 146 80.9 121
38 156 235 133 200 113 170 100 151 87.2 131 72.6 109
40 '141 212 120 181 102 153 90.7 136 78.7 118 65.5 98.3
Properties
M, 'U, 4bMn kip-ft 142 213 180 95 2 143 81.9 123" 68.0 102 53.1
79.8
PMLflW kip-in.^ 7140 6330 5360 4770 4130 3440
ASD LRFD Note: Dashed line indicates the KL beyond which bare steel strength controls.
£1c=2.00 = 0.75
Note: Dashed line indicates the KL beyond which bare steel strength controls.
V AMERICAN INSTITUTE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-251
Fy = 46 ksi
fc' = 4 ksi
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS8
HSS8x8x
5/6 Vz VB 5/16 V4
'design, in. 0.581 0.465 0.349 0.291 0,233
Steel, lb/ft 59.3 48.9 37.7 31.8 25.8
PalQc .^cPn PalS^c PJiic ^Pn p„/ac
Design
ASD LRFD ASD LRFD ASO LRFD ASD LRFD ASfi- LRFD
0 456^. 684 395 593 330-; 494 295 442 260 390
6 438. 656 379 569 317 475 283 425 249 374
7 43J- 646 374 561 312 468 279?;:; 419 246 369
8 424 635 368- 551 307. : 461 27§oy 412 242 363
9 415 623 361 541 301 452 mi : 404 237 356
10 406; 609 353 529 295. 443 ;264! , • 396 232 348
11 396 596 34S 517 288 • 433 258 387 227 340
12 386' 581 336. 504 281- 422 377 221 , • 331
13 376; 565 326 490 273. ~ 410 367 215 322
14 365: 549 317-. 475 265 398 •zmi:'-356 208 312
15 354 532 306. 460 257^^ 386 '2® . : 345 202 302
16 342 514 296 444 248 373 222. 333 195 292
17 330 496 285 428 239 359 21:4: :' 321 188 281
s

18 318 j 478 274" 411 230 346 206 309 180 : 271
£
r
19 306: 459 263 394 221- 332 198 297 173;; 260
c
1
p
20 '293i 440 251- 377 212- ' 318 284 166 1 248
21 280 421 240 360 202= 304 181- 271 158 237
22 267, 402 229- 343 193 290 .112' , 259 151 226
5 '
23 255 383 217- 326 184 275 164 = 246 143::r 215
24 242 • 364 206 309 174 ' 262 156 234 . 136 : 204
25 230 345 195 293 165 • 248 148- ; 221 129 193
26 217 326 184 276 156 • 234 139 209 121 182
27 205 308 173 260 147 221 131 197 114 172
28 193 290 163 246 139 208 -124 186 108 151
29 182 273 .154 231 130 195 116 174 101 151
30 i7Q • 256 •145 217 122 182 109 163 94.2 141
32 •149 . 225 127 191 107 • 160 95.4 143 82.8 124
34 -132 199 113 169 94.6 142 .84.5 127 73.3 110
36 118 177 100 151 84.4 127 75.4 113 65.4 98.1
38 106 159 90.2 136 75.8; 114 67.7 101 58.7 88.0
40 ' 95.6 144 81.4 122 .68.4 103 '61.1 91.6 53.0 79.4
Properties
ifl,M„ kip-ft 108 163 91.9 138 1 73.4 110 63 5 95.4 52 7 79.3
PeiKLfno' kip-in.^ 4730 4220 1 3590 3210 '2780
ASD LRFD Note: Dashed line indicates the KL beyond which bare steel strength controls.
Qc = 2.00 (!,<; = 0.75
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS8-HSS7
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy = 46 ksi
fc = 4 ksi
HSS8x8x HSS7x7x
Vie «/s V2 % V16
fdeslgn, in- 0.174 0.581 0.465 0.349 0.291
Steel, lb/ft 19.6 50.8 42.1 32.6 27.6
Design
PnlClc •fcP/i Pn/Clc ^cPn PnlClc « M p„/ac «
Design
ASD LRFD ASD LRFD 'ASD LRFD ASD . LRFD ASD LRFD
0 223 335 386 580 329 494 274 410 244; 367
6 2T4 321 366 550 3t2f: ; 468 260-. 390 232 ' 348
7 211 316 359 540 305 i 459 ' 255 382 228 342
8 207 311 351 528 299; 449 249- 374 223 334
9 203 304 343 515 292g ' 437 243 365 218- 326
10 199- 298 333 501 2^:' • 425 .237 355 212 317
11 194 291 323 486 m": 412 229 344 '205-^ 308
12 189 283 313 470 265E- 398 222 333 199 298
13 183' 275 302 453 256 383 214 321 192 -287
14 178 266 290 436 245 - ; 368 206 309 184 276
15 172- 258 278. 418 235;:; 352 197. 296 177 ' • 265
16 166- ' 248 266 399 TML 337 188' 283
169 'v
253
17 159 239 253. 381 320 180 269 161 242
18 153 230 241 ' 362 203 > 305 171 256 153 ' '230
s 19 147. 220 228 343 193 V ; 290 162 ' 243 145 218
20 140 210 215 324 182-': 274 153- 229 'l37,-:r 206
21 134 200 203 305 259 144'- 216 129 194
22 127 191 191 287 1625 ; 244 135^ 203 122 182
23 121. 181 179 268 152 229 127 190 114 : .171
24 1T4 171 167 251 II3V: 214 US 177 106 160
25 108 162 155 233 li3i : 200 1-10 165 99.2 149
26 102' 152 144 216 124 ; 186 102 153 92.0 138
27 95.6 143 133 201 115 i 173 94.6 142 • 85.3 128
28 89.6 134 124 186 107 161 88.0 132 79.3 119
29 83.7 126 116 ,1 174 ;!09.6' 150 82.0 123 73.9 111
30 78.2 117 108 i 162 ' 93ji;, 140 76.B 115 • 69.1 104
32 -68.8 103 95.0 143 123 67.4 101 60.7 91.1
34 60.9 91.4 -.84.1 126 109 59.7 89.5 ' 53.8 80.7
36 • 54.3 81.5 < 75.1 113 6i6 97.1 53.2 79.8 48.0 72.0
38 48.8 73.1 . 67.4 101 58.0 87.2 47.8 71.6 43.1 64.6
40 44.0 66.0 60.8 91.4 52.3 78.7 43.1 64.7 38.9 58.3
Properties
M„/Ci„' kip-ft 4t3 62.0 •79.5' 120 •679 102 W 82.2 •47.-4 715
Pe(KL)W kip-in 2310 2970 2650 2270 2040
ASD
0^ = 2.00
LRFD Note: Dastied line indicates tlie KL beyond wliicli bare steel strengtti controls.
itic = 0.75
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-253
Table 4-15 (continued)
Fy = 46 ksi Available Strength in
fc - 4 ksi Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS7-HSS6
HSS7x7x
V4 Vl6
1/8C,f
Va Va
fdeslgn. in. 0.233 0.174 0.116 0.581 0.465
Steel, lb/ft 22.4 17.1 11.6 42.3 35.2
p„/ac P„ICic p„/ac ^cPn Pn/Clc ^cPn PnfCi, ^Pn
Design
^ASD LRFD ASD LRFD m LRFD ASD LRFD LRFD
0 214. 322 183 274 : 226 322 484 268 403
6 203 305 173- 260 142 ' 213 299 450 250 376
7 200 299 170 255 139 209 291 438 244 367
8 195 293 166. 249 136 204 283 425 237 356
9 191, 286 162 243 132 ' 199 • 273 410 229 344
10 185 278 157 236 129^ 193 262 394 221 332
11 180 270 152 229 124 187 : 251 378 212 319
12 174 261 147 221 120. 180 24p. , 360 ^ 203 305
13 168- 251 142 213 lis. 173 228 342 193' -290
14 .161 242 136. 204 110 ' 166 215 324 183 275
15 155 232 1'3l' 196 106 158 203 305 173 260
16 148 222 125 187 100 151 190 286 163:^ 245
E,
17 'm 211 178 95.4' 143 178 267 153« 230
a 18 1134 201
11§
169 90.2 135 165. 249 143 -215
e 19 •127 190 1'Q7 160 85.1 128 153 231 isj 200
f
20 180 100 151 •80.0 120 142 213 185
•1
21 169 94.5 142 Z5.0 113 130 196 •114 • 171
g 22 106 159 ^ 88.7 133 70.1 105 119 179 104 ; 157
£ 23 .;99.3 149 J'8'2.9 124 65.3 97.9 109 163 95.6i 144
24 139 77,3 116 60.6 90.9 99;8 150 87.8 132
25 86.3 130 71.8 108 56.0 84.0 92.0, 138 80.9 122
26 80.0 120 66,4 99.6 51.8 77.6 85.1 128 ^ 74.8 112
27 74.2 111 61.6 92,4 = 48.0 72.0 78.9 119 69.4 104
28 69.0 103 .57.3 ^ 85.9 44.6 68.9 73.4 110 64.5 96.9
29 64.3 96,5 53.4 80.1 41.6 82,4 68.4 103 60.1 90,4
30 60.1 90.1 74.8 3&.9 58.3 96,0 56,2- 84,4
32 52.8 79.2 '43.8 65.8 ' 34.2 51,2 56.2 84,4 49.4 74,2
34 46.8 70.2 38.8 58.3 30.3 45.4 49.7 74,8 43.7 65,7
36 41.7 62.6 34.6 52,0 27.0 40.5 44.4 66.7 39.0 58.6
38 37.5 56,2 .31.1 46.6 24.2 36.3
40 33.8 50.7 28.1 42.1 21.9 32.8
Properties
kip-ft
30.,
59.3 3:1.0, 46,6 , 21 7 32,7 55 3 83,2 47 8 71.8
PAKLflW kip-in.® 1780 1470 • 1150 1720 1550
ASD LRFD ' Shape l3 noncompact for compression with f, = 46 k si. 'Shape IS noncompact for flexure with Fy= 46 ksi.
<t>c
= 0.75
Note: Heavy line indicates KL/r,,,, equal to or greater than 200.
iic = 2.00
<t>c
= 0.75
Dashed line indicates the KL beyond which bare steel strength controls.
HSS6x6x
i
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS6
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy = 46 ksi
= 4 ksi
HSS6x6x
»nape
% 5/16 V4 V16 Vs
^desfgm
0,349 0.291 0.233 0.174 aii6
Steel, lb/ft 27.5 23.3 19.0 14.5 9.86
D^ign
Pnliic i/cP, Pn/Cic <kP« PttfQa Pn(ao (f'cPn M
D^ign
ASD LRFD ASD i LRFD ASD LRFD ASD LRFD ASD LRFD
0 222. 333 198f 297 173 ^ 259 146:: 219 119 178
6 206 .: : 310 184' , 276 161, 241 136' 204 110 165
7 201^ ^ 302 179 • 289 157 235 5132 198 107 181
8 195 - : 293 261 152i : 228 128 192 104 156
9 189 ' 283 168- 253 147 221 124 ^ ' 186 100 150
10 182 ' : 272 162 243 142^ : 213 119 179 96.2 144
11 174' • 261 156 233 13^ ; 204 114' 172 92.0 138
12 166 249 223 130 : 195 109 164 87.7 132
13 158 ; 237 141 : 212 124 ; 186 Ib4- 156 83.2 125
14 150 225 134' 201 lit 176 M.5 148 78.7 118
15 141:- ; 212 W' 190 lii' ; 166 gl'O 139 74.0 111
g 16 133i ; 199 : 119 179 104' 156 8f:4 131 69.4; 104
d
17 124 186 i12 167 97.7 147 81,8: 123 64.7. 97.1
*
jf
18 116 . 174 104 ! 156 91.3 137 114 60.1 90,2
19 108 j 161 96.7 • 145 127 : 7Q:8 106 55.6" 83.5
1
20
.JM. .Ji?...
• 89.5 134 78.6 118 65:5; 98,2 51.3; 76.9
1
21 01.8. 138 J sis, 124 72.5 109 60.3 90.5 47.0: 70.6
£ 22 84.7 .127 ,'75.7 114 99.8 82,9 42.9, 84.4
UJ
23 .77.8; 117 ' 69.2 104 ,60.9 91.4 75.9 39.3 58.9
24 . 71.4 107 ,63.6 95.4 , 55.9 i 83,9 69,7 36.0 54.1
25 65.8; 98.9 87.9 51.5' 77.3 ' 418 64.2 33.2 49.8
26 • ^0.8 ; 91.4 54.2 81.3 47.7 71,5 : 39.6 59,4 30.7 46.1
27 , 56.4 84.8 50.2 75.4 ! 44.2 66.3 '36.7 55.0 28.5 42,7
28 52.5^ 78.8 ; 46.7 70,1 41.1 61.6 ••34.1 51,2 26.5 39,7
29 46.9 • 73,5 43.6 65.3 38.3 57,5 318 47,7 24.7 37,0
30 45.7 68,7 40,7 61.0 ;35.8! 53.7 29.7 44.6 23.1 34,6
32 ; 40.2 60.4 35.8 53,7 31.5 47,2 26.1 39.2 20.3 30,4
34 35.6 53.5 47.5 27.9 41.8 23.1 34,7 18,0 26,9
36 31:7 47.7 28.3 42.4 24.9 37.3 20.6 31,0 16.0 24,0
38 28.5 42.8 •25.4 38.1 22.3 33,5 18.5 27,8 14.4 21,6
Properties
Mn/Qi <lit,M„ kip-ft 38.7-; 58.2 :;33.7i 50 ( 28 2 42,4 22.2 33,4 m^ 23,6
Pem'nO' .kip-in.2 1330 1200 1060 879 682
ASD LRFD Note: DasHed line indicates ttie KL beyond whicH bare ^eel strengtli controls.
fic = 2.00 ({1^=0.75
Note: DasHed line indicates ttie KL beyond whicH bare ^eel strengtli controls.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-255
Table 4-15 (continued)
Fy = 46 ksi Available Strength in
fc = 4 ksi Axial Compression, kips
COMPOSITE
Concrete Filled Square HSS HSSSVZ-HSSS
HSS5V2X5V2>.
;>napi:
Va =/l6 V4 3/16 V8 V2
fdesigm 0.349 0.291 0.233 0.174 0.116 0.465
Steel, lb/ft 24.9 21,2 17.3 13.3 9.01 28.4
Design
Pa/Oc Ptt/Oc PnlCic ^cPn PnlQc ^Pn
Design
ASD LRFD Asn LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 197 .; 296 176 i 263 153' 229 129.: 193 . 104 f -156 217 326
t 197;; 295 175 . 263 152: 229 128 192 103 : 155 216 325
2 195 . 293, 174 261 151 227 127 191 :103 154 215 322
3 193 290 172 258 150^ 224 126 189 101 . 152 211 318
4 190 285 169 . 253 1.47; 221 124 186 : : 99.7' 150 207 311
5 186.: 279 165 ; 248 144: 216 121 182 : : 97.5: 146 202 303
6 271 161 242 1-40 211 118: 177 94.9 142 195 294
7 175: 263 156 234 136 204 115 172 91.9 138 188 283
8 169: 254 151 226 131 197 m:-: 166 88.6 133 180 271
9 162-: 243 145 217 126 189 106 159 84.9 127 171 257
10 155: 232 138 : 208 121 1.81 102-; 152 . 81.0 122 162 244
11 1.47 221 132^5 198 115 173 96.6 145: 76.9 115 152 229
12 139 209 125;:: 187 109 164 91 ;5 137 .72.7. 109 142 214
£
I
13 131., 197 118: . 176 103 : 154 86.3 129 : 68.3 103 132 199
14 123; 184 110, 165 96.? 145 80,9 121 63.9 95.9 122 184
1
15 iiffi 172"" 103 154 (90.2 135 75.6 113 5Q.5: 89,3 112 169
16 107: 161 95;6 143 83.9 126 70;2 105 SS.t: -82.7 103- 154
17 99.2 149 88;4 133 '77.6 116 65.0 97.5 50.8 76.2 93.2 140
18 .91.7 138 81.3' 122 71.5 107 59.8 89.7 46.6: 69.9 84.1 126
19 .':84;5 127 74.5 112 65.6 98.4 54.8 82.2: 42:5; 63.8 75.5 113
20 •77.4 116 67:8 102 59.9 89.8 50.0 74.9 38.5 57.8 68,1 102
21 70.5 106 61.6 92.7 54.3 81.4 45.3 68,0 35.0, 52.4 61.8 92,9
22 64.2 96.5 56.2 84.4 :49.6 74.2 41.3 61,9 31.9 47,8 56.3 84.6
23 58.7 88,3 51i.4 77.2 . 45.3 67.9 37.8 56.7 29.1 43,7 51.5 77,4
24 :53;9 81.1 47.2. 70.9 41.6 62.3 34.7 52,0 26.8 40.1 47.3 71,1
25 49:7 74.7 43;5: 65,4 :38.3 57,5 32.0 48.0 24.7 37.0 43.6 65,5
26 .46.0 69.1 40,2 60.4 35.4 53,1 29.6 44.3 22.8: 34,2 40.3 60,6
27 42.6 64.1 37.3 56.0 32.8 49.3 27.4 41.1 21.1- 31,7 37.4 56.2
28 39.6 59.6 34.7 52.1 30,5 45.8 25.5 38.2 19.7 29.5 34.8 52.2
29 '36:9 55.5 32.3 48.6 28.5 42.7 23.8 35.6 18.3 27.5 32.4 48.7
30 34.5 ' 51.9 30.2 45,4 26.6 39.9 22.2 33.3 17.1 25.7 30.3 45.5
Properties
Mr kip-ft 31 9 48.0 27.9 41.9 35.1 18:4 27.6 13.0' 19.6 31.3 47.0
PeiKLfnO" kip-in. 986 891 786 656 506 813
'MO LRFD Note: Dashed line Indicates the KL beyond which barf ! Steel strength controls.
£ic=2.00 fc = 0.75
Note: Dashed line Indicates the KL beyond which barf ! Steel strength controls.
HSS5x5x
t
i
AMERICAN INSTiTuTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS5
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy = 46 ksi
fc' = 4 ksi
HS.S5X5X
bnape
3/8 =/l6 V4 3/16 Va
<(1681911, in.
0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 22.4 19.1 15.6 12.0 8.16
Design
•t-cfli' Pnliic ^cPn (fcPn Pniao
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 260 154 i 231 134 : 201 168 89.9 135
1 :f73 259 154 : 230 133 200 'lis; 168 89,7 134
2 .17V 257 152 228 132 198 166 88,9 133
3 169 253 150. i 225 130 196 :i09^! 164 87,6 131
4 165 248 147 221 128.^- 192 107 , 161 85.8 129
5 •161 242 143 ; 215 125 187 ;i04: 157 83.5 125
6 156 234 139 1 208 121 i 181 152 80.9 121
7 150 225 134 ' 200 116 175 97:6 146 77.8 117
8 144- 215- 128 , 192 111 . 167 93,5 140 74.4 112
9 1:37: 205 122; 183 106: 159 89.1 134 70.8 106
10 •"129"" '19?."" 115 173 101.0 151 ' 84.5 127 66.9 100
11 .122;- 183 109' ! 163 94.8 142 : im 119 62.9, 94.4
E
12 172' 102 152 88.8 133 74:5 112 58.8- 88.2
St
13 : 107 ' 160 94.4 142 82,7^ 124 ; 69.4 104 54.6' 81.9
t
14 98.9 149 87.3 131 76.65 115 : 64.3 96.5 50.4? 75.6
O)
J '
IS 91.3 137' 80.3: 120 :7b.5. 106 59:2 88.8 46.3'; 69.4
0>
16 . 83.8 ,126 73:4: 110 64S 96.8 : 54.2 81.4 42.2; 63.4
1 17 76.4 115 ~66"r •"00"" 58.8 88.1 49.4 74.1 38.3; 57.5
s 18 i69.4 104 60.7 91.3 53.2 79.8 : :44.-7 67.1 34.5; 51.8
19 '62.5 . 93.9 .54.9' 82.5 :47:8 71.7 60.3 • 31.0 46.5
20 56.4 84.8 49.6 74.5 43.1 64.7 36.3 54.4 28.0 41.9
21 51,2 76.9 44.9 67.6 39:1, 58.7 32.9 49.3 25.4 38.0
22 46.6 70.0 41.0 61.5 35.6 53.5 30.0 45.0 23.1 34.7
23 42.6 64.1 37.5 56.3 32:6 48.9 ; 27.4 41.1 21.1 31.7
24 39.2 58.9 34.4 51.7 29.9 44.9 "25;2 37.8 19.4 29.1
25 36:i 54.2 31.7 i 47.7 27:6:; 41.4 23.2 34.8 17.9 26.8
26 ; 33.4 50.2 29,3 44.1 25:5, 38.3 21.5 32.2 16.5 24.8
27 . 30.9 46.5 27.2 40.9 23,7: 35.5 19.9 29.8 15.3 23.0
28 28.8 43.2 25.3 38.0 22,0 33.0 : 18:5 27.8 14.3 21.4
29 26.8 40.3 23.6 35.4 20.5 30.8 ,,17:2 25.9 13.3 19.9
30 25.1 37.7 22.0 33.1 19.2 28.8 16.1 24.2 •12.4 18.6
Properties
<t't>M„ kip-ft 25.7 38.6 -.22.5 ; 33.7 -18,9, 28.4 l4 9 22.5 10.6 16.0
PSLfm' kip-in.2 708 641 566 476 367
ASD
£2c = 2,00
LRFD Note: Dashed line indicates the KL beyond which bare steel strength controls.
(|)c = 0.75
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-257
Fy = 46 ksi
fc' = 4 ks i
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS4V2
HSS4V2X4V2X
Shape
VJ VB 5/16 % V16 Va
'deslgm 0.465 0.349 0.291 0.233 0.174 0.116
Steel, Ib/ft 25.0 19.8 17.0 13.9 10.7 7.31
PalO.0 PnlQc P„IQ.c VHc kPn P„IQc tfcPn
Design
ASD LRFD ASD^ LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 191 5 '28"8" ill" '227" 134 200 ll6 ^ 174 96.7 145 76.9 115
1 287 150 226 133 200 115 -173 196.3' 144 76.7 115
2 .189 283 !'149 224 132 198 114 171 .'95.3 143 75.8 114
3 185 : 278 146 ; 220 129 194 112 ' 168 93.7 140 74.5 112
4 180 271 143 215 126 189, no 164 91,4 137 72.6 109
5 174 262 ,138 . 208 122 : 183 106 159 88.6 133 70.3 105
6 :m , 252 133 f 200 117 176 102 153 85.2; 128 67.6 101
7 159 : 240 127 191 112 168 97.4 146 :81.5 122 64.5 96.8
8 ;151 227, 121 182 106 159 • 92.4 139 ,77.3:= 116 61.1 91,7
9 ail 213 114 ; 171 . 99.8 150 87.0 130 72.9 109 57.5 86,2
10 ilk . 198 107 160. 93.2 140 81.3 122 68.2 102 53.7 80,5
e
11 122 183 99.2 149 86.4 130 75.5 113 63.4 95.0 49.8 74.7
! : 12 112 168 ; 91.5 138 "79'.6' 120 69.6 104 58.5 87,7 45.8 68.7
13 102, 153 83.9 126 73.2 110 63.7 95.5 53.6; 80,4 41,9 62.8
33
14 92.0 138 76.4 115 . 66-8 100 57.9 86,8 48.8 732 38.0 57.0
01 1
15 124 ;69.1 104 60.6 91.1 52.2 78.3 44.1 . 66,1 34.2 51.3
s
16 ;.73.5 110 , 62.0 93.2 54.7 82.1 , 46.8 70.2 39.6; 59,3 30.6 45.9
17 /•'65.1 97.8 . 55.2 83.0 48.8 73.4 4i.5 62.4 35.2, 52,8 27.1 40.7
18 ;58;o 87.2 49.2 74,0 43.6 65.5 37.0 55.6 31.4:i 47,1 24.2 36,3
19 78.3 , 44.2 66.4 39.1 58.8 33.3 49.9 28,2 42,2 21.7 32,6
20 47.0 70.7 39.9 59.9 3^3 53.0 'To!' •"45T 25.4. 38.1 19.6 29,4
21 42.6 64.1 . 36.2 54.4 32.0 48.1 27.2 40.9 23.1 34.6 17.8 26,7
22 38.9 58.4 33.0 49.5 29.2 43.8 : 24,8 37.3 21.0 31,5 16.2 24.3
23 35.5 53,4 30.2 45.3 26.7 40.1 22.7 34.1 19.2 28,8 14.8 ???
24 ' 32.6 49.1
: 27.7 41.6 24.5 36.8 20.8 31.3 17.7 26,5 13.6 20,4
25 3ai 45.2 ; 25:5 38.4 22.6 34.0 19.2 28.8 16.3 24.4 12.6 18,8
26 27.8 41.8 23.6 35.5 20.9 31.4 17.8 26.7 15.0 22,6 11.6 17.4
27 21.9 32.9 19.4 29.1 16.5 24,7 13.9 20,9 10,8 16.1
28 18.0 27.1 15.3 23,0 13.0 19.5 10.0 15.0
29 12.1 16,1 9.33 14.0
Properties
wynr M„ kip-ft LMS: 36.5 ; 20.2 30.3 17,7 26.6 15,0 22.5 11.9 17.8 8.49 12,8
Pe(KLfn!f
kip-in.2 558 491 446 394 334 258
ASD LRFD Note: Heavy line indicates Tft/r equal to or greater than 200.
He =2.00 = 0.75
Dashed line indicates the /ft beyond which bare steel strength controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-258 DESIGN OF COMPRESSION MEMBERS
Table 4-15 (continued) Table 4-15 (continued)
'4 Available Strength In Fy = 46ksi
Axial Compression, kips
Concrete FHIed Square HSS
ff _
COMPOSITE
HSS4
Axial Compression, kips
Concrete FHIed Square HSS
'c =
t ^s^
Shape
HSS4x4x
Shape
V2 '/8 5/16 V4 Vie VB
tesigm in-
0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 21.6 17,3 14.8 12.2 9.42 6.46
PnlQc ^cPn PnlCic p„iac i^cPn PnlCic Pa/Oa Pn/ac i^cPn
uesigii
!.ASD; LRFD ASD LRFD ASP LRFD ASD LRFD ASD LRFD ASD LRFD
0 •166 249 132 198 114 171 mf: 148 82.0 123 64,8 97.2
1 .165 248 131 197 114 170 98.2 147 ,81.6 122 64.5 96,8
2 .163 244 129 194 112 = 168 •96.9 145 80.5 121 63.7 95,5
3 159 239 : 126 190 109 164 •94.7 142 78.8;: 118 62.2 93.4
4 153 231 123 184 106 159 91.8' 138 76.4 115 60.3 90.5
5 147 . 221 118' 177 .1.02__ 88.1 132 73.4^ 110 57:9 86,9
6 139 209 112 ' 168 96.5 145 83.8 126 69.9 i 105, 55.1 82,7
7 131 196 106 159 91.2 137 79.1 119 • 66.0' 99,0 52.0 78,0
8 121 182 98.8' 149 85.4 128 73.9 111 61.8 i 92,6 48.6 72,9
9 112 168 91.6 138 79.3 119 ;68.4 103 57.3' 85,9 45.0 67,5
10 102 153 84.1 126 73.0 110 62.8 94,2 52.7 • 79.0 41.3 62.0
g 11 • 92.0 138 76.5' 115 66.6 100 57.1 • 85.7 48.0 72.0 37.6 56,4
! 12 • 82.2 124 69.0 104 60.3 90,6 51.5 77.2 43.4 65,0 33 9 50,8
£
13 • 72.8 109 61.7 92.8 54.6 81,2 46.0 68.9 38.8 • 58.2 30.3 45,4
c
c 14 63.7 95.8 54.7 82.2 48.0 72,2 "AOT "eiT 34.5' 51,7 ,26.8': 40,2
JEH
15 55.S 83.5 47.9 72.0 42.2 63,5 36.1 54,3 3p.2'' 45,4 23.5r 35,2
1
16 48.8 73.3 42.1 63.3 37.1 55,8 31.7 47.7 26.6 39,9 206 30,9
S 17 : 43.2 65.0 37.3 56.1 32.9 49.4 • 2il 42,3 23.5 35,3 18.3 27,4
18 38.6 58.0 33.3 50.0 29.3 44.1 2ll ^ 37.7 210 ' 31,5 16.3 24,4
19 34.6 52,0 29.9 44.9 26.3 39.6 22.5 33.8 •18.8' 28,3 14.6 21,9
20 31.2 46.9 27.0 40,5 23.8 35.7 20.3 30.5 17.0 25,5 13.2 19,8
21 28.3 42.6 24.4 36,7 21.5 32.4 18.4 27.7 15.4 23,1 12.0 18,0
22 25.8 38.8 22,3 33,5 19.6 29,5 16.8 25.2 14.1 21,1 10.9 16,4
23 23.6 35.5 20.4 30,6 18.0 27.0 15.4' 23.1 12,9 19.3 9.98 15,0
24 18.7 28,1 16.5 24,8 . 14.1 21.2 11.8 17,7 9.17 13,8
25 13.0 19.5 16.9 15,3 : 8,45 12,7
26 7:81 11,7
Properties
<i/bMn kip-ft f,i8.2 27.4 15.3 23,0 13,5. 20,3 : 1155: 17,3 : 9.17! 13,8 659 9,90
PeiKLfnO' klp-ln.2 362 325 ' 296 1 263 223 173
ASD LRFD Note: Heavy line indicates tt/requal to or greater (Han ZOO. .
2.00 = 0.75
Dashed line indicates tiie KL beyond whicii bare steel strength controls.
AMERICAN INSMUTE OF STEEL CoNSTRucnoN

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-259
Fy S 46 ksi
fc'= 4 ksi
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS3V2
HSSaVixSVzx
3/8 Vis V4 Vl6 Vs
fdeslgm in- 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 14.7 12.7 10.5 8.15 5.61
Design
Pn/Clc ^cPn P.ICic PnfClc M <l>(Pn
Design
ASD LRFD ASD LRFD ASD J LRFD ASD LRFD LRFD
0 1.13 169 97.0 146 82.5 124 68:4 ; 103 53,6 80.3
1 112:: 168 96i4 145 82.0 ^ 123 68.0. 102 53,2 79,9
2 1-10 : 165 94:7 142 80,5 121 66:8' • 100 52.3 78.5
3 1137:; 160 92.0 138 7B.Z: ' 117 64:9; 97,3 50.8 76,2
4 102 154 88.3 133 74:?: 112 62:3 93,4 48.8 73.2
5 -96i7 ; 145 83.8 126 71:0; 107 59:1 88,6 46.3 69.4
6 S0.4 , 136 78.6 118 66:5 99,7 55:4;: 83,1 43,4 65.1
7 .83.5 ; 126 72.9 110 61:5. 92.2 51.4 ^ 77,0 40,3 60.4
8 •76.2 115 6618 100 56;2. 84,4 47:1 70,6 36,9 55.3
9 68.7 103 60.5 90.9 51,1 ; 76.8 42:6 63,9 33.4 50.1
10 92,0 54:2 81.4 46,0, 69.1 38,S; 57,2 29,9 44.9
g
11 53.8 80.9 47:9 72.1 40;'9 61.5 33,7 50.6 26.5 .39,7
Si 12 46.8 ^ 70.3 41.9 63.0 36.0 54.1 29.5. ' 44,3 23,1. ; 34.7
13 40.1 I 60.3 38:2 54.4 31.3. 47.1 25,4 • 38,2 20,0 : 30.0
g :
14 34.6' 52.0 31i2 46.9 27;o : 40.6 21:9; 32,9 17:2 25.8
15 30.1 45.3
27:2-i
40.8 23,5 35.4 19,i; ! 28,7 15,0 ' 22.5
f
16 26.5 . 39.8 23.9 35.9 20,7 31.1 16,8 25.2 13,2 19.8
17 v23.5 ^ 35.2 2l.:2 ! 31.8 18.3 27,5 . 14.9 22.3 11,7; 17.5
18 20.9 : 31.4 , 18:9 • 28.4 16.3 24,6 13.3 19.9 10,4 15.6
19 28.2 16.9 25.5 147 22.0 11.9 17.9 9,35 14.0
20 iei: 25.5 15.3 23.0 13.2 19.9 10.8 16.1 8.44 12.7
21 1S.4 23.1 13.9 20.8 12,0 : 18.0 9.75 14.6 7,65 11.5
22 10,9 16.4 8.89 13.3 6,97 10.5 22
Properties
j kip-ft I 112 I 16.8 UlOT ;| 15.o| ^i8S1:| 12.8 6.83 10.3 '4.92 7.39
PfilKLfflO" Kip-in.' 201 185 166 141 111
ASD
£)c = 2.00
LfiFD
<l)c = 0.75
Nate: Heavy line indicates KL/requd to or greater than 200.
Oastied line indicates the KL beyond wtiich bare steel strengtti controls.
AMERICAN INSMUTE OF STEBL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
Table 4-15 (continued) Table 4-15 (continued)
Available Strength in
Fy
= 46ks[
Axial Compression, kips
f _ A L-oS
COMPOSITE
HSS3
Axial Compression, kips 'C
-
COMPOSITE
HSS3 Concrete Filled Square HSS
HSS3x3x
anape
% 5/16 V4 Vl6 Ve
fdesHm "I-
0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 12.2 10.6 8.81 6.87 4.75
Pfl/Dc M ^Pn Pnl^c Pnldc IfcPn Pnlde M
uesign
ASO LRFO ASO ; LRFO ASD LRFO ASO LRFD ASO LRFD
0 93.4 ; 140 81.0 122 "67.2"1 101 55 4 83.1 42.9 64.4
1 92;6' : 139 80.3 J 121 66:7 ' 100 54.9 82,4 42.6 63.9
2 90;2:i ' 136 78:3 118 65.1 97,9 53.6 80.4 41.6 62.4
3 S6A - . 130 75.1 113 62.6 94,1 51.5 77.3 40.0 ; 60.0
4 81,3/ 122 70,91 ; 107 59.3 ; 89,1 48.7 : 73.0 37.8 56.8
5 75:3 113 65.8i 98.9 55:2 ! 83,0 ; 45.3 , 67.9 35.3 52.9
6 68.5 103 60.1 90.3 ^ 50.6 76,1 41.5 62.2 32.3 48.5
7 61.2 i 92,0 53.9!^ 81,0 45.7 ; 68,7 37.4 56.0 29.2 43.8
8 53.8 ; 80.8 47.6. 71,5 40.6 61,1 33.1 49.7 26.0 38.9
9 46.4 69.8 41.3 62,1 35.6 53,4 285 43.3 22.7 34.1
10 39.4 59.3 35,3- : 53.0 30.6 . 46,0 24 8 37:2 19.6 29.4
g
11 3219^ i 49,4 29.6 44,5 25.9 39.0 .21.1 i 31.8 16.6 : 24.9
1 12 27iE, • 41.5 24.9 37,4 21.8 32.8 17.8 ; 26.8 13.9 20,9
£
13 23^5; ; 35.4 21.2 31.8 18.6 27.9 15.2 22.8 11.9 i 17,8
1
14 20.3; ^ 30.5 18:3 : 27.4 .16.0 ' 24.1 13.1 ; 19,7 10.2 15,4
1
15 170 j 26.6 15:9; 23.9 13.9 21.0 11.4 17.1 8.92' 13,4
'S
u
09
16 15.5-: 23.3 T4:m . 21.0 12.3 18.4 10.0 • 15.1 7.84 11.8
1 i 17 13.8 20.7 12.4- 18.6 10.9 16.3 8.87 13.3 6.94 10.4
18 11.0 16.6 9.69 14.6 . 7.91 11.9 6.19 9.29
19 ' i 7.10 10.7 5.56 8.34
Properties
Mr, kip-ft .-,7.69 . 11.6 ::6,92j 10.4 5.98' 8,99 4 83 7.26 1 3.53 5:30
Pem'na" kip-in.^ 115 107 96.9 83.1 :
1
ASD LRFD Note: Heavy line indicates KL/i-equal to or greater than 200.
2,00
<l>c
= 0.75
Dashed line irwieates the beyond which bare steel strengtti controls.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-261
Table 4-15 (continued)
Fy = 46 ksi Available Strength in
fc == 4 ksi Axial Compression, kips
^ ^ COMPOSITE
Concrete Filled Square HSS HSS2V2-HSS2V4
_ ftSD
Shape
HSSZVzxaVjx HSS2V4X2V4X
Shape
®/ie Vi '/16 Vs V4
. ^Mgiuin. 0.291 0.233 0.174 0.116 0.233
Steel, lb/ft 8.45 7.11 5.59 3.90 6.26
Design
p„iac Pfl/Qc Pniac PnlQc <t>cPfl
Design
ASD LRfO •ASD LRFD ASD LRFO ASD LRFO ASD LRFD
0 64.7 97.3 '543 81.6 43S.: 64.9 33,i 50,0 47,9 72.0
1 ,639". 96.1 53.6 80.6 42.7-, ^ 64.1 33.0 49,4 47.2 71.0
2 eiffi; 92.5 51 6 77.8 41.2 61,9 31,9 47,8 45.2 67.9
3 57:8; 86,9 48 8 73.4 38.9 58.3 30^1 45,1 41.9 63.0
4 53.0 79,6 45 0 67.6 35i8- ' 53.7 27:8 41,7 37.8 56.7
5 47a , 71,2 404 60,8 "sir" "48".r' 25.1> 37,6 33.0 49.6
6 41:.3 • 62,0 35,5 53,4 28.5 ^ 42.9 22:1, 33,2 28.0 42.1
7 35:1 52,7 30,5 45.9 24.7 ^ 37.1 19;T 28,7 23.1 34.7
8 291 43,7 .25.6 38.5 20.3 , 31,5 16.1: 24,2 18.4 27,7
9 ,23,5 ^ 35,2 2QS 31.5 17.4 : 26,1 13.3 19,9 14.6 21.9
10 'il9:0 28,6 m 25.5 •14.1 21,2 10:8 16,2 11.8 177
g: •
11 157 23,6 14.0 21.1 11.7 17,5 .8.90 13,3 9.75' 147
12 132 19,8 11.8"' 17.7 9.80 14,7 7.48 11,2 8.19' 12.3
13 11.2 ; 16,9 10,0 15.1 -i8.35 12,6 6.37 9.56 6.98- 10.5
1
LU
14
15
16
9.69 ; 14,6 8,65
' 7,53
13.0
11.3 6.27
10,8
9,43
'5A9
4.79
4,21'
8.24
7.18
6.31
1
LU
14
15
16
8,65
' 7,53
13.0
11.3 6.27
10,8
9,43
'5A9
4.79
4,21'
8.24
7.18
6.31
1
LU
14
15
16
'5A9
4.79
4,21'
8.24
7.18
6.31
1
LU
14
15
16
Properties
h kip-ft riS-iiS; 6.69 .:3;9ai 5.85 i3.20i 4.81 2.36, 3.54 3.04 4.57
PAKLf^M* kip-in,^
0.0= 2M
LRFD
(t)c = 0.75
55.4 50.9 44.1 35.4 34.9
Note; Heavy Sine indicates /ft/r equal to or greater than 200. :
Dashed line indicates tlie KL beyond which bare steel strength controls.
I
AMERICAN INSTITUTE OE STEEL CONSTRUCTION

4-262 DESIGN OF COMPRESSION MEMBERS
Table 4-15 (continued) Table 4-15 (continued)
I
i- Available Strength in
Fy = 46 ksi
Axial Compression, kips
Concrete Filled Square HSS
f _ A L-oi
COMPOSITE
HSS2V4-HSS2
Axial Compression, kips
Concrete Filled Square HSS
>c
HSS2V4X2V4X HSS2x2x
anape
3/,6 Va V4 Va
'design. it-
0.174 0.116 0.233 0.174 0.116
Steel, lb/ft 4.96 3.48 5.41 4.32 3.05
Wc ^cPa P«/Oc PJClc PalQc M
uesign
ASD LRFD ASD LRFD ASD LRFD ASD LRFD M LRFD
0 37.7 56.7 28.9 43,3 41,6 62.5 '32.8~ 49.3 24.6 36.9
1 37.2 ' 55.9 28.5 -42.7 40.8 61.3 32.2 48.4 24.2 36.3
2 35,7- 53.6 27.3 41.0 3S.S: 57.8 30.5: ^ 45.8 22.9 34.3
3 33:3 50.0 25.4 38.2 m® 52,4 27.9 ^ 41.9 20.9 31.4
4 30.2. 45.4 23.Q 34.6 30.4- 45,7 24.6 36.9 18.4 27.6
5 26.7 40.1 20.3 30.4 25.5- 38,3 20.9 31.4 15.7 23.5
6 22.3 34.4 17.4: 26.0 20.6 30.9 17.1 25.7 12.8 19.3
7 19:1 28.7 14.5. 21,7 15.9: 24.0 13,® 20.4 "Tol""
8 15.5 23.3 11.7: . 17.5 12i2; 18.3 10.4 15.7 7.93 11.9
9 123- ^ 18.5 9.26 13.9 9.64 14.5 8.24 12.4 6.27 9.42
10 ,937. 15.0 7.50 11,3 7.81 11.7 6.67 10.0 5.08 7.63
g •
11 »8:24 12.4 6.20 9,30 6.46 9.70 5.52 8.29 4.20' 6,31
S" 12 6.92 10.4 5.21 7.81 4.63 6.97 3.53 5.30
£
13 V.5S0 8.87 4:44 6.66
14 :'3.83 5.74
a
UJ
Properties
kip-ft ^"ITT :'1JS6 2,80 2 28 3.43 197 2.87 143
215
Pe(KL)W kip-in.2 30.6 24.6 22.7 20.2 16.4
ASD LRFD Note; Heavy line indicates Jd/r equal to or greater than 200.
ac=2.oo 0.75
Oasfiea me indrates the At beyond wnicli tats steel sirenstn contrels.
AMERICAN INSNRWE OF STEEL CGNSTRUOTON

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-263
Fy = 46 ks i
fc' = 5 ksl
Table 4-16
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS16-HSS14
HSS16x16x
oil<l(Jt:
Va Va Vl6 «/8 VJ
fdesigm in. 0.465 0.349 0.291 0.581 0.465 0.349
Steel, lb/ft 103 78.5 65.9 110 89.7 68.3
Design
PnlO.0 fcPn PnlOc ^cPa p„/aa l^cPn P„/Qc « Pniao ^cPn
Design
ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 1130 1700 ; 992 1490 921 1380 1050 1570 928 1390 806 1210
6 1120 1680 981; 1470 911 1370 1030 1550 916'; 1370 794 1190
7 1120 1680 977 1470 907 1360 ilb30 1540 911 • 1370 790 1190
8 1110 1670 972 1460 "903 1350 1D20 1530 906 1360 786 1180
9 1110 1660 • 967 1450 898: 1350 1020 1520 : 900 ^ 1350 780 1170
10 1100 1650 ; .962 1440 892 1340 1010 1510 894» 1340 774 1160
11 1090 1640 955 1430 886 1330 iboo: 1500 886 1330 768 1150
12 1090 1630 948; 1420 880 1320 991 1490 879 : 1320 761 1140
13 1080 1620 • 941:. 1410 873 1310 982 1470 ' 870 , 1310 754 1130
14 :1P70. 1600 m 1400 865 1300 972 1460 • 861 ^ 1290 746 1120
15 '1060 1590 925- 1390 857 1290 961 1440 852., 1280 737 1110
16 1050 1580 916 1370 849. 1270 950 1430 : 842;= 1260 728 1090
17 1040 1560 907 ; 1360 ^40- 1260 939 1410 831 1250 718 1080
18 1030 1540 i 897 1350 • 830: 1250 926 1390 ^m 1230 709 1060
. s 19 1020 1530 887; 1330 i 820 1230 913 1370 809 1210 698 1050
I
20 1010 1510 : 876 1310 : 810 1220 900 1350 797. 1190 687 1030
i 21 ^ 994 1490 ' 865;; 1300 ; 800! , 1200 886 1330 784 1180 676.. 1010
1
22 &81 1470 853 1280 789 1180 872': 1310 > 7711: 1160 665" 997
tu' 23 ; 968 : 1450 . 842 1260 r?7 1170 857 1290 758 1140 65^ 980
24 955' 1430 829 1240 766 1150 • 842 1260 745 1120 641 962
25 ^ 941- 1410 817 1230 754 1130 827 1240 731. 1100 629 943
26 927 1390 804 1210 742 1110 fell 1220 717 1070 616 924
27 912 1370 791 1190 729 1090 795 1190 702 1050 603 905
28 897, 1350 777 1170 716 1070 779 1170 688:. 1030 590 885
29 882 1320 764 1150 703,' 1050 762 1140 6735i 1010 577 866
30 867 1300 750 1120 690 1040 746 1120 658 987 564 845
32 836 1250 722 1080 ; 663 995 712 1070 627 , 941 537 805
34 803 1210 693 1040 636 954 677: 1020 596 894 509 764
36 771 1160 663 995 608 912 642 963 565 848 482 722
38 . 737 1110 633 950 580 869 607 911 534 801 454 681
40 704 1060 603 905 , 551 827 ^3 859 503: 755 427 640
HSS14x14x
Properties
kip-ft itZS: 644 336!' 506 287i i 431 884 577 321 482 252 379
Pe(KLfn(f kip-in; 45900 38500 34600 33500 29200 24500
• ASD
ac=2.oo
LRFD
<|)c=0.75
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS14-HSS12
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy = 46 ksi
/b' = 5ksi
Shape
HSS14x14x .HSS12x12x
Shape
V16 Ve 1/2 % Vie V4
'design. in-
0.291 0.581 0.465 0.349 0.291 0.233
Steel, lb/ft 57.4 93.3 76.1 58.1 48.9 39.4
Design
PJQc « PnlCla <|>cPn P„IO.a M PnlQc t'cflr Pn/Hc
Design
ASD LRFD ASO LRFD lASD LRFD •ASD LRFD ASP LRFD ASO LRFD
0 744 1120 840 1260 741 : 1110 : 639 959 •585S5 878 531 796
6 . 733 . 1100 ;i25 1240 727 1090 627; 941 ;574S 861 520 780
7 : 729 1090 819 1230; 722 1080 ' 623 934 570" 855 517 775
8 • 724 1090 813 1220 ; 717: 1080 618 927 ' 565' 848 512 768
9 719 1080 i806 1210 : 710: 1070 : 612 918 560 840 507 761
10 714 1070 798 1200 704 1060 ' 606 909 rS54sl 831 502 753
11 708 1060: 789 • 1180 696 1040 : 599, 899 :548; 822 496 744
12 701 1050 780 1170 688 103D: . S92 888 r54l;i 812 490 734
13 ; 694 1040 770 1150 679 1020 ' 584 877 534 801 483 724
14 686 1030 f59; 1140 670: 1000 576 864 526. 789 475 713
15 678 1020 748: 1120 660 990 • $67: 851 . :518':; 777 468 702
16 67Q 1000 736 1100 649 974 : 558 837 ; 5093 764 460. 689
£ 17 ; 661 991 724' 1090 638 958: ' 548 : 822 ?500. 750 451 677
18 651 977 711 1070 627' 941 538- 807; 491.: 736 442 664
19 = 642 962 697 1050: 615' 923 ; 528' 792 : 481 721 433 650
g
20 631 947 684 1030 603 904 517 775 :471 ; 706 424 636
S 21 621 931 669 1000 ! 590: 886 ; 506 759 460: 691 414. 621
22 610 915 ^5 982 577 866 > 494 742 ; 450S 675 404 606
UJ i 23 599 898 640. 959 564, 846 483. 724 439e 658 39€ 591
24 588 881 624 936 551' 826 ; 471 : 706 428!' .642 384 576
25 576 : 864 609 913 537 806 ; 459 688 417 625 373 560
26 564 846 593 889 523 785 447' 670 405; 608 363 544
27 552 828 577 865 509 764 434 651 394 591 352 528
28 540 810 561 841 495 742 422 632 382 573 341 512
29 527 791 545 817 481 721 409 614 371' 556 331 496
30 515: 772 528 792 466 699 396 595 359't 538 320 480
32 489 734 496 743 ' 437 656 371 •: 557 336x 503 298 447
34 464 695 463 694 . 409 613 346' 519 312: 468 277 415
36 438 657 431 646 : 380 571 321 482 289,5 434 256 384
38 412 618 399 599 352 529 297 446 267; 401 235 353
40 387 580 368 552 325 488 273 410 245 368 216 323
Properties
Mfi/Qt, kip-ft . 216. 324 274; s 412 : 229. 344 .181:. 272 '455fi 233 128 193
PeiKifnO* kip-in.2 21900 19600 17400 14500 13000 11400
ASD
Qc=2.00
LRFD
<])c = 0.75
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-265
Table 4-16 (continued)
fy = 46 ksi Available Strength in
fc' = 5 ksi Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS10
HSSIOxlOx
Sn3p6 Sn3p6
Vs Va
3
k 'A '/16
ttesisn. in- 0.581 0^5 0.349 0.291 0.233 0.174
Steel, lb/ft 76^ 62.5 47.9 40.4 32.6 24.7
: •fcP/i <t>cPn ^ePn « PnlOc M
Oesifln
,ASD LRFD USD, LRFD ASO LRFD ASD LRFD ASD LRFD KSD LRFO
0 :648 973 ,•570: 855 •:-487:: 731 444 . 665 :399 ! 599 353 530
6 631 947 :555:! 833 474 711 432 647 388 , 582 343 515
7 '625; 938 \:550:: 825 ::470 705 427 641 384 576 339 509
8 ;618. 927 t544 815 ; 464 697 422:' 634 379 .: • 569 335 503
9 610x 915 537 805 "459: 688 417 625 374 y 562 330 496
10 ::602. 902 '529 794'^ C452, 678 > 411 : 616 369 553 325 488
11 :;592:, 888 /:521 782 f445: 668 • 404 607 363 544 320 479
12 •582; 873 512 76&' g438ii 656 397- 596 356 : 534 314 470
13 s571 857 503.1 754 r429 644 390 585 349 5 524 307 461
14 560 840 ; 493 739 •421; 631 382 573 342 '• 513 300 451
15 :548:- 822 '482 724 '412: 618 374 560 354 •: 501 293 440
16 C535 803 .472 707 •:402:' 604 365: 547 zk' 489 286. , 429
17 522 783 • .'460:: 690 393 589 ; 356. 534 318 ' 477 278 417
18 509 763 •.:448 672 ••382 574 346: 519 309 • 464 270 405
19 495 742 :;436.: 654 •:372:, 558 337 505 300 i: 450 262 393
1
20 481 721: •424 636 .S361 542 327. 490 :291 437 254 380
.1 21 ;'466, 699 >411 617 :v350; 526 : 317 475 :282 1- 423 245 368
1
22 ,'451 677 398 597 339 509 . 306 460 272 : 409 237 355
S 23 ';436 655 s385; 578. -328 492 296 444 .263 :„ 394 228 342
24 •421 632 :.372 558 ;317: 475 286 428 253 380 219 329
25 •406 609 •'?59 538 305 458 . 275 413 244 : 366 210 316
26 391 586 ":345 518 294 441 265 397 234 351 202 303
27 376 564 332 498 :282 424 254 381 ;225 337 193 290
28 361 541 :319 . 478 407 244 365 215 323 185 277
29 :346 518 :306k 458 260: 390 233 350 206 308 176 264
30 331 496 ••293 439. •249:: 373 223 334 196 294 168 251
32 ^301 452 r267> 400 •227 340 203 304. 178 267 151 227
34 '273 410 i242 363 .205 308 183 275 160 241 135 203
36 •245 368 218 327 185 277 164 247 143 215 121 181
38 220 330 195 293 i166 248 148 221 129 193 108 163
40 199 298 176 265 149 224 133 200 116 : 174 97.8 147
Properties
kip-tt 182 273 153. 230 l22-< 183 105 157 86.9 131 101^
p0{KLfm' kip-in,2 10400 9270 7850 7000 6100 5140
ASD LRFD
ac=2.oo <|)c=0.75
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3
DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS9
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy = 46 ksi
fc' = 5 ksi
HSS9x9x
5nape
5/8 V2 Vs V16 V4 V16
'deslsni in.
0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 67.8 55.7 42.8 36.1 29.2 22.2
Design
PnlSh •ttePfl <t)cfl7 Pnl^o ^cPa PnlQc <kP« PJUc ifcPn P„IQe <t>cP»
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD LRFD
0 ;:560 840 490 735 418 626 379 568 339 V 509 298 448
6 542 812 474 711 404 606 366' 549 328 492 288 432
7 -:535 803 468 703 399;- 599 362 543 zk 486 284 426
8 .528,' 792 462 693 394 591 357 , 535 319 479 280 420
9 519: 779 455 682 -388;: 582 351, 527 .314: 471 275 413
10 •510 765 447' 671 381 572. 345 517 308 V 463 270 405
11 500 751 439 658 374 • : 561 338: 507 302 453 264 396
12 .490 735 429 644 366 549 331'^ 497 :296 444 258 387
13 479 718 420 630 358 537 324 485 289: 433 252 378
14 467 700 409 614 349 524 316 473 422 245 368
15 : 454 681 399 598 340 510 307 461 274 ;; 410 238 357
16 ,441 662 388 581 330 496 298 448 266 398 231 346
i 17 428 642 376 564 481 289 434 257 f 386 223 335
18 .'414. 621 : 364 546 311 466 280 420 249 373 216 323
19 600 352 528 300 450 271 406 240 '' 360 208 312
20 386 579 340 510 290 435 .261 392 231 347 200 300
21 ?372: 557 327 491 279 419 251 377 223 ; 334 192. 288
22 '357 536 315 472 268 402 241 362 214 320 184}- 275
UJ 23 .342 514 302 453 257 386 232: 347 205; 307 176. 263
24 328 492 289 434 247 370 222 • 332 196 293 167 251
25 :313 470 277 415 236 354 212 318 187 280 159 239
26 299 448 264 396 225 338 202 303 178 267 151 227
27 :284 426 251 377 214 322 192 288 169 253 144 215
28 ,270 405 239 359 204 306 183 274 160 240 136 204
29 i56. 384 227 340 194 290 173 260 152 228 128 193
30 242 364 215 323 ,183 275 ,164;, 246 143 y 215 121 181
32 218 328 192 288 164 246 146:; 219 .127 191 107 160
34 195 293 170 255 Mi5 218 129 194 113 : 169 94.5 142
36 174 262 152 227 129 194 115 173 101 ; 151 84.3 126
38 156 235 136 204 116 174 104 155 90.2 135 75.6 113
40 141 212: 123 184 105 157 93.4 140 81.4, 122 68.3 102
Properties
M„IQ.b kip-ft ; 143 215 121 182 ?e;6: 145 83.2 125 69.1 104 • 53;9 81.0
PAKLf!'^ 0" kip-in.^ 7260 6450 5510 4910 4280 3590
ASD LRFD Note: Dashed lira ! indicates me M. beyond which bare steel str ength coi ntrols.
nc=2.oo = 0.75
Note: Dashed lira ! indicates me M. beyond which bare steel str ength coi ntrols.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-267
Fy = 46 ksi
fc' = 5 ksi
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS8
HSS8x8x
aiiape
5/s V2 % 5/16 V4
'design, m. 0.581 0.465 0.349 0.291 0.233
Steel, lb/ft 59.3 48.9 37.7 31.8 25,8
Pn/Clo W PnlQc <S>cPn p„iao PJO^c •t-cfl. PJ^c i>cPa
Design
ASO LRFO ASD LRFD ASD ' LRFD ASD LRFD ASD LRFD
0 476=: 714 416 624 352.: ' 528 318; 477 284 426
6 456,: 684 399i 599 338 : 507 305 458 272 408
7 449: 673 393. 590 333 499 301 451 268 402
8 441 • 661 386: • 579 327 491 295: 443 263 394
9 432": 648 379 ' 568 321 • 481 ;290; ; 434 258 387
10 422 633 370v : 556 .3Mi : 471 283;. 425 252 378
11 412 : 618 361 542 306 : • 460 276^ ' 415 246 369
12 401,: 601 352 ! 528 298 : 448 269: 404 239 359
13 389:: 583 342:.: ; 513 290 , 435 261:. 392 232 348
14 377% :: 565 3311 : 497 281 421 253 : 380 225 337
15 364 546 320: 480 272 408 245: : 367 217 326
16 350' = 526 309:- : 463 262 393 2361 ' 354 .209 314
B 17 337' 505 297 • 445 252. ' 379 227 341 201,: 302
18 323 485 285 ' 428 242 364 218? 327 193 • 289
19 309" 464 273 • : 409 232 348 209 314 185 :;; 277
f 20 295: 443 261 : 391 222 333 200: 300 176, ] 264
•1
21 281; ' 421 249 373 212: . 318 191 286 168 : 252
g 22 267 : 402 236i 355 202 •:: 302 181: ; 272 159: ,! 239
S 23 255 i 383 •m 336 191 287 172: 258 151 ' 227
24 242 • 364 212 318 181 272 163i 244 143 214
25 230^ 345 200 : 301 I7i: 257 154 231 135 202
26 217 326 189 283 161 : 242 145; 217 127 190
27 205 308 178 266 152: -228 136 204 119 179
28 193 290 166 250 143 214 128 192 112. 167
29 182 273 155 233 133. . 200 119 179 104 156
30 .170 256 145 218 124' 187 ?m .. 167 97.2 146
32 jil49 : 225 128 191 109 164 - 98.1: 147 85.4 128
34 132 199 •113 170 96.9 ' 145 86.9 130 75.7 114
36 177 101 151 86.4 130 : 77.5 116 67.5 101
38 106 159 90.5 136 77.6; 116 69.5 104 60.6 90.9
40 95.6 144 : 81.7 123 70.0 105 62.8 94,1 54.7 82.0
Properties
j 'SitMn kip-tt 164 ; .93.0.: 140 l 112 64.4 96. 53.5; 80.5
PeiKLfm* kip-in.=! 4800 4290 3680 3300 2870
'.ASO
Sic = 2.00
LRFD Note: Dastied line indicates the KL beyond which bare steel strength controls.
^)c = 0.75
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-15(3 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS8-HSS7
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy = 46 ksi
fc' = 5 ksi
HSS8x8x HSS7x7x
snape
3/16 % Va Va 5/16
fdeslgtta in.
0.174 0.581 0.465 0.349 0.291
Steel, lb/ft 19.6 50.8 42,1 32.6 27.6
Design
Paliin W PaJQc ^oPn Pniac §0pn p«iac Pn'^c
Design
ASD LRFD ASD i LRFD i^ASD LRFD ASD : LRFD ASd LRFD
0 248 372 394: 591 ,345^ 517 : 290. : 436 262 393
6 237 356 372 558 326 489 275- : 413 248 372
7 233 : 350 364 : , 547 320 ; 479 270. 405 243 365
8 229; 343 356v 534 3;1i2i ; 468 264: : 395 238 357
9 224,: ^ 336 346= 520 i 304.: : 456 257: 385 232 348
10 2,19 328 336: ; 504 295f ; 443 250 375 225 338
11 213. 320 325.,: 488 286;: : 429 242.' : 363 218 327
12 207 311 314' : 470 276.: 414 234; 350 211 316
13 20.1. 301 302 "453""" 266 ^ 398 225 : 337 203 305
14 194 291 290'£ 436 255: 382 216,; . 324 195 292
15 187: 281 278'; 418 244;. . 365 207;,:: 310 187 280
16 180 270 266: 399 232; : 348 197;;;: 296 178 267
1 17 173; 260 253 381 221. 331 188,; 281 169 • 254
S
1
IS 166:. 248 241: 362 209:: ~ 314 ,178: 267 161 241
19 156: 237 228 343 197; 296 168- : 252 152 228
20 151' ^ 226 215, ^ 324 186 : ^ 279 159.. 238 143: 215
.s 21 143: ' 215 203 : 305 174 262 149', • 223 135 202
22 136 204 191 287 163. 245 209 126 189
23 128i 193 179: 268 TsT" "iW" 130 -196 118 177
24 121 182 167: • 251 1435 214 121;- ; 182 110 165
25 114 171 155 233 133 , ^ 200 113. . 169 102 153
26 107 , 160 144 216 124 : 186 104 156 94,3 141
27 100: 150 133 : 201 115: 173 96,6 145 87.4 131
28 93.3 140 124 186 107. . 161 89,8 135 81,3 122
29 87,0 130 116 174 99,6 150 83,7 126 75.8 114
30 81 J3 122 108: 162 93,1 140 78 3 117 70.8 106
32 f 71.4^ 107 95,0 143 81.8 123 688 103 62,3 93.4
34 63.3 94,9 -84.1 126 72.4 109 609 91,4 55.1 82.7
36 • 56.4 84,6 75.1 113 64.6 97,1 543 81,5 49.2 73.8
38 . ,50.6: 76,0 67.4; 101 58,0 87,2 48,8, 73,2 44.1 66.2
40 45.7 68,6 60,8 91,4 •;52,3: 78,7 -•44,0 66,0 39.8 59.8
Properties
M„iQi, Mn kip-ft i 41,9. 63.0 :,80,3i 121 68 6 103 554 83,3 48,0! 72.2
Pe{KL)W kip-in.^ 2400 3000 2690 2310 2090
ASD LRFD Note: Dashed line indicates the KL beyond which ban ! steei strength controls.
He =2.00 it>c=0,75
Note: Dashed line indicates the KL beyond which ban ! steei strength controls.
AMERICAN INSXITIRRE OF STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-269
Table 4-16 (continued)
Fy» 46 ksi Available Strength in
fc' = 5 ksi Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS7-HSS6
HSS7x7x HSS6x6x
Olla|JIS
V4 VK
1/80,f
Vz
'desism in. 0.233 0.174 0.116 0,581 0.465
Steel, lb/ft 22.4 17.1 11.6 42.3 35.2
naAinn
foPn Pn/Clc Pn/Qc M ^Pa PalClc
Design
•ASD LRFD ASD LRFD ASD LRFD mo ; LRFD "-asb' LRFD
0 233. 349 201; 302 170. 255 322; 484 278 417
6 220 330 190: 285 160; , 240 299^ 450 258 386
7 216, 324 186; 279 156 235 .291 438 251 376
8 211 316 182 273 152, : 229 283 425 243 364
9 205: 308 177; 266 148 : 222 2731 410 234 351
10 .199T 299 258 143; ^ 215 2§?f 394 225 337
11 193 290 166 249 138; ' 207 251 i : 378 215 322
12 186. 280 160- 240 13i , 199 240,-. ^ 360 205 307
13 179 269 1S4: : 231 127 191 228 342 .194 291
14 172 258 147- ^ 221 122 : 182 215: 324 183 275
15 165 247. i4iv.! 211 , life..; 174 203-' 305 173 260
16 157 236 134, , 201 110 165
19p!
286 163 . 245
e.
17 14P 224 127'^ 191 104; 156 178,- 267 153 ^ 230
si
18 142 212
l^p' ' 180 97:8' 147 ids. 249 143 : 215
JS
19 1?4 201 3t3 i 170 : 9^1.8; 138 153". ' 231 133 ' 200
f r.
20 T26
:• •• >') • '
189 lor i 160 : ; 129 •14?: 213 123 '5 185
I
21 118 ' 177 ,99.9; 150 80,1 120 130 196 114 • 171
g 22 in ' 166 :: 93.3, 140 74,4 112 Ii9 179 104 • 157
s 23 103 : 155 ; 130 68.9 103 109 ; 163 95.6; 144
24 96.2. 144 80.6 121 63.5: 95,2 99.8 150 87.8 132
25 89.1 134 112 |g.5; 87.8
. 92:0.
138 80.9 122
26 82.4 124 68.8 103 54.1 ; 81,1 85.1 128 74.8 112
27 76.4 115 •63.8 95.7 'Sfl.2 75,2 78.9 119 69.4 104
28 71.0 107 5a3' 89.0 46.6 70.0 73.4 110 64.5 96.9
29 •66.2 ^ 99.3 "55.3 82.9 '43.5 65.2 •d8.4 103 60.1 90.4
30 61.9 92.8 51.7 77,5 -40.6 60.9 63.9 96.0 56.2 84.4
32 54.4 81.6 "i.4 68.1 •35.7 53.6 '•56.2: '84,4 49.4 74.2
34 48.2 72.2 i-40.2 60.3 '=31.6 47.4 49.7 74.8 43.7 65.7
36 43.0 64.4 ^35,9 53.8 28,2 ^ 42.3 44.4 66,7 39.0 58.6
38 - 38.6 57.8 ; 82.2; 48.3 '.-25.3 38.0
•40 34.8 52.2 a 29.1 . 43,6 22,9 34,3
Properties
Wfie kip-n 60.2 S.31.5 47.3 •22.1 33.2 •55.8 83.8 - 48,2 72.5
PAKiflMf kip-in.' 1830 1530 1200 1730 1570
ASD
0c=2.00
LRFD
c=0.75
"Shape is noncompact for compression wrtii Fy=46 lei. ' Shape is noncompact for flexure with /y=46 ksi.
Note: Heavy line indicates ML/rm, equal to or greater than 20D.
Dashed line indicates the KL beyond which bare steel strength controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-270
DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS6
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy = 46 ksi
U = 5 ksi
HSS6x6x
snape
Ve V4 3/16 Va
feign, in-
0.349 0.291 0.233 0.174 0.116
SteeMb/ft 27.5 23.3 19.0 14.S 9.86
Design
^cPii p„/aa Pn/^c « p„mc W PJSic ^cPn
Design
ASd I.RFD ASD LRFD ASO UIFD ASD LRFO ASO LRFD
0 234- 351 210 315 185 ' 278 159 239 133 199
6 zm . 325 195 293 172 258 148 222 122 184
7 317 190' 285 m 252 144 215 119 178
8 205' ' 307 184 276 163 244 139 209 115 172
9 198 i 296 178 267 157 ^ 236 134 201 11b 166
10 190 285 .171 256 ; 226 IM 193 106 159
11 182 i 273 164' i 246 145 • 217 123 185 101 152
12 173 260 156 234 138 207 117 176 96.0 144
13 165 247 148 222 131 196 111 167 90.7 136
14 156 233 140 210 124- ' 186 105' , 158 85.4 128
15 147 • 220 132 ; 198 H7 ; 175 98.9 148 80.0 120
B
16 I3r ; 206 124 ; 186 1®': 164 92.7 139 74.6, 112
5j 17 192 116 : 174 102 153 86.4 130 69.2; 104
*
18 ns: ; 179 108 162 95:2' 143 80.2 120 64.0 95,9
o> 19 166 99.9; 150 88.2 132 74,2 111 58,8 88,3
f 20 102 ; 153 92.1 138 81.4 122 68.3 102 53.9 80,8
1
21 93.5. 140 84.7" 127 74.8 ^ 112 62.6: 93.9 49.0 73.5
£ 22 128 77.3: 116 68 3 103 57.1 85.6 . 44.7^ 67.0
lU
23 , 78.1 ^ 117 70.7 i 106 93.8 - 52.2 78.3 40.9 61.3
24 71.7; 108 65.0 97.5 • 1^4, 86.1 47.9 71.9 37.5 56.3
25 66.1 99.1 59.9: 89.8 52.9 79.4 44.2 66.3 34.6 51.9
26 ,61.1 91.7 , 5S;4 ' 83.0 48.9' 73,4 40.9 61.3 32.0 48.0
27 , 56.7 85.0 51.3 77.0 45.4 68.1 37.9 S6.8 29.7 445
28 , 52.7 79,0 47.7 71.6 42.2 63.3 35,2 52.8 27.6 41.4
29 49.1; 73.7 , 44.5 66.8 39.3 59.0 32.8 49.3 25.7 38.6
30
: 15-9 i
68,8 41.6; 62,4
, 36-8
55.1 30,7 46,0 24.0 36.0
32 40.3 60.5 36.5 54.8 32.3 48.5 27.0 40.5 21.1 31.7
34 35.7 53,6 32.4 48.6 y 28.6 : 42.9 23.9 35.8 18.7 28.1
36 31.9 47.8 ; 28.9 43.3 25.5 38.3 21.3 32.0 16.7 25.0
38 28.6 42.9 25.9' 38.9 22.9 34.4 19,1 28.7 15.0 22,5
Properties
Mn/0.I,'\ (|)(,M„ kip-ft !l39.2j 58.9 51,4 28,6 43.0 33.9 'tMssOi 24,0
Pe{KL}W kip-in.' 1360 1230 1090 907 710
ASD LRFD
0^=2.00 :=0.75
AMERICAN INSTITUTE OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-271
Fy = 46 ksi
U = 5 ksi
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSSSVz-HSSS
HSSSVzxSVzx
dnape
% «/l6 V4 '/16 Va V2
'(tesign^ in. 0.349 0.291 0.233 0.174 0.116 0.465
steel, Ibm 24.9 21.2 17.3 13.3 9.01 28.4
Design
P„IQ.c P„/Qc M PnfCic p„/ac PnlQc t>cPn Pn'iic
Design
ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 207 > 311 186 279 163 245 140 210 116: 173 2f7" 326
1 207 , 310 185 278 163 245 139. 209 115 173 216 325
2 205 307 184 276 162 243 138 208 . 114 .. 171 215 322
3 202 i 304 182 273 I6O: 240 137 205 113 : 169 211 318
4 1991 298 179 268 157 236 134 202 : 111 166 207 311
5 1.95-; 292 175 ' 262 154., 231 131 197 108 S 162 202 303
6 189: 284 170 . 255 150' 225 128 192 105 158 195 294
7 183 275 165 247 145 218 124 186 101 I 152 188 283
8 177 , 265 159 238 140 210 119 179 97.5 146 180 271
9 169 254 152 . 228 134! 201 114 . 171 93.2 140 171 257
10 161 242 lis ? 218 128 192 109 163 88.7 133 162 244
11 m 230 138 207 122 182 103 155 83.9 126 152 229
E.
12 i^fisr 217 130 r 195 115 172 977 146 78.9 118 142 214
13 136 204 123: ;; 184 108 162 91,8 138 73.9 111 132 199
£
14 1:27: 191 list 172 101' 152 85,8 129 68.8 103 122 184
f
IS W : 177 107 160 94.3 141 79.8 120 63.7 95.5 112 169
•1
16 109 164 98.9 148 87.4 131 73.9 111 58.7 88.0 103 154
1
17 101: 151 91.2 137 80.6 121 68.0 102 53.8 80.6 93.2 140
5 18 92.4 139 83.6 125 74.0 111 624 93.5 ; 49.0 73.5 84.t 126
19 •^Sfis' 127" 76.3 115 67.6 101 56.9 85.3 66.6 75.5 113
20 77.4 116 69.2 104 61.3 92.0 51.5 77.2 40.T 60.1 68.1 102
21 70:5 106 62.8 94.1 55.6 83.5 46,7 70.0 36.3 54.5 61,8 92.9
22 64v2 96,5 57.2 85.8 50.7 76.0 42.5 63.8 ki 49.7 56,3 84.6
23 :.58;7 88.3 52.3 78.5 46.4 69,6 38.9 58.4 30.3 45.4 51,5 77.4
24 53.9 81.1 48.1 72.1 42.6 63.9 35:8 53.6 27.8 41.7 47.3 71.1
25 49.7 74.7 44,3 66.4 39.3 58.9 32.9 49.4 25.6 38.5 43.6 65.5
26 46:o 69.1 40.9 61.4 36.3 54.4 : 30;5 45:7 23.7 35.6 40.3 60.6
27 i:42;6 64.1 38i0 57.0 33.7 50.5 28.2 42.4 22.0 33.0 37.4 56.2
28 39.6 59.6 35:3 53.0 31.3 46.9 26.3 39.4 20.4 30.7 34,8 52.2
29 36.9 55.5 32.9 49.4 29:2 43.8 24.5 36.7 19.1. 28.6 32.4 48.7
30 34.5 51.9 30.8 46.1 27.3 40,9 22.9 34.3 17.8 26.7 30,3 45.5
Properties
kip-ft. 323 48.5 28 2 42.4 23.7 35.5 18.7 28.0 13.3 19.9 31.6 47.4
PoiKLflW kip-in.' 1000 909 806 676 i 526 821
Hm LRFD Note: Dashed line Indicates the KL beyond which bare steel strength controls.
Q<;=2.00 .= 0.75
Note: Dashed line Indicates the KL beyond which bare steel strength controls.
HSS5x5x
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-272 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS5
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy = 46 ksi
fc' = 5 ksi
HSS5x5x
snape
Vs V16 V4 '/te VB
fdeslgni in.
0.349 0.291 0.233 0.174 0.116
SteeMb/ft 22.4 19.1 15.6 12.0 8.16
p„/nc PnlCic ^oPn P^lilc ^oPn PnlQc
Design
ASD LRFD MO LRFD ASD LRFD ASD LRFD m LRFD
0 :181. 272 162 i 243 142 ;; '214 121 182 99.6 149
1 181 271 162 243 142 213 121 182 99.3 149
2 179: 269 160 ^ 241 141 : 211 120 180 98.3 147
3 265 158; :237 139 : 208 118 177 96,8 145
4 259 1:55 1 232 .'13 6 204 116 174 94.7 142
5 •1:68: 252 151 : 226 -132 198 '113 169 92.0 138
6 :162 244 146 • 219 : 1.28 :• 192 109 164 88.9 133
7 156:. 234 140 210 123 •! 185 105 157 85.3 128
8 149 ^ 224 134 201 11-8 177 100 : 150 81 ;4 122
9 142 213 . 1:27, 191 112 168 95;3 143 77.1 116
10 134- 201 120 , 180 106 y 159 90.0 135 72.7 109
1t 188 11:3 ) 169 : .99.5-; 149 84,6 127 68.0,. 102
E.
12 mr. 175 105 ' 158 i. ;9i3.0:' 139 79.0 118 63.3 94,9
S
1
13 108 163 97.8 147 !86,3:, 129 ^ 73,3 110 58.5 -87,7
14 99.9 150 90.2 135 . 79;7:i 120 67.6 101 53.7 • 80,5
15 ,9114 .137 827 124 • 73.%. 110 62.0 93,0 49.0; 73,5
.1 16 83.8 i 126 75.4 113 ma 100 56.5 84,8 44.4 5 66,7
17 76 4 115: ' 68.3- 102 ,60;5. 90,7 51.2 76,8 40.1 i 60,1
LU 18 69 4 104 61.4 f 92,0 81,7 461.1 69,1 35.8 i 53,7
19 62.5 93 9 55.1 82,6 48.9= 73,3 41.3 62.0 32.1 48,2
20 56 4 84.8 49,7 74,5 '44.1 66,2 37:3 56.0 29,0 43,5
21 51.2 76.9 .45.1: 67,6 40,0 60,0 33.8 50.8 26,3 39,5
22 46.6 70.0 41,1 61,6 36,4 54,7 -.30,8 46.2 24.0 35,9
23 42.6 64.1 37.6 56,4 33,3 50,0 •:28.2 42.3 21.9 32,9
24 39.2 58,9 : 34.5 • 51,8 30.6: 45,9 25.9 38.9 20.1 30,2
25 '36.1 54.2 : 31.8 47,7 , 28,2 , 42,3 23,9 35.8 18,6 27,8
26 •33:4 50,2 . 29.4 44,1 ; 26;1:;' 39,1 22,1 33.1 17,2 25,7
27 30.9 46.5 40,9 2432: 36,3 20,5 30.7 15.9 23,9
28 28,8 43.2 25.4 38,0 22»- 33,8 19,0 28.6 14,8 22,2
29 26;8 40.3 23.6 35,5 21.0:, 31,5 17,7 26.6 13.8 20.7
30 25.1 37.7 22.1 33,1 19,6 29,4 : 16.6 24.9 12.9 19.3
Properties
<t>6M„ kip-ft ,j26ia 39,0 34,1 192 28,8 IS 2 22.8 10 8 16.3
Pe(Kifn(f kip-in.^ 719 653 579 490 381,
ASD LRFD Note: Dashed line Indicates the KL beyond wmcli bat5 steel strength controls.
r!<;=2.00 = 0.75
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-273
Fy = 46ksl
u = 5 ksi
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS4V2
HSS4V2X4V2X
Olldfjc
Va % 5/16 V4 '/16 Ve
fdeslgn, in- 0.485 0.349 0.291 0.233 0.174 0.116
Steel, ll)/ft 25.0 19.8 17.0 13.9 10.7 7.31
Design
Pn/n, M fli/Qc W P^/Oc ^Pn ft/Oc p„/ac « Pn/Qc i^cPa
Design
ASD LRFD ASD LRFD ?AStt; LRFD ASD LRFD ASD LRFD ASD LRFD
0 191 288 157 235 140 210 123 184 104 --156 84.7 127
1 191 287 156. 234 140:^ 209 122 184 . ,li)4 : 155 84.4 127
2 189 283 154 231 138 207 : 121 .: 182 102 S 154 83.4 125
3 185 278, 151 227 135 203 119::; 178 ,161 f 151 81.8 123
4 180 271 147 221 ,132 • 198 III6 -174 : 98.1. 147 79.6 119
5 174 262 142 : 214 i128 191 112 168 94.9 142 77,0 115
6 167 252 137 205 , 123^, 184 108 161 91.1 137 73.8 111
7 159 240 130 • 195 117 175 103 154 , rk9 130 70.2 105
8 151 ra 123 :f 184 1J0 166 97.0 146 82.3 123 66.3 99.4
9 141 213 115 :> 173 104 155 . 91.1 137 : 77.3 116 62.1 93.2
10 132 198 107 161 96.6- 145. 85.0 127
: 72.1,
108 57.7 86.6
g ^
11 122 183 99.2 149 89.3 134 78.7 118 100 53.3 • 79.9
12 112' 168 91.5 138 82.p 123 : 72.3 108 61.4 92.1 48.8 73.2
*
13 ;102 153 m 126 m 112 65.9 98.9 S6.1 84.1 44.3 66.5
a 14 92.0 138 76.4 115 67.'5. 101 59.7 89.5 W.8 76,2 40.0 60.0
03
15 .82.6 124 ear 104 "eaf "9T.T 53.6, 80.5 45.7: 68,5 35.8 53.7
>
16 73.5 110 , 62.0 93.2, 54,7 82,1 47.8 71.8 40.8 61.2 31.Z 47.6
17 . 65.1 97.8 83.0 48.8 73,4 42,4 63,6 •.36,1 54.2 28.1- 42.1
18 58.0 87.2: 49.2 74.0 43.6 65,5 37,8 56,7 32,2, 48.3 25.1 37.6
19 52.1 78.3 ; 44,2 66.4 39.1 58,8 33.9 50.9 ka 43,4 22.5 33.7
20 47.0 70.7 39.9 59.9 35.3 53,0 30.6^ 45,9 26,1 39,1 20.3 30.4
21 42.6 64.1 36.2 54.4 32.0 48.1 27.8 41.7 23,7 35.5 18.4 27,6
22 38.9 58.4 33.0 49.5 29.2 43,8 25,3 38.0 21,6 32.4 16.8 25.2
23 :35.5 53.4 30.2 45.3 26.7 40.1 23,2 34.7. 19.7: 29.6 15.3 23.0
24 13.2.6 49.1 27.7 41.6 24,5 36.8 21,3 31.9 -18.1 27.2 14.1 21.1
25 30.1 45.2 2i5 38.4 22:6 34.0 -19,6 29.4 25.1 13.0 19.5
26 27.8 41.8 23.6 35.5 20.9 31.4 18.1 27.2 15.4 23.2 12.0 18.0
27 21.9 32.9 19.4 29.1 16.8 25.2 14,3 21.5 11.1 16.7
28 18.0 27.1 15.6 23.4 33.3 20.0 10.4 15.5
29 12,4 18.6 9.65 14.5
Properties
'•J).' <t>6Wn kip~ft . 24.4 36.7 20.4 30.6 17.9 26.9 15.2 22.8 12.0, 18.1 .8.62; 13.0
PMfnO' kip-in.2 563 497 454 402 343 267
«c=2.00
LRFD
c=0.75
Mote: Heavy line indicates KL/r equal to or greater than 200.
Dasned line indicates the KL beyond wfhich bare steel strength controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-274
DESIGN OF COMPRESSION MEMBERS
Table 4-16 (continued) Table 4-16 (continued)
Available Strength in 46ksi
Axial Compression, kips
Concrete Filled Square HSS
f/ =
li Irei
COMPOSITE
HSS4
Axial Compression, kips
Concrete Filled Square HSS
'c —
HSS4x4x
onapv
Va % J Vl8 V4 3/16 Va
(tesigm >n. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, rb/ft 21.6 17.3 14.8 12.2 9.42 6.46
Pii/Cic P„/nc « Pn/^ic M /i/Oc M
uesign
ASD IRFD ASD: LBRB; ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 m ^249" 133 199- 178 104- 156 B7.6' 131 70.9 106
1 165 248 132 198 118 .178 103 155 87.2 131 70.5 106
2 .163 244 130 • 195 117 175 102 153 86 0 129 69.5 104
3 159 239 127 191 114 . 171 99.7 149 84.1. 126 67.9 102
4 153 231 123 le"' 110 165 96.5 145 81.4 122 65.6 98.5
5 147 221 118 177 166' 158 92.5^ 139 78.1 117 62.9 94,3
6 139 ' 209 112 • 168 lim ^ 150 •87.8 132 74.2 111 59.7 89,5
7 131 196 106 159 • 94.2 141 82.7 124 69.9 105 56.1 84.1
8 121 182 98.8 149 ^87.6 131 77.1 116 65.2 97.8 52.2 78.3
9 112 168 91.6 138 '80.6 121 ' 71.2 107 60.3 90.4 48.1 72.2
10 102 153 W.1 126 73.8 .111 •p5.r 97.7 55.2 82.8 44.0 66.0
g 11 92.0 138 76.5 115 66.8 100 59.0 88.5 50.1 75.2 39.8 59.7
S
12 82.2 124 • 69.0 104-' 60.3 90.6 53.0 79.5 45.1 67.6 35 6 53.5
s
13 72.8 109 61.7 92.8 54.0 81.2' 47.1 70.7 40.2 60.3 316 47.5
a
• c
>
14 eif 95.8 54.7: 82.2 48.0 72.2 41.6 62,3 35.5 53,2 278 41.7
«
IS 55.5 83.5 47.9 72.0 42.2 63.5 36.3 54.4 31.0- 46,5 24 2, 36,3
i 16 4S.8 73.3' 63.3 3M 55.8^ 31.9 47.8 27.2 40,8 21.3 31,9
UJ 17 • iisi 65.0 37.3 56.1 32.9 49.4' 28,2 42.3 24.1 36,2 189 28,3
18 38.6 58.0 33.S 50.0 29.3 44.1 25,2 37,8 21.5 32.3 16.8 25,2
19 34.6 52.0 29.9 44.9 26.3 39.6 22.6 33.9 19.3 29.0 15.1 22.6
20 31.2 46,9 27.0 40.5 23.8 35.7 20.4 30.6 17.4 26.1 13.6 20.4
21 28.3 42,6 24.4 36.7 21.5 32.4 18.5 27.7 15.8 23.7 12.4 18.5
22 25.8 38,8 ??3 33.5 19.6 29.5 16.9 25.3 144 21.6 11.3 16.9
23 23.6 35.5 20.4 30.6 18.Q 27.0 15.4 23.1 13.2 19.8 10.3 15.5
24 18.7 28.1 y:5 24.8 14.2 21.2 12.1 18.1 9.46 14,2
25 13.1 196 11.2 16.7 8.72 13,1
26
8.06 12,1
Properties
(l>i)M„ kip-ft. ^8-3 27.6 15.5: 23.2 -13.7; 20.5 ii.e 9 29 14,0 669] 10.1
Pe{KLf/W kip-in.2 365 328 300 268 229 1: '9
ASD LRFO Note: Heavy line indicates KL/r equal to or greater than 200.
2.00 (|)c=0.75
DasheO line indicates the KL beyond wtiicli bare steel strengtn controls.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4^-275
Fy = 46ksi
fc' = 5 ksi
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
COMPOSITE
HSS3V2
HSSSVzxSVax
anape
3/s Vie V4 3/16 Vs
'uraian. in- 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 14.7 12.7 10.5 8.15 5.61
Design
PnlCla 4cP,< PalCh <kPn Pnliia •fcPn Pn/Qc 'IfcPn
Design
ASD LRFO :ASO LRFD ASD IBFD ASD LRFD ASD LRFD
0 169 9a9 148 86.4 130 72.6 109 58.1 87.1
1 112 168 98.3 147 85:9 129 72.1 108 57.7 86.6
2 110 165 96.4 145 84.3 126 70.8 ^ 106 56.7 85.0
3 107 160 93i4 140 81.7: ^ 122 68;7 ' 103 55.0 82.5
4 102 154 89)3 134 . 78.2 : 117 65.9 : 98.8 52.7 79.0
5 96.7 i 145 84;4 127 74.0 111 62,4 93,5 49.8 74.7
6 90,4 136 78.7 118 69.1 104 58,3. , 87.5 46.6 69.9
7 833 126 "72.9" "1T0"" 63.8 95.7 53.9 80.9 43.0 64.5
8 76.2 115 66.8 100 58:2 87.2 49,2 73.8 39.2 58.8
9 68.7 103 60;6 90.9 52.4 78.5 44,4 66,6 35.3 53.0
10 61:2 92.0 54:2 81.4 46.5 69.8 39,6 59.4 31.5 47.2
g
11 53.8 i 80.9 47:9 72.1 40.9: : 61.5 34.-8. : 52.3 27.6 41.5
H
12 46.8: 70.3 41.9 63.0 36 0 54.1 30.3 ' 45.5 24.0 36.0
13 40.1 60.3 36.2 54.4 313 47.1 26.0 39.0 20.6 30.8
i" 14 34.6 ; 52.0 31i2 46.9 27 0 40.6 22.4 33.6 17.7 ' 26.6
§
15 30.1 45.3 27.2 40.8 23.5 35.4 19.5 29.3 15.4 : 23.2
1
16 26.5 i 39.8 2X9 35.9 20 7 31.1 17.2 25.7 13.6 • 20.4
17 23.5 35.2 21 i2 31.8 18:3 27.5 15.2 , 22.8 12.0 ; 18.0
18 -20.9' 31.4 i:18.9 ; 28.4 16.3 ' 24.6 13.6 20,3 10.7 16.1
19 ? 18.8 28.2 16.9 25.5 14.7 ; 22.0 12.2 18,2 9.63 14.4
20 16.9 25.5 15.3 ' 23.0 13.2 ; 19,9 11.0 : 16,5 8,69 13.0
21 15.4 23.1 13,9 20.8 12.0 18.0 9.96 14,9 7.88- 11.8
22 10.9 16,4 9.07 13,6 7.18 10.8 22
Properties
tnji-h M„ kip-ft 113 16.9 10.0 15.1 v{8f60; 12.9 10.4 :^4.99; 7.50
PeiKLfno' kip-in 203 188 168 144 114
LRFD
nc=2.00 ([1^=0.75
Note: Heavy line Indicates KL/r equal to or greater than 200.
Dashed line indicates the KL beyond which bare steel strength controls.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

4-276 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS3
Table 4-16 (continued)
Available Strehgth in
Axial Compression, kips
Concrete Filled Square HSS
Fy = 46 ksi
fc' = 5 ksi
Shape
HSS3x3x
5/16 V4 Vl6 Vs
tdesigni
0.349 0,291 0.233 0.174 0.116
Steel, lb/ft 12.2 10.6 8.81 6.87 4.75
ASD
PnlCic
LRFD ASD LRFD ASD
Pnldc
LRFD ASD
i^oPn Pgliic
LRFD ASD LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
93A
92.6
90.2
86.4
75:3;
68.5
61.2
53.8
46;4i
39.4
32.9:
27.6
23.5
20.3
17:7
t5.5
13.8
140
139
136
130
122
113
103
92.0
80.8
69.8
59.3
49.4
41.5
35.4
30.5
26.6
23.3
20.7
81.0
80:3i
78.3
75.1
70:9
65:8
60.1
53.9
47.6
41;3
3^3.;
29.6
24.-9
21j2:
18.3
15.9
14.0-
12.4
tIsO
122
121
118
113
107
98.9
90.3
81.0
71.5
62.1
53.0
44.5
37.4
31.8
27.4
23.9
21.0
18.6
16.6
69.7
69:1
67)3
64.6
60:7
56.2
51.2
45.8"
To'e"
35.6
30.6
25:9
21 ..8
18.6
16:0
13.9
12.3
10.9
9.69
104
104
101
96.7
91.1
84.4
76.8
68.7
"6l"'
53.4
46.0
39.0
32.8
27.9
24.1
21.0
18.4
16.3
14.6
58.4
57.9
56.4
54:1
51.1
47.4
43.3
38.8
34:3
29.7
25.4
21.3
17.9
15:2
13.1
11.4
10.1
8.^1
7.95
7.13
87.5
86.8
84.7
81.2
76.6
71.1
64.9
58.2
51.4
44.6
38.1
31.9
26.8
22.9
19.7
17;2
15.1
13.4
11.9
10.7
46.2
45.8
44.7
42.9
40.5
37.6
34.3
30.8
27.3
23.7
20.3
17.0 :
14.3
12.2
10.5
9.16
8.05
7.13
6.36
5.71
69.2
68.7
67.0
64.3
60.7
56.4
51.5
46.3
40.9
35.6
30.4
25.5
21.5
18.3
15.8
13.7
12.1
10,7
9,64
8,56
M/Oo! <|)cM„ kip-ft 7 74 11,6 6 97 10,5 6 04 9.07 7,35 3 58
5.37
Pe{KL)W kip-n 116 108 98.1 84.6 67.7
ASD
n<;=2.oo
LRFD
(l)c=0.75
Note: Heavy line -indicates KL/r equaMo or greater tiian 200.
Dashed line indicates tlie /ft beyond wWcli bare steel strength controls.
it. AMERICAN INSTITUTE OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-277
Table 4-16 (continued)
Fy = 46 ksi Available Strength in
% = 5 ksi Axial Compression, kips
COMPOSITE
Concrete Filled Square HSS HSS2V2-HSS2V4
Shape
iian, in-
Steel, lb/ft
Design
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
HSS2V2X2V2X
=/l6
0.291
8.45
Pniac
ASO
e4f,
63.9
61 ;6;
57.8
53.0
47a
3S.1:
29.1
23.5
-15.7
13.2
11.2
9.69
^Pn
LRFD
97.3
96.1
92.5
86.9
79.6
71.2
62.0
52.7
43.7
35.2
26.6
23.6
19.8
16.9
14.6
V4
0.233
7.11
ftSO
54.3
53.6
,48;a.
45i0
40i4
35.5
30.5
25;6
20®
17.0
14iO
'iiy
io!o
8.65
7.53
LRFD
81.6
80.6
77.8
73.4
67.6
60.8
53.4
45.9
38.5
31.5
25.5
21,1
17.7
15.1
13.0
11,3
3/16
0.174
5.59
Pn/Sic
ASD
45.2
44J
43c1
40.5,.
37.2
33.3
29.2
24;9
201"
17.4
14.1
11.7
.930
V8;35
,7i20
6,27
LRFD
67.8
67.0
64.6
60.8
55.8
50.0
43.7
37,3
Ti'r
26.1
21.2
17.5
14,7
12.6
lols
9,43
Va
0.116
3.90
PnlQc
ASD
35.5
35.1
33®
31.i9.
29.4
26.4
23:2 ,
19.9
16.6 :
13.6
•11.0
9.10
7.65
6.52
• 5.62 ;
4.89
4,30
LRFD
53.3
52,6
50.8
47.9
44.1
39.6
34.8
29.8
25.0
20.4
16.5
13.7
11,5
9,77
8,43
7.34
6.45
HSS2V4X2V4X
V4
0.233
6.26
Pn/n,
'mtr
47.9
47.2
45.2
41.9
37.8
33.0
28,0
23.1
18,4
14.6
11.8
9.75
8,19
6,98
LRFD
72.0
71.0
67,9
63.0
56,7
49.6
42.1
34.7
27,7
21,9
17,7
14,7
12,3
10.5
Properties
4 48 rr^ teas! 5,90 li ajaf 4.86 l ia^irri^ 3.07
Wp-n
I LRfF
Sic =2,00 (tic = 0.75
55,8 51.4 44,7 36,2
4,61
35.2
Note: Heavy line indicates KL/r equal to or greater than ZOO,
Daslied line Indicates the W. beyond which bare steel strength controls.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-278
DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS2V4-HSS2
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy = 46 ksi
U ~ 5 ksi
Shape
HSS2V4X2'AX
'/16 VB
HSS2x2x
V4 Vl6 Vs
0.174 0.116 0.233 0.174 0.116
SteeMb/tt 4.96 346 5.41 4.32 3,05
Design
Pn/iic
ASD
P„/Qc
LRFD ASD
Pn/Qc
LRFD ASD
'PcPn PJQc
LRFD ^D LRFD ASO
<l>»Pn
LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
39J1V
38S
34.1
30.7
Tej"
22.9
18.1
15.5
12.3
9.97
-8i24
B.92
5.90
58.7
57.8
55.2
51.2
46.0
40"~
34.4
28,7
23.3
18.5
15.0
12.4
10.4
8,87
3055
30.2^
2819
26:8
24.2
21.2.
18.0:
14.9
12:0-
9.45
7.65
'6.33
5.31
3.90
45.9
45.3
43.3
40.2
36.3
31.8
27.1
22.4
17.9
14.2
11.5
9.49
7.97
6.79
5,86
41^
40.8
38.5
34.9
30.4^
25.5-
20.6
15:9
12:2
9,64
7,81
6,46
62,5
61.3
57.8
52.4
45,7
38,3
30.9
24,0
18,3
14.5
11.7
9,70
33,1
32.-5
30.6
llT'
24.6
20.9
17.1
13.5
10.4
8.24
6.B7
5.52
4.63
49.7
48.7
45.9
Til"
36.9
31.4
25.7
20.4
15.7
12.4
10,0
8,29
6.97
25.9
25.5
24.1
21.9
19.2
16.2
13.2
10.4
7.95
6.28
5.09
4.20
3.53
38.9
38.2
36,1
32,9
28,8
24.4
19.8
15.5
11.9
9,42
7.63.
6.31
5.30
Propeiiies
^t,M„ kip-ft - 2.53 • 3,81 1 89 2,84 '.2 30 3.45 1 93 2,90 1 45 2,18
PeiKLflW kip-in.2 31,0 25.1 22.9 20,4 16.7
ASD LRFD
Note; Heavy line indicates/(/./f equal to or greater than 200,
Dashed line indicates tiie KL beyond whicli bare steel stfength controls.
£lc=2.00 (|)c=0.75
Note; Heavy line indicates/(/./f equal to or greater than 200,
Dashed line indicates tiie KL beyond whicli bare steel stfength controls.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-279
Fy = 42 ksi
/b' = 4ksi
Table 4-17
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS18-
HSS16
HSSIBx HSS16X
oiiaije
0.S00 0.375 0.625 0.500 0.438 0.375
fdesigtii in. 0.465 0.349 0.581 0.465 0.407 0.349
SteeUb/ft 93.5 70.7 103 82.9 72.9 62.6
Design
P«IClc « p„iac '^oPn Pn'Clc •fcPfl PnlCla 'i'cPn '^cPn
Design
ASO. LRFD ASP LRFD ASD LI^FD ASD LRFD ASD LRFD ASO LRFD
0 972: 1460 854 1280 919 1380 ' 816 1220 , 762 1140 ,711 1070
6 ^ 962 1440 844 1270 907 1360 805 1210.: 752". 1130 701 1050
7 958 1440 841 1260 903 1350 801 1200 > 748^ 1120 697 1050
8 954 1430 837 1260 898 1350 797 1200 744' 1120 693 1040
9 949 1420 833- 1250 893 1340 792 1190 739 1110 689 1030
10
944 1420 828 1240 887- 1330 786 1180 734, 1100 684 1030
11 938 1410 822 1230- 880 1320 ;,780 1170 728 1090 678 1020
12 932 1400 81.7 1220 873 1310 '774. 1160 722 1080 672 1010
13 925 1390. i 810: 1220 : 865 1300 ; 767 1150 715;. 1070 666 999
14 918 1380 803 1210 857 1290 759 1140 ' 708; 1060 659 988
15 910 1360 <796 1190 848 1270 751 1130 : 701 1050 651 977
16 902 1350 788 1180 ^39 1260 743 1110 692 1040 ,644. 966
17 : 893. 1340 780.: 1170 • 829 1240 :!734. 1100 684': 1030 636 953
18 884 i 1330 • 772 1160 819 1230: 724, 1090 675 1010 627 941
19 874^ 1310 763: 1140 ! 80S : 1210 714' 1070 666 999 618- 927
20 864 1300 : 754 : 1130 1200 704 1060 ' 6564 984 609 913
21 854 1280: :744 1120 1180 694 1040 646 969 599 •899
22 843.: 1260 734:; 1100 ,774 1160: 683 1020 : 636.; •954 590 884
23 832i 1250 724 ; 1090 761X1 1140: 672 1010 ; 625 938 579 869
24 ' 820 1230 • 714 1070 749: 1120 660' 990 . 614: 921 569 853
25 809, 1210 703 1050 736 1100 649 973 603 905 558 838
26 796 1190 692 1040 723 1080 637 955 592 887. 547 821
27 784 1180 680 1020 709 1060 624 936 580 870 536 805
28 771 1160 669 1000 696 1040 612 918 568 : 852 525 788
29 , 759 1140 657 985 682 1020 599 899 556 834 514 771
30 746 1120 645 967 kj 1000 586 880 544-.. 816 502 753
32 : 719; 1080 620 931 639 958 : 560. 840 519 779 479 718
34 691 1040 : 595. 893 609 914 534 801 494 741 455 682
36 663 995 570 855 580 870 507 761 469: 704 431 647
38 ; 635 952 544 816 550 825 480 720 ; 444. 666 407 611
40 606 909 518 778 521 781 454 680 419 628 383 575
Properties
k ip-ft ::35ffi; 525 274 412 490 • 271C 407 242 364 213 320
Pe(KLmo' kip-in.^ 39700 33000 31200 26800 24500 22200
• ASD LRFD
nc=2.oo = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-280 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSSie-
HSS14
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy = 42ksi
U = 4 ksi
HSS16X HSS14X
Shape Shape
0.312 0.250' 0.625 0.500 0.375 0.312
fdesigm in. 0.291 0.233 0.581 0>W5 0.349 0.291
SteeMb/ft
52.3 42,1 89.4 72.2 54.6 45.7
P„/Qc ^Pn M
p„iac ^cPn PnlClc « p„iac «
Design
ASD' LRFD •ASD LRFD ASD LRFD ASD LRFD <ASD LRFD ASD LRFD
0 657 986 i 602 903 760 1140 671 1010 ' $79'! 868 531 797
6 . 648! 971 : 593 889 748 1120 659 989 '569'= 853 522 782
7 644 966 589 884 : 743 : 1120 . 655 983 565;: 848 518 777
8 640 961. 586 879 738 1110 651 976 561 842 514 771
9 636 954 582 872 733" 1100 : 646 968 556^ 835 510 765
10 631 947 .577 865 726 1090 640 960 551 827 505 757
11 626 939 572 858 719 1080 634' 950 546 818 500 749
12 620 930. 566 850 712 1070 627 940 539 809 494 741
13 614! 921 .561 841 704 1060 ;: 619 929 533: 799 488 731
14 / 607 911. 554 831 695 1040 612 917 526i 789 481 721
15 600 901 548: 821 686 1030 603' 905 : 518 778 474 711
16 : 593 890 . 540 . 811 i 676 1010 595/ 892 5iia 766 467... 700
£
17 • 585 878. • 533 800 666- 999 565 878 >502 753 .459^' 688
18 577 866- 525 788 655; 983 S76, 864 • 494; 741 45P 676
19 569 853: 517 776 : 644- 966 566 849 485': 727 442, 664
c
£
20 560! 840 509 763 633 949 : 556 834 i 476 ;,-713 43| 651
21 ; 551 826' : 500: 750 621 931 545:, 818 466 : 699 425;. 637
«
22 • 541 812 : 491? 737 609 913 634 801 : 456i 685 416; 623
s 23 532 797 ; 482 723 596 894 523. 785 446K 670 40C 609
24 ; 522 783 ' 473- 709 583 875 512 767 436!= 654 397 595
25 : 512 767 463 695 570 856 500 750 : 426 639 387 580
26 501 752 . 453 680 557 836 ! 488 732 415 623 377 566
27 • 491 736 443 665 544 816 476 714 ' 405 607 367 551
28 : 480 720 433 650 530 795 464 696 394 • 591 357 535
29 469 704 ; 423 635 517 775 452 677 383. 574 347 520
30 458 687 413 619 503 754 : 439 659 372 :: 558 337 505
32 436 654 : 392= 588 . 475:' 712 V 414: 622 . 350 > 525 316 474
34 . 414 620 : 371. 556 447 670 1 389 584 492 296 443
36 391 587 350 524 419 629 365 547 : 306 459 275 413
38 369 553 329 493 391 587 340 510 285 427 255 383
40 346 519 308 462 364 547 316 474 264 396 236 354
Properties
l<ip-ft - 182 : 274 : 149: 225 244- 367 • 203'': 305 . i6on 240 206
PeiKLfna* kip-in; 19800 17300 19900 moo 14200 12600
ASD .
0c=2.00
IRFO
). = 0,75
' Shape is noncompact for flexure with fy=42 tel.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-281
Table 4-17 (continued)
Fy = 42 ksi Available Strength in
fc=4 ksi Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS14-
Hssio.rso
Shape
HSS14X HSS12.750X HSS10.750X
Shape
0.250 O.S(HI 0.375 0.250 0.500 0.375
ttesiom in-
0.233 0.465 0.349 0.233 0.465 0.349
Steel, lb/ft 36^8 65.5 49.6 33.4 54.8 41.6
Design
M p„/ac Pnliic Pn/Qc ^oPn p„iac
Design
ASO LRFD ASD LRFD sASDi LRFD *ASD LRFD ASD LRFD ASD LRFD
0 485 728 -584 877 i-502: 754 418:. 626 f59. 688 390 585
6 476 714. 573 859 492:. 738 «08 612 •446 669 379 569
7 •473. 709 569 853 :i;488: 732 .405 607 442" 663 375 563
8 469 704 :,564 846 :484 726 .401 602 437 655 371 556
9 ;465: 697 559 838 v:479: 719. 397 595 i31 646 366 549
10 460 690 553 829 .i474 711 392 588 425- 637 360 540
11 •i455- 683: 546 819 •468 702 387 580 418 627 354 531
12 :.450 674 539 809 ;-462:. 693 381 572 410 : 615 348 522
13 <444 665 532 798 ;455: 683 376 ;
369
563 '402 604 341 511
14 !:437 656 524 786 448 672
376 ;
369 554 -.394 591 334 500
15 431 646 515 773 >;44T . 661 363 544: •385. 578 326 489
16 ;;424! 635 507 760 •:433 649 356 533 376 564 318 477
g.
17 ;:416 624 497 746 :425 637 348 • 522 367 550 310 464
18 408 613 488 732 i416 624 341 511 357. 535 301 452
4 19 C401 601 478 717 407 611 333 • 499 347. 520 292 438
0
1
20 1,392 588 467 701 : 398 597 325 487 336 504 283 425
21 ;384 576 457 685 389 583 317 475 326 489 274 411
22 :375 563 446 669 379 568 308 462 •315' 472 265 397
23 366 549 435 652 ?369 554 300 : 449 304 456 ?56 383
24 357 536 424 635 . S359. 539 291 :.. 436 293 440 246 369
25 348 522 412 618 V349. 524 2S2 423 282 423 237 355
26 .r339£ 508 401 601 S339 508 273 410 271 407 227 341
27 329 494 389 583 329 493 264 396 :260^ 390 218 327
28 320 480 377 566 J318 477 255 383 249 374 208 313
29 310 465 365 548 308 462 246'; 369 239: 358 199 299
30 f301 451 353 530 ,297 446 237 356 >228? 342 190 285
32 ! 281 422 .330 495 277 415 220 329 310 172 258
34 m 393 :306 460 •256 384 202 303' M875 280 155 232
36 243 365 f283 425 236 354 185 278 167; 251 138 207
38 225 338 261 391 -217 325 169 253 150' 225 124 186
40 207 311 239 359 .'198 297 1S3 229 135:. 203 112 168
Properties
<t)6M„ ki ip-ft 113 170 166 249 130': 196 92 6 139 114.: 172 136
PeiKLfm' kip-in.2 11000 12600 10400 8020 7110 5880
ASD
fie =2.00
LRFD
<!)<; = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-282
DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS10.750-
HSS10
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy = 42 ksi
fc'-4ksi
HSS10.750X HSSlOx
Shape
0.250 0.625 0.500 0.375 0.312 0.250
feslgm 'I-
0.233 0.581 0.465 0.349 0.291 0.233
Steel, lb/ft 28.1 62.6 50.8 38.6 32.3 26.1
P^IClo Paliic p«/ac ^cPn Pntilo ^Pn p„/ac <^cPn ^cPa
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 320 479 478 ' 717 415 ^ 622. 352 528 319 478 286 429
6 310. 465 463 694 402 602 340 510 308 • 462 276 414
7 306 460 457, 686 397 595 336 504 305 457 272 409
8 302, 454 451:. 676 392 587 332 497 300 450 269 403
9 298 447 444. 666 386 579 327 490 296 443 264 396
10 293 440 437 655 379.:. 569 321 481 290 436 259 389
11 288 -432 428 643 372 558: •315 472 285 5 427 254 381
12 282 424 420 629 365 • 547 308 462 279 418 248 373
13 276 415 410 615 356:;^ 535 301 452, 272 ,408 242 364
14 270 : 405 400 601 348-: 522: 294 441 , 265 : 398 236 354
15 263 395 390 585 339: V 509 286 429 258 387 230 344
16 257:- 385 . 379 569 330 495- 278 417 251 -376 223 334
E.
17 249 374 368 552 320 :. 480' 270 405 243 ,• 365 216 323
! . ..
18 242 363 -357 535 •310:: 465: 261 392 235 353 208 313
19 234 352 345 518 300 450: 253 379 227 'i 341 201 . 302
20 227 340 333' 500 , 290 . 435 244 366 219 : 329 194 290
21 219 328 321 482. 279:;) 419 235 352 211 316 186 279
22 :2iT 316 309 463 269J 403 226 338 203 304 178 267
23 203 304 297 445 2S8 • 387 216 325 194 S 291 171 256
24 292 2M 427 :248: 371 207 311 186 279 163 245
25 W , 280 272 408 :237: 355 198 297. 178 266 155 233
26 179 268 260 390 :226 340 189 : 284 169 : 254 148 222
27 171 256 248 372 216 324 :i80 270 161 242 140 211
28 163 245 236 354 205 308 171 257 153 • 230 133 200
29 155: 233 224 336 •195 . 293 163 244 145 :. 218 126 189
30 148 221 2l'2~' "ffg" 185 : 278 154 231, 137 206 119 178
32 133 199 192 289 .166,,. 249 137 206 122 •• 183 105 158
34 118 177 173 260 221, 122 183 108 162 93.1 140
36 106 158 155 232 131 197 109 163 96.5 145 83.1 125
38 94:7 142 139 208 118 177 ; 97.5 146 86.6 130 74.5 112
40 85.5 128 125 188 106 159 88.0 132 78.1 117 67.3 101
Properties
M„iai ilt,M„
kip-^ft -64.2 96.5 176. WS 147 77.1 116 '66.2 99.6 549
Pe(KLflW Wp-in.2 4490 6400 5580 4620 4100 3530
ASO LRFD Note: Dashed line Indicates the KL beyond wliich bare steel strength controls.
il)c=0.75
1
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-283
Table 4-17 (continued)
Fy = 42 ksi Available Strength in
fj = 4 ksi Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS10-
HSS9.625
Shape
HSSlOx HSS9.625X
Shape
0.188 0.500 0.375 0.312 0.250 0.188
'design. in- 0.174 0.46S 0.349 0.291 0.233 0.174
Steel, lb/ft 19.7 48.8 37.1 31.1 25.1 19.0
Design
P«/Oic Pnlac « ^cPn PJOc ^Pn P„/ac ^Pn Pn/^c ^Pn
Design
ASDi LRFD ASD LRFD ASD LRFD ASD LRFD m LRFD ASD LRFO
0 252 378 394, 591 333 500 301 452 269 404 237 355
6 243;. 364 .381 571 ,322 • 482 .290 436 260 389 228 342
7 239. 359 376 564 317 , 476; 287. 430 256 384 224 337
8 236 354 370 556 313., 469 282 424 252 378 221 331
9 232; 347 364 , 547 308 c 461 278 : 416 248 371 217 325
10 227 341 358 537 302 453 272 408 243 • 364 212 318
11 222 . 333 351 526 296 444 267 Wo 237 356 207 311
12 217 325 343 514 289 434 261 391 232 348 202 303
13 211 317 335 -502 282- 423 254 381 ' 226 339 197 295
14 206 308 326 489 275- , 412 247 371 220 { 329 191 286
15 200 299 317 475 267 401 240 360 , 213 320 185 277
16 ,193 290 . 308 461, 259 389 233 349 206 309 179 268
E- 17 187 280 298 447 251 376 .225 338 199 • 299 172 258
18 180 270 288.,, 432 242. 364 217 326 192 288 166 248
t
19 173 260 278 : 417 234 351 209 : 314 185 = 277 159 238
1
20 167 250 268 401 225 337 •201 i 302 177 266 152 228
i
21 160 ; 239 257 ^ 386 216 324 193 290 170 > 255 145 218
1 22 153 229 247 ' 370 207 311 185 278 163 244 139 = 208
S 23 146 219 236' 354 198 297 177 265 155 233 132 198
24 139 208 226 338 189 284 169 253 148 J 222 125 188
25 132 198 : 215 323 180 271 161 • 241 140 210 119 178
26 125 188 205 307 172 257 152 229 133 200 112 168
27 119 178 195 292 163 244 145 217 126 189 106 159
28 112 168 184 277 154 232 137 205 119 178 99.5 149
29 106 158 175 262 1,46, 219 129 , 194 112 168 93.4 140
30 99.3 149 165 247 138,, 207 122: 183 105 158 87.3 131
32 -B7.3 131 146 • 219, 122 ' 183 107 : 161 , 92.5 139 76.8 115
34 77.4 116 129- 194 108 . 162 95;0 142 82.0 123 68,0 102
36 69.0 103 115 173 96.2 144 84.7 127 73.1 110 60.7 91.0
38 61.9 92.9 103 155 86.3 130 76.0 114 65.6 98.4 54.4 81.7
40 55.9 83.8 93.4 140 77.9 117 68.6 103 59.2 88.8 49.1 73.7
Properties
A' 'i <itiM„ kip-ft 42;8: 64.4 ms 135 71-:0 107 61;0 91.7 50.6' 76.0 39.5 59.3
PMfm' kip-in; 2940 4910 4090 3610 3110 2580
ASD
«<;=2.00
LRFO
= 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-284
DESIGN OF COMPRESSION MEMBERS
©
COMPOSITE
HSS8.625
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy = 42 ksi
fj = 4 ksi
NSS8.62SX
snape
0.625 0.S00 0.375 0.322 0.250 0.188
fdeslgm in.
0.581 0.46S 0.349 0.300 0.233 0.174
Steel, lb/ft 53.5 43.4 33.1 28.6 22.4 17.0
Design
P„IQc « fll/Oo ifcPo P„IQo ^Pn Pnlilc ^cPn Pn/Hc
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD AiSD LRFD
0 3^2 588 338 507 284 , 426 •261 . 391 228 342 199 299
6 •375 562 324! 486; .272 408 250 374 218 327 190 285
7 369 554 319; 478 268 402 246 369 214 ' 322 187 280
8 362 544 .313 -470 263 395 241 362 210 316 183 274
9 355 532 307 460 258 387 236 354 206 • 309 179 268
10 ^347 520 300 450 252 378 231 346 201 • 301 174 261
11 338 507 293 439 245 368 !225 337 196 . 293 169 254
12 329 493 •285 .: 427 239 358 219 328 190 .: 285 164 246
13 319 478 276 414 232 347 212 318 184 : 276 159 238
14 309 463 267. 401 224 336 205 308 178 f 267 153 230
15 298 ' 447 258: 387 216 325 198 297 171 : 257 147 221
16 287 430 '249: 373 208 313 286 165 . 247 141 212
g
17 276 413 239 359 :'200 300 183 > 274 158 . 237 135- 203
18 264 396 229 -344 192 288 •175 263 151 • 226 129- 193
£ 19 .252 379 219 329 275 167 251 1'44 216 123f 184
1
20
111-
_36J__ 209 ' 314 175 • 263 160 239 137 i; 206 116ft 174
> 21 229 344: 199 299 167 250 152 228 130 r 195 110? 165
1 22 218 ' 328 )f89 284 158 237 144 216 123 = 185 104 V 156
23 208 312 :179 269 150 225 136 204 116 f 174 97.7 147
24 197 297 =169 . . 254 141 212 129 193 109 ^ 164 91.8 138
25 187 281 160 240 133 200 121 182 103 154 85.9 129
26 177 266 150 225 125 188 •ii4 171 : '96.3 144 80.2 120
27 167 251 141 211 118 176 106 160 90.0 135 74.5 112
28 157 237 132 198 110 165 99.4 149 83.7 126 : 69.3 104
29 148 222 T2'3'~ "Tss" 102 . 154 92.6 139 '78.1> 117 64.6 96.9
30 138 208 115 173 95.7 144 §6.6 130 72.9 109 60.4 90.5
32 •122 . 183 101- 152 = 84.1 126 (76.1 114 ; $4.1i 96.2 53.1 79.6
34 108 162 89.7 135 74.5 112 '67.4 101 56.8 85.2 47.0 70.5
36 96.2 145 80.0 120 66.4 99.7 60.1 90.2 50.7 76.0 41.9 62.9
38 86.3 130 71.8 108 S9.6 89.5 54.0 80.9 45.5 68.2 37.6 56.4
40 77.9 117 64.8 97.5 53.8 80.7 48.7 73.0 41.0 61.5 34.0 50,9
Properties
M„/at, 1 ift, M„ kip-ft 84.4 127 .70:6; 106 ,,55.9 84.0 493 74.1 39.9 60.0 • 31.2 46,9
Pe{KLf/W kip-in/ 3880 3400 2830 2560 2160 1780
k&p LRFD Note: Dashed line indicates tiie KL beyond which bare steel strength controls.
Qc=2.00
t>c
:=0.75
Note: Dashed line indicates tiie KL beyond which bare steel strength controls.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-285
Table 4-17 (continued)
Fy = 42 ksi Available Strength in
fc = 4 ksi Axial Compression, kips
Concrete Riled Round HSS
COMPOSITE
HSS7.625-
HSS7.500
Shape
HSS7.625X HSS7.500X
Shape
0.375 0.328 O.SOO 0.375 0.312 0.250
'design, il- 0.349 0.305 0.465 0.349 0.291 0.233
Steel, lb/ft 29.1 25.6 37,4 28.6 24.0 19.4
Design
Pfl/Oc i^cPn <!>cP» PnlClc P«/a„ W Pnliio
Design
/^D LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 239 359 221^ 331 281 421 234 351 •210 315 186 278
6 226.: 339 209 313 265 397 221 331 . !198 297 175 262
7 222 333 .205 307 259 389 2i6:v; 324 h94 : 291 171 257
8 217 325 200 300 253 380 211 316 :i89 284 167 250
9 21,1' : 317 .195 : 292 247: 370 205 308 184 : 276 162 244
10 205 307 189 283 239 359 199 299;; 179 ' 268 157 236
11 198..! 298 183 ' 274 231 347 193 289 173 : 259 152 228
12 19V; 287 177 : 265 223 334 186 278 167 250 146 219
13 184 ' 276 170 255 214 321 178: 268 160 . 240 140 211
14 17-7.; 265 163 i-i 244 205 308 171 : 256 153 : 230 134 201
15 169..- 253 156 234 •196: 294 163- 245 1146 :.-219 128 192
16 161:; 241 148 223 186 279 155 233: 139 :: 209 122 , 182
E,
17 153^ 229 141 ? 212 177 265 147 221 132 : 198 115 173
18 14S;: 217 134 200 :i67 251 139 209 1^5 .6 187 109 163
19 1.37- 205 126 189 157; 236 13'!::: 197 118 y 176 102 153
20 129; 193 119 5 178 148' 222 123 185 liO 166 95.9 144
21 1<21v 181 167 139 208 115; 173 103 : 155 89.6 134
22 113' 170 :156 Tib"' 195" 108: 162 96.5: 145 83S 125
23 t06 158 97S2 146 1.22; 183 100: 151 89.8 :135 77.5 116
24 m.2 147 90.4 136 114 171 33;1 140 . 83.3 125 717 108
25 90S 136 83.6 125 106 ^ 160 853 129 76.8. 115 66.1 99.1
26 84.0 126 77a 116 98,6 148 79.4 119 -71.0 106 61.1 91.6
27 77.9 117 71;7 108 91.4 137 73.6 110 65.8 98.7 56.6 84.9
28 72.4 109 66.7 100 85,0 128 68.5 103 61.2 91.8 52.7 79.0
29 67^ 101 62.2: 93.2 79.3 119 63:8 95.7 57.1i 85.6 49.1 73.6
30 >63:1 94.6 58.I' 87.1 74.1 111 .59.6 89.5 53.3i 80.0 45.9 68.8
32 55.5 .83.2 5i:l; 76.6 65.1 97.8 52.4 78.6 46.9 70.3 40.3 60.5
34 :49.1 73.7 4Si2 67.8 57.7 86,7 <46.4 69.7 41.5 62,3 35.7 53,6
36 ''43,8 65.7 40.3 60,5 51.4 77.3 41.4 62.1 37.0 55.5 31.9 47,8
38 .39.3 59.0 36;2 54.3 46.2 69.4 37.2 55.8 33.2 49,9 28.6 42.9
40 35.5 53.2 32.7 49,0 417 62.6 33.5 50.3 30.0 45.0 25.8 38,7
Properties
kip-ft 42 7 64.2 38:3; 57.5 51,& 78.1 •41:2 61.9 35.5 53.4 29.5 44,4
1860 1720 2110 1760 1580 1360
- -ASD
0^ = 2.00
LRFD Note: Dashed line indicates the KL beyond which tare steel strength controls.
(t)c = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-286 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS7.500-
HSS7
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy = 42 ksi
fc - 4 ksi
HSS7.500X HSS7X
anape
0.188 0.500 0.375 0.312 0.250
fdeslgm in.
0.174 0.465 0.349 0.291 0.233
Steel, lb/ft 14.7 34.7 26.6 22.3 18.0
Design
Pnl0.c « M
Design
ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD
0 1160 241 256 383 212 319 190:: 285 168 251
6 •151 , 226 239 359 199 298 '178:-. 267 157 235
7 147 : 221 233 350 194 291 ,174 261 153 229
8 144 215 227 ; 341 189 283 ;169 254 14S 223
9 139 209 220 ; 330 183 275 164; 246 144 216
10 135 202 213 31.9 177 265 158 237 139 208
11 130. , 195 204 • 307 170 • 255 132 228 134 200
12 125 187 196 294 .163 245 , 219 128 192
13 120 179. 187 281 156 234 139 209 122 183
14 114 171 178 267 148 H 222 133 199 116 174
15 : r09.: 163 169: 253 141 211 .126 189, 110 165
16 103i, 154 159 239 •133 ;i 199 119 178 104 156
g. "
17 = 97:2 146 150 225 125 188 112 • 168 97.5 146
18 137 • • 14"" '212 117 176 ;105 157 91.3 137
g
19 .:85:8 129 133 199 lib 164 ^ 98.0 147 85.2' 128
J
20 - ®0.2 120 124:; 187 ,102 ;; 153 , 91.3 137 79.2 119
J
21 ; 74.7 112, 116 175 94 6 142 : 84,6 127 73.3 110
1 22 i 69.3 104 108 163 87 5 131 78.2 117 67.6 101
g
23 64.1 96.2 101 ! 151 804 121 • 71.9 108 62.0 93.0
24 59.0 88.5 93.1 140 738 111 99.0 56.9 85,4
25 ^ 54.4 81.5 85.8 129 68:0 102 60.8 91.3 52.5 78,7
26 50,3 75.4 79.4: 119 62.9 94.4 SR2 84.4 48.5 72.8
27 46.6 69.9 73.6 111 58.3 87.5 52.2 78.2 45.0 67.5
28 43,3 65.0 68.4 103 54.2 81.4 48.5 72.7 41.8 62.8
29 40.4 60.6 63.8 95.9 50.6 75,8 45.2 67.8 39.0 58,5
30 37.7 56.6 59.6 89:6 47.2 70.9 422 63.4 36.4 54.7
32 33.2 49.8 52.4 78,8 41.5 62.3 371 55.7 32.0 48.1
34 29.4. 44.1 46.4: 69.8 36.8 55.2 32.9 49,3 28.4 42.6
36 26.2 39.3 41.4- 62.2 32.8 49.2 29.3 44,0 25.3 38.0
38 23.5 35.3 37.2 55,8 29.4 44.2 26.3 39,5 22.7 34.1
40 21.2 31.9
Properties
M„/Qi,, (|)6/W„ kip-ft : 23.1 1. 34:7 :::44.6|i 67.0 : SSMji 53.3 ;'3(le? 45.9 25.4 38.2
kitbin.2 1120 1670 , ,1400 1250 1080
^ASD LRFD Note: Heavy line indicates Kt/f equal to or greater than 200.
Dastied line Indicates the W. beyond whlcli bare steel strengtli controls.
Q^=2.00 (])<; = 0.75
Note: Heavy line indicates Kt/f equal to or greater than 200.
Dastied line Indicates the W. beyond whlcli bare steel strengtli controls.
AMERICAN INSTiTOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-287
Fy = 42 ksi
fc' = 4 ksi
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS7-
HSS6.a75
HSS7X
oiidpe
0.188 0.125 0.500 0.375 0.312
Wign. in-
0.174 0.116 0.465 0.349 0.291
Steel, lb/ft 13.7 9.19 34.1 26.1 21.9
Pa/Qc p„/ao fc/i PalCic Pn/Qc ^Pn
Design
ASD LRFD ASO LRFD ASD LRFD ASD LRFD ASD LfiFD
0 144:; . 217 121 182 249; . 374 207: ! 311 186 278
6 134- 202 112 168 233 : 349 194 :: : 290 173 260
7 13,1 • : 197 109 164 227 341 1.89 283 169 253
8 127 : 191 106 158 221 331 184, . 275 164 246
9 123 185 102 153 214 ; 320 178; 267 159 239
10 119: 178 97.9 147 206 309 171, 257 153 , 230
11 : 114 : 171 93.6 140 198 297 165. : 247 147 221
12 109 163 89.1 134 189 284 158 . 237 141 212
13 104 ! 155 84.5 127 181 271 ISO, J 226 134 202
14 98,2' 147 79.8 120 171 257 214 128 192
15 ^,7; 139 75.0 113 •162 243 1:35 203 121 181
16 87.2 • 131 70.2 105 153 229 127 : 191 114 171
£
17 81.7; 123 65.5 98.2 144 215 120-,, 180 107 161
18 '76:3 114 60.8 91.1 ""20""" 1:12, ; 168 100 150
19 7Q;9i 106 56.2 84.2 127 190 'I6;4 157 93.3 140
.1
20 98.5 51.7 77.5 118 178 96.9 145 86.6 130
21 6Q.6 90.9^ ; 47.4 71.0 110 166 ; 89.7 135 80.1 120
22 83.4 43.1 64.7 103 154 82.6 124 73.8 111
S 23 '•io.9: 76.3 39.5, 59.2 • 94.9 143 '75.7; 114 67.6 101
24 46.7 70.1 36.3 54.4 87.4. 131 69.5 104 62.1 93.2
25 '•43.1: 64.6 33.4 50.1 80.6 121 6ii : 96.1 57.2 85.9
26 39.8: 59.7 46.3 74.5 112 59.2 88.9 52.9 79.4
27 36.9 55.4 28.6 43.0 feg.i 104 '54.9 82.4 49.1 73.6
28 ' 34.3: 51.5 26.6 40.0 64.2 96.5 "51.1 76.6 45.6 68.4
29 32.0 48.0 24.8 i 37.2 5'9.9; 90.0 47.6 71.4 42,5 63.8
30 " 129.9 44.9 23.2 34.8 55.9 : 84.1 -•44.5 66.7 39.7 59.6
32 26.3 39.4 •2b.4' 30.6 "49.2: 73.9 39.1 58.7 34.9 52.4
34 23.3: 34.9 18.1. 27.1 43.5 1 65.5 r34.6 52.0 30.9 46.4
36 20.8; 31.2 16.1 24.2 38.8;: 58.4 30.9 46.3 27.6 41.4
38 ' 18.6 28,0 : 14.5; 21.7 27.7 41.6 24.8 37.2
40 16.8' 25.2 13.1 19.6
Properties
4) A kip-ft 29.9 21.2 : 42.9 64.4 34.1 51.2 29.4 44.2
Pe{KLf/W kip-in.^ 884 686 1570 1320 1170
ASO I.RFD Note: Heavy line indicates /(lAequai to or greater than 200.
= 0.75
; Dashed line indicates the KL beyond which bare steel strength controls.
Uc=2.00 = 0.75
X.
HSS6.875X
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-288 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS6.87S-
HSS6.625
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy = 42ksi
fc' = 4 ksi
Shape
HSS6.875X
0.2S0 0.188
HSS6.62SX
0.S00 0.432 0.375
^aesigni 0.233 0.174 0.465 0.40Z 0.349
SteeMb/ft 17.7 13.4 32.7 26.6 25.1
Design
PnlClo
ASO LRFD ASD
PnfOc
LRFD ASO
Pn/Clc
LRFD ASD
(!>c/!> P„/Qc
LRFD ASO LRFD
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
32
34
36
38
I63
152.
149
144^
140
135'
129
123
138'
112
105
. 99:3
93.1
87.0
81.0
75.1
69.3
'63.8
58.3
53.6
49.4
, 45.6
. 42.3
39.3
36.7
34.3
•s 30.1
•26.7
23.8
21.4
245
228
223
216
209
202
194
185
176
167
158
149
140
131
121
113
104
95.6
87.5
80.3
74.0
68.5
63.5
59.0
55.0
51.4
45.2
40.0
35.7
32.0
140
131
127^
123
119
115
110
105'
99:7
9|.4
89.0
83.5
78.^
72.8
67.5
.6214
57.4
52.5
48.0
44.1
40.7
37.6
34.9
324
30 2
28.2
24 8
22 0
19.6
17.6
211
196
191
185
179
172
165
157
150
142
133
125
117
109
101
93.6
86.1
78.7
72.0
66.2
61.0
56.4
52.3
48.6
45.3
42.3
37,2
33.0
29.4
26.4
237
220
215
208
201
193
185
176
168
1"S8
T49""
141
132
124
116
108
' gae
92.0
.. i?4.4
77.5
71.4
66.0
61.2
56.9
53.1
49.6
43,6
! 38.6
34.4
356
331
322
312
301
290
277
265
251
238
22T"
211
199
186
174
162
150
138
127
116
107
99.3
92.0
85,6
79.8
74,6
65,5
58,0
-JM.
216
200
195;
189
183
176
168'
161
152
144
136
128
119
11J
l'd3
"95I
883
.81.6
75.1
68.9
63.5
' 58.7
54.5
50.6
47.2
44.1
38.8
34.4
30 6
323
300
293
284
274
263
252
241
229
216
204
191
179
166
154
"u"
133
123
113
104
95.5
88,3
81,9
76.1
71.0
66,3
58,3
51.6
46.1
197
183
178
173
167
160
154
147
139
132
124
117
109
102
941
79,9f
73.0?
295
274
267
259
250
241
231
220
209
198
186
175
164
152
141
130
120
110
66.9
61.4
56.6
52.4
48.5
45.1
42.1
39,3
34.6
30.6
27.3
101
92.4
85.1
78.7
73.0
67.9
63,3
59.1
51,9
46,0
41,Q.
Properties
kip-ft .€4,4, 36,7 t 19,1, 28.8 395 b9 3 35.2^ 52.9 •^Sl.4. 47.2
Pe(KLfn(f kip-in.^ 1010 834 1390 1270 1160
£2c = 2.00
LRFD
, = 0.75
Note: Heavy line-indicates AZ/requa( to or greater than 200.
. Dashed line indicates the KL beyond which bare steel strength controls.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-289
Table 4-17 (continued)
i V
Fy = 42 ksi Available Strength in ( )
fc' = 4 ksi Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS6.625
Shape
HSS6.625X
Shape
0.312 0.280 0.250 0.188 0.125
tiesigni in.
0.291 0.260 0.233 0.174 0.116
Steel, lb/ft 21.1 19.0 17.0 12.9 8.69
p„/ao « fcPn P„/Qo PnfOtc
uesign
ASD LRFD ASD IRFD ASD LRFD ASD LRFD ASD LRFD
0 176. 264 165H' 247 155 : 232 133 199 111 166
6 164 245 153 230 144 216 123 184 102 153
7 •159 239 149 224 440 0 210 12D 179 98.7 148
8 154; 232 145 217 ^36 203 116' 174 95.3 143
9 M49 • 224 140 : 209 '131 -196 lit 167 91.6 137
10 215 134 ; 201 '126 -189 107 160 87.6 131
11 ' 206 129^ i 193 120 • 181 102 153 83.4 125
12 '131- 197 123 : 184 115 172 . .97.2' 146 79.0 119
13 125,: 187 116 : 175 109 163 92.1 138 74:5 112
14 177 fta; 165 103 • 154 86.9 130 69.9 105
15 111"- 167 104 1 156 969 145 81.6 122 65.3 98.0
•g'
H
16 104"; 156 '97.4 146 90.9- 136 76.2 114 60.7 91.1
•g'
H
17 97,4 146 91.0 137 84 8 127 71.0 106 56.2 84.3
XI
18 •90i 136 84.7 127 78.9... •118 658 98,7 51.8 77.7
19 ;84:t) 126 78.5' fl8 73.0 110 ; 60:7 91.1 47.5- 71.2
20 :77.6 116' f2S 109 67.3 101 '558' 83.7 43.3 65.0
21 471.3.1 107 .: 99.9 6f.8' 92.7 5.1,0 76,4 39.3 58.9
22 igs-i 97.8 91.3 5^4 84.6 46.4 69,6 35.8' 53.7
23 59.6 ,89.4 . 55.7;' 83.5 51.6 77.4 .42.5 63,7 32.8 49.1
24 H8- 82.2 76.7 47 4 71.1 39,0 58,5 30.1 45.1
25 :5o:5 ^ 75.7 47.1 70.7 43.7 65.5 36:0 53.9 27.7 41.6
26 146.7 ' 70.0 43.6' 65.3 404 60.6 33,2 49.9 25.6 38.5
27 , 43.3 64.9 , 40.4 60.6 37 4 56.2 46,2 23.8 35.7
28 40.2: 60.4 . 37.6 56.3 34 8 52.2 28.7 43,0 22.1 33,2
29 137.5; 56.3 . 52.5 32 5 48.7 26 7 40,1 20.6 30,9
30 '35,1 52.6
: 32.7
49.1 30.3. 45.5 25.0 37,5 19,3 28,9
32 130.8 46.2 28.8!: 43.1 26:7: 40.0 213 32,9 16.9 25,4
34 27.3 40.9 25.5' 38.2 . 23.6 35,4 194 29,2 15.0 22,5
36 24.3 36.5 , 22.7 34.1 21.1 31.6 17.3 26,0 13.4 20,1
38 •15,6: 23,3 12.0 18,0
Properties
Mn/Cl^-. i|)ii M„ kiprft 2/1 40.7 24 7 37.1 22:6:: 33.9 ,26,6 18,8
PMfno' kip-in.' 1040 967 896 738 569
ASD LRFD Note: Heavy line indicates tt/r equal to or greater than 200.
2.00 (t)c=0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-290
DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS6
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy = 42 ksi
fc' = 4 ksi
HSS6X
Shape
0.500 0.375 0,312 0.280 0.2SO 0.188
(deslgni in>
0.465 0.349 0.291 0.260 0.233 0.174
Steel,\m 29.4 22.5 19.0 17.1 15.4 11.7
PnlCic ^Pn PnfQc PJilc PalQa W Pfl/Oc P„iac M
Design
ASD LRFD ASDi LBFD ASD tRFD ASD LRFD ASO LRFD ASO LRFD
0 208 312 172 258 153 230 1431 215 134 201 114 172
1 208 312 172 • 258 153 230 143 214 134 r 201 114 171
2 206 309 170 / 256 1,52 228 142 213 133 199 113 170
3 204 305 168 i 252 150 225 140 , 210 131 ;; 197 112 168
4 200 300 165 248 147; 221 138 207 129 ; 194 110 165
5 195 293 162 ^ 243 144: 216 135 202 . ike- 189 107 161
6 190 : 285 157 236 140 210 131 . 196 123 , 184 104 156
7 184 276 152 228 136 204 127 190 119; 178 101 151
8 177. 266 147 220 131 ; 196 122 183 , 114, 172 96.9 145
9 170 255 141 211 125 i 188 117 175 110; 164 92.7 139
10 162 243 134 201 120 179 112 167 ; 105 157 88.2 132
11 .154 231 127 191 113 170 106 159 99.Z 149 83.5 125
& 12 146 220 120 180 107 161 99.9 150 93.6 140 78:6 118
13 138 207 11? 169 101: 151 93.8 141 88.0 132 73.6 110
14 130 195 105 . 158 •94.1 141 : 87.7 132 82.2 123 68;6 103
1
15 121 182 98.i 147 Ms 131 81.6 122 76.4 115 63;6 95.5
16 113, 170 90.8 136 .81 .i) 121 75.5 113 70.7 106 m 88.0
17 "105 157 83.6 125 74.6 112 69.5 104 65,1 97.7 53i8 80.8
18 '96:5 145 76.6 115 68.3 liD2 63.7 95.5- 59.7- 89.5 49.2 73.7
19 88.6 133 70:2 105 62.3 93.5 58.0 87.0 54.4 81.6 44.6 66.9
20 81.0 122 64:4 96.8 56.4 84.6 ':52.5 78,8 49.2 73,8 40.3 60.4
21 73.6 111 58.7 88.2 51.2 76.7 47.6 71,4 44.6 66,9 36.5 54.8
22 67.0 101 53.5 80.4 46.6 69.9 43.4 65.1 40.7 61,0 33.3 49.9
23 61.3 92.2 48.9 73.5 42.6 64.0 39:7 59,6 37.2 55.8 30.4 45.7
24 56.3 84.6 44 9 67.5 39.2 58.7 36:5 54,7 -34.2 51,3 28.0 41.9
25 51.9 78.0 41 4 62.3 36.1- 54,1 '33:6 50,4 31.5 47,2 25.8 38.6
26 48.0 72.1 38.3 57.6 33.4 50.1 m 46.6 29.1 43.7 23.8 35.7
28 ''41.4 62.2 330 49.6 ^ 28.8 43,2 26.8 40.2 25.1 37.7 20.5 30,8
30 36.0 54.2 28 8 43.2 25.1 37.6 ;23.3 35.0 21.9 32.8 17.9 26,8
32 317 47 fi 25.3 38.0 22.0 33.0 20.5 30.8 19.2 28.8 15.7 23,6
34 17.0 25.5 13.9 20,9
Properties
(fft/Mfl kip-ft 317 47.f 253 38.0 218 32 8 19,9 29.9 182 27.3 •.14:3 21,4
Pe(KL)W 994 : 830 741 690 646 529
ASD LRFD Note: Heavy line indicates tt/requal to or greater than 200.
DasHed line indicates tire KL beyond wnicn Dare steel strengtn controls.
r!c=2.00 i/c
= 0.75
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-291
Table 4-17 (continued)
Fy = 42 ksi Available Strength in
fc = 4ksi Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS6-
HSS5.563
HSS6X H$S5.563x
0.125 0.500 0.375 0.258 0.188 0.134
fdesign. in- 0.116 0.465 0.349 0.240 0.174 0.124
Steel, lb/ft 7.85 27,1 20.8 14.6 10.8 7.78
Pn/Qc Pn/Qc M ^cPn Pnf^c ^cPn Pnl^o « Pal^c ^cPn
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 '91..6
142: 188 283: 233 123 184 103 154 86.7 130
1 141. 188 282 ;155 232 122 184 •102 " 153 86.4 130
2 ,93.5 140 186 279- 154 230 , 121 182 ioi. 152 85.6 128
3 .92.2 138 184 275 151 ,. 227 120 . 179 99.8 150 84.2 126
4 r90.4 136 380 270 138 223 1|7 : 176 . 97.7 147 82.4 124
5 r88.Z 132 175 263 .145 217 1il4 171,, ; 95.1 143 80.1 120
6 .85.5 128,. 170 256 .140 210 ,111 166. 92.q 138 77.3 116
7 .82.4. 124 164; 247 ;i35 202- 106 160 :88.S. 133 74.2 111
8 79.0 119 .158,, 237 129 194 ,102/ 153 • 84.6, 127 70.7 106
9 '75.4 113 '151 ; 226' 123 184 97.0 145 80.4 121 67.0 101
10 :71.4 107 143 215 116 174,
91.7
138 : 75.91 114 63.1:, 94.6
11 67.4 101 135 203 109 164 86.3 129 71.3 107 59.0,: 88.5
& ^
12 63.1' 94.7' 127 • 191 102 153 80.7 121 66.5 99.8 54.9 82.3
' 5
I ,
13 58.9 88.3 Ij9 178 : 95.0 143 75.0 113 'ei.t 92.6 50.7 76.0
14 54.6 81.9 110 166 87.8 132 69.4' 104 B6.9 85,4 46.5 69.8
15 50.3" 75.5 ite 153
.Mi. BL.
:fe3:7 95.6 '52.2 78,3 42.4 63.6
16 46.1 69.2 93.^ 141 74.2 112 58.2 87,4 47.5 71.3 38.4, 57.7
17 42.0 63.1 85.9 129 68.2 102 52.9 79.4 b.i 64.6 34.6 51.9
18 38.1: 57.2 78.1 117 62.3 93.6 47:8 71.6 38.7 58.0 30.9 46.4
19 34:3' 51.4 70.6 106 56.6 85.1 42.9 64.3- 34.7 52.1 27.7 41.6
20 30.9 46.4 b.7 95,7 51.1 76.8 38.7 58.0 31.3 47,0 25.0, 37.6
21 28:i 42.1 5?.8 86.8 46.3 69.6 35.1 52.6 28.4 42.6 22.7 34.1
22 25.6 38.3 52.6 79.1 42.2 63.5 32.0 47.9 25.9 38.9 20.7 31,0
23 23,4 35,1 48.2 72.4 38.6 58.1 .2a2 43.9 23.7 35,5 18.9 28.4
24 21.5 32,2 44.2 66,5 3^5 53.3 26.9 40.3 ' 21.8 32.6 17.4 26.1
25 19;8 29.7 40.8. 61.3 32.7 49.1 24.8 37,1 20.1 30,1 16.0 24,0
26 18:3 27.5 .37,7: 56.6 30:2 45.4 22,9 34,3 18,5 27,8 14.8 22,2
28 15.8 23.7 32.5 48.8 26.1 39.2 19.7 29,6 16.0 24,0 12.8 19.2
30 13.7 20.6 28.3 42.5 22.7 34.1 17.2 25,8 13.9 20,9 11.1 16,7
32 12.1 18.1 9.78 14.7
34 10.7 16.1
Properties
IfbMn kip-ft 15.2 ?6.7 40,2- ., 21.4 32.2 15.8 23.8 12.1 18,2 9.11i 13.7
PeiKLflW kip-in.® 406 769 643 508 412 329
ASD LRFO Note; Heavy line indicates KL/r equal to or greater ttian 200,
= 0.75
• Dashed line indicate s the ML bevond which bare steel strenflth controls.
Uc=2.00 <fc = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-292 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS5.500-
HSS5
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy = 42 ksl
fc' = 4 ksl
HSS6.500X HSSBx
0.500 0.375 0.258 0.S00 0.375 0.312
'design! in-
0.465 0.349 0.240 0.466 0.349 0.291
Steel, lb/ft 26.7 20.6 14.5 24.1 18.5 15.6
Pnl^o ^Pn M P„IQo <l>cfi, ^cPn Pnl^c fcPfl P„IClc «
Design
ASD LRFD' ASD LRFD ASD LRFD ASD LRFD A^ LRFD
m LRFD
0 186- 279 153 230 • 121 181 • 166 250 ;135 i! 202 119 179
1 185 : 278 • 153 229 121:' 181 166 249 134 ! 201 119 179
2 183 • 275 151 • 227 120* 179 164"' 247 SI 33 -199 118 177
3 181 271 149 224 118 ' 177 Ifel 243 130 ' 196 116 173
4 177 266 146 219 ' 115p 173 . A58 ' 237 •127 191 113 169
5 173 260 142 213' 112 • 168 153 230 -'123 185 109 164
6 168 ' 252 137 206.. 109 163 1^7 ' 221 118 -177 105 157
7 162': 243. 132 198 105; 157 ill 212 ::iit3 • 169 100 150
8 155 233 : 126 190 99.9 150 134 201 107 160 94.9 142
9 148 222 120, 180 95.0 143. 126': 190 101: 151 89.3 134
10 140 211 170 89.8 135 1|8' 178 93.9 141 83.4 125
g 11 133 199 107;;. 160 ,84.3 126 IIO ' 166 ' 87.1. 131 77.4 116
12 124; 187 99.6; 149. 78,7 118 102 153 "80.3" T2T" 71 i3 107
13 116 w 174 92.5 139 73.1 110 ; 93.5 141 : ki 111 65.2 97,7
;J
14
15
108-
99.5
162.
150
.M
78.4
128
Tfs"'
67.4
61.8
101
92.7
85.3
77.3
128
116
: 67.9
,61.8
102
92.8
59.1
53.3
88,7
79,9
16 91.3 137 72.3 109 : 56.4 84.5 69.5 104, 55.8 83,9 48:0 72.2
i 17 83.4 125 66.2 99.6 51.1 76.6 g2.0 93.2 • 50.2 75.4 43.1: 65.0
18 75.7 114 60.4 90.8 45.9 68.9 55.3 83.1 44.7 67.2 38.6 58,1
19 68.2 102 54.7 82,2 41.2 61.8 49.6 74.6 40.1 60,3 34.7 52,1
20 61.5 92.5 49.4 74,2 37.2 55.8 44.8 67.3 36,2 54.5 31.3 47,0
21 55.8 83.9 44.8 67.3 33.8' 50.6 40.6 61,0 ' 32.9 49,4 28.4 42.7
22 •50.9 76.4 40.8 61,3 30.8 46,1 37.0 55,6 29.9 45,0 25.9 38,9
23 46,5 69.9 37.3 56.1 . te'.i 42,2 319 50,9 : 27.4 41,2 23.7 35,6
24 42.7 64.2 34.3 51,5 25.8 38,8 SI.I 46,7 25.2 37,8 21.7 32,7
25 39.4 59.2 31.6 47,5 23.8 35,7 28.7 43,1 23.2 34.9 20.0 30,1
26 36.4 54.7 29.2 43,9 22.0 33,0 26.5 39,8 21.4 32,2 18.5 27,8
28 31:4 47.2 25S 37,9 19.0 28.5
30 21.9 33,0 16.5 24,8
Properties
M„/£l(, ijij/Wfl kip-ft 26.1 39.2 20.9 31.4 154 23,2 21 0 31.6 169 2S4 146 ?2.0
Pe(KLf/W kip-in.2 739 619 489 534 450 401
ASD LRFD Note: Heavy line indicates fO.//; equal to or greater than 200.
^5=2,00
<1>C
= 0,75
Dashed iine indicates the KL beyond which bare steel strength controls.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-293
Fy = 42ksi
fj = 4 ksi
Table 4-17 (continued)
Available Strength in
Axial Gompression, kips
Concrete Filled Round HSS
COMPOSITE
HSS5-
HSS4,500
HSSSx HSS4.50QX
Snspe
0.258 0.250 0.188 0.125 0.375 0.337
'design, in. 0.240 0.233 0.174 0.116 0.349 0.313
Steel, lb/ft 13.1 12.7 9.67 6.51 16,5 15.0
Design
PnlUc Pn/Oc <l>cP« Pfl/iJf M M Pn/Oc M ^cPn
Design
ASD LBFD Aso: LRFD ASD URFD ASD LRFO ASD LRFD m LRFD
0 159 104; 15B 87.7i 132 71.3 107 :1il7 176 109 163
1 105; 158 --104 155 87.4' 131 71.0 107 117 ; 175 108 163
2 104-; 157 102 154 86.5: 130 70.2; 105 :115 £ 173 .107^ 160
3 103: 154 101 151 84.9 127 68.8 103 112 :: 169 105 157
4 10O: 150 ^ 98,2. 147 82.7 124 67;0 100 109 3 163 id : 152
5 9658 145 95.0 143 8O.1: .120 64.7: 97.0 105 157 97.4 146
6 93^0 140 91.4. 137 76.9 115 62.0 • 92.9 k.e 149 92.7 139
7 88.8 133 87.2 131 '73,3' 110 58,9 88.3 ' 94.0 141 87.5 131
8 84.1; ,126 82,6 124 69.4 104 55:5 83.3 "m" 81,8 123
9 "f9'2 119 \ 77.7 117 65,2 97.8 52.0 78.0 82.1 123 75.8 114
10 f3.9 111 72.e 109 -60.8 91.3 48;3 72.4 !|6.0 114
JM.
105__
g v. 11 68^ 103 67.3 101 56,3 84.5 44.5 66.7 69,7 105 63 95.5
12 63.1 94.7 • 62.0 93.0 SI ,8 '77.7 40,7 61.0 63.5: 95,4 57 9 87.1
13 57]? 86.6 56.7. 85.0 47,3 • 70.9 36;9 55.3 57.3 86,1 524 78.7
g"
14 S2.4 78.6 51.4: 77.1 42,8' 64.2 33.2 49.8 M,3 77,1 47 (S 70.6
Oi
IS "47:2 70.8 46.3 69.5 38.5 57.8: 2916 44.5 : 45,6 68.5 41 & 62,8
1
16
m
" 63.4 41.4 62.2 34.4 51.6 26.2 39.3 40,1; 60.3 368 55.3
E . 17 37.5 56,2 36.8 55.1 30.4 45.7 23.2 34.8 53.4 32 6 49.0
18 33:4 50.1 32,8 49.2 27.2 :40.7 20:7 31.1 31,7 47.6 29,1 43.7
19 30.0 45.0 29.4 44.1 .24.4 36.6 18.6 27.9 28.4 42.7 26,1 39.2
20 27:i 40.6 26.6 39.8 22.0 33.0 16.8 25.2 25.7 38.6 23.5 35.4
21 24i5 36.8 24.1 36.1 20.0 29.9 15.2 22.8 23.3 35.0 21.4 32.1
22 ,224 33.5 2T.9 32.9 18.2 27.3 1.3.9 20.8 21,2 31.9 19,5 29.3
23 20.5 i 30.7 20.d 30.1 16.6 24.9 12.7 19.0 19,4 29.2 17,8 26.8
24 18.8 28.2 18,4 27.7 i5.a 22.9 11.6 17.5 17,8 26.8 16,4 24.6
25 17.3 26.0
..,17-i
, 25.5 14.1 21.1 10.7 16.1
26 16.0 24,0 15.7 23.6 13.0 19.5 9.92 14.9
28 13.8 20.7 13.5 20.3 11.2 16.8 8.56 12.8
Properties
kip-tt H2.5 18.8 12.2 18.4-9.61. 14.4 =6.84 10.3 13.4' 20.1 i12i3; 18.5
PeW/IO"
USD
kip-in.2- 355 349 289 220 314 294
fic=2.00
LRFO
(1)C = 0.75
Note Heavy line indicates W./r equal to or greater than 200.
Oashed line indicates the KL beyond which bare steel strength controls.
AMERICAN INSTITUTE OF STBEL .CONSTRUCTION

4-294 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS4.500-
HSS4
Table 4-17 (continued)
Availabfe Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy = 42 ksi
U = 4 ks i
Shape
HSS4.500X HSS4X
Shape
0537 0.188 0.125 0.313 a250
'desisui in-
0.220 0.174 0.116 0.291 0.233
Steel, lb/ft laa 8.67 5.85 12.3 10J)
Design
Pn/Qc ^cPn ft/Qc Pn'iic P„IQc ^cPp PgKlc M
Design
••• ASO LRFD ASO LRFD ASO • LRFD ASD LRFD ASD LRFD
0 86.8- 130 75.3 •113 60.8 = 91.2 :88i6'; 133 76.6. 115
1 86.4 : 130 75.0': 112 90.7 88:T:i 132 76.2 114
2 85.Z 128 74.0 111 ,59.6 .89.5 86.-6 ! 130 74.9:: 112
3 83.4 125 72.3; 108 58.2 87.4 .84.2 126 72.8 109
4 80.8 121 70.1 105 f 56.3 ' 84.5 .80i9f 121 70.0 105
5 77.6 116 67.4 101 54.0 81.0 76.9 115 66.5 99.8
6 73.9 111 64.1 96.2 51.3. 76.9 72.3 108 62.6 93.8
7. ;e9.8? 105 60.5: 90.8 48.2' 72.3 67,2 101 58.2 87.2
8 •fea-: 98.0 56.6 i 84.9 44.9'- 67.4 61,7 92,6 53.5 80,2
9 60.6' 90.8 52.51 78.7 41.4. 62.2 56,5 84.9 48.6 72.9
10 55.7' 83.5 48.2 72.3 ;-37.9:: 56.8 51,3 77.1 43.7 65.5
11 50.7 76.1 43.9 65.9 •34.3.: 51,4 46.1 69.3 38.8 : 58.2
•Se ?
12 45.8 68.7 39.6 59.4 30.8 ; . 46.1 :4i,0 61.7 34.1 51.1
13 41.0- 61.5 35.5" 53.2 f.27.3 i: 41.0 36,2 54.3 Z9.8 . 44.8
•l" 14 36.4 54.5 31.41 47.2 24,0 ' 36.1 31,5 47.3 26.0 : 39.1
f
15 31.9- 47.9 27.6 ; 41.3 i21,0;:' 31.4 27.4 41.2 22.6 34.0
I:
16 28.0 42.1 24.2 ^ 36.3 •18,4: 276 24.1 36.2 19.9 29.9
1
17 37.3 21.5 32.2 .16.a<: 24.5 21.3 32,1 47.6 i 26.5
18 22.2 , 33.2 19.1 28.7 14.6 21.8 19,0 28.6 15.7 23.6
19 19.9 29.8 17.2: 25.8 19.6 17,1 25.7 14.1 21.2
20 17.9 26.9 15.5 23.3 118 177 15.4 23.2 12.7 19.1
21 16.3 24.4 14.1' 21.1 10.7 16.0 .14,0 21.0 11.6 17.4
22 14.8; 22.2 12.8 19.2 . 9.74 14.6 12,7 19.1 10.5 15.8
23 13.6 20.4 11.7 17.6 ^92' 13.4
24 12.5 18.7 10.8 16.1 12.3 ••
25 i-1.5' 17.2 9.92 14.9 11.3
Properties
;W»/£2ft kip-ft . :9.27 13.9 765 11.5 : 5.4S| 8.19 8.^4. 13.4 7 50i 11.3
PeiKLf/W kip-in.2 236 204 155 189 164
ASD LRFO Note: Heavy line indicates/(/./t-equal to or greater.than 200. "
•Dashed line indicates ttie;W. beyond wtiicti tiare steel strength controls.
42^=2.00 <|)c=0.75
Note: Heavy line indicates/(/./t-equal to or greater.than 200. "
•Dashed line indicates ttie;W. beyond wtiicti tiare steel strength controls.
it. AMERICAN INSTITUTE OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-295
Fy = 42 ksi
/U' = 4ksi
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS4
Shape
HSS4X
Shape
0.237 0.226 0.220 0.188 0.125
'design, in. 0.220 0.210 0.205 0.174 0.116
Steel, lb/ft 9.S3 9.12 8.89 7.66 5.18
Design
PnlO.0 m Pnl0.c ^Pa Pn/Oc PnlCio il>cPn M
Design
ASO LRFO ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 73.7 111 71.6 ' 107 70,5 106 63.8 95,7 51,0 76,5
1 ; 73.^3 110 71^2 i 107 70.1. • 105 63.4 i 95.2 : 50,7 76,0
2 72.1 108 70:0 105 68.9 103 93.6 • 49,8 74.7
3 70.1 105 68.1 102 67,0 101 mM' 91.0 48,4 72.6
4 67.4 101 65.5 : 98.2 64,4 ' 96.6 87,5 46,4 69.6
5 64.1 96.1 62.2 93,4 61.3 91.9 i55:4'' 83.1 44,0 • 66.0
6 60.2 90.4 58;S; 87.8 •57,6 86.4 78.2 ,41.3 . 61.9
7 :56.d' : 84,0 '54;'4 ' 81,6 53.5' 80.3 M: 72.6 : 38:2 57.4
8 77.2 50^0 -75,0 49.2 73.8 66.8 35,0 52.5
9 . 46.f: 70,2 45:5 :68.2 44.8 ' 67.1 60.7 31,7 47.5
10 fet' 63,1 •40.9 ' 61:3 40.2' 60,3 36:3 • 54.5 : 28,3 42.5
g
11 56,1 36,3 ' 54.5 35:8 53.6 48.4 25,0 37,6
12 32.9 49,3 3r;9 47^9 31.4 ; 47.2 42.6 21.9 32,8
13 "28T6" ""42I" 27J • 41.6 ,27.3 = 41.0 2I.6 •36.9 18.8 28,3
i" 14 ^ 25,0* 37.5 23.9 35.9 23.5 , 35.3 :21.? 31.9 ; 16,2,;: 24,4
JE
s
15 .^1.7 32.7 20.8
,yv.,
18.3
31.3 20.5 30.8 'I8.5 27,8 14,2.' 21.2
mS
16 ' 19J 28.7
20.8
,yv.,
18.3 27,5 18.0 27.0 IM 24.4 ; 12,4 18,7
§ 17 , 16.9 25,4 162 i 24.4 16,0.0 23.9 14:4 21.6 ' 11.0 i 16,5
18 15.1 22.7 14.5 i 21.7 14.2 21.4 12.8 19,3 9.83 14,7
19 13.6 20.4 13:0 19.5 12.8 19,2 11.5 17-,3 8.82 13.2
20 ,12.2 18.4 11.7 ! 17.6 11.5, 17,3 1.5.4 15,6 7,96 11.9
21 11.1 16.7 10.6 16.0 10.5' 15,7 9.44 14,2 7.22 10.8
22 10.1 15.2 9.68 14,6 9:53= 14,3 8,'60 12,9 6,58 9.87
Properties
'n kip-ft 716 10.8 690 10 4 676 10.2 5.9Z 4.23] 635
158 154 152 137 105
nc=2.00
LRFD
il)c = 0.75
Note: Heavy line indicates KL/r equal to or greater than 200,
Dasfied line indicates the KL beyond which bare steel strength controls.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-296 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS18-
HSS16
Tabl^4-18
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy = 42 ksi
fc' = 5 ksi
Shape
HSS18X HSS16X
Shape
0.500 0.375 0.625 0.500 0.438 0.375
Wisn. in- 0.465 0.349 0.581 0.465 0.407 0.349
Steel, lb/ft 93.5 70.7 103 82.9 72.9 62.6
Design
^Pi, P«IClo Pnliic W Pnl^o (fcPfl fcfl.
Design
ASO LRFD ASO LRFD, ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 1080 1620 - 966c 1450 1000 1500 900 1350 ^848;: 1270 798 1200
6 1070 1600 954: 1430 m 1480 888 1330 ^ 836 1250 786 1180
7 1060 1600 950 1420 , 983 1470 883 1320 • 832^ 1250 782 1170
8 1060 1590 ,945 1420 ,977 1470 878, 1320 827 1240 777 1170
9 1050 1580 940 1410 971 1460 872- 1310 821 1230 771 1160
10 im 1570 933; 1400 964 1450 866 1300 :8i5,. 1220 765 1150
11 1040 1560 927. 1390 956 1430 859 1290 ,808 1210 759 1140
12 1550 920' 1380 948 1.420 851 1280 '800 1200 751 1130
13 162& 1540 912. 1370 ,939 1410 843 1260 : 792 1190 744 1120
14 1020,: 1520 904 1360 '930 1390 834 1250 ,784; 1180 735 1100
15 loip:; 1510 895: 1340 920 1380 824 1240 ;775; 1160 726 1090
16 997 1500 885 1330 909 1360 ,814 1220 ^65 1150 717.. 1080
17 m 1480 876' 1310 898 1350 8(34 12T0' 755 1130 1060
18 m 1460 865 1300 886 1330 %S3,, 1190 744" 1120 697' 1050
%
19 1450 854 1280 '874. 1310 781 1170 733 1100 686 1030
1
20 952 1430 843 1260 861 1290 770 1150 [722^ 1080 67|! 1010
1
21 ko 1410 832 1250 848 1270 •757 1140 710' 1070 664] 996
1
22 927 1390 820 1230 1250 745 1120 698 1050 .6521 978
Ul 23 914 1370 £(07-. 1210 --820 1230 •732 1100 . 685 1030 640 960
24 901 1350 794: 1190 • 806 1210 718 1080 i 672; 1010 627 941
25 887 1330 781 1170 .•791 1190 705 1060 659, 989 615 922
26 872 1310 768' 1150 776 1160 691 1040' 646" 969 602 903
27 •858 1290 754 1130 761 1140 676 1010 . 632; 948 589 8S3
28 843 1260 740 1110 745 1120 662 993 618 928 575 863
29 828 1240 726" 1090 729 1090 647 971 604 907 562 843
30 813 1220 712 1070 713 1070 632 949 590 885 548 822
32 781 1170 682. 1020 681 1020 602 904 561 842 520 781
34 749 1120 653 979 648 972 572 858 532 798 ,493 739
36 717 1070 622 933 614 922 541 812 503 755 465 697
38 684 1030 592 888 581 872 511 766 474 711 437 655
40 651 976 561. 842 548 822 481 721 445 668 409 614
Properties
Mm>, Wn kip-ft 357 536 mr 421 333 500 277 416 247fi 372 217 W
Pe(KL)W kip-in.2 41100 / 34300 32000 27700 25400 23100,
ASD
a.=2.00
LRFD
,= 0.75
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-297
Table 4-18 (continued)
Fy = 42 ksi Available Strength in
fc'=6 ksi Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS16-
HSS14
Shape
HSS16X HSS14X
Shape
0.312 0.250' 0.625 0.500 0.375 0.312
'itesigib in- 0.291 0.233 0.581 0.465 0.349 0.291
Steel, lb/ft 52.3 42.1 89,4 72.2 54.6 45.7
Design
p„/ac ^Pn P,/Qc ifoPn PnlSic M PnlCio M
Design
ASD LRFD ASO LRFO ASD, LRFD ASD LRFD mo LRFD 'm LRFD
0
746 1120- r692 1040 822 1230 734 1100 '645: 967 598 898
6 • 734 1100 •680 1020 808 f 1210 : 721 1080 633 949 587 880
7 730. 1090 ^76 1010 '803. 1200 j717: 1070 ;628 943 583 874
8 . 725 1090 672 1010 • 7,97 1200 '711.' 1070 935 578 867
9 ' 720 1080 666 1000 790 1190. 1060. :.618? 927 572 859
10 714 1070 ••661 991 117tt' 3 699,: 1050 :612 918 566 850
11 1060 654 981 •775- 1160 691 : 104fl ; 605 ' ' 907 560 840
12 700 1050 647 , 971 766 1150 : 683 ; 1030 iS98::, . 897 553 829
13 W
1040 640. 960 , 757 • 1140 875 1010 ;'590 . 885 545 818
14 685 1030 632 948 747 1120 s.d66 999 .581 872 537 806
15 : 676. 1010 "624- 936 737 1110 : 656 984 •573- 859 529 793
16 • m 1000, 615 922 726 1090 646 969: 5635 845 520. 780
17 im: 986 •fi06 909 7|14j 1070 636 953 830 5l0 766
18 971 •596 894 7:02, 1050 ^ 625 937 815 501 751

19 • 637.: 956 586 879 690 1030 813 920:^ 799 491 736
s -
20 626 940 "576 863 677:, 1020 601 902 •522 783 480 720
.1 : 21 923 '565 847 •664 995 589 884: '.:511 1 . 766 470 704
22 604' 906 554 831. 650 975 576 865 749 459 688
E; 23 592 . 888 .542 814 636. 954 ' 564 845: 488', 731 447 671
24 . 580 870 531 796 622 932 ' 551 826 •476i 713 436 654
25 :5'68 852 519 779 607; 910 .537 806 463:; 695 424 637
26 :S55 833 507: 760 -592 888 sS24 786 ,451 677 413 619
27 543 814 .495 742 577 866 510 765 : 439 658 401 601
28 . 530 795 :482 724 562 843 496 744 426.;: 639 389 583
29 517 775 : 470 705 547 820 . 482, 723 ::413J,, 620 377 565
30 504 756 .,457 686 531 ^ 797 , 468; 702 :4Q1 601 365 547
32 :477 716 •;432 648 . 500 750:- ; 440 .: 660 :'Slr5> 563 341 511
34 ••451 676 ,407 610 , 469 704 412., 618 , 350 525 317 475
36 424 636 381 : 572 : 438 657 384, 576 :. 325 487 293 440
38 397. 596 356 534. 408 612 357 535 : ;ioo 451 270 406
40 371:, 557 '332 497 378:' 567 330 495 277 J 415 248 372
Properties
<l>bMp klp-ft 280 i 1,53/ 229 248. 373 207 311 1;63 : 245 140 210
PeiKLfiW kip-in.= 20600 ; 18100 20400 177Q0 14700 13100
iJc=2.00
LRFD 'Shape is noncompact for flexure wiffi =42 ksi.
c=0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-298
DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS14-
HSS10.750
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy - 42 ksi
fc' = 5 ksi
Shape
HSS14X HSS12.750X HSS10.750X
Shape
: 0.250 0.500 0.375 0.250 0.500 0.375
'design, in.
0.233 0.465 0.349 0.233 0.465 : 0.349
Steel, lb/ft 36.8 65.5 49.6 33.4 54.8 41.6
Design
Pn/Hc M P„IQc « PalOa p„iac /fcPn PnlOc W PnlQo <l>cP/.
Design
Asn LRFD ASD LRFD ASO LRFD ASD LRFD LRFD m LRFD
0 554 831 . 637: 955 :557 835 .474.:, 711 495 742 428 642
6 - 542 813 623, 935 • 544 : 816 462 693 .:481f 721 415 622
7 ; 538 807 618 928 540 810 458 687 : 475 ? 713 410 616
8 ' 533 800 613 : 919 535 802 454:, 680 ,470 704 405 608
9 528 792 ; 607 910 529 794 •448 672 463; 695 399 599
10 522 784 600 900 523 784 443 V 664 456: 684 393 589
11 ;516 774" 593 889 516 774 436 : . 654 ,448 672 386 579
12 3 509: 764 585. 877 .. 509 763 „ 429:: 644" 440 >• 660 378 568
13 : 502 753 : 576 864 501, 751 .422-: 633 5 431- 646 370 556
14 : 494 741 567 850 : 492- 739 622- 632 362 543
15 : 486 729 557 836- 484, 725 5406 609' .412 r 617 353 530
16 ;477' 716 547 821 474 711 3981 597 401: 602 344 516
17 468 702 < 536 : 805 465, 697 389 583 391 586 334 ^ 502
18 5 459f: 688 525..:: 788 , 455 .'; 682 380 570^ 380 569 325 487
19 449; 673 514',: 771
444.1
666 370 555 •368^ 552 315 472
.s
20 ; 4,39 658 : 502. 753 ;434 650 360 541 ^ 3571 535 304 456
21 3 428 643 :: 490 735 423:- 634 350 526 345 517 294 441
«
22 418 627 ' 478 ' rrr 617 340 511 .333'; 499 283 425
tz
Ul 23 407 611: : 465: 698 .:400' 600 : 330 495 321: 481 273 409
24 396, 594 453 679 380 583 320 479 309 463 262 393
25 : 385- 578 ! 440 659 377 565 309:: 464 :297. 445 251 377
26 374: 561 427 640 • 365 547 298 448 :284; 427 240 361
27 362 544 • 413 620 353 530 288 432 272 408 230 345
28 351 527 400 600 341 512 277 416 260 390 219 329
29 340 509 387 580 . 329 494 267 400 248 373 209 313
30 328 492 374 560 317 476 •256 384 237 355 199 298
32 :305 458 •3.47. 521 440 535., 353, 214 321 179 268
34 283' 424 : 321 481 • 270 406 215 322 192 288 159 239
36 261 391 295 443 - 248 372 195' 293 171 257 142 213
38 239 359 271 406 226 339 176 264 153; 230 128 191
40 218 328 :' 247 370 204 307 159 238 139 208 115 173
Properties
MA kip-ft 1,16 174 169 254 : fsS: 200 ^ :9«6' 142 : 116 175 92 0 138
PM)W kip-in.^
11500 13000 10700 8350 7280 6050
He =2.00
LRFD
(])<;= 0.75
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-299
Fy = 42 ksi
fc = 5 ksi
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
, COMPOSITE
HSS10.750-
HSS10
Shape
HSS10.7SOX HSSlOx
Shape
0.250 0.625 0.500 0.375 0.312 0.250
ftfesign. in- 0.233 0.581 0.465 0.349 0.291 0.233
Steel, lb/ft 28.1 62.6 50.8 38.6 32.3 26.1
D«isign
Pfl/Oc •tfefl. P„/Qa fcfl, PJCic ifcPa P„IQo M Pn/Qc Pfl/Hc M
D«isign
ASO LRFD /VSD LRFO LRFD ASD LRFD ASD LRFD ASD LRFD
0 359 538 507 760 ;445' 668 .384 576 352 528 320 480
6 347 521 490 735 •431 646 '371 556 339 -509 308 462
7 343 515 •484 726 425 638 >366 . 549 ;335 503 304 455
8 338 507 477 716 419. 629 •361 541 5330 . 495 299 448
9 333 . 499 470 705 413:^ 619 .355 532 324 S 487 294 440
10 327 491 461 692 405 608 5348 s 522 318 478 288 432
11 321 . 481 452 679 397 F 596 341 512 .312 f 468 281 422
12 '314 471 443 664 389 583 >334 . 501 305 5 457 275 412
13 307 460 432 649 380 570v '3^6 489 297 £ 446 268 401
14 299 c 449 422 632 370 556 317 476 289 434 260 390
15 :291 ' 437 410 615 360 541 308 463 .281 421 252 378
16 283 : 425 399 598 350^ 525 .299 :. 449 272 :: 408 244,- 366
17 275 412 386 580- 339 •: 509 435 263 395 236- 354
18 266 399 374 561 328- 492 280 420 254 -1 382 227 341

19 257 385 361 542 317:! 476 -270 405 245 1 368 219 328
1
20 248 371 348 522 .306'. 458 260 390 236 ' 354 210 315
s 21 238 358 335 502 294 441. 250 375 226 339 201 302
i' 22 229 344 322 483 282 424' 240 359 217 . 325 192- 288
E 23 220 330 308 463 271 . 406 259 344 207 311 183 > 275
24 210 315 295 443 259 388 219 329 198 » 296 174 262
25 201 ' 301 -282 423 247 371 2d9 313 188 282 166 248
26 192 ' 288 269 403 236 354 199 298 179 268 157 236
27 ite 274 '256 383 224 336 189 283 ,170 . 254 148 223
28 .173 260 243 364 213 319 •179 268 160 241 140 210
29 164 247 :230 : 345 202 . 303 i169 254 152 . 227 132, 198
30 156 e 234 -218 327 191' 286 160 240 •143 214 124 186
32 139 208 J1:93 290 170 254 ,-141 212 126 i 189 109 ^ 163
34 123 -184 IrJ "260" 150 225 125 188 ,112 167 96.5 145
36 Il0 164 155 232 134 201 112 167 99.5 149 86.1 129
38 i 98.3 147 139- 208 120 180 100 150 89.3 134 77,3 116
40 ' k.T 133 125 188 109 163 90.4 136 80.6 121 69.7 105
Properties
<^t>Mn kip-ft
PeiKLfm kip-in,'
lie =2.00
LRFO
(|)c=0.75
65 6 986 119 178 993 149 78 6 118 67.6 102 561
4660 6510 5700 4750 4230 3660
Note: Dashed line indicates tlie KL beyond wtiicfi bare steel strength controls.
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-300
DESIGN OF COMPRESSION MEMBERS
Table 4-18 (continued)
Available Strength in
COMPOSITE Axial Compression, kips
Concrete Filled Round HSS
Fy = 42ksi
= 5 ksl
HSS10-
HSS9.625
Shape
HSSlOx HSSg.625x
Shape
0.188 0.S00 0.375 0.312 0.250 0.188
design. in-
0.174 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 19.7 48.8 37.1 31.1 25.1 19.0
Design
Pnf^o PH/QC li/oPn p„/ac ^Pn Pn'Cic Pn'Oic ^Pn PnJQc «
Design
ASD LRFD ASB IBFD ASD LRFD IRFD ASD LRFD ASD LRFD
0 287 430 ^ 422 634 363-; 544 332 498 301 1 451 269 404
6 275 413 407 i 611 ^349 . 524 319 479 289 : 433 258 387
7 271 407 402 603 :345 , 517 3i5 472 285 : 427 254 380
8 .267 400 396- 594 339 509 >310 464 „ 280 i 420 249 374
9 262 392 389: 583 333 500 3(54 456 275 ^ 412 244 366
10 256 384 382 572 327 490 298 447 269 403 239 358
11 250 375 373 560 320- 480 291 :: 437 262 394 233 349
12 244 365 365 • 547 ;312 ; 469 -284 • 426 256 :384 226 339
13 237 355 356 534 304 456: 277 . 415 249 . 373 220 329
14 230 345 . 346 519. ,296 ' 444 269 :. 403 241 t 362 212 319
15 222 334 336 504 431 391 : 233 f 350 205 308
16 215 322 326 488 278 417 262 ,• 378 i225 338 198 -296

17 310 1315 472 '269:, 403 243 365 217 V 326 190 285
18 298 •304 456 259 389 234 351 ,!209 313 182' 273
1 19 391 -286 293 439 249 374 "225 337 200 s 301, 174- 261
20 183 274 •281 422 m: 359 324 1,92 288 166 249
21 174: 261 270 405 •223:: 344, 206 ti: 310 183 275 158 237
22 166 249 258 . 387 219 329 197 i. 296 174 262 150 225
23 •.158, 237 247 370 209 314. :188 „ ! 282 166 249 142,. 213
24 225 235:- 353 199 299 268 157 236 134 202
25 142 212 224 336 .189. 284-, ;i69 -254 149 ' 223 127 190
26 134>. 201 212 319 ,180,, 269 ,:160 , 240 141 211 119 179
27 126 189 201 302 170.:. 255 ,151 ; 227 132 • 199 112 168
28 118 178 190 286 161 241 143 214 124 f 187 105 157
29 111 166 180 269 :151 227 134 201 117 175 97.4 146
30 104; 156 169?: 254 ,142 213 126 189 109 164 91.1 137
32 •91.1 137 149: 223 :125> 188 166 !95.8 144 80.0 120
34 807 121 132 198 111: 166 : 97.9 147 , 84.9 127 70.9 106
36 72.0 108 118 177 •98.8 148 47.3. 131 '75.7 .114 63.2 94.8
38 64.6 96.9 ;106 . 158 :68.7 133 : 78,4 118 68.0 102 56.8 85.1
40 58.3 87.5 95.3 143 '80.0 120 70.7: 106 •61.3 92.0 51.2 76.8
Properties
MnlCli (|)4Af„ kip-ft i 43;« 65.8 137 '72.3 109 62 2 93.5, ) 51.7 77.7 403 60:6
PAKLfn^ kip-in.^
7asd
£1^=2.00
LRFD
(j)c = 0.75
3060 5010 4210 3720 3220 2690
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-301
Fy = 42ksi
fc' = 6ksi
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS8.625
Shape
HSS8.625X
Shape
0.625 0.500 0.375 0.322 0.250 0.188
ftissisiii in. 0.581 0.465 0.349 0.300 0.233 0.174
Steel, lb/ft 53.5 43.4 33.1 28.6 22.4 17.0
pesign
Pa/Oc (fcft P«/Qc Pn'Clc Pn/Qc M 'icPn Pnf^c ^Pn
pesign
ASD. LRFD ma LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 413 n 619 360 541 308 462 285 • 427 253 380 225 337
6 394 591 344 517 294 .441 272 408 24r 361 213 320
7 388 582. 339 508 289 433 267 401 •237 355 209 314
8 ;380 571 333 : 499 284 425 262 . 393 : 232 ; 348 205 307
9 :3?2 . ,559' 326 488 277 416 i256 385 . 227 340' 200 300
10 '364 6 545 318 477 ,271 406 250 375 221
j
331 194 291
11 r 53^4 : 531 310 i 464 >264 395 :Z43 ^ 365 214 , 322 188 283
12 •344 [i 516 301 < 451 .256 384 236 354 208 : 312 182 273
13 333 e 500 ,291 437 248 372 229 343 201 ; 301 176 263
14 322 ^ 483 ^282 ^ 423 239 359 221 331 194 290 169 253
15 '310 , . 466 408 ,231 346 T212 319 186 279 162 243
' E
16 >298 ; 448 392 222 333 '204 306 178 ^ 267 155, 232
' E
17 286 : 429 •251 ' 376 •213 319 195 293 '170 • 256 147''' 221
18 274 : 411 •240 ' 360 203 305 187 280 162 244 140 , 210
£ • 19 •261 • 392 :2?9 . 344 194 ! 291 ^ 178 267 154 232 133% 199
1
249 . 373 218 327 184 ' 277 169 254 .146 . 220 125| 188
1
21 236 t: 354 > 2Q7 F: 311 175 •> 263 160 240 ;138 , 208 118g 177
® 22 ;224 V 336: T96 294 . 166 248 151 . 227 130 • 196 nrv^ 166
£ 23 '211 317,. ^185 278 •156 : 235 >143 214 . '123 t 184 104 156
24
25
199
W
299
"ST" ,164
262
247
I47
138
221
207
134
126 .
201
189 ids
172
161
96.9
90,2
145
135
26 177 : 266. 5154 231 130 194 118 : 177 100 150 83.6 125
27 >167 251 144 216 121 182 110 165 93,0:. 140 77,5 116
28 •157 237 134 202 113 169 102 153 86,5 130 72,1 108
29 •14® • 222 .125 188 . .165 157 : 95.3 143 : 80.7 121 67.2 101
30 138 208 >117 176 98.1 147 • . 89.0 134 : 75.4 113 62.8 94,2
32 122 183 nda-; 154 86,2 129 • 78.2 117 . 66.2 99,4 55.2 82,8
34 108 162 91.1i 137 76.4 115 i 69.3 104 : 58.7 88,0 48.9 73,3
36 96.2 145 81.3 122 68.1 102 61.8 92.7 52.3 78,5 43.6 65,4
38 86:3 130 72,9 109 61.1 91.7 : 55.5 83.2 47.0 70,5 39.1 58,7
40 77,9 117 65.8 98,7 55.2 82.8 50.1 75.1 42.4 63,6 35.3 53,0
Properties
MipH? i^ibMn kip-ft 854 128 71 7 108 569 85.5 50.3 75.6 *40.8 61.3 31.9 47.9
PaiKlfniy kip-in 3930; 3460 2900 2630 2230 1860
ASD
nc=2.oo
LRFD Note: Dashed line indicates the W, beyond wliich bare steel strength controls.
(|), = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-302 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS7.625-
HSS7.500
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy S 42 ksi
/b' = 5 ksi
Shape
HSS7.625X HSS7.500X
Shape
0.375 0.328 0,500 0.375 0.312 0.250
'design. in-
0.349 0.305 0.465 0.349 0J!91 0.233
Steel, lb/ft 29.1 25.6 37.4 28.6 24.0 !9.4
Design
P„/Qc m Pn/Oc P„/Qc ^cPn P«/Oc M Pfl/Slc M Pit/^c M
Design
ASD LRFO ASD LRFO ASD LRFD ASD LRFD ASD LRFD ASD LRFO
0 257 386 239 359 2&7 445 251 376 228 341 204 306
6 242 364 225 : 338 '279 419 236 ; 354 214 ' 321 191 287
7 237 356 221 331 273 V 410 231 347 209 314 187 281
8 .232 348 .215 323 267 400 225 338 204 306 182 273
9 225 338 209 314 259 389 219 329 198 298 177 265
10 219 328 203 304 251 377 212 318 192 288 171 257
t1 211 317 196 294 243 364 205 ' 307 185 278 165 247
12 203 305 189 283 233 350 197 296 178 267 158 237
13 ,195 293 181 272 224 336 189 283 171 256 152 227
14 •187 280 173 260 214 321 181 271 163 245 144 217
15 178 267 165 248 204 306 172 258 • 155 233 137 206
16 170 254 157 236 194 . 291 163 245 147 221 130. 195
17 lil 241 149 223 183 275 154 232 139 209 123 184
1
18 152 228 141 211 • 173 259 146 218 131 197 115 173
i
r
19 143 214 . 132 199 '162 244 137 205 . 123 185 108 162
a
1
n
20 134 201 •124 186 152 229 128 192 115 173 101 _ 151
s 21 126 188 116 . 174 142 213 120 179 108 i 162 93.9 141
22 117 176 108 162 •132 199 111 167 TOO 150 87,0 131
23 109 163 101 151 123 184 1Q3 155 92.8 139' 80.4 121
24 101 151 r93.1 140 Tf4'" '171"" •95.2 143 ,'85.5 128 73,8 111
25 92.9 139 85.8 129 • 106 160 87.8' 132 78.8 118 68.1 102
26 85.9 129 79.3 119 98.6 148 81.1 122 72.8 109 62.9 94.4
27 79.6 119 73:5 110 91.4 137 75.2 113 67.5 101. 58.3 87.5
28 74.0 111 68.4 103 85,0 128 70.0 105 .62.8 94,2 54.3 81.4
29 •69.0 104 63.7 95.6 n79.3 119 65.2 97.8 586 87,8 50.6 75.9
30 64.5 96.7 59.6 89.3 74,1 111 60.9 91.4 547 82.1 47.3 70.9
32 85.0 62.3 78.5 65.1 97.8 53.6 80.3 481 72.1 41.5 62.3
34 : 50,2 75.3 46.4 69.6 57.7 86.7 47:4 71.2 426 63.9 36.8 55.2
36 44.8 67.2 41.4 62.0 51.4 77.3 42.3 63.5 : 38.0 57.0 32.8 49.2
38 40.2 60.3 37.1 55.7 46.2 69.4 38.0 57.0 34.1 51.2 29.5 44.2
40 36.3 54.4 33.5 50.3 41.7 62.6 34.3 51.4 30.8 46.2 26.6 39.9
Properties
M„IQb' ^bMn kip-ft 43.5 65.3 39.0 58.5- 52.7 79.1 41.9 63,0 S
54.3 301 45.3
PAKLfn kipTin.' 1910 1760 2150 1800 1620 1400 ;
ASD LRFO Note: Daslied line indicates the/a beyond wtiich bare steel strength controls.
£1c = 2.00 = 0.75
Note: Daslied line indicates the/a beyond wtiich bare steel strength controls.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-303
Table 4-18 (continued)
Fy = 42 ksi Avallabie Strength in
fc = 5 ksi Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS7.500-
HSS7
Shape
HSS7.500X HSS7X
Shape
0.188 0.500 0.375 0.312 0.250
0.174 0.465 0.349 0.291 0.233
Steel, lb/ft 14.7 34.7 26.6 22.3 18.0
M
/•n/Hc <icPn
Design
ASD LRFO ASO LRFD ASD LRFD ftSD LRFD m' LRFD
0 17S: 269 2695 404 227 341 206 308 184 275
6 168 252 251 i 377 212 318 : 192 288 171 256
7 164 246 245:.; 368 207; i 310 187" 280 166 250
8 159 239 238 357 201 301 182 272 162 242
9 1S4 231 231 346 194 292 176 264 156 234
10 143 223 222: 334 187 281 169 f 254 ' 150 226
11 143; 215 214 320 180: 270 163; 244 ^ 144 216
12 137 206 204: 307 172 258 156: 233 138 207
13 131 • 196 195 292 164^ 246 148 222 131 197
14 124 187 185. 278 156: 234 141 :' 21 124 186
15 118 177 175- 263 147 221 133 199 ; 117 176
g
16 111 167 165: 247 139 208 125 188 ^ 110 165
g
17 105' 157 155 232 130 196 Il7 176 103 155
18 97.9 147 145 217 122r , 183 fllO 165 96,1 144
s • 19 91:3 137 135 202 114 170 102 153 89.3 134
g 20 84.9 127 125 188 105 158 142 : 82.6 124
1
21 78.7 118 116! 175 97.3 146 .;87;5 131 76.1 114
1 • 22 7Z.6 109 108-' 163 89.6 134 80.5 121 69.7 105
£ : 23 66.6 99.9 101 151 82.0 123 •• 73.6 110 63.8. • 95,7
24 ._61.1 91.7 A93.1 140 75.3 113 iS7.6 101 58,6 87,9
25 '56.3 84.5 85.8 129 i69,4 104 62.3 93,5 54,0 81.0
26 ^52.1 78.1 '19.4 119 .64.2 96.3 ::57.6 86,4 49,9 74.9
27 48.3 72.5 73.6 111 59.5 89.3 5:i4 80,1 46,3 69.4
28 • 44.9 67.4 ^68,4 103 55;3 83.0 .49.7 74.5 43,1 64.6
29 41.9 62.8 :63.8 95.9 51.6 77.4 I46.3 69.5 40,1 60.2
30 •39.1 58.7 :59.6 89.6 72.3 ?43.3 64.9 37,5 56.3
32 34.4 51.6 52.4 78.8 >:424 63.6 :,38.0 57.1 33.0 49,4
34 30.5 45.7 M6;4 69.8 37.5 56.3 33,7 50.5 29,2 43,8
36 27.2 40.8 :-41.4 62.2 33.5 50.2 30.1 45.1 26,0 39.1
38 • 24.4 36.6 37.2 55.8 30,0 45.1 ;27.0 40,5 23.4 35.1
40 22,0 33.0
Properties
* kip-ft -23.6 35.5 -.45.2 67.9 "36:0 54.1 - 31,1 46,7 25,9; 39.0
Pe(KLflW kip-in.f. 1160 1700 1420 1280 1110
LRFD Note: Heavy line indicates KL/r equal to or greater than 200.
0^ = 2.00
<l>c
= 0.75
Dashed line Indicates the KL beyond which bare steel strength controls.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-304 DESIGN OF COMPRESSION MEMBERS
Table 4-18 (continued)
Available Strength in
COMPOSITE Axial Compression, kips
Concrete Filled Round HSS
Fy = 42 ksi
fc' = 5 ksi
HSS7-
HSS6.875
Shape
HSS7X
0.188 0.120
HSS6.875X
0.500 0.375 0.312
faeslgm in. 0.174 0.116 0.465 0.349 0.291
Steel, lb/ft 13.7 9.19 34.1 26.1 21.9
Design
ASD LRFD ASD
IfcPn P„/Qc
LRFD ASD
ft/Qc
LRFD ASD
Pnia0
LRFD ASD LRFD
6
7
8
9
10
11
12
13
14
15
16
17^
IS
19
20
21
22
23
24
25
26
27
28
29
30
32
34
36
38
40
161
149
145:
140
135
130
124
119
112
106
99,9
93.5
87.2
81,0
H9
68.9
;63.2
57.6
52.7
48.4
44.6
41,2
38.2
35.5
33.1
3.1,0
27.2
24:1
21.5
19.3
17.4
241
224
218
211
203
195
187
178
169
159
150
140
131
121
112
103
94.8
86,4
79.0
72.6
66.9
61.8
57,3
53.3
49.7
46.4
40.8
36.2
32.3
28.9
26.1
138.
127
123
119
114
109
104
98.8
93!3
87.6
81.9
76.2:
m6
65;o
59.7
54.5
m.5
45.1
141.2
37:9
34.9
'-32,3
29.9
27.8
25.9
24.2
'^21.3
18.9
16.5
rrs.i
13.6
207
191
185
179
172
164
156
148
140
131
123
114
106
97,6
89.5
81,8
74.2
67.6
61.9
56.8
52.4
48.4
44.9
41.7
38,9
36.4
32.0
28.3
25,2
22.7
20.5
262
244:
238
23itc:
224;
215
206 -
197:^
188;
178:5
168:
158;-
148
138
128:
119;f
394
367
357
347
335
323
310
296
282
267
252
237
222
207
192
178
110;
103';
. 94i9
'874
80.6
74.5
69.1
64.2
^59.9
fi55.9
;.49:2
'43.5
?3a.8
166
154
143
131
121
112
104
96.5
90.0
84.1
73.9
65,5
58,4
222
206
201
195
189
182.
174f-
166;
158
150
142
133
125
116
108
99.9
92.1
84.4
77.2
70.9
65.3
:6Q:4
56.0
52.1
';48,6
;45.4
:35:3
S31.S
28.3
332
309
301
293
283
272
261
249
237
225
212
200
187
174
162
150
138
127
116
106
98.0
90,6
84.0
78.1
72,8
68.1
59,8
53.0
47.3
42.4
200
186
182
176
170
164
157
150
143
135
128
120
112
105
97.0
89.7
82,7
75.7
69.2
63.6
58.6
54.2
50.2
46.7
43.6
40.7
35:8
31.7
28.3
25.4
300
279
272
264
255
246
236
225
214
203
191
180
168
157
146
135
124
114
104
95.4
87.9
81.3
75.4
70.1
55.3
61,1
53.7
47.5
42.4
38.1
Properties
M„/Qi, (tif,/Wn kip-ft !20;3 30.5 :«f4:4; 21:6 43 4 65.2 -34.^ 52.0 ms'.: 44.9
915 716 1600 1340 1200
ASD
He = 2,00
LRFD
(tic =0,75
Note; Heavy line indicates «!,/requai to or greater than 200; : •
. Oasfied line indicates (He ffi Deyond which bare steel strengft conlrpte.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-305
Table 4-18 (continued)
Fy = 42 ksi Available Strength in
u = 5 ksi Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS6.875-
HSS6.625
Shape
HSS6.875X HSS6.625X
Shape
0.250 0.188 0.500 0.432 0.375
'design, in. 0.233 0,174 0.465 0.402 0.349
Steel, lb/ft 17.7 13.4 32.7 28,6 25.1
Design
P»IClc ^cPn Pnl^c Pn'iic ^oPn PnlClc M itcPn
Design
ASD LRFO ASD LRFD ASD LRFD ASD LRFD LRFD
0 179 : 268 156-' 234 249 374 228; 342 210 315
6 166 249 145:; 217 231 347 211 317 , 194 292
7 161:; 242 140:; 211 225 337 206 308 189 284
8 :157 r 235 136;. 204 218;; 326 199; 299 183 275
9 151 227 ,131 .;- 196 210. 315 192; 288 177 265
10 145, 218 126:i 189 201;;; 302 184;; 277 : 170 . 254
11 139 209 120f 180 193. 289 176 264 162 243
12 133 199 114 171 183 i 275 168 252 154 231
13 126 189 108 162 174 261 159 239 146 219
14 119 179 102 153 164 246 150 225 138 207
15 112 168 95,7 143 154;- 231 141 212 130 195
g
16 105 158 Q8a4 134 144:'; 217 132;. 198 121 182
g
17 98 3 147 83,2 125 135 202 123 185 113 . 170
18 :91.5 137 77,1 116 125 187 11-4 171 : 105 157
1"
19 84,7 127 107 TliF" "77" 106 158 : 97.0 148
03
20 78.2 117 :'65;3 97.9 108 162 97,2 146 • 89.2 134
.2
21 71.8 108 S59'6 89.4 150 89,0 134 81.7: 123
£
22 65.6 98.3 54,3 81.5 ;92;0 138 "sTe" i 74.4 112
23 .60.0 90.0 49,7 74.5 8;4:4 127 •75,1 113 : 68.1 102
24 55.1 82.6 45,6 68,5 •77,5 116 ,68,9 104 62.6 93.8
25 •sas 76.2 •42.1 63,1 7.1,4 107 63,5 95.5 57.6 88,5
26 ,46.9 70.4 738.9 58,3 '66:0 99.3 58,7 88.3 . 53.3 80,0
27 '43.5 65.3 36.1 54,1 61.2 92.0 54.5 81.9 49.4 74,1
28 40.5 60.7 33:5 50,3 56.9 85.6 50,6 76.1 46.0 88.9
29 37.7 56.6 i31.3: 46,9 53.1 79.8 47.2 71,0 42.8 64,3
30 35.3 52.9 529.2 43,8 49.6 74,6 44.1 66.3 40.0 60,1
32 3T.0 46.5 mj' 38,5 43.6 65,5 38.8 58.3 35.2 52,8
34 27>5 41,2 a2.7 34,1 !38.6 58,0 ; 34.4 51.6 31.2 46.8
36 24.5 36.7 .:,20.3 30,4 i34.4 51,8 30.6 46.1 27.8 41.7
38 22.0 33;o 18.2 27,3
Properties
^sil <t>t,M„ kip-ft -Z4.9 37,5 ;:ia9>5;! 29,4 400 60,1 535.7 53.6 1 48.0
PMfW kip-in.2 1040 863 1410 1290 1180
ASti LRFD Note: Heavy line indicates equal to or greater ttian 200.
Dashed line Indicates tlie KL beyond which bare steel strength controls.
nc=2.oo (|)c=0.75
Note: Heavy line indicates equal to or greater ttian 200.
Dashed line Indicates tlie KL beyond which bare steel strength controls.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-306 DESIGN OF COMPRESSION MEMBERS
il'i
COMPOSITE
HSS6.625
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy = 42ksi
fc-5ksi
HSS6.625X
oiiape
0.312 0.280 0.2S0 0.188 0.125
'desianiin-
0.291 0.260 0.233 0.174 0.116
SteeMb/ft 21.1 19.0 17.0 12.9 8.69
Design
PnlOc PJCic fcPn Pn/Qc ^Pn Pn/n, M Pn/fla M
Design
ASO LRFD ASO LRFD ASP LRFD ASD LRFD ASO LRFD
0 190. 285 179' 268 169i 254 148! 221 126 189
6 176 263 165 248 156 234 136-: 204 115 172
7 171' 256 161 241 152 228 132: 198 '111 167
8 165: 248 156 233 147 220 127 191 107 160
9 159 239 150 225 141 212 122; 183 i02 154
10 153' 229 1441 216 135- 203 117 175 97.6 146
11 146 219 137 - 1 206 129 194 11T. 167 92,5 139
12 139 209 131 196 123^ 184 loe- 158 ^ 87.2 131
13 132 198 124^ 186 116 174 99'.6 149 : 81,8 123
14 124- 186 11:7./ ! 175 110^ 164 •93,5: 140 1 76,3 114
15 im 175 110 164 103 154 87.3 131 70.9 106
B
16 109: 164 103 ? :i 154 96:0 144 81,3 122 65.5. 98,2
17 102 153 95.4 1 143 89.2 134 75.2 113 60,2: 90.2
18 ;94.3 141 884 133 82.6 124 -.69.3: 104 ! 55.0 ; 82,5
f> 19 87.1 131 81.6 122 76.1 114 63,6 95,4 ' 50,0 75,0
1 V 20 ;80:0 ^ 120 75 0 112 69.8 105 S8.1 87.1 ; 45.2: 67.8
1
21 73.2 110 68.5 103 63.6 95,4 52,7 79.0 : 41.0: 61.5
£ 22 '66.7 100 62.4 93.6 58.0 86,9 48.0 72.0 ,37.4 56.0
23 61.0 91.5 85.7 53.0 79.5 65.9 : 34.2 51.3
24 .:56.0 84.1 :52.4 78.7 48.7 73,1 40,3 60.5 31.4 47.1
25 • 51.6 77.5 48.3 72,5 i44;9 67.3 37.2 55.8 ; 28.9 43.4
26 '47,7 71.6 44.7 67.0 41.5 62,2 34,4 51,6 26,7 40.1
27 44.3 66.4 41.4 62,2 38.5 57.7 31,9 47.8 24.8 37.2
28 -4112 61.8 38.5 57,8 35,8 53.7 .29-.6 44.5 23,1 34.6
29 v38,4 57.6 (35.9 53,9 ,33.4 50.0 \ZZ6 41,4 21.5 32.2
30 •35.9 53.8 33.6 50.4 31,2 46,8 25,8 38,7 20,1 30.1
32 i 31v5 47.3 i29.5 44.3 T2vM 41.1 C22J 34,0 ; 17.7 26.5
34 •27.9 41.9 26.1 39,2 ':24:3 36.4 20.1 30,1 15,6 23.5
36 24,9 37.4 23.3 35.0 2t;6 32.5 17,9 26,9 13.9 20.9
38 : 16.1 24,1 12.5 18.8
Proiperties
Mn/iin, ipiMn kip-ft S27.6: 41,4 'j2!a2 ] 37.8 34,6 180 27.1 'iZ8 192
PeiKLfnO* kip-in.^: 1060 992 921 763 , 594 '
ASO LRFD Note: Heavy line indicates/a/r equal to or greater than 200.
<l)c = 0,75
Note: Heavy line indicates/a/r equal to or greater than 200.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-307
Fy = 42 ksi
U = 5 ksi
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS6
HSS6X
0.500 0.375 0,312 0.280 0.250 0.188
fdeslgn. in- 0.465 0.349 0.291 0.260 0.233 0.174
Steel, lb/ft 29.4 22.6 19.0 17.1 15.4 11.7
Design
p„/ae '^cPn PJQc ^cPa P„/ae ^cPn P,ICic <t>cPn PJ^c ^cPa P„IQc <!)cPn
Design
ASD LRFD ASD LRFD ASD LRFD uPi^ LRFD ASD LRFD A3D LRFD
0 218 i 327 183 274 164 247 155 232 ' 146 • 219 126 190
1 217 • 326 :182 273 164 246 154 ^ 231 145 218 126 189
2 216 323 ;181 271 163 244 153 229 144 : 216 125 187
3 213 : 319 = 178 268 161 241 151 : 226 142 t 213 123 185
4 2()9 ' 313 175 . 263 158 236 148 222 140 . 210 121 181
5 ;.204 306 •171 . 257 154 231 5145 217 136 ' 205 118 177
6 198 297 166 249 150 224 141 211 132 199 114 171
7 1^2 287 161 241 145 V 217 . 136 204 128 192 110 165
8 276 155 232 139 ^ 209 ii30 196 123 185 106 159
9 176 , 264 . 148 222 133 199 125 . 187 118 ; 176 101 151
10 1^8 : 252 : ,141 211 126 190 li9 178 . li? r 168 95.6 143
11 159 " 238 133 200 120 180 .112 168 106 159 90.1 135
E.
12 150 224 125 r 188 113 169 106 159 = 99.5: 149 84.5 127
13 140 210 118 176 1O6 158 9a9 148 • 93.1. 140 78.8 118
e 14 131 196_ 110 164 98.4 148 ?92.1 138 86.7; 130 73.f 110
f
15 T21" 'lir 102 152 ; 91.2 137 128 80,3 120 67.i 101
1
16 1I3.: 170 -9^7 141 84.1 126 78.6 118 74.0 111 61.8 92.8
g 17 105 157 : 86.0 129 77.1 116 i 721 108 67,8 102 56.4 84.6
18 96.5 145 • 78.5 118 : i 70.3 106 : 65.7 98.6 61.8 92.7 51.1: 76.7
19 88.6 133 71.3 107 : 63.8 95.7 59.5 89.3 55.9 -83.9 46.0 69.0
20 81.0 122. 64.4 96.8 ^ 57.6 86.4 53.7 80.6 50.5 75.7 41.5 62.3
21 73.6 Ill ; ^5.7 88.2 52.2 78.3 48.7 73.1 45.8 68.7 37.7 56.5
22 67.0 101 : 53.5 80.4 47.6 71.4 44.4 66.6 41.7 62.6 34.3 51.5
23 61.3 92.2 48.9 73.5 : 43.5 65.3 40-6 61.0 38.2 57.3 31.4 47.1
24 56.3 84.6 44.9 67.5 40.0 60.0 37.3 56.0 35.1 52.6 28.8 43.3
25 il.9 78.0 41.4 62.3 : 36.9 55.3 34.4 51.6 32.3 48.5 26.6 39.9
26 48.0 72.1 ; ks 57.6 M.1 511 31.8 47.7 29.9 44.8 24.6 36.9
28 41.4 62.2 ' 33.0 49.6 : 29.4 44.1 ilA 41.1 25.8 38.6 21.2 31.8
30 36.0 54.2 28.8 43.2 25.6 38.4 ^3.9 35.8 22.4 33.7 18.5 27.7
32 •31.7 47.6 2i3 38.0 22.5 33.7 21.0 31.5 19.7 29,6 16.2 24.3
34 17.5 26.2 14.4 21.6
Properties
W^b kip-ff.'
PeiKLY/W
32,0 48.1 2&6 38.5;. 22.2 33.3:20.3 30.4 18.5 27.8
1010 844 756 706 663
1,4.fe 21.9
546 ,
ASD
n<;=2.oo
LRFD
(tic = 0.75
Note: Heavy line indicates KL/r equal to or greater than 200.
Dashed line indicates the /tt beyond which bare steel strengtii controls.
AMERICAN INSTITOTE OF STEEL CONSTRUCNON

4-308 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS6-
HSS5.563
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy = 42 ksl
Shape
HSS6X HSS5.563X
Shape
0.125 0.500 0.375 0.258 0.188 0.134
'deslsmin-
0.116 0.465 0.349 0.240 0.174 0.124
SteeMb/ft 7.85 27.1 20.8 14.8 10.8 7.78
Design
fli/fic tfoPn M
P^Cl,
M Pi,/Qc M
Design
mm LRFD ASO LRFD ASO LRFD sASD tflFD ASD LRFD ASO LRFD
0 107 161 196 295 246 • 132 • 199 113 ' 169 97.2 146
1 107 160 1^6 ; 294 164 246' 132 ' 198 • 112 168 96.9 145
2 106 159 194 i. 291 ^ ,162 243 lit: 196 111 167 95.9 144
3 104 156 191 287 240 129." 193 109 , 164 94.3 141
4 102 1.53 , 167 281 r 156:. 235 126 > 189 107 161 92.0 138
5 . 99.1 149 1^2 273 152 228 123 184 104 . 156 89.2 134
6 95.9 144 176 ; 264 147 221 119 r 178 100 151 85,9 129
7 • 92.2 138 169 254 142 212 -Ii4 . 171 :9e,3 144 82,2 123
8 ,88.0 132 162 242 -.135 203 109 163 91,8 138 78.0 117
9 ;83,6 125 . 153 230 129 193 103 155 86,9 130 73.6 110
10 78.9 118 145 217 •121 182 s?7,4 146 .81,8 123 69,0 103
11 j-74.0 111 136 204 . 114 f 171 , •'91.3 137 76.5 115 64,2 96.2
12 69.0 103 iff IgT" 106 159 ? 85.1 128 71.0 107 59.3 88.9
13 63.9 95.9 :119 ; 178 • 98.4 148 i78.8, 118 65,6 98.4 54.4 81.6

14 58.9 88.3 110 • 166 : 90.7 136 •: 7^,6 109 . 60,2 90.2 49.6 74.4
1
IS : 53.9 80.8 102 153 83.1 125 ^•66.4: 996 '54.8 82.2 44.9,. 67.3
i 16 49.0 73.5 93.9 141 75.6 113 • ; 60.4 90.5 49,6 74.5 40.4? 60.5
1
17 ' 44.3 66.5 85.9 129 68.4 103 54.5 81.8 ,44,7 67.0 36.0 53.9
s 18 39.7 59.6 78.1 117 "•62.3 "93.6 48.9 73.3 39,9 59.8 32.1 48,1
19 35.7 53.5 tO.6 106 56.6 85.1 43.9 65.8 : 35,8 53.7 28.8 43.2
20 32.2 48.3 63.7 95.7 ^ ^1.1 76.8 •39.6. 59.4 32,3 48,4 26,0 39.0
21 29.2 43.8 57.8 86.8 46.3 69.6 35.9 53.9 29,3 43,9 23,6 35.3
22 26.6 39.9 52.6 79.1 42.2 : 63.5. 32.7 49.1 26.7 40,0 21,5 32.2
23 i4.3 36.5 48.2 72.4 38.6 58.1 29.9 44.9 i 24,4 36.6 19,6 29.5
24 22.4 33.5 44.2 66.5 35.5 53.3 27.5 41.2 i 22,4 33.6 18.0 27.1
25 20.6 30.9 40.8 61.3 32.7 49:1 ^5.3 38.0 ? 20.7 31.0 16.6 24.9
26 :i9.1 28.6 St J 56.6 30.2 45.4 23.4 35.1 28.7 15,4 23.1
28 16.4 24.6 iz.5 48.8 26.1 39.2 20.2 30,3 16,5' 24.7 133 19.9
30 14.3 21.5 28.3 42.5 . 22.7 34.1 . 17.6 26.4 . 14.4 21.5 11,5 17.3
32
34
12,6
li.i
18.9
16.7 ' -f
10,1 15.2
32
34
12,6
li.i
18.9
16.7 ' -f
Properties
Mri/Qi-f Wp-ft 10^ 15.6 27.Q 40.6:-.?1J 32.6) 161| 24.2 t2.4i 18.6 9.3.1 14r0
PeiKLfnO' kip-in.^ 423 777 653 520 424 341
ASD
fic = 2.00
LRFD
,= 0.75
Note: Hea«y line indicates/a/requal to or greater than 200i •
. OdShM line indicates the KL beyond whicti bare steel strength controls.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-309
Table 4-18 (continued)
Fy = 42 ksi Available Strength in
fc = 5 ksi Axial Compression, kips
Concrete Filled Round HSS
COMPOSITE
HSS5,500-
HSS5
Shape
HSS5.500X HSSSx
Shape
0.500 0.375 0.258 0.500 0.375 0.312
'desiem in- 0.465 0.349 0,240 0.465 0.349 0.291
Steel, lb/ft 26.7 20.6 14.5 24.1 18.5 15.6
Design
PN/IIC M M mc M Pg/Slc M
Design
ASD: I:RFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD ASD LAFD
0 290 162 242 130 : 196 170 255 142 ; 212 127 190
1 :193 , 289 '161 : 242 -'130 195 169 254 141 : 212 126 189
2 191 287 '160 239 129 : 193 167 S. 251 . 140 . 209 125 187
3 188 : 282 157 236 127 -190 : 164 246 137 205 123 184
4 184 276 154 , 231 . 124 186 160 240 133 • 200 119 179
S •179 ; : 268 150 : 224 .121 181 , ;1f5 3 232 !129 ' 193 115 173
6 1173? 259 ;145 • 217 116 175 ;148 :-222 124 : 186 111 166
7 166 249 .139 208 , 112 168 Tii" '2T2"" :118 177 105 158
8 .156 238, T33 199 107 160 :li4 201 ^111 ; 167 99.7 150
9 ;150 225 126 189 101 152 126 190 ;105 157 93,6 140
10
It?...:
212__ -11,9. . 17a 95 2 143 118 178 97.4 146 87.2 131
g 11 133 : 199 Ill- 167 891 134, 110 166 90.0 135 80.6 121
12 iih. 187 .103,:; 155 82 9 124 102 153 82,6 124 73,9: 111
13 116 174' '095.7 144 76 7 115 93.5 141 75,2 113 67,3 101
1". 14 ;108 : 162 88,0 132 704 106: 85.3 128 68,0; 102 60,t 91,3
1 i. 13 ' ?9.5 150 \80.5 121 64 3 96.4 77.3 116 "eil" •"92,8 54.f 81,9
f
16 91.3 137 73,1 110 58 3 87.5 69.5 104 55,8. 83,9 72,9
S 17 : 83.4 125 '•"eT.i" "99.6" 526 78.9 62.0 93,2 S0,2J 75,4 "EE "65,0
18 . 75.7 114 90 8 47 0 70.5 55.3 83,1 : 44.7i 67.2 38.6 58,1
19 : 68,2 102 54.7 82.2 42 2 63.3 : 49,6 74,6 : 40,1 60.3 34.7 52,1
20 61.5 92.5 49,4 74.2 38.1 57.1 44,8 67,3 36.2 54.5 31.3 47.0
21 55.8 83.9 :44.8 67.3 V34.5 51.8 40,6 61,0 32.9 49.4 28.4 42.7
22 . 50.9 76.4 '40,8 61.3 '31.5 47.2 37,0 55.6 29,9, 45.0 25,9 38.9
23 46,5 69.9 ;I37,3 56.1 : 28.8 43.2 33,9 50.9 27,4 41.2 23,7 35.6
24 42.7 64.2 34,3 51.5 26.4 39.7 31i1 46.7 25.2 . 37.8 21,7 32.7
25 39,4 59,2 .r31,6 47.5 •'24,4 36.6 28,7 43.1 23,2 34,9 20.0 30.1
26 36.4 54.7 :;29,2 43.9 22,5 33.8 26,5 39.8 21,4 32.2 18,5 27.8
28
30
31.4 47,2 25,2
21,9
37.9
33.0
19.4
16^9
29.1
25.4
28
30
25,2
21,9
37.9
33.0
19.4
16^9
29.1
25.4
28
30
Properties
^ <l>j,M„ kip-ft 26.3 39.6 ; 2i:.1 31.8 ;15.7; 23.6 21.2 3r.9 17.t' 25.7 » 14.8 22.3
PeW/ltf kip-in.^ 747 629 500 . 539 456 408
nc = 2.00
LAFO
c = 0,75
Note; Heavy line indicates /d/fequal to or greater tlian 200.
Dasiied line Indicates the W. beyond whlcti iare steel strength controls.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-310 DESIGN OF COMPRESSION MEMBERS
Table 4-18 (continued)
Available Strength in
COMPOSITE Axial Compression, kips
Concrete Filled Round HSS
Fy = 42ksi
fc' = 5ksi
HSS5-
HSS4.500
Shape
HSSSx
0.258 0.250 0.188 0.125
HSS4.500X
0.375 0.337
0.240 0.233 0.174 0.116 0.349 0.313
Steel, Ibm 13.1 12.7 9.67 6.51 16.5 15.0
ASD LRFD:, ASD
Pfl/Hc
LRFD ASD
Pn/a,
LRFD mo
P„IQc
LBFD ASD
PnlOc
LRFD ASD LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
28
m
113
112
110
107 .
103 ,
99.1
:k4
89.2
83.6
^7.9
71.9
66.0
60.0
54,2
48.6
43.2
38.2
34.t
30.6
27.6
25.1
22.8
20.9
192
177
164
14.1
170
170
168
165
160^
155 •
149
142
134
125
117
108
98.9
90.0
81.3
72,9
64.8
57.4
51.2
45.9
41.5
37.6
34.3
31,3
28.8
26,5
24,5
21.1
112
ill
ItO
108
105
102 .
'97,4
92,8
87,7
82,2
?76,5
70.7
64.&
59.0
53.3
47.7.
42.4
37.6
. 33.5
30.1
27.1
24.6
22.4
20.5
18.8

16.1
13.8
167
167
165
162
158
152
146
139
132
123
115
106
97.2
88.5
79.9
71.6
63.6
56.3
50.3
45.1
40.7
36.9
33.6
30.8
28.3
26.0
24.1
20,8
95.8
95,4'
94,3
9i5
90,0
86.9
83.3
79.2
74.7
69.9
64.9
59.9
54.7
49.7
44.7
40.0
3i3
31.3
27.9'
25.1.
22.6
20.5
18.7
17.1
15.7
,14,5
ISM
li.'5
144'
143
141
139
135 -
130
125
119
112
105
97.4
89.8
82.1
74.5
67.1
59.9
53.0
47.0
41.9
37.6
33,9
30.8
28.0
25.7
23.6
21.7
20:i
17.3
79.8,
79.4-
7S:5
76^8 ;
74.6
71.8
68.6
6|.9
60.9
56.7.
52.4'
47.9
.43.5 .
39.2
34.9
30.9
27.2
24.1
21.5
19.3
17.4
15.8
14.4
111
m
11.1
10.3
8.87
120 :
119
118
115
112
108
103
97.4
91.4
85,1
78.5
71,9
65.3
58.7
52.4
46.4
40.7
36.1
32.2
28.9
26.1
23.7
21.6
19.7
18.1
16.7
15.4
13.3
123
1^2
120
117
114
109
104
97.6
91.0
84.1
77.0
63.5
57.3
51.3
45.6
40.1
35.5
31.7
28.4
25.7
23.3
21.2
19.4
17.8
184
183
180
176
171
164
155
146
137
126
116
105
'954
86.1
77.1
68.5
60.3
53.4
47.6
42.7
38,6
35,0
31,9
29.2
.26,8
115
114
112
110
106
102
96,9
91.3
,85,1
787
72.1
65.4
58.8
,47i6
41.8
36.3'
32.6
?29.1
26.1
23.5
21.4
19.5
17.8
16^4
172
171
169
165
159
153
145
137
128
118
108
98.1
88.1
787
70.6
62.8
55.3
49.0
437
39.2
35.4
32.1
29.3
26.8
24.6
Properties
M„/Qi kip-ft 12.7 19.1 : •!2;4 18.7 9.80 147 : 6;» 10.5 f'|3.5.| 20.3 124 187
Pemw kip-in.' 363 356 297 228 318 298
ASD LRFD Note; Hea»y line Mcates,/a/requal to Of greater than 200. • .
Dashed line indicates the M. beyond which bare steel sfrength controls.
£Jc=2.00 (t,c=0.75
Note; Hea»y line Mcates,/a/requal to Of greater than 200. • .
Dashed line indicates the M. beyond which bare steel sfrength controls.
AMERICAN INSTiTOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-311
Fy = 42ksi
fc' = 5 ksi
Table 4-18 (continued)
Available Strength in
Axial Compression, kips COMPOSITE
Concrete Filled Round HSS
HSS4.500'
HSS4
Shape
HSS4.500X HSS4X
Shape
0.237 0.188 0.125 0.313 0.250
^design, in. 0.220 0.174 0,116 0.291 0.233
Steel, lb/ft 10.8 8.67 5.85 12.3 10.0
Design
Pnlilo W W V£ic ^Pn PJilc ^Pa fli/Op
Design
ASD LRFD ASD LRFD ASD i LRFD ASO LRFD ASD LRFD
0 92.9 ; 139 81'.7 123 67.6 101 93,0 139 81.3 122
1 92;5. 139 81.3 122 67.2 : 101 92.4 ' 139 80.8 121
2 91.2 137 80.2 120 66,2 ^ 99.3 90,8 136 79.4 119
3 89j1 134 78.3 117 64,5 96.8 88.2 132 77.1 116
4 86J2 129 75.8 114 62,3 93.4 84:7 127 74.0 111
5 82.7 124 72.6 109 59.5 : 89.3 803 , 120 70.2 105
6 78.6 118 69.0 : 103 56.3 84.4 75,3 113 65.8 98.7
7 74.0 111 64.9 973 52.7 79.0 69.8 . 105 61:0 91.4
8 69.0 ' 103 '60.4 ; 90.7 48.8 : 73.2 63.9 95.9 55.8 83.8
9 63.7 95.6 55.8 83.7 44.8 67.1 57.8 86.8 50.5 75.8
10 isa 87.5 51.0 76.5 40,6 : 61.0 ._5J7__ ..ILL
45.2 678
g 11 52.9 79.3 46.2: 69.3 36:5 54.8 46.1 69.3 40.0 . 60.0
Sg 12 71.3 41-5 62.2 32,5 48.7 41.0 61.7 34.9 52.4
s" •
13 423 : • • 63.5 36:8 ; 55.3 28,6 42.9 36:2 54.3 30.1 45.2
o>
1
14
37.3 56.0 32.4 48.7 24,9 37.3 31.5 . 47.3 "2ao"
o>
1
15 32.6 48.8 28.3 ; 42.4 21,7 32.5 27;4: 41.2 22,6 : 34.0
1
16 28:6 . 42.9 24.9 37.3 19.1 ' 28.6 24.1 36.2 19.9 ^ 29.9
UJ 17 25.4 38.0 22.0 33.0 16,9 ; 25.3: 21.3 32.1 17.6 26.5
18 22.6 33.9 19.6 29.5 15.1 ' 22.6 19.0 28.6 15.7 23.6
19 20.3 30.4 17.6 26.4 13,5 i 20.3 17.1 25.7 14.1 21.2
20 18.3 : 275 15.9 23.9 12,2 18.3 rai J 23.2 12.7 19,1
21 16.6 24.9 14.4 21.6 11,1 16.6 14.0 21.0 11.6 17.4
22 15:i 22.7 13.1 19,7 10,1 15.1 12.7 , 19.1 10.5 15.8
23 13.8 ' 20.8 12.0 18.0 9,22 13,8
24 12.7 ' 19,1 11.0 16,6 8.47: 12,7
25 11.7 17.6 10.2 15,3 7.81 ; 117
Properties
IU* kip-ft 942 14.2 779
PMfn(f
^ ASD
kip-in.;
Qc=2.00
LRFD
(|)c = 0.75
241
11.7 'K57! 8.37 :;9.04! 13.6
209 160 191
7.61 11.4
167
Note: Heavy line indicates KL/r equal to or greater ttian 200.
Dashed line indicates the KL beyond which bare steel strength controls.
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-312 DESIGN OF COMPRESSION MEMBERS
COMPOSITE
HSS4
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
' Concrete Filled Round HSS
Fy ~ 42 ksi
fc' = 5 ksl
Shape
HSS4X
0.237 0.226 0.220 0.188 0.125
I, in. 0.220 0.210 0.205 0.174 0.116
Steel, lb/ft 9.53 9.12 8.89 7.66 5.18
PnlQc
msD LRFD ma
PalClo
IRFD ASD
PnlUc
LRED ASO
Pniao
LRFD ASD LRFD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
78.0
76.6
WA
71.4
67.8
63.5
58.9
53;9
48.8
43:6
38.6
33.7 i
29.1
25:1
m '•
19.2
17.0 i
15.2
13.6 ;
J^
11:1
I0;i
118
117
115
112
107
102
95.3
88.3
80,9
73.2
65.5
57.9
50.6
43.6
37.6
32.7
28.8
25.5
22.7
20.4
. J 8.4
16.7
15.2
76:4
76;Q;
74.&
72£
69;5
66.0
61.8
57;3
52.5
47.5
42.5
37.5:'
32=:s
28.2
k4:
21 ;2:
18.6
16.5
14:7
13:2
11.9
10.8
9.86
115
114
112
109
104
98.9
92.8
85.9
78.7
71.2
63.7
56.3
49.2
42.4
36.5
31.8
28.0
24.8
22.1
19.8
17.9
16.2
14.8
753
im
'73,S
71:4
68.5
65.0:
609
56.5
51.7
4.6;8:
41.8'
37.0
32:3
27:8:
24.0.'
20:9
1814-
1.6.3
14S
13.0
11.8
10:7
9.72
113
112
110
107
103
97.5
91.4
84.7
77.5
70.2
62.8
55.5
48.5
41.8
36.0
314
27.6
24.4
21.8
19.5
17.6
16.0
14.6
68.4:
67;2
65:2^
62.5
59;3:''
55.6
51.4
47i1
4X6:
38i0^
33;6'
29,3
25:2^
21.7
i6;9
16.6
14.7-
t3S1.
11.8
1,0.7
9.66
«80
103
103
101
97.8
93.8
83.3
77.2
70.6
63.8
57,0
50.4
43.9
37,8
32.6
28.4
25.0
22.1
19.7
17,7
16,0
14.5
13,2
56.3
55.9
54.9
53.2
50.9
48.1
44.9
41.4
37:6
33.8
30.0
26.3
22,8
19.4 '
16.8 '
14.6 ,
12.8;
11.4 t
10.1
9.10
8.22
7.45
6.79
84,4
83.9
82.3
79.8
76.4
72.2
67.3
62.0
56.5
50.7
45.0
39.5
34.1
29.2
25,1
21.9
19.3
17.1
15.2
13,7
12.3
11,2
10,2
Properties
M„/Qi,; (t)t,M„ kip-ft 10,9 7.00 10. 687 10.3 602 90s .^431
/l.(W)?/10'' kip-in.2 161 157 154 140 108
ASD
ilc=2.00
LRFD
(|)c=0.75
Note; Heavy line indicates KL/r equal to or greater than 200.
Dashed line indicates the KL beyond which bare steel strength controls..
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-313
Fy = 35 ksi
fc' = 4 ksi
Table 4-19
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
COMPOSITE
PIPE 12-PIPE 8
Pipe 12 Pipe 10 Pipes
XS Std XS Std XXS XS
fdesijiii in. 0.465 0.349 0.465 0.340 0.816 0.465
SteeUb/ft 65.5 49.6 54.8 40.5 72.5 43.4
Pa/S^c <t)c/'» Pn'Sic ^oPn. P„/Qc ^oPn Pn/Slo PnlClc ^cPi, PBICI,
uesign
ASD IRFD ASD LRFO ASO LRFD ASD LRFD ASD LRFD ASD LRFD
0 m7. 776 458; ^ 687 410!: 614 353 530 423 635 297 445
6 508; 763 450- 674 400 i 599 344 516 .407 611 286 429
7 505! 758 446; 670 :396 c 594 341-. 512. :402 • 602 282 423
8 501 752 443: 664 392 588 ; 337- 506 ;395 a 593 277 416
9 497 746 439': 659 367- 581 333;:£ 500 IsP' "ssf 273 409
10 . 493^ 739 435 652 382 i 573 'i 329." 493 381 i; 573 267 401
11 487: 731 430 645 377 565 324 ^ 485 373 : 561 261 392
12 482 723 425 637 371 556 3f8 477 365 549 255 383
13 476 714 419' 629 364 547 312:: 469 357 536 248 373
14 4i70; .705 413 620 .358; 537 306 . 459:; =348 f 523 241 362
15 ;-46a 695 407'
1.
610 351; 526 300. i ,450 338!; 508 234 351
as-
16 C4S6 684 400 600 343' 515 293 440 328 ;: 494 227 340.
17 •449 673 393: 590 335; 503 286 429 318 478 219 328
18 441 661 386t 579 327; 491 279; 418 308 , 463 211!^ 316
s 19 433 649 379i 568 319, 479 272 407 297 . ; 447 203 304
f
20 425 637 S71.:: . 556 311: 466 ' 264 : 396 286- 430 195' 292
1
21 624 363. 544 302!' 453 25B 384 275 414 187. 280
22 407 611 532 293'^ 440 248 ; 372; 264 S 397 178 267
23 399 : 598 346 520 284; 426 240^ 360 253 380 170 255
24 389 584 338S 507 275 413 232. 348 242 . 364 162 243
25 380 570 329 494 266 399 224 336 231 : 347 154 231
26 ;371 556 321 i 481 257 385 216 ' 324 220 ' 331 146 218
27 361 542 312' 468 247 371 208 311 209 ; 314 138 207
28 ,351 527 303 454 238 357 199 299 198 298 130 195
29 342 512 294 441 229 343 19V 287. 188 • 283 122 184
30 332 498 285 427 220; 330 183 275 178 ;: 267
JJi...
,172_.
32 312 468 267 400 202 303 167 251 158 237 101 152
34 292 439 249.. 373 184 276 152 228 140 210 89.7 135
36 273 409 231; 346 '167 251 137 206 124 187 80.0 120
38 254 380 214 320 151 226 123 184 112 168 71.8 108
40 235 352 197 295 136 204 111" •166 101 : 152 64,8 97.5
Properties
Mn kip-ft 141 213 iii- 168 97|i 147 75:5 113 92.0 138 •.59:7, 89.7
PMfm' kip-in.2 12600 10400 7140 5830 4770 3400
LRFD Note: Dashed line indicates the KL beyond which bare steel strength controls.
Qc=--2.00 <1)C = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-314
DESIGN OF COMPRESSION MEMBERS
COMPOSITE
PIPE 8-PIPE 5
Table 4-19 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
Fy = 35 ksi
fc = 4 ksi
Shape
Pipes Pipes Pipes
Shape
Std XXS XS Std XXS
'desijm in-
0.300 0,805 0.403 0.261 0.699
Steel, lb/ft 28.6 53.2 28.6 19.0 38.6
Design
p„/ac •^oPn Pnldc PnlCic Pfl/Slc <l>cPr
Design
ASD LRFD ASD LRFD A?D LRFD ASD LRFD ASD LRFD
0 »234 . 350 308 ; 463 188. 282 147 220 224 337
6 225 337 290 i ,436 176 264 137 206 205: 309
7 221 332 283 426 •172 258 134 201 199 299
8 218 327 276: 415 168 251 131 196 192 288
9 ;214. 321 268 403 163 ' 244 127 190 184 277
10 ;209 31,4 260 : 391 157 236 122 183 176 264
11 :204 307 251 377 151 227 118 177 167 251
12 ::i99,? 299. 241 362 145 218 1-13 169 158 237
13 291 231 347 139 208 108 162 149 223
14 •:188 282 , 221 332 132 199 1j03 154 139 209
15 274 • 210 316 126 189 97.4 146 130 195
16 176 264.- 199 299 119 179 92.0 138 120 .. 181
g
17 5170=' 255: = i 88 ; 283 112 168 86.6 130
111 167
18 164 245 ' 177 , 267 105 . 158 81.3 122 102 153
g"
19 157 236 167 :250 98.7 148 76.0 114 93ll- 140
I"
20 iso . 226 .156 ; 234 92.1 138 7fl.8 106 84.6; 127
1 21 i44 216 tl45 1 218 85.6 128 ' 65.7 J 98.5 76.7' 115
g : 22 •137 206 135; 203 79.3 119 i 60.7 91.1 69.9 105
s 23 •jsr 196 , 125 ' 188 73.3 Tio ; 35:9' 83.8 63.9 96.1
24 :i24i' 186 115 173 68.3 103 51.3 77.0 58.7 88.2
25 i-|17 176 106 , 160 63.3 95.1 70.9 54.1 81.3
26 • 111 167 98.2 148 58.5 88.0 43.7 65.6 50.0 75.2
27 105 157 91.1 137 54.3 81.6 ' 40.5 60.8 46.4 69.7
28 : 98.6 148 84.7 127 50.5 75.8 37.7 56.5 43.1 64.8
29 92.6 139 78.9 119 47i0: 70.7 35.1 52.7 40.2 60.4
30 86.6 130 73.8 111 : 44.0f 66.1 > 3Z:B 49.3
32 :76.T 114 64.8 97.4 f 38.6: 58.1 28.9 43.3
34 ; '67.4 101 57.4 86.3 i- MB 51.4 25.6 38.3
36 60.2 90.2 30.5 45.9 22.8 34.2
38 54.0 81.0
40 48.7 73.1
Properties
MMb. kip-ft.
PMW^O' kip-in.'!
ASD
He = 2.00
LRFD
<])<;= 0.75
41.8 62.8 49.8:- 74.8 29.8 44.7 21.0 31.5
2560 1910 1270 970
301 45.2
967
Note; Heavy line indicates tt/requal to or greater than 200.-:
Dashed line indicates the KL beyond which bare steel strength controls.
it.
AMERICAN INSTITUTE OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-315
Fy = 35 ksi
fc' = 4ksi
Table 4-19 (continued)
Available Strength in
Axial Compressidn, kips
Concrete Filled Pipe
COMPOSITE
PIPES-PIPE 4
Pipes
Miape
XS Std xxs XS Std
fdesigm in. 0.349 0.241 0.628 0.315 0.221
Steel, lb/ft 20,8 14.6 27.6 15.0 10.8
Pa'iie ^cPa Pa'iio ^cPn P„/ilc <^cPn P„IQc W
ASO LRFD ASD LRFD ASD LRFD ,ASD LRFD ASD LRFD
0 t3&. 203 163, ^ 161' 241 94.8 142 76.4 115
6 124: r 186 ;99,1 i 149 MOM : 210 82v5 124 66.4 99.6
7 120 , 179 •95,8 • 144 ' 133 200 78,4:; 118 63,1 94.7
8 115 173 92,2. 138 126 189 74,04^ 111 59,5 89.3
9 165 ;88;3 132 118 177 69,3 104 55,7 83.6
10 IDS. 158 :'f84,i; 126 110 165 M-4 : 96.6 51,8 77.6
11 C99.-7 149 'i J9,7 120 101 152 ,59,3 89.0 47,7 71.5
12 141 : 75,1 • 113 92.7 139 54,3 : 81,4 43,6 65.4
13 •88,2: 132 ;J0,4, 106 84,3: 127 49.3 73.9 39.6 59.3
14 ,82i4i 124 98.6^ ,76,0 114 44.9 67.4 35,6 53,4
15 76,5;! 115 91.5 68,1 102 40,7 , 61.2 31,8 . 47.7
g
16 ,7D;7; 106 84.5 .60,3 90.7 36,71 55.1 28,1 42.2
' s
1 17 65;0 97.6 77.7 53;5 80.3 32,8'! 49.2 24,9 37.4
18 59:8 89.8 ;;47T 71.0 47,7 71.7 2^2 : 43.9 22,2 33.3
19 55.2 83.0 64.6 42,8; 64.3 26,2 39.4 19,9 29.9
20 76.3 38.9: 58,3: 38,6 58.0 23,7 35.6 18.0 27.0
21 • 46.4:^ 69.8 35,3 52.9 35,Q: 52.6 21,5 32.3 16,3 ^ 24.5
22 42,3: 63.6 32,1; 48.2 ::31,9' 48.0 '19,6 ,29.4 14,9 ; 22.3
23 . i38;7 : 58.2 29,4 44,1 29.2 43.9 17,9 26.9 13,6 20.4
24 35,5 53.4 27,0 40.5 16.4:-:! 24.7 12,5 18.8
2S 32,8 49.2 24,9- 37.3 11,5 17.3
26 30,3 45.5 23,0 34.5
27 28.1 42.2 21,3; 32.0
28 26.1 39.2: 19,8 29.7
29 24;3! 36.6 18.5 27.7
30 34.2 17.3 25.9
Properties
kip-ft 180 27.1 13 45 20.1 171 25.7 :1Q,4 15,6 7,85 11,;8
Pe(mw kip-in.' 643 511 438 295 236
ASD LRFD Note; Heavy line indicates tt/r equal to or greater ttian 200.
nc=2.oo = 0.75
Dashed line indicates the KL beyond which bare steel strength controls.
Pipe 4
i
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-316
DESIGN OF COMPRESSION MEMBERS
COMPOSITE
PIPE 3Vz-PIPE 3
Table 4-19 (continued)
Available Strength in
Axial Compresston, kips
Concrete Filled Pipe
Fy = 35lcsi
fc' = 4 ksi
Shape
Pipe SVa
XS Std
Pipes
XXS XS Std
faeaiaiii in.
0.296 0.211 0.559 0.280 0.201
Steel, lb/ft 12.5 9.12 18.6 10.3 7.58
Design
ASib
(i'cPn PnlClc
LRFO ASO
i^ePn PJCic
LRFO ASD UJFO ASO
P„IClc
LRFD W LRFD
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
77.4
6€9
60.9
16.6
•52.1
ML
42.8
38.7
34 8
310
'27;3
21.3
19.0
I7;b
15.4
13 9
116
97.3
91.3
84.9
78.1
.711.
64.3
58.2
52.3
46.6
41.0
36.1
32.0
28.5
25.6
23.1
20.9
62^9 ;
52f? •
49:4 •
45.9
42.2
38:5 :
34 7
31-.0 '
27 4
24 0
20.9 •
18.4
16.3
14.5
13:0
11.7
10.7
9.71
94.3
79.0
74.1
68.9
63.4
57.7
52.1
46.5
41.1
36.0
31.3
27.5
24.4
21.8
19.5
17.6
16.0
14.6
108'
85.6
786
~71.2
'63.7
56.2
490
42.1
35.9
3®9
269
210
163
129
118
107
95.7
84.5
73.6
63.3
53.9
46.5
40.5
35.6
31.5
62.4
49.6
45.6
41.4
93.6
74.3
68.4
62.1
37.5
33.6
2^9
26.2
22.7
18.6
17.1
15.0
13.3
11.8
10.6
56.3
50.6
44.9
39.4
34.1
29.4
25.6
22.5
20.0
17.8
16.0
50.6
40.2
37:0
33.6
30:2
26.7
23.4
20.2
75.9
60.3
55.5
50.4
45.3
40,1
35.1
30.3
37.5
15.1
13.1
11.6 S
10.2
8;19f!
26.2
22.7
19.8
17.4
15.4
13.7
12.3
Properties
M„IQt,. (l)i,/W„ kip-ft 11,4 5^4 8,78 8 74 13.1 . 5.42 8.14 4,19. 6.29
PsiKLf/m^ kip-in,2 191 154 171 117 95.6
ASD
tic =2.00
LRFO
(|)c = 0.75
Note: Heavy line indicates tt/r equal to or greater than 200. •
. Dashed line indicates tlie W. beyond which bare steel strengtti controls.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-317
Fy = 35 ksi
fc' = 5 ksi
Table 4-20
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
COMPOSITE
PIPE 12-PIPE 8
Pipe 12 Pipe 10 Pipe 8
XS Std XS Std XXS XS
fdesip, in- 0.465 0.349 0.465 0.340 0.816 0.465
Steel, lb/ft 65.5 49.6 54.8 40.5 72.5 43.4
D^gn
PnlClc PalQc W ^Pn fcPfl Pn/Qc <|>cfli Pn'Cic ^cPn
D^gn
m tRFD ASD- LRFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD
0 570' , 855 513 769 446' 669 392 587 441 ' 662 319 478
6 560 839 502 754 434' 651 381 •571 4^4 •
636 306 460
7 55ff 834 499 748 430 645 377 565 418' 627 302 453
8 551 827 494 742 425 638 372 558 .411 617 297 446
9 546. 820 490; 734 420 630 367.:. 551 404 ; 605 291 437
10 54:1! 811 484i 726 414 622 362 543 395 ' 593 285 428
11 535 802 479 718 408- 612 356 534 '386 ' 579 279 418
12 528' 793 472 708 401 602 350 524 376 ; 565 272 408
13 521 782 466 • 698 394 591 343 514 366 549 264 396
14 514 771 458 : 688 3861 579: 336 503 .355 533 257 385
15 506 759 451 676 378: •567 328 492 344 . 516 248 373
16 -498 747 443 664 369: 554 320: 480 333 ': 499 240 360
£
17 •489 734 435,- 652 361: 541 31.2. 468 321 r 481 231 347
a
18 4S0 721 426. 639 351' 527- 304 455 309 t 463 223 334
€ •
19 471 707 417; 626 342 513 295 442 29" "447" 214 320
cn.
£
20 •461 692 408? 612 332 498 286 429 286 :.> 430 205 307
21 451 677 398 598 322 484. 277 415 ;275 414 195 293
1 22 441 662 380 583 312' 469 268 402 264 ' 397 186 279
u 23 431 646 379 » 568 302 453 258 388 253 380 177 266
24 •420 630 3S1' 553 292: 438 249 .374 242 364 168 252
25 4TO 614 359. 538 '282 422 240 360 231 -: 347 159 239
25 399 598 348 522 271 407 230 345 220 331 151 226
27 388 581 338 507 261 391 221 331 209 314 142 213
28 37B 565 327 : 491 251 376 212 317 198 : 298 133 200
29 365 548 317 475 240 360 202 303:- 188^ 283 125 188
30 354 531 306' 459 '230" 345 193 290 178 267 117 176
32 332 497 285 428 210 ; 315 175 263 158 • 237 103 154
34 im 464 ^65 397 191 286 158 237 140 210 91.2 137
36 287 431 244 366 172 258 141 212 124 187 81.3 122
38 265 398 337 154 231 127 190 112 168 73.0 109
40 244 367 205 308 139 209 114 172 101 152 65.9 98,8
Properties
kip-ft 144 217 1(1,4 171 •99.4 149 7.7.0 116 92.9 140 60:7 91.2
Pe(KLfno< kip-in.2 13000 10800 7310 6010 4820 3460
\ASD
ac=2.oo
LRFO Note; Dashed line indicates the KL beyond which liare steei slrengtli coiilruls.
(|)c = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

w
4-318
DESIGN OF COMPRESSION MEMBERS
COMPOSITE
PIPE 8-PIPE5
Table 4-20 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
Fy = 35 ksi
U - 5 ksi
Pipe 8 Pipes Pipes
Shape
Std XXS XS Std XXS
ftiesign. in-
0.300 0.805 0.403 0.261 0.699
Steel, lb/ft 28.6 S3.2 28.6 19.0 38.6
Paliic ^cPn p«iac p„iaa W p„ia.
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 258 386 308 463 200:, 301 161 241 224 337
6 1247:. 370 290 436 187: 281 ^150,, 225 205 309
7 243 365 :283 426 183 274 146 219 199 299
8 239 358 276 415 178 267 :i42: : 213 192 288
9 234:, 351 268 : 403 172 258 137 206 184 277
10 229 343 260 391 166 249 132 198 176 264
11 '223 335 251 • 377 160 240 127 190 167 251
12 ::217 326 241 362 153 . 230 121 182 158 237
13 i;211 317 231 347 146 5.:, 219 116^ 173 149 223
14 "204 -,307 221 ' 332 139> 208 110 165 139 209
15 198 . 296 • 210 316 132 197 ;i,04; 156 130 195
16 190 286 199 ^ 299 124: 186 <97,6' 146 120 181
£ 17 18a 275: 188 283 117:- . 175 91.6 137 111 167
18 i ;176 264 177; 267 109 164 85.5 128 102 " 153
19 168 252: 167 250 102: 153 79.6 119 93.1 140
20 •161 : 241 156 : 234 • 94.9;: 142 73.8 111 84.^ 127
21 53 230 • 145 218 87.9 132 i 68.r 102 76.7- 115
22 46 ' 218 135: 203 122 ; 627' 94.0 69.9 105
23 ::i38 207 125 188 74i4 112 ; 5753 86.0 63.9 96.1
24 ;131 196 115 173 68® 103 526 78.9 58.7 88.2
25 ;123 185 106 160 63.3 95.1 48 5 72.7 54.1 81.3
26 116 174 98.2 148 : 58.5 88.0 44.8 67.3 50.0 75.2
27 109 164 91.1 137 54.3 81.6 41.6 62.4 • 46.4 697
28 102 153 . 84.7 127 50.5 75.8 387 58.0 43.1 64.8
29 95.3 143 78.9 119 47.0 70.7 ,36-0 54.1 40.2 60.4
30 89.1 134 .73.8 111 44.0: 66.1 33.7 ,50.5
32 78.3 117 64.8 97.4 386 58,1 : 29.6 44.4
34 r 69.3 104 : .,57.4 86.3 342 51.4 ^ ®B:2; 39.3
36 61.8 92.8 30.5 45.9 i 23.4 35.1
38 55.5 83.3
40 50.1 75.1
Properties
kip-ft; :42,6 54.1 75.4 303
45.5
PeiKLfn 10^ kip-in.2 2630 1930 1290 995 973 i
ASD LRFD Note; Heavy line Indicates «L/r equal to or greater than 200.
Dashed line indicates the KL beyond which Bar e steel strength controls.
He =2.00 <1)^ = 0.75
ALL;
AMERICAN INSTITUTE OF STEEL CoNSTRUcnoN

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-319
Table 4-20 (continued)
Fy = 35 ksi Available Strength in
fc = 5 ksi Axial Compression, kips
Concrete Filled Pipfe
COMPOSITE
PIPE 5-PIPE 4
0^ = 2.00
Pipe 5 Pipe 4
XS Std XXS XS Std
fttesigm in. 0.349 0.241 0.628 0.315 0.221
SteeMb/ft 20.8 14.6 27.6 15.0 10.8
Design
flr/Hc tefl. PnlClc Pfl/Oc PnlClc Pniao ^cPn
Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 144 216 118 177 161 241 1003; 151 82.5 124
6 131 197 107. 161. 140i; 210 S6.8 130 71.2 107
T 127 190 104 155 133 200 .82.3 124 67.4 101
8 122 183 99.4 149 126 i; 189 7JS 116 63.4 95.1
9 116- 174 "94.8 142 1:18* 177 72.3, 109 : 59.1 88.7
10 111 166 90.1 135 IIQi; 165 100 : 54,7 82.0
' <! •
11 105' 157 85.0 128 lOfe 152 61.5 92.3 ; 50.1 ^ 75.2
12 98.4 148 79.9 120 92.7 139 .5.e.'i 84.1 45.6 68.4
13 92.0 138 74.6 112 84.3 127 50 J • 76.0 41.1 61.7
14 55.6 128 •69.3 104 76;0 114 :i4i4' 68.2 36.8 55.2
15 79.3 119 64.0 96.0 68.1 102 "io;?^ 32.8 49.0
g
16 73.0 109 58.8 88.2 60.3 90.7 36.7 55.1 28.7 43.1
17 66.8 100 •53.8 80.6 53.5 80.3 32.8 49.2 25.4 38,1
18 60.9 91.3 , 48.9 73.3 .47,7. 71.7 29.2 43.9 ^.7 i 34.0
% 19 55.2 83.0 44.1 66.1 42.8 64.3 26.2 39,4 213.4:^ 30.5
S
20 50.7 76.3 39.8 59.7 38.6 58.0 23.7 35.6 18.4 27.6
f
21 46.4 69.8 36.1 54.1 35.0 52.6 32.3 16.7 25.0
iS 22 42.3 63.6 32.9 49.3 31.9 48.0 ^19.6 29.4 :i5.2 i 22,8
23 38.7 58.2 30.1 45.1 29.2 43.9 17.9 26.9 13.9 20,8
24 35.5 53.4 27.6 41.4 16.4 24.7 12.8 19.1
25 32.8 49.2 25,5 38.2 ; 11.8 17,6
26 30.3 45.5 23.5 35.3
27 28.1 42.2 21.8; 32.7
28 26.1 39.2 20.3 30.4
29 24.3 36.6 18.9 28.4
30 22.7 34.2 17!? 26.5
Properties
M„'ih ^bM„ kip-ft -.18.3 27
kip-in.'
LRFD
653
136 20.5
522
•17.2 25.8
440
;i:0.5 15.8
299
7,99: 12,0
241
Note; Heavy line indicates «L/r equal to or greater than 200.
Dashed line indicates the KL beyond whlcli bare steel strengtti controls.
N
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i
(

4-320
DESIGN OF COMPRESSION MEMBERS
COMPOSITE
PIPE 3V2-PIPE 3
Table 4-20 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
Fy = 35 ksi
fc' = 5 ksi
Shape
PipeSVa
XS Std
Pipes
XXS XS Std
fesipi in-
0.296 0.211 0.559 0.280 0.201
Steel, lb/ft 12.5 9.12 18£ 10.3 758
Design
ASO LRFD ASD LRFD ASD
P„/Qc
LRFD ASD
P„/Qc
LRFD ASD LRFD
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
81 ;7
.63.6
58:9
54.0
'49.1
44.1
39;2
34.8
31;;0
27.3
2'f;o
17.0
15.4
•13;9
123
102
95.5
88.4
81.1
73.6
66.1
58.8
"sn'
46.6
41.0
36.1
32.0
28.5
25.6
23.1
20.9
67.7
56.1
;52;5
48;5.
44.5!
4013
36-I'
32.1
28-5
24.4
2U
18:7
16.6
14.B
13.3
'12.0
10.9
101
84,2
78.7
72.8
66.7
60.4
54.2
48.1
42.2
36.7
31.9
28.1
24.9
22.2
19.9
18.0
16.3
14.8
108
85.6
78.6
71.2
63.7
56.2
49.0
42.1
-35.9
•3a9
26.9
23 7
21.0
163
129
118
107
95.7
84.5
73.6
63,3
53.9
46.5
40.5
35.6
31,5
65.7'
51.6
47.3
42.8
38.2
33:1.
29.9
26.2
22.7
19.6
17.1
15.0
13.3
11.8
10.6
98.5
77.5
71.0
64.3
57.4
50.6_
44,9
39,4
34.1
29.4
25.6
22.5
20.0
17.8
16.0
54.2
42.5
39.0
35.2
31.4
27.7
24.0
20:6
17.5
15.1
13.2
11.6
10.2
9.14
8.20
81.2
63.8
58,5
52.9
47.2
41.5
36.1
30,8
26.3
22.7
19.8
17.4
15,4
13.7
12,3
Properties
M„tgi, i^bMn kip-ft 7,72 11,6 8,93 8.79 13,2 8.24 4 25 6.39
Pe(KLfhO' kip-in.2 193 157 171 119 97.3
ASD
£ic = 2,00
LRFD
c = 0,75
Note: Heavy tine indicates. ffi/requal to or greater Ifian 200.
Dashed line indicates the KL beyond which tare steel strength controls.
AMERICAN INSTITOTB OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION'-MEMBER SELECTION TABLES 4-321
Table 4-21
Stiffness Reduction Factor X,
ASD LRFD
Pa Pu
A,
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5/
Fy, ksi
35
ASD LRFD
: 0:i:54
0.313
0.457
0.583
0£93
0.786
0.862
0.922
0,964
0.991
1.00'
0.111
0.216
0.313
0.405
0.490
0.568
0.640
0.705
0.764
0.816
0.862
0.901
0.934
0.960
0.980
0.993
0.999
1.00
36
ASD LRFD
0.0869
0.249
0.395
0.525
0.640
0.739
0.822
'0.889
;0.940
0.976
0.996
•1.00
0.108
0.210
0.306
0.395
0.478
0.556
0.627
0.691
0.750
0.802
0.849
0.889
0.923
0.951
0.972
0.988
0.997
1.00
42
ASD LRFD
0.0377
0.T81
6.313
0.434
0.543
0.640;
0.726'
0.800
0.862
0.913
0:952
0:980
0.996.
1.00
0.0930
0.181
0.265
0.345
0.420
0.490
0.556
0.617
0.673
0.726
0.773
0.816
0.855
0.889
0.918
0.943
0.964
0.980
0.991
,0.998
1.00
46
ASD LRFD
0.102
0.229
0.346
0.454
0.552-
0.640,
0.719
0 788
0.847
0.896.
0.93i
0.967
0.987
0.998
1.00
0.0851
0.166
0.244
0,318
0,388
0.454
0,516
0.575
0.629
0.681
0.728
0.771
0.811
0.847
0.879
0.907
0.932
0.953
0.970
0.983
0.992
0.998
1.00
50
ASD LRFD
0.0317'
0.154 .
0.267 -
0.373 ,
0.470
0.559
0.640 •
0.713
0.777
0.834
0.882
0.922
0.953
0.977
0.992 .
0.999
1.tO
0.360
0.422
0,482
0.538
0.590
0.640
0.686
0.730
0.770
0;806
0.840
0.870
0.898
0.922
0.942
0.960
0.974'
0.986
0.994
0:998
1.00
i
i
(
- Indicates the stiffness reduction parameter is not applicable because the required strength exceeds the available strength for
KL/r^O.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-322
DESIGN OF COMPRESSION MEMBERS
Table 4-22
Available Critical Stress for
Compression Members
/V = 35ksi Fy = 36 ksi Fy=42ksi ly = 46ksi Fy=50ksi
KL
r
Fcr/Clc '^cFcr
la
r
FcrlQc cfcFcr
r
Fctlilc ifcFc
ftt
r
F„/Q.c ^Fcr
r
FcrlSic •fcFcr
KL
r
ksi ksi
la
r
ksi ksi
r
ksi ksi
ftt
r
ksi ksi
r
ksi ksi
KL
r
ASO LRFD
la
r
ASD LRFD
r
ASD LRFD
ftt
r
ASD LRFD
r
ASD LRFD
1 21 ;o 31.5 1 .1,21 .r 32.4 1 2S.1 ' 37.8 1 27.5 41.4 1 :29.9 45.0
2 21.0 31.5 2 •21.6 : 32.4 2
25^/
37.8 2 27,5 41.4 2 29.9 45.0
3 20.9 31.5 3 i2T.5 32.4 3 25.1 37.8 3 27^5 41.4 3 W.9 45.0
4 2019 31,5 4 121.5. 32,4 4 25.1 , 37.8 4 27.5 41.4 4 :29;9 44.9
5 20.9 31.5 5 21.5 . •: 32,4 5 25.1 ^ 37.7 5 27:5 41.3 5 '29.9 44.9
6 20.9 31,4 6 21.5 32.3 6 25.1 37.7 6 27,5 41,3 6 29.9 44.9
7 •20.9 31,4 7 21.5 32.3 7 25.1 37.7 7 27.5 41.3 7 29.8 44.8
8 :20:.9 31.4 8 ^21.5 32.3 8 25.1 , 37.7 8 27.4 41.2 8 :29.8 44.8
9 ,20,9 31.4 9 i21.5 32.3 9 25.0 37.6. 9 27.4 41.2 9 •29,8 44.7
10 20.9 31.3 10 :21.4 32,2 10 25.0 37,6 10 27.'4 41.1 10 !29.7 44.7
11 20:.8 31.3 11 •21.4 32.2 11 25.0 37,5 11 27.r 41.1 11 •29,7 44.6
12 20.8 31.3 12 •21.4 32.2 12 24.9 ; 37,5 12 27.3 41.0 12 29,6 44.5
13 Ms . 31.2 13 .21.4 32.1 13 24.9 ; 37,4 13 272 40.9 13 29.6 44.4
14 207 31.2 14 ;2r.3 32.1 14 24.8 37.3 14 27.2 40.9 14 29.5 44.4
15 20.7 31,1 15 ^21.3 32.0 15 24.8 • 37.3 15 27.1 40,8 15 29.5 44.3
16 207 r 31.1 16 21.3 32.0 16 24.8 37.2 16 27.1 40.7 16 29.4 44.2
17 207 ,31.0 17 31.9 17 24.7 37.1 17 27;0 40,6 17 ;29.3 44.1
18 ,20.6:, 31.0 18 31,9 18 24.7 37.1 ^ 18 27.0 40.5 18 29.2 43,9
19 30.9 19. 31.8 19 24.6 37.0 19 26,9 40.4 19 29.2 43.8
20 20.5 30.9 20 i21.1. 31.7 20 24.5 ' 36.9 20 26.8 40.3 20 129.1 43.7
21 20.5 30.8 21 21.1 31.7 21 24.5 36.8 21 26.'7' 40.2 21 29.0 43.6
22 20;4v; .30.7 22 •21.0 31.6 22 ;24.4 36.7 22 26.7 40.1 22 28.9 43.4
23 2(t4 30.7 23 21.0 31.5 23 "k3 36.6 23 26.6 40.0 23 28.8 43,3
24 20,3 30.6 24 20.9 31.4 24 24.3 , 36.5 24 26.5 39.8 24 28.7 43,1
25 20.3 ' 30.5 25 ;20.9 31.4 25 24.2 36.4 25 '26.4 39.7 25 ;28.6 43,0
26 20,2 30.4 26 2Q.r. 31.3 26 24.1 36.3 26 26.3 39.6 26 28,5 42.8
27 20.2 30.3 27 20.7 31.2 27 24.0 36.1 27 ,26.2 39.4 27 28.4 42.7
28 20.1 30.3 28 20.7 31.1 28 .24.0 36.0 28 26.1 39,3 28 28.3 42.5
29 20.1 30.2 29 2Q.B; . 31.0 29 23.9 35.9 29 ,26:o 39,1 29 28.2 42.3
30 20:0 30,1 30 20.6 30.9 30 23.8 35.8 30 25.9 39.0 30 ;28.0 42.1
31 2a;o 30,0 31 20.5 30.8 31 -23.7 . 35.6 31 25.8 38.8 31 ,27.9 41.9
32 1^9 .29.9 32 30.7 32 23.6 35.5 32 25.7 38.6 32 57.8 41.8
33 19:8 29.8 33 :20.4 30.6 33 S.5 35.4 33 25:6 38,5 33 27.7 41.6
34 19,8 29.7 34 20.3- 30.5 34 23.4 35.2 34 25.5 38,3 34 27.5 41.4
35 19.7 29.6 35 20.2 30.4 35 23.3 35.1 35 25.4 38.1 35 27.4 412
36 1916 29,5 36 20.1: 30.3 36 23.2 34.9 36 252 37.9: 36 27.2 40.9
37 19.5 29,4 37 20.1- 30.1 37 23.1 34.8 37 25.1 ~ 37.8 37 27.1 40.7
38 ,19,5 29,3 38 20.0 30.0 38 34.6 38 37.6 38 ,26.9 40,5
39 19.4 .29.1 39 19.9- 29.9 39 >^.9 . 34.4 39 24,9 37.4 39 126.8 40,3
40: 29.0 40 198 29.8 40 22.8 34.3 40 ~24;7 37.2 40 26.6- 40,0
ASD LRFD
:1.67 <1,, ;=0.90
it. AMERICAN INSTITUTE OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION-MEMBER SELECTION TABLES 4-323
Table 4-22 (continued)
Available Critical Stress for
Compression Members
Fy=35ksi Fy=36ksi /V=42ksi /)r=46ksi 1 Fy=50ksi
r
fJO-c t>cFcr
ITT
fcr/Oc (sicFa
r
ftt
r
'^cfcr 1
KL
t
^cfer
r
ksi ksf
AC
r
ksi ksi
r
ksi ksi
ftt
r
ksi ksi
KL
t
ksi ksl
r
ASD, LRFD ASD LRFD
r
ASD LRFD
ftt
r
ASD LRFD
KL
t
ASD., LRFD
41 19.2 28.9 41 19.7 29.7 41 22.7 34.1 41 24.6; , 37.0, 41 26.5 • 39.8
42 19.2 28.8 42 19.K 29.5 42 22.6 33.9 42 24.5 36.8 42 26.3' 39.5.,
43 19.1 28,7 43 19.6 29.4 43 22.5 33.7 43 ,24,3, 36.6 43 26.2' 39,3
44 -13.0 28.5 44 19.5 29.3 44 22.3 33.6 44 24,2 J 36.3 44 26.0 39,1
45 18.9 28.4, 45 19.4 29.1 45 ??? 33.4 45 24,0 36,1 45 25.8 38.8
46 18.8 28,3 46 19.3 29.0 46 22.1 33.2 46 35.9 46 : 25;6 38.5
47 18,7 • 28.1 47 19.2 . 28.9 47 22.0 ' 33.0 47 35.7 47 25.5 i 38.3
48 18.6- 28,0 48 19,1 28.7 48 21.8 32.8 48 23.6 35.4 48 25.3U 38.0
49 18.5 27,9 49 19,0 28.5 49 21.7. : 32.6 49 ,23.4: 35.2 49 25.1 37.7
50 18.4' 27,7 50 18,9 28.4 50 21.6 32,4 50 , 23.3 35.0 50 24.9 37.5
51 18.3 27,6 51 18,8 28.3 51 21.4 32.2 51 2!3.I ; 34.8 51 24.8 37.2
52 18.3 27,4 52 18.7 " 28.1 52 21.3 32.0 52 23.0 34.5 52 24.6 36,9
53 18.2 27,3 53 18,6 28,0 53 21.? 31.8 53 22.8 34.3 53- 24:4->; 36.7
54 18.1 27,1 54 18.5 27,8 54 21.0 31,6 54 22.6 34.0 54 24.2 36.4
55 18.0 27,0 55 18.4 27,6 55 20.9 31.4 55 a,5 . 33,8 55 24.0, i 36.1
56 1,7.9 -• 26.8 56 18.3 -27,5 56 20.7 31.2 56 2'2.3; ; 33.5 56 23.8 35,8
57 17.7 26.7, 57 18.Z 27,3 57 20.6 31.0 57 ^22^1, , 33.3 57 , 23.6 35.5
58 17.6 26.5 58 18.1 27,1 58 20.5 30.7 58 33.0 58 -23.^, 35.2
59 17.5 26.4 59 •17.9 27,0 59 20.3 30.5 59 : 21.8? ^ 32.8 59 23.2 34.9
60 17.4 26.2 60 17.8 26,8 60 20.2 30,3 60 . 21.6; S ,32.5 60 23.0 34.6
61 17.3 26.0 61 17.7 . 26,6 61 20.0 J 30,1 61 ^ 21.4 32.2 61 '22.8 34.3
62 17.2 . 25.9 62 17.6 ^ 26.5 62 19.9 29,9 62 32.0 62- 22.B -;34.0
63 17.i: f 25.7 63 17.5 26.3 63 19.7 29,6 63 •31.7 63 22.4 33.7
64 17,0 25,5 64 17.4 26,1 64 19.6 29.4 64 20.9 31.4 , 64 22.2 33.4
65 16.9 25.4 65 ^7.3 : 25.9 65 19.4 29.2 65 20.7 31.2 65 22.0 33.Q
66 16.8 25.2 66 17.1 25,8 66 19.2 -28.9 66 20:5 30.9 66 21.8; i 32.7
67 16.7 25,0 67 17.0 25.6 67 191 28.7 67 20.4; 30.6 67 2i:&,; 32,4
68 16.5 24.9 68 16.9 ! 25.4 68 18.9 28.5 68 20.2 30.3 68 21.4: • 32.1
69 16.4 . 24.7 69 1,6,8 25.2 69 18.8 28,2 69 20.0 30.1 69 21.1 31.8
70 16.3 24.5 70 16.7 25.0 70 18.6 28.0 70 19.8; 29.8 70 20.9 31,4
71 16.2 24.3 71 1B.5 24.8 71 18.5 . 27.7 71 29,5 71 20.7 ; 31,1
72 1,6.11 24,2 72 16,4 24.7 72 18.3 27.5 72 19.4 29,2 72 20.5, 30,8
73 16.0 24.0 73 16,3 24.5 73 16.1 27.2 73 19.2^ ^ 28,9 73 20.3;. 30.5
74 15.8 23.8 74 16.2 24.3 74 18.0 . 27.0 74 1i9.1 28.6 74 20.1 30.2
75 15.7 23.6 75 1B.0 24.1 75 17.8 26.8 75 18.9r; 28,4 75 19.8=.; 29.8
76 15.6 23.4 76 15.9 23.9 76 17.6 26.5 76 IS.®.. 28.1 76 I!9.6:H 29.5
77 155 23.3 77 15.8 23.7 77 17.5 26,3 77 27.8 ; 77 i Ii0.4:n 29.2
78 154 23.1 78 15.6 23.5 78 17.3 26.0 78 r1;8.3 27,5 78 28.8
79 15 2 22.9 79 16.5 23.3 79 17.1 25,8 79 27.2 79 28.5
80 15.1 22.7 80 15.4 • 23.1 80 If.O- 25,5 j 80 17.9 26.9 1 80 18.8),f 28.2
ASD LRFD
I])C = 0.90
AMERICAN INSTITUTE OF STBEL .CONSTRUCTION

4-324 DESIGN OF COMPRESSION MEMBERS
Table 4-22 (continued)
Available Critical Stress for
Compression Members
fi, = 35ksi ^=36ksl fy=42ksi fi,= 46ksi /y=50ksi
la
r
FcrlQc <^cFcr
la
t
FclClc
KL
r
FcrlO.0 ^cFcr
r
Fcr/Qc t-A
tt
r
For/Qc ^cFcr
la
r
ks! ksi
la
t
ksi ksi
KL
r
ksi ksi
r
ksi ksi
tt
r
ksi ksi
la
r
ASD LRFD ASDs LRFD
KL
r
ASO LRFD
r
ASD' LRFD
tt
r
ASD LRFD
81 22.5 81 •15.3 22.9 81 16.8 25,3 81 17.7.- 26.6 81 16.5 H 27.9
82 m
22.3 82 15.1- 22.7 82 .16,6. J 25.0 82 •17.S.v: 26.3 82 18.3 . 27.5
83 22.1 83 15.0 22.5 83 16,5 24.8 83 17.3 26.0 83 1,8.1 27.2
84 22.0 84 14.9' 22.3 84 16.3 24.5 84 • i7,1.;- 25.8 84 17.9 ' 26.9
85 .14.5;- 21.8 85 14.7, 22.1 85 16,1'.!. 24.3 85 16.9 : 25.5 85 17.7. 26 5
86 HAAS:-21.6 86 14.6 . .22.0 86 16.0 24.0 86 16.7a 25.2 86 17.4 26 2
87 li4.2 ? 21,4 87 14.55 . 21.8 87 . 15,8.. 23.7 87 l'6.6:. 24.9 87 17.2. 25.9
88 . 14,1 • 21,2 88 14.31; 21.6 88 .15.6 : 23.5 88 2^6: 88 17.0 •25.5
89 14.0--r 21,0 89 14.2 ' 21.4 89 23.2 89 16.2;; 24.3 89 16.8 25.2
90 13.85^ 20.8 90 14.1 : 21.2., 90 15,3:.; 23.0 90 16.0 : 24.0 90 16.6 24.9
91 13.1? 20.6 91 13.9 ' 21.0 91 • lS.1:vr 22.7 91 16,8>,- 23.7 91 16.3 , 24.6
92 13.6P 20.4 92 13.8-.: 20.8 92 15,0. i 2^5 92 15,6 23.4 92 16.1 24.2
93 20.2 93 13.7„S 20.5 93 22.2 93 23.1 93 15,9 23.9
94 1S.3:=i. 20.0 94 13.5 20.3 94 14.6:, 22.0 94 15,2:,t 22.8 94 1'5,7 23.6
95 19.9 95 13.4 . 20.1 95 iAA 21,7 95 1:5.0- 22.6 95 15,5 23.3
96 •13.1JS 19.7 96 13.3; 19.9: 96 :.14.3i : 21,5 96 :i4.B'i 22.3 96 l'5.2f 22.9
97 19.5 97 13.1':5 19.7 97 21,2 97 :i4;6:' 22.0 97 15,0 22.6
98 '19.3 98 I^.O.i •19.5 98 13.9 21,0 98 >14,4;- 21.7 98 14,6 22.3
99 19.1 99 llSP.i • 19.3 99 20,7 99 .21.4 99 14,6 22.0
100 18.9 100 12.7^- 19.1 100 20.5 100 :14.1.''i 21.1: 100 14,4 21.7
101 :h!2.4t 18.7 101 12.6.' 18.9 101 13,4 : 20.2 101 1j3.9:' 20.8 101 1^2 21.3
102 18.5 102 12.5;- 18.7 102 , i3.au 20.0 102 20.6 102 14.0 21.0
103 18.3. 103 12.3: 18.5 103 13.1r.S 19.7. 103 ;13:5'. 20.3 103 13.-8- 20.7
104 18.1 104 12.2' 18.3 104 li2:9vf 19.5 104 li3.3 • 20.0 104 13.6 ' 20.4
105 17.9 105 12.1:... 18.1 105 -1-2.8^ • 19.2 105 13.1 19.7 105 13.4 20.1
106 lH.8i. 177 106 11.9': 17.9 106 i2S:l 19.0 106 12,9 19.4 106 13.2 19.8
107 11,7: ; 17.5 107 11.8- 17.7 107 12.4 -187 107 12,8;.' 19.2 107 13.0 19.5
108 11,5 17.3 108 11.7 17.5 108 12.3. 18.5 108 1:2,6.: 18.9 108 12.8 19.2
109 l "l 4 17.2 109 11,5 i: 17.3 109 12.1- ' 18.2 109 n.m 18.6 109 12.6 18.9
110 11,3 17.0 110 11,4 17.1 110 12:0 : 18.0 110 12,2:; 18.3 110 12.4 18.6
111 112 ' 16.8 111 11,3''; •16.9 111 177 111 :1:2%' 18.1 111 12,2 18.3
112 110 16.6 112 11,1- 16.7 112 1:1 17.5 112 '1:1.8' 17.8 112 12.0 18.0
113 10.9 16.4 113 11,0 16.5 113 17.3 113 ihir. 17.5 113 11.8 17.7
114 10 8 16.2 114 10,9 -16.3 114 11 3 17.0 114 11.5'.; 17.3 114 11.6 17.4
115 10.7 16.0 115 io,7 16.2 115 11.2 16.8 115 11.3 17.0 115 11.4 17.1
116 10.5 .15.8 116 • 10,6-;: 16.0 116 11.0" 16.5 116 11.1 . 16.7 116 11.2 16.8
117 1'0.4 I 15.6 117 : 10,5: ft 15.8 117 10.8 16.3 117 1,1.0 • 16.5 117 .1,1 0 . 16.5
118 10.3 ' 15,5 118 •10.4- 15.6 118 10,7 16.1 118 10.8 : 16.2 118 10.8 16.2
119 102 15.3 119 15.4 119 10,5. 15.8 119 • 16.0 119 16 0
120 -15,1 120 ilia®'? 15.2 120 10,4 15.6 1 120 .10.4 15.7,: 120 10.4 .157
ASD LRFD
,. = 0.90
it. AMERICAN INSTITUTE OP STEEL CONSTRUCTION

COMPOSITE COMPRESSION'-MEMBER SELECTION TABLES 4-325
Table 4-22 (continued)
Available Critical Stress for
Compression Members
fy=35ksi
ASO LRFD
= 0.90
/y=36ksi />=42ksi
KL
Fcr/iic i^Fcr
KL
ForlO-c •t'c'ir
KL
For/O.c (^cFcr
ML
Fcr/Qc ^cFcr Fja, ^cFcr
KL KL KL ML
r
ksi ksi
r
ksi ksi
r
ksi ksi
r
ksi ksi
f
ksi ksi
ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD
121 9.91 14,9 121 10.0 15,0 121 10:2;. 15.4 121 10.3: , 15,4 121 10.3 15,4
122 9.79 14.7 122 9:85. 14,8 122 liOd,' 15.2 122 10,1 15,2 122 10.1 15,2
123 9:67 14:5 123 9.72 14,6 123 agar 14,9 123 9,94 14,9 123 9.94 14,9
124 9.55 14.3 124 9.59 14,4 124 9,7B 147 124 9,78 14:7 124 9.78 14,7
125 9.43 14.2 125 14,2 125 9:62 14,5 125 9,'B2 14,5 125 9:62' 14,5
126 9.31 14.0 126 9.35 14,0 126 14.2 126 9,47 14,2 126 9,47 14,2
127 9:19 13.8 127 9,22 13,9 127 9.32 14,0 127 9.32 14,0 127 9,32 14,0
128 ,9.07 13.6 128 940 137 128 9,17: 13,8 128 9,17 13,8 128 9,17 13,8
129 8.95 13.4 129 saa; 13,5 129 9,03 13,6 129 9.03 13,6 129 9,03" 13,6
130 8.83 13.3 130 k86: 13,3 1.30 8:89: 13,4 130 8.89 13,4 130 8,89 13,4
131 '8.71 13.1 131 8,73 13.1 131 8:78': 13,2 131 8,76 13,2 131 8,76 13:2
132 S.-60 12.9 132 8:6,1? 12,9 132 e,6.3- 13,0 132 8:63 13,0 132 8,63 13,0
133 8,48 127 133 8:49: 12,8 133 8:5.0^- 12,8 133 8,50 12,8 133 8,50 12,8
134 B.37 12.6 134 8.37j 12,6 134 8,37'-: 12,6 134 8,37 12,6 134 8.37 12.6
135 8.25- 12.4 135 i8;25 12,4 135 !8,25- 12,4 135 8 25 12,4 135 8.25 12.4
136 8il3 12.2 136 833 12,2 136 «.:13. 12,2 136 8,13 12,2: 136 8.13 12.2
137 8.01- 12.0 137 B;DI 12.0 137 12,0 137 8,01 1.2:0 137 8,01 12.0
138 7.89 1:1.9 138 7:89:^ 1,1,9 138 '7,89:- 11,9 138 7,89 11,9 138 7^9 11.9
139 7.78 .11.7 139 117 139 7178? 117 139 7.78 11,7 139 7,78 11,7
140 7,67 11.5 140 11,5. 140 7:67 11,5 140 7.67 11,5 140 7,67, 11,5
141 •7.56 11.4 141 11,4 141 7155. 11.4 141 7i56 It,4 141- '7,56 11,4
142 7:45 11.2 142 11,2 142 7i45i 11,2 142 7,45 11,2 142 7:45 11,2
143 7:35- 11.0 143 7::35^ 11,0 143 11,0 143 7.35 11.0 143 7,35 11,0
144 725 10.9 . 144 7:25-' 10,9 144 7:25' 10,9 144 7,25 10:9 144 7.26. 10,9
145 7.15 10.7 145 7'.-15; 107 145 7,15 107 145 7,15 107 145 7,15 107
146 7.05 > 10,6 146 7,05 10,6 146 7.05, 10,6 146 7,05 10,6 146 7,05 10,6
147 6.96 10.5 147 6.96. 10,5 147 6:96J 10,5 147 6,96 10,5 147 6,96 10,5
148 6.'86 10.3 148 6.86. 10.3 148 6,86 10,3 148 6,86 10.3 148 6.86 10.3
149 6.77 10.2 149 6;77? 10.2 149 :6.:77 10,2 149 6 77 10,2 149 677 10,2
150 6.B8 10.0 150 10.0 150 6:e8- 10.0 150 6,68 10,0 150 6.68 10,0
151 mQ 9.91 151 9.91 151 6:59' 9.91 151 6.59 9.91 151 6,59 9,91
152 6®.1 9.78 152 B:51.- 9,78 152 6:51 9.78 152 6,51 9.78 152 6.51 978
153 6;42' 9:65 153 6.42; 9,65 153 6,42 9.65 153 6,42 9.65 153 6,42 9,65
154. 6.34 9.53 154 6,34- 9,53 154 6.34: 9.53 154 6,34 9.53 154 6,34 9.53
155 6.26 9.40 155 6,26.' 9.40 155 6 26 9.40 155 6 26 9,40 155 6,26 9,40
156 6.18 9.28 156 6,18 9.28 156 618 9.28 156 618 9,28 156 6,18 9.28
157 6.W 9.17 157 6,10 9.17 157 610 9.17 157 6 TO 9,17 157 6,10 9.17
158 t;o? 9,05 158 6:02 9.05 158 6 02 9,05 158 662 9,05 158 6,02 9.05
159 5 95 .8,94 159 S395, 8.94 159 695 8,94 159 595 8,94 159 5:95 8,94
160 KL87 8,82 160 5,87. 8.82 160 5;B7 ,8.82 16D ;5;87. 8,82 160 5,87 8,82
/>=50k$i
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

4-326
DESIGN OF COMPRESSION MEMBERS
Table 4-22 (continued)
Available Critical Stress for
Compression Members
/>=35ksi /y=36ksi /y=42ksi fy=46ksi fy=: 50 ksi
KL
^
ForKlc "tfefcr
W.
f
F„IQ.c itcFcr
h
r
Fcf/flc ^cFcr
KL
r
FcrlQc ^cFcr
la
r
^cFcr
KL
^
ksi ksi
W.
f
ksi ksi
h
r
ksi ksi
KL
r
ksi ksi
la
r
ksi ksi
ASO . LRFD ASD LRFD ASO?. LRFD ASO LRFD ASO LRFD
161 5.80 8.72 161 S.80? 8.72 161 5.80 8.72 161 5.80 8.72 161 5.80 8.72
162 5.73 8.61 162 5.73: 8.61 162 5.73. 8.61 162 5.73 8.61 162 5.73 8.61
163 5;66 8,50 163 5:66'! 8.50 163 5.66 8.50 163 5.66 8.50 163 5.66 8.50
164 K59: 8.40 164 8.40 164 5.59 8.40 164 5.59 8.40 164 5.59 8.40
165 5.52 8.30 165 • ;5'52: 8,30 165 5.52 8.30 165 .5.52,, 8.30 165 5.52 8.30
166 15.45 8.20 166 : S.45S 8.20 166 5;45 8.20 166 ,5.45 8,20 166 5,45. 8.20
167 • ^39 8.10 167 5;39f 8.10 167 5.39 8.10 167 •539 8,10 167 5.39 8.10
168 8.00 168 5:33' 8.00 168 '5.33 8.00 168 5;33 8.00 168 5.33 8.00
169 525- 7.89 169 5.25 7.89 169 5.25 7.89 169 5.25 7.89 169 5.25 7.89
170 5.20 7.82 170 5.20 7.82 170 i 5.20 7.82 170 5.20 7.82 170 5.20 7.82
171 5i14;: 7.73 171 5.14; 7.73 171 5wi4y 7,73 171 5.14 7.73 171 5.14 7.73
172 5.08 7.64 172 5.08i 7,64 172 5.08 7,64 172 5.08 7.64 172 5.08 7.64
173 5.02 7.55 173 5.02 7.55 173 5.02 7,55 173 6.02 7.55 173 5.02 7.55
174 4.96 7.46 174 4;96' 7.46 174 4.96_ 7.46 174 4.96 7.46 174 4.96' 7.46
175 4.91 7.38 175 431 • 7.38 175 4.9t 7.38 175 7.38 175 4.91, 7.38
176 4.85 7.29 176 4:85t 7.29 176 4 85 7.29 176 4.85 7.29 176 4.85- 7.29
177 • i4.80: 7.21 177 . 4;80 7.21 177 4.80 7.21 177 4.80 7.21 177 :4.80 7.21
178 4.74" 7.13 178 . 4.745 7.13 178 4.74 7.13 178 4.74- 7.13 178 4.74 7.13
179 4.69 7.05 179 - 4;69 7,05 179 4.69 7.05 179 4.69 7.05 179 4.69 7.05
180 l®4 6.97 180 4.64 6:97 180 4.64 6.97 180 4.64 6.97 180 4.64 6.97
181 ' i4:59< 6.90 181 4.59: 6,90 181 459 6.90 181 4.59 6.90 181 •4.59 6.90
182 4.54 6,82 182 4.54 6,82 182 4.54 6.82 182 4.54 6.82 182 4.54- 6.82
183 4.49 6.75 183 4.49 6.75 183 4.49 6.75 183 4.49 6.75 183 4.49 6.75
184 'AM 6.67 184 4.44 6.67 184 4.44 6.67 184 4.44 6.67 184 • 4.44 6.67
185 4.39 6.60 185 4.39 6.60 185 4.39 6.60 185 4.39 6.60 185 4.39 6.60
186 4^34 6.53 186 4:34 6.53 186 4.34 6.53 186 4:34 6.53 186 4.34, 6.53
187 4.30: 6.46 187 4.30 6,46 187 4.30 6,46 187 4.30 6.46 187 4.30 6.46
188 4.25 6,39 188 4,25 6,39 188 4:25 6.39 188 4.25 6.39 188 4,25 6,39
189 4.21. 6.32 189 4:21 6.32 189 4.21 6.32 189 421 B.32 189 4.21 6,32
190 14.16 6,26 190 4.16 6.26 190 4.16 6.26 190 416 6.26 190 4.1!B 6,26
191 ,4.12 6,19 191 4.-12r 6,19 191 4J2 6.19 191 4^2 6.19 191 4.T2 6,19
192 4.08 6,13 192 4.08 6.13 192 4.08 6,13 192 408 6.13 192 4.08 6,13
193 4.04 6,06 193 4:04 6.06 193 404 6,06 193 4.04 6.06 193 4.04 6,06
194 3.99 6,00 194 3i99 6.00 194 3.99 6,00 194 3.99 6.00 194 3.99 6,00
195 3.95 5,94 195 3.95, 5.94 195 3.95 5,94 195 3.95 5.94 195 3.95 5,94
196 3>91. 5,88 196 3.91 5,88 196 3.91 5,88 196 3.91 5,88 196 3.91 5,88
197 ^.87 5,82 197 3.87 5.82 197 .3.87 5,82 197 ssr 5.82 197 3.87 5.82
198 3.83 5,76 198 .3.83. 5,76 198 3:83 6,76 198 am' 5.76 198 3.83 6,76
199 3.80 5,70 199 3.80 5:70 199 3 80 5.70 199 3.80- 5.70 199 3.80. 5.70
200 3Th 5,65 200 3.76.- 5:65 200 3 76 5.65 1 |200 :3.76 5.65 200 3 76 5.65
ASD
ac=1.67
LRFD
(t)c = 0,90
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

S-1
PARTS
DESIGN OF TENSION MEMBERS
SCOPE ,.,.., ..5-2
GROSS AREA, NET AREA AND EFFECTIVE NET AREA 5-2
Gross Area 5-2
Effective Net Area 5-2
TENSILE STRENGTH 5-2
Yielding Limit State 5-2
Rupture Limit State 5-3
OTHER SPECinCATION REQUIREMENTS AND
DESIGN CONSIDERATIONS 5-3
Special Requirements for Heavy Shapes and Plates 5-3
Slendemess 5-3
DESIGN TABLE DISCUSSION 5-3
STEEL TENSION MEMBER SELECTION TABLES .5-5
T^ble5-l.W-Shapes .: : .5-5
T^le 5-2. Angles ^ i 5-14
Table 5-3. WT-Shapes . 5-18
Table 5-4. Rectangular HSS S-27
i T^ble 5-5. Square HSS ^ 5-36
Table 5-6. Round HSS 5-39
Table 5-7. Pipe 5-44
Table 5-8. Double Angles 5-46
I
AMERICAN INSOTUTE OF STEEL CONSTRUCTION

5-2 DESIGN OF TENSION MEMBERS
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of members subject to static axial tension. For fatigue applications, see
AISC Specification Appendix 3. For the design of members subject to eccentric tension or
combined tension and flexure, see Part 6.
GROSS AREA, NET AREA AND EFFECTIVE NET AREA
In the determination of the available strength of a tension member, the gross area, Ag, is
needed for the tensile yielding limit state and the effective net area, is needed for the ten-
sile rupture limit state, as stipulated in AISC Specification Section D2,
Gross Area
The gross area, Ag, is determined as specified in AISC Specification Section B4.3a.
Effective Net Area
The effective net area, is determined from AISC Specification Section D3 by multiplying
the net area, A„, by the shear lag coefficient, U, where7l„ is determined for tension members
per AISC Specification Section B4.3b and U is determined from AISC Specification Table
D3.t. Shear lag parameters are illustrated in AISC Specification Commentary Figures
C-D3.1, C-D3.2 and C-D3.4.
TENSILE STRENGTH
The limit-state of tensile yielding will control the available tensile strength over tensile rup-
ture when the following relationship is satisfied:
LRFD ASD
< 0.75F„A, (5-Ia)
F^Ag < (5.1b)
1.67 2.00
These expressions are both reduced to:
A,
(5-2)
Otherwise, the limit state of tensile rupture will control over tensile yielding.
Yielding Limit State
The available tensile strength due to tensile yielding, which must equal or exceed the
required strength, or Pa, is determined for tension members, per AISC Specification
Section D2(a), using Equation D2-I.
AMERICAN INSTITUTE OF STEEL CoNSTRucnoN

DESIGN TABLE DISCUSSION 5-3
Rupture Limit State
The available tensile strength diie to tensile rupture, which must equal or exceed the required
strength, ot Po, is detetrnined for tension members, per AISC Specification Sectioii D2(b)
using Equation D2-2.
OTHER SPECIFICATION REQUIREMENTS AND DESIGN
CONSIDERATIONS
Special Requirements for Heavy Shapes and Plates
For tension members with complete-joint-penetration groove welded joints and made from
heavy shapes with a flange thickness exceeding 2 in. Or built-up sections consisting of plates
with a thickness exceeding 2 in., see AISC Specification Sections A3.1c and Section A3.Id.
Slenderness
Tension member slenderness ratio, LIr, should preferably be limited to a maximum of 300
per the User Note in AISC Specification Section Dl. The intent of this recommendation is
explained in the corresponding Commentary.
DESIGN TABLE DISCUSSION
Available tensile strengths for various types of tension members (see individual descriptions
below) are given in Tables 5-1 through 5-8 for the limit states of tensile yielding and tensile
liipture. In each case, the tabulated values for available tensile rupture strength are based
upon the assumption that Aj. = 0.75A^, which is arbitrarily selected as a value that is practi-
cal to achieve with typical end connections. Such consideration of the effective net area
during the design of the member will simplify the design of its end connections, which can
be difficult to configure and costly if tension members are selected based upon available
tensile yielding strength only, without considering the reduction in strength diie to the
connection.
When Ae > 0;75Aj, either the tabulated values for available tensile rupture strength can
be used conservatively or the available tensile rupture strength can be calculated based
upon the actual value of Aj. When A^ < 0.75A^, the tabulated values of the available ten-
sile rupture strength cannot be used, but rather must be calculated based upon the actual
value of Ag.
Table 5-1. W-Shapes
Available strengths in axial tension are given for W-shapes with Fy = 50 ksi and - 65 ksi
(ASTM A992). Note that tensile rupture will control over tensile yielding for W-shapes with
Fy = 50 ksi and F„ = 65 ksi when A^lAg < 0.923. Otherwise, tensile yielding will control over
tensile rupture.
AMERICAN INSTITUTE OF STEEL CONSTRUCNON

5-4 DESIGN OF TENSION MEMBERS
Table 5-2. Angles
Available strengths in axial tension are given for single angles.with Fy = 36 ksi and F„ = 58
ksi (ASTM A36). Note that tensile rupture will control over tensile yielding for single angles
with Fy = 36 ksi and /v - 58 ksi when AelAg < 0.745. Otherwise, tensile yielding will con-
trol over tensile rupture.
Table 5-3, WT-Shapes
Table 5-3 is similar to Table 5-1, except that it covers WT-shapes with Fy - 50 ksi and F„ =
65 ksi (ASTM A992).
Table 5-4. Rectangular HSS
Available strengths in axial tension are given for rectangular HSS with Fy ~ 46 ksi and
Fa = 58 ksi (ASTM A500 Grade B). Note that tensile rupture will control over tensile yield-
ing for rectangular HSS with Fy = 46 ksi and Fu = 58 ksi when AelAg < 0.952. Otherwise,
tensile yielding will control over tensile rupture.
Table 5-5. Square HSS
Table 5-5 is similar to Table 5-4, except that it covers square HSS with Fy = 46 ksi and F„ =
58 ksi (ASTM A500 Grade B).
Table 5-6. Round HSS
Available strengths in axial tension are given for ASTM A500 round HSS with Fy = 42 ksi
and Fu = 58 ksi (ASTM A500 Grade B). Note that tensile rupture will cpntrol over tensile
yielding for round HSS with Fy = 42 ksi and F„ = 58 ksi when AJAg < 0.869. Otherwise,
tensile yielding will control over tensile rupture.
Table 5-7. Pipe
Available strengths in axial tension are given for pipe with Fy = 35 ksi and Fa = 60 ksi
(ASTM A53 Grade B). Note that tensile rupture will control over tensile yielding for pipe
with Fy = 35 ksi and F„ = 60 ksi when AglAg < 0.700. Otherwise, tensile yielding will con-
trol over tensile rupture.
Table 5-8. Double Angles
Available strengths in axial tension are given for double angles with Fy ~ 36 ksi and F„ = 58
ksi (ASTM A36). Note that tensile rupture will control over tensile yielding for double
angles with F^ = 36 ksi and Fa = 58 ksi when AelAg < 0.745. Otherwise, tensile yielding will
control over tensile rupture.
AMERICAN INSTRRUTE OF STEEL CoNSXRUcnoN

STEEL TENSION MEMBER SELECTION TABLES 5-5
Fy = 50 ksi
Fu = 65 ksi
Table 5-1
Available Strength In
Axial Tension
W-Shapes W44-W40
Shape
Gross Area,
OJSAg
Yielding Rupture
Shape
Gross Area,
OJSAg
kips kips
Shape
Gross Area,
OJSAg
Pfl/n, i^tPn Pnliit fjPn
Shape
in.' in.' ASD LRFD ASD : LRFD
W44X335 98.5 73.9 2950- 4430 2400 3600
x290 85.4 64.1 •2560: 3840 2080 3120
x262 77.2 57.9 ' 2310: 3470 1.880 : 2820
x230 67.8 • 50.9 . 2030; 3050 1650 2480
W40X593I' . 174 131 5210: 7830 .4260 : 6390
X503I' 148 111 , 4430 6660 3610 5410
X431I' 127 95.3 3800 ; 5720 ^::;3ioo: 4650
x397ti 117 87.8 3500 , 5270 : ' 2850^ 4280
X372'' 110 82.5 1 3290 4950 : ;2680 : 4020
xsea" 106 79.5 3170 4770 ..2580 3880
x324 95.3 71.5 2850: 4290 ' 2320 ; 3490
x297 87.3 65.5 2610 3930 2130- 3190
x277 81.5 61.1 2440 3670 1990: 2980
x249 . 73.5 55.1 • 2200 : 3310 1790 ' 2690
x215 63.5 47.6 , 1900 2860 " n1550 ^ 2320
x199 58.8 44.1 . 1760 i 2650 1430 2150
W40X392I' 116 87.0 3470: 5220 2830 < 4240
X331I' , 97.7 73.3 2930 4400 2380 • 3570
X327I' 95.9 71.9 2870 4320 2340 3510
x294 86.2 64.7 :' - 2580' 3880 .2100; 3150
x278 82.3 61.7 2460 3700 • 2010 . 3010
x264 77.4 58.1 . 2320 3480 •M890i 2830
X235 69.1 51.8 2070' 3110 :1:680 2530
x211 • 62.1 46.6 1860 2790 T 1510 2270
x183 53.3 40.0 1600 2400 1300: 1950
x167 49.3 37.0 1480 2220 1200 : 1800
x149 43.8 32.9 1310^ 1970 ,1070: leoo
UmttStiAe q^O.iH LBFD
Yielding
Rupture
fi(=1.67 If,=50.90
Range thickness is greater ttian 2 in. Special requirements may apply per AISC
Spec/ffcafib/j Section A3.1 c.
Note: Tensile .rapture on tiie effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured vi^ith ^^ s > O.S23Ag.
AMERICAN iNSHTura OP STEEL CONSTRUCTION

5-6 DESIGN OF TENSION MEMBERS
III
W36-W33
Table 5-1 (continued)
Available Strength in
AxialTension
W-Sh'apes
Fy = 50 ksi
Fu ~ 65 ksi
Shape
Gross Area,
A,
0.754s
Yielding Rupture
Shape
Gross Area,
A,
0.754s
l(ips kips
Shape
Gross Area,
A,
0.754s
PnlClt iftPn PnIO, ff/'n
Shape
in.« in.' ASD LRFD ASD : LRFD
W36X652I' • 192 144 • 5750; 8640 • '4680 7020
xsagh 156 117 . 4670; 7020 3800 : 5700
X487I' 143 107 .4280 6440 :;: '^480 i 5220
x441ii 130 97.5 3890 5850 3 :;3170 ; 4750
X395I1 116 87.0 - .3470 5220 2830 4240
X3611 106 79.5 3170 ; 4770 ,2580^ 3880
x330 96.9 72.7 2900, 4360 ':2360 - 3540
x302 89.0 66.8 ,2660 4010 . 2170 ;/. 3260
x282 82.9 62.2 2480 i 3730 '2020, '3030
x262 : 77.2 57.9 2310 i , 3470 1880 ; 2820
x247 72.5 54.4 2170: 3260 1770 ; 2650
x231 68.2 51.2 2040; .3070 1660 •: 2500
W36X256 75.3 56.5 2250: 3390 1840 i 2750
x232 68.0 51.0 <-2040 3060 . ~1660: 2490
x210 61.9 46.4 1850 2790 1510 i,, : 2260
x194 57.0 42.8 1710: . 2570 1390 : ;. 2090
x182 53,6 40.2 .1600 2410 .,1310 ; 1960
x170 50.0 37.5 1500: 2250 1220 1830
x160 47.0 35.3 , 1410; 2120 1150 1720
x150 44.3 33.2 . 1330; 1990 1080' 1620
x135 39.9 29.9 1190 1800 972; 1460
1^33x387^ 114 85.5 3410 ; . 5130 ^ 2780:; 4170
X35411 104 78.0 3110 4680 • 2540 ' 3800
x318 93.7 70.3 2810 4220 2280 3430
x291 85.6 64.2 2560 3850 2090 . 3130
x263 77.4 58.1 2320 3480 ' 1890 ; 2830
x241 71.1 53.3 2130 3200 <1730 2600
x221 65.3 49.0 1960 2940 1590; 2390
x201 59.1 44.3 1770 2660 1440 ;
1
2160
Limtt State
Yielding
Rupture
ASD,
£2,= 1.67
£2,= 2.00
LRFD
= 0.90
$,=0.75
'' Flange thickness is greater than 2 in. Spcclal requirements may apply per AISG.
Specfficafibn Section A3.1C. •
Note: Tensile rupture on the effective net area will control over tensile yielding ori the
gross area unless the tension member is selected so that an end connection can he
configured with/le s 0:923/lp.
AMERICAN INSTMRRE OF STEEL GONSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES 5-7
Table 5-1 (continued)
Fy = 50 ksi Available Strength in
Fa = 65 ksi Axial Tension
W-Sliapes W33-W27
Shape
Gross Area,
A
0.754g
Yielding Rupture
Shape
Gross Area,
A
0.754g
l<ips Icips
Shape
Gross Area,
A
0.754g
Pn/iit iftPB PMt •tn/".
Shape
in.' in.' ASD LRFD ASO LRFD
W33X169 49.5 37.1 1480 2230 ,1210; . 1810
x152 44.9 33.7 1340 2020 1100 1640
x141 41.5 31.1 / 1240 1870 1010 1520
x130 38.3 • 28,7 ' 1150 1720 933 1400
x118 34.7 26.0 1040 1560 845 : 1270
waoxagi" 115 86,3 3440 5180 .2800 ' 4210
xSS?" 105 78.8 . 3140 4730 • <2560 :: 3840
X326H 95.9 71.9 .2870 4320 . 2340i 3510
x292 86.0 64.5 2570 3870 21Q0 , 3140
x261 77.0 57.8 5310 3470 1880^ 2820
x235 : 69.3 52.0 2070 ' 3120 1690 2540
x211 ; 62.3 46.7 1870 2800 .'..1520 ; 2280
x191 56.1 42.1 : , ,^1680 . 2520 : .. 1370 i 2050
x173 50.9 38.2 1520 2290 :;1240: 1860
W30x148 43.6 32.7 ''1310 1960 ::-ioeo 1 1590
x132 38.8 29.1 1160 1750 :: 946 i 1420
x124 36.5 27.4 ,,1090 1640 , 8 91 1340
x116 34.2 25.7 .'1020 1540 • 835. 1250
x108 31.7 23.8 949 1430 ••774) 1160
x99 29.0 21.8 868 1310 'i 709 1060
x90 26.3 19.7 787 1180 : . •••640; 960
W27x539h 159 119 4760 7160 3870 5800
X368I1 109 81,8 3230 4910 2660 3990
X336II 99.2 74,4 2970 4460 '2420 3630
X307H 90.2 67,7 2700 4060 2200 3300
x281 83.1 62,3 2490 3740 2020 3040 '
x258 76.1 57,1 2280 , 3420 1860 : 2780
x235 69.4 52,1 2080 3120 1690 ; 2540
x217 .63.9 47,9 1910 2880 1560 2340
x194 57.1 42.8 1710 2570 1390 : 2090
x178 52,5 39,4 1570 2360 1280 ^ 1920
x161 47.6 35,7 1430 2140 • 1160 1740
x146 43.2 32,4 ; 1290 1940 1050 1580
Limit State
Rupture
ASD .
1.67
fl,=2.00
LRFD
$,= 0.90
<ti,=0.75
Flange tfiickness is greater than Z in. Special requirements may apply per AISC
Specfaftbn Section A3.1C.
Note: Tensile nipture on the effective net area will control over tensile yielding on the
gross area,unless the tension member is selected so that an end connection can be
configured with/!«a 0.923/lj.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

5-8 DESIGN OF TENSION MEMBERS
W27-W21
Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes
Fy = 50 ks i
Fu = 65 ksi
Shape
Gross Area,
0.15Ag
Yielding Rupture
Shape
Gross Area,
0.15Ag
kips l(ips
Shape
Gross Area,
0.15Ag
i>tPn Pn/"/
Shape
in.' in.' , ASD LRFD ASD LRFD
W27X129 37.8 28.4 :rtM130; 1700 923 .1380
x114 33.6 25.2 if :?1010.' 1510 819 1230
x102 30.0 22.5 1350 731 ' 1100
x94 27.6 20.7 . 826 1240 673 1010
x84 24.7 18.5 740 1110 . 5.601 i 902
W24X370'' 109 81.8 3260 4910 2660 ' 3990
xsasii 98.3 73.7 if-2940 4420 2400 3590
X306'' 89.7 67.3 4040 2190 3280
X279I1 81.9 61.4 V .2450 3690 2990
x250 . 73.5 55.1 2200 3310 1790 2690
x229 67.2 50.4 3020 1640 : 2460
x207 ::fi0.7 45.5 1820 2730 I yi480 ; . 2220
x192 - 56.5 42,4 1690 2540 1380.i 2070
x176 • 51.7 38.8 1550 2330 1260 . 1890
x162 47.8 35.9 1430 2150 . -.1170 • 1750
x146 43.0 32.3 1290 1940 1050 1570
x131 38.6 29.0 . 1160 1740 '\V943i 1410
x117 34.4 25.8 1030 .1550 839 1260
x104 30.7 23.0 919^ 1380 1120
W24X103 30.3 22.7 907 .1360 738:! 1110
x94 27.7 20.8 - : 829'i 1250 ;.*676! 1010
x84 24.7 18.5 . 740 : 1110 601 902
x76 22.4 16.8 : -.671: 1010 546 819
x68 20.1 15.1 .602 905 491 736
W24x62 18.2 13.7 : 545. 819 445.: 668
x55 16.2 12.2 ^ 485 729 397; 595
W21X201 59.3 44.5 1780. 2670 2170
x182 53.6 40.2 :. , ;i600 2410 1310 1960
x166 48.8 36.6 ' 1460 2200 1190 1780
x147 43.2 32.4 ; . '1290 1940 1050: 1580
x132 38.8 29.1 , 1160 1750 946 1420
x122 35.9 26.9 : ' 1070 1620 , 874 : 1310
xlll 32.6 24.5 976 1470 796 1190
x101 29.8 22.4 892 1340 728. 1090
Limn state
Yielding
Rupture
ASD
£J, = 1.67
n,=2.00
LRFD
(|),= 0,90
(|),=0.75
n Flange thickness is greater than 2 in. Special requirements may apply; per AiSC
Specificaffon Section A3.1 c.
Note: Tensile rupture on the effective net area will control over tensile yielding oii the
gross area unless the tension member is selected so that an end connection can be
configured with/le> 0.923,4g.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES 5-9
Fy = 50 ksi
Fu = 65 ksi
Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes W21-W18
Shape
Gross Area,
, A,
Ae"
0.75Ag
Yielding Rupture
Shape
Gross Area,
, A,
Ae"
0.75Ag
kips kips
Shape
Gross Area,
, A,
Ae"
0.75Ag
p„ia, iflPn Pnia, ^tPi,
Shape
in.' in.' ASD LRFD ASD LRFD
WZ1x93 27.3 . 20.5 817 1230 666 999
x83 24.4 18.3 - 731 1100 595 892
x73 . 21.5 16.1 • 644 968 523 785
x68 20.0 • 15.0 599 900 488 731
x62 18.3 13.7 548 : 824 445 668
x55 16.2 12.2 485 729 397 595
x48 ; 14.1 10.6 422 635 345 517
W21X57 16.7 12.5 • 500 752 406 609
x50 14.7 11.0 440 662 358 536
x44 13.0 9.75 389 585 ; , 317
475
W18X311'' 91,6 68,7 2740 4120 - • 2230 3350
X283'' . 83.3 62.5 2490 3750 2030 3050
X258'' 76.0 57.0 2280 .3420 1850 2780
X234I' 68.6 51.5 2050 3090 T670 2510
x211 62.3 46.7 1870 ,2800 ; 1520 ; 2280
x192 56.2 42.2 1680 2530 1370 2060
x175 51.4 38.6 1540 2310 1250 1880,
x158 46.3 34.7 1390 2080 1130 1690
x143 42.0 31.5 „ 1260 1890 1020 1540
x130 38.3 28.7 . 1150 1720 933 1400
x119 : 35.1 26.3 1050 1580 . 855 1280
x106 : 31.1 23.3 ; 931 1400 757 1140
x97 28.5 21.4 ,853 1280 696 1040
x86 25.3 19.0 , 757 1140 . 618 926
x76 22.3 16.7 668 1000 543 814
W18x71 20.9 15.7 626 941 510 765
x65 19.1 14.3 . 572 860 465 697 ,
x60 17.6 13.2 • 527 792 429 644
x55 16.2 12.2 485 729 397 595
x50 14.7 11.0 - 440 662 358 536
W18x46 13.5 10.1 404. 608 328 492
x40 11.8 8.85 353 531 ' 288! 431
x35 10,3 7.73 308 464 251 ; 377
Umtt State
Yielding
Rupture
ASD
«,= 2.00
LRFO
4;= 0.90
<1>(=0.75
Bange thickness is greater than 2 in. Special requirements may apply per AISC
Specification Section KiAc.
Note: Tensile rupture on the effective net area will control over tensile yielding oh the
gross area unless the tension member is selected so that an end connection can be
configured with2 O.923/I9.
AMERICAN INSTiTuTE OF STEEL CONSTRUCTION

5-10 DESIGN OF TENSION MEMBERS
W16-W14
Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes
Fy = 50 ksi
Fu = 65ksi
Shape
Gross Area,
A
0.75/lj
Yielding Rupture
Shape
Gross Area,
A
0.75/lj
kips kips
Shape
Gross Area,
A
0.75/lj
Pn/Qt
Shape
in.' in.' Aso UIFD ASD LRFD
W16X100 • : r 29.4 22.1 880' 1320 718 -1080
x89 26.2 19.7 . ^ 784 1180 640 960
x77 22.6 17.0 > • 677 1020 553 829
x67 19.6 14,7 • . 587 882 478. 717
W16X57 . : 16.8; 12.6 503 756 410 614
x50 , 14.7 11.0 440' 662 358 536
x45 13.3 9,98 398 599 324 487
x40 11.8 8.85 353 531 288 431
x36 10.6 7.95 317 477 ' • 258 388
W16x31 9.13 6.85 273 411 223 334
x26 7.68 5.76 ' 230 346 187, ' 281
W14x730" 215 161 "6440 9680 • 5230 7850
xses" 196 147 . 5870 8820 4780 7170
, xBOS" 178 134 5330 8010 • , - 4360 6530
xSSO" 162 122 4850 .7290 - 3970 • 5950
xSOOi" .147 110 4400 6620 ' 3580 ; 5360
x455h 134 101 ' • 4010 6030 '3280 4920
x426t' 125 93.8 .3740 5630 . 3050 4570
X398'' 117 87.8 _3500 . 5270 2850 4280
X370I' 109 81.8 3260 4910 2660 3990
X342'' : ;1oi 75.8 3020 4550 '5460 3700
x311h 91.4 68.6 2740 4110 2230 3340
X283'' 83.3 62.5 :: 2490 3750 :2030 3050
x257 75.6 56.7 2260' 3400 1840 2760
x233 68.5 51.4 2050 3080 1670 2510
x211 62.0 46.5 1860 2790 1510 2270
x193 56.8 42.6 1700 2560 1380 2080
x176 51.8 38.9 1550 2330 " • 1260 1900
x159 46.7 35.0 1400 2100 ---1140 1710
x145 - 42.7 32.0 1280 1920 1040 1560
i •
Umit state
Rupture
ASD.
fir=1.67
n(=2.00
LRFD
0,- 0.90
4),-0.75
ti Rlange thic)<ness is greater than 2 in.'Special requirements may ajSply. per AiSC
Specification SecimMM.
Note; Tensile ruptureiOn the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with 0:9234,
AMERICAN INSTITUTE OF STEEL GONSTRUGTION

STEEL TENSION MEMBER SELECTION TABLES S-11
Fy = 50 ksi
Fu = 65 ksi
Table 6-1 (continued)
Available Strength in
Axial Tension
W-Shapes W14-W12
Shape
Gross Area,
0.75/lj
Yielding Rupture
Shape
Gross Area,
0.75/lj
l(ips l(ips
Shape
Gross Area,
0.75/lj
ffl/n, <t>(/'» PJCit
Shape
in.' in.' ASD LRFD ASD LRFD
W14x132 , 38,8 29.1 1160 i 1750 . 946 i , 1420
x120 . 35.3 26.5 ^ 1060' 1590 861 1290
x109 , 32.0 24.0 958 1440 , 780 1170
x99 29.1 - 21.8 871 ' 1310 " , 709 ; 1060
x90 26,5 19.9 • 793 1190 ; 647!
•• i .
970
Vl/14x82 24.0 18,0 • -.,719: 1080 585: 878
x74 21.8 16,4 . 653 981 533; 800
x68 20.0 15,0 .599: 900 488 i 731
x61 17.9 13,4 536: 806 436: 653
W14X53 15.6 11.7 702 380; 570
x48 14.1 10.6 422; 635 ' 345 i 517
x43 12.6 9.45 377; 567 307 461
W14X38 11.2 8.40 335 ' 504 . ., 273 410
x34 10.0 7.50 . 299' 450 . 244 366
x30 8.85: 6,64
., 265;
398 216' 324
W14X26 • 7.69 5.77. ' 230; 346 188: • 281
x22 6.49 4,87: •194; 292 • 158: 237
W12x336'' ; 98.9 74.2 ' 2960' 4450 '2410 • • 3620
xSOSh 89.5 67.1 ':2680 4030 '2180 ; 3270
X279I' 81.9 61,4 2450 3690 2000 ; 2990
x252h ,74.1 55,6 2220; ' 3330 1810: 2710
X230'' 67.7 50,8 2030 3050 ; 1650; 2480
x210 61.8 46,4 • 1850 2780 1510; 2260
x190 56.0 42,0 1680 2520 1370 2050
x170 50.0 37,5 ,1500 2250 ; 1220 1830
x152 44.7 33,5 1340 2010 1090 1630
x136 39.9 29.9 1190 1800 972 1460
x120 35.2 • 26.4 1050 1580 • 858! 1290
x106 31.2 23.4 • 934 1400 • 751 : 1140
x96 28.2 21,2 844 1270 689 1030
x87 25.6 19.2 766 1150 624 936
x79 23.2 17,4 695 1040 566 848
x72 21.1 15,8 632 950 514, 770
x65 19.1 14,3 572 860 465! ; 697
Umit State
Rupture
ASD-
£2,= 1.67
£2,=2.00
LRFD
<|),=0.90
<|),=0.75
Flange thickness is greater tlian 2 in. Special requirements may apply per AISC
Spec/fetonSecfionA3,1c.
Note: Tensile mpture on the effective net area will control over tensile yielding on tfie
gross area unless the tension memfier is selected so that an end connection can be
configured with Ag > QWAg.
"X
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

5-12 DESIGN OF TENSION MEMBERS
W12-W10
Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes
Fy = 50 ksi
Fa = 65 ksi
Limit state
Yielding
Ruiiture
ASD
n(=2J)o
LRFD
It),=0.90
0.75
Shape
Gross Area,
A,
4,=
0.75/lj
Yielding Rupture
Shape
Gross Area,
A,
4,=
0.75/lj
kips kips
Shape
Gross Area,
A,
4,=
0.75/lj
Pnl0.t i>tPn Pnia, ^tPn
Shape
in.' In.' ASD LRFD ASD LRFD
W12X58 17.0 12.8 a'-509 . 765 416 624
x53 15,6 11.7 ' 702 380 570
W12x50 14.6 11.0 437 657 358 536
x45 13.1 9.83 392 590 319 479
x40 11.7 8.78 ' 350

527 285 428
W12x35 10.3 7.73 308 ' 464 " 251 377
x30 8.79 6.59 1263 396 214 321
x26 7.65 5.74 344 187 280
W12x22 6.48 4.86 .„,J94 292 158 237
x19 5.57 4.18 ::'i67 251 136 204
x16 4.71 3.53 -141 212 115 172
x14 4.16 3.12 125 187, ' 101 152
W10X112 32.9 24.7 .985 1480 803 1200
xlOO 29.3 22.0 ;;::'877 1320 715 1070
x88 26.0 19,5 778 1170 634 951
x77 22.7 17.0 680 1020 ,"553 829
x68 19.9 14.9 V 596 896 , ' 484 726
x60 17.7 13.3 ....530,,, 797 432 648
x54 15.8 11.9
. -473
711 387 580
x49 14.4 10.8 648 . ,351 527
W10x45 13.3 9.98 398 599 •324 487
x39 11.5 8.63 518 280
1
421
x33 9.71 7.28 291 437 237 355
W10x30 8.84 6.63 265 398 215 323
x26 7.61 5.71 228 342 186 278
x22 6.49 4.87 292 ' 158 237
W10x19 5.62 4.22 253 c137 206
x17 4.99 3.74 t'";i49'v 225 '122 182
x15 4.41 3.31 132 198 108 161
x12 3.54 2.66 106 159 86.5
(
130
Note: Tensile rupture on the effective net area will control over tensile yielding on tlie
gross area unless the tension member is selected so that an end connection can be
configured with > 0.923;';j.'
AMERICAN iNSrrrUTE OF STEEL CONSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES 5-13
Table 5-1 (continued)
Fy = 50 ksi Available Strength in
Fa = 65 ksi Axial Tension
W-Shapes
Shape
W8x67
x58
x48
x40
x35
x31
W8X28
x24
W8x21
x18
W8x15
x13
xlO
W8
Umit State
Rupture
Gross Area,
in.'
19.7
17.1
.14.1 :
11.7
10.3
9.13
8.25
: 7.08
6.16
5.26
4.44
3.84
2.96
ASD LRFO
<|)(=0.90
^,=0.75
0.75>!|j
in.^
14.8
12.8
10.6
8.78
7.73
6.85
6.19
5.31
4.62
3.95
3.33
2.88
2.22
Yielding
ASD
590
512
422
350
308
273
247
212
184
157
133
<115
LRFD
887
770
635
527
464
411
371
319
277
237
200
173
133
Rupture
kips
Pnl0.t
ASD
481
416
345
285
251
223
201 I
173
150
128
"108
93.6
72.2
LRFD
722
624
517
428
377
334
302
259
225
193
162
140
108
I
I
Note: Tensile rapture on the efiective net area v)il| control OMW tensile yieWing on the
gross area unless the tension member Is selected so that an end connection can be
configured with > 0.923;';j.
AMERICAN INSTITUTB OF STEEL CONSTOUCTION

5-14
DESIGN OF TENSION MEMBERS
L8-L6
Table 5-2
Available Strength in
Axial Tension
Angles
Fy = 36 ks
Fu = 58ksi
Shape
Gross Area,
0.75Ag
Welding Rupture
Shape
Gross Area,
0.75Ag
kips kips
Shape
Gross Area,
0.75Ag
<t>f/'i. ^tPa
Shape
in.' in.' ASO LRFD ASD , LRi^}
LSxSxiVa 16.8 12.6 • 362 544 - 365 1 548
XL 15.1 11.3 326 489 328 i 492
13.3 9.98 •287 ,431 . 289 ; 434
11.5 8.63 .248 : 373 , ; 250 375
9.69 7.27 •--209 314 ' 211 ' 316
xVw ; 8.77 6.58 189 284 191 i 286
xVl 7.84 5.88 169 254 171 ; 256
L8x6x1 13.1 9.83 . 282 424 > 285 i 428
xVs 11.5 8.63 248 i 373 250 i : 375
x% 9.99 7.49 215 . ,324 '217 ; •326
xVs 8.41 6.31 181 . 272 '183 , 274
xfi/i6 :> 7.61 5.71 164 247 166 i 248
xVz 6.80 5.10 147 220 148 i 222
xVl6 ; 5.99 4.49 129 194 M30 i 195
L8x4x1 11.1 8.33 239 : 360 242 : 362
9.79 7.34 211 ; 317 213 ' 319
8.49 6.37 "183 : 275 185 277
xVs 7,16 5.37 154 i 232 156 i 234
X'/16 6.49 4.87 140 ! 210 141 i 212
xVt 5.80 4.35 125 188 •126 i. 189
5.11 3.83 110 ! 166 .111 j 167
L7X4XV4 7.74 5.81 167 251 168 i 253
X5/8 6.50 4.88 140 211 142 212
xVz 5.26 3.95 113 170 115 172
xVl6 4.63 3.47 99,8' 150 101 ; 151
xVs 4.00 3.00 86.2 130 87.0: 131
L6x6x1 11.0 8,25 237 : 356 239 ! 359
x% 9.75 7.31 210 316 .212 ^ 318
xV4 8.46 6.35 182 274 184 i 276
xVe 7.13 5.35 154 i 231 155 ; 233
x'/tt 6.45 4.84 139 209 140 : 211
xVz 5.77 4.33 124 187 126 188
X'/16 5.08 3.81 110 ; 165 110 166
x% 4.38 3.29 94.4 142 , 95.4 143
xVie 3.67 2.75 79.1 119 79.8.; 120
Limit state
Yielding
Rupture
rmr
Q,= 1.67
n,= 2.00
LRFD
ij),= 0.90
Note: Isnslle fuphire on the effective net area will control over tenaie^ielding on the
gross area unless the tension member is selected so that an wd connecSon can be
configured with 4e>0.745j4j., • ' /
(t)(=0.75
AMERICAN iNsrrruTE OF STEEL CONSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES 5-15
Fy = 36ksi
Fu ~ 58 ksi
Table 5-2 (continued)
Available Strength in
Axial Tension
Angles
L6-L5
Shape
Gross Area,
Ag OJSAg
Yielding Rupture
Shape
Gross Area,
Ag OJSAg
l(i|)s kips
Shape
Gross Area,
Ag OJSAg
vn, txPfl Pn'Ht
Shape
in.' in.' ASO LRFD , ASD LRFD
L6x4x% 8.00 6.00 •172 ' 259 174 261
X3/4 6.94 5.21 225 151 : 227
5.86 4.40 126 190 128 191
X9/I6 5.31 • 3.98 114 ^ 172 ;i; H5 ! 173
XV2 4.75 3.56 102 154 , 103 155
4,18 3.14 90.1 135 a;- s 91.1 ' 137
x% , 3.61 2.71 • 77.8 117 78.6 118
X5/I6 3.03 2.27 65.3' 98.2 65.8 i 98.7
L6X3V2XV2 4.50 3.38 . 97.0 146 ^ 98.0 147
X3/6 3.44 2.58' 74.2 111 74.8 112
X5/I6 2.89 2.17 • 62.3 93.6 62.9 94.4
L5x5x% : 8.00 6.00 • 172 . 259
j
174 261
X3/4 6.98 5.24 150 ; 226 152, 228
, xVa . 5.90 4.43 127 ^ 191 128 193
xVz : 4.79 3.59 103 i 155 104 156
xVl6 : 4.22 3.17 . 91.0i 137 • 91.9 138
xVe 3.65 2.74 78.7 • 118 79.5 119.
xS/l6 3.07 2.30 66.2 99.5 • 66.7 100
L5X3VZXV4 5.85 4.39 126 190 127 . 191
xVs ; 4.93 3.70 • 106 ' 160 , 107 161
xVs , 4.00 3.00 ••• 86.2: 130 87.0 131
X3/8 3.05 2.29 65.7 98,8 66.4 99.6
XVL6 2.56 1.92 55.2 82.9 55.7 83.5
XV4 2.07 1.55 ' " 44.6; 67.1 45.0 67.4
L5X3XV2 3.75 2,81 : 80.8 122 81.5 122
xVK 3.31 2.48 .. 71.4 107 • 71.9 108
X3/8 2.86 2.15 61.7 92.7 62.4 93.5
X5/I6 2.41 1.81 52,0, 78,1 : 52.5 i 78.7
XV4 1.94 1.46 41,8 62,9 42.3; 63.5
Umit State
Rupture
ASO
Q,= 1.67
Q,= 2.00
LRFD
•,= 0.90
Note: Tensile rupture on the effecBve net area will control over tensile yielding on tlie
gross area unless the tension: member is selected so that an end connection can be
configured witti ;IE > 0.745A,.
•,=0.75
AMERICAN INSTiTuTE OF STEEL CONSTRUCTION

5-16
DESIGN OF TENSION MEMBER5
L4-L3V2
Table 5-2 (continued)
Available Strength in
Axial Tension
Angles
Fy = 36 ksi
Fu = 58 ksi
Siiape
Gross Area,
Ag 0.75/1,
Yielding Rupture
Siiape
Gross Area,
Ag 0.75/1,
icips l(ips
Siiape
Gross Area,
Ag 0.75/1,
PnlCl, ftPn
Siiape
in.' in.' ASO LRFD ASO LRFD
UX4X'/4 5.44 4.08 117 176 .-'118
177
XVA , . 4.61 3.46 99.4 149 100 151
XV2 ' 3.75 2.81 80.8 122 81.5 122
xVn 3.30 2.48 71.1 107 71.9 108
x3/a 2.86 2.15 61.7 92.7 62.4 93.5
xVw 2.40 1.80 51.7 77.8 52.2 78.3
x'A 1.93 1.45: 41.6 62.5 42.1 63,1
L4x3y2xV2 3.50 2.63 ^ 75.4 113 76.3 114
x% 2.68 2.01 57.8 86.8 58.3 ZlA
xVie 2.25 1.69 48.5; 72.9 49.0 73,5
xV4 1,82 1.37 39.2: 59.0 39.7 59,6
L4X3XV8 3,99 2.99 86.0 129 86.7 130
xVz 3.25 2.44. 70.1 105 ' 70.8 106
x%: 2.49 1.87 ; 53.7 80.7 54.2 81.3
XVIFI 2.09 1.57 ; ' 45.1 67.7 45.5 68,3
XV4 — 1.69 1.27 •0 . i. 36.4; 54.8 36.8 55.2
L3VSX3VJXV2 3.25 2.44 . 70.1 105 . 70.8
106
X'/16 2.89 2.17 62.3 93.6 62.9 94.4
X3/8 2.50 1.88 53.9 81.0 54.5 81,8
X5/I6 2.10 1.58 : ^45.3. 68.0 - 45.8 68.7
XV4 1.70 1.28 36.6 55.1 37.1 55.7
L3V2X3XV2 3.02 2.27 65.1! 97.8 65.8 98.7
xVK 2.67 2.00 ,, 57.6 86.5 58.0 87,0
XVB, 2.32 1.74 50.0 75.2 50.5 75,7
xVl6 1.95 1.46 ' 42.0 63.2 42.3 63,5
xV4 1.58 1.19 34.1 51.2 . 34.5 51,8
L3V2X2V2XV2 2.77 2.08 . 59.7; 89.7 60.3 90,5
xVe 2.12 1.59 45.7 68.7 46.1 69,2
xVl6 1.79 1.34 38.6 58.0 38.9 58,3
xV4 1.45 1.09 31.3 47.0 31.6 47.4
Limit state
rielding
Rupture
ASO LRFO
$,= 0.90
Note: Tensile rupture on the effective net area will control over tensile yielding on tlie
gross area unless the tension member Is selected so that an end connection can be
configured with/LE a 0.745/LG.
$,=0.75
AMERICAK INSTITUTE OF STEEL CONSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES 5-17
Fy = 36 ksi
Fu = 58 ksi
Table 5-2 (continued)
Available Strength in
Axial Tension
Angles
L3-L2
Shape
Gross Area,
0.75/1,
Yielding Rupture
Shape
Gross Area,
0.75/1,
kips kips
Shape
Gross Area,
0.75/1,
PJQt PnlO.,
Shape
w in.' ASD LRFO ASD : LRFD
L3X3XV2 2.76; 2.07 59.5 89.4 60.0; 90.0
xVw : 2.43 1.82 52.4 78.7 >52.8 79,2
2.11 1.58 ~ .45.5 68.4 45.8: 68,7
X5/16 • 1.78 1.34 38.4 57.7 38.9: 58,3
XV4 1.44 1.08 ,31.0 46.7 ,31.3 47,0
, X3/I6 1.09 0.818 23.5 35.3 : 23.7! 35.6
L3X2V2XV2 :> 2.50. 1.88- 53.9 81.0; 54.5 j 81.8
??? 1.67 47.9 71.9 •: ,48.4! 72.6
1.93 1.45 41.6 62.5 , : 42.1 ! 63.1
X5/16 .1.63 1.22 35.1 . 52.8 35.4 , 53.1
xVi 1.32 0.990 28.5 42.8 28.7 43,1
X3/I6 1.00 0.750 21.6 32.4 21.8. 32,6
L3X2XV2 2.26 1.70 48.7 73,2 49.3' : 74.0
>?k , 1.75 1.31 37.7 56.7 38.0 . 57.0
X5/I6 1.48 1.11 • , 31.9 48,0 • 32.2 48.3
xV4 1.20 0.900 "25.9 , 38,9 26.1 : 39.2
.x3/ie 0.917 0.688 , 19.8 29.7 , • 20.0! • ^ 29.9
L2V2X2V2XV2 2.26 1.70 48.7 73.2 49.3 : ' 74,0
>?k 1.73 1.30 37.3 56.1 37.7; 56,6
X5/I6 1.46 1.10 31.5 47.3 - 31.9! 47.9
x'A , 1.19 0.893 25.7 38.6 ;25.9> 38,8
xVl6 0.901 0.676 19.4 ; , 29.2 19.6: 29,4
L2V2X2X3/8 1.55 1.16 ' 33.4 50.2 33.6 - 50,5
xVl6 1.32 0.990 28.5 42.8 ,28.7: ,43,1
xV4 1.07 0.803 23.1 34.7 23.3; 34,9
xVl6 0.818 0.614 :17.6 26.5 17.8 26,7
UV2X1V2XV4 0.947 0.710 20.4^ 30,7 20.61 30,9
X%6 0.724 0.543 15.6 23.5 15.7^ 23,6
L2X2X3/8 1.37 1,03 29.5 44.4 29.9; 44,8
xVl6 1.16 0.870 25.0 , 37.6 25.2' 37,8
xV4 0.944 0.708 20.3 30.6 20.5; 30,8
X3/I6 0.722 0.542 15.6 ; 23.4 15.5: 23,6
xVe 0.491 0.368 10.6 15.9 10.7: 16.0
Umit State
Yielding
Rupture
ASO
ri,=2.oo
LRFO
<|>(=0.90
Note; Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with S 0.745/1^.
$(=075
AMERICAN INSTMrre OF STEEL CONSTRUCTION

5-18
DESIGN OF TENSION MEMBERS
WT22-WT20
Table 5-3
Available Strength in
Axial Tension
WT-Shapes
Fy = 50 ksi
F„ = 65 ksi
Shape
Gross Area, /le =
0.75/Ig
Yielding Rupture
Shape
Gross Area, /le =
0.75/Ig
i(ips l(ips
Shape
Gross Area, /le =
0.75/Ig
fnl^x Pfl/a,
Shape
in.' in." ASD LRFD ASO LfiFD
WT22x167.5 ,49.2 36.9 1470 2210 1200 ; 1800
x145 .42.6 32.0 .1280 1920 ' . 1040 1560
x131 : 38.5 28.9 . 1150 ' 1730 939 ' ,1410
x115 33.9 25.4 1- 1010 • 1530 826 I 1240
WT20X296.5I' 87.2 65.4 2610 3920 2130 j 3190
x251.5h 74.0 55.5 • 2220\ . 3330 1800 i 2710
X215.5I' 63.3 47.5 1900 2850 1540 ^ 2320
xigs.s" 58.3 43.7 1750 ^ 2620 1420 2130
xise" ; 54.7 41.0 1640 ^ 2460 1330 • 2000
X181'' 53.2 39.9 1590 : 2390 1300 1950
x162 47.7 35.8 1430 , 2150 • 1160 ; 1750
X148.5 43.6 32.7 1310 : 1960 1060 ; 1590
X138.5 40.7 30.5 1220 1830 , 991 1490
X124.5 36.7 27.5 1100 ; 1650 894 : r ; 1340
X107.5 31.8 23.9 . 952 • 1430 • 777 ; 1170
X99.5 29.2 21.9 -874 ; 1310 712 j 1070
WT20X1961 57.8 43.4 : 1730 2600 , 1410 : 2120
x165.51' 48.8 36.6 1460 ^ 2200 1190 ; , 1780
x163.51' .47.9 35.9 . 1430.; 2160 1170 ^ 1750
x147 43.1 32.3 1290 i 1940 1050 1570
XI39 41.0 30.8 t230 1850 1000 1500
x132 38.7 29.0 :T160 1740 -943 1410
X117.5 34.6 26.0 'i040 1560 ^ 845 ^ 1270
X105.5 -31.1 23.3 ,931 1400 757 1140
X91.5 26.7 20.0 , 799 1200 650 975
x83,5 • 24.5 18.4 ; .734 1100 598 897
X74.5 21.9 16.4 656 ' 986 ,533 800
Umit state
Yielding
Rupture
ASD
fi,= 1.67
Of =2.00
LRFD
4),=0.75
1 Flange tfiickness is greater l}ian 2 in. Special requirements may apply per AISC
Spscfficato Section A3:1c.
Note: Tensile rupture on the effective net area will control over tefislle yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with .4s a 0,9234p.
AMERICAN INSTMRRE OF STEEL CONSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES 5-19
Fy = 50 ksi
Fu - 65 ksi
Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
WT18-WT16.5
Shape
Gross Area,
in.'
0.75/l(,
in.'
Yielding
Pn'S^t
ASD
H/tPn
LRFD
Rupture
k\ps
Pn'iil
ASO LRFD
WT18x326"
X264.5''
xZ43.5i>
X220.5I'
X197.5''
X180.5''
x165
x151
x141
x131
X123.5
X115.5
Vm8x128
x116
x105
x97
x91
x85
x80
x75
X67.5
WT16.5x193.51'
xU?"'
x159
X145.5
x131,5
X120.5
xno.5
xlOO.5
96.2
77.8
71.7
64.9
58.1
53.0
48.4
41.5
38.5
36.3
34.1
37.6
34.0
30.9
28.5
26.8
15.0
,23.5
22.1
19.9
57.0
52.1
46.8
42.8
38.7
35.6
32.6
'29.7
72.2
58.4
53.8
48.7
43.6
39.8
36.3
33.4
31.1
28.9
27.2
25.6
28.2
25.5
23.2
21.4
20.1
18.8
17.6
16.6
14.9
42.8
39.1
35.1
32.1
29.0
26.7
24.5
22.3
•-.-2880
2330
2150
. 1940
1740
1590
1450
1330
1240
1150
1090
1020
1130
1020
925
853
" 802
749
. .704
, 662
^ :.596
1710
X560
1400
1280
1160
1Q70
976
889
4330
3500
3230
2920
2610
2390
2180
2000
1870
1730
1630
1530
1690
1530
1390
1280
1210
1130
1060
995
896
2570
2340
2110
1930
1740
1600
1470
1340
2350
'1900
1750
1580
1420
1290
1180
,1090
,1010
939
884
'832
917
.829
754
,696
, 653
"611
572
S40
,484
1390
1270
1140
1040
943
868
. 796
725
3520
2850
2620
2370
2130
1940,
1770
1630
1520
1410
1330
1250
1370
1240
1130
1040
980
917
858
809
726
2090,
1910
1710
1560
1410
1300
1190
1090
Umit State
Yielding
Rupture
ASD J~LRFD^
n,=2.00
It),= 0.90
i,=0.75
Flange thickness is greater than 2 in. Special requirements may apply per AISC
Spec/feato Section A3.1c. I
Note: Tensile rupture on the effective net area will control over tensile yielding on the
grass area unless the tension member is selected so that an end connection can be
configured with/I, > 0.923>1,.
AMERICAN INSTMrre OF STEEL CONSTRUCTION

5-20
DESIGN OF TENSION MEMBERS
WT16.5-WT13.5
Table 5-3 (continued)
Available Strength in
Axial Tension
WT'Shapes
Fy = 50 ksi
Fu = 65 ksi
Sliape
Gross Area,
Ag O.T5Ag
Yielding Rupture
Sliape
Gross Area,
Ag O.T5Ag
iiips l(ips
Sliape
Gross Area,
Ag O.T5Ag
<t)jPfl PnlQt 'PtPn
Sliape
in.' in.' ASD LRFD ASO LRFD
WT16.5x84.5 24.7 18.5 r- 7S0 1110 601 902
x76 22.5 16.9 674 1.010 ^ 549 824
X70.5 20.7 15.5 :,620 ^932 S04 .756
x65 19.1 14.3 572 860 465 •697
x59 17.4 13.1 • 521 783 426 639
WT15x195.5t' 57.6 43.2 1720 2590 1400 ' 2110
X178.5'' 52.5 39.4 ' 1570 2360 , .1280 1920
X163I' 4^0 . 36.0 "1440 2160 1170 ; 1760
x146 43.0 32.3 1290 1940 '1050 j 1570
X130.5 -38.5 28.9 1150 ; 1730 939 i 1410
X117.5 .34,7 26.0 1040 1S60 . 845 • 1270
X105.5 31.1 23.3 931 • 1400 757 ' 1140
X95.5 28,0 21.0 838 1260 : - 683 1020
x86,5 25.4 19.1 760 1140 !.€21 931
WT15x74 21.8 • 16.4 653 ' 981 800
x66 19.5 14.6 " 584 : 878 ^475 712
x62 18.2 13.7 . 545 : 819 , 445 i 668
x58 ^ , 17.1 12.8 • 512 770 ' '416 • 624
x54 15.9 11.9 476 716 ' :387 , 580
x49.5 14.5 10.9 : ' 434 i 653 \354 ! 531
x45 13.2 9.90 - 395 594 • -322 ' 483
WT13.5x269;5'' 79.3 59.5 •2370 . 3570 , l|30 2900
X184I' 54.2 40.7 1620 ' 2440 1320 1980
X168I' 49.5 37,1 1480 ^ 2230 ,1210 1810
xlSS.Sh 45.2 33.9 1350 2030 1100 1650
X140.5 41.5 31.1 1240 1870 1010 1520
x129 38.1 28.6 1140 1710 930 1390
X117.5 34.7 26.0 1,040 1560 .845 1270
X108.5 32.0 24.0 958 ' 1440 ' 780 i 1170
x97 28,6 21.5 856 • 1290 699
1050
x89 26.3 19.7 787 : 1180 640 ^ 960
X80.5 23,8 17.9 713 1070 582 873
x73 21,6 16.2 647 : 972 527 ,
f
• • :• • J •• ••
790
Limit State
Yielding
Rupture
ASD
£i, = 1.67
£i,= 2.00
LRFD
.t>(--=o.9q
If ( = 0.75
Flange thickness is greater tlian 2 In. Special requirements may apply per AISC
iiiwfetfoff Section A3.1 c.
Note: Tensile rupture on tiie effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with/U 2 0.923/lj. _____
AMERICAN INSTMRRE OF STEEL CONSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES S-2I
Table 5-3 (continued)
Fy 50 ksi Available Strength in
Fu = 65 ksi Axial Tension
WT-Shapes
WT13.5-WT10.5
Shape
Gross Area,
A, 0.75Ag
Yielding Rupture
Shape
Gross Area,
A, 0.75Ag
kips kips
Shape
Gross Area,
A, 0.75Ag
Pa'ilt Pn/Cl, <|)(P«
Shape
in.' in.' •ASD LRFD ASO : LRFD
WT13.5x64.5 18.9 14.2 . 566 851 • 462 ^ 692
x57 16.8 12.6 v503 ' 756 410 i 614
x51 15.0 ' 11.3 .449 ' 675 367 551
X47 ; 13.8 10.4 :413 621 338 i 507
x42 12.4 9.30 . 371 , 558 :r-302 i 453
WT12X185I' 54.5 40.9 1630 2450 1330 i 1990
x167:51' 49.1 36.8 1470 2210 1200 1 1790
X153I' 44.9 33.7 1340 2020 1100 ' 1640
X139.5'' 41.0 30.8 1230 1850 1000 1500
x125 36.8 27.6 1100 i 1660 ,897 i , 1350
X114.5 33.6 25.2 , .1010 i 1510 ,819 , 1230
X103.5 30.3 22.7 '" 907 i 1360 "'738 L:. 1110
x96 28.2 21.2 , 844 1270 689 : ' 1030
x88 25.8 19.4
, '772
1160 631 : 946
x81 23.9 17.9 716 1080 582 873
x73 21.5 16.1 644 ; 968 " ,523 s 785
x65.5 19.3 14.5 578 869 : ' • 707
X58.5 17.2 12.9 515 774 629
x52 15.3 11.5 458 689 .•' §374 ] 561
WT12X51.5 15.1 11.3 452 680 ;;J3367 j • 551
x47 13.8 10.4 413 621 338 ' 507
x42 : 12.4 9.30 371 558 (•302 ' 453
x38 11.2 8.40 335 504 . m 410
x34 10.0 7.50 299 . 450 V,5244 i 366
Wri2x31 9.11 6.83 273 410 222 333
X27.5 8.10 6.08 . 243 365 198 296
WTI 0.5x100.5 29.6 22.2 886 1330 t'tl^ I
1080
x91 26.8 20.1 802 1210 653 ' 980
x83 24.4 18.3 731 1100 892
X73.5 21.6 16.2 647 , 972 527 790
x66 19.4 14.6 •'581 ' 873 ^ .475 712
x61 17.9 13,4 536 806 436 653
X55.5 16.3 12.2 :'i488 734 397 595
X50.5 14.9 11.2 446 ;
1
671 364 i 546
Umit State
Yielding
Rupture
lASD
£1,= 1.67
£1,= 2.00
LRFD
())(=0.90
If,=0.75
ii Flange thickness is greater than 2 in. Special requirements may apply per AISC
Specification SecHanKAc.
Note: Tensile rupture on the effective net area will control over tensile yielding on ttiS
gross area unless the tension member is selected so ttiat an end connection can be
configured with/le> 0.923,4j, '
AMERICAN INSTRRUTE OF STEEL CONSTROCTION

5-22 DESIGN OF TENSION MEMBERS
WT10.5-WT9
Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
Fy = 50 ksi
fv - 65 ksi
Shape
Gross Area,
0.75/1,
Yielding Rupture
Shape
Gross Area,
0.75/1,
Idps kips
Shape
Gross Area,
0.75/1,
i/tPn P„/£lf
Shape
in.' in.' • ASO LRFD ASD 1 LRFD
WT10.5x46.5 13.7 10.3 •--.410 ; 617 •-.335 i 502 •
X41.5 12.2 9.15 365 ' 549 297 ' 446
X36.5 10.7 8.03 ' 320 ! 482 261 ! . 391
x34 10.0 7.50 299 450 244 j 366
x31 9.13 6.85 ' 273 I : 411 223 : 334
X27.5 8.10. 6.08 ZAZ ' 365 198 , 296
x24 .:;:7.07 5.30 ::J:2\2 318 •"172 258
WT10.5x28.5 8.37 6.28 - 251 : 377 >-'204 306
x25 • 7.36 5.52 220 • ^ 331 (179 269
x22 6.49 4.87 134 292 - 237
WT9X155.5'' 45.8 34.4 : 1370 2060 1120 1680
X141.5'' .. 41.7 31.3 ,J250 i 1880 ; 1020 i 1530
X129'' ' 38.0 28.5 1140 : 1710 926 1390
x117i' 34.3 25.7 11)30 1 1540 835 1250
X105.5 .31.2 23.4 .934 1400 ' 761 1140
x96 28.1 21.1 841 : 1260 , .686 i 1030
X87.5 25.7 19.3 , 769 1160 '627 , 941
x79 23.2 17.4 695 1040 ^ .566 1 848
X71.5 21.0 15.8 629 ! 945 514 : 770
x65 19.2 14.4 • S75 : 864 468 ! 702
X59.5 17.6 13.2 t527 ! 792 ~ 429 • 644
x53 15.6 11.7 467 ' 702 380 , 570
X48.5 14.2 10.7 .425 639 - 348 522
x43 12.7 9.53 380 572 . 310 , 465
x38 11.1 8.33 332 ^ 500 , . 271 i
• . i :
406
WT9X35.5 10.4 7.80 : 311 468 .254 ; 380
X32.5 . 9,55 7.16 V.286 430 233 349
x30 8.82 6.62 264 397 ->5 , 323
X27.5 8.10 6.08 243 , 365 198 296
x25 7.34 5.51 220 330 179 • 269
WT9x23 6.77 5.08 203 i 305 • ;165 . 248
x20 5.88 4.41 176 265 143 : 215
X17.5 5.15 3.86 . 154 ;
•• 1 '
232 125
{
188
Umit state
Yielding
Rupture
ASO
£21=1.67
n,=2.oo
LRFD
If,=0.75
1 Flange thickness is greater than 2 in. Special requirements iriay appjy per AISC
Specfcton Section A3,1 c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gfoss area unless the tension member is selected so that an end connection can be
configured with 0.923.45. ^ ^
I' 1 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES 5-23
Fy = 50 ksi
Fu = 65 ksi
Table 6-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
VVT8-WT7
Shape
Gross Area,
A, 0.75/1,
Yielding Rupture
Shape
Gross Area,
A, 0.75/1,
Mps kips
Shape
Gross Area,
A, 0.75/1,
Pn'ilt PnlClt inPn
Shape
• in.^ in.« /ASO LRFD -ASD LRFD
WT8x50 14.7 11.0 : .. 440 662 358 536
X44.5 13.1 9.83 . .392 590 ,319 ^ 479
X38.5 11.3 8.48: 338 509 276 413
X33.5 9.81 .7.36 '294 441 239 ' 359
WTBX28.5 '8.39 6.29 251 ; 378 204 307
x25 7.37 • 5.53 221 : 332 180 270
X22.5 ^•6.63 4.97 199 298 162 242
x20 • 5.89 : 4.42 176 265 . 144 215
x18 5.29 3.97 -158 238 129 194
Wr8x15.5 : 4.56 3.42 137 205 ' 111 167
xl3 ^ 3.84: 2.88 115 173 93.6 140
vrnxses" 107 80.3 3200 ? 4820 2610 3910
x332;5'' 97.8 73.4 2930 4400 2390 3580
x302.5t< 89.0 66.8 2660 4010 2170 3260
X275'' 80.9 60.7 2420 '3640 1970 2960
x250^ 73.5 55.1 ,2200 3310 1790 2690
66.9 50.2 ^ ,2000 i 3010 •:j63b 2450
x213i< •'62.7 47.0 1880 ^ 2820 ' '1530 2290
x199h 58.4 43.8 • 1750 • 2630 1420 2140
xISS" 54.4 , 40.8 -1630 • 2450 4330 1990
xlZI" 50.3 37.7 •1510 2260 1230 1840
X155.5'' '45.7 34.3 1370 2060 1110 1670
x141.5'> 41.6 31.2 • 1250 1870 1010 ' 1520
X128.5 37.8 28.4 1130 1700 923 1380
X116.5 34.2 25.7 1020 ' 1540 835 1250
X105.5 31.0 23.3 928 : 1400 757 1140
X96.5 28.4 21.3 850 . 1280 692 1040
x88 25.9 19.4 • 775 : 1170 .631 946
X79.5 23.4 17.6 701 ; 1050 572 858
X72.5 21.3 16.0 638 ; 959 520 780
Umit State
HujitHre
.I m>
Ii,= 2.00
LRFD
4),= 0.90
4)(=d.75
1 Flange thickness Is greater Uian 2 in. Special requirements may apply per AISC
Specification SecionKiAc.
Note: Tensile: rupture on the effective net area Will control over tensile yielding on the
gross area unless ttie tension memtier is selected so that an end connection can be
configured with 4 2 0.923/^.
AMERICAN INSTITUTB OF STEEL CONSTOUCTION

W"
5-24
DESIGN OF TENSION MEMBERS
WT7-WT6
Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
Fy=50kSi
Fu = 65ksi
Shape
Gross Area,
As
Ae"
0.75i49
Yielding Rupture
Shape
Gross Area,
As
Ae"
0.75i49
kips kips
Shape
Gross Area,
As
Ae"
0.75i49
Pnia, '<t>fPn
Shape
in.' in.' ASO LRFD ASD LRFD
WT7x66 19.4 14.6 581 873 i475 712
x60 17.7 13.3 530 797 432 648
X54.5 ; 16.0 12.0 .479 720 390 585
X49.5 • 14.6 11.0 ' 437 ' • 657 . • 358 536
x45 13.2 9.90 395 594 • 322
tt. !
483
WT7X41 12.0 9.00 359 V 540 293 439
x37 10.9 8,18 326 491 266 399
x34 10.0 7.50 299 , 450 244 366
X30.5 8.96 6.72 268 403 ' 218 328
WT7X26.5 7.80 5.85 234 351 190 285
x24 7.07 5.30 212 318 172 .258
X21.5 6.31 4.73 , 189 ; 284 154 231
WT7X19 5.58 4.19 t67 , 251 - .136 204
x17 5.00 3.75 150 225 '122 ' " 183
x15 • i -4.42 3.32 • 132 199 108 1 162
WT7X13 3.85 : 2.89 Vl5 173 - 93.9 141
x11 • 3.25 2.44 • 97.3 146 /•'79.3
• V-'.'D • 1
119
WT6X168'' 49.5 37.1 1480 : 2230 1210 1810
xlSa-SK :44.7 • 33.5 1340 ' 2010 • 1090 1630
x139.51' 41.0 30.8 1230 1850 1000 1500
xizeh 37.1 27.8 1110 1670 904 - 1360
xHS" 33.8 25.4 ;1010 1520 826 • 1240
x105 30.9 23.2 925 1390 :'754 , 1130
x95 28.0 21.0 838 1260 683 1020
x85 25.0 18,8 749 1130 611 917
x76 ^ 22.4 16.8 .,.671 , 1010 546 819
x68 20.0 15.0 599 900 '488 731
x60 17.6 13.2 "527 792 . '429 644
x53 15.6 11.7 467 702 380 . 570
x48 14.1 10.6 .422 ; 635 .345 : 517
X43.5 12.8 9.60 383 : 576 312 • 468
X39.5 11.6 8.70 347 • 522 283 424
x36 10.6 7.95 317 i 477 258 ; 388
X32.5 9.54 7.16 286 J 429 233 i
1
349
Umit state
rielding
Rupture
1.67
n(= 2.00
LRFD
<t),=Q,9Q
(|)f=0.75
•i Range thickness is greater than 2 in. Special requirements may apply per AISC
Spec/fefcn Section A3.1C,
: Note: Tensile rupture on the ettedive net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end conne^on can be
configured with/Je a 0.923/lj. •
AMERICAN INSTINRRE OF STEEL COKSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES 5-25
Fy = 50 ksi
F« = 65ksi
Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
WT6-WT6
Gross Area, A —
Yielding Rupture
Shape
Gross Area, Re-
o.rsAg
kips kips
Shape "d
Re-
o.rsAg
W 'tftPn PnlClt
in.' in.' ASD LRFD ASO LRFD
WT6x29 8.52 6.39 r255 383 .-208 . 312
X26.5 7.78 5.84 233 ; 350 - 190 ; • 285
WT6X25 ; 7.30 5.48 219 329 178 267
X22.5 ' 6.56 4.92 196 295 160 : 240
x20 ; 5.84 4.38 175 : 263 -142 214
WT6X17.5 5.17 3.88 ,155 : 233 126 I 189
x15 4.40 3.30 132 ^ 198 107 ! 161
x13 3.82 2.87 • 114 • 172 - 93.3; 140
WT6x11 3.24 2.43 ' 97,0 146 , 79,0! 118
2.79 2.09 83,5 126 • 67.9 102
x8 - 2.36 1.77 70,71 ; 106 57.5; 86,3
x7 2.08 1.56 623; 93.6 50.71 , . 76.1
WT5x56 16.5 12.4 '•""494 , 743 "'403 ! 605
x50 14.7 11.0 440 i 662 358 j 536
x44 13.0 9.75 389 1 585 317 : 475
X38.5 11.3 8.48 338 509 276 • 413
x34 10.0 7,50 299 450 244 i 366
x30 8.84 6.63 265 ' 398 215 323
x27 7.90 5.93 237 : 356 193 : 289
X24.5 7.21 5.41 216 i 324 176 j 264
WT5X22.5 6.63 4.97 199 298 162 i 242
X19.5 5.73 4.30 172 258 140 ; 210
X16.5 4.85 3.64 145 218 118 177
WT5X15 4.42 3.32 132 199 108 162
x13 3.81 2.86 114 171 93.0: 139
x11 3.24 2.43 97,0: 146 79.0: 118
WT5X9.5 2,81 2.11 84,1: 126 68,6! 103
x8.5 2.50 1.88 74.9' 113 61.1: 91,7
x7.5 2.21 1.66 66.2 99.5 54,0: 80.9
x6 1.77 1.33 53,0 79.7 43.2:
!
64.8
Umn State fsASD LRFD Note: Tensile rapture on the effective net area will control over tensile yielding on the
Yielding Q(=1J7 <|),= 0.90
gross area unless the tension memtjer is selected so that an end connection can be
configured with/4s&0.923A,. -
Rupture Q, = 2XK) 4i,=0.75
AMERICAN iNSTmrre OF STEEL CONSTRUCTION

5-26 DESIGN OF TENSION MEMBERS
WT4
Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
Fy = 50 ksi
Fu = 65 ksi
Shape
Gross Area,
in.'
0.754,
hi.'
kips
Pnl^t
ASD
^tPn
LRFD
Rupture
Icips
ASD LRFD
WT4X33.5
x29
x24
x20
X17.5
X15.5
WT4x14 '
x12
WT4X10.5
xg '
WT4x7.5
x6.5
x5
.9.84
8.54
7.05
5.87
5.14
4.56
4.12
3.54
3.08
2.63
2.22
1.92
1.48
7.38
6.41
5.29
4.40
3.86
3.42
3.09
2.66
2.31
1.97
1.67
1.44
1.11
-295
256
211
;i76
: 154
137
123
106
92.2
\ n.r
66.5,
57.5^
44.3
443
384
317
264 :
231
205
185
159
139
118
99.9
86.4
66,6
240 :
208
172
143 :
125 ^
111 ;
100 :
86.5!
75.1.
64.0;
54.3'
^ 46.8
36.f
.360
312
258
215
188
167
151
130
113
96.0
81.4
70,2
54.1
Limit State
Yielding
Rupture
- ASD •
n,= 1.67
n,=2.oo
LRFD
(|),=0.90
Note; Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless.the tension-member is selected so that an end connection can be
configured with/le a 0.923/1g,
(t)(=0.75
AMERICAN INSTITUTE OF STEEL GONSTRUGTION

STEEL TENSION MEMBER SELECTFON TABLES 5-27
Fy = 46 ksi
Fa = 58 ksi
Table 5-4
Available Strength in
Axial Tension
Rectangular HSS
HSS2a-HSS16
SKape
Gross Area,
0.754j
Yielding Rupture
SKape
Gross Area,
0.754j
l(ips kips
SKape
Gross Area,
0.754j
it't/'n PntCl, <S>tPa
SKape
'in.' in.' ASD LRFD ASO LRFD
HSS20X12x5/8 35.0 26.3 =964 • 1450 >763 ' f 1140
xVz 28.3 21.2 780 1170 : 615' 922
x% 21.5 16.1 592 890 ! i467 , 700
X5/16 18.1 • 13.6 V:499 : 749 '.'394 592
HSS20X8X5/8 30.3 22.7 835 ^ 1250 658 1 987
xVz 24.8 18.5 .678 1020 537 ; . 805.
x% 18.7 14.0 :515 774 ,406 609
xVis 15.7 11.8 • 432 :: 650 342 , 513
HSS20X4XV2 •• 20,9 15.7 •^78 ; 865 455 ' 683
x% 16.0 12.0 „441 662 348 : 522
x^/ie 13.4 10.1 "36S • 555 293 ' 439
XV4 10.8 8.10 £>297 447 •235 ; . 352
HSS18x6>F/8 , ,25.7 19.3 : -:708 : 1060 .,560 840
XV2 20.9 15.7 ;'578 ; . 865 .": '455 ; 683
X3/8 16.0 12,0 .441 662 : 348 522
xVl6 13.4 10.1 .389 555 ,,293 ' 439
XV4 10.8 8.10 297 I 447 235 . ' 352
HSS16x12x5/8 30.3 22.7 ' 835 : 1250 658 ^ 987
xVz 24.6 18.5 .678 ^ 1020 ,537 ; ° 805
18.7 14.0 ::Si5 : 774 ,406 609
XS/16 15.7 11.8 432 650 ' ' 342 513
HSS16X8XV8 25.7 19.3 • 708 1060 . 560 ; ' 840
xVa 20.9 15,7 . : 576 865 .455 683
X3/8 16.0 12.0 ' 441 662 348 522
XV4 10.8 8,10 297 447 235 352
HSS16x4x% 21,0 15.8 : .5578 869 458 , 8, 687
XVA 17.2 12.9 .474 ' 712 374 561
XVB 13.2 9.90 ;364 546 431
X5/16 11.1 8.32 ' I06 460 241 ' 362
XV4 8,96 6.72 247 371 195 292
X3/16 6.76 5.07 186 280 ., 147 221
Umft State
yielding
Rupture
ASD
ai=i.67
n,=2.oo
LRFD
)i=Q,90
Note; Tensile rupture on^ the effective net area will control over tensile yielding on the,
gross area unless tlie tension member is selected so that an end connection can be
configured v»ith ^ a 0.952;ij.
4)f=0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

5-28
DESIGN OF TENSION MEMBERS
HSS14-HSS12
Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Fy-46 ksl
Fu = 58 ksi
Shape
Gross Area,
0.75/lj
Yielding Rupture
Shape
Gross Area,
0.75/lj
Idps kips
Shape
Gross Area,
0.75/lj
^tPK
Shape
in.' In.' ASD LRFD ASD LRFD
HSS14x10x^/8 25.7 19.3 : ::708 1060 : .'560 , 'y-840
y}k 20.9 15.7 :576 865 r-1455
i
683
x% 16.0 12.0 441 662 (. :348 522
x^/ie 13.4 10.1 .:i;369 555 ;293 439
XV4 10.8 8.10 297 447 352^
HSS14x6x5/8 .21.0 15.8 578 ' 869 '458 687
XV2 17.2 12.9 .. 474 712 V;i374 561
X3/8 . 13.2 9.90 :i364 546 " ::287 431
xVie 11.1 8.32 306 460 , 241
362
xV4 8.96 6.72 247 371 7 195 292
X3/I6 .' 6.76 5.07 ,186 280 ':I,47 221
HSS14x4x5/8 ,18.7 14,0 ;;515 774 • 406 609
xl/2 15.3 11.5 , 421 633 334 500
X3/8 11.8 8,85 : :'325 489 385
X5/I6 9,92 7.44 .: 273 411 , : :2i6 324
XV4 8.03 6,02 . ^21 332 •:175 262
X3/16 ' \ 6.06 4.55 251
: 132
198
HSS12X10XV2 19.0 14.3 .523 787 , .415 622
x% 14.6 10.9 '402 604 R j316

474'
X5/I6 12.2 9.15 •.•.336 505 '•"266 398
xV4 ,, 9-90
7.43 'in 410 323
HSS12x8x5/8 21.0 15.8 578 ,869 .458 687
xV2 17.2 12.9 474 712 374 561
x% 13,2 9.90 364 546 • .287 431
XV16 11.1 8.32 306 460 . 241 362
XV4 8.96 6.72 247 371 195 292
xVie 6,76 5.07 186 280 147 221
HSS12X6XV6 .18,7 14.0 •515 774 ^•:406 609
xV2 15,3 11.5 "|21 633 334 500
X3/8 11.8 8.85 .§25 489 , • 257 385
xVlB 9.92 7.44: 273 411 : 216 324
Xl/4 8.03 6.02 221 332 175 262
X3/I6 6.06 4.55 167 251 132 198
Limit state
Yjelding
Rupture
-ASD
n(=i.67
fl( = 2.00
LRFD
0,90
Note: Tensile rupture on ttie effective net area will control over tensile <yielding;on the
gross area unless.the tension member is selected so that an end connection can be
configured with/le & O.QSMj.
<ff=0.75
AMERICAN INSTTTOTE OF STEEL CONSTRUCTION
SiS;.

STEEL TENSION MEMBER SELECTION TABLES 5^29
Table 5-4 (continued)
/=;,=46 ksi Available Strength in
Fu = 58 ksi Axial Tension
Rectangular HSS
HSS12-HSS10
Gross Area,
rieWing Rupture
Shape
Gross Area, /ls =
0.75/lj,
kips kips
Shape
/ls =
0.75/lj,
Pn/Qt i>tPn P„/C1, ^tPn
In.' in.' ASO ; LR(=D ASD LRFD
HSS12X4X=/8 16.4 12.3 58452 679 • 357 535,
xV2 13.5 10.1 o;372 559 i 293 439
x% 10.4 , 7.80 «.286 431 226 339
X5/16 8.76 . 6.57 • 241 363 191 286
xVi 7.10 5.33 Cl96 294 155 232
X3/16 5.37 4.03 , ' 148 222 117 175
HSS12X3V2X% 10.0 7.50 "-275 414 218 326
X5/I6 •8.46 6.34 .233 , 350 184 276
HSS12x3x5/t6 8.17 6.13 225 338 178 267
xV4 6.63 . 4.97 183 274 • 144 216
X3/16 . 5.02 3.76 138 208 109 164
HSS12x2x5/16 . 7.59 5.69 , 209 314 ^ ?165 248
xV4 . 6.17 , 4.63 .170 255 134 i 201
X3/16 4.67 3.50 j.i;29 193 102 152
HSS10x8x5/8 18.7 , 14.0 ;:.515 774 „ , ,406 609
xV2 15.3 11.5 421 633 - 500
x% .11.8 > 8.85 .S325 ,489 l O .257 385
X5/I6 9.92 7.44 273 411 „ .i2i6 324
xVa 8.03 6.02 221 332 262
X3/16 6.06, 4.55 167 251 132 198
HSS10x6x5/8 16.4 : 12.3 452 679 357 535
xVa 13.5 10.1 ,372 559 : , ;:293 439
x% 10.4 7.80 286 431 226 339
X5/I6 8.76 6.57 241 363
, "191
286
xVi 7.10 5.33 196 294 155 232
x^/w 5.37 4.03 i48 222 117 175
HSS10x5x3/8 9.67 7.25 266 400 ;,,2l0 315
X5/I6 8.17 6.13 225 338 178 267
xV4 6.63 4.97 183 274 144 216
5.02 3.76 138 208 109
1
164
Umit State
Yieltting
Rupture
^,= 1.67
j:2, = 2.00
LRFD
0.90
Note; Tensile rupture on the effective net area will control over tensile yielding on ttie
gross area unless the tension member is selected so that an end connection can be
configured with A; a O.asa'lj-
(|,,=0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC.

5-30 DESIGN OF TENSION MEMBERS
HSS10-HSS9
Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Fy = 46 ksi
F„ = 58 ksi
Siiape
Gross Area,
A,
0.75/lff
Yielding Rupture
Siiape
Gross Area,
A,
0.75/lff
Idps l(ips
Siiape
Gross Area,
A,
0.75/lff
PnlCit <T>rP/>
Siiape
in.' in.' ASD LRFD ASO LRFD
HSS10x4x5/6 14.0 10.5 386 580 305 : ! 457
XV2 11.6 8.70 - 320 480 252 V 378
X3/6 8.97 6.73 247 371 ' 195 : 293
X5/I6 7.59 5.69 209 314 165 - 248
XV4 6,17 4,63 •170 . 255 134 ; . 201
X3/16 4.67 3,50 . 129 : 193 102 152
xVa 3.16 2,37 ^ -,.87.0' 131 , 68.7 : 103
HSS10X3V2XV2 11.1 8,32 306 460 . 241 362
x% 8.62 6,47. ,237 ' 357 - - 188 .281
xVl6 7.30 5,48 '201 302 : 159 : 238
xV4 , 5.93 , 4.45 :,163 : 246 -:,.129 ' 194
x3/ie 4.50 3.38 124 186 98.0; 147
xVe • 3.04 2.28 '••83.7: 126 66.1 I : 99,2
HSS10x3x% 8.27 6.20 228 342 . - .180 : 270
xVie 7.01 5,26 193 290 153 229
xVi 5.70 4.27 157 236 '124 • 186
X3/16 4.32 3,24 ; 119 179 .• 94.0: 141
XVB 2.93 2,20: • 80.7 121 ' 63.8 ! V 95,7
HSS10X2X3/8 '7.58 5.69 .-209 314 165 : 248
X5/I6 6.43 4.82 177 266 • , 140 210
XV4 5,24 3.93 144 1 217 •"114 !' 171
x^/ie 3.98 2.99 • 110 • 165 • 86.7 ; £ • .130:
XVB 2.70 2.03 - 74.4; 112 58,9 ' 88,3
HSS9X7XV6 16,4 12.3 452 679 . 357 535
xVz 13.5 10.1 372 559 293 439
X3/8 10.4 7.80 286 431 226 339
X5/I6 8,76 6.57 241 363 191 286
xVi 7.10 5.33 196 • 294 155 , V 232
X3/16 5.37 4.03 -148 222 117 .R 175
Limit state
Yielding
Rupture
1.67
n,=2.oo
LRFD
(j)(=0.90
Note: Tensile rupture on the effective net area will control overtensjte yielding on the
gross area unless the tension^member is selected so ttiat an end connection can be
configured witha 0.952/lj. , -
i,=0,75
AMERICAN INSTITUTE OF STEEL GONSTRUGTION

STEEL TENSION MEMBER SELECTION TABLES S-31
/V = 46ksj
Fu=58ksi
Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
HSS9-HSS8
Shape
Gross Area,
0.75Ag
rieWing Rupture
Shape
Gross Area,
0.75Ag
kips lUps
Shape
Gross Area,
0.75Ag
Pnlilt ^tPn
Shape
in.' in.' ASD LRFD ASD UIFD
HSS9x5x5/e •14.0 10.5 •386 580 •305 457
XV2 11,6 8.70 320 480 • 252 378
. 8.97 6.73 247 . 371 . 195 293
x5/t5 7.59 . 5.69 209 314 5:. .165 248
x:V4 6.17 4.63 170 255 134 201
X3/16 4.67 3.50 J 29 193 . 102 152
HSS9X3XV2 9.74 7.30 268 403 • ^212 318
x% 7.58 5.69 • 209 314 165 248
X5/I6 6.43 4,82 -177 :266 • 140 210
xV4 5.24 3.93 144 217 114 171
xVl6 - ^ 3.98 2.99 110 165 86.7 130
HSS8X6XV8 .:14.0 10.5 -386 580 :305 457
xV2 .41.6 : 8.70 320 480 252 378
x% 8.97 6.73 ; 247 371 ',>; .195 293
xVie ' 7.59 5.69 209 314 v. 165 248
XV4 ' 6.17 4.63 170 255 134 201
xVie 4.67 3.50 - 129 193 102 152
HSS8X4X5/8 11.7 8.78 322 484 255 382
xV2 9.74 7.30; 268 403 .
; 212
318
x% 7.58 5.69 209 314 • 165 248
X5/I6 ^ ^ 6.43 4.82: 177 266 ; 140 210
xVi 5.24 3.93 144 217 .114 171
x'/w 3.98 2.99 • ; .110 165 86.7 130
xVs 2.70 2.03 74.4 .112 58,9 88,3
HSS8X3XV2 8.81 6.61 243 365 '192 288
x% 6.88 5.16 190 285 150 224
xVl6 5.85 4.39 161 242 . .127 ; 191
xV4 4.77 3.58 131 197 : 104 156
y?lK 3,63 2.72 •,100 150 . .. 78.9 118
xVs 2.46 1.85 ' 67.8 102 ;:-53.7 80.5
Limit State
Yielding
Rupture
' ASD
n,=i.67
LRFO
i|)(=0.90
Note: Tensile rupture on ttie effective net area will control over tensile yielding on ttie
gross area unless the tension member is selected so that an end connectiqn can be
configured with Ae 5 0.952/lj,. .
AMERICAN.lNSTrrUTE OF STEEL CONSTRUCTION

5-32
DESIGN OF TENSION MEMBERS
HSS8-HSS6
Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Limit State
Yielding
Rupture
ASD
n,=i.67
n(=2.oo
LRFD
(t),= 0.9(i
.(=0.75
Fy = 46 ksi
F„ = 58ksi
Shape
Gross Area,
/Is 0.75)4,
Yielding Rupture
Shape
Gross Area,
/Is 0.75)4,
l(ips kips
Shape
Gross Area,
/Is 0.75)4,
PnlCl, <l>iP« Pnldt (tflPn
Shape
in.' in.' ASD LBFD : ASD LRI=D
HSS8x2x3/s 6.18 4.63 'm • 256 . 134 1 201
XV16 5.26 3.94 ms 218 ^ 114 171
xV4 4,30 3.22 t18 i 178 tft 93.4 ; 140
xVw 3.28 2.46 90,3 136 71.3 r 107
xVs 2.23 1.67 61,4 92.3 48.4, ^^ 72.6
HSS7X5XV2 9.74 7.30 ''268 ' 403 212 , 318
X3/8 7.58 5.69 209 314 J165 ; ; 248
xVie 6.43 4.82 : 177 266 140 ; 210
xV4 5.24 3.93 '144 i 217 :',.114 • 171
x'/ie 3.98 2.99 110 : 165 : > 86.7 i • 130
XVB 2.70 2.03 n 74,4. 112 88.3
HSS7X4XV2 8.81 6.61 • 243 ! 365 192 288
x% 6.88 5.16 .190 285 •150 ; 224
xs/ie 5.85, 4.39 161 242 127 191
XV4 4.77 3.58 131 197 p.;;.M04 156
X3/I6 3.63 2.72 ' 100 ( 150 ? 78.9; 118
xVs . 2.46 1,85 102 Jj 53.7:1,' 80.5
HSS7X3XV2 7.88 5.91 ; '217 i 326 ^ .171 , 257
x% 6.18 4.63 256 134 ' . 201
X5/I6 5.26 3,94 v/t45 ; 218 114 ; 171
xV4 4.30 3,22 '•'118 ! ; 178 93.4 - 140
X3/I6 3.28 2.46 ^ 90.3 136 71.3 i 107
xVs 2.23 1.67 61.4 92.3 48.4, 72.6
HSS7X2XV4 3.84 2.88 106 159 83.5! 125
xVie 2.93 2.20 80,7 121 63.8 95.7
xVs . 2.00 1,50 55.1 82.8 43.5 65.3
HSS6X5XV2 8.81 6.61 243 ' 365 192 288
x% ' '6.88 5,16 ';i90 . 285 150 224
XS/16 5.85 4.39 , 161 , 242 127 191
xV4 4.77 3,58 "131 197 "104 : 156
X3/16 3.63 2,72 100 150 78.9: 118
xVa 2.46 1,85 67.8 102 53.7 80.5
Note: Tensile rupture on ttie effective net area will control over, tensile yieMing on the
gross area unless the tension memljer is selected so that an end connection can be
configured with 4 a 0-952/Ij,,
AMERICAN INSTITUTE OF STEEL GONSTRUGTION

STEEL TENSION MEMBER SELECTION TABLES 5^33
Fy = 46 ksl
Fu = 58 ksi
Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
HSS6-HSS5
Shape
Gross Area,
0.75/lj
kips Rupture
Shape
Gross Area,
0.75/lj
Yielding kips
Shape
Gross Area,
0.75/lj
Pnlii, ^tPn IftPn
Shape
in.' in.' ASD LRFD ASO LRFD
HSS6X4XV2 7.88 5,91 217 : 326 -.171 .. 257
X3/8 6.18 4,63 170 256 :-IUL34 - 201
X5/16 5.26 3,94 •145 218 114 171
xV4 4.30 • 3,22 118 178 :: 93,4 140
3.28 2,46 • 90.3 136 71,3^ ^ 107
x'/8 2.23 1,67 61.4^ 92.3^ ,,48,4; , 72.6
HSS6X3XV2 . 6.95 5,21 . : 191 288 •"•.•151 227
x% 5.48 4,11 1 ;151 : .. 227 .119 i . 179
xVw 4.68 3,51 129 194 : ; :;i02 ; • 153
xV4 3.84 2,88 106 i 159 83,5; 125
X3/I6 2.93 2,20 ..,,80.7: 121 . 63.8' , 95.7
XVB - 2.00 1,50 55.1! 82.8 43.5,,: 65.3
HSS6x2x% 4,78 3,58 : 132 ! 198 104 ' 156
X5/16 : 4,10 3,08 . . 113 170 89.3 134
xV4 3,37 2,53 • 92.8 140 73.4' ; 110
x3/ie 2,58 1,94 , 71.1: 107 ,. 56.3 , ; 84.4
xVa 1,77 1,33 ; 48.8^ 73.3 38.6:;; 57.9
HSS5X4XV2 6.95 5,21 ;o19l 288 • 151 •, 227
X3/8 : 5.48 4,11 151 227 119 • 179
x5/ie 4.68' 3.51 129 194 102 ' ^^^ 153
xV4 3.84 2.88
. ,„ 106
159 ,j, „83.5i . 125
x'/ie 2.93 2.20 . 80.7, 121 ' 63.8; 95.7
xVs 2.00 1.50 55.1; 82.8
' { 43.5 \ ^
65.3
HSS5X3XV2 6.02 4.51 166 249 f f131 196
X3/8 4.78 3.58 132 198 104 • 156
x6/« 4.10 3.08 ,.-113 170 ..,, 89.3 134
XV4 3.37 2.53 92.8 140 ',73.4 .. 110
x3/ie 2.58 i;94 ,;: 71.1, 107 . 56.3, 84.4
XV8 1.77 1.33 • 48.8 i 73.3 38.6 : 57.9
HSS5X2V2XV4 3.14 2.36 86.5 130 68.4 103
XVK
. 2.41
1.81 66.4 99.8 52.5 78.7
xVs 1,65 1.24 45.4;
i 1
i
68,3 36.0 53.9
Umit State
Yielding
Rupture
ASD
SJ, = 1.67
n,= 2.00
LRFD
It),=0,90
Note: Tensile rupture on the effective net area will control over tensile yielding on the
groSs area unless the tension member is selected so that an end connection can be
configured with 4 > 0.952.4g.
it)(=0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC.

5-34
DESIGN OF TENSION MEMBERS
HSS5-HSS3V2
Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Fy = 46ksi
Ft, = 58ksi
Shape
Gross Area,
Ag 0.75Ag
Yielding Rupture
Shape
Gross Area,
Ag 0.75Ag
kips l(ips
Shape
Gross Area,
Ag 0.75Ag
PJiit <|>fP/i ^tPn
Shape
in.^ .' ASO LRFD ASD LRFD
HSS5x2x% 4.09 3.07 113 . 169 89.0 V 134
. 3.52 2.64 • 97.0 . 146 76.6 : - 115
xV4 2.91 2.18 80.2 120 : : 63,2 ^s V 94.8
xVw 2.24 1.68 c-;61.7 ' 92.7 48.7 73.1
xVs 1.54 1.16 42.4; 63.8. 33.6 50.5
HSS4X3X3/8 ' 4.09 3.07 "113 169 ' ' 89.0 r '" 134
x5/I6 3.52 2.64 i ;97.0- 146 76.6 . 115
x'A 2.91 2,18 80.2 120 63.2 94.8
x'/ie 2.24 1.68 , :;61.7 92.7 48.7 73.1
xVa . 1.54 1.16 •42.4 63.8 33.6 50.5
HSS4X2V2X3/8 3.74 2.81 ' -103 155 . 81.5 122
X5/16 3.23 2.42 89.0 134 70.2 105
xV4 2.67 2.00 73.5; 111 58.0 87.0
xVl6 2.06 1.55 ' 56.7 85.3 45.0 67.4
xVs , 1.42 1.07 39.1 . 58.8 31.0 46.5
HSS4x2x% 3.39 2.54 93.4; 140 73.7 110
xVl6 2.94 2.21 ' ' 81.0 122 64.1; 96.1
xV4 2.44 1.83 !"t67.2; 101 53.1 • 79.6
xVl6 1.89: 1.42 \ 52.1' 78.2. 41.2 61.8
xVe 1.30 0.975 : 35.8; 53.8 28.3 • 42.4
HSS3V2X2V2X% 3.39 2.54 . 93.4 140 73.7 110
xVie 2.94 2.21 ^ 81.0. 122 : 64.1 , 96.1
XV4 2.44 1.83 ••• 67.2 101 53.1 79.6
xVie 1.89 1.42 -.52.1 78.2 41.2 61,8
xVa 1.30 0.975 35.8 53.8 28.3 . 42.4
HSS3V2X2XV4 2.21 1.66 .. 60.9
91.5 . 48.1 72.2
X3/16 1.71 1.28 . 47.1 70.8 37.1 " 55,7
xVa 1.19 0.892 32.8, 49.3 ' 25.9
^ I
38,8
Limit state
Yielding
Rupture
ASO
1.67
ni=2.oo
LRFD
-,=0.90
Note:tTensile rapture on the effective net area.will control overtenSile yielding on the
^ross area unless the tension memberisselected so that an end connection can be
configured with >.0.9524g. . ;
(I),=0.75
AMERICAN INSTTTUTB OF STEEL CONSTRUCTION, INC.

STEEL TENSION MEMBER SELECTION TABLES 5-35
Fy = 46 ksi
Fu==58ksi
Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
HSS3-HSS2
Stiape
Gross Area,
Ag 0.75Ag
Yielding Rupture
Stiape
Gross Area,
Ag 0.75Ag
l(ips kips
Stiape
Gross Area,
Ag 0.75Ag
IftPv PnICi, i/tPn
Stiape
in.' in.' A$D LRFD m LRFD
HSS3X2V2XVI6 . 2.64 1.98 72.7 109 57.4: 86,1
XV4 2.21 1.66 - 60.9 91,5 ^ 1:48,1: 72,2
xVie 1.71 1.28 47.1 70.8 ;::37,1: 55.7
x'/s 1.19; 0.892 32.8 49.3 25,9 . 38.8
HSS3x2x5yi6 2.35 1.76 64.7 97.3 •i=5i,o; 76.6
XV4 1.97 1.48 • .54.3 81.6 ; 42,9^ 64,4
x3/ie 1.54 1.16 . 42.4 63.8 33,6 - 50,5
xVs 1.07 0,803 ; 29.5 44,3 23,3 34,9
HSS3X1V2XV4 . 1.74 1.30 :• ; 47,9 72,0 37,7 56.6
X3/I6 / 1.37 1.03 r.:37.7 56.7 29,9 i 44.8
xVs 0.956 0.717 26.3 39,6 . 20.8^ 31,2
HSS3x1x3/ie 1.19 0,892 -32.8 49,3 25,9. 38,8
xVs 0.840 0,630 23.1 34.8 ; ::i8,3; 27.4
HSS2V2x2XV4 . 1.74, 1,30 A7.r 72,0 37.7 56.6
xVie 1.37 1.03; ."::37.7 , 56,7 ••29,9' 44.8
xVb 0.956 0.717 :;^:26.3 • 39,6 ; , '20.8: ; 31.2
HSS2V2x1V2XV4 1.51 1.13 ;!)f41.6 62,5 . ; 32,8 . 49.2
xVis 1.19 0.892 -32.8 49.3 : 25.9 • 38.8
xVb 0.840 0.630 34,8 18,3:; 27.4
HSS2V2X1X3/I6 ^ -1.02 0.765 28.1: 42.2 22.2 33.3
xVb 0.724 0.543 • 19.9 " 30,0 15.7 23.6
HSS2V4X2X3/I6 1.28 0,960 : /:35.3 53,0 • 27.8; 41,8
xVb 0.898 0.674 ' 24.7 37.2 ,; 19.5 29.3
HSS2X1V2X3/I6 1.02 0,765 •i 28.1 42.2 22.2 33.3
xVs 0.724 0.543 19.9 30,0 :; 15.7 i > 23.6
HSS2x1X3/i6 0.845 0.634 23.3 35.0 . :18.4 , 27,6
xVs 0.608 0.456 16.7 25,2 .13,2i 19,8
Limit State
Yielding
Rupture
ASD
£2,= 1.67
fl, = 2.00
IRFD
= 0.90
Note: Tensile rupture on the effective net area will control over tensile yielding on tlie
gross area unless the tension member is selected so that an end connection can be
configured with £ O.952/I5.
I,=0.75
AMERICAN INSTITUTB OF STEEL CONSTOUCTION

5-36
DESIGN OF TENSION MEMBERS
HSS16-HSS8
Table 5-5
Available Strength in
Axial Tension
Square HSS
Fy = 46 ksi
Fu = 58 ksi
Shape
Gross Area, Ae"
0.75A,
Yielding Rupture
Shape
Gross Area, Ae"
0.75A,
l(ips kips
Shape
Gross Area, Ae"
0.75A,
P„IQ, Pnin,
Shape
in.' in.' ASO LRFD ASD LRFD
HSS16x16x5/8 35.0 26.3 : • 964 1450 763 1140
xVz 28.3 21.2 , <..780 1170 615 922
x% .21.5 16,1 592 890 467 700
xVl6 18.1 13,6 499 ; 749 394 592
HSS14x14x5/8 30.3 22,7 1250 658 987
xVz 24.6 18,5 .fi678 1020 . 537 805
x% 18.7 14.0 vi5i5 ; 774 406 609
X5/16 15.7 11.8 .: : 432 650 342 513
HSS12x12x5/8 25.7 19.3 ' , 708 ^ 1060 560 840
xVz 20.9 15.7 .•:576 ^ 865 455 683
x% 16.0 12.0 662 348 522
x5/I6 13.4 10.1 , 369 . 555 293 439
xV4 10.8 8.10 .297 ! 447 235 352
XVM 8.15 6,11 "224 = 337 177 . - 266
HSS10x10x5/8 21.0 15,8 . .578 869 . 458 687
xVz 17.2 12.9 - ..474 • 712 374 561
X3/8 13.2 9.90 '364 / 546 287 431
X5/I6 11.1 8.32 ' 306 - 480 241 362
xV4 8.96 8.72 - :247 ; 371 - ' .195 292
X3/I6 6.76 5.07 •186 i 280 • 147 221
HSS9X9X5/8 18,7 14.0 : -515 • 774 • '406 609
xVz 15.3 11.5 421 633 334 500
x% 11,8 8.85 325 489 257 385
X5/16 9,92 7,44 : ' 273 .411 216 324
xV4 8,03 6,02 221 332 "175 262
xVw 6,08 4,55 167 251 132 198
xV8 4,09 3,07 113 : 169 89.0 134
HSS8X8X5/8 16,4 12,3 C 452 679 357 535
xV2 13.5 10,1 372 559 •293 439
x% 10.4 7,80 288 431 226 339
x5/I6 . 8.76 6,57 241 363 191 i 286
xV4 7.10 5,33 196 294 155 232
X3/I6 5.37 4,03 148 222 117 : 175
xVe 3.62 2,71 : 99.7: 150 78.6: 118
Limit State SafASB
Yielding
Rupture
n,= 1.67
LRFD
i|),= 0.90
Note: Tensile rupture on the effective net area will control over tensile yielding on the
-gross area unless the tension member is selected so that an end connection can be
configured with ^ > 0.952,4g.
.,=0.75
AMERICAN INSTITUTE OF STEEL GONSTRUGTION

STEEL TENSION MEMBER SELECTION TABLES 5-37
Fy = 46ksi
Fu = 58 ksi
Table 5-5 (continued)
Available Strength in
Axial Tension
Square HSS
HSS7-HSS4V2
Shape
Gross Area,
Ag i3.7SAg
Yielding Rupture
Shape
Gross Area,
Ag i3.7SAg
kips kips
Shape
Gross Area,
Ag i3.7SAg
PnlS^t
Shape
in.^ in.' ASD LRFD ASO LRFD
HSS7X7XV8 14.0 10.5 «386 580 305 ' 457
xV2 11.6 8.70 320 1 480 252 1 378
8.97 6.73 247 371 ' i 195 ^ 293
xVl6 7.59 • 5.69 209 :. 314 165 248
xV4 6.17 4.63 170 . 255 . 134 201
XVL6 4.67 3.50 : 129 ' 193 ^ ^102 ' 152
xVs 3.16 2.37 87.0 131 68.7 103
HSS6X6X=/8 11.7 8.78 a'-322 484 255 : 382
xVz 9.74 7.30 : ! 268 : : 403 212 ; 318
X3/8 7.58 5.69 209 i 314 > =.165 i 248
X5/I6 6.43 4.82 : ;;:177 • 266 . 140 ^ 210
XV4 5.24 3.93 , .144 ! 217 , .,114 / 171
XV16 3.98 2.99 ''::iio : 165 • ,,• 86.7; 130
xVs ' 2.70 2.03 74.4: 112 58,9 i . 88,3
HSS5V2X5V2X% 6.88 5.16 190 285 'ft i150 , 224
XVM 5.85 4.39 . 161 242 ;.i.;127 ^ 191
xV4 4.77 3.58 131 197 104 , 156
XV16 3.63 2.72 ,'.. 'too
150 . 78.9; , il8
xVs
• ' 2.46
1.85 67.8 : 102 : ,53.7:.; 80.5
HSS5X5XV2 ' • 7.88 5.91 326 257
xVs . 6.18 4.63 170 i 256 134 201
X5/I6 5.26 3.94 145 ' 218 r 114 I 171
xV4 4.30 3.22 118 178
> , 93.4;
140
XV16 3.28 2.46 90.3 136 71.3 107
xVs 2.23 1.67 • 61,4 92.3 . 48.4 72.6
HSS4V2X4V2XV2 6.95 5.21 191 288 151 ; 22?
X3/8 5.48 4.11 ^ ' 151 227 ; 119 ^ 179
X5/I6 4.68 3.51 129 194 102 ' 153
xV4 3.84 2.88 106 159 83.5 125
X5/16 2.93 2.20 80,7 121 63.8 95.7
xVs 2.00 1.50 55.1; 82.8 43.5; 65.3
Umit State
Yielding
Rupture
ASO
nt=i.67
a(=2.oo
LRFD
III, = 0.90
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member Is selected so that an end connection can be
configured v^ith 4 >D.952/lg.
AMERICAN INSTITUTB OF STEEL CONSTOUCTION

5-38 DESIGN OF TENSION MEMBERS
HSS4-HSS2
Table (continued)
Available Strength in
Axial Tension
Square HSS
Limit state
Yielding
Rupture
ASD
nt=i.67
Of = 2.00
LRFD
<ti(=0.90
(tit=0,75
Fy = 46 ksi
fi> = 58ksi
Shape
Gross Area,
As 0.75/1,
Yielding Rupture
Shape
Gross Area,
As 0.75/1,
kips icips
Shape
Gross Area,
As 0.75/1,
PJCit <S>tPn Pnia, '^tPn
Shape
in.' in.' ; r ASD LRFO ASD LRFD
HSS4X4XV2 6.02 4.51 ^ .-1,66 ; 249 131 . 196
X3/8 4.78 3.58: i-132 i '198 104 : 156
4.10 3.08 .113 170 89.3 134
XV4 3.37 2.53 140 73.4; 110
X3/16 2.58 1.94 71.1 ; 107 '•-56.3; ; 84.4
xVs 1.77 1.33 73.3 38.6 57.9
HSS3V2X3V2X% 4.09 3.07 -113 169 " 89.0: 134
X5/16 3.52 2.64 . ;:;97.0 146 : : ,76.6 ; 115
XVA 2.91 2.18 ^ 80.2. 120 632 94,8
X3/I6 2.24 1.68 92.7 \ 48.7 ; ; 73.1
xVe 1.54 1.16 42.4 . 63,8 33.6 50.5
HSS3x3x3/e 3.39 2.54 140 •73.7; 110
xVis 2.94 2.21 :"..8l.o: 122 64.i: 96.1
XV4 2.44. 1.83 ° 67.2 101 '' ''' 53.1: 79.6
1.89 1.42 ^ '52.1 : 78.2 a . 4l.2i 61.8
xVe 1,30 0.975 '35.8; 53.8 28.3 42.4
HSS2V2X2V2X5/I6 2.35 1.76^ "'64.7: 97.3 ''!51.0! 76.6
xVA : \ 1.97 1.48 ,"•'54.3 81.6 64.4
x'/ie 1.54 1.16 ' 42.4 i 63,8 '"''33.6; 50.5
xVs • 1.07 0.803 ,:y29.5' 44.3 23.3; . 34.9
HSS2V4X2V4XV4 1.74 1.30 : , 47.9 72.0 '37.7 56.6
X3/I6 1.37 1.03 37.7 56.7 , 29.9' 44.8
xVe 0.956 0.717 .; 26.3: 39.6 20.8; ; 31.2
HSS2X2XV4 1.51 1.13 41.6 62,5 32.8 49.2
X3/16 1.19 0.892 32.8 49.3 25.9 38,8
xVs 0.840 0.630 :23.1 34.8 ; 18.3' 27,4
Note: Tensile rupture on the effective net area will control over tensile .yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with/4e>0.95Mp. ;
AMERICAN INSTITUTE OF STEEL GONSTRUGTION

STEEL TENSION MEMBER SELECTION TABLES 5-39
Fy = 42 ksi
Fu = 58ksi
Table 5-6
Available Strength in
Axial Tension
Round HSS O
HSS20-HSS10
Shape
Gross Area,
h
Q.T5Ag
Yielding Rupture
Shape
Gross Area,
h
Q.T5Ag
Icips kips
Shape
Gross Area,
h
Q.T5Ag
p«/at ^tPn- Pn/O, •SftPn
Shape
la.' in.' ASD LRFD ASD LRFD
HSS20X0.375 21.5 16.1 \ 541 ! 813 : 467 700
HSS18x0.500 25.6 19.2 644 968 : 557 835
xO.375 19.4 14.6 488 733 ' ; 423 635
HSS16x0.625 28.1 21.1 :707 1060 ..612 918
xO.500 22.7 17.0 .571 858 493 . 740 ,
xO.438 19.9 14.9 500 752 . .432 648
xO.375 17.2 12.9 .433 : 650 374 561
xO.312 14.4 : 10.8 362 ; 544 : 313 470
x0.25O 11.5 8.63 ;:289 .435 250 375
HSS14x0.625 24.5 18.4 •616 • 926 •f. 534 800
xO.500 19.8 14.9 • 498 748 .432 .. 648
xO.375 15.0 11.3 ,377 , 567 ' 328 492
xO.312 12.5 9.38 314 ^ 473 "272 408
xO.250 , 10.1 7.58 V.254 382 220 330
HSS12.750x0.500 17.9 ^ 13.4 .450 : 677 , ,389 583
x0,375 13.6 10.2 342 514 "296 :. 444
xO.250 9.16 6.87 230 • 346 : .. 199 299
HSS10.750x0.500 15.0 ,11.3 377 567 . 328 , :. 492
xO.375 11.4 8.55 . 287 431 ; • ;;248 I :,. ..„ 372
xO.250 7,70 5.78 ;i94 , 291 ;:„1681':,'' 251
HSS10x0.625 17.2 12.9 433 650 374 561
xO.500 13.9 10.4 < , 350 525 ' : 302 . 452
xO.375 10.6 7.95 267 401 .231 • 346
xO.312 8.88 6.66 223 336 193 290
xO.250 7.15 5.36 180 270 ... 155
233
xO.188 5.37 4.03 135 203 '.,117 175
Umit State
rielding
Rupture
ASO
n,=2.oo
LRFD Note: Tensile rupture on the effective net area will control over tensile yielding on the
Qross area unless the tension member is selected so that an end connection can be
configured v«ith a 0.889,4j.
(ti,=0,75
AMERICAN INSTITUTB OF STEEL CONSTOUCTION

5-40 DESIGN OF TENSION MEMBERS
o
HSS9.625-
HSS6.875
Table 5-6 (continued)
Available Strength in
Axial Tension
Round HSS
Umit state
Yielding
Rupture
ASD
£i, = 1.67
£i, = 2.00
LRFD
iti/=0.90
If,=0.75
Fy = 42 ksi
Fa = 58ksi
Shape
Gross Area,
A, 0.75A,
Yielding Rupture
Shape
Gross Area,
A, 0.75A,
kips l(ips
Shape
Gross Area,
A, 0.75A,
W Pja, ^tPn
Shape
in/ in.^ ASD LRFD ASD LRFD
HSS9.625x0.500 13.4 10.1 337 : 507 293 439
xO.375 10.2 7.65 257 ' 386 . 222 , 333
x0,312 8.53 6,40 215 ! 322 '186 278
xO.250 6.87 5,15 173 ' 260 149 224
xO.188 5.17 3,88 130 195 113 169
HSS8.625x0.625 14.7 11.0 370 556 319 : 479
xO.500 11,9 8.92 . 299 450 259 388
xO.375 9.07 6.80 •^28 343
. 197
296
xO.322 7.85 5.89 197 .297 171 256
xO.250 6.14 4.60 '154 ^ 232 133 200
xO.188 4.62 3.47 116 175 101 ' 151
HSS7.625x0.375 7.98 5.99 201 302 174 , 261
xO.328 7.01 5.26 176 265 153 229
HSS7.5O0x0.500 10.3 7.73 259 389 224 ' 336
xd.375 7.84 5.88 .197 ; 296 171 256
xO.312 6.59 4.94 166 249 'l43 215
xO.250 5.32 3.99 :i 34, • 201 116 174
X6.188 4.00 3.00: 101 , 151 87.0 131
HSS7x0.500 9,55 7.16 .,240 361 208 J 311
xO.375 7.29 5.47 183 276 159 ' , 238
xO.312 6,13 4.60 154 232 133 200
xO.250 • 4,95 3.71 124 187 108 161
xO.188 3,73 2.80 93.8 141 81.2' ' 122
xO.125 2,51 1.88 • 63.1 • 94.9 54.5 81.8
HSS6.875x0.500 9,36 7.02 235 354 204 305
xO.375 7.16 5.37 -180 271 . 156 , 234
xO.312 6.02 4.51 151 228 131 ' 196
xO.250 4.86 3.64 122 184 106 ! 158
xO.188 3.66 2.75 92.0 : 138 79.8 120
Note: Tensile tupture on the effective net area will control over tensile yielding on the
gross area unless the tension memtjer is selected so that an end connection can be
configured withO.seMji.
I' 1 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES 5-41
/=y = 42 ksi
Fa = 58 ksi
Table 5-6 (continued)
Available Streiigth in
Axial Tension
Round HSS
O
HSS6.625-
HSS5
Shape
Gross Area,
Ag 0.75ilg
Yielding Rupture
Shape
Gross Area,
Ag 0.75ilg
kips kips
Shape
Gross Area,
Ag 0.75ilg
Pnin, «>tPn
Shape
in.' in.' 'ASD LRFD ASD LRFD
HSS6.625x0.500 9.00 6.75 226 340 • 196 294
xO.432 7.86 5.90. d98 ; • 297 171 257
xO.375 6.88 5.16 260 150 " 224
xO.312 5,79 4.34 • , ,146 ' 219 126 " 189
xO.280 5.20 3.90 . -131 197 113 . 170
xO.250 4.68 3.51 . 118 177 102 , 153
xO.188 3.53 2.65 • ' 88.8 133 , 76.9 '~ 115
xO.125 2.37 1.78
59-6
89.6 51.6 77.4
HSS6.000x0.500 8.09 6.07 '•-•503 306 176 ' 264
xO.375 6.20 4.65 : .156 234 ':i35 , 202
xO.312 5.22 3.92 .131 197 114 c 171
xO.280 4.69 3.52 •118 177 ' 102 153
xO.250 4.22 3.17 106 , 160 91.9^ ,138
xO.188 3.18 2.39
. " 80.0 ,
, 120 69.3' 104
xO.125 2.14 1.61 ' 53.8; 80.9 , , 46.7 70.0
HSS5.563x0.500 7.45 5.59 > .187 282 ' ^ 162 243
xO.375 5.72 4,29 -144 216 124 , 187
xO.258 • , 4.01 3.01 ' MD1 ' 152 87.3 131
xO.188 2.95 2.21 74.2 , 112 64.1 , 96.1
xO.134 2.12 1.59 53.3 80.1 , 46.1 , ,69.2
HSS5.500x0.500 7.36 5.52 "185 ' 278 '160; 240
xO.375 5.65 4.24 ..'442 , 214 M23 184
xO.258 3.97 2.98 ,99.8 150 86.4 130
HSS5X0.500 6.62 4.97 166 250 144 216
xO.375 5.10 3.82
, 128 '
193 111 ... 166
xO.312 4.30 3.22 ' 108 163 93.4 140
xO.258 3.59 2.69 90.3 1 136 78 0 117
xO.250 3.49 2.62 •87.8 132 76.0 • 114
xO.188 2.64 1.98 ' 66.4" 99.8 57.4 86,1
xO.125 1.78 1.34 - 44.8
i
67,3 38.9
........
58,3
Umit State
Vtelding
Rupture
ASD '
nf=i.67
ft, = 2.00
LRFD
$(=0.90
$,=0.75
Note: Tensile rupture on the effective net area-Will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with2 0.869/lj,
AMERICAN INSTITUTB OF STEEL CONSTOUCTION
I

5-42
DESIGN OF TENSION MEMBERS
HSS4,5Q0-
HSS2.500
Table 5>6 (continued)
Available Strength in
Axial Tension
Round HSS
Fy = 42 ksi
F« = 58 ksi
Sfiape
Gross Area,
0.75Af
Yielding Rupture
Sfiape
Gross Area,
0.75Af
t(ips Idps
Sfiape
Gross Area,
0.75Af
PnlCit Pn'Qt ^iPn
Sfiape
in.' in.' i ASD LRFD . a ASD LRFO
HSS4.500x0.375 4.55 3.41 172 98.9 . 148
xO.337 4.12 3.09 104 156 89.6 134
xO.237 C 2.96 ??? ,^74.4 112 64.4 96.6
xO.188 : 2.36 1.77 . 59.4 89.2 51.3 77.0
xO.125 1.60 1.20 40.2. 60.5 34.8 52.2
HSS4x0.313 ' 3.39 2.54 85 3 ,128 73.7 110
xO.250 2.76 2.07 ''" 69.4 104 60.0 90.0
xO.237 2,61 1.96 65.6 98.7 56,8 85.3
xO.226 2.50 1.88 ,-62.9 94.5 54.5 8T:8
x0,220 2.44 1.83 61.4 92.2 53.1 79.6
xO.188 2.09 1.57 52.6 79.0 45.5 68,3
xO.125 : : 1.42 1.07 35.7 53.7 31,0 46.5
HSS3.500x0.313 : \ 2.93 2.20 V3.7 111 . 63,8 95,7
xO.300 2.82 2.11 " ; 70.9 107 61.2 91.8
xO.250 2.39 1.79 60.1 90.3 51,9 77.9
xO.216 2.08 1.56 ,.52.3 78.6, • 45.2 67.9
xO.203 : ,;1.97 1.48 74.5 . 42.9. 64.4
xO.ISS 1.82 1.36 -:45.8 68.8 39,4 59.2
xO.125 V: 1.23 0.923 - - 30.9' 46.5 26,8 40.2
HSS3x0,25O 2.03 1.52' 51.1 ,
76.7 44.1 66.1
xO.216 1.77 1.33 •.44.5' 66.9 38.6 . • 57.9
xO.203 1.67 1.25 M2.0 63.1 36.3 54.4
xO.188 1.54 1.16 < ' 38.7 58.2 33.6 50.5
xO.152 1.27 0.953 .31.9 48.0 27.6 . 41.5
xO.134 1.12 0,840 28.2 42.3 24.4. 36.5
xO.125 1.05 0.788 26.4 39,7 22,9 34.3
HSS2.875x0.250 1.93 1.45 ' •. 48.5 73.0 42,1 63.1
xO.203 1.59 1.19 40.0, 60.1 34.5 51.8
xO.188 1.48 1.11 .37.2 55.9 . 32,2 48.3
xO.125 1,01 0.758 25.4 38,2 22.0 33.0
HSS2.500x0,250 1.66 1.25 41.7: 62.7 36.3
54.4
xO.188 1.27 0.953 31.9 48,0 27.6
41.5
xO.125 0.869 0.652 21.9 32,8 18.9
i •
28.4
Limit state
Yielding
Rupture
..ASD
Q(= 1.67
Q,= 2,00
LRFD
4>,= 0.90
Note; Tensile rupture on the effrte net area will control over tensjlftyielding on tlie
•flross area unless the tension memlier is selected so that an end connection can be
configured with/le S: 0.86%.
(t)(=0.75
AMERICAN INSTITUTE OF STEEL GONSTRUGTION

STEEL TENSION MEMBER SELECTION TABLES 5-43
Table 5-6 (continued)
Fy = 42 ksi Available Strength in
Fu = 58 ksi Axial Tension
Round HSS
O
HSS2.375-
HSS1.660
Shape
Gross Area,
in.'
Q.75Ag
in.'
rielding
kips
Pnliii
=,ASO
^tPn
LRFD
Rupture
Pn/ii,
ASD LRFD
HSS2.375x0.250
xO.218
xO.188
xO.154
xO.125
HSS1.900x0.188
xO.145
xO.120
HSS1.660x0.140
1.57
1.39
1.20
1.00-
0.823
0.943
0.749
0.624
0.625
1.18
1.04
0.900
0,750
0.617
0.707
0.562
0.468
0.469
.39.5
,-^35.0
.30.2
.>5.1
'50.7
' 23.7
18.8
15.7
15.7
59.3
52.5
45.4
37.8
31.1
35.6
28.3
23.6
23.6
34.2
30;2
26.1
21.8
17.9
20.5
16.3
13.6
13.6
51.3
45,2
39.1
32.6
26.8
30.8
24.4
20.4
20,4
Limit State
yielding
Rupture
ASD
n,=i.67
n,=2.o{i
LRFD
il)(=0.90
^.,=0.75
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member Is selected so that an end connection can be
configured wilfi/lo > 0.869/lj.
AMERICAN INSTITUTB OF STEEL CONSTOUCTION

5-44
DESIGN OF TENSION MEMBERS
PIPE12-
PIPEIV2
Table 5-7
Available Strength in
Axial Tension
Pipe
Fy = 35 ksi
Fu = 60 ksi
Shape
Gross Area,
A,
0.75Ag
Yielding Rupture
Shape
Gross Area,
A,
0.75Ag
kips kips
Shape
Gross Area,
A,
0.75Ag
PnlCit "KfPfl Pnia,
Shape
in.' in.' . ASD LRFD ASO LRFD
Pipe 12 X-Strong • 17.5 13.1 367 551 393 590
Std; : 13.7 10.3 ~287 : 432 309 . 464
PipetOX-Strong 15.1. 11.3 .316 : 476 ' 339 509
Std t1.5 8.63 241 362 259
b 1
388
Pipe 8 XX-Strong 20.0 15.0 419 630 , 450 675
X-Strong 11.9 8.93 249 375 268 , 402
Std 7.85 5.89 165 247 177 265
Pipe 6 XX-Strong 14.7 11.0 308 463 330 495
X-Strong 7.83 5.87 164 247 • 176 !' 264
Std 5.20 3.90 109 164 117 176
Pipe 5 XX-Strong 10.7 8.03 224 , 337 241 : 361
X-Strong 5.73 4.30 120 ; 180 129 194
Std 4.01 3.01 84.0 ! 126 90.3 135
Pipe 4 XX-Strong 7.66 5.75 161 : 241 173 : 259
X-Strong 4.14 3.11 86.8: 130 93.3 140
Std 2.96 ??? 62.0 93.2 66.6 99.9
Pipe 3V2 X-Strong 3.43 2.57 71.9: 108 77.1 116
Std 2.5b 1.88 52.4: 78.8 56.4 84.6
Pipe 3 XX-Strong 5.17 3.88 108 : 163 116 175
X-Strong 2.83 2.12 59.3: 89.1 63.6 95.4
Std 2.07 1.55 43.4 65.2 46.5 69.8
Pipe 2V2 XX-Strong 3.83 2.87 80.3 : 121 86.1 129
X-Strong 2.10 1.58 44.0 66.2 47.4 71.1
Std 1.61 1.21 33.7 ; 50.7 36.3 54.5
Pipe 2 XX-Strong 2.51 1.88 52.6 ; 79.1 56.4 84.6
X-Strong 1.40 1.05 29.3 1 44.1 31.5 47.3
Std 1.02 0.765 21.4 32.1 23.0 34.4
Pipe IV2 X-Strong 1.00 0.750 21.0 31.5 22.5 33,8
Std 0.749 0.562 15.7: 23.6 16.9 • 25.3
Limit state
Yielding
Rupture
n,=U7
n,=2J)o
LRFD
(|),= 0.90
Note: Tensile nipture on the effective net area will control oyer tensile yiejding on the
gross area'unless the tCTSion member is selected so that an end connection can be
configured with a 0.700/I5.
(]),=0.75
AMERICAN INSTITUTE OF STEEL GONSTRUGTION

STEEL TENSION MEMBER SELECTION TABLES 5-45
Fy = 35 ksi
F« = 60ksi
Table 5-7 (continued)
Available Strength in
Axial Tension
Pipe
PIPE1V4-
PIPEV2
Shape
Gross Area,
A,
In.'
0.75/lj
in.'
Yielding
kips
Pn/iJf
ASD
<lftPn
LRFD
Rupture
ASO
i>tPn
LRFD
Pipe lV4X-Strong
Std
Pipe 1 X-Strong
Std
Pipe % X-Strong
Std
Pipe V2 X-Strong
Std
0.837
0.625
0.602
0.469
0.407
0.312
0.303
0.234
0.628
0.469
0.452
0.352
0.305
0.234
0,227
0.176
•17.5
13.1
12.6,
9.83
-" 8.53
. 6.54
- 6.35
4.90
26.4
19.7
19,0
14.8
12,8
9,83
9.54
7.37
18.8
14.1
13,6
10.6
9.15
7.02
6.81
' 5.28
: 28,3
21,1
20.3
15,8
13.7
10,5
10,2
7.92
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configutBd wifli ^ > 0700/^,
Rupture
AMERICAN INSTITUTB OF STEEL CONSTOUCTION

5-46
DESIGN OF TENSION MEMBERS
liH
1[
2L8-2L6
Table 5-8
Available Strength in
Axial Tension
Double Angles
Limit state
yieldina
Rupture
1.67
I.RFD
<1>,=0.90
If,=0.75
Note:
Fy = 36 ksl
Fu = 58 ksi
Shape
Gross Area,
A,
yielding Rupture
Shape
Gross Area,
A,
itips icips
Shape
Gross Area,
A,
Pnia, ^tPn PalCl, iltPn
Shape
in.' in.' ASO LRFD „ ASO UIFD
218x8x1 Va , 33.6 : 25.2 724 1090 ^ 731 1100
Xl 30.2 22.7 651 978 658 987
x'/a 26.6 20.0 573 862 580 870
X3/4 23.0 17.3 496 745 r 502 753
x5/6 19.4 14.6 418 629 ' 423 635
17.5 13.1 . 377 567 . ; 380 570'
xVj 15.7 11.8 -338 509 342 513
2L8x6x1 26.2 19.7 565 849 671 857
x% 23.0 17.3 496 745 : 502 753
x% 20.0 15.0 431 648 435 653
xVe 16.8 12.6 362 544 365 548
X3/I6 15.2 11.4 328 492 33t 496
xVs 13.6 10.2 293 441 296 444
x'/l6 12.0 9.00 -259:, 389 261 392
2L8x4x1 22.2 16.7 479:, 719 484: 726
x% 19,6 14.7 423 635 426: 639
X3/4 17,0 12.8 356 551 371 557
X=/8 14.3 10.7 3W 463 310 465
X»/16 13.0 9.75 :: 280 : • 421 28^ 424
xVz 11.6 8.70 250 376 252; 378
X'/16 10.2 : 7,65 220 330 222; 333
2L7x4x% 15.5 11.6 334 502 336 505
13.0 9.75 421 283: 424
xVz 10.5 7,88 226 340 229' 343
x%6 9,26 6.95 ioo 300 202 302
x% 8.00 6.00 172 259 174 261
2L6x6x1 22.0 16.5 474 713 479I 718
x% 19.5 14.6 420 632 423! 635
x% 16.9 12.7 304 548 368 552
xVs 14.3 10.7 308 463 310: 465
xS/l6 12.9 9,68 278 418 281 421
xVz 11.5 8,63 248 373 250; 375
X7I6 10.2 7.65 220 ; 330 222 333
xVs 8.76 6.57 189 284 191 286
xVl6 7.34 5.51 158 238^ 160 240
grass area unless the tension member Is selectkl so that an end connection can Ite
configured witha 0.7/15.^.
AMERICAN INSRMJTE OF SIBEL CONSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES 5-47
Fy = 36 ksi
Fu = 58 ksi
Table 5-8 (continued)
Available Strength in
Axial Tension
Double Angles
ir
2L6-2L5
Stiape
Gross Area,
0.75Ag
Yielding Rupture
Stiape
Gross Area,
0.75Ag
f(ips icips
Stiape
Gross Area,
0.75Ag
PnKit ^tPn
Stiape
. .in,' in.' , ASD LRFD ASD ; LRFD
2L6x4x% 16.0 12.0 A45 , 518 •348 : 522
X3/4 13,9 10.4 300 450 ' 302 452
X5/8 11.7 8.78 552 379 . 255 i 382
X9/I6 10.6 7.95 229 343 231 346
XV2 9.50 7.13 205 308 207 : 310
X'/16 8.36 6.27 f 180 271 182 ! 273
X% 7.22 5.42 156 234 . 157 ; . 236
X5/IE 6.06 4.55 ,131 , . 196 132 ; 198
2L6X3V2XV2 9.00 6.75 ,194 292 196 294
x'/a 6.88 5.16 148 223 150 : 224
X5/16 5.78 4.34 125 187 '126 ; 189
2L5x5x% 16.0 12.0 •-J45 •518 348 : 522
14.0 10.5 ..'302 454 305 457
X5/E 11.8 8.85 v-254 382 - 257 385
XV2 9.58 7.19 ' "207 310 209 i 313
X^/W 8.44 6.33 <182 273 -.184 275
x% 7.30 5.48 157 . 237 ,159 ; 238
XVIE : 6.14 4.61 132 199 '134 ; 201
2L5X3V2X% 11.7 8.78 252 379 255 i 382
X=/8 9.86 7.40 -.v213 319 215, i = 322
xVs 8.00 6.00 , 172 ' 259 .174 ; 261
X% 6.10 4.58 131 198 133 : 199
xVl6 5.12 3.84 . 110 166 111 167
xV4 4.14 3.11 • 89,2 134 90.2: 135
2L5X3XV2 7.50 5.63 162 243 163 , 245
X7/16 6.62 4.97 143 214 144 216
X% 5.72 4.29 123 185 124 : 187
XVL6 4.82 3,62 104 156 105 ' 157
XV4 3.88 2.91 • 83,6
i
126 84.4! 127
Limit State
rielding
Rupture
c'ASB
n(=i.67
n,=2.oo
LRFD
(]),= 0.90
Note: Tensile rupture on the effective net area will control over tensile, yielding on the
gross area unless the tension member is selected so that an end connection can lie
configured with i. 0.7454,.
(]),=0.75
AMERICAN iNSTINrrE OF STEEL COKSTRUCTION

5-48
DESIGN OF TENSION MEMBERS
Table 5-8 (continued)
II Available Strength in
2L4il.3 /. Axial Tension
Double Angles
Fy = 36 ksi
Fu = 58ksi
Shape
Gross Area,
/I, 0.75/<l(,
Yielding Rupture
Shape
Gross Area,
/I, 0.75/<l(,
Idps kips
Shape
Gross Area,
/I, 0.75/<l(,
P„iat ^tPn
Shape
in.' in.' ASD LRFD ASD LRFD
2L4x4x% 10,9 8,18 235 • 353 237 356
X=/8 :9.22 6.92 "199 , 299 201 301
xVa 7.50 5.63 '•m / 243 163 245
.: 6,60 , 4.95 . U2 214 144 215
>?h 5.72 4.29 123 185 124 187
x5/I6 4.80 3.60 103 . 156 104 157
xV4 3.86 2.90 •83.2 125 84.1 126
2L4X3V2XV2 7.00 5.25 151 : 227 152 • 228
5.36 4.02 '116 174 • 117 175
X=/l6 4.50 3.38 97.0 146 98.0 147
xV4 3.64 2.7% 78.5 118 ' 79.2 ; 119
214x3x5/8 7.98 5.99 - 172 , . 259 174 ' 261
xV2 6.50 4.88 ,140 211 142 212
X3/8 4,98 3.74 107 161 108 163
X5/I6 4.18 3.14 Ml 135 91.1 137
XV4 3,38 2.54 ' 72,9 110 73.7 110
2L3V2X3VZXV2 ' 6.50: 4.88 • 140 211 142 212
X7/16 5,78 4.34 125 187 126 : 189
x% 5.00 3.75 108 162 ••109 1 163
X5/I6 4,20 3.15 -. -90,5 136 ' 91.4 137
xV4 3,40 2.55 73.3' 110 74.0 111
2L3V2X3XV2 6.04 4.53 130 ! 196 ;. -131 197
5.34 4.01 . 115 173 116 174
x% 4.64 3,48 100 150 101 151
X5/I6 3.90 2,93 84.1 126 85.0 127
xV4 3.16 2,37 68,1 ^ 102 68.7 103
2L3V2X2V2XV2 5,54 4,16 119 179 121 181
x% ; 4.24 3,18 . ;'91,4 137 : 92.2 ' 138
xVl6 3,58 2,69 77.2 116 78.0 ' 117
xV4 2,90 2.18 62.5; 94.0 63.2 94.8
Umit State
Yielding
ASD
n,= i.67
Rupture ni=2.00 (|1,=0.75
LRfD
(|>,= 0.90
Note; Tensile nipture on the effective net area will control over tensile yielding on tlie
gross area unless tlw tension member is selected so that an end connection can be
configured with ^ ii QlMAg.
AMERICAN INSTTTOTE OF STEEL CONSTRUCTION

STEEL TENSION MEMBER SELECTION TABLES 5-49
Table 5-8 (continued)
Fy = 36 ksi Available Strength in
Fu = 58 ksi Axial Tension
Double Angles
Ufflit State
Yielding
Rupture
-ASD
1.67
£2, = 2.00
LRFD
(|if=0.90
(|i,=0,75
¥
2L3-2L2
Shape
Gross Area,
0.754j,
Yielding Rupture
Shape
Gross Area,
0.754j,
l(ips l(ips
Shape
Gross Area,
0.754j,
p„ia,
P„IOi <|)(Pn
Shape
in.' in.' ASD LRFD ASD LRFD
2L3x3XV2 5.52 4.14 119 179 120 180
xVw 4.86 3.65 105 157 106 159
x'/a 4.22 3.17 91,0 137 91.9 138
yPhs 3.56 . 2.67 76.7 115 77.4 116
XV4 2.88 2.16 62.1 93.3 62.6 94,0
2.18 1.64 47.0 70.6 47.6 71.3
2L3X2V2XV2 5.00 3.75 108 ; 162 109 163
xVw 4.44 3.33 95.7 144 96.6 145
3.86 2.90 83.2 125 ' 84.1 126
3.26 2.45 70.3 106 71.1 107
XV4 2.64 1.98 56.9 85,5 57.4 86,1
X3/16 2.00 1.50 43.1 64,8 43.5 65.3
2L3X2XV2 4.52 3.39 97.4 146 98.3 147
x% 3.50 2.63 75.4 113 76.3 114
xVie 2.96 2.22 63.8 95,9 64.4 96,6
XV4 2.40 1.80 51.7 77.8 52.2 78.3
1.83 1.37 39.4 59.3 39.7 59,6
2L2VJX2V2XV2 4.52 3.39 97.4 146 98.3 147
3.46 2.60 74.6 112 75.4 113
X5/I6 2.92 2.19 62.9 94.6 63.5 95.3
XV4 2.38 1.79 51.3 77.1 51.9 77,9
1.80 1.35 38.8 58.3 39.2 58.7
2L2V2X2X3/A 3.10 2.33 66.8 100 67.6 101
x'/ie 2.64 1.98 56.9 85.5 57.4 86,1
XV4 2.14 1.61 46.1 69,3 46.7 70,0
X3/,6 1.64 1.23 35.4 53.1 35.7 53,5
2L2V2X1V2XV4 1.89 1.42 40.7 61,2 41.2 61.8
X3/I6 1.45 1.09 31.3 47,0 31.6 47,4
212x2x3/8 2.74 2.06 59.1 88,8 59.7 89,6
X5/IE 2.32 1.74 50.0 75,2 50.5 75.7
xV4 1.89 1.42 40.7 61,2 41.2 61,8
X3/I6 1.44 1.08 31.0 46,7 31.3 47,0
xVs 0.982 0.737 21.2 31.8 21.4 32,1
Note: Tensile rupture on ttie effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with/lc> 0,745/15.
i
AMERICAN INSTINRRE OF STEEL COKSTRUCTION

5-50
DESIGN OF TENSION MEMBERS
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-1
PART 6
DESIGN OF MEMBERS SUBJECT
TO COMBINED FORGES
SCOPE ........J ....:.. .........6-2
COMPACT, NONCOMPACT AND SLENDER-ELEMENT SECTIONS 6-2
MEMBERS SUBJECT TO COMBINED FLEXURE AND
AXL«UL COMPRESSION ... V...; .:.... 6-2
MEMBERS SUBJECT TO COMBINED FLEXURE AND AXIAL TENSION ...... 6-2
MEMBERS SUBJECT TO TORSION AND COMBINED TORSION,
FLEXURE, SHEAR AND/QR AXIAL FORCE ............................... 6-2
MEMBERS WITH HOLES :... ............... . 6-2
COMPOSITE MEMBERS SUBJECT TO COMBINED
FLEXURE AND AXIAL COMPRESSION ...........;.;...:...
DESIGN TABLE DISCUSSION 6-3
PART 6 REFERENCES ...;........... V..... .1.: :. 6-6
STEEL BEAM-COLUMN SELECTION TABLES 6-7
Table 6-1. Combined R^xure and Axial Force, W-Shapes ............. 6-7
i
AMERICAN iNsnmrre OF STEEL CONSTRUCTION

6-2 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of members subject to combined forces. For the design of members sub-
ject to axial tension only, see Part 5. For the design of members subject to axial compression
only, see Part 4. For the design of members subject to uniaxial flexure only, see Part 3.
COMPACT, NONCOMPACT AND SLENDER-ELEMENT
SECTIONS
iBased upon the types of load transmitted by the member, the discussions of width-to-tek-
ness ratios in Part 4 for compression members and Part 3'for flexural members apply to the
design of members subject to combined forces. The values given in this Part already account
for limitations due to,width-to-thicjoiess ratios. .
MEMBERS SUBJECT TO COMBINED FLEXURE AND
AXIAL COMPRESSION
The interaction of the combined effects of the required strengths (axial compression, and
bending moment) must satisfy the unity check as follows: ;
1. For doubly and singly symmetric members, per AISG S;7ec(/?carton Section HI. 1
2 For unsymmetric and other members, per AISC Specification Section H2
MEMBERS SUBJECT TO COMBINED FLEXURE AND
AXIAL TENSION
The interaction of the combined effects of the required strengths (axial tension and bending
moment) must satisfy the unity check as follows:
1. For doubly and singly symmetric members, per AISC Specification Section HI.2
2. For unsymmetric and other members, per AISC Specification Section H2
MEMBERS SUBJECT TO TORSION AND
COMBINED TORSION, FLEXURE, SHEAR AND/OR
AXIAL FORCE
The interaction of the combined effects of the required strengths (torsion, bending moment,
shear force and/or axial force) must satisfy the requirements of AISC Specification Section
H3.
See also AISC Design Guide 9, Torsional Analysis of Structural Steel Members.
MEMBERS WITH HOLES
AISC Specification Section F13 provides provisions for potential impact of holes in shapes
proportioned on the basis of flexural strength of the gross section. Additionally, AISC
Specification Section H4 provides provisions applicable to rupture of flanges with holes
subject to tension under combined axial force and major axis flexitte.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 6-3
COMPOSITE MEMBERS SUBJECT TO COMBINED FLEXURE
AND AXIAL COMPRESSION
For the design of composite members subject to combined flexure and axial compression,
see AISC Specification Section 15.
DESIGN TABLE DISCUSSION
Table 6-1. W-Shapes in Combined Flexure and
Axial Force
Steel W-shapes with Fy = 50 ksi (ASTM A992) and subject to combined axial force (tension
or compression) and flexure may be checked for compliance with the provisions of Section
Hl.l and HI.2 of the AISC Specification using values listed in Table 6-1 and the appropri-
ate interaction equations provided in the following sections.
Values p, bx, by, ty and tr presented in Table 6-1 are defined as follows.
Axial Compression
Strong Axis Bending
Weak Axis Bending
Tension Yielding
Tension Rupture
LRFD
P =
(CcPn
(kips)-
.(kip-ft)-
(^rFyAt
'(kips)-
tr =
1
(kips)-
ASD
p =^,(kipsr'
t^n
..A^odp-ftr'
^.^•(kip-ftr.
tr ~
F„(0.75Aj)
(kips)-
Combined Flexure and Compression
Equations Hl-la and Hl-lb of the AISC Specification may be written as follows using the
coefficients listed in Table 6-1 and defined above.
When pP,. a 0.2:
pPr + bxM„ + byM^& 1.0 (6-1)
When0.2:
y^pPr + % {b^Mrx + byMry ) < 1,0 (6-2)
The designer may check acceptability of a given shape using the appropriate interaction
equation from above. See Aminmansoui (2000) for more information on this method, includ-
ing an alternative approach for selection of a trial shape.
I
AMERICAN INSMUTE OF STEEL GONSTRUCRION

6-4 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
Combined Flexure and Tension
Equations HI-la and HI-lb of the AISC Specification may be written as follows using the
coefficients listed In Table 6-1 and defin^ abo ve.
WhenpPr2:0.2:
(ty or tr) Pr + bxMrx + byMry < 1.0 (6-3)
When pPr < 0.2:
,yi(tyOTtr)Pr + MbxMrx +byMry) <1.0 (6-4)
The larger value of fj, and fr should be used in the above equations.
The designer may check acceptability of a given shape using the appropriate interaction
equation from above along with variables tr, ty, bx ^d by. See Aminmansour (2006) for more
information on this method.
It is noted that the values for listed in Table 6-1 are based on the assumption that
Ae = 0.75Ag. See Part 5 for more information on this assumption. When A^ > OJSAg, the
tabulated values for t^ are conservative. When Ae < 0.15Ag, tr must be calculated based upon
the actual value of Ag.
General Considerations for Use of Values Listed
in Table 6-1
The following remarks are offered for consideration in use of the values listed in Table 6-1.
1. Values of p, bx and by already account for section compactness and can be used
directly.
2. Tabulated values of b^ assume that Cb= 1.0. A procedure for determining when
Ci> 1.0 follows.
3. Given that the limit state of lateral-torsional buckling does not apply to W-shapes bent
about their weak axis, values of by are independent of unbraced length and Ct-
4. Values of bx equally apply to combined flexure and compression as well as combined
flexure and tension.
5. Smaller values of variable p for a given KL arid smaller values of bx for a given Lj, indi-
cate higher strength for the type of load in question. For example, a section with a
smaller p at a certain KL is more effective in carrying axial compression than another
section with a larger value of p at the same KL. Similarly, a section with a smaller bx
is more effective for flexure at a given Lb than another section with a larger bx for the
same L^. This information roay be used to select more efficient shapes when relatively
large amounts of axial load or bending are present.
Determination of bx when Ci, > 1.0
The tabulated values of bx assume that Ct - 1.0. These values may be modified in accor-
dance with AISC Specification Sections F1 and H1.2. The following procedure may be used
to account for Ci > 1.0.
Nc-j,'^ 1.0) .
T'J(CI,>L,0) = : • ib^in (6-5)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 6-5
Values of bxmin are listed in Table 6-1 at L/, = 0 ft. See Aminmansour (2009) for more
information on this method. Values for p, bx, by, ty and presented in Table 6-1 have been
multiplied by 10'. Thus, when used in the appropriate interaction equation they must be
multiplied by 10-3 (0.001).
AMERICAN iNsirruTE OF STEEL CONSTRUCNON

DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
PART 6 REFERENCES
Aminmansour.- A. (2000), "A New Approach for Design of Steel Beam-Columns,"
Engineering Journal, Vol. 37, No: 2,2nd Quarter, pp. 41-72, AISC, Chicago, IL.
Atninmansour, A. (2006), "New Method of Design for Combined Tension and Bending,"
Engineering Journal, Vol. 43, No. 4,4th Quarter, pp. 247-256, AISC, Chicago, IL.
Atninmansour, A. (2009), "Optimum Flexural Design of Steel Members Utilizing Moment
Gradient and Cb," Engineering Journal, Vol. 46, No. 1, 1st Quarter, pp. 47-55, AISC,
Chicago, IL.
Seabui^, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members,
Design Guide 9, AISC, Chicago, IL.
^ AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL BEAM-GOLUMN SELECTION TABLES 6-7
Table 6-1
Combined Flexure
Fy = 50ksi
and Axial Force
W-Shapes
W44
W44x
335' 290" 262"
px lO' 10' px 10' px 10'
Design (MPS)-' (Wp-ft)-' (kips)-' (kip-ft)-' (kips)-' (kip-ft)-'
ASD tRFD )ASO LRFD ASD LRFD ASO LRFD ..ASD LRFD ASD LRFD
0 0.346 . 0.230 0.220 0.146 0,417.: 0.278 0.253-. 0.168 0.474, 0.316 0.281 0187
11 0.378 0.251 0.220 0.146 0.454 0.302 0.253 ,0.168 0.516; 0.343 0.281 0.187
12 0.384: 0.256 0:220 0.146 0.462: 0.307. 0.253 0.168 0.524 0.349 0.281 0.187
13 0.392 .0:261 0.222. 0.148 0.470." 0.313 •0.2551 ,0.170 .0.533' 0.355 0.284 0.189
g
14 0.402, 0.267 0.225 0.150 0.480 0.319 0.259 ;,0.173 0.544 0.362 0.289 0,192
15 0.412 0.274 0.229 0.152 0.490j 0.326 0.264 0.175 0...55g 0.369 0.294 0.196
§5 =
16 0.423 0.281 0.232 0.155 0,5dl'' 0.333 0.2^8 0.178 0.568.: 0.378 0.299 0199
17 0.435 0.290 0.238 0.157 0.514 0.342 0.273 0.181 0,582 0.387 0,304 0.203
1 -SS
18 0.449i 0.299 '0.240> 0.160 '0.527;:: 0.351 0.277 0.184 0:597: 0.397 0.310 0.206
in
19 0.463 0:308 0.244: 0.162 0.542 ,0.361 0.282 0.188 0.613' 0.408 0.316 0.210
s
20 0.479 0.319 0.248 0.165 0.559 0.372 0.287 0.191 odZ: 0.420 0.322 0.214
as
22 0.515: 0.343 •0.2^6 0.171 0.5975; 0.397 0.298: 0.198 0,674. 0.448 0:335 0.223
24 :0.558' 0.371 ,0;266 0.177 0.643; 0.428 0.309 0.206 0.724) 0.482 0;.348 0.232
M* «
£
26 0.608 :0.405 0.275 0.183 0.702r 0.467 0.321 0.214 0.785: . 0,522 0.363 0,242
£ i
28 0.668 0.444 0,286 0.190 0.512 0.335 0.223 ,; 0.8^9' 0.571 0.379' 0.252
g
30 0.738. 0.491 0.297 0.198 0.851v 0.567 0.-349 0.232 0.950 0.632 0:397 0.264
32 0.822: 0.547 0.310 0.206 0.948 0.631 0.365; 0.243 ,=1.06 0.705 0,417 0,277
34 0.923 0.814 0,323s 0.215 1.06 0.708 0.382} 0.254 1.19 0.793 0.438 0.292
36 1.03 . 0.689 0.338 0.225 1.19 0.794 0.4dr 0.267 41.34 0.889 0.465 0.310
ll
36 1.15 ^ 0.767 0.354 0.235 :l:.33!f 0.885 0.429 0,286 1.49 0.990 0.507 0.337
40 1.28 0.850 0.377. 0.251 1.47 0.980 0.464 0.309 1.65 1.10 0.549 0.365
1
42 1.41 0.937 0.404' 0.269 1.62 1.08 0;499e 0,332 1.82 1.21 0.592 0.394
Ui
44 1.55 • 1.03 0.431 0.287 :1.78 1.19 0.534 0,355 2,00 1.33 0.635 0.423
46 1.69-. 1.12 0.459 0.305 1.95 1,30 0.570 0.379 2.18 1.45 0.-679 0.452
48 1.84 1.22 0.486 0.323 2.12 1.41 0.605: 0.403 2:37 r.58 0.?22 0.481
50 2.0Q 1.33 0.51,4 0.342 2.30 1,53 0.641-. 0.426 2.58 •1:71 0:766 0.510
other Constants and Properties
fiyXlO^ (kip-ft)-' .1,51 : 1.00 : 1.74 1.16 1.96 1.30
tf^W, (kips)-' ; D.339 0.226 .,0,391. ' 0.260 0,433 . .0.288
ffX10^ (kips)-' -0:417 0,278 0:480 : 0.320 ;: Q.531 0.354
Of/Zy
5.10 5.10 510
ry.
In. 3.49 3.49 3.47
' Shape is slender for compression witii Fy = 50 l(si.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-8 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
W44-W40
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapesi
Fy = 50 ksi
W44x W40x
230'" 593" 503"
pxlO' pxlO' px 10' b>xW
Design (kips)-' (kip-ft)-' (kips)-' (kip-fl)-' (kips)-' (kip-f9-<
ASO LRFD ASO LRFD ASO LRFD ASO LRFD ASp " LRFD ASO LRFD
0 0.557^ 0.370 0.324' 0.215 0192' 0.128 0,129' 0.0859 0.226- 0.150 0.154 0.102
11 0.604 0.402 0:324 0.215 0.2l'0 0.139 0.129 0.0859 0.247 0,165 0.154 0.102
•12 0.614 0,409 0.324 0.215 0.213. 0.142 0.129: 0.0859 0.252 0.168 0.154 0.102
13 0.625: 0.416 0:329 ; 0,219 0.2l'7': 0.144 0,129 0.0859 0.257: 0.171 0154 0,102
g" 14 0.637> 0,424 0.3^5' 0.223 0.221 • 0.147 0.130 0.0863 0:262: 0,174 0.155 0,103
i
15 0.650; 0,433 0.341 0.227 0.226 0150 0.131 0.0870 0.268. 0178 0.156 0,104
& cn
•a '"S
16 o.eds 0,442 0.347 0.231 0.231 f 0.154 0.132: 0.0877 0.274 0,182 0158 0,105
O G
17 O.BBt 0,453 0.354, 0.235 0.2^7^ 0.158 0.133 0.0884 0.281 0.187 0.159 0,106
1 » 18 0.698 0,465 0.360 0.240 0.243 0.T62 0.134: 0.0892 0.289 0.192 0.161 0,107
SS Jg
19 0.718; 0.478 0.367: 0.244 0.250? 0.166 0.135> 0.0899 0.297: 0,198 0.163 0,108
1%
20 0,739. 0.492 0.375 0.249 0:257-^ 0.171 0.136; 0.0907 0:306: 0,204 0.164 0,109
22 0.787 0,524 0.390 0:260 0.273 0.182 0.139: 0.0923 0.326: 0,217 0:168 0112
24 0.846' 0,563 O.407 0.271 0.292: 0,194 0.141 0.0939 •OjSSO: 0.233 0:171; 0:114
26 0.916! 0.609 0.425 0,283 0.314:: 0,209 0.144: 0.0956 '0.251 o;i75 0,117
«t
28 1.00 0,666 0.44e': 0.296 0.340 0.226 0.146: 0.0973 0.410; 0.273 0;i79 0119
K O)
M
30 1,16.: 0.735 0.468: 0,311 0.370: 0,246 0.149: 0.0991 .0.448. 0.298 0183 0,122
32 1:23 0,820 0.492 0.327 0.4050 0,269 0.15? 0.101 0.492; 0,327 Oil 87 0,125
4 2
34 1.39 0,924 0.519, 0.346 0.446 0.297 0:155 0.103 0.544: 0,362 0.192 0.1,28
1
36 1.56 1,04 0.568 0.378 0.494 0.329 :0;158:: 0.105 O.606 0,403 0.197 0.131
1 fe
38 1.73 1,15 0.621' 0.413 0.551 0.366 0.161 0.107 0.675 0.449 0:201 0.134
1
40 1.92 1,28 0.674 0.449 0.610 0.406 0.164 0.109 0.748 0,498 0:207 0,138
1
42 2.12 1,41 0.729 0:485 0.673 0.448 0.168 0.112 0.825 0.549 0.212 0,141
Ui
44 2.33 : 1,55 0.784 0.522 0.738 0,491 0.171 0.114 0.906 0.603 0.218 0,145
46 2.54 1.69 0.840 0.559 0.807 .0,537 0.175 0.116 0,990 0.659 0.224 0.149
48 2.77 1.84 0.897 0.597 0.879 0,585 0.179 0.119 1.08 0.717 0:230 0,153
50 3.00 ? 2.00 0.954 0,634 0.953 0.634 0.183 0.122 1.17 , 0,778 0.237 0,158
other Constants and Properties
byX 10^ (kip-ft)-i
^rx10^ (kips)-i
: 2:27
0:493
.:0;605
1.51
0.328
0.403
0.741
0.192
0;236
0,493
0.128
0.157
; 0304
•efl.226
0:277
0.602
0.150
0.185
rJr« 5.10 4.47 4.52
ry, in. 3.43 3.80 3.72
Shape is slender for compression with 50 ksi.
Flange thickness greater than 2 in. Special requirements may apply per AISC Specillcation Section A3,1c.
' Shape does not meet the Nt^ limit for shear in AISC Specification Section G2.1(a) with Fy = 50 ksi; therefore, 0.90 and
AMERICAN INSTITUTE OF STEEL CoNSTRUcrroN

STEEL BEAM-COLUMN SELECTION TABLES 6-9
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W40
W40x
431" 397" 392"
pxlO' pxlO' 10^
Design (i<ips)-i (i<ip-ftr' (icips)-' (kip-ft)-' (kips)-' (kip-ft)-^
Asn> LRFD ASO' tRFD ASO ' LRf=D ASD LRFD ASD LRFD ASD LRFD
0 0.26$ 0:175 0.182 0.121 0.285: 0,190 0.198; 0.132 0.288 ,0,192 0.208; 0.139
11. 0.289 0.193 0.182, 0.121 0.314:;; 0.209 -0)198?: 0.132 0.346: 0,230 0.213 0,142
12 0.295 0.196 0.182 0.121 0.320S 0.213 0.1 fe: 0.132 :0.3S8' 0,238 0.217; 0,144
13 0.301 0.200 0.182? 0.121 0.327i 0.217 0.;t98; 0.132 :0.372; 0,247 0.220 0,146
c 14 0.307 0.204 0.184 0.122 0.334;: 0??? 0.201; 0.133 0.387< 0,258 0,223 0,148
15 0.314 0.209 0.186 0,124 0.341 • 0,227 0.2pJ 0.135 0.404; 0,269 0:227 0,151
sf
16 0.322 0.214 0.188- 0.125 0.350 0,233 0.205 0.137 0.424- 0,282 0230 0,153
li
17 O.33O: 0.220 0.1905 0.127 ;0.359;' 0,239 0.208- 0.138 0.44^. 0,296 es34: 0,156
1
18 0.340 0.226 0,1 as- 0.128 0.369 0.246 ;0.2ilT 0.140 0,313 0.238 0,158
2 g
19 0.350: 0.233 0.195; 0.130 0.380: 0:253 0.213 0.142 0.497, 0,331 0.24f 0,1.61
1
20 0.361 .0.240 0.197: 0.131 -0.302:' 0,261 '0.216 0.144 0.527: 0.351 0:245 0,163
sM 22 0.386 0.257 >0.202j 0..134 0.41:9-, 0.279 : 0.221; 0:147 0.598: 0.398 ,0.'254: 0,169
S E. 24 0.415 0.276 0.207: 0.138 0.451: 0.300 0.227 0.151 0.687' 0.457 0 263 0,175
1-1
i 26 0.449 0.299 0.21Z ;0.141 0.488i 0.325 0.234 0.155 0.801 0.533 0.273 0,181
£ €
28 0.489 0.325 0.218 0.145 :0;5fe 0,354 ; 0.240 0.160 0.929 0.618 0.283 0,188
it
30 0.536 0.356 0.224i 0:149 :0.5S4v 0.388 .0.247; 0.164 -1.07-; 0,710 0:295 0,196
32 0.591 0.393 >0,230: 0,153 0.644'- 0,429 ; 0.255- 0.169 1.21 ' 0.807 0307 0,204
^ s 34 0.656 0.436 0.2^6: 0.157 0.7t5' 0.476 0.262 0.175 1.37 0,911 0 320 0,213
mi
36 0.734 0.488 0.243' 0.162 O.8OI; .0.533 . 0.2tt 0.180 .1.54. 1.02 0 335 0,223
n .
£ o
38 0.818 0.544 0.251 0.167 0.892 0.594 0.280 D.I 86 i1J1 :; 1.14 0 351 0,233
1
40 ^0.906 0.603 0.259; 0.172 0.989 0.658 0.289 0.192 1.90 1,26 0:372 0,248
0
1
42 0.999 0.665 0.267 0,178 1.09 0.725 ,0.299 .0.199 2.09 1,39 0.394 0,262
0
1
44 i'.fo ' 0.729 0,276 0.184 1.20 0.796 0.31 (!' 0.206 2.29 1.53 0.415 0.276
46 1.20 0.797 0.285: 0,190 1.31, 0.870 0.214
48 1.30 0.868 0.295 0,197 1.42 0.947 0.338 0.225
50 1.42 0.942 0.3Q8 0,205 1.55 1.03 0.356 0.237
Other Constants and Properties
i)yx 10', (kip-ft)-'
fyXlO^ (kips)-'
frXlO', (kips)-'
1;09
vfl.263
^.0.323
0.723
0,175
0.215
M.19
0.285
0.790
0.190
0.234
.•'1,71
:ij{0.288
•0.354
1.14
0.192
0.236
ry/ry 4.55 4.56 6.10
3.65 3.64 2.64
Flange thickness greater ttian 2 in. Special requirements may apply per AISC Specification Section A3.1c.
Note: Heavy line indicates KL/tf equal to or greater ttian 200.
AMERICAN INSTITUTE OF STEEL .CONSTRUCTION

6-10 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
Table 6-1 (continued)
Combined Flexure
J—
and Axial Force
Fy-. = 50 ksi
W40
W-Shapes
W40x
372" 362'' 331"
pxlO' fexlO' pxlO' fijXlC pxlO' /»,x10'
Design (kips)-' (kip^ft)-' (kips)-' (kip-ft)-' (kips)-' (kip-ft)-'
ASD LRFO ASD LRFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD
0 0.304 0,202 0.21:2 0.141 0.315 o.2io 0,217 0.145 0.342: 0.227 0.249 0.166
11 0.335 0.223 0.212 0.141 0.348^ 0.231 0,217 0.145 0:415 0.276 0.257 0,171
12 0.34^; 0,227 0.21,2= 0.141 0.35^ 0.236 0.217 0.145 0.430 0.286 0.262 0,174
13 .0.348 0,232 0.213 0.142 0.36t. 0.240 0,218 0.145 0.448 0.298 0.266 0.177
c 14 0.356; 0,237 0.215; 0.143 0.369 0.246 0.221 0.147 0,467 0.311 0.271 0,180
•f 15
0.365- 0,243 0,218 0.145 0.378 0.252 0.224 0.149 0.489 0.326 0.276 0.184
16 :0.374- 0,249 0.221 0.147 0.388. 0.258 0.227 0.151 0.514 0.342 0.281 0,187
3 a
17 0.384 0,255 ; 0.224 0.149 0.398.. 0.265 0:230 0.153 0.542, 0.361 0.287 0,191
18 0.395! 0.263 0.227' 0-151 0.410 0.273 0.233 0.155 0.573 0.381 0.292 0,194
fS
19 0;407 0.271 0:230. 0.153 0:422- 0,281 0:236 0.157 0.608 0.404 0.298 0.198
g X
20 0.420 0.280 0.233 0.155 0.436^ 0.290 0.239 0.159 0.647 0.430 0.304 0.202
SS
22 ,0.450; 0.299 0:240 0.159 0.467.. 0.311 0:246 0,164 0:739 0,492 0:317 0.211
24 0.485 0.323 0.246. 0.164 0.503 0.335 0:253 0.168 0:856 0,570 0:331 0:220
£ -f
26 0^26; 0.350 0,254 0.169 0.546 .0.363 .0.261: 0.174 1.00 0,668 0:346 0.230
5 £ 28 0,574 0.382 0,261 0.174 0.596 0.396 0.269 0.179 1.16 0,774 0:362 0.241
30 0.631 0.420 0,270 0.179 0.655; 0.436 0.278 0.185 1.34 0,889 0.381 0.253
32 0.698 0.464 0,278.; 0.185 .0.724 0.482 0;2§7 0.191 1.52 1,01 0.401 0.267
34 0.777 0.517 0,288 •0.191 0.806 0.536 0.297 0.197 1.72 1.14 0:425 0.283
ti
36 0.871 0.579 0,298 0.198 0.904 0.601 0:307 0.204 1.92 1.28 0.456 0.304
ll
38 0.970 0.646 0.308, 0.205 1.01 0.670 0.319 0.212 2.14 • 1.43 0:488 0.324
40 1.08 0.715 0.320 0.213 1.12 ; 0.742 0.331 0.220 2.38 1.58 0.519 0.345
i
42 1.19 0.789 0.3?2 0.221 1.23 0.818 0.344 0.229 2.62 1.74 0.550 0.366
UJ
44 1.30 0.866 0.345: 0.230 1.35 0.898 0:358 0.238
46 1.42 0,946 0.365; 0.243 1.48 0.982 0.380 0.253
48 1.55 1,03 0.385 0.256 1.61 1.07 • 0.401 0.267
50 1.68 1,12 0.405 0.270 .1.74 1.16 0.422: 0.281
other Constants and Properties
/)yXlO^(kip-ft)-l '1.29 0.856 1.32 0.878 2.10 1.40
tyXW\ (kips)-' . 0:304 0.202 ,0.315 0.210 0.342 , 0.227
(kips)-' : 0i373 0.249 0.387 0.258 0.420 ; 0.280
rx Iry 4.58 4.58 6.19 '
ry, in. 3.60 3.60 2.57
" Flange thickness greater than 2 ia Special requirements may apply per AISC Specification Section A3.1c.
Note: Heavy line indicates KLIry equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-U
Table 6-1 (continued)
Fy = 50 ksi
Combined Flexure
and Axial Force
W-Shapes
W40
Shape
W40x
Shape
327" 324 297"^
px 10' fcxIO' pxlO' pxlO^
Design (kips)-' (kip-ft)-' (kips)-' (kip-ft)-' (kips)-' (kip-ft)-'
ASD LRFO ASD tRFD ASP LRFD ASP I.RFD ASpi LRFD ASD LRFD
0 0.348 0.232 0,253 0.168 0.350 0,233 0.244 0,162 0,386 0.257 0.268 0.178
11 0.422- 0.281 0.261 0.174 0.387: 0.258 0.244 0,162 0.424; 0.282 0.268 0.178
12 0.437. 0.291 0.265 0:177 0.394 0,262 0.244: 0.162 0^432? 0.287 0.268 0,178
13 0.455 0.303 0.270 0.180 0.403 ,0.268 0.245 0,163 0;44l- 0,293 0.270 0,179
e: 14 0.475' 0.316 0.275 0,183 0.412 0.274 0.249 0,165 0.451. 0,300 0.274 0.182
"1
15 0.497' 0.331 0.280 0,186 0.422 0.281 0.252 0,168 0.462 0,308 0.278 0,185
16 0.522' 0,347 0.285 0,190 :-0.433i 0.288 0.256 0,170 ;0.47,4 0.316 0.282 0,188
o
i'
ts 9
S a
17 0.550 0,366 0.290 0,193 0.444 0.296 0.259; 0,173 0.325 0.286 0,190
o
i'
ts 9
S a
(A
S
m
18 0.581: 0,387 0.296^ 0,197 0.457 0,304 0.263 0.175 0.502,: 0.334 0.29f 0.193
o
i'
ts 9
S a
(A
S
m 19 0.616 0.410 0.302 0,201 0.471::. 0.314 0.267 0.178 ,0.518 0.345 0.295 0,197
o
i'
ts 9
S a
f
< 20 0.656: 0.436 0.308 0,205 0.487: 0.324 0.271 0,180 0.535• 0.356 0:300 0.200
SS
|g
22 0.749- 0.498 0.321 0,213 0.522i: 0.347 0.279 0.186 0.575: 0.382 0.310 0.206 SS
|g
24 0.866; 0.576 0,335^ 0.223 0.5d3 0.374 0.288 0,192 0.621:i .0.413 0.321 0,213
8 -? 26 .i.oi: 0.675 0.350 0,233 0.611 0.406 :]0.298 0,198 : 0.675: 0.449 0:332 0,221
g 1 e .28 1.18' 0.783 0.367 0,244 0.667 0.444 0.308 0,205 0.7^9 0.492 0.344 0.229
"1
?
30 1.35. 0.899 0.385 0,256 0.734 0.488 0.319: 0,212 0.815 • 0.542 0;357 0,238
32 1.54, 1.02 0.406 0,270 0.813 0,541 0.330 0,220 0.904: 0;602 ,0i372 0,247
SI
u
34 1.73 1.15 0.430 0,286 0.9d7 0.603 0.343 0,228 ,1.01 0.674 0.-387 0,257
36 1.9$ ^ 1.29 0.462 0,307 1.02 0.676 0.357- 0,237 113 : 0.755 0i404 0,269
1 ^
38 2.17 1.44 0.494' 0.329 1.13 0.754 0.371 0,247 1.26 ^ 0.841 0.422 , 0,281
.1
40 2.40 1.60 0.526 0.350 -1.25 0.835 0.387 0,258 ;1.40 0.932 0.446 0,297
1
42 2.65 1.76 0.557 0.371 1.38 0,921 0.408 0.272 1:54 : 1.03 0:478 0.318
U1
44 1.52 1,01 0.435 0,289 1.70 1.13 0;509 0.339
46 1.66 1,10 0.461 0,307 1.85 1.23 0.541 0.360
48 1.81 1.20 0.488 0,324 2.02 1.34 0.W3 0,381
50 1.96 1.30 0.514 0,342 2.19 1.46 0.605 0,403
other Constants and Properties
6yX 10', (kip-ftr^ -2.12 1.41 1.49 0,992 .1.66 1.10
ty X-iO^, (kips)-' 0.348 0.232 0.350 . 0,233 0.383 0.255
frXlO^, (kips)-' r: 0.428 0.285 ;;a430 0,287 0:470 0.313
rxiry 6.20 4.58 4,60
ry, in. 2.58 3.58 3,54 . ,
° Shape is slender for compression with /y = 50 i^si.
' Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
note: Heavy line indicates KL/ry equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9
O
o
X X X
s-as
p p
'•U oo.
Oi
CO O C5?
CO <y}
to ^
bi lei
p ^ cn
p p
CO K> ^
Effective length, KL (ft), with respect to least radius of gyration, r^,
or Unbraced Length, Lu (ft)^ for X-X axis bending
S^lsl:!^ ^^^^^ o
CO
k
fO
.a
ro N3
is
bi t6
ro
0
i ^
0
0 Co
ro <0
0
O O O
In C71 bi
__ ^ . 01 to 0
o pi 01 to 05 CO ro tc>
0000
CO tn
00000 ppppp
j^jskjskliskb:) bitcobitcoo:)
cooco-^co -vioicoNi-^
c^c^oroo —^^coai^
0000
<5) ax cn jii.
• O-O^ M CO
c5 o o o o
j:.. CO CO
• 52 ^ g g S?
G C> G G G
CO CO CO CO CO
-CD- jsk .CO ro ro
o. ro pi 03
p p p p p
oi to. CO Ko ro
r-i. o O CO CO
eo N3 a>
p p p p p p
00 ^ CO
oi ro o --si .ta.. ro
ro OJ o CO -«sj o
o o o o
CO KJ K> K:> K>
O CO oi ^
o CO CT>
00000
ro ho M M M
CO . ro ro —^ —^
CO CO CO CD
p o p p p
M K> M ^ ^
o 0 0 CO CO
<D cn —»•
ro ro ro ro ^
CO b> to CO
CO cn . CO- ro. -CO
c> ^ f> Q o
^ b^ a> a>
gg g as
O C> Q C> G
bi t7» cn t7> j&i
CO, O...CO. xo
. CO ro --J cn o5
_L o o o o
^ <D ba b>
o cn ro o o
o> ji. ro ro
00000 00000 o
cn Ja
. ro CO o>. CO —
^ —^ ro CT> CO
CO CO.CO CO CO
-«sj cn ^ CO
ro CO o
ooc>oc» 000 00
^ p ps
jjt. 4s»; jii. ^ CO w
S • 2 io a> OT Si
00000 o p p p.p
^ CCi Co w
gg SS K
ooooo 00000
CO fo Ko isi
O to ->4 C5>
CO ro -vi CO
o c=> o o o
ro ro ro Ko ro
. cn CO ro.
—^ cn o Ja <0
ooooo
f«o <0 '--SI.CTJ c*a C3 CO
-co Ji. CO ro -ro co o.cjj
o o p p p p ci
"tn bi cn <j\ at
ooooo
-L -L -J. ooooo
cnlt>.K>'-^o toco'-sjkjcn
CO—^cococo .->jco<ooco
o^ —^ —^ cn ro
ooooo
cn cn ja.
—^ CO o .
CO cn CO c?>
ooooo
CO -vl -«sj <0
<±) o o o o
G Q Q pi Q
b> tSi tri
S § a
P-;p p.p p
^ CO « '
s g g
ooooo p p p p p
CO CO .ro fo ro
ro .0 CO
ro ro CO cn
o o
S
p o^ o p o p p
fo K:> Ko Ko ro Ki ^
ro ro o o o co
ooooo
"S 1—1
» 2
# I ®
sf ffl Q. a>
w
o;
o
o>
o
— o
-n 3 S
O ® 5"
a g §
<D i a
(D
H
§
>
s
n
i
§
o
X X X
p t\J
b)
CO CO o
O O
In jii lb
g 2 ^^
00-^
CO CO CO
o o
M ro
G> oi
oi ii. <5
— CO ro
g;
o O-fO
kks
Effective length, (ft), with respect to least radius of gyration. r„
or Unbraced Length, Lt (ft), for X-X axis bending
gfeg^iS gg^SfS iSggfS SSdi^H
to CO N5 ro ro ro
CO bi ro o
JSk ..- K> -x.CO cn o -
r^r^.—^r^f^ ppppp pc3pop
, cn CO CO
co -ro ro g
N N CO
o CO b> bi
">4 CO O
^ p p p
1. o OS Vj OT
-vi ro -vi ji. ji.
p 0 p o o
bi Jik
cn ro CO oi CO
ro jsk CO
p p o o o
03 W 00 03
—^ CO Co o^ 'cn
"vi -vj o cn —»•
p CD O o O o
03 -ki S3 cn <31 bi
ro TO co.co-CO-CO.,
to • o o r-* ro ro
0 o o o to
01 Ic^
<0 CO cn M
^ C» CO ^
p o o o c>
^ CO -co CO
• O CO -OO . C55
—^ fs3 CO cn
O O O ifii P
>1 p ry a> CO
p o o o c> o
an bi ii^ • ji. ji. CO
^ » cjj ro 03
ro <0 oi CO o --J
o o p p o o o
^ ro ro ro
CT>- CT> tn ^ ^
O ja. CO CO
P p p p o
ro fo Io fo ro
CO CO ro ro
CO CO CO CO to
ro ro ro ro ? ^ ,
bi CO '—o '
<0 03 <0 o I
Q P P p
to CO ^ Wi a>
0 >sJ.-..tO-X<0 CO. .
cn CO o> C7>
ppppp
cn b> oj bi bi
4s» ro o. to
to cn CO ro CO
p p
b? in
s I § §
—* p p p o
"—CO CO kj ^
° g S g :::
p p p o
bi bi Itk
CO CO to cn
ro ro o o>
000
j::>. 60
ro —I o CO
ooooo
g g g
ppppp
s ^ s ^ 2
p ^ S S ®'
ooooo
bi b) Iti jsi^'-lpi.
s^j.. CO ^ .;tn-
CO o 03 cn
_p p p p p
g^h CO CO
• CO ^ O CO -sj
cn ^ o> ro
o o o o CD
lo lo 60 ^ bs
-cn tj7 4^ -co
^ to ro
S
tn O CO CO
0 p p p O
Pi J^
OOOOO
bi to CO CO to
CO tn CO —^ o
CO —* o) ro
ooooo
ro fo K> fo fo
CO -sj -o> t^
CO CO -sj 03
ppppp
fo fo fo ro }o
CO CO CO ro ro
CO tn —-sj ^
ppppp o
jo M Io ^ fo fo
o CO ro ro ro
00 ^ ^ ro ro
^ '-"sj 48- ro.
4a» ,0 CO OS O
000 00
CO bo CO ^ ^
^ Sf M Si s
c> G cy o G
b^ b> c> b> bi
to o CO
CD o> 03 ps pn
ro fo ro -i-
bi ro o 05 b^ 4a.
ro CO o> cn cn a>
fo 1-*
CO ro
p p p o o
OT bi b^ bi
o o o o
g g
S3
op pop
^ cb CO ' cx>
to . CJI <0 ^
ooooo
a> bj bl 'bt
00 o o o
4^ 4:>.
g ^ ll
OOOOO
p p p o o
b> b) b) Itk jsk
ro CO CO tn
O O O CO to
p p p p
w CO to w
CO cn Co
CO -vl CO
p p p p p .
CO ro fo fo fo
O CO CO CO
ro -vj o
ppppp
.fo fo fo fo Io
o> oi cn cn ^
•"s: —i cn o cn
II
CI
o
0)
3
a>
3-
fi>
"S
(A
O
o>
k 3
^ag
S S? i
2 c 2
(D
IF

6-14 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
Table 6-1 (continued)
Combined Flexure
and Axial Force
Fy. = 50 ks<
W40
W-Shapes
W40x
215' 211"=
pxlO^ pxlO^ bx> (lO' pxlC bxxW
Design (kips)-^ (kip-ft)-' ' (kips)-' (kip-ft)-' (kips)-' (kip-ft)-'
ASD LRFD ASD : LRFD ASD LRFD ASb LRFD ASD LRFD ASD LRFD
0 0.578' 0.385 0.370 0.246 . 0.578:- 0.385 0.393 0.262 0.629, 0.419 0.410 0.273
;11 0.627. 0.417 0.370. 0.246 0.681, 0.453 0.412 0274 •0.685 0.456 0.410 0.273
12 0.637^ 0.424 0.370 0.246 0.704^ 0.468 0.422 0,281 0.696 0.463 0.410 0.273
.f 13 0.648 0.431 0.373 0.248 0.729i 0.485 0.432 0,287 0.708 0.471 0.416 0,277
c" 14 0.661, 0.440 0.379: 0.252 0.759: 0.505 0.442 0,294 0.722 0.481 0.423 0,282
1 15 0.674 0.448 0.385 0.256 0.792' 0.527 0.453 0,301 0:738 0.491 0,431 0,287
16 0.689 0.458 0.392 0.261 0.830 0.552 0.464 0,309 0.754 0.502 0.439 0.292
17 a705 0.469 0.399 0,265 0.873: 0.581 0.476: 0.317 0.773, 0.514 0.447 0.297
B » 18 0J23; 0,481 0,406 0,270 0.924 0.615 0,489 0.325 • 0.793 0.528 0.455 0.303
2 g
19 .0.742 0.494 :0.4i3 0.275 0.983 0.654 0.503 0.334 0.815 0.543 0.464 0.309
S X
20 0.764:, 0.508 0.280 1.05 0.698 0;517 0.344 0.840' 0.559 0.473 0.315
22 0.8i2 0.540 0.437 0.291 1.21 ' 0.803 •0.648 0.364 0.896 0.596 0.493 0.328
i g 24 0.S/f0 0.579 0.455 0.303 1.41: : 0.938 0.582- 0.388 0.963 0.640 0.514 0.342
V) «
0} 26 0.a39 0.625 B.474 0.315 1.66 1.10 0.6^2 0.414 :1.04 0.694 0.537 0.357
s S,
28 1.02 0.680 0.495, 0.329 1.92 1.28 O.B79 0.452 1.14 0.759 0.562 0.374
SI
30 0.746 : 0.5171 0.344 2.20 " 1.47 •>0:763 0.501 1.26- 0.838 0;590 0,393
32 1.2| 0.827 •0,542 0.361 2.51 1.67 0.827 0.550 1.41 0.935 0;62l 0,413
34 1.39 0.926 0.569 0,379 2.83 1.88 0.902 0.600 a.58 1.05 0:655 0.436
36 1.56 1.04 0i6Q5' 0.403 3,17 2.11 o:9t& 0.650 :1.77 1.18 0.716 0,476
S?
38 1,74 1.16 0.660: 0.439 :3.54 2.35 si;05 ' 0.701 1.98 1.32 0;782 0.520
a>
40 1.93 1.28 •0.715. 0.475 3.92 2,61 1.13 ,: 0.751 2.13 1.46 0.849 0.565
42 2.12 1.41 0.771,- 0.513 ,2.41 1.61 0.918 0.610
is
44 2.3§ 1.55 0.828 0.551 2.65 1.76 0.987 0.657
46 2.55 1.69 0.885 0.589 2.90 1.93 1.06 0,703
48 2.77 1,85 0.942 0.627 3.15 2.10 1.13 0.750
50 3.01 2,00 I.OOv 0.665 3.42 2,28 1-20 0,797
Other Constants and Properties
6yx10',(kip-ftr' 2 28 1,52 3.39 2.26 2.60 1.73
fyx10^, (kips)-' 0 526 0.350 0.538 0.358 , : 0.568 0.378
frxio', (kipsr' 0 646 0,431 0.661 0.440 0.698 0.465
rxiry 4.58 6.29 4.64 '
ry
in. 3.54 2.51 3.45
" Shape is slender for compression with Fy-50 ksi.
Note: Heavy line indicates KUry equal to or greater than ZOO.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-15
Fv = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W40
W40x
183' 167"^ 149"''''
pxlO' pxlO' ft^rXltf' pxlO^
Design (kips)-' (kip-tt)-' (kips)-' (kip-ft)-' (kips)-' (kip-ft)-'
ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD ASD LRFD
0 0.702 0.467 0.460 0.306 0.767 0.510 0;514 0.342 0,883= 0,587 0,596 0,396
11 0.823 0.548 0.485 0,323 0.907 0.603 0,547, 0.364 1.05 s 0,701 0,644' 0,429
12 0.850 0.565 0.437 0,330 0.937, 0.624 0,562 0.374 1.09 • 0,727 0,663 0,441
.f
13 0,880 0.585 0.509; 0,339 0.973 0.647 0.577: 0.384 1.14:, 0,756 0.68?' 0,454
g' 14 0.914: 0.608 0.522 0,348 1.01 0.674 0:593 0.395 1.19. 0,790 0.703 0,468
••s
15 0.953, 0.634 0.536 0,357 1,06 , 0.705 0,61 ff: 0.406 1.25: 0,828 0:725 0,483
16 0.997 0.663 0.551: 0,367 1.11 , 0.739 0,628 0,418 1,31 0.873 0,749, 0,498
S3 ^
17 1.05 0.696 0.567 0,377 1.17 : 0.779 0,647 0.431 •1,3^:: 0.925 0.774; 0,515
il
18 1.10 0.734 0.583 0.388 1.24 0,825 :0,668 0.444 1.4§ . 0.984 0.801; 0,533
19 1.17- 0.777 0.600 0.399 1,32 0.878 0,689: 0.459 1.58. 1,05 0.830 0,552
S
20 :1.24 • 0.826 0.619 0,412 1.41: P 0.938 0.71,2 0.474 1.76,:' 1,13 0:861 0,573
ss
22 1.43 0.948 0.659.: 0,439 1.64 1.09 0.763' 0.508 2.02 1.34 0.930; 0,619
ig 24 1.67 1.11 0.7()5 0,469 1.94 : 1,29 ;0.822' 0.547 2.40: 1,60 1.03 • 0,683
1 J" 26 1,96 : 1.30 0.763 0.507 2,28: • 1,52 0,919; 0.611 2.82 J 1,88 1:1 a: ,0,783
e s 28 2.27 1.51 0.859 0.571 2,65 1,76 '1i04J 0,690 3.27: 2,18 . 1:33:, 0t887
"i f
30 2.61 1.74 0.957 0,636 3.04 2,02 ,1:16- Q,771 3.75:1 2,50 0,993
32 ;2,97 1.98 1,06 0,702 3.45:- 2,30 0,853 :4.27C 2,84 1 ;66; 1,10
34 3.35 2.23 1.16 0,769 •3.90 7 2,59 '1.41 ; 0,937 4.821: 3.21 1:82 = 1.21
O) 3
36 3.76 2.50 1.26 0,837 4.37 2,91 1.53; 1,02 .5.41 , 3.60 1:99 1,33
1 &
38 4.19 2.79 1.36, 0,905 4,87 : 3,24 1,66: 1,T1 :6.02 • 4,01 2:16 1,44
.1
40 4.64 3.09 1,46 .. 0,973 5.40 3,59 1,79 1,19 "
i
! •i"'
other Constants and Properties
fiyX10^(klp-ft)-^ 4.03 2,68 4.69 3,12 : 5:74 3,82
fyXl(P, (kips)-^ 0.627 0,417 •0.677 0,451 , 0J63 0,507
frx10^ (kips)-' •0,770 0,513 0.832 0,555 0.937 0,624
r,/ry 6.31 6.38 6,55
ry, in. 2.49 2.40 2.29
' Shape is slender for compression witli F,=50 ksi.
' Shape dc )es not meet the »/(„ limit for shear in AISC Spectfication Section G2.1 (a) with F, - 50 ksi; therefore, = 0,90 and
0,= 1.67.
Note: Heavy line indicates KUry equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

w
s-
s
8 g
g
X X X
O O C5
—' -sj
o o o
ii g
(vj 03 ce
pop
Kj fS3 ^
g
o o o
_L _L cn
Effective length, KL (ft), with respect to least radius of gyration, r„
or Unbraced Ungth, U (ft), for X-X axis bending
gfefefiiS g^sggfcs SSKSS SSS^S SSSiSit
P O
32
o o
tn cn
p p
w
o t>
to OS
cn .CO....
o o o o
1 05
CO ^ " o ro CO o o a> o •
o o o
OJ OS
O O O O O
> o o
CO oo
o o o
05 Ni hO
oo ooooo ooooo
NJ
OJ N3
to O
P P P :
CO CO ho I
p p p p fe p p p p p o p p p p
cn Jii... • N) lO fO TO.
—J. CO ,-sj ^ ro o CO cr> js. lo p to ti>
P P
ro ro
O O O O CD
ISJSI
ooooo OOO
I-^IJI^IJ-O ooo
(£> to
• §
p p
S o
CO
rs5 CO
p p pop
S TO §
o o
o o
CO CO
NJ NJ
CO CO
ooooo
ooooo
03 CO 03 03 CO
cn cn cn cn
ooo
kig 2
O ro
P P
6
o o ooo o o
kk
p p p
CO u Ko
s d s
ooooo O O '
I ro to
CO...CO-
' cn ro
pop
a> bi
CO CO
CO 03 o
o o o o o
ji. CO CO
g g g s ^
o o
bj rs5
g 3
ro Ks
a Eg
p p p
o Kj ^
8 ^
p p p
CO CO --sj
o o ooo
CO a> o>
—^ a> ro CD cn N5
P P
3 s
ooo
fo g
p p ip p p
p p & G G G G
P P P
01- CJl
o o CO
p p
II
-2 S'S
P P
s s
, p p
; S ^
p p p
ro ro ro
CO a> CO
o o op
P P P
ro o o
P P
Si
pop
s ° w
p p
i I
311la g
o d' o
" a
->J CO CO
p p
«I
o o
hk
p p p
LO LO CO
g t ES
a p o p p p
Ks fo fvj
g s
o o
Ks M
a a
P P
cn cn
—^ cn o
-i CJT -L
pop pop
bi cn w
g e g s
P P
g s
ro ro
g g
ooo
fo fo ro
ooooo ooOoo
lo 1S3 ro
CO -sj fsj
o o
fo ro
o o o
fo jo y
o o o o p o o ooooo Opp
JS S .1
p p
a> o>
pop
o> cn c^i
tS> CO Ji.
P P
g S
OOOOO
^ £ g;
P P
p p p
ro N3 ro
ro o
ooooo ooooo
s;
3
i
w
3-
0)
•O
(D
CO
^ 3
<I> _
SLQ.O
o 0 3
It
OI
o
s
3
3
I
«
£
g
-g-g^
O O
CO fO !-».
cn CO o
CO
g g
!=> S
CO o to
Effective length, KL (ft), with respect to least radius of gyration, ry,
or Unbraced Length, Li, (ft), for X-X axis bending
p p
!§ 2
o o
^ OJ
-sj s
ooo
S g
ooooo
ja^ js., CO CO
O -CO cn .
o> o CO CO
ooooo
CO CO CO CO M
o o
CO to
p p p
ro ro ro
CO.-CO -Nj..
po p
o o O O O
^ ^ o o cn
to CO -I. a>
CO cj) CO CO
o o
cn jsk
ooo
fe ^ fe
cn cn
o o O o O
CO fo fo Ki ro
—^ to cn CO
CO CO
ro ro
ro —^
cn CO
OOO o o o o o
g g g
o o
^ 0> CO -r* cn
O O pop
io to fo
• .CO ro.
o o o o
;
— Ch
p ppppp ppppp p
o . . ^ CO .<0 ^ . CO ca ca . ca 03 ca
ro p {O o CO -s .rs
p o o O o
P P
I cn o> 03
<o <o cn —^
pop pOppo op
P P P
ro ro N3
<0 CO
O O O O O
O O. '
CO '
" TO ro '
OOOOO
j^k
TO, / " ~
o TO ro
o o Ooo
CO CO CO
TO cn. ^
o o
CO CO
g
ooo
CO lo CO
ro ^
^ TO CO
o o o o o o o
g
ooo
fe g
ooooo
ro-^ji. ji.'^-Pi.oto
ooooo
fo fo fo fo fo
_ cn ^ ^ CO ro
o o
fo fo
p p p
fo fo fo
p p o o o
w CO CO w fo
CO ro -». o CO
TO cn cn cn TO
o O o o o
f^ to fo fo fo . _
ooooo
fo Hb fo fo ro
— jsk CO CO ro
p to -ft*. TO
p p p p p
fo fo fo fo fo
ro ro
. TT^ TO CO
o o ooo
s
TO CO CP TO
OOOOO
bj bj g 5
•Cs. 03 O CO -sj
Op pop ppppp OOOOO ooooo
4^COCOCOCO
TO->Jcn4i.ro -lcdcocoo
-i. ^ ^ o o
ro o CD ca TO
o o
TO P TTf P M
O O p O O
Cn CJl 'Ji.
S S S 5! S
O O O O p
^ bi a
O CO . 03 .
CO >J rvl CO
O O
CO W
TO
o ro
OOO
is gs
^ P> O (p (p
-»• CO cn TO
cn TO cn 05
o o
2 g ro OJ
TO --si 4::^
OOOOO
CO OJ bj OJ fo
^ TO to TO ^
O p O O O O O
fo fo fo fo fo fo fo
"vi TO cn cn ^ .fe
to —»• -"-J —^ TO —^
OOO
TO ro TO
OOOOO
to- ^ fiS (W to
to TO cn CO
o p
to ^
ro -r^-
P P
to ro ro
o o o o^ o
f^ fiS fo Ki ro
TO TO TO cn
jO >1 . .
ooooo
Ki^ fiO fo Ks f^
4:;^ CO to
.TO. JO...
P P
Kg
fo fo
to to tc
P p CD o p
fo fo fo fo fo
TO cj) -p!» CO ^ro
CO o CO cn
P P
fo fo
p p p
O to CO
cn CD CO
OOOOO p p p p p
s s s i ^
p p
s 2
pop
cn cn cn
CO CO CO a
w
3-
0)
"D
(D
»
li

o-
(D
Q-8
-n I! S
O <D 5"
ill

§
§
5)-
g
X X X
•g
SSI,
i. i.
ES
O O i
KJ SO •
CO l\3
ro <£>
o o o
CO So CO
0 0103
O
^ s
§
Effective length, KL (ft), with respect to least radius of gyration, r,,
or Unbraced Length, Li, (ft), for X-X axis bending
Sfeg^ft g^SKtS S S iS o
^ -1. -A G Ci ^ O G Q Q O O
. tr> ii CO '-J- b> a> CD CJ1
1 CJ1- CO o <o CO CP cn o a> ro
CO o lO CO cn
1 ro CO
oppoo pppop
CO CO M ^
-O <0 0). CD
CJ1 -vi <o. ro o>
cji CO ro
<o -s
_1 _L O o o p p p p I
^ q> bi tn •
—I. ^ CO ro
•"sj CO —I a> '
o o o o o
Js. CO CO CO
CO o ^ ro
03 CO CO -sj cn
o o o o o <P G C> Q
So ro Ks ro ho
3 2 S 2 g
O P o o o
j:.. IC^ Icia. M Co
O -t^ —^ (O Co
C71 -X --vi to Jii.
OOP.
CO CO hi
cn
' o
; n ...
o o o o o o o
CO W M fS5 M
O --<0. CO CO
ai -Ssi <o
to N3
vs
o o o
Kj fo ro
3 2 §
p p p p p
Ki So Ks ro
ooooo ooooo ooooo oooop oopop
CO N3 ro ro ro
o CO a> C7I
CD Co cn cn
N3 N3 ro N3 fU
^ CO CO ro. —••
•vi CO O CO o^
{vj ro —I —I
o CO CO CO
o CO ro -sj
2 3 g fe 8
—I -I. o o o
^ O <D bo ^
^ 2 ^
p p p p p
^ a> b> cn cn
—f. CS> -J- Oi -CO
CO -J. to fS5
p p o o o
j^w '-p^
'vi cn
ro ^
Q Q ^ Q ^ p
Ica. lu M
r" P P
o <o bo
O O
s s
o> cn cn
CO -sj N3
cs:> cn CO
ooooo
Jii. js.. CO CO
-sj js* o -sj cn
CO O -vj CO -c*.
CO CO
o o o ooooo
So So So So Ki
CO CO Co
jii CO ro ro
ooooo ooooo
^ —i CO cn CO •-.—^ o CO ^ ^
CO-CxtOP^
ooooo
ro ro
ooooo
So fo ^
o o o o
So So ro K
Co CP CO
ooooo ooooo ooooo ooooo
gMggg Siggg g^ggi ssss
ooooo
0 OOOOP
> b> in
-co cn g 554-11-
.--i i g
Ji. c;; to CO
ei p p o
ID -t^ p
O P o o o
fei i; a; fe.fe
cn p >1 p
Q Q O G CS
"co ^ a> OS cn
cn CD ro g?
o o o '
Ja. ja. 4a. i
CO O '
Q Q <p <p ^
CO ^ 0:1 ^ ^
cn 45>i CO CO ro
CO CO CO CO
OOOOO
O CO Co 03 CO <0
OOOOO
b> 01 bi cn 4a.
CO 4:^. —CP
ro .o -v4 4i.ro
00 o p p
i
ooooo
CO 09 to ^ lb
CO -vi cn 4a. CO
-r^. CO 03 03
oooop
CO w ^ w w
00 CO ^ o .
ooooo o
CO CO fo So So So
o o o o
—••
o 00 o o o p
So So
o o
E3 K
fvj cn
p p p
So So So
03 cri fvj •
00 ooooo
ro ro —i —^ —^ —^
O O CD CO CO CD
CO CO CO CO CO
i
a 0 5?
S 3 ^
t
=r
fii
•O
o
w
-n 3 S
O <D 5'
« ^ i
® I-
II
g
S
g
X X X
i
P P T*
W V ^
CO CO cn
o o —»
CO So
o O fS5
bi 4a. b>
=
P P r"
CO So ^
to CO
to cn
P
O? O CO
Effective length, KL (ft), with respect to least radius of gyration, fy,
or Unbraced Length, Lb (ft), for X-X axis bending
gfesssfe sg^kfs gggsis siSsSiSi
fSSfvj—i-A-i.
-i o <D
.4^-ro.M.
p p O O O
03 -vi ^ a> oi
-Vi —I 0>
O) O} O)
0000
g w tn ^
O CD o
bj cn 4a. :
—^ o to I
§
o o
'<£3 TO
CO —•• cn
-vj CO
p p p p p
^ ^ ^ ^
OS o> ro Co
Q ^ ^ ^ G
CO CO CO CO CO
CO --sj 05 cn 4:^.
00 -vi o^ -vj 00
p p o o o
CO CO CO iw
•Ci. CO fvj ro
O CO --sj fvj -vj
tb o o p
p' .O ^ w V?
cn oj 03 <0 ^
P P
cn ifek
000
Ua. 4:a.
cn. CO
000
4:^ —i <0
O O O O C»
is S
^ fO fo -vj
OOOOO
g g fg fg fS
ro ^ ^
ooooo
4a. 4a. CO CO
a> —^ CO o>
CO CO CO fvJ -vj
CO CO
000
^ ^ sg
p p p p p
So So So So So
CO -Sj o> cn
—^ ro CO Cn
p p p p p
So So So So So
w CO CO ro ro
CO 4:^ -vj 4a.
p p p p O
So So So So So
—^ CO cn cn cn
CO CO
cn So
fvj Ki N3 N3
^ o 09
-cn-.co OS S fe fe i i
Q Q ^ Q Ci
bo ^ kj 05 <35
§ S 2 -
Q ^ o o
b> ai cn ai
S g
a . t
fvJ
CO ^
CO CO
-I p o
CO ca
o o
O)
ooooo
a g
§ g
P> Q o p> o
^ CO CO CO CO
CO 03 05 cn
4a. cn O 05 4a.
o o
CO CO
G ^ Q O G
<71 Oi <J
Co CO CO 03 -
to o ro ro
I p 0 0 C3
: cn ja. jik. ^
—* 0» - 05 -ta. .
: cn to cn CO
ooooo
4:a. ^ p
p O O O O
bo bS Ca W
00 •vj.-o^. 05 cn
-f ^ 0 CO
o o
cn cn
ooooo
Ita ja 4a. b)
TO cn ro CO
CD CO O
p p p p
bj bi bi So
ro o CO
Co cn CO cn
ooooo
^ So So So So
03 -vi a> cn
ro OS o -Ci CD
p p p p o
ro So So So So
cn 4:;^ CO CO
4:;^ CO 4:;^ CD cn
ro ro
0 TO
ro
8
bo a>
CO -"sj H2
Ita.
-sj cn
bj
CO
So ^
ro
0
OOOOP
•vj -i OJ CO
p p o
o g g ^
M ^ m
o o
g.
ooooo
g isis fs
o p p ^ w
s
p p o p
cn cn ^
' cn iii
I CO o CO
00000 PooPo
1 fe k is g SS g 2 k
4a.fvO—'•{NJCO 05c0fv0--sj-^
G O O O G
"vi '-vi 0> OS
CO ^ o cn p-i
CO. O >4 CO
p O O O o
cn ii.
p p o 00
^'^....o .p..
O O o O O
bi> bd bj CO b^
03 --NJ --sj 05 ai
-to. co.,.ro .oi...o .
ooooo
^ ^ ^ '
QOOOO 000 O'O
bl 4s. It^ Ifc^ 4a.
p p P p O
bj N) So So So
o CO p o>
4a. CO [\3 CO 4a.
C> Q Q ^ Q
So So So So So
cn cn 4i. jia. 4:^.
cn —i -sj CO o
ooooo
So So So So So
g g g g
lA
3
2:
CO
cn
o
g-
I
0)
m
•o
(D
M
"
wag
•n 3 =
O ® 5"
(D ^ S
<D
1

s
X X X
p p
4Sk 03 to
g ^
o o ro
b> Ife o
4Sk CO
o ro tn
O O CO
o ro
CO ho
^ ui ro
ro to
Effective length, Xi (ft), with respect to least radius of gyration, ry,
or Unbraced Length, Li, (ft), for X-X axis bending S
gfeSjgiS gfeg^KSS sssi^s;
1g
i
OJ 4&» W fO - O
CO N5 M ro ro r^ r^ r^ ' r^ o o o o o
a> b> b> b> tn
.lO- 0> CO...T-"- CO.,
JSI. CO -si CO --A
-A —«-ooo ooooo
O CD -J 0>
ooooo
ji. 4Si. 4Si. Ji. w
05 Ji". (\3 O CD
-I -i. Ji. CO CO
•g
1
OOOOO
ro tvj ro ^
OOOOO
a> ch b> cn
-rV O CO
O O O O cb
J&k
• ~ . cn ^ CO..
•>J
O O .tD O O
ji^ ^ 09
p p p p
I bi -fc'
. CO 451. o oi
I o o o o
p p p p
CO CO CO CO
p p p p p
CO CO OJ KJ ho
-»• O CO CO
CO ji' —^
ooooo
ro ro ro ro Vo
CO o> o>
^ CO CO (\3
X
(\3 (\3 (\3
g S
o O O o
CO 'co bo ^
>4 CD N3 .05 .
cn ro
ooooo p p p p p
cji cy» cn bi bi
^ s ^ s g-
•o
p p ^
o CO CO ^
CO CO CO CO
—^ O CD CO
p p p p p
2 S 2 S ^
CO CD g fe g
o o o p p
^
K CO ro o
ooooo
OJ CO CO W CO
CO CO
4i>. 0> CO CO CO
0>
3-
cu
(0
ci) o o o o
CO c» ^ ^ b>
ro ro CO
CP CO OS CO o
p c^ p p p
CJ5 oi wi' cin Cfl
§ g i^ S
^ pi pi ^ ^
-I . <0
ooooo
0> p CO
o o o
OJ CO ^
^ -vl - -Vj
rHi cn O O O
X
000C30 oooop
cn en cn
CO cn —^ CO CD
—V CO CD ro
J^ai CO CO CO
ro CO --vj CD
o —^ -fs-
ooooo
CO CO CO js3 fo
(\j —L o CO 00
CO CT) en 45!»- 4X
ooooo
Ko to Kj to (vj
•Vj -vj 0> 05 Ol
ooooo
ho ro fo ro ro
cn 4^ 4^ 4^ .
CO CD 0> CJi 05
CO OJ (o
S fes s ^
i^oppp
o <o CO 00 ba
JO CTj -O- tn o •
.. c?t T^ ro CD
o p p Ci p
^ ^ ^ b> b>
^ .CO o Xjy
P 0> pi CO
ro ro fo ro ^
^ [fck f\3 o ^
CO CO CO O CO
r* r^ P
CO hO O 03
CO en CO
p p p p p
b> bj bi
CO CO CO
cji cn CO CO
O p o o o
451. 4^
05 cn CO
CO en
5
3
•a
X
-A
-T^- o o p
'ili o <0 CO do
Cn -vj CO —^
o o o o _
'<i bi o) ij> cn
CT) CD cn —^ CO
tn CO. 451... o
-••CO cr» CO
451... o OCT)
00000
01 bi ui 'tn §g
ro CO CO -J —
CO. 0..00 CT> {j\,(jx ..-t^
o p o
oi (\3
cn
ooooo p p p p p
OTCniicoco r^^i^ooto
os'-vjcotD—^ coocoroo
p p p
CO CO CO CO CO
X
^ o>
ISi
Q}
ill
ai
o
I 8
I
X X X
Iff
O C3 OJ
^ trt OT
ro CO C7t
o ro
9
Ji. CO
g g CO
p p ^
^ cn
Si
s
p O
cn m Ki
r\3 Oi
—. CO
Effective length, /fi (ft), with respect to least radius of gyration, r„
or Unbraced Ungth, I4 (ft), for X-X axis bending
W
iS sssKK ssssijsj ssj^sji
fi)
1
451. 'W CO N> ro ro ro ^ ^^ ^
CO o ^ V to
to CO co^
-«. -1. p o o
o CO CO bo
—«• -C7t CO CO-QO
ro
10 to ro —t —t
^ ia. Ks CO ^
CO cn -g cn
O o o CD o
2 g ^ 2 ZI,
a> cji CO o> 09
II
tti
o
451. CO -L
p p p p
b> b^ CT5 bi
^ ro CO
C5> CT5 O CO
ooooo o
g a ^ fe i
O O) CT) CO OJ —t
is js i S . . .
p p <z> o o
CO ^ kj b^ a>
a g K 3 s
o O CD CD o
§ g 2
p p p 0
cn bi bi ^ ^
(SP <£? "S P
o o o o o
^ H 51 s s
CO CO CO CO CO
p p
br br
p p p p p p o
CO CO CO CO
O CO CO o>
CO (VJ (VJ (VJ CO
O p
w CO ^
a
o O
CO CO
451. CO to CO ro
ji. CO b* ^ bo
0,-v| p. CP
ro ^ ^ ^
o o .to o .
r" ^ p p
-co.-lo S .S jS
cn -s}
o O O O C5
§ g s
cn to
I
« o s«
2 3 s
§ s s
CO .(orororo—»• —i.—i^^Li
•o
X
OOOOO
ssiggg sssg
CO ro ro
000
g S3 Is
ro CO -""J
P P
bi br
OJ (o
CO oi
PP.
OCT^OJCTibl
S SS 52 S ? 2 g
ppppp OOOOO
^ 9L Q. o
® TPI 3 S
^^ ^vb SS'
>J 4a. p <Ji
OOOOO
^ is g ij
g
p p p o
b) cn Iti
(o CO crt
ro -vj cn —i —'
g
ooooo
Ita. Its. 4i. CO
X
p p p p o
CO CO w CO CO
Co 0> cn 4i».
o —ro CO cn 3
® 3"
^ §
Q.
a
:C». ^ pj pi fo ro r^ -A
b> CO o ^ 4i.
CD- cn ro (\3 CO
r^ r^ PPPPP
! S . g,!
^ to ro M ro —^
CO CO CO o
—^ o
bi CO A- ^
CO o> cn cn CO
ooooo
03 03 ^ ^ b>
o CT) ro CO
Co cn o —^ -sj
ooooo
s
i?
^
JO <D
0000
B ^ ki
CO ov o> O Ol
Ooooo
^ 05 bi bi bi
^ CO cn CO
.0 CO O...-^ .
0000
^
_ 00 -«4 cn
..•>4 . to -<1 .!60.„C0
bi
r^ P P
—^ o CO 03
o ro '.4x <T) CO •
a> CD (o
p p p :p p
^ o bi b) bi
-«4 CO O
CO cn a> ro
o o o'o O
4^ Ic^ 451. 4^ 451.
•o
X i
X
ppppp
bj OJ OJ
—^ o CO CO
o O (vj a a

\S Si
II
f S
IS 5
f
S
® •
a
#
II
g
g
X xl<
O O ^
OS ^ bi
o o cn
2 g
^ O Oi
o bo CD
g ^
Effective length, KL (tt), with respect to least radius of gyration, r,,
or Unbraced Length, tn (ft), for X-X axis bending
ggg^^fS d^^u^it o
O O CO
§ s ^
cn -J
C>) ^ CO 63
CO C71 ro CO b> CO co ro
o CO ..CO jia. -vi ro
^ ^ o o o
o o ^ ^ to
CO CO cji ro
OJ CO ro ro ro
^ CO CJ1 ro CO -vj ^ rsD o
CO —^ —"-ro cn o
o p p p
CO 03 03 ^
ro -xj ro c»
CO ro j^i _L
O G o ^
^ OT 05 o
—' CO cn CO -r^
—' CO -xj cn o
_L _L o O O
p po p.
o o o o o
^ ^ ^ b>
K S S
® f^
cf) o o cn
CO o.
p CO ro p —
bx
o o
8
S
a ^ a a a
^ '-sj a> C71 CJ1
CD —^ CO CO
-.J ro J^ cn
c?oooc> oc><=>oc>
: fe
o o r: S S3 g
i5'
cn <J1
5 s-is." " : S
CO ro ro ro -ik
. CO CO.-,i
-a o O
0 "o
01 -
i §
CO CO CO ro ro
^ jia. o ^ '-c^
05 CO ro
-». p p p p
O ^ CO CO CO
o CO -ta. O
CO o CO
o o o o
I g'
S g
CO JSk CO 05
N r^ r^ r^
CD ->4 JS*
O TO CO
fJ' ^ O O
CO fs3 O k) 00
0 05 01 CO
ro an
ci c> o o o O C) o o
ro cn
O ^ CO S S
ooooo ooooo pp o o
o> cri jfei
CO ^
ro. co-o—
oi 6i ro tsi ro
bo M CO o
ro ro -sj o>
CO Ko ro ^ o
- CO ro - CO ^ o>
cocoro Karo—^^^pp ppppp
obsKabo cnfocobico --^iiiocq^
-.io.oico cooco:^!^ g^-ag
^o to ro
isisss
b> 03
ooooo
^ ^ bo bo
o O o o o
BB «SJ ^ ^ ^ ^
g s s ^ 8
S g £3 il.
o o o o p
CO -vj 05 o
• CCJ —' CO <D
P P P
cn Cn cn
S
Q>
TD
®
(0
D)
0
D)
0
3
Q. 3
w
J 5'
(D
a
•n 3
0 (D
(D
X
c
<D
— o
3
C
(D
a
ii
§
£3
X X
X
CO ro
s s
ro —1.
to
o cn
Effective length, KL (ft), with respect to least radius of gyration, ry,
or Unbraced Length, Lb (ft), for X-X axis bending
gfegfefe S^^^fg gSKKK g^sStJsl
P P r^
CO CO ro
g ^ 05
o o o
^ ^ 2
O O
K CO
cn CO
S g .s j; g
ooooo
tp oe> O) bi
fe g g s -^
p p o o o
cn Cn j^iL Icii. ^
ro. CO Ji. -a:.
^ CO to CO
ooooo
^ k ^ ^ ^
CO ro CO ^
p p p o o
CO CO CO CO CO
CO CO ro fo.
05 CO ro cjj o
PPPPP
CO ^ bo ^ b>
CO P CO OJ CO
05 to fO
ppppp
cn cn oi Ick
ro OT -J. cn —i
CO CO o CO cn
p p o o o
^ CO CO ro ro
CO jia. ro CD -vj
o 00 ro CD CD
p p p p o
to fo Ko ro ro
p p p o o
o cn —' -xj CO
p p o o O
W W CO CO CO
ooooo
CO Co M ro ro
-J o. co co 00.
o ro —si o
o o o o
« K tg
cn o 3
p p o o o
ro ro ro ^ ^
•NJ cn
ooooo
ooooo
fo ro ro ro fo
CO CO ro
c» —I- CO ro
ooooo
fo KJ IJ.
p O CO CD CO
OT —I- —^ <D
ppppo OOOOO p O p o o
p p p p
. S S S O..S
o o o
b> cn
CO -NJ CO
ro CO IS
ooooo
OJ M
- - ro CO. 00 .
ppppo
CO M CO CO CO
g a g g s
p p p
o ^ bo ^
o ro -"si
CO CO
o o cb o o
S S g ^ fe
—^ CO 00 O N5
poo
^ w
p o ooooo
CO w fo fo ro fo ro
CO o CO CO -si cn
o CO CO o CO 05 CO
p p p
ro fo ro
cn .
CO CO CO .
p p p p p
^ M CO CO CO
O 00 05
ro 03 Cn CO
OOOOO o o O O O
w ro ro Ko ro
cn » p CO
p p o o o
fo ro fo^ ro
3 5 g
cs o o o o
fo fsa ro ro K»
cn cn cn cn cn
p p o o o
fo ^ ro fo fo
p o O o o
to fo fo fo fo
CO ro ro -k. o
CO -"si o ji. 00
ppppp ppppo ooooo
« tn CO ^
-i- o p o
O CO 06 ^
'"si OJ 05 03
CO CO o '
p p p p
b> cn cn cn
o « S o
ooooo
j:*.
CO ^ cn CO
o >J cn Jifc
p p p p
^ 4a; M M
ro- -L . o- to. r^
CO ^ 0> CO
r*- P P
ro •—I. o CD CO
•ts- cn cn
ppppp ppppp ppppp ooooo
•vj ro
^ ip cn cn
CO —t Ji. —1-• ^ CO
CO CO CO ,
ro —^ o '
ro CO J;;^ 1
ro ro ro ro ro
00 ^ ^ OT cn
ro cn o cn o
ooooo
w
S ^ 2 g
ppppp
CO CO to CO
s g g s s
p p p o o
CO CO CO CO CO
p p p o o
w w fo fo fo
O O CO CD CO
cn -nJ. J;;* O
ooooo
fo fo fo ro fo
00 00 ^ 00 «
ppppo
CO CO oj fo Ki
CO —i CD CO CO
4:^ CO ro —' —^
o o o o o
K:> fo to K:> fo
cn - cn CO
CO ^ o> CO
ppppo
fo ro ro ro fo
CO ro ro -i. o
ro 05 o 4s. 00
p p p o o
ro fo ^ IJ.
^ O <Z> ^ C3
CO 03 CO 00 03
-L to -sj -sj

fi>
•g II
§
« o s^
S 9 2
s;- ® ^
w w a o
"C O
•iU
(D
CO
=r
u
T3
ih

..._..
XXX
o
w cn
g CO
oj ro o
o o
P P i-'
<ri ^
OJ 03 o>
o ro
o o
bo ro
CO -sj
(in w
Effective length, KL {ff), with respect to least radius of gyration, ty,
or Unbraced Length, L/, (ft), for X-X axis bending
SSStfe ggggfS gSiSKK SSoSSS o
is^
M ^ o <
. ro CD I
00000
a> 03 O T*:
o p o o o
u^ ch ^ ^ ^
-CO. -O. CO ^
CO op CO o>
00000
r^ P
o <0
05 -vj
00000
CO ^ ^ b> In
03 C£? —' CO -Sj
O CO CO cn
p o p p p
cn Ic^ 00
fvj OJ o
CO CO CD 0> CO
00000 O ^ Q &
CO CO KJ fo Ko
O O CO CO CO
CO ro 0 o cn g
p p p p p
w tn ^
(£> a> CO o CO
ro CO CO CO N)
00000
Ip^ Ibk V
lOi ^ CO - ^ o
00000 00000
CO CO CO CO
, CO ro ro - .—*•
>4 N3 CO OJ <0
G Q Q G
U OJ M M
s ^^ >J >1 ^
s
p p p p p
CO CO CO w CO
CO -si CO ro
jsk js. cn o
o o o o o
03 -J -si CO
p o p p p
Ko Kj ro ro ro
CJ1 4a. CO CO
to -J o
O o o o p
fo po M ro ro
^ ' T*- oo cn rs3
o o o p
Kj Kj ro ho
—^0000
o ^ - •
ro -J'
S b S a :
4a. CO fo O CO
CO CO O c»
p o p p p
CO >4 ^ CD C>
CO-CO oj
en CO <0
00000
stasis
^ CO -J ro CO
00000
^ g
CO
OB
CO cn
-L o o o o o
• o CO
p o p ^ p
u>
00 CO CO cn -
fvj ro 00 ro
o o o o o
CO Co CO W CO
CO Co .-"J 05 CD
CO O O -J-
p p p p p
CO OJ CO OJ ^
^ CO M ro ^
GJ cn CO to a>
O o p p p
^ <31 <35 cn
o -si CO CO 05
CO ro cn CO ro
00000
Cj| cn js^ Ji;
-Co —k ^ --si - cn
cn ^ 05 <0
00000
jifc ^ oa
CO 03 cn
o p o p p
bd CO CO CO CO
• -sJ o> O} "
CO CO ro jg
p p p p p
£
00000
ii ii CO w
ro CO
-J ro CO
c:) <=> p c:> Q
^ u u OJ u
^ fo CO -si S
00000
Kj fo ro fo fo
CO CO -sj 05 cn
cn cn 05 -sj CO
00000
fo fo fo fo fo
cn CO
ro Co j^a —^ CX3
0000
Kj fo fo fvj
W M INJ
CO CO CO
ro ro ro
tn bo ^ CO CO
-si- -s| CO CO —^
000
bo V4 bs
^ ^ ^
0000 o o p p p
<35 cn ^
CO CO CD a>
-si CO o> —^
0
cn
y
0
g
0
cn
s
p
cn
CO
00
0
cn
ts
0
b)
S
0
0 p
bo
2
0
g
05
0
bo
cn
CO
0
bo
cn
p
bo
4a.
p
bo
CO
o o p p p
CO -si -ii -j 'cS
^ S S S. CO
O O O 63 O
05 ^ W ^
00000
^ ^
o CO 05 cn CO
—^ . CO o> . o . .o>.
00000
K bo
. 5; S S
0000
CO ^ bo
g S 2 S
S3
0000 ppp'p
cnbij^js. 4:^bJcoco
C3—>•—i fsorocno
O o o p p
CO bi bo CO fo
CO ro ^ . o CO
CO —»• o o o
0000
fo Ko Ko fo
2 a a g
00000 o
fo fo fo fo fo fo
g s s K a
1 M
5"
(D
a>
o
o
I?.
Id-
"oof
® I-
II
8
s-
X X X
ESS
g
o o ro
b> tn ^
^ -vi
CO —i-
•f^ o:> ^
s g
g
P tS3
Effective length, KL (ft), with respect to least radius of gyration, r^,
or Unbraced Length, U (ft), for X-X axis bending
gfeg^iS ggggfg ggggK
ro ro ro ro ro -i p p
O CO 00
-s| -si CO.
O CO
O o
CO
•Jo g
o p o ci» o
• SS g 2 S
o p O o C3
05 o> ^ cn cn
-gag
CO cs> ^ CO
<0 cn o -si
C> O O
00—^
bo 05
2 a ^
O O Jiai
CO 05
s •
fs
a
CO -s|
-sj CO
05 05
I o o
S g
00000
-si cn ^ CO —L
M -sj CO CO
^ c> ^ p> p>
ii bo bo CO bo
o CO CO -CO -vj
CO CO CO
p p p o o
g g » ba ^
w ^ (o cn ro
p o o o o
-sj 05 b) oi cn
! S S
I CO <0
o o
cn ^
Q CO
o CO
00000
• -Ck. ^ ^ ^
; cn . -pi CO . CO
1 —^ -sj ^
00000
jS.
00000
S fe g 2 is
05 o cn CO Js.
p p p p o
^ ^ io o «
Co j^i j^i cn CO
000
bo bo bo
g ^
o c=>
bo bo
^ o <=> p> cz>
CO ^ ^ fs? g
. O CO CO
p p p p i
fo Ko fo fo i
CO CO -sj -sj
05 ro CO -s/
CO ro to ro to
Ko CO "-si lu ro
o cn ^ CO . <35. ..
o CO b> CO
.cn tn o> . CO. fo .
^ 7*
5
o o
P P P P ®
--st '-4 ^
-CO . 05. ^ ro
g s
Q Q O Q
^ P ^ O Ol
p o o o o
05 <j}
O 05
-si NJ
g ^ S
p p p o o
05 05 ii ii ii
ro o to CO -sj
CO ^ to o
p p p o p
ii Ifi. Ipi ii ^
cn cn CO ro
CO o —^ CO a>
^ -J. O CO CO
^ ^ ^
cn o
p p p o o o o o o O
g'
a o
g ;
P p 0 p
CO" CO
cn tn
ro ro
00000
cn >4 CD •
ppppp ppppp
, 0 05 05
CO CO CD J^i o
O 0> to CO o>
cn .
JO CO 05 ^
O Ja. to
poo
bo
ro o CO
ro CO
p p p p o p o
bo bo bs b? bo bo bo
-s| OJ ^ CO fO fO
-ta O -si -L 05 CO
p p p o o
W CO W W bs
CO ^ S ^ ^
4a. ^ ^ w W ro ro ^ ^ ^ -L -L -L ^
CO W S .CO. S o 2
P o o c> C> o
S jg. 2 g.g Is
ro o CO o o
cororororo.-»^— o c:) o c:) c:)
CO bo ^ ^ <35
CO ro -si CO CO
—^ cn cn —^ fso
ppppp
05 05 05 0101
0> CO O CO 05
o ro -sj 05 o>
w cn 4a; bo fo ^ Jb. i
05 cn ^ c*o ^ ^ '
000
CO ^
4a. CO
-0>
o p o o o
'-si ^ <35 <j>
ro o CO -si
. CO CO CO. „CD -k
00000
-J. _L p p O
•—L o CO Co CO
O 00 .cn CO
p p p p
05 05 05 cn
0000 O'
4a. ii.
CO CO -si cn
CO ^ —^ <» -si
p p p ® p
ia, ii CO
CO ro —^ o to
cn cn cn cn 05
01
II
01
o
?
CO
3-
S)
Y
V)
a
3
a (D
o
o
3
Eo
s:* ® --
ttag
Tn 3 S
5 © i'
o
© .
<D
11
if

6-26 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W33
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
W33x
Shape
152' 141' 130'
Design
PX 10^ px 10^ 10' pxlO^
Design (kips)-' (Wp-ft)-' (kips)-' (kip-tt)-' (kips)-' (kip-ft)-' Design
ASb LRFD ASD LRFD ASO LRFD ASb 1.RFD ASD LRFD ASD LRFD
0 0.809 0.538 0.637 0.424 0.891' 0.593 0,693; 0,461 0.982 0.654 0.763 0,508
11 0.956 0.636 0.673 0.447 1.05 0,702 0,735 0.489 .1.16.: 0.775 0.814 0,542
12 0.988 0.658 0.689 0,459 1.09 0.726 0.754; 0.502 •1.20 0.801 0.837 0,557
.f 13 1.03 0.682 0.707 0,470 1.13 -0.753 0.774 0.515 0.832 0.860 0,572
c 14 1.07 0.710 0.725 0.483 1.18 0784 0.796 0.529 1,30- .0.867 0.885 0,589
if
to T3
15 1.11 0,742 0.745 0.496 1.23 0.820 0.818 0.544 1.36:: 0,907 0.911; 0,606
if
to T3 16 •1.17 0,778 0.765 0.509 1.29 0.860 0.841 0.560 1.43 0,952 0.939 0.624
o c
M SJ 17 1.23 0,819 0.787 0.524 1.36 0.907 0.866^ 0.576 1.51 1.00 0.968 0.644
a ^
'•Q M 18 1.30 0.866 0.8T0 0.539 1.44 : 0.960 0.893 0,594 1.60 1,06 0.S99 0.665
s'i 19 1.39 0.923 0.834 0,555 1.53 1.02 0.921• 0.613 1.70. 113 1.03 0.687
S >!c
20 1.48 0,987 0.860 0,572 1.64 1.09 0,951 0.633 :i.82 1.21 1.07! 0.711
22 1.71 1,14 0,917 0,610 1.91 . 1.27 1,02 0.677 2.13:; 1.42 115. 0,764
ig 24 2.01 1.34 0.982 0.653 2.25 1.50 1.09 0.728 252 1.68 1:24; i 0,826
1J 26 2.36 1.57 1.07 0.709 2.64 1.76 1.21 0.808 2.96,: 1.97 l:41.; .0,939
s €
28 2.74 1.82 1.20 0.798 3.07 2.04 1.37 0.911 3.43, 2.28 t;60 1.06
30 3,15 2.09 1.33 0,888 3.52 2.34 1.53 , 1.02 3.94 2.62 158 119
32 3.58 2.38 1.47 0,979 4.00 2.66 1.69 112 4;:48 2.98 1.98 : 1,32
34 4.04 2.69 1.61 1.07 4.52 3.01 1;85 1,23 5.06 3.37 2.17 ! 1,45
36 4.53 3.02 1.75 1.16 5,07 3.37 2.02 1.34 5.68 3.78 2.37 1,58
1 ^
38 5.05 3.36 1.89 , 1.26 5.65 3.76 2.18 V 1.45 6.32 4.21 2.57 1,71
1 ^
40 5.60 3.72 2.03 1.35 6.26 4,16 2.35 1,56 1 ^
40
Other Constants and Properties
6yx10^(kip-ft)-'
fyx10', (kips)-^
frxio^, (kips)-'
4,82
fl.744
0.914
3.21
0.495
0.609
5;33
0:805
0.989
3,54
0.535
0,659
5.99
0.872
1.07
3.98
0.580
0,714
rJry 5.47 5.51 5.52
/>, in. 2.47 2.43 . 2.39
' Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates ffi/r^ equal to or greater than 200.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-27
Table 6-1 (continued)
Combined Flexure
l-y
= 50 ksi
and Axial Force
W-Shapes
W33-W30
W33x W30x
391" 357^
pxlO' fix X10' pxltf pxlC fix X10^
Design (kips)-' (kip-H)-' (kips)-' (kip-ft)-' (kips)-' (kip-ft)-'
ASD LRFD m LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 1.11 0.738 0.858 0,571 0.290 0.193 0.246 0.163 0.318. 0.212 0.270 0.180
11 1.32 0.879 0.926 0,616 0.319 0,212 0.246 0,163 0.350 0,233 0,270 0.180
12 1.37 0.910 0.952 0.634 0.325 0,216 0.246 0.163 0.357 0.237 0.270 0.180
13 1.42 0.946 0.980 0.652 0.33ri 0.221 0.246. 0.164 0,364; 0.242 0.270 0.180
a
14 1.48 0.988 1.0f 0.672 0.339 0,225 0.248 0.165 0,372 0.247 0.273 0.182
•f 15 1,56 1.03 1.04 ' 0.693 0.346 0,230 0.250 0,166 0.380 0.253 0.276 0.183
S .c
16 1.64 1.09 1.08 0.716 0,355 0,236 0.252 0,168 0.390 0.259 0.278 0.185
o c
17 1.73 1.15 1.11 0.740 0.364.- 0,242 0;255 0,169 0.400 0.266 0.281 0.187
2 1
18 1.84 1,22 ,1.15 .V 0,765 0.374 0.249 0.^57 0.171 0.412 0.274 0.284 0.189
2 1
19 1.96' 1.31 1.19 0.793 0.385:. 0,256 0.259 0.172 0.424 0.282 0.287 0.191
20 2.11 1,40 1.24 0.822 0.397 0.264 0.262; 0.174 0.437: 0.291 0.290' 0,193
sM 22 2.48 1.65 1.34 0.888 0.424 0,282 0.267 0,177 0.467 0.311 0.296 0.197
24 2.95 1.97 1.48 0.984 0.456. 0.303 0.272 0.181 0.503 0.334 0.302 0.201
26 ,3.47 ' 2.31 1.70 1,13 0.493 0.328 0,277, 0.184 0.544; 0.362 0:308 0,205
28 4.02 : 2,68 1.92 ;: 1.28 0.536. 0,357 0.282 0.188 0.593 0.395 0.315 0,210
30 4.62 3,07 2.16 • 1.44 0.587.: 0,391 0.288 0.192 0.650; 0.433 0;322 0.215
fi
32 5.25 3,49 2.40. 1.59 0.647 0.430 0.294 0.196 0.718 a478 0.330 0.220
^ i 34 5.93 3,95 2.64 1.76 0.717 0,477 .0.300 0.200 0,797 0,530 0,338 0.225
36 6.65 4.42 2,89 1.92 0.802 0.533 0.307 0.204 0,892 0,594 0.346 0.230
o 38 7.41 4.93 3.14 2.09 0.893 0,594 0,314 0.209 0.'994 0.662 0,355 0.236
1
40 0.990 0.658 0.321 0,213 1,10 0.733 0.364 0.242
1
42 1.09 0.726 0.328 0.218 1,21 0.808 0.373 0.248 m
lU
44 1.20 0.797 0.336 0,224 1.33 0.887 0,383 0.255 K
46 1.31 0.871 0.344 0.229 1.46 0.969 0.394 0,262 wl
48 1.43 0,948 0.353 0.235 1,59 1.06 0.405 0,270
50 1.55 1.03 0.362 0.241 1,72 1.15 0,417 0,278
other Constants and Properties
/vxio',(kip-ftr' 6.94 4.62 1.15 0.765 •1.28 0.850 I
fyXlO', (kips)-'' 0.963 0,640 ,0.290 0.193 0.318 0,212
>
^rx10^ (kips)-^ 1.18 0.788 0:357 0.238 0.391 0.260
rx/r, 5,60 3.65 3,65
ry. in. 3.32 3.67 3.64
° Sdape is slender fof compression with F, = 50 ksi.
Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
' Shape does not meet the hlU limit for shear in AISC Specification Section G2.1 (a) with Fy = 50 ksi; therefore, = 0.90 and Q, = 1.67,
Note: Heavy line indicates KL/r, equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

i
1
a
X X X
"S "S "S
•o -o -o
to
o a
^ g
O O
CO KJ o
—«• oi a>
CO CO
o —^
Effective length, KL (ft), with respect to least radius of gyration, r,,
or Unbraced Length, Lt, (ft), for X-X axis bending
to CO -J oi ai tji
-L -L a a o o o o o
^ b> ay ch Cn
ooooo ooooo
§ CO O <£>
^ p p
K3 ^ o io to
03 CO to CD O
CO cn
p p p p p
CO ^ b> bi
TO ^ (y> (£>
cn oj f\3
ooooo
JI. JI. 03 OJ
03 03 O Jik
—03 —^ O CO
oooop ppppp
o o o
s.i
o o o o
<M '<M
05 2 S CO
ppppp
M CO M CO CO
.cn.cn j^k.co co
cn to
ooooo ooooo o
cococobabo (WoacoKafo ro
PO .—^ O O. O iO-iO <D.
** c:> o -vicootDco to
OOOOO
CO CO 'co Kj Ka
ro —1. o CO CO
rvj rvj rvj oj cn
ooooo
Ka Ka Ko fN3 Ko
-si cn o5 cn ^
-sj CO ro cn CO
ppppp
Ks Ka ro fo ro
ji. 03 CO ro ro
ro o> —^ tn o
ooooo ooooo
ro rsj ro N3 f\3
cn 03 —^ § §
N3 fvj —^ —^
N3 ro
^ o CO ho ^ o to
to 0>. CO -o. o
ppppp
CO ^ bs cy> cn
<*3 ^ ^ w
ppppp
cn CJ1 cn is.
5 fS S
ooooo
jik ^ ^
c> a p> a
to CO ^ a> •
N3 03 a>
cn cn CO <o '
ppppp
^ Ip^ ^
^ <0 cn CO
—^ ro o cn
ppppp
Oi CO CO CO CO
cn ^ CO ro —^
CO CO -vj CO CO
p p p p
CO CO fo ro ro
-L CD to CO 03 CO 03 on
—cn CO
ooooo ooooo
fe i!
s
o o o
g ^
p o o p p
CO CO CO CO
• a> ay -crr isi js^
ro - CO oa to
o o o o jb
s is a
ooooo
CO CO CO 03 OJ
CO cn CO
^ cn CO O
o o
CO CO
N3 -«•
CO CO
ooooo
fo fo Ko ro
.--vl 05 cn cn
c» o CO a> o
o o p p p
fvj Kj ho K3 Ks
& s s Ri
o o o
is te
C^ Ji. Ji>.
fS
K> ro ro
cn 03 '-»• to
o o CO cn
p o c> .o
CO ^ ^
03 —^ 03 05 CO 03
3 p p P
n CJi CJi w
o -cn CO
o o ^ to
p p
cn cn
o o o
h\ tsi
8 g g
^ o to
ppppp
b^ oi ^ "-f^
—«• <J) —«• ">4 CO
-SI O O -TI.
o p p
Itk CO CO CO CO
o to a> cn
cn ro to CO 03
o o o o o o o
js fs
ooooo
si S § fe g
^ 03 ro o --si
o o o o
bi ch
o o o p o ooooo
± ± fe fe ^
-•J a> o .cn
o o p p p
^ ^ ^ bo CO
to 00 03 -Vj -Vj
O CJl .O CO CO..
ppppp
4::.
03 CT> Ja. —«• tX>
CO o cr> 03
ooooo
CO CO w CO CO
CO o> cn ^ CO
ro 03 <D OJ ro
O' o o o o
CO ^ to ^ So
ro ro ro
o o o.o o
K3 ho fo Kj fo.
I o o o o
I Ks fo fo ro
• cn cn cn cn
05 OJ —«• —«•
i
in
3-
Q)
»
—• o>
^ 3 A
wag
-n 3 S
O (D 5"
3 ><
(D
c
^ s
11
8
>
s.
g
«
I
3
I
II
s
X X X
s s s
SI'S,
i i.3
o o ro
is fe g
ro to
CO CO CO
tx> ro
cn -4.
p cJ ro
bi cn to
s g °
O O -i-
fe s s
Effective lengtlj, KL (ft), witlj respect to least radius of gyration, r„
or Unbraced Length, £6 (ft), for X-X axis bending
o (o tt ^ A » cn 4k M lo
ro ro ro ro
CO CO ^ to
• ^ yL ^ uii -iOoo
03 ^
fO S' co
g g
p p p p o
g =2 93 P '
Igg'
p o o o
a\ in kh <sf
CO 4a..
. p p p
CO § CI cS o>
ppppp
a> 05 bi bi jsk
to ro --vj ro 03
fo —^ cn cn
ppppp pppp
cocococo
cncoro—^to co-vj--vja>
-A-vlCO—»^to tOtO~'' o CO 5> —t
ppppp
» ba ^ ^ ^
CO ..CO to Jik o
-si ro CO ji.
p pc p p p
<D 05, 05 br
O) co ;-i. to -si
05 to Ja. —^ o
p .p p
cn cn bi
cn. CO..—I
pppp ppooo o
^ Xa. ^
2 a iiS g K SJ
ooooo
a
' o' o o o
^ ^ CO OJ
ro o to -si
cn to CO to
ppppp
OJ OJ OJ OJ OJ
<J) cn CO .fO
o> jsk ro —i —«•
poooo Ooooo o
Si g ^ jg '^kk'^k..'^
00)1000 S
.CO fo ro ro ro
to ro fo
.05 ^ .(iw oj
.-t o o o poooo
^ b> 05
..cn. CO o CO o>
CO ro to CO to
o o
05 05
^
P P
0> 05
ro o
o -J
-t _L O
OJ fO O CO CO
p p p p
a> cn
o CO
ro o -si fo
g
o o
g :
4:;^ Jik Jik ^
poooo
Ji. ik CO
CO ro o to
CO CO CO Ji>. C3>
p O O p o cb o o
" i ^ 05 a>
,-ro —
ci o O o CD
S .2 Is id Js
O CO O —fc
p p
CO. ro
CO cn
Cioo OOC2>OC>
ji.
I,.g„
fs
ooooo
s g 2 g g
o CO cn CO —^
p p p o o
cn lu lu
CO o -J cn ^
CO to to o
ppppp
OJ OJ CO
§ S to Sj
o o
s a
ooooo
a CO a>
fO -J. —I ——«.
OJ ^ ^ M (O
w fo o ^ cn
-4 to hJ o5 ro
ro ro -I -J. -J.
fe g g a.fe
-L -J. o o
o ^ to
I o o i
^:
I 00 M I
o o c» o o
S ii! ^ bi a>
ro ro ro
CO ^ o I cn CO ro —to 03
-si ro -si CO o -si
poooo
k} b> b>
CO cn o
to CO -si a> s
P P
bi in
o o ooooo
cn It^ It^ j:;;.. It^ J:.. It^
^^^^^ ooooo
ocoo>oco ^tt^gcn
p p o o o
<i b>u><^ h>
ro to 8> ^ ro
a> o5. to —^.
o o o o
is g
ooooo
or. bi bi bj
6 se s E^
S
p p p p o
OT ba ^ ^ 05
05 M M CO
-si —«• OT CO CO
p p.p p ^
05 bi bt bt bi .
CO CO cn ro o
ppppp- poo
'4^ .w ^ .bj
o o,
w ba
ro cn to CO -nJ —^
p p p o
bd bd bo bd bo
c3> o> cn cn cn
• ISi
2
II
g
ii
CT
(D
—. oi
» OJ Q. O
TJ
(!>
(A 7 33 a
©
ih

6-30 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W30
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
W30x
anape
173' 148' 132'
px 10' pxlO' bxy pxlC ftxxltf"
Design (kips)-' (kip-ft)" (kips)-' (kip-ft)-' (kips)-' (kip-ft)-'
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD< LRFD ASD LRFD
0 0.678 0.451 0.587 0.391 0.801 0,533 0,713 0.474 0.917 0,610 0.815 0.542
11 0.745 0.495 0.587 0.391 0.986 0,656 0.765: 0.509 1.13: 0.751 0.882 0,587
12 0.758 0.505 0.587 0.391 1.03 0,684 0.784 0.522 1.18 0.783 0.906 0,603
13 -0,773 0,515 0.596 0.396 1.08 0.718 0.804 0.535 :1.23 0.819 0.931 0,620
1 14 0.790 0.526 0.606 0.403 1.14 0.758 0.826 0,550 1.30 0.862 0.958 0.638
15 0.809 0,538 0.616 0.410 1.21 0.804 0.849 0,565 1.37 0.915 0.987 0.657
c!
16 0.829. 0.552 0.626 0.417 1.29 0.856 0.873 0,581 1.47 0.975 1.02 0,677
"S
1
17 0.852 0.567 0.637 0.424 1.38 0.915 0.898 0,598 1.57 1.04 1.05: 0,699
1 w 18 0.878 0.584 0.649 0.432 1.48 0.982 0.925 0,616 1.69 1.12 1.08:; 0,721
2
'S
(0 19 0.908 0,604 0.660 0.439 1.59 1.06 0.954 0,635 1.82 1.21 1.12 : 0,746
1 S
20 0.941 0.626 0.673 0.447 1.72 1.15 0.984' 0,655 1.98 ; 1.32 1.16 0.772
3 fe
22 1.01 0,675 0.698 0,465 2.05 : 1,36 1.05 0,700 2,36 1.57 1:25 : 0.831
«
g 24 1.10 0,733 0.726' 0,483 2.43 ; 1.62 1.13' 0,751 -2,81V 1.87 136 0,904
i" 26 1.21 0,802 0.756 0,503 2,86 :: 1,90 1.25 . 0,828 3,30 2.19 1.54 : 1,02
s
28 1.33 0.884 0.789 0,525 3.31 2,20 1.39 0,923 3.82 ; 2.S4 1.72 1,15
"i
f
30 1.48 0,982 0.825 0,549 3.80 2,53 1.53 1,02 4.39 2.92 1,91 1,27

32 1.65 1.10 0.864 0.575 4.33 2,88 1.67 : 1,11 4.99 3.32 2:09 1,39
2 34 1.86 1.24 0.906 0.603 .4.89 3,25 1.82 1.21 5.64 3.75 2:28^ 1,52
s
1 36 2.09 1.39 0.964 0.641 5.48 3,64 1.96 1.30 6.32 4,21 2.-47 : 1,64
I 38 2.32 1.55 1.05 0.696
1
40 2.57 1.71 1.13 0,751
1
42 2.84 1.89 1.21 0,807
m
44 3.12 2.07 1.30:. 0.863
46 3.41 2.27 1.38 0,919
48 3.71 2.47 1.47 0.976
SO 4.02 2.68 1.55 1.03
Other Constants and Properties
fiyXlOMkip-ftr'
fyXlO^(kips)-'
frXlO^ (kips)-'
2,90
0,656
0,806
1,93
0,437
0,537
5.24
0.766
0.941
3.49
0.510
0,627
6.10
0.861
v;1,06
4,06
0,573
0,705
rx/ry 3.71 5.44 5,42
ry, in. 3.42 2.28 2,25
' Shape is slender tor compression witti /> = 50 l(si.
Note: Heavy line indicates KUCy equal to or greater ttian 200.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-31
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W30
W30x
anape
124"^ 116" IDS'
Design
pxlO^ ftxXlO' pxlO' bxy :10' px 10' :10'
Design (kips)-' (kip •«)-< (kips)-' (kip-ft)-' (kips)-' (kip-ft)-' Design
ASD LRFD ASD LBFD ASD LRFD ASDs LRFD ASO LRFD ASD LRFD
0 0.991 0.659 0.873 0.581 1.07 0.713 0.943 0.527 1.17 0.782 1.03 : 0.685
11 1.22 f 0.811 0.949 0.631 1.32 0.880 1.03 0.686 1,45 0968 1.14 0.755
12 1.27 ,0.845 0.976 0.649 1.38 0.918 1;06 0.706 1.52 1.01 1.17; 0779
13 1.33 0.885 1.00 0.668 1.45 0.962 1.09: 0.728 1.59 1.06 1.21 0.804
1
14 1.40 0.931 1.03 0.688 1.52 1.01 1.131 0.750 1.68: 1.12 1.25 0,830
1
15 1.48 0.984 1.07 0.710 1.61 1.07 1.16 0.775 1,78 1.18 1.29 0.859
Sf
T3, 16 1.57 1.05 1.10 0.732 1.72 1.14 1.20 0.801 1,90 1.26 1.34 0,889
5
17 1.69 1.12 1.14 0.757 :1.84 1.23 1.^4 0.828 2,04 1.35 1.39! 0.922
2 1
18 1.82 1.21 1.18 0.782 1.99 1.32 1.2? 0.858 ,2,20 1.47 1.44 0.957
2 1
19 1.97 1.31 0.810 2.16 1.44 i.34 0.890 2.40 1.60 1.50 0.995
S
20 2.13 ' 1.42 126 0.840 2.35 1.56 1.39 0.924 2.62 1.74 1.56, 1.04
SS
22 2i5:i 1.70 a.36 0.907 2.83 1.88 1,51 1.00 3,16 2.11 i.7o: 1.13
Sg 24 3.04 2.02 1,51 .1.01 3.36 2.24 1.70 1.13 3,77 2.51 •1.96: 1.31
1 J' 26 •3.57 2.37 1.72 1.14 3.9^ 2.63 1,94 1.29 4,42 2.94 2.24 1.49
28 4.14 2.75 1.92 1.28 4.58 3.05 2.18 1.45 5.13 3.41 2.52 1.68
O)
30 4:75 : 3.16 2.13 1.42 5.26 3.50 2.42 1.61 15,88 3.91 2:81 1.87
32 5.40" 3.60 •2.35 . 1.56 5.98 3.98 2.67 1.78 6.69 4.45 3:10 2.06
si g
34 6.10 4.06 2.56 1.70 6.75 4.49 2.92 1.94 7.56 5.03 3.40 2.26
1 ^
36 6.84 5 4.55 2.78 1.85 7.57 5.04 3.lf 2.11
1 ^
36
i
Other Constants and Properties
6yXlOMkip-ftr'
fyxio^ (kips)-'
t,x103, (kips)-'
- 6.60
0.915
1.12
4.39
0.609
0.749
7.24
0.977
1.20
4.82
0.650
0.800
8.12
I'.OS
1.29
5.40
0.701
0.863
rulry 5.43 5.48 5.53
ry, in. 2.23 2.19 2.15
" Shape is slender for compression witli 50 ksi.
I^ote: Heavy line indicates KL/ry equal to or greater than 200.
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

6-32 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W30-W27
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50ksi
Shape
W30x
90''
W27x
539"
Design (Wpsr
ASO LRFD
(kip-ft)-' (kips)-'
ASO LRFD ASD LRFD
. pxW
(kip-ft)-< (kips)-'
fASD l;RH) ASD : tRFD
(kip-ft)-'
ASO LRFD
11
12
13
14
15
16
17
18
19
20
22
24
28
28
30
32
34
36
38
40
42
44
46
48
50
1.31
1.63
1,76
1.79
1.89
2.01
2.14
2.30
2.50,
2.73
3.0b
3.63
4.31
5.06
5.87
6.74
7.67
8.66
0.872
i1.08
1.13
1.19
1.26
1.33
1.43
1.53
1.66
1.81
1:99
2.41
2.87
3.37
3.91
4,49
5.10
5:76
1.14:
1.27
1.31 .
1.36
1.41
1.46
1.51
;1.57
1.63
1.70
1.78
2.00
2.32
2.65
2.99
3.34
:.3.69
4.06
0.760
0.846
0.874
0.903
0.935
0.969
1.01
1.04
1.09
1.13
1.18
1.33
1,54
1.76
1,99
2.22
,2.46
2.70
1.49
1.85
1.93
2.02
2.13
2.26
2.41
21.59
2.79
3.04
3.34
4.04
4.80
5.64
6.54
7.51
8.54
9.64
0.994
1.23
1.28
1.35
1.42
1.50
1.60
1.72
1.86
2.02
2.22
2.69
3.20
3.75
4.35
4.99
5.68
6.41
,1.26.
1.41 '
1.451
1.56
i:62
1.68
1.75
1:82
1.90
1.99
2.28
2.65
3.04
3.44
3.85
:4.27
4.70
0.838
0.936
0.968
1.00
1.04
,108
1.12
1.16
1.21
1.27
1.32
1.52
1.76
2.02
2.29
2.56
2.84
3.13
0.210
0.231
0.235
0.240
0.245
0.251
0.257
0.264
0.271
0.279
0.288
: 0,308
0.331
0.3^8
0,390
:0.428
0.472
0,524
0.586
0,653
0,724
0,798
0,876
0,957
1.04
1.13
0.140
0.154
0,157
0,160
0.163
0.167
0.171
0.176
0.181
0.186
0:192
0.205
0.220
0.238
0.260
0.285
0.314
0,348
0.390
0,435
0,481
0.531
0.583
0,637
0.693
0.752
0,189
0,189
0-189
0^89
0.190
0.191;
0.192
0.193
0,194
0.195
0a96
0.199
0.201
0.203
0>20d
0.208
0211!
0^213
0:216
0.219
0.222
0.225
0,228
0,231
0.234
0.237
0.125
0.125
0.125
0.125
0.126
0127
0.128
0.128
0,129
0.130
0,131
0132
0,134
0.135
0.137
.0139
0140
0.142
0144
0146
0148
0149
0151
0154
0156
0158
Other Constants and Properties
fyxio^, (kips)-'
trx^o^ (kips)-'
; , 9,23
- 115
• • ,1.41
6,14
0.766
0.943
1,0.3
V:;r.27
.i 1.56 .
6.83
0,845
1,04
:i'0:815
•,0,210
0,258 •
0,542
0140
0172
rjty 5.57 5.60 3,48
ry, in. 2.10 2.09 3,65
' Shape is slender for compression with f>= 50 tei.
" Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1 c.
• Shape does not meet the hlt„ limit for shear in AISC SpedHcation Section G2.1(a) with /> = 50 ksi; therefore, = 0.90 and =1
Note; Heavy line indicates KLIry equal to or greater than 200, _______
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-33
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W27
W27x
oiiaiie
368" 336" 307"
Design
pxlO' 10'
px
10' ftjrXlO^ px10' :10'
Design (Wps)-' (kip-fl)-^
(Wpsr (kip-fD-i (kips)-' (kip-ft)-' Design
ASD LRFD ASD LRFD ASD ; LRFD ASD LRFD ASD LRFD ASD LRFD
0 0.3Q6 0.204 0.287. 0.191 0.337'. 0.224 0:315 0.210 0.370 0.246 0.346 0.230
11 0.340: 0.226 0.287 0.191 0.375: 0.249 0.315 0.210 0:413: 0.275 0:346 0.230
12 0.347 0.231 0.287' 0.191 0.382 0.254 0.315 0.210 0.422 0.281 0.346 0.230
13 0.355 0.236 0.289 0.192 0.391 0.260 0.318' 0.211 0i32; 0.287 0.349; 0.232
g" 14 0.363 0.242 0.291/ 0.194 0.400; 0.266 0.320 0.213 0.442 0.294 0.353 0.235
15 :0.37ar 0.248 0,294 0.195 0.4ti; 0.273 0.323: 0.215 0.454 0.302 0.356 0.237
If
16 0.383 0.255 0.296; 0.197 0.422 0.281 0.326.' 0.217 0:467 0.311 0,360 0.239
o e
S -2
17 0.394 0.262 0.299 0.199 0.435 0.289 0,329; 0.219 0.481 0.320 0.364 0.242
18 0.406 0.270 0.301 0.200 0.448 0.298 0.221 0.497 0.330 0.367 0.244
S "
19 0.419 0.279 0.304; 0,202 0.463 0.308 0.336 0.223 0,513: 0.342 0.371 0.247
% .><
e> ><
20 0.434 0.289 0.306 0.204 o.4qo. 0.319 0.339, 0.225 0.532 • -0.354 0.375 0.250
ss 22 0.467 0.311 0.312: 0.207 0.517r. 0.344 0:345^ 0.230 0.574 0.382 0.383 0.255
s g 24 0.506. 0.336 0.317; 0.211 0.560 0.373 0:352, ,0.234 0.624 0.415 0.392 0.261
26 0.552 0.367 0.323 0.215 0.61:2; 0.407 0i359 0.239 0.683 0.454 0:^01: 0.267
28 0.6(i6 0.403 0.329, 0.219 0.674-: 0.448 0;367 0.244 0.753: 0.501 0:410 0.273
t = 30 0,670 0..446 0.335 0.223 0.746 0.497 0.375 0.249 0.836i 0.557 0.420 0.279
32 0.746 0.497 0:342. 0.227 0.833 0.554 0.-383 0.255 0.936 0.623 0.430' 0.286
^ s 34 0.839 0..558 0.348 0.232 0.938 0.624 0.391 0.260 1.06 0.703 0.441 0.293
36 0.941 0.626 0.355-: 0;236 1.05 0.700 0.400 0.266 =1.18 0.788 0;452 0.301
1 °
38 1.05 0.697 •0.3d3' 0.241 1.17 0.780 0;409. 0.272 1.'32 0.878 0.464 0.309
1 °
40 1.16 •0.773 0.3?0:. 0.246 1.30 0.864 0.419 0.279 1.46 0.972 0;476 0.317
1
42 1.28 0.852 0.378 0.252 1.43 0.952 0.429 0.285 1.61 1.07 0:490 0.326
u
44 1.41 0.935 0.386: 0.257 1.57 1.05 0.439 0.292 1.77 1.18 0,504 0.335
46 1.54 1.02 0.395 0.263 1.72 1.14 0.45f 0.300 1.93 1.29 0:518 0.345
48 1.67 1.11 0.404 0.269 1.87 1.24 0.462 0.308 2.10 1.40 0:534 0.355
50 1.81 1.21 0.413 0.275 2.03 1.35 0;475: 0.316 2.28 1.52 0.551 0.367
Other Constants and Properties
6,x10',(kip-ftr'
tyx^o^ (kips)-i
trXlO', (kips)-'
1.28
:0.306
0:376
0,850
0.204
0.251
,1.41
0.337
0.414
0.941
0.224
0.276
: 1i57
' :0.'370
.fl.455
1.04
0.246
0.303
rxirv 3.51 3.51 3.52
fy, in. 3.48 3.45 3.41
' Range ttiicKness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1 c.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-34 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
Table 6-1 (continued)
Combined Flexure
and Axial Force
Fy - 50 ksi
W27
W-Shapes
Shape
W27x
Shape
281 258 235
px 10' bxxW pxW pxlO' fixXlC
Design (kips)-' <kip-ft)-' (kips)-' (kip-ft)-' (kips)-' (kip-ft)-'
ASD LRFO ASD LRFD ASD ; LRFD A.sn LRFD ASDi LRFD ASD LRFD
0 0.402 0.267 0.381 0,253 0.439? 0.292 0.418 0.278 0.481s 0.320 0.461 0.307
11 0.449 0,299 0.381' 0,253 0.491: 0.327 0.418 0.278 0.540: 0.359 0.461 0,307
12 0.459 0,305 0.381: 0,253 0.502 0.334 0^419 0,279 0.552 0.367 0.463 0,308
13 0.469 0.312 0.385 •0,256 0.51,4, 0.342 0;4M 0.282 0.565' 0.376 0,469 0.312
=
14 0.481 0.320 0.389 0,259 0.527 0.351 0.429 0.285 0.580: 0.386 0.475 0.316
o
a> e
15 0.494 0,329 0.393- 0,262 0.541 0.360 .0.434; 0.289 0.596 0.396 0.481 0.320
o
a> e
16 0.508 0.338 0.397 0,264 0.557: 0.371 0.439 i 0.292 0.614 0.408 0.487 0.324
17 0.524 0,348 0.402: 0,267 0.575 0.382 0.444 0,296 0.633 0.421 0.494 0,328
li
18 0.541 0.360 0.406, 0,270 0,594 0.395 0.450 0,299 0.655 0,436 0.500 0.333
19 0.559 0.372 0.411 0,273 0,615' .0.409 0.455 0,303 0.678 0,451 0.507 0.337
Is
20 0.580 0,386 0.416 ,0,277 0,637 0.424 :0J46T' 0,307 0.704 0.468 0:514 0,342
is
22 0.626 0.417 0.426: 0,283 0,689 0.459 0.473 0,315 0.762 0,507 0.529 0,352
24 0.681 0.453 0.436 0,290 0.751 0.500 0.485 0,323 0.832i 0,553 0.544: 0,362
£ ^
26 0.747 0.497 0.447 0.297 0.824i 0.549 0.498 0.332 0.914; 0,608 0.560 0,373
€ €
28 0.824 0.548 0.458 0,305 0.912: 0.607 0.512 0.341 1.01 0.674 0:578 0,384
30 0.917 0.610 0.470 0,313 1.02 0,676 0.527. 0.351 1.13: 0.753 0;596 0.397
32 1.03 0.683 0.482: 0,321 1.14 0,760 0.543 0.361 1;27 : 0.848 0:616 0,410
H e 34 1.16 0.772 0.496 0,330 1.29 0,858 0.559 0.372 1.44 0,957 0.637 0,424
£ c
36 1.30 0.885 0.510 0,339 1.45 0,962 0.577 0.384 1.61 . 1,07 0:660 0,439
ll 38 1.45 0.964 0.524 0.349 1.61 1,07 0.596 0.396 1,80 1,20 0.684 0,455
40 1.61 1.07 0.540: 0,359 i.7d 1,19 0.616 0.410 1.99 1,33 0.710 0.472
1
42 1.77 1.18 0.557: 0,370 1.97 1,31 0.637 0,424 2.20 1.46 0.738 0.491
u
44 1,94 1.29 0.574 0,382 2.16 1,44 0.€60 0,439 2.41 1.60 0.776 0,516
46 2.12 1.41 0.593 0,395 2.36 1,57 0.685 0.456 2.63 1.75 0.818 0.544
48 2.31 1.54 0.614' 0,408 2.57 1,71 0.721 0.479 2.87 1.91 0.861 0,573
50 2.51 1.67 0.639 0,425 2.7? 1.85 0.756 0,503 3,11 2.07 0.904 0,601
other Constants and Properties
173 1,15 1.91 1.27 2,12 1,41
fyx10', (kips)-' ; 0.402 0,267 • : 0.439 0.292 : 0.481 0,320
ifXiO'. (kips)-' .. 0,494 0,329 0:539 0.359 : 0;591 0,394
r,/ry 3.54 3.54 3,54
ry.in. 3.39 3.36 • 3.33
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-35
Table 6-1 (continued)
Fy
= 50 ksi
Combined Flexure
and Axial Force
W-Shapes
W27
Shape
W27x
Shape
217 194 178
pxlO^ ^xlO^ pxlO^ :10' pxW
De. sign (kipsr (kip-ft)-i (kipsr (wp-ft)-' (kips)-' (kip-ftr'
ASD LRFD ASD LRFD ASO LRFD ASD LRFD ASb LRFD ASD LRFD
0 0.523 0.348 0.501 0.333 0.585: 0.389 0.565 0.376 0.636 0,423 0.625 0.416
11 0.587 0.390 0.501 0.333 0.658 0.438 0.565 0.376 0,718 0,478 0.625 0.416
12 0.600 0.399 0.503 0.335 0.673 0.448 0.568 0.378 0i734 0,489 0,630 0.419
13 0.614 0.409 0.510 0.339 0.689 0.459 0.576 0.383 0,753 0,501 0.640 0.426
g" 14 0.630 0.419 0.517 0.344 0.7Q8 0.471 0.584: 0.389 0.773 0,515 0£50 0.432
1
15 0.648 0.431 0.524 0.348 0,728 0.484 0.593 0.395 0.796 0,530 0.661 0.439
•K •o
16 0.667 0.444 0.531 0.353 0,750 0.499 0,602 0.401 0,821 0,546 0.671 0,447
17 •0.689 0.458 0.538 0.358 0,775 0.516 0.612 0.407 0,849 0,565 0.683 0.454
18 0.712 0.474 0.546 0.363 0.802 0.533 0,621 0.413 0,879 0,585 0.694 0.462
ts ^
19 0.738 0.491 0.554 0.389 0.831 0,553 0.631 0.420 0;912 0,607 0.706 0.470
u
20 0.766 0510 0.562 0.374 0.863 0.574 0.641 0.427 0.948 0,631 0.718 0,478
ss 22 0.830 0.552 0.579 0,385 0.937 0,623 0.663 ,0.441 1,03 0,686 0:745 0.495
s §
24 0.906 0.603 0.597. 0.398 1.02 0,682 0.686 0.456 1.13- 0,752 0.773 0.514
8 -5 26 0.997 0.663 0.617 0,410 1.13 0,751 D;711 0.473 1.25 0,830 0.803 0.534
28 i.ir 0.735 0.637 0.424 1.25 0,834 0.737 0,490 1.39 0,925 0;836 0.556
30 1.23 0.822 0.660 0.439 1,40 0,934 0.766; 0,50'9 1,56 1,04 0.871, 0.580
32 1.39 0.927 0.«83 0.455 1.59 1,06 •0.797 0,530 1,77 1.18 0.910 0.606
34 1.57 1.05 0.709 0.471 1.79 1,19 0;830 0,552 2.O0 1.33 0.952 0.634
XS JO
36 1.76 1.17 0.7^6 0.490 2.01 1,34 0.867 0,577 2,24 1.49 1.00 0.665
a fe 38 1.96 1.31 ojee 0,509 2.24 1,49 0.906 0,603 2.49 1.66 1.07 0.713
s
40 2:18 1.45 0.798 0.531 2.48 1,65 0.968 0,644 2.76 1.84 1.15 0.765
1 42 2.40 1.60 0.842 0.560 2.73 1,82 1.03 0.687 3.05 2.03 1.23 0.817
Ui
44 2.63 1.75 0.892 0.593 3.00 2,00 : 1.10 0729 3.34 2.23 1.31 0.869
46 2.88 1.91 0.942 0.627 3.28 2,18 1.16 0,771 3.66 2.43 1.38 0.920
48 3.13 2.09 0.992 0.660 3,57 2.38 1.22 0,813 3.98 2.65 1i46 0.972
50 3.40 2.26 1.04 0.693 3,88 2.58 1,29 0,855 4.32 2.87 1.54 ' 1.02
other Constants and Properties
/)yXlO',(kip-ftr^ 2;31 1.54 2.62 1,74 2.92 1.94
fyXlO', (kips)-! 0.523 0.348 : 0.585 0,389 0.636 0.423
ffXlO', (kips)-' 0.642 0.428 0.718 0,479 0,781 0.521
rx/r, 3.55 3.56 3,57
in. 3,32 3.29 3,25
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-36 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W27
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
W27x
anape
161" 146' 129"
pxlO' fix X10' pxlO' 4:^X10' pxlO' axxic
Design (kips)-' (kip-ft)-' (kips)-' (kip-ft)-' (kips)-' (kip-ft)-'
ASD LRFD ASD LRFD ASD LRFD ASD' LRFD ASD LRFD ASD LRFD
0 0.704' 0.468 0.692 0.460 0.792. 0.527 0.768 0.511 0.910 0.606 0.902 0.600
11 0.793 0.527 0.692 0.460 0.883; 0.587 0.768' 0.511 0.763 0.976 0.649
12 0.811- 0:540 0.698: 0.465 0.901 0.600 0.777 '0.517 1i2fi' 0.802 1:00 : 0.666
i' 13 0.832r 0.554 o.7lo: 0.472 0.922 0.614 0.791 0.526 J. 0.846 1i)3' 0.684
g- 14 0.855 0:569 0.722- 0.480 0.946.: 0.629 0.805. 0.535 1.35 : 0.897 1.06 : 0.703
If
•er 73
15 0.881 0:586 0.7315 0.489 0.974': 0.648 0.819 0.545 0.955 f :09 -0.723
If
•er 73
16 0.909 0.604 0.747 0.497 1.01 0.669 0.835 0.555 >1.53 : 1.02 J.12 ; 0.744
o e
17 0.939. 0.625 0.761. 0:506 1.04 0.692 0.850 0.566 1.65 n 1:10 1f15' 0.767
f ^
; 18 . 0.973 0.647 0.775: 0.515 1.08 0.718 0.867' 0.577 1.78 : 1.18 1.19 ' 0.791
JO K
19 1.01 0.672 0.789r 0.525 1.12 : 0.746 :0;884i. 0.588 •11.92 • • 1.28 il;.23 ; 0.816
20 1.05 5 0.699 0.804: 0.535 1.17 0.776 0.901: 0.600 2.09 1.39 1.27 0.843
22 1.14 0.761 0.835 0.556 :i.27 . 0.846 0.939 0.625 2,5f . 1.67 1.36 0.903
s g 24 1.25 0.835 0.869 0.578 1.40 .0.930 '0.960 0.652 .2.99 3 1.99 1:46 0.973
1J 26 1.39 0.924 0.906 0.603 1.55 1.03 1.02 . 0.681 3.51 . 2.33 1.64 1.09
28 1.55' 1.03 0.946 0.630 1.73 1.15 ;i .07 : 0.714 4.07 2.71 1.82 1.21
Cn
30 1.74 1.16 0.990i 0.659 1.95 1.30 1.13:1 0.750 .4.67 3.11 2.00 1.33
32 1.98 1.31 1.04 0.691 ?.?? 1.48- 1.19 i : 0.789 5:31 3.54 2;18 1.45
^ i 34 2.23 1.48 1.09; 0.726 2.50 1.67 1i27i 0.843 6.0d 3.99 2.36 1.57
f, c 36 2.50 1.66 1.17' 0.781 2.81 1.87 1.38*; 0.919 6.73 4.47 2.54 1.69
1 °
38 2.79 1.85 1.27 S 0.844 3.13 2.08 1:50 Ji 0.995
1 °
40 3.09 2.05 1.36 0.907 3.47 2.31 1.61 . 1.07
1
42 3.40 2.26 1.46 0.970 3.82 2.54 1.73 1.15
lU
44 3.73 2.48 1.55 1.03 4.19 2.79 1.84 1,23
46 4.08 2.72 1.65 1.10 4.58 3.05 1.96 1.30
48 4.44 , 2.96 1.74 1.16 ,4.99 3.32 2.07 : 1.38
50 4.82 3.21 1.84 1.22 5.41 3.60 2.19 1.46
Other Constants and Properties
fyxioMkip-tt)-^
fyxio^ (kips)-'
frx10^ (kips)-'
3.27
0.702
0.862
2.17
0.467
0.575
3.65
D.773
0:950
2.43
0.514
0.633
'6;19
,,0:884
1.09
4.12
0.588
0.724
rx/h 3.56 3.59 5.07
fy, in. 3.23 3.20 2.21
' Shape is slender for compression witii Fy= 50 ksi.
Note: Heavy line indicates tt/ry equal to or greater tiian 200.
AMERICAN INSTITIRRE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES &-37
Table 6-1 (continued) Table 6-1 (continued)
Fy
= 50 ksi
Combined Flexure
and Axial Force
W-Shapes
W27
Shape
mix
Shape
114" 102=
94c
pxlC fixXlC pxlO' fix X 10' py 10' fi,x 10'
Design (Wps)-' (kip-ft)-' (Wps)-' (kip-ft)-' (kips)-' (kip-ft)-'
ASD LRFO ASD LRFD ASD j-RFD ASD LRFD ASD IRFD ASD LRFD
0 1.05 0.696 1.04,: •0.691 1.21 = 0.804 1.17 0.777 1;.34 • 0.890 1.28 ' 0.853
11 1.31 > 0.87j3 1.13 0.754 1,51 .; 1.01 1.28 0.854 1.67 1.11 1.42 0.944
12 0.913 1.17- 0.775 1.58 ; 1.05 1.32 0.880 1.75 i 1.17 T.46 0.974
13 1.45; 0.962 1.20 i; 0.798 1.66 . 1.11 1.36 0.907 1.84 • 1.23 1:51 1.01
g" 14 1.53; 1.02 1.24 ; 0.822 1.76 1.17 1.41 0.935 1.96 .1.30 1.56 1.04
SI
15 .1.64 3 1.09 1.27; 0.847 1.86 1.24 1.45 0.966 2.07 ; 1.38 1,62 1.07
SI
16 1.75; 1.17 1.31 0.874 .1.99 : 1.33 -1.50 1.00 ;2.21 . 1.47 1.67 ^ 1.11
17 1.89- 1.25 1.36 '•; 0.903 .2.15 : 1.43 •1.55 1.03 2.38 1.58 1.74: 1.15
'-i .£2 18 2.04 ; 1.36 1.4q ; 0.934 2.33 . 1.55 1.61 1.07 •2.59 i.72 1.80 1.20
19 2.21 ! 1.47 1.45 ; 0.967 2.53 1.69 1.67 1.11 5 2.82 i .1,88 1.88 1.25-
20 2;41 1.60 1.51 1.00 -;2.77 ' 1.84 1.74 1.16 3.09 2.06 1.95 • 1.30
sM
22 2.90 ; 1.93 1.63:; 1.08 3.34 ; 2.22 1.89 1.25 3:74 f 2.49 2.16 i 1.44
24 '3.46 2.30 1 80 1.20 3.98 2.65 2.15 1.43 •4:45 2.96 2'50 ; 1.66
S -3 28 4.06 2.70 2.04-= 1.36 .4.67 3.11 2.44 1.63 3.47 2;84 1.89
If
Si
28 4.70 J 3.13 -2.27 1.51 5.4^ 3.60 2.74 • 1.82 :'6.0^ i ;4.03~ 3.19 : 2.12
If
Si
30 :5.4():- 3.59 2 51 1.67 6.22 4.14 3.03 2.02 '6i95 : 4:62 3:54 2.36 If
Si
32 6.14 -4.09 2.75 3 1.83 7.07 5 4.71 :3.33 2.22 7.9| ^ 5.26 3:90 • 2.59
34 6.94 4.61 2 99 1.99 7.99 5.31 3.63 2.42 ,8:93 5.94 4 26 2.83
38 7.78 5.17 3.23 ' : 2.15
1 &
(U
1
other Constants and Properties
byx^o^ (kip-ft)-^ »:7.23 4.81 ; 8.21 5.46 9:18 6.11
fyXlO^ (kips)-' 0.994 0.661 - 1i11 0.741 . 1.21 0.805
ffXlo^ (kips)-' • : 1i22 0.814 1:37 0.912 1.49 0.991
rx/r, 5.05 5.12 5.14
ty, in. 2.18 2.15 2.12
' Shape is slender for compression witii Fy=50 ksi.
Note: Heavy ttne indicates KUCy equal to or greater than 200.
I
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-38 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
W27-W24
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
Shape
W27x
84''
W24x
370" 335""
Design
pxlO'
(taps)-'
ASp LRFD
px1(P
(Wp-ft)-' (kips)-'
ASD LRFD ASP LRFD
pxlO^ fix X10'
(Wp-ft)-' (kips)- (kip-ft)-'
ASD LRFD ASD LRFD ASD LRI=D
M fe
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
SO
1:53
1,92
2:02
2^12
•2.25
2.39
2.56
2.76
3.00
^3.28
.3.62
4;3i8
5.21
6.12
im
,8.15
9;27
10.5
1.02
1.28
1.34
.1.41
1.49
1.59
1.70
1.84
1.99
2.18
2.41
2.91
3.47
4.07
4.72
5.42
6.17
6.96
1.46
1.63
•1,6^
^1.75
1.81
1.88
1.95
2.03
2.11
2.21
2.31
2.64
3.06
3.49
3.93
4.38
4.84
5.31
0.971
1.09
1.12
1.16
1.20
1.25'
1.30
1.35
1.41
1.47
1.53
1.76
2.04
2.32
2.62
2.92
3.22
3.53
0.306
0.345
0.353
0.362
0.372
0.382
0.394
0.407
0.4^2
0.437
0.454
0.494
0.540
0.596
0.663
0.743
0.842
0.950
1.07
1.19
1.32
1.45
1.59
1.74
1.89
2.05
0.204
0.230
0.235
0.241
0.247
0.254
0.262
0.271
0.280
0.291
0.302
0.328
0.359
0.397
0.441
0,495
0.560
0,632
0,709
0,790
0,875
0.965
1.06
1.16
1.26
1.37
0.315
0.315
0.316
0.319
0.321
0.323
0.326
0.328
0.330
0.333
0.335
0.340
0.346
0.351
0.357
0.363
0,369
0.375
0.381
0.388
0.395
0.402
0.409
0.417
0.425
0.433
0.210
0.210
0.210
0.212
0.213
0.215
0.217
0.218
0.220
0.221
0.223
0.226
0.230
0.234
0,237
0.241
0,245
0,249
0,254
0,258
0,263
0,267
0,272
0,277
0,283
0,288
0.340
0.384
0.393
0.403
0.414
0.426
0.440
0.455
0.471
0.489
i0.509
0.554
0.6b8
0.672
o.7io
0.843
0.957
1.08
1.21
IsS
1.49
1.65
1.81
1.98
2.15
2.34
0.226
0.255
0,261
0,268
0,276
0.284
0.293
0.303
0.314
0.325
0.338
0.368
0.404
0.447
0.499
0,561
0,636
0,718
0.806
0.897
0.994
1.10
1.20
1,32
1,43
1.55
0.349
0.349
0.351
0.354
0.357
0.359
0.362
0.365
0.368
0.371
0:375
0:381
0.388
0;395
0;402
0.409
0.417
0.425
0.433
0.442
0.451
0.460
0.470
0.480
0.491
0.502
0.232
0.232
0,233
0,235
0,237
0,239
0,241
0,243
0,245
0.247
0.249
0.254
0.258
0.263
0.267
0.272
0,277
0,283
0,288
0,294
0.300
0.306
0,313
0.31S
0.326
0.334
Other Constants and Properties
6yX 10', (kip-fl)-'
fyxio', (kips)-'
frx10^ (kips)-'
10.7
1.35
• 1.66
7.14
0.900
1.11
1.33
0.306
0.376
0.888
0.204
0.251
1.50
,0J340
0.417
too
0,226
0,278
/V/ry 5,17 3.39 3.41
ry, in. 2.07 3.27 3.23
' Shape is slender for compression with Fy = 50 l<si,
" Flange thickness greater than 2 in. Special requirements may apply per MSC Specification Section A3,1 c.
Note: Heavy line indicates KUr, equal to or greater than 200,
AMERICAN INSNRAIE OF STEEL CoNSTRircnoN

STEEL BEAM-COLUMN SELECTION TABLES 6-39
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W24
Shape
W24x
Shape
306" 279" 250
Design
PX 10^ fixxlO^ pxlO^ fix X10' px 10^ 6^x10'
Design (kips)-'
(wp-ftr (kips)-' (kip-ft)-' (kips)-' (Wp-tt)-' Design
ASD LRFD Asn LRFD ASD LRFD ASD LRFD ASD s LRFD ASD LRFD
0 0.372 0.248 0.386: 0.257 :0.4Q8! 0,271 0,427 0,284 0.454 0,302 0.479 0,319
11 0.422 0.28.1 0.386- 0,257 0,463 0.308 ,0.427i 0,284 0.517 0,344 0.479 0,319
12 0.432 0,287 0.389, 0,259 0,474: 0,316 .0.430i .0,286 0.530 0,353 0.483 0,322
e- 13 0.443 0,295 0,392 0,261 0.487J. 0.324 0.434: 0,289 0.544;: 0,362 0.489 0,325
1
14 G,455s 0,303 0.396; 0,263 0.501;; 0,333 0.438, 0,292 4560: 0,373 0.494 0,329
IS 0.469 0,312 0.399; 0,266 0.516^ 0,343 0.443: 0,294 0.578, 0,384 0.499 0,332
"S s
16 0.484.' 0,322 0.403' 0,268 0.533: .0.355 0.447; 0,297 :0.597f 0,397 0.505 0.336
^ c
§ JS
17 0.50t 0,333 0.406: 0,270 0.552, .0,367 0.45T:, . 0,300 0.619, 0,412 0.510 0.340
•o .<2 18 0.520; .0,346 f 0.410: 0:273 .O.573.J 0,381 0.456 0,303 0,642: 0,427 0.516 0,343
2 g
19 0.540 0,359 ;0.414 0,275 0.595 0,396 0.461 0,306 0,445 0.522 0,347
20 0,562 0,374 0.41;8N 0,278 0.620 0,413; 0.465 0,310 0.697; 0,463; •0:528 0,351
22 0.612 0,407 0.426: 0,283 0.677^ 0.451 0.475 0,316 0.762 0,507 Q;54i; ' 0,360
24 0.673 0,448 0.434 0,289 0.746 0,496 0.485 • 0,323 0.841 0.559 0;554 0,368
26 0.746 0,496 0.442; 0,294 0.828 0.551 0.496; 0,330 0.935 0,622 0:567 0,378
^ €
28 0.834 0,555 0.451. 0,300 0.927 i 0,617 0.507=; 0,337 1:05 0,698 0.-582 0,387
1 g 30 0.939, 0,625 0.461:; 0,306 1.05 0,697 0.519- 0,345 0,792 0S597 0,397
mj S
32 1.07 0,711 0.470 0,313 1.19 0,793 0.531 0,353 0,901 0.613 0,408
« g
34 d.2l 0,802 0.480: 0,320 1.35 0,895 0.544- 0,362 1.53 1,02 0.630 0,419
"S a 36 1.35 0,899 0.491: 0,327 1.51 1,00 0:557; 0,371 :i,71 1,14 0;648^ 0,431
Ife 38 1.51 1,00 0.502 0,334 1.68 1,12 0.57V 0,380 1.91 1,27 0.667; 0,444
1
40 1.67 1,11 0;513: 0,341 1.86 1,24 0.586 0,390 2.12 1,41 0.687 0,457
e
42 1.84 1,22 0.525: 0,349 2.05 1,37 0.601, 0,400 2.33 1,55 0.708 0,471
UJ
44 2.02 1,34 0.538 0,358 2.25 1,50 0.618 0,411 2.56 1,70. 0:731 0,486
46 2.21 1,47 0.551 0,367 2.46 1,64 0.635 0,423 2.80 1,86 0.755 0,502
48 2.40 1,60 0.565 0,376 2.68 1,78 0:653; 0,435 3.05 2,03 0.781 0,519
50 2.61 1,73 0.579 0,386 2.91 1,94 0.673 0,448 3,31 2,20 0.814 0,541
Other Constants and Properties
fyx10^ (kips)-i
^rx10^ (kips)-i
1.66
0,372
0.457
1,11
0,248
0,305
, 1.85
.0.408
0.501
1.23
0.271
0.3M
2.08
,0:454
'0.558
1,39
0,302
0,372
rJr. 3.41 3,41 -3,41
r., in. 3.20 3.17 3.14
' Flange thickness greater than 2 In, Special requirements may apply per AISC Specification Section A3,1 c.
AMERICAN INSTTTUTB OF STBEL CoNSTRucnoN

^.'s's.
"O "O "O
O O to
s fe ^
O O
CO cn
o w ^
p p ro
05 bi b^
s g °
Effective length, XI (ft), with respect to least radius of gyration, ty,
or Unbraced Length, Li, (ft), for X-X axis bending
SSSgiS ggsgfg gggSK SSSSRS- o
CO CO 05 N3 fO
N N f' r* r^
^ ^ P p
^ Li o CO CO
o o o o cs
d W -O I
a ffj •
o o <3 o o
-is-
fO fS3 fS3 ^ ^
^ ro o CD ^
oi cn CO o CO rv>- CO o
o o CD o o
CO '-g a> bi
00 CO 05
CO o^ o CO o
ppppp ppppp
—^co-vicnco hoococo.-vj
-^o-^co-vj roco-vi-^-vi
o o O c=> O
^ JS g £ 2
^ 00 Ji.
00000
^ ^ ^ 05
-03.. C5..oa..-ri. CO..
CO <0 <0 O}.
ppppp
o O) oli 05 en
.AJt-^-CO. TO o
cri >J p
Q O G Q -
01 ai t7> ai
O G5 O O o
In bi tn cn
-1
W< «>•'< W Wl Wl
r-sj.o 0>- . en
ppppp
2
§ S a §
P P P P
Ch In
"' ~ ^ 91
—^ 05 ro
00000
4;;;^ js^ 4;;;^ js^
•fi. CO po o
CO a> -t^ ro f>o
o p p p p
M CO CO CO CO
CO CO CO
--.1 ro fs3 CO oi
^ CO CO CO ro
o^. CO ro ro S
ro ro ro ^ —1
05 Ita. ^ CO ^
05 0 05 .ro. o .
o
ppppp
. . - ^jcio^oicn
ji.- oa en CO o-00--O7.-45fc ro..
ro ^ ^ ^ ^ p ^ ji p p
p c> G c> c:>
« ^ ^
fo fo ro M
y a k is g
ppppp
<55 05
00000 00
CT) ji. cn
2
cTi cn o>
p p p
fo O CO
—* —^ o o <0
00 Co ro
...
O O O O o 00000
<0 JS;- CO.
O O O P O
o ro 4*. o> p CO
00000 ppppp
05 en en bi en
CO -vi cn CO
05 CO —»•—•. ro
000
en 42k is.
—*• CO . CO
42k CO CO
000
4:^1. 4^ ^
4i. CO ro
fo cn CO
00 00000
FO FO FS3
^ 4:^ CO CO CO fo ro Na ro
CO bi oi o CO
CO o CO 00
o <5 o'
^ p
-»• CO
00000
rot^OMforo -^0000 000
3 g g
42k-vicocn cncocnco4:i
00 00000
ji, ji..
-NJ 0> CD
cn ro o
2
g
CO ^ KJ ^
cn o 4i. -vj -L
g ^ p o p 00000
^ g § a S
-J -J
000 o o
bi cn
g.g
G O O G p
bn b) Q>
0> CT) CO
.cn .O) .CO
a ^ c:) c> o
CO ba CO ^
o CT) ro Co 42k
p p -p p p
CT) <35 <35 <35 bi
CO CT3 CO —». . to
-.4 0> CO -FI. —»•
000 o o
ro js^ 03
o p pop p p
l-H
CA
=r
o
•D
W
a OS"
a g. o
» ao
•n 3 S
O (D 5"
^ g I
(D ^ S
(D
II
<ji
o
CO
X XX
"S ^ V
p p CO
CO cr> c5
g g
o o oi
<0 ^ .03
S
Effective length, KL (ft), with respect to least radius of gyration, r„
or Unbraced Length, h, (ft), for X-X axis bending
SSJgfe fegggy SSSKK S « RS i
CO CO
0 0 fo bi bi
w fO ro ro ro
»S5 CO 05 CO O
0 0 ..rs3 cn
—• o c:> o
0 0^03
—NX-!^ CO -CO-
ppppp
CO CO ^ ^
- oj -o, ox. cn - jsk,
w CO ro ro isi
CO o CO CO
•N f>o CO cn
to CO
CO CO CO -vi
p p p
ro o CO ba ^
o cn fs3 fo 4Sk
CO CO 05
p cb pi p p
05 b> 05 cn cn
--.1 JSk, ho <0
CO CO M -vi cn
p p o o o
cn bi bi cn ji.
cn CO fo o CO
tn —i 05 CO
•CO S
p p p p p
o CO ba CO CO
g S 2
"o 0000 00000
-Sj
sags
g I
o o CO CO
-vj fvo -vj ro
O O CO CO
ppppp
ba kj ^ b) 05
ro CO cn
CO CO
ppppp
bi 05 bi 01 bi
4:^ —^ CO -vi cn
-vi 42k CO CO
p p o o o
bi cn bi bi bi
00000
42k to ro
CJ1 -ps.
OJ bl
<£3}Cn cn S g fc
r^ ^ P 0 p op p
CO oa 03 03 CO
S S :
CO CO w is:> ro
bi CO o ^ bi
Co . O CO CO CO
ro ro ^ ^
ba b5
CT) 05 --4
_-»• p p p
ro '—^ ^ ba ba
^ " g g
ppppp
^ 05 a> 05
CO O fS3
—^ o cn —'
a G c> c> p
05 bi bi bi bi
8 g S
^ ^ ^ ^ o P O
. CO ^ CO
-CO <o^ cn —i
CO CO
-g.
0000
05 o cn -I
OOP
^ ^ ^
. O0 .. .vi Cf5
CO 05 4a..
o o
ba CO
CO ro
05 05
00 00000
CO CT) -sj O -Ck.
ppppp
bi bi ai bi bi
CO -vi o5 05 cn
CO CO CO o o
ppppp
bi bi bi bi bi
42k CO ro o
CO 42k 05 CO
p cjrt cn 4^
tnf^ "o m ^
<0 CO CO ro ro
CO cn ^ OS bi
CO tn -coto-
0000
4:^ CO CO CO ro
g
ro ro fs5 ^ ^
b> CO "—»• CO 05
ro 05 ro CO CO
00000
42k ro o to » ^ a>
--4COCO—••o fooacnfsaco
-vT CO cn CO CO 05
p p p p p
cn
.Pk fs5 —i. <0
—1. CO CO —i cn
ro Bp ro
bj O ciS «
o CO -vj o5 cn
^00' 00 00000 O
fCj liUi o o o <fl CO ie CO ^ CO CO CO bo
cn CO 42k CO cn -l co cn co ^ 000 ->101 tn
- .0;-.co..crj.- CO. ro ..r>i .ro .-si .. .to.
_i._i._LOO o
^ o o ^ ba ba
cn oa o M CO
000
^ ^ ^
<0 cn ro
4i, CO ""vj
ppppp
05 b) b) .bi b)
cn -Pk. CO fS5
o ""vj cn CO ro i 8 g g ^ S3
g
cn
S
Si
II
S
II.
toag
•n 3 S
O (D 5"
(D
^ 3> =
0)
=r
0)
•o
o
«
0)
o>
I

6-42 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
Table 6-1 (continued)
Combined Flexure
and Axial Force
Fy = 50 ksi
W24
W-Shapes
W24x
anaiie
131 117' 104'
pxlO' OxXlO' pxlO' lO® px 10' fexltf
Design (Wps)-' (Wp-ft)-^ (Wps)-' (kip-ft)-' (kips)-' (kip-ft)-'
ASb LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 0.865 0.576 0.963 0,641 0.9945; 0,661 •1,09 • 0,725 1.14 0.759 1.23 0.820
11 1.00 ft 0.665 0.972 0.646 1,13 0,752 1:10: 0,733 fl.30' 0.862 1.25 0,832
12 1.03 : 0.684 0.989 0,658 1.16 . 0,771 ;i.i2 • 0,748 1.33 0,884 1,28 : 0,849
13 1.06;; 0.704 1.01 0.670 1,19 v 0,794 1.15 ; 0,762 1.37 0,908 1.30 0,867
C 14 1;09c 0.727 1.03 0.683 1.23 0.820 1:17 ; 0,778 0,936 1:33 0,886
15 1:13 0.753 1.05 . 0,696 1.28 . 0,850 1.19 0.794 0.966 1.36 ; 0,905
u
O) e
16 1.17 0.781 1.07 0.710 1,33 0,882 1.22 0.810 1:50? 1.00 1.39 0,925
o c
a s
17 ;r,22 -0.813 1.09 0.724 1,38 0.919 1.24 0.828 1.56 1,04 VA2 0,946
18 1.2/?; 0.848 1;11 : 0.739 1.44 0.959 1:27 0.846 1.63 1,08 1,46 0.969
S g
19 1.33 0.886 1.13 0.754 1.51 1.00 1.30 > 0.865 1.70 1,13 1.49 0,992
20 1.39. 0.928 .l.ldj 0,770 1.58 ; 1.05 1.33 0.885 1.79 1,19 1.53 1,02
i £ 22 1.54 1.03 1.21 0,804 1.75 1,16 1:39 0.927 1.99 1,32 1.61 : 1,07
Is
24 1.72 1.14 1.26 0.841 1.96 1.30 1.46 0,974 2.23 1.48 1.69 1.13
CP ^ 26 1.94 : 1.29 1.33 0,882 2.21 1.47 1:54 1.03 2.52 1.68 1.79 i 119
£ £
28 2.21 1.47 1.39 0,928 2,53 1,68 1.6ii 1,08 2.89 1.92 1.90 . 1.27
1 30 2.53 1:68 1:47 0,977 .2,9Ci . 1.93 1.73 ; 1,15 3.32 2.21 2:06 1.37
32 2.88 1.92 1.56 1,04 3.30 2.20 1.89 1,26 3.77 2.51 2.29 i 1.52
^ i 34 •3.2d 2.16 1.70 1,13 3,7^ 2.48 2,07 1.38 '4.26 2.83 2.51 1.67
36 3.65 2,43 1;84 1,23 4.18 2.78 2.25 1.50 4.78 3,18 2.74 1.82
ll 38 4,06 2.70 1.99 1.32 4.65 3.10 2:43 1.62 5.32 3.54 2.97 ; 1.98
40 4:50 3,00 2.13 1.42 5.16 3.43 2.62 1.74 5,90 3.92 3.20 2.13
iC
42 4.96 3,30 2.28 1.52 5.68 3.78 2:80 1,86 6.50 4.33 3:44 2.29
IS
44 5.45 3.62 2.42 1.61 6.24 4.15 2,98 1.99 7.13 4.75 3:67 2.44
46 5.95 3.96 2.57 1.71 6.82 4.54 3,17 2.11 7.80 5.19 3.91 2.60
48 6.48 4.31 2,71 1.80 7.42 4.94 3.35 2.23 8:49 5,65 4.14 2,76
other Constants and Properties
tij,x10',(l<ip-ftr' . 4.37 2,91 4:99 3.32 5.71 • 3.80
fyx10^ (kips)-! 0.865 0,576 0.971 0,646 1.09 0.724
trx^(fi, (kips)-' 1,06 0,709 1.19 0,795 1.34 0,891
fylty 3.43 3.44 3.47
in. 2.97 2.94 •2.91
' Shape is slender for compression witti fy- 50 i^si.
Note: Heavy line indicates KUty equal to or greater than 200.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-43
Table 6-1 (continued)
Fy = 50 ksi
Combined Flexure
and Axial Force
W-Shapes
- W24
Shape
W24x
Shape
103= 94' 84'
pxlO^ pxlO^ bx^ :10' pxlC
Dei iign (Wps)-' (kip-ft)-' (kips)-' (kip-ft)-' (kips)-' (Wp-fl)-'
ASD LRFD ASD LRFD ASD LRFD ASb LRFD ASD LRFD ASD LRFD
0 1.13 ! 0.753 1.27 0.847 1.26 0.840 1.40 0,933 1,46 ^ .0,968 1.59; 1.06
11 1.52 1.01 1.42 0,944 1.67 1,11 .1.57 1,05 1.92 1,28 1.80 1.20
12 1.62 1.08 1.46 0.972 1.78 1,18 1.62 1,08 2,03 1,35 T.87 : 1,24
13 1.73 1.15 1.51 1.00 1.9Q 1.26 1.68 1,12 7.2.17 1,44 1.93 : 1,28
g 14 1.86 1.23 1.55 1,03 2.04: r 1,36 1.73 1,15 2i33 " 1,55 2,00 1,33
if
15 2.00 1.33 1.61 1,07 2.21 1,47 1.79; 1,19 2.5i2 -1,68 2.08 . 1,38
if
16 ;2.18 1.45 1.66 1,10 2.40 1,60 ,1.86 1,24 •2.75- 1,83 2.16^ 1,44
11
17 2.38 • 1.58 1.72 1,14 2:62 1.74 1.93 1,28 :;3.01 r 2,00 2.25 : 1,49
11
18 2.61 1.74 1.78 1,19 2.88 ; 1.92 2.01 1,33 3.32. 2.21 2.34 1.56.
19 2.88 1.92 1.85 1,23 3.18 2.12 2.09 1,39 3,68 2,45 2.45' '1,63
eg ><
S X
20 3.19 2.12 1.92 1,28 3.53 : 2,35 2.17 1,45 4.08 2,71 2.56 1.70
is
22 3.8d • 2.57 2.09 1,39 4.27 ' 2,84 2.43 1,61 ,4.94; 3.28 2.95 1,96
|g
24 4.60 : 3,06 2.37 1,58 5.08 • 3,38 2.7^ 1,84 5.88 3.91 3.37 2.24
e
26 ^5.40 ! 3.59 2.65 1.77 5.96 3.97 •3.10 2,06 6:90 4.59 3.:80 ' 2,53
|i
3 c
|1
1 =
o
28 6.26 4.16 2.94 1.95 6.92 ; 4.60 3,44 : 2,29 8;00; 5:32 4.24i, 2:82
|i
3 c
|1
1 =
o
30
32
7.19
8.18
4.78
5.44
3.22
3.50
2.14
2.33
7.94
9.03
5.28
6.01
3.79
4.1^ •
2,52 .
2,75
' 9,18 :
10.4:
6,11
6,95 .
4^7'
5:11 :
3.11
3.40
|i
3 c
|1
1 =
o
other Constants and Properties
iyX 10^ (kip-ft)-' 8.58 5.71 '9.50 6.32 10,9 7.27
fyxio', (kips)-' 1.10 0.733 ,•1.21 0.802 1.35 0,900
trXW, (kips)-' 1.35 0,903 i; :a;48 0,987 .: 1,66 : 1,11
rxiry 5.03 4.98 5,02
ry, in. 1.99 1.98 1,95
' Shape Is slender for compression with />= 50 ksl.
Note: Heavy line indicates KUry equal to or greater than 200.
AMERICAN iNsnruTE OF STEEL CONSTRUCTION

6-44 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W24
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
fv = 50 ksi
W24x
snape
76 68' 62'
. pxlO' lljfXiD' px 10' dxx 10' px 10' Axx 10'
Design (kips)-^ (Icip-ft)-^ (Kips)-' (icip-ftr' (kips)-' (kip-ft)-'
ASP LRFO ASD LRFD ASb LRFD ASD> IJIFD ASb; LRFD ASD LRFD
0 1.64 1:09 1.78 1.19 ?1C87 i 1.24 2.01 1.34 2,08 1,38 2,33 , 1.55
6 1.78 1.18 1,78 1.19 2,03 1.35 2.01 1.34 ;2,4t) 1.60 IM' 1.63
7 1.83 1.22 '1,79 1.19 2.09 1.39 2.04 1,36 •2.54 1.69 256: 1.70
8 1.89 • 1.26 1,85 1.23 2.17 1.44 2.11 1,40 2,72 .1.81 2i68 ; 1.78
9 1.97 1.31 1.9t:; 1,27 2.26 1.50 2.18 1.45 "2:94 1.96 2 m 1.87
i 10 •2.06 1.37 1.97- 1,31 2.36 1.57 2.26 1.50 3.22 2.14 2.97-; 1.97
If
11 2.17 1.44 2.O4 1.36 2,49 1.66 2.34 1,56 3.59 2.39 3.S13 • 2.08
o c
iS .S
12 •2,30 1.53 2.11 1.41 2.64 1.76 2.43 1,62 4.07: 2.71 3.32 ; 2,21
13 2.45 1.63 2.19 1.46 2,8^ 1.88 2.53 1,68 4:67- 3.11 3.53 ' 2,35
EG 14 2.62. 1.75 2.2$ 1.52 3,03 2,02 2.63 1,75 '5.42 3.60 3^77 2,51
Is
15 •2.84. 1.89 2.37 1.58 '3.29 2,19 2.75 1,83 6.22; 4,14 4;15,! 2,76
16 3.10 2.06 2.47/ 1,64 -3.59 2,39 2.8F 1,91 7.08 4,71 4:62- 3,08
1 G 17 3.40 2.26 2.58 1,-71 2,64 3.01 2.00 7:99 «,31 5:11 I 3.40
S -5 18 3.76 .2.50 2.69: 1,79 '4.42 2,94 3.16 2,10 8,96 5,96 5:60; 3,72
1 €
19 4.19 I 2.79 2.82 1,88 :4:92 3,27 3.35 2.23 9,98 6,64 -4,06
1 f 20 4.64 3.09 3.02 2,01 '5:45 3,63 3.66 2,43 llvlj 7.36 6161 • 4,40
G:G
22 5.62 3,74 3.53 2,35 .6.6b .4.39 4.29 2,85 13,4; 8.90 7:64 5,08
^ 1 24 •GM-4,45 4.6|~' 2.69 7.85 5.22 4:94 3,29
CO 5 26 7.84 5,22 4.58 3.05 9.21 6,13 5.61 3.74
ll 28 9.10 6,05 5.12 3.41, 10.7 7,11 6.30 4,19
§ 30 10.4 6,95 5.66 3.77 12.3: 8,16 6.99 4,65
1
32 11.9^ 7,90 6.21 4,13
:
Other Constants and Properties
fiyXlOMkip-ft)-'
fyXlO', (kips)-'
trxW, (kips)-'
12.5
C: 1,49
8: 1.83 :
8.29
0.992
1.22
::.1-4,5
-.1,66
' 2,04
9.67
1.11
1.36
't:22,7 :
1.84
- 2.25 ^
15,1
1.22
1,50
hth
5.05 5,11 6.69
fp In, 1,92 1,87 1.38
' Shape is slender for compression witii 50 l<si.
Note: Heavy line indicates KLIry equal to or greater ttian 200.
AMERICAN INSTITIRRE OF STEEL CONSTRUCTION

STEEL BEAM-GOLUMN SELECTION TABLES FR-45
Fv = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W24-W21
Shape
W24x W21x
Shape
55'.' 201 182
pxlO' iljrXlO' pxlO' l>x> ;10'
Design (kips)-' (kip-ft)-' (kips)-' (icip-ft)-' (Wps)-' (icip-ft)-'
ASP tRFD tASO: tRFD ASb ' IRFD ASD LRFD AStli IRFD ASD LRFD
0 -2.42 • i;6i 2.66 1,77 0.563 0.375 0.672: 0.447 0,623: 0,415 0,748' 0.498
6 .2,B0<- .1.87 2.82 c 1,87 ;0.887d 0.391 0.672. 0.447 0.650 0,432 0,748 0,498
7 2.97' 1.98 -2,95 c 1,96 0,596 0.397 0,6;f2 0,447 0,660; 0,439 0748 0,498
8 3,18! 2.11 3,10. 2,07 0.606; 0.403 0.672' 0,447 0,672' 0,447 0,748 0,498
1
9 3:4b.' •2.29 3,27 . 2,18 :0,6m 0.411 •0,672: 0,447 0,685, 0,456 0748 0,498
1
10 3i79r 2,52 3.46.. 2,30 0.632 0.421 0,672: 0,447 0,7fl0' 0,466 0.746i 0,498
If
"SS "O
11 ;423C 2,81 >3,67 b. '2,44 0.648,^ 0.431 0,675 0,449 0,718; 0,478 075^ 0,500
11
12 4,80 i3.19 3,9'( " 2,60 .0.6d5J 0.443 0,682 0,454 0,737 0,491 0,76i; 0,507
i 1
13 5:57 .3.70 4,18 2,78 a.mi 0.455 0,690 0,459 :0759J 0,505 077i; 0,513
•K Z
14 6.46 : 4.29 4,51 3,00 =0.7Q6U 0,470 0.698 0,464 0,784: 0,521 0.780 0,519
S X
15 7,41 i4.93. ,5,G8 3,38 0.730 0,486 Mm 0,470 0,811 0,539 0790 0,526
16 8.4^ 5.61 5,68 3.78 0.7S7 0,504 0714 0,475 0.841' 0,559 omf: 0,533
1 g
17 9;5!2 6.33 •6,29 4,18 0,786 0,523 0723 0,481 0.874, 0.581 o:8ir 0,540
l-s, 18 ro:7 7.10 6,91 4,60 0.819 0.545 •0731: 0,487 c.g-jo 0,606 0,822' 0,547
19 .11.9: 7.91 ,7,55 5,02 0,834 0,568 0,740 0,492 0.951 0.632 0.833 0,554
if
20 13:2' 8.77 8,20 5,46 0.894 .0,595 :0749: 0,498 0.995 0,662, o;844 0,562
if
22 15.9: 10.6 <9,52 6,34 0,9^5 0,655 •0.768' 0,511 0,730 0;868 0,577
24 .1.10 0,729 0.788 0.524 1.22 0,813 0393 0.594
i.|
• 26 "1.23 0,818 0.8Q9 0,538 M.37 0,914 0;919 0,612
I s
28 1.39 0.926 0.S31 0,553 1.56 1,04 0347 0.630
.s
30 1.59 1,06 0.854 0.568 1.79 : 1,19 0.977 0,650
1
32 1.8f 1,21 0.878 0,584 2,03 1,35 1.01 0,671
m
34 2.05 1.36 0.904 0,602 2,30 1.53 1;04 0,694
36 2,30 1.53 0.932 0,620 2,57 1,71 1;08: 0,718
38 .2.56 1.70 0.961 0,640 2,87 1,91 1.12 ' 0.744
40 2,83 1.89 0.993 0.660 3,18 . 2,11 .1.16, 0.772
Other Constants and Properties
6yx10^(kip-ftr'
fyXlO^ (kipsr^
trX 10^ (kips)-'
'i^ZOe
A 2.53
17.8
1.37
1.69
2:68
0.563
•0:692
1.78
0.375
0.461
i2;99
0.623
+-0.765
1.99
0.415
0.510
rxiry 6.80 3.14 3,13
1.34 3.02 3.00
' Shape is slender for compression with fy = 50 ksi.
' Siiape does not meet tiie /)/(,»limit for shear in AISC Specification Section G2.1 (a) with Fy= 50 ksi; therefore, <|)v=0,90 and
te: Heavy line indicates KUry equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRIJCTION

6-46 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
Table 6-1 (continued)
Combined Flexure
and Axial Force
Fy: = 60 ksi
W21
W-Shapes
-
Shape
W21x
Shape
166 147 132
PX 10^ px 10^ pxlO' <)xx10'
Design (Wps)-' (kip-ft)-' (Wps)-' (kip-ft)-' (kips)-' (kip-ft)-<
ASO LRFD ASD LRFD LRFD m LRFD ASD LRFD ASD LRFD
0 0.684 0.455 0;825 0.549 0.773 0.514 0.955 0.635 0.861' 0.573 t.07 0.712
6 0.7-f4: 0.475 0i825 0.549 0.8(j8< 0.537 0.955 0.635 0.900; 0.599 1.07 0.712
7 0.725: 0.482 0.825. 0.549 0.820 0.546 0.955 0.635 0.914 0.608 1.07; 0.712
8 0.738 0.491 0i82& 0,549 0.835 0.556 0.955 0.635 0.931; 0.620 1.07 ^ 0.712
9 0.753 0.501 0.825 0,549 0.8533 0.567 0:955 0.635 o;95i. 0.633 1.07 . 0.712
If
10 0.770: 0.512 0.825- 0.549 0.873 0.581 0.955 0.635 0.9t3 0.647 1.07 , 0.712
If
11 0.789; 0.525 0.829; 0,552 0.895; 0.596 0.563 0,641 0.999f 0.664 1.08: 0.719
§ ^
12 :0;811 0.540 0.841 0,559 0.920 0.612 0.978 0,651 1.03 0.683 1.10 0,731
1
13 0.835 0.556 0.852^ 0.567 0.949:'; 0.631 0.993 0.661 1.06 0.705 112 0.743
2 JS
•a ^
14 ,0.862. 0.574 0.864. 0.575 0.980;; ,0.652 ;1.01 0.671 1.0?; 0.728 1.14: 0.756
M X
15 0.892 0.594 0.876 0.583 1,02 ; 0.675 1.02 0.682 113 0.755 116 0.769
16 0.925, 0.616 0.888 0.591 1.05 0,701 1.04 0.693 :1.18 ; 0.784 tns: 0.782
|g 17 :0.9fi2 0.640 0.901.: .0.599 1.1(1 ? 0.730 1.06 0.704 1.23 ; 0.816 1.20! 0.796
s ^ 18 1.00 0.667 0.914 0.608 1.14 0.761 1.08 0.716 im 0,852 .1:22 0.811
. 19 1.05 :! 0,697 0.927. 0.617 1.20 i 0.796 1;09 ^ 0.728 .:1.34 • 0.892 1.24; 0.826
1 20 1.19,; 0.729 0.941 0,626 1.25 0.835 1.11 0.740 i;4i 0.935 1:26 0.841
If
22 1.21 0,805 0.645 1.39 0.924 1.15 0.767 1.56 1.04 J.31 ^ 0.874
If
24 0,897 1.00,: 0.666 1.55 1.03 1.19 0.795 1.74 1.16 1:37 0.910
ra S3 26 1.52 ,1.01 liOii; 0.688 1.75 117 1.24 0.825 1.97 : 1.31 1;43 : 0.948
» o 28 1.72 1.15 1.07 • 0.711 2.00 1,33 1.29 0.858 2.25 1.50 j;49 0.990
30 1.98 1.31 1.11 0.736 2.29 1.53 1.34 0.894 2.59 1.72 1:56 ; 1.04
1
32 2.25 1.50 1.15, 0.763 2.61 1,74 1.40 0.933 2.95 1.96 1.63 1.09
34 2.54 1.69 1.19 0.792 2.95 1.96 1.47 0.975 3.32 2,21 1.72 1.14
36 2.85 1.89 1.24 0.823 3.30 2.20 1.54 1.02 3.73 2.48. 1.85 1.23
38 3.17 2.11 1.29 0.857 3.68 2.45 1.64 1.09 4.15 2.76 1.98 1.32
, 40 3.51 ^ 2,34 1.34 : 0,895 4.08 2.71 1.75 1.16 4.60 : 3.06 212 1,41
other Constants and Properties
/)yXlO^(kip-ft)-< .3.30 2,19 :3i85 ' 2.56 ;;4.33 2.88
fyx10^ (kips)-' , 0.684 : 0.455 0.773 0.514 - 0.861 : 0,573
/rX•^0^ (kips)-' 0.560 0.950 0.633 1.06 0,705
hiry 3.13 3.11 311
ry. in. 2.99 ;2.95 2.93
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-47
Table 6-1 (continued)
Fy
= 50 ksi
Combined Flexure
and Axial Force
W-Shapes
W21
Shape
W21x
Shape
122 111 101"=
pxlO' ii^xlO' pxlO' fexlO^ pxlO'
Design (kips)-^ (kip-ft)-' (kips)-' (kip-ft)-' (kips)-' (kip-ft)"
ASD LRFD iASD LRFD ASD LRFD ASD LRFD -ASD LRFD ASD LRFD
0 0.930 0.619 1.16 0.772 1.02 0.682 1.28 0.850 113 0.754 1'.41 i 0.937
6 0.973 0.647 1.16 0.772 1.07 -0.713 1.28 0.850 118 0.785 1.41 ; 0.937
7 0.988 0,658 1.16 0.772 1.09 0.725 1.28 0.850 1.20 0.797 T.41 0.937
8 1.01 0.670 1.16 0.772 111 0.739 1,28 0.850 1.22 0.810 1.41 0.937
g. 9 1.03 0,684 t.T6 0.772 113 0.7S4 1.28: 0.850 1,24 0.826 l!.41 ' 0.937
1
10 ,1.05 0.700 1.16 0.772 116 • 0.773 1.2? 0.850 : 1.27 , 0,846 1.41 0.937
DL
11 1.08 ' 0.719 1.17- 0.781 119 ^ 0.793 I.2I 0.861 1.31 0,869 1.43 • 0.951
O C
s S
12 1.11 0.739 1.19 0.795 1.23 : 0.816 1.32 0.877 1.34 0,894 1.46: 0,969
13 1.15 0.763 1.22 0,809 1.27 ^ 0.842 1.34 0.894 1.39 0,923 1;49i 0,989
2 IS
14 1.19 r 0.789 1.24 0:823 1.31 ^^ 0.871 1.37 0.911 1.43 0.955 J.62 1.01
«
O X
15 1.23 0.817 1.26 0.838 1.36: 0,903 1.46 0.929 0.990 1.S5' 1.03
16 :1.2i 0.849 T.28: 0.854 1.41.-; 0.939 1.42 0.947 1.55;:. 1.03 1-58 1.05
i g 17 >1.33 : 0.884 1.31 0.870 1.47 : 0.979 1.45 0,966 1.61 1.07 1v61 ; 1.07
i-i
18 i.39 0.924 1.33 0.887 1.54 i 1.02 1.4i 0.986 1,69 112 1.651 1,10
s €
19 1.45 0.967 1.36 0.905 1.61 , 1.07 1.51:. 1,01 1,77 1.18 1,69.: 1,12
S 1 20 1.52 1.01 1.39: 0.923 1.69 . 1.12 I.5S: 1.03 1.8§ 1,23 472j 115
!i
22 1.69 = 1.13 1.45 0.961 1.88 1.25 1.6i, 1.Q8 2.06 1,37 1.B1 1.20
Hs 24 1.89 i 1.26 1.51 1.00 2.11 i: 1.40 1,69 113 2.32: 1,54 i^9or 1.26
raj
26 2.14 1.43 1.58 1.05 . 2.39 : 1.59 :.1.78 118 '2,63 1,75 2.00 1.33
1 ^
28 2.45 1.63 1.65 110 2.74 1.82 1.87 1.24 3.02 .2,01 2:11 1.41
30 2.82 1,87 1.74 1.16 314 2.09 1.97 1,31 3.46 2,30 2.24 i 1.49
i -
32 3.20 2.13 1.83 1.22 3.58 2.38 2,12 1,41 3.94 2,62 2.46: 1.64
i -
34 3.62 2,41 1.97 1.31 4.04 2.69 2,31 1,53 4.45 2,96 2.69 1,79
36 4,06 2,70 212 1.41 4.53 3,01 2,50 1.66 4.99 3.32 2.92 1.94
38 4.52 3,01 2.28 1,52 5.05 3,36 2,69 1.79 5.56 3,70 3.14; 2.09
40 5.01 3,33 2.44 1,62 5.59 3.72 2,88 1,91 616 410 3.37: 2.24
other Constants and Properties
6yx1o^(kip-ftr' 4.71 3.14 5.22 3.48 .5.77 3.84
fyxio^ (kips)-' 0.930 0.619 1.02 0.682 ^ 112 . 0.746
trxW, (kips)-! 1.14 ' 0.762 1.26 0.839 ^ .1.38 ^ 0.918
r,lry 3.11 3.12 312
" 'y.
in. 2.92 2.90 2.89
' Shape is slender for compression with 50 ksi.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-48 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W21
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
fyi=)50 ksi
Shape
W21X
93 83'= 73"
Design
pxlO'
(kips)-'
ASD
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
1.22
1.37
1;42
1,57
1.67
i
1.91
207
2 25
2 46
3.36
3 74
:4.iig
5.bl
5.97
Y.01
8;13
9.33
LRFD
0.814
0.910
0.948
0.993
1.05
1.11
1.19
1.27
1.38
1.50
1.64
1.80
2.00
2,23
2.49
2.76
3.34
3.97
4,66
5.41
6.21
fi^xlO^ pxlO^
(kip-ftr (kips)-'
ASD
1 61
1.61
1.63
1.68
1,73
1.78
1 83
1,89
1.95
2.0i
208
215
2 23
2.32
2Ai
2 51
2.77^
3Ai
3.46
3.81
4.16
U)FD ASD
1.07
1.07
1.09
1.12
1.15
1.18
1.22
1.25
1.29
1.34
1.38
1.43
1.48
1.54
1.60
1.67
1.84
2.07
2.30
2.54
2.77
1.38
1.53
'1:60
1,67
1.77
1.87
i
2.00
2.15
2.33
2.53
2.78
•3.06
SAb
:3i80
4.23
4.69
f5:67
6.75
7:93
9:19
10.6
LRFD
0.916
1.02
1.06
1.11
1.17
1.25
1.33
1,43
1.55
1.69
1.85
2.04
2.26
2.53
2.82
3.12
3.78
4.49
5.27
6.12
7.02
(kip-ft)-v (kips)-'
ASD-
1.82
1:82
1;85
1:90
1.98
2.02
2.09
2.16
2.23
2,31
.2,40
2.49
>2.59
2.70
2.82
2,9^
3.37
3.S1
4.69
5.13
LRFD
1.21
1.21,
1.23
1.26
1.30
1.34
1.39
1.43
1.48
1.54
1.60
1.66
1.72
1.80
1.88
1.96
2.24
2.53
2.83
3.12
3.41
,1:620
i;85:
1.93
2;02
2.14
>2.29^
2.47
.2;67
2.92
3.20
3:54
3.93
4;4|l
'4.91
5.44
615^
v7i83
^9.19
10.7
12.2
LRFD
1.08
1.19
1.23
1.28
1.35
1.43
1.52
1.64
1.78
1.94
.2.13
2.35
2.62
2.93
3.27
3.62
4.38
5.21
6.12
7.09
8.14
fix X10'
(kip-ft)-'
ASD
2,07 ^
]
2,07^
2,11
2,18
2,25:
2:32
2.40
2.49
2.58
2.68
2.79
2,91
3.04
3M
3.33
3'58
«3
4.'68
5.24
5.-81
e<37
LRFD
1.38
1.38
1.40
1.45
1.49
1.55
1.60
1.66
1.72
1.79
1.86
1.94
2:02
2.11
2.22
2.38
2.75
3.12
3,49
3.86
4,24
Otiier Constants and Properties
6yx10',(kip-ft)-'
tyX 101 (kips)-'
^rx10^ (kips)-'
::10.3
1.22
.;ei,50
6.83
0.814
1.00
11.7
1.37
V 1.68
7.77
0.911
1.12
•13.4
. ,1.55
f1.91
-8.91
1.03
1.27
rx/ry 4.73 4.74 4.77
fy, in. 1.84 1.83 1.81
' Shape is slender for compression with fy=50 ksi.
Mote: Heavy line indicates KLIry equal to or greater ttian 200.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-49
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W21
Shape
W21x
62" sr
Design
pxlO'
ASD LRFD
fijfXlCP pxlO'
(kip-ft)-' (kips)-'
^SO LRFD ASD LRFD
pxlO'
(kip-ft)-' (Wps)-'
ASD LRFD ASD LRFD ASD LRFD
£ a
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
177
1.95
2 02
2.10
2.21
2 33
2.48
2.67
2.89
3.1B
3 47
3.84
4.27
4.79
5.34
5 91
7.16
8.52
9.99
13>3
1.18
1:.3Q
1.34
.1,46
1,47
1.55
1.65
1.77
1.92
2.10
2,31
2,55
2.84
3.19
3.55
3.93
4,76
5,67
6,65
7.71
8.85
2.23
2.23
2.27
2.35
2.43
2,51
2.61
2.70
;2.8i
2.93
3.05
3.19
3.34
3.5(I
3.72
4.03
4.66
5.31"
5.95
6.60
7.26
1;48
1.48
1C51
1.56
1,62
:1,67
1.73
1.80
1,87
1.95
2,03
2.12
2,22
2.33
2.48
2,68
3.10
•3:53
3.96
4.39
4.83
1.98
2.18 r
2.26v
2.35 ^
2.47 r
2.61;
2.76
2.98 C
f3>22i.
3.53
3.89;
4;3i •
4.83
5.4^
6.03
6.68
8.09
9.63"
11.3
13.1;
.1,31
1,45
1,50
1,56
1,64
1.74
1.85
1.98
2.14
2.35
:2;59
2.87
3,21
3,60
4.01
4.45
5,38
6.40
7.52
8.72
2.47
2,47
2,54
2.62
2.71
2.81
2.92
3.04
3,16
3.30
3,44
3.61
3.78
3.98
:4.33
:4.7g
5,46
6,24^
7.02
7.81
1.65
1.65
1.69
1.74
1.81
1.87
1,94
2,02
2,10
2.19
2.29
2.40
2.52
2,65
2.88
3.13
3.63
4,15
4.67
5.20
218
2 56
2.73
2 94
3.21 :
3.56 i
4.021
4:6b:
5.32;:
,6.17!
7.08;
. 8.06 ;
9.10
10.2 •
114
12.6
15.2;
1.45
1.71
1,82
1,96
2,14
2.37
2,68
3,06
3.54
4.10
4.71
5.36.
6.05
.6,79
7,56
8.38
10.1
a76 ;
2.91
3.04 I
3.19
3,35
3.53
sm
3.95
4.20'
4.48 i
4.94;
5.471
6.01
6.55
7.10 '
7.65
8J6;
1.84
1,94
2.03
2.12
2,23
2.35
2,48
2.63
2,79
2.98
-3.29
3.64
4.00
4.36
4.72
5.09
5.83
Otlier Constants and Properties
6j,x10^ (kip-ft)-'
tyxW, (kips)-'
trxW, (kips)-'
::;i;4;6
?.1.67
::.-2.05
9,71
1,11
1,37
16.4
,.,1.83
\ 2.24
10,9
1,21
1,49
.,24,1
.2,00
2.46
16,0
1,33
1,64
hirv 4,78 4,82 6,19
ry, in. 1.80 1.77 1.35
' Shape is slender for compression with Fy = 50 ksi.
Note; Heavy line indicates KUryeqml to or greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-50 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W21
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
Shape
W21x
55"= 50«
px103 ixXlO' pxlfls AxX 103 px103
Design (kips)-i (kip-ft)-i (kips)-i {kip-ft)-i (kips)-i (kip-ft)-i
ASD IRFD ASD UIFD ASD LRFD ASD i IRFD ASD LRFD ASD LRFD
0 2.29 : 1.52 2.83 1.88 2.54 1.69 '3i2f1 2.15 /2.71 1.80 3.36 2.23
6 2.52 1.68 2.83 1.88 3.01 2.00 '3.45 2.30 : 3.00; 1.99 3.36 2.23
7 2.61 1.74 2.92 1.94 3.22; 2.14 3:63 2.41 3.11 > 2.07 3.47 • 2.31
8 2.73 1.81 3.02 2.01 :3.48-. 2.31 3.81 2.54 a25C ^ 2.16 3.61: 2.40
g
9 2.86: 1.91 3.14 2.09 3.81 2.54 4.ok 2.68 '3.42 • 2.28 3.76 2.50
10 3.03 2.02 3.27 2.17 4.25 • 2.82 4.26 2.83 ' 3.63: .2.42 3.92 2.61
11 3.23' 2.15 3.40 2.26 4.63 3.21 4.5i2 3.01 : 3;88i 2,58 4.10 2.73
12 : -3.47; 2-.31 3.55 2.36 5.57 3.71 4-.82 3.21 . 4:19 ; 2,79 •4.30 2.86
13 3.76' 2.50 3.7i;. 2,47 6.52 4.34 .are 3.43 ;S4.561 3,04 4.51 3.00
« X
14 4.1 i 2.73 3.89 2,59 7.56 5.03 5.67 3.77 .•I5.02-. : 3,34 4.74 3.16
S X
15 4.55 3.03 •4.08 2.71 .8;68- 5.77 6.36 4.23 5.60 3,72 5.01 3,33
16 5.07 c 3.38 .4.29: 2.86 9.87 6.57 7.06 4.70 ;:6.3i; 4.20 S.30 3,52.
1 g 17 : 5.71 3.80 4.53 3.01 11.1 : 7.42 7;78 5.17 7;13 .4.74 5i75, 3,82
18 6.40 4.26 4.92 3.27 12.5 8.31 8i5i 5.66 7.99 • 5.32 6.35 4,22
19 7.13 4.75 5,3d •3.58 ,13.9- : 9.26 9.2k 6.15 8.90; 5.92 6.97 4.63
•t.
20 7.90 5.26 5.86 3.90 15.4; , 10.3 9.99 6.65 9.86 6.56 7.60 5.06
21 8.71 5.80 6.34 4.22 17.0 11.3 ,10:7 7.15 10.9: : 7.23 8.25 5.49
22 9.56 6,36 6.84 4,55 11.9 . 7.94 8.91 5.93
ill
23 10.5^1 6.95 7.34 4.88 13.0 t 8.68 9.58 6.37
; I &
24 11.4 7.57 7.84 5.22 14.2 9.45 10.3 ^ 6.82
; I &
25 12.3 8.22 8.35 5.56 15.4 10.3 10.9 : 7.28
1
26 13.4 8.89 8.87 5,90 16.7 11.1 11.6 7.75
UJ
27 14.4 9.58 9.38 6.24 18.0 12.0 12.3 8.22
28 15,5 10.3 9.90 6,59
Other Constants and Properties
T9.4 12.9 -29.2 19. 4 24.2 , 16.1
/yx103, (kips)-i 2.06 1.37 :<-2.27 1.51 2.37 1.58
/fXlOS, (kips)-i 2.53 ; 1,69 2.79 ; 1,86 . 2.91 1.94
4.86 6.29 4.96
/y, in. 1.73 1.30 ,1.66
= Shape is slender for compression witli Fy - 60 ksi.
• Sliape does not meet compact limit for flexure witti fy= 50 ksi.
Note: Heavy line indicates KUry equal to or greater tiran 200.
48'=.'
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-51
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W21-W18
Shape
W21x WIBx
Shape
44" 311" 2831'
px103 6^x103 px103 /l;rXl03 px103
De sign (kips)-i (kip-ft)-i (kips)-i (kip-ft)-i (ldps)-i (kip-ft)-i
ASD LRFO ASD LRFD ASD i LRFD ASD LRFO ASD LRFD ASD LRFO
0 2.97 1.98 3.73 2.48 0.365'i 0.243 0.473 0.314 0.401i 0.267 0.527 0.351
6 3.53 2.35 4.03 2.68 0.381' 0.253 0.473' 0.314 0.419.' 0.279 0.527 0.351
7 3.78 2.51 4.24 2.82 0.387 0.257 '0.4?3. 0.314 0.426. 0.284 0.527 0.351
8 4.09:< 2.72 4.481 2.98 0.394: 0.262 0.4^3: 0,314 0.434 0.289 0.527 0.351
g 9 ^'4:50; 3.00 4.75' 3.16 :0.4(j2 .0.268 0.473: 0,314 :0.443 0.295 0.527 0.351
If
•s 1
S A
10 5.03 3.35 5.05 3.36 0.412- 0.274 0.473 0,314 0.454: 0.302 0.527 0.351
If
•s 1
S A
11 . 5.74 3.82 5:3i9^ '3.59 0.422 0.281 0.474; 0,315 0:466< 0.310 0.530 0.352 If
•s 1
S A
12 4.45 5.79 3.85 0.434 0.289 0.477 0.317 0.480. 0.319 0.533 0.355
13 7.84 5.22 6.25 4.16 0.447 0.298 0.480: 0.319 0.495: 0.329 0.537 0.357
n
14 • 9:iDv 6:05 7.11 4.73 0.462 0.308 0.483 0.321 0.512 0.340 0.540 0.359
- ^
15 1:0.4'': 6,95 7.99 5.32 04791 0.319 0.486 0.323 0.530' : 0.353 0.544 0.362
BS
16 ii.a 7.91 5.92 0.497: 0.331 0.489 0.325 0.551s 0.367 0.548 0.364
Sg 17 13.4' 8.93 9.83 6.54 0.517.' 0.344 0.492:. 0.327 0.574 0.382 0.551- 0.367
I-? 18 15.0 10.0 10.8 • 7,18 0.540 0.359 0.329 0.600 0.399 0.555 •0.369
^ €
19 16.8 11.1 11'.8 7.82 0.564 0.375 0.498-; 0.331 0.628 0.418 0.559 0.372
? g 20 18.6; • 12.4 12.7; 8.47 0.592 0.394 0.5Qf 0.333 0.439 0:563 0.374
22 0.655.- 0.436 0:5d7 0.338 0.732 0.487 0.571^ 0.380
24 0.732 0.487 0J14' 0.342 0,821 0.546 0:579 0.385
it
S o
26 0.826 0.550 0.521; 0.347 0.929 0.618 0.588 0.391 it
S o
28 0.942 0.627 0.528' 0.351 1.06 0.708 0!596 0.397
1
30 :i..08 0.720 0.535: 0.356 1.22 0.813 0;605 0.403
1
32 1.23 0.819 0.542 0.361 1.39 0.925 0.614 0.409
Ul
34 1.39 0.924 0.550 0.366 1.57 1.04 0,624 0.415
36 1.56 1.04 0.557 0.371 1.76 1.17 0i634 0.422
38 1.74 1.15 0.56S' 0.376 1.96, 1.30 0:644 0,428
40 'it ' 1.92 1.28 0:5^3 0.382 2.17 1.45 0.654 0,435
Other Constants and Properties
6^x103, {kip-ft)-i
fyX 103, (|<ips)-1
trxW, (kips)-'
•35.0
'2.57
S.16
23.3
1.71
2.10
.1.72
0:365
;-o;448
1,15
0.243
0,299
1.53 ;
•t)i401 i
0.493
1.28
0,267
0.328
6.40
/>, in. 1.26
2.96
2.95
2.96
2.91
Shape is slender for compression witn/>= 50 ksi.
Range tiiicliness greater tlian 2 in. Speciai requirements may apply per AiSC Specification Section A3.1c.
Note: Heavy line indicates KLIry equal to or greater tiian 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Effecfive length, XL (ft), witti respect to least radte at gyraSon, r,.
or Unbraced Lengiii, U (iq.for X-X aris benfng
sgggs SSfeSB SS»;5o5 SSSiS- O
-J OJ 05
^ ^ o <o bo
Cp'io'
O O O O O
Cy c>> ^ oa
o o p o
c» bi cn «
o o Ci o i
^ ^ ^ :
oppoo ooooo oppop ppppp p
Oilcs-co^o t0^a>C>bl ^
poo-j ^^ owo^—^ a>ro—^rocn totnro -sj cn
o o p p o
^ ^ ^ ^ b>
js. ro-^. o to
^
f^ c»
ooooo
^ ^ i? S 2 S
OOOOO
231
OOOOO ooooo O
i522g ggss'g SSSSS S
> 00 M (O O 01 ->J 03 C0 03 CO 03 Cd
OOOOO ppppp
40CJ7C0—
OOOpp opppp p p P" p" ®
j^kCOCOCOOJ
ZliiZIoo 03COCOCOCO
•^^J^oocn rv3<00)coo cococococo
ooiooo OOOOO opopp 5-/
bisbss g^ggl fi jgg agggg §
—iOOOO ooooo
ssfe^'^ liiii si
OOOOO
OOOOO
s s 2 k a
o CO o> o cn
OOOOO
ij a 2 "ri
o o> ro CO
5 p-fe p & 0
to § S- S «
^ 00 ro >1
Ppppp
^ ^ CT A
2
5
o o O O O
> a> a>
• ^
> CO
22:
I O o p p
; cn bi ai
, cn. Co rv3
I oj Co ro
OOOOO
CO to tn
o 0 O o
•ja. ji, 45»
O C» 0> Cn
to crj -*• -sj
O d> o o o
s s fe 6
to 01 M 03 <jl
o o p o p
Itk j;;^ ttk
03 hO ro ro •
o ^ b) 1 '->1 bi 03 ^ o
fO <n- IO
p pop
Ls .g s S!
• O cn CO G> fo
000 00
"Ss'^gs
rf- <P ^
O O op o
s
^-kppp
0 03 b> 4s» CO ^ O CO C)
01 cy> ^ cc> ro
c> ^ Q ^
cn cn bi Oi
--si ji. ro .o
tn CO CO —i
pop
^
. . O <0 •
000
bi w CO OJ
03-^ cn
OOOOO
ro o CO o> I
CO r>a ro ro
o p p p p p p p p p
1 liiii iltil J
ppppp
<35 (3> OT 01
CJ1 Ji. po —' o
-vi K? "-J CO O
o p O" p
cn ^ ^ ^
ooooo
a
jvo • —»• cn o ai —i S g
o 00 p
4^ 4^ 4^
O to <0 CO
ro --si CO CO
o o p o p
js^ ^ Itk Itk
S 2 S g S
4
s 11—I
m 9 -I
tt o 5'
Q. ^ <D
M SL Q. §
1
2 ® I'
o c 2
II
Ol
o
2
s: s"
p p fo
cyj cc»
g ^ CO
O O CO
CO ^ ^
CO fsj o>
p p ro
Effective lengtti, KL (fQ, with reflect to least raimis of gyratton, r^
or Unbraced LengA, (iq, for X-X axis I
sssslis O CD I
CO CO ro ro ro
^ CO tn ro
o 03 oa ^
CO
o o o o
o CO CO bo 00
ro
o o o o <=>
a j3 > ^ ^
t g
a> a>
ss
000
2 S fe
PO
CO ^ ©3 05
CO O <0 CO to
p p
CO
C7> 0>
P p p O O
cs> o> tn cji
—^ CO 01
to ^ CO cn to
ppppp
CD cn 4^
CO to CO a>
05 cn -sj o a>
o o
-••CO ks E
p o o o
CO o o o
•Nl .CJI CO
CO 01 CO
p o o o o
00 ^ OQ Ol ba
CO- -CO .
tn ci>
ppppp
a bo QB bo b>
^ ^ CO fO
00 o CO 01
o o
ss
O) o> o>
ppppp
^ ^ '--si ^ bi
p p p p
01 O) CD 01
tn CO ro o
c> G c> G o
cn cn Ol cn en
<0 03 03
tn CO ro Ol o
a
G G p c>
bi
cn cn 4^ ^
<0 CO 03 ro
p p
Ol Ol
OJ OJ
Ol
p p p
cn tn bi
CO CO CO
01 Ol Ol
<X> ^ CO 10
to w CO cn
CO -sj oj —^ . 0 ro en CO ^ M i
ppppp
§ B § S g fetS S
o o
Vi ^
000 o
iss s
o cn CO O
ro f\5 ro —i- —I
b:> CO ^ 03 a>
o cn —' CO
-t _». o O ppppp
^ bi b:> b>
en —^ js. —f.,
ro ro cn Oi
ppppp
bi bi bi bi
to o:> 4^ ro
o -J c:> CO
ppppp
to »
Oi S
—' O O O O
, o <0 <x> 00
OOOOO
£ S § is g
o o .
CO by i
CD CO I
OD cn I
! ^ S S
I cji cn cji
ppppp
ba CO CO 00 ^
--si cn ro o oo
CO ro -vj o
o o p o o
'--si ^ ^ bi
ppppp
05 oi oi bi bi
§ 2 a g; ^
o o o p o 00 p p p
bi tn
to to to
05 05 05
CO CO CO
45k to ^ bo
CO ^ CO lo
ro MJ —^
tt a> ^
00 o) o> 10 -rO'
ooooo
fofo^oo ^^^bsbo
cn o -tx 00 o3 « g X S §1
OOOOO

f\5 ro |o ro
<0 bi CO '—i- OD
CO cn CO ro CO
OOOOO 00
g 2 a fe g s
—^ o:> o:>' o -J CO ro
P p OOOOO
tn bi bi
00 .(y> cn . CO ro —1- o
-J to ro CO tn 4:^ tn
• ^ o S
c^ o B ^ c^
cn ^ CO ro g
^ o p o o
o <0 <0 ^
^ to oi CO o
to cn CO CO
ooooo
OD OD OD ©3
-J ^ ro o
cn <0 -*• to
p p p p p 00 000
^ '-"-4 ^ Vj '-sj "-sj b> bi b>
cooocototo oisjcocnoi
ppppp
0> 0>
o> 05 cy> ~ ~
CO o:> o:>
<3
II
s
fi}
3
Q.
o
- Q. O
3 a
if
1-
p fi}
•D ~
(D
W
•n
o
(D
il—I

6-54 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
Table 6-1 (continued)
Combined Flexure
and Axial Force
Fy. = 50 ksi
WIS
W-Shapes
Shape
W18x
Shape
143 130 119
pxlO' 6,x 103 px103 FCXXLFLS pxW fixxioa
Design (Wps)-^
(ldp-ft)-i (kips)-^ (kip-ft)-V (lcips)-i (kip-ft)-i
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASO LRFD
0 0.795 0.529 1.11 , 0.736 0.872 0.580 ,1.23:. 0.817 0,952 0.633 1.36 0,905
6 •0.637 0.557 1.11 0,736 0.919 0.611 1.23 0.817 1.00 0.667 1.36 i 0,905
7 0,853 0.567 1.11 ' 0,736 0,936 0.623 1.23 0.817 1.02 0.680 1.36 0,905
8 0.B71 0.580 1.11 0,736 0.957: 0.636 1.23 0.817 1.04 0.695 i1.36 0,905
c 9 0.892= 0.594 1.11 0.736 0.980' 0.652 1;23 0.817 1.07 0.712 1.36 i 0,905
••a 10 0.917. 0.610 1.11 0.740 I.Of ' 0,670 1.24 0.823 1.10 0.732 1.37 0,912
11 0.945; 0.629 1.13 I 0.750 1.04 3 0,691 1.25 0.835 1.13 0,755 i;39; 0,926
M £ 12 0.976 0.649 1.14 0.760 1.07 0,714 1.27 s 0.847 1.17 0,781 1,41 0,941
13 1.01 0.673 1,16 0.770 1,11 • 0,741 1.29 0.859 '1.22 ' 0,810 1i44^ 0,956
2 1
14 1.05 t; 0.699 1.17 0.780 1.16 0,770 1.31 0.872 1.27 0,842 1.46 0.972
15 1.10? 0.729 1.19:. 0.791 1.21: 0,803 1..33 ' 0,886 1.32 0,878 1.49 0.989
16 1.14- 0.762 .1.211 0.802 1.26 '1 0.840 0,899 1.38' 0,919 1:51 1.01
« g 17 1.20 0.798 1.22 0,814 1.32 • 0.881 1.37 0,913 1.45 0,964 1:54 1.02
t-S 18 1.26 0.839 1.24 0,825 1.39 I 0.926 1.39 0,928 1.52 1,01 1.57 •1.04
^ €
19 1.33 0.884 1.26;. 0,838 1.47 0.977 1.42 0,943 1.61 ' 1,07 1.59 1.06
S 1 20 1.41 0.935 1.28 0,850 :1.55 1.03 1.44 0,959 1.70 1,13 1.62 1.08
22 1.05 1.32 0,876 1.75 1,17 1.49 0,992 1.92 1,28 1.69 1.12
24 1.81' 1.20 :1.36 ^ 0,904 2.00 1,33 .1.54 • 1,03 2.20 1.46 1.75 1.17
•xf A
f 5
26 2.08 1.39 1.40 0,933 2.32 1,54 I.BO^F 1,06 2.55 1,70 1i3 1.21
J o
28 2.42 1.61 1.45 0,965 2:69 1,79 1.66 1,10 2.96 1,97 1.90 1,27
30 2.77 1.85 1.50 0,999 3.09 2,05 1,73 1,15 3.39 2,26 1.99 1,32
1
32 3.16 2.10 1.56 1.03 3.51 2,34 1.80 1.20 3.86 2,57 2.08 1,39
Ul
34 3.56 2,37 1.61 1.07 3,97 2,64 1.87 1.25 4.36 2,90 2.19 1,46
36 4.00 2,66 1.68 1.12 4,45 2,96 1.96 1.30 4.89 3.25 2.34 1,56
38 4.45 2,96 1.74 1.16 ;4.95 3,30 2.08 1,38 5.45 3,62 2:50 1,66
40 4.93 3,28 1.82 1.21 .5,49 3,65 2.20 1,47 6.m 4,02 2.65 1,77
other Constants and Properties
/)LYXL03(KIP-FT)-1 4.17 2.78 4.64 3.09 5.16 3.43
fyX 103, (kips)-' 0.795 0.529 • 0.872 ; 0.580 0.952 . 0.633
frx103, (kips)-1 0:977 . 0.651 ; 1.07 0.714 '1.17 0,779
rxir, 2.97 2.97 2.94
TY, In. 2,72 2.70 2.69
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-55
Fv-50 kst
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
WIS
W18x
pe
106 97 86
ign
pxilfi pxW fi,x103 Ax X103
ign (kips)-' (kip-ft)-i (kips)-' (kip-ft)-' (kips)-i (kip-ft)-l ign
ASD LRFD ASD LRFD ASD LfiFD ASD LRFD ASD LRFD ASD LRFD
0 1.07 0.715 1.55 1.03 1.17 0.780 1.69 1.12 1.32 0.878 1.92; 1.27
6 1.13 0.754 1.55 1.03 1.24 0:823 1.69 1.12 1. 39 . 0.928 1.92 1.27
7 1.16 0.769 1.55 1.03 1.26 i 0.839 1.69 1,12 1.42 0,946 1.92 1.27
8 1.18 0.786 1.55 1.03 1.29 -0.858 1.69 1.12 1.46 0,968 1.92 : 1.27
9 1.21 0.806 1.55- 1.03 1.32 -0.880 1,6& 1,12 1.49 0,994 1.92 1.27
10 1.25 • 0.829 1.56 1.04 1.36 0.906 1.71 1,14 1.54 1,02 1.94 1.29
11 1.29 0.856 1.59 1.06 1.41 0.935 1.74 1.16 1.59 1,06 T.98 : 1,32
12 1.33 0.885 1.62 1.08 1.45 0.968 1,77 1.18 1.64 1.09 2.02 • 1,35
13 1.38 0.919 1.65 1,10 1.51 1,00 1.81 1.20 1.71 1.14 2.06 1.37
14 1.44 0.957 1.66 1.12 1.57 1.05 1.84 1.23 1.78 1.18 2.11 1.40
15 1.50 -0.999 1.71 1.14 1.64 1,09 1.88 1,25 1.86 • 1.24 2.15, 1.43
16 1.57 : 1;05 1.74 1.16 1.72 1,14 1.92 1,28 1.95 1.30 2.20- 1.47
17 1.65 1.10 1.78 1.18 1.81 1,20 1.96 1.30 2.05 1.36 2.25 i 1.50
18 1.74 1.16 .1.81 1.21 1.90 1,27 2.00 1,33 2.16 1:44 2.31 1.53
19 1.84 1.22 ;i.85 1.23 2.01 1,34 2.04 1,36 2.29 ' 1,52 2.36 : 1,57
20 1.95 -1.30 1.89 1.26 2.13 1,42 2.09 1,39 2,43 1,61 2:42; 1,61
22 2.21 1.47 1.97 1.31 2.42 1,61 2.18 1.45 2;76 1,83 2.54 1.69
24 2.53 1.68 2.06 1.37 2.78 1.85 2.29 1.52 3.17 2.11 2.68 1.79
26 2.94 1.96 2.15 1.43 3.24 2.15 2.41 1,60 3.70 2.46 2,84 1,89
28 3.41 2.27 2.26 1.50 3.75 2.50 2.54 1,69 4.29 2,86 3.01 2.00
30 3.92 2.61 2.38 1.58 4.31 2.87 2.68 1,78 4.93 3,28 3.29 2.19
32 4.46 2.97 2.51 1.67 4.90 3.26 2.91 1,93 5.61 3.73 3.59 2,39
34 5.03 3.35 2.72 1.81 5.53 3,68 3.15 2,09 6,33 4,21 3.90 2.60
36 5.64 3.75 2.92 1.94 6.20 4.13 3.38 2.25 7.10 4,72 4.21 2,80
38 6.29 4.18 3.12 2.08 6.91 4.60 3.62 2,41 7,91 5.26 4.51 3.00
40 6.97 4.63 3.32 2.21 7.66 5.10 3.86 2.57 8.76 5.83 4.82 3,21
Other Constants and Properties
()yXl03 (klp-ft)-1
fyXl03 (kips)-'
frXlOS, (kips)-'
5.89
1.07
1.32
3.92
0.715
0,879
6.44
1.17
1.44
4.29
0.780
0.960
7..36
:1.32
1.62
4.90
0,878
1,08
rx/ry 2.95 - 2.95 2.95
ry, in. 2.66 2.65 2.63
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

6-56 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W18
Table 6-1 (continued)
Combined Flexure
and Axiai Force
W-Shapes
Fy = 50 ksi
W18X
snape
76" 71 65
pxlO' 103 px103 PX103 bxxW
Design (kips)-i (i(ip-ft)-i {klp8)-i (ldp-fl)-i (klps)-i (Wp-ft)-^
ASD liRFD ASP LRFD ASD I.RFO ASD UiFD ASD' LRFD ASO LRFD
0 ; 1.52 1.01 2,19 1.45 .1.60 1.06 2.4'! 1.62 1,75 1.16 2.68 • 1.78
6 ,1.69 1.06 2,19 1.45 m 1.21 2,44 1.62 2,00 1.33 2,68 1 1.78
7 1.62 1.08 2,19 1.45 T.91 1.27 2,51 1.67 2,09 1.39 2.76 1.84
8 i1.66 1.10 2,19 .1.45 2.02 1.34 2,59 1.72 2,21 1.47 2.85 1.90
9 = 1.70 1.13 2,19 1..45 2.15 1.43 2,6? 1.78 2,36 1.57 2.95 1.96
1
10 1.75 1,16 2,2f 1.48 2,30 1.53 2,76 1.83 2,53 1.68 3.05 , 2.03
ts 9
11 '1.81 .1.20 2.27 1.51 2,48 1.65 :2.85 1.90 2,73 1.82 3.15 2.10
e s
12 1,87 1.24 2,32 1,54 2.70 1.80 2,95 1.96 2.97 1.98 3,27 . 2.18
II
13 1.94 1.29 2.37 1.58 2,96 1.97 .3,05 2.03 3.26 2.17 3.39 2.26
11
14 2.03 1.35 2.43 1.62 3,26 2.17 3,17 2.11 3,60 2.40 3.53; 2.35
IS 2;12 1.41 2.49 1.65 3,63 2.41 3,29 2.19 2.67 3.67 2.44
16 2.'2i 1.48 2,55 1.69 4.06 2.70 3,42 2.28 4,50 2.99 3.83 , 2.55
17 2.34 1.56 2,61 1.74 4;58 3.05 3,57 2.37 5,08 3.38 4,00 i 2.66
18 2.47 1.64 2,68 1.78 5,14 3.42 3,7? 2.48 5.69 3.79 4,19 2.79
€ €
19 2,62 1.74 2.75 1.83 5.73 3.81 3,89 2.59 6,34 4.22 4,43 2.95
11
20
2,78 1.85 2;82 1.88 &34 4.22 4,1? 2.74 7;02 4.67 4,76; 3.17
22 3,16 2.11 2.98 1.98 7,68 5.11 4,6d 3.12 8,50 5.66 sm 3.62
S 1
24 3.65 2.43 3.16 2.10 9,14 6.08 5,25 3.50 1.0,1; 6.73 6SI1 ' 4.07
26 ^4,26 2.84 3.36 2.24 TO,7 ' 7.13 5.82 3.87 11,9; 7.90 6,79 : 4.51
28 4.94 3.2§ 3,67 2.44 12,4 8.27 •6,38 4.25 13;8 9.16 m6 4.96
30 5,68 3.78 4.06 2.70
1
32 6.46 4.30 4,45 2.96
u
34 7,29 4.85 4,85 3.22
36 8.17 5.44 5,24 3.49
38 9.11 6.06 5,64 3.75
40 10,1 6.71 6.04 4.02
Other Constants and Properties
i)yXl03,(kip-ft)-1
t,x10^ (kips)-i
frx103, (kips)-i
8.44
: 1:50
1.84
5.62
0.997
1.23
14.4
1.60
1.96
9.60
1.06
1.31
15.8
1.75
2.15
10.5
1.16
1.43
2.96 4.41 4.43
ry, in. 2.61 1.70 1.69
' Shape is slender for compression witti F,= 50 Irai.
Note; Heavy line indicates /((./r^equal to or greater tfian 200.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-57
Table 6-1 (continued)
Combined Flexure
= 50 ksi
and Axial Force
W-Shapes
WIS
W18x
ape
60° 55« 60«
pxlO^ pxMfi pxMfi FIJJXIOS
Design (klps)-i {klp-ft)-1 (klp8)-i {klp-ft)-< (klp8)-i {klp-fl)-i
ASO LRFD ASD ^ LRFD ASO LRFD ASO LRFD ASD LRFD ASD LRFD
0 1.94 I 1.29 2.90 : 1.93 2.14; 1.43 3,18 ' 2.12 2.42 • 1.61 !3.53 2.35
6 2.1|B{ ^ 1.45 2.90 : 1.93 :2.40I 1.60 3.19 ! •2.12 2.72 1.81 3.55 2.36
7 2;28 1.52 3.00 ; 1.99 2.51' 1.67 3.30 T 2.20 2,84'; 1.89 3,68; 2.45
^ 2,41 .1.60 3,10 2.06 2,64 1.75 3.42 2.27 2.98' 1.98 ?3.81 2.54
-0 2.57- 1.71 3.20 2.13 2,80 1.86 3.54 > 2.36 :3,16' 2.10 3.96 2.64
1
10 2,76 : 1.83 3,32 I 2.21 3,01; 2,00 3.68 , 2.45 3.3|? 2.24 4.12 2.74
11 2.98 I 1,98 3,44 T 2,29 3,26 2.17 3,83 2.55 3,63; " 2.42 4,29 2.86
S J
12 3,25: 2.16 ,3,58 2.38 3,55; 2,36 3.99 2.65 3.97 2.64 =4.48 2.98
II
13 >3.56 •2.37 372 .2.48 3,90 2,60 4.16 2.77 4,3R 2.91 4.69 3.12
11
14 3.94 ' 2;62 3.88 2.58 4,32' 2.87 . 4,35 , 2,89 4.85; 3.23 4,91' 3,27
^
15 4,39 2.92 ,4,05 2.69 4,82 3,21 •4,55 I 3.03 5.42 .3.61 5,16 3.43
16 4,94 3.28 4:23 2.82 :.5,43 3.61 4,78 3.18 6.13
, 6.9^
4.08 5,44 3.62
17 5.57 3.71 •4,44 2.95 6.13 4.08 5,03 3.35 .
6.13
, 6.9^ :4.60 5:76 3.83
1J 18 6,25 4.16 4.66 3.10 6.87 ,4.57 5.39 3.59 7.78 5.16 6,31 4.20
i €
19 6,96 4.63 5.02 3;34 7.65 5.09 5.85 3.89 8.64: 5.75 6,86 4.57
11 20 5.13 5,41 3.60 8.48 5.64 6.32 4.20 9.58 6.37 7.43 4.94
22 9,33 6.21 6,19 4,12 10.3 6.83 7.26 4.83 11.6' 7.71 8.56 5.70
24 11.1' 7.39 6.98 4.64 12.2I " 8.13 8.20 5.46 IFS:'"? 9.17 9.72 6.47
ii
26 13.0: 8.67 7.76 5.16 14.3 9.54 9.16 6,09 16,2 10.8 10.9 I 7.24
1 ^
28 15,1! 10.1 8.55 5.69
other Constants and Properties
6yXl03 {kip-ft)-l .17.3 11.5 19.3 12. 8 21,5 I 14.3
tyXl03, (kipS)-1 1.90 1.26 2.06 1.37 2.27 ; 1.51
frXl03, (KIPSH :: 2.33 1.55 2.53 1.69 2.79 ; 1 .86
r^lry 4.45 4.44 4.47
ry.
in. 1.68 1.67 1.65
' Shape is slender for compression witti Fy= 50 l(Si.
Note: Heavy iine indicates ffi/rj,equal to or greater tlian 200.
i
i
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

6-58 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
W18
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
Shape
W18x
35«
Design
pxIQS
(kips)-i
ASD LRFD
px103
(kip-ft)- (kips)-i
ASD LRFD ASD LRFD
pxKP
(kip-ft)-i (kips)-i
ASO LRFD ASP LRFD
6;,x103
(kip-ft)-t
ASD LRFD
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
2.65
3.19
3.42
3.72
4.13
4.66
5.32
6.15
7.21
8.36
9.60
10.9
12.3
13.8
15.4
17.t
18.8;
1.76
2.12
2.28
2.48
2,75
. 3.10
3.54
-4.09
4.80
5.56
6.38
7.26
8.20
9.19
10,2
11.3
12.5
3.93
4.19
4.39
4.61
4.85
,5.12
5.43
5.77
6.16
.6:69
7.45
8-21
8:98
9.75
10.5;
11.3!
12.1
2.61
2.79
2.92
3.07
3.23
3.41
3.61
3,84
4.10
4.45
4.95
5.46
5.97
6.49
7.01
7.53
8,05
3.15
3:79
4.06 •
4.41
4.87
5.45
:;6.24>
7.25'
8;51'
9:87;.
11.3 "
12.9
-14.5 . £
16.3
18.2
20.1
22.2
2.10
2.52
2,70
2.94
3.24
3.63
4.15
4.82
5,66
6.56
7.54
8.57
' 9,68
10.9
12.1
13.4
14,8
4:54
•4;88
5i13
5.40
5.71
6.05
-6.44
6:8i3
7.38
8.30
9.27
10^3;
11.a
12.3:
13.3
14.4
15.4
3.02
3,25
3,41
3,59
3,80
4.03
4.28
4.58
4.91
5.52
6.17
6.83
7.50
8.17
8.85
9.54
10.2
3.ri
4.49^
4.83
5.27
5.85
6.61
7.63
9.00
10:6
12.2
14.1
16.0
18.1
20.2
22.6
25.0
2.47
2.99
• 3,21
• 3,51
3,89
4.40
5.08
5.99
7.03
8.15
9.36
10.6
12.0
13.5
15.0
16.6
5.36
!5.84
6.17-
'6.54'
:6.96:
'7;43,
mffT'
:8i60,
9.67
11.0 !
12.3
n.G
15.0
16.4:
17.9
19.3
3.56
3.89
4.11
4.35
4.63
4.94
5.30
5.72
6,43
7,29
8.17
9.07
10,0
10,9
11,9
12,8
Other Constants and Propefties
iiyx103,(kip-ft)-i
fyxloa, (kips)-i
frXlO', (kips)-'
30.5
2.47
3.04
20,3
1,65
2.03
35.6
2.83
3.48
23.7
1.88
2,32
44.2 :
3,24
3.98 :
29.4
2.16
2.66
rxiry 5.62 5.68 5.77
ty, in. 1.29 1.27 1.22
Shape is slender for compression with Fy = 50 ksi.
Note; Heavy line indicates Kl/ry equal to or greater than 200.
AMERICAN INSTITUTB OF STEEL CONSRoUCrtON

STEEL BEAM-COLUMN SELECTION TABLES 6-59
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W16
Shape
W16x
Shape
100 89 77
PX103 103 px103 to,x105
Design (kips)-' (ldp-ft)-i (kips)-i (kip-tt)-< (kips)-' (kip-ft)-'
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 1.14 0.756 1.80 1.20 1:27 0.848 2,04 1.35 1:48 : 0.983 2.38 1.58
6 1.21 0.803 1.80 1.20 1.36 0.902 2.04 1.35 1.57 1.05 2,38 ^ 1,58
7 1.23 0,820 1.80 1.20 1.39 0.922 2.04 1.35 1.61 1:07 2.38 1,58
8 1.26 0.841 1.80 1.20 1.42 0.946 2.04 1.35 1.65' 1.10 2.38 i 1.58
g" 9 i:30 : 0,865 1.80 1.20 1.46 0.973 2.04 1.36 1.70 1.13 2.39 1,59
t: "o
10 1.34 : 0,893 1.83 1.22 1.51 1,01 2.08 1,38 1.76' 1.17 2:44 1.62
t: "o
11 1.39 0.925 1.86 1,24 1.57 1,04 2.12 1,41 1.82 1.21 2.49 . 1.65
V ez
12 1.45 0.962 1.89 1.26 1.63 1.08 2,16 1,44 1.89 1.26 2.54 1.69
1
13 1.51 1.00 1.93 1.28 1J0 1.13 2.20 1,46 n.98' 1.32 2.S9 1.72
« S
14 1.58 : 1.05 1.96 1.30 1.78 1,18 2.24 '1.49 2.07 1.38 2.65' 1.76'
« S
15 1.65 1.10 1.99 1.33 1.87 1,24 2.29 1.52 2,18 .1.45 2.71 1,80
S£ 16 1.74 1.16 2.03 1.35 1.97 1.31 2;34 1.55 2.30 1.53 2.77 1.84 •
17 1i84 1.23 2.07 1.38 2.08 1.39 2.38 1,59 2.43 1.62 2.83 1.89
1J 18 1.95 1.30 2.11 1,40 2.21 1,47 2.43 1.62 2:59- 1.72 2.90 : 1,93
g £ 19 2.08 1.38 2.15 1,43 2.35 ' 1.57 2.49 1.65 2.76: i:83 2.97 1,98
If
20 2.22 1.47 2.19 1.46 2.51 1,67 2.54 1.69 2:95 : 1.96 3.05 ^ 2,03
If 22 2.55 1.70 2.28 1.51 2.90 1.93 2.66 1.77 3:41 -2.27 3:21 2.14
H i 24 2.98 1.98 2.37 1.58 3.40 2.26 2.79 1.86 4.00 2.66 3.39 2.26
Cl
26 3.50 2.33 2.48 1.65 2.65 2.93 1.95 3.13 3.59 2.39
1 & 28 4.06 2.70 2.59 1.72 4.62 3.08 3,09 2.06 5:45 3.62 3:83 ,2.55
1
30 4.66 3.10 2.72 1.81 5.31 3.53 3.27 2.17 6.25 4:16 4.20 2.80
1
32 5.30 3.52 2.85 1.90 6.04 4.02 3.54 2.36 7.12 4,73 «;57 3,04
lU
34 5.98 3.98 3.04 2.03 6.82 4.54 3.82 2.54 8.03 ' 5,34 4.94 3,29
36 6.70 4.46 3.26 2,17 7.64 5,09 4.09 2,72 9.01 5,99 5.31 3,53
38 7.47 4.97 3.47 2.31 8.52 5,67 4.36 2,90 10.0 6,68 6:68 3,78
40 8.28 5.51 3.68 2,45 9.44 6,28 4.63 3,08 11.1 7.40 6.04 4.02
Other Constants and Properties
ftyXl03,(kip-ft)-1
fyXlO', (kips)-1
(kips)-'
6.49
1.14
1.40
4.32
0,756
0.930
7.41
1.27
1.57
4.93
0.848
1.04
8:67
1.48
1.82
5.77
0.983
1.21
rxlry 2.83 2.83
/>, in. 2.49 2.A7
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-60 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W16
Table 6-1 (continued)
Combined Flexure
and Axiai Force
WrShapes
Fy = 50 ksi
W16x
snape
67'! 57 50"=
pxlO' i^xlO' px 103 ijfX 103 px103
Design (kips)-i (kip-tt)-' (kips)-' (kip-«)-i (kips)-i (kip-ft)-'
ASD LRFD ASD< LRFD ASD ; LRFD ASD s LIHFD ASb. LRFD ASD LRFD
0 "1.71 1.14 2.74 1.82 1.99 1.32 3,33 2.26 2.30 1.53 :3,87: 2.58
6 .1.21 2.74 1.82 2.31 1.53 3.43 .2.28 2.64 1,76 3,92 2.61
7 .:-l,86 ^ 1.23 2.74 1.82 2.43 1.62 3.54 2.35 2.79 1,85 54.06. 2.70 .
8 1:90 1;27 2.74 1.82 2.59, 1.72 3.65 2.43 :.2.97 1.97 •4.21 • 2.80
9 1:96; ,1.31 2.76: 1,84 2.7? 1,85 3.78 2.51 3:lb 2.12 4.36 2.90
s _
10 2.03 1.35 2.82 1:88 3.00 2.00 3.91 2.60 3.45 2.29 4.53 3.02
>. D>
cn e
•fir TJ
11 2:10 1.40 2.88 1.92 3:27 • 2.18 4.05 2.70 3.7iB 2.50 4,72! 3,14
o e
12 2.19 1.46 2.95 1,96 3:59 2.39 4.20 2.80 4.14 2.75 4.91 i 3.27
13 2.29 1.52 3.0i 2.01 3.98 2.65 '4.37 2,91 4.59 3,06 5.13 3.41
14 !t2.4b 1 1.59 3.09 2.06 4.45 2.96 ,4.55 3,03 5.14 3,42 .S37i 3.57
S X
15 2.52 1.68 3.17 2.11 5.02 3.34 4.74 3,15 3:86 ,5.63: 3.74
16 2.66 1,77 :3.25 2.16 5.70 3.79 4.95 3,29 6.60 4,39 5:91 i. 3,93
fi
17 2.82 • 1.87 3.33 2,22 .6.44 . 4.28 5.18 3,45 >7.45 ^ 4,96 6.23- 4,14
§ 18 2.99 1.99 3.42 2.27 7.22 4.80 5.43 3,61 .8:35, 5.56 :6:74: 4.48
S £
19 3.19 2.12 3.51 2.34 8:04 5.35 5.81 3.86 •i:9.31 .6.19 a28i 4,85
20 ;3;42 i 2.27 3.61; 2,40 8:91 5,93 6.23 4.14 10i3l 6:86 JE83;i 5,21
22 3.96 2.63 3.83 2.55 10.8 7,17 7.07 4.70 12.5; 8,30 8.93; 5,94
24 3.10 4.07 2.71 12.8. :8;54 7.90 5,26 14.8 .9.88 10.0 • 6,67
tl
26 5.46- 3.63 4.34 2,89 i.5.i: 10,0 8.74 5.82 17.4, 11,6 11.1 ; 7,40
28 6.33 4.21 4.82 3,21 i^'l
30 7.27" 4.84 5.31 3,53
£
32 8.27 • 5,50 5.80 3,86
si
34 9.34 6,21 6.29 4..18
36 10.5' 6.96 6.77 4,51
38 1:1.7: 7.76 7.26 4.83
40 12.9 8.60 7.75 5.15 CS: ;
Other Constants and Properties
6yx103,(kip-ft)-l
fyX 103, (k|ps)-1
frXlOS (kips)-'
10,0
1.70
: 2.09
6.68
1,13
1,40
' 18.9
1.99
2.44
12,5
1:32
1,63
21.9 ;
2.27 :
: 2.79
14,5
1,51
1,86
rx/ry 2.83 4.20 4.20
ry, in. 2.46 .1,60 1.59
' Shape is slender for compression witfi 50 ksi.
Note: Heavy line indicates KLIry equal to or greater ttian 200.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-GOLUMN SELECTION TABLES FR-61
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axiai Force
W-Shapes
W16
Shape
W16x
45"= 400 :36»
Design
pxKP
(Wps)-
ASD LRFD
fix X 103 pxlO'
{kip-ft)-i (kips)-i
ASDv tBFD ASD LRFD
fixXlQ3 px103
(kip-tt)-i (kips)-i
ASD LRFD AStt IRFD
6,x10'
(kip-ft)-i
ASD LRFD
6,
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
> 2.61
2.97
3.12
3.31
•3.55
3.85
:;4.21
•4.65
:5.17
,5.80
«.58
:;7.4i3
>8.45
•i:9.47
11.7
i4.i:
15.'5
16.8
18.3
19,8:
1.73
1.98
2.08
2.20
2.36
2.56
2.80
3.09
3.44
3.86
4.37
4.98
5.62
6.30
7.02
7.78
8.57
9.41
10.3
11.2
12.2
13.1
4.33
M.40;
;4.5e;
AM
4.92r
5.13;
'5.35'
5.59
:5.86i
;6.15,
!€.4i
6.82
:7.36
8.03
8.70'
9.37
10;0
10.7
11.4
12.1
12.8
13.5
2.88
2.93
3.03
3.15
3.28
3.41
3.56
3.72
3.90
4.09
4.30
4.54
4.90
5.34
5.79
6.23
6.68
7.14
7.59
8.04
8.50
8.95
3.03
3.44
3.61
3.81
4.06
4.37
4;75
5.24
,5.83
6.54
7.41
8.43
9.52
10,7
11.9,
13.f
14.5
15.9
17.4
19.0
20.6
22,3
2.02
2.29
2.40
2.54
2.70
2,91
3.16
3,48
3.88
4.35
4.93
,5.61
6.33
7.10
7.91
8.77
;9.66
10.6
11.6
12.6
13.7
14.8
• 4.88
4.96
5.16
^ 5.36
; 5:59
5.83
: 6.10
?6.39
; 6.72
:7.07
7.47
7.96
.8.76
10.4;
11.2
i2.i;
12.S
13.8,
14.6'
I5.5j
16.4
3:25
3.30
3,43
3.57
3.72
3.88
4.25
4.47
4.71
4.97
5.30
5.83
6,38
6.93
7.48
8,04
8,61
9,17
9,74
10,3
10,9
3.42
3.91
4.10
4;35
;4.fe.
5.Q3;
5,49.
:6,07;
i 6:810,
'7.70
10.0 i
11.3;
12:7-
14.1
iS^e
17:3
18,9
20.7
22.5
24.4
2.28
2.60
2.73
2,89
3,10
, 3,34
3.65
• 4,04
4,53
5,12
5,86
6.66
7,52
8,43
9,40
10.4
11.5
12.6
13,8
15,0
16,3
;5,57,
:5,71
;5,94
f;6.20
?^6,48:
t6,78^
;7.12i
•7,49:
i 7.90;
-8.36'
;'8.88'
;9,f9
10.8
11.9 !
12.9
14.0
15.1 :
16.2;
17.3 i
18.4 ;
19.5
3,70
3,80
3,95
4,12
4,31
4,51
4,74
;4,98
5,26
"5,56
5,91
6,51
7,19
7,89
8,59
9,31
10,0
10,8
fl,5
12,2
13,0
Other Constants and Properties
6yXl03,(kip-ft)-"
(yXl03 (kips)-i
frXl03 (kips)-'
24,6
2.51
3.08
16.3
1,67
2,06
28,1
2,63
3,48
18,7
1,88
2,32
33,0
3,15
3,87
21,9
2,10
2,58
4,24 4,22 4,28
/>, in, 1,57 1.57 1,52
Shape is slender for compression with 50 ksi.
Note: Heavy line indicates KUr, equal to or greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRIJCTION

6-62 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W16
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
Shape
W16x
31«
Design
px103
(kips)-<
ASD LRFD ASD LRFD ASD LRFD
fixXKP pxloa
(kip-ft)-i (kips)-i (kip-ft)-<
ASO LRFD
6
7
8
9
10
11
12
13
14
15
16
17
18
19
4.09
5.08
5.52
6.10
6.87
, 7.89 i
9.28
iito;'
13.0
15.0
17.2
lie
22.2
24.8 •
27.7
2.72
3.38
3.67
4.06
4.57
5.25
6.17
7.34
8.62
10.0
11.5
13,1
14.7
16.5
18.4
6.60
7.28
7.71
8.19
: 8.74
9.37
10.1
11.1
.312.6
-i14.2
15.8
A17.5:
192
20.9
22 6
.4.39
4.85
5.13
5.45
5.82
6.23
6.71
7,35
.8,39
9.45
10.5
11.6
12.8
13.9
15.0
5.06
6.33
6.91
7.68
8.70
10.1'. .
1Z0:
14.3^
16.8
19.5
22.4
25.5 •
28.7
32.2
3.37
4.21
4.60
5.11
5.79
.6.72
8.01
9,53
11.2
13.0
14,9
16.9
19.1
21.4
8.06
9.07-.
9.66
10.3 /
11.1
12.0
13.1 ,
•liO :
17.2
19.5 ;
21.9
24.3
2^7 ^
29,2
5,36
6,03
6.43
6.87
7.39
7.99
8.69
10.0
11.5
13.0
14.6
16.2
17,8
19,4
Other Constants and Properties
6yx103,(kip-ft)-i
fyx103,(klps)-i
ffxioa, (kips)-i
; 50.7
3,66
4.49
33,7
2,43
3,00
65.0
4.35
S.34
43.3
2.89
3,56
rxlr. 5,48 5.59
tf, In, 1.17 1.12
Shape is slender for comppessi'on with fy = 50 ksi,
»Shape does not meet the hlt„ limit for shear in AISC Specifiation Section G2.1(a) with Fy = 50 ksi; therefore, ifv = 0,90 and
iJv=1.67.
Note: Heavy line indicates Xi/ry equal to or greater than 200,
AMERICAN INSTITIRRE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-63
Fy = 50 ksi
Shape
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W14
W14x
73011 665''
Design
px103 px103 PXLOA 103
Design (kips)-l (kip-ft)-i (kips)-i (ldp-ft)-i (kips)-i (kip-ft)-i Design
.ASO. LRFD ASO LRFD ASD LRFD ASO LRFD ASO LRFD ASO LRFD
0 0.155 0.103 0,215: 0.143 0,170 0.113 0,241 0.1 BO 0.188 0.125 0.270 0.180
11 0.165 0.110 0.215 0.143 0,181, 0.120 0,241,; 0.160 0.200; 0.133 0.270 0.180
12 0.166 0.111 0.215 0,143 0.183 0.122 0.241 0.160 0.202 0.134 0.270 0.180
13 0,168 0.112 0.215: 0.143 0,185 0.123 0.241: 0.160 0.2(k .0.136 0.270 0.180
c 14 0.171 0.114 0.215 0.143 0,188: 0.125 0,241 0.160 0:207 0.138 0.270 0.180
L
15 0,173 0.115 0.215 0.143 0,190 0.127 0,241 0.160 0.210 0.140 0.270 0.180
tz f
16 0,176 0.117 0.215 0.143 0:193 0.129 0,24t 0.160 0.214 0.142 0.270 0.180
0 e
17 0,178 0.119 0.215 0.143 0,197J 0.131 0,241 0.160 0.217 0.145 0.270 0.180
3 M
"<5 ui 18 0,181:! 0.121 0.215 0.143 0,200' .0.133 0.242 0.161 : 0.221 0.147 0.271 0.180
s g
19 0.185 0.123 0,216 0.143 0,204'^ 0.135 0.242' 0.161 0.225 0.150 0,272 0.181
Is
20 0,188; 0.125 0.216 0.144 0,208. 0.138 0,242: 0.161 0:230 0.153 0,272 0.181
SE 22 0,196 0.130 0.217: 0.144 0,216i 0.144 0,243: 0.162 0:240: 0.160 0:273, 0.182
Is 24 0,205 0,136 0.217: 0.145 0.226 0.151 0.244 0.163 0:252 0.167 0.274 0.183
26 0.21s 0.143 0,218' 0.145 0.238 0.158 0.24S .0.163 0.265 .0.176 0.276 0.183
€ ^
28 0,226 0.150 0.219: 0.146 0.251 0.167 0.246 0.164 0.280 0,186 0J277 0.184
30 0,259 0.159 0.220 0.146 0.266: .0.177 0.247: 0.164 0.257: 0.197. 0.278 .0.185
32 0.254 0.169 0.221 0.147 0,282=. 0.188 0,248: 0.165 0.316 0.210 0:279 0.186
s< 1
34 0,270' 0.180 0.221 0.147 0.301 0.201 0.249: 0.166 o;3k 0.225 0.280 i 0.187
"St ^ •• 36 0.289; 0.192 0?7? 0.148 0,323 0.215 0.250 0.166 0.363 0,241 0?282 0.187
38 0.310 0.206 0.2^3 0.148 0,347 0.231 0.251: 0.167 0.391' 0.260 0:283 0.1 &
40 0,334 0.222 0.224 0.149 0,375: 0.250 0.252: 0.168 0.423 0.282 0.284 0.189
1
42 0,361 0.240 0.225 0.150 0,407 Q.271 0.253 0.168 0.460: 0.306 0,285 0.190
Cu
44 0.392 0.261 0.226 0.150 0,443 0.295 0.254 0.169 0.503 0.335 0.287 0.191
46 0,429 0.285 0.226 0.151 0,485 0.322 0.255 0.170 0.550 0.366 0.'288 0.191
48 0,467 -0.311 0.227 0.151 0,528 0,351 0.256 0.171 0.599 0.399 0:289 0.192
50 0,506 0.337 0.228 0.152 0.573 0.381 0.257 0.171 0.650 0.432 0:290 0.193
605''
Other Constants and Properties
6yx103,(kip-ft)-i
fyxl03, (kips)-i
frx103, (kips)-i
/>, in.
0.437
0.155
0,191
0.290
0.103
0.127
1.74
4.69
0.488
0.170
0.209
0.325
0.113
0.140
1.73
4.62
0.546
0.188
0:230
0.364
Q.125
0.154
1.71
4.55
Range thickness greater ttian 2 in. Special requirements may apply per AISC Specification Section A3.1c.
i
{
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

i
XXX
fs5 N5 C>
as-
o o o
K:> Ko bS
-v/ fvj CO
o o o
1-1 ia.
s ^ s
s
p
o o is
a i^s id
O Ol
en CD
g 8
Effective length, KL (ft), with respect to least radius of gyration, ry,
or Unbraced Length, Lb (ft), for X-X axis bending
gi^g^ g^SS^iS
00000
^ 05 o^ cn
CO ro a> —»• •
CO 0> CO CP
o o c> o o
^ to CO
.-Nj C0.-O .
w> qo >4 fsa
CS O O O O
CO M ho ro ho
O Q S " S
00000 O
loKafoKato fo
00000
s K K ^ ^
opppp ppppp
ici. js. CO CO CO ho ho ro ho
03cn——1-tD-sjcnco
coocococn t35hoo—
0000
g S
CD -sj cn cn
oooop opppp
oooop ppppp ppppi
M^MMM COM^M^
p ^ >0 ^ "co dp" co! Co ' tv p to cq I
o o
•Si
00000
M M M ^ M
SSSSS ^gcyg igggg gggg^ fegggg g
co-^05cn4s>. OJ—^Ococo co-vio>CD45» cororo-^-j- —L—-j,
00000 ocbppo ppppp ppppp
o o o o '
CO ^ ^ 03 '
CO o> o ^
o cn CO CO <
00000 00000 oooop
_ CD CD r^ ^ . ^
pcoc;ir\:>4a. <» a^ <
ro ^3 {vj JS3 fv3 ro r
<0 CO >J •M-.O -0> £
p p p p
Ki to ho ho
CD .
N> to cn ro
cn cn
cn o C7> ro
hO CD CO CO
00 00000
CO to CO ro ho
cn fs5 o oo a>
-sj Co CP —^ rvj 8
ppppp pop
^oj^oco cococo
cn o a>
00 00000
00000
to CO CO lo l<>
03 o> o o>
to r-J cn, CO
CO CO
000
s is bi
00000
W eg 03 O) . C^
000
. g k g
o o
„ 03
00000
CO CO CO CO to
CO to CO to CO
CD to (O (O
IS.
oooop
ho ho ho ho ro
-sj cn .Si CO —'
o o
Ko ho
o ^
p p p
ho ho NJ
CO CO CO
CO o5 tn
o o o p o
ho ho •
Co CO -- -. . -
CO ro O CD
K is
000
ho r>o ho
ro ro ro
CO CO -sj
00000
ho ho ho ho ho
ro ro ro fo ro
OT O
00000
<£> bi bi
CO CJI CO N5 Cfl
^ no no
o o
cn 'or
8 2
000 ooopo
: P
I Sis
So CO rf- ro cn^ p ^ cp ro
p o o p o p
o p o p p p ®
b^ bi bi 05 to
ro -sj ro CO CO CD ^
o —^ cn o -sj CD a>
000
^ ^ [g
ppppp
ho ho ho ho Ko
--sj cn 4S>. ro —^
ro cn o --g 05
oooop opp
^ M M
p p
CD ^
o o o o o
^ o
CD -sj 4S>. ro <D
o o
gg
pop
00^
CO o CO
^ a o cs o
^ M ^ ^ ^
S 1 S3
p p p
» » »
Q O 00000
CO bs
CO CO
ro -H-
o c? o o o
S3 £3 y
to C55 J=». ro
00000 000
ro ro ^ K? [o ro ro
0> O) O) 05 O)
_L CO , CO •
o o
„ is ES a
oj ro —^ <0 CO
o o o p
ho. ho ro ho
g-a 2 s
: O O O O O
ro ho ho ho ho
a g a ^ -
cn cn cn
CO CO CO
I
S
—k
•u
u>
3"
"O
o
(A
^ -I
W O s*
"fe —. o
k =3 i.
tt ag
•T! 3 S
2 ® I"
3 X c
c 2
H
§
<S.
>
s
i
S3
CO ho 03
ro <35 ro
ro cn
—1. -sj
CO CO CD
000
CO ho CO
2 g g
poo
ro oi
CO CD CD
o o
CO CO
o
O) a>
p p p
ho ho OT
Effective length, Afi (ft), with respect to least radius of gyration, r,,
or Unbraced Length, Li, (ft), for X-X axis bending
SSSJtfe gs^gfg gSKSK gss^s ^t^^zi
--^0000
o CD bo ^ ^
p p p p o
a> bi CT) CD
! jga
C fs?
CDOOOO 00000 00000 O
: g y yjgs 8
ppppo ooooo
CO CO
pppoo ooooo ooooo
rororo^fo rohofOroro ho^-^l-i' '
CD-sjcn4s^co ro-i-ioo ocDcD
45»OT<DCnco rococotDf- — .
ppppp
^ ^ ^ ^
jSk ro CD a> to
o o o '
kfe.fe :
CO C7» .
ppppp p o o o o
'S
jii. 6j ro
p p o o
p"p o o
ooooo ppppp ppppp ppppp
ro ro fo fo ro
CO CO CO 03
cn to o CO
ro ro ro ro ro
-sj -sj -sj >-sJ
O CD cn CO
ooooo
ho Kj ro ro ro
-sj -sj -sj
CO CO CO CO CO
7-^000
o <0 00 ^
ro CO. cn
CO CO CO
ooooo
^ fe w ci bi
p o o o o
tCk Ick CO CO
>4- ^ to >4 .-
tn tn CD o> o>
_ p o o o
M CO OJ OJ OJ
cn ^ CO CO
O CO 05 o s
o p o o
W W W W CO
(D o ^
ppppp
^ a> OT bi bi
CO ro OT —i
CO o> -J- CO
ppppp
^ W ^ O OJ
O —^ OS OT CD
p o o o o
CD P CD to O
OOOOO
ho ro fo fo ho
CO CO ro ro ' -
CO CO CO "
ooooo
^ ^ ^ g g I
0000
. Ic^ 4:^ 4:^
ss g g
ooooo
4a.
« W O
O JSL 03
0000
Uik 4s. K
OOOOO
P to >4 ^
O O CD O O O
fe S k ,
Cfl tn cn cn
PPPPP
CO CO CO CO CO
G G ^ c:> o
CO CO CO CO CO
o CO cr> ro
ppppo
^ ^ M bo CO
ppppp
bo ho ho fo ho
ppppp
ho ro ho ro ho
-- -- to CD CD
0>
00 000
^ S 2
;o' cn, CO
o o
g
^ o ci o o
^ '-U '•(;;>.
ooooo ooooo
W www CO
CO CQ
ppppp
ba 07 05 cn
o- OJ -sj ro
ro CO CD cn
000
^ fe s
4s>. CD —«•
00 OOOOO
CO to
CD a>
Co
CO CO CO ro ro
•ts^ ro o Co -sj
CO —^ —^ O
ppppp
ho ho ho ho ro
cn cn CO
-sj —1. o> —C7>
ooooo
fo ho ho ho ho
CO ro ro ro —^
ro CO cn ro CD g
o o p o o
ch crt cn ci cri
jik. CO CO ro
000
c^ bi ch CJI cn
cn ro.
p o p o o
cn In tn Ife ijSi
O O O CO CD
. CO. cn. ^ Co. cn,.
0 P o P
It^'' Ji^
CD (O CO CO CO
, M.0,.tD C7» .
OOOOO
4:^
S .2 S S S.
p p o p p
CO CO bo bo OJ
a> cn cn cn
ro o cn ro
OOOOO
s? s g
o -sj cn CO o Co OT
ooooo
w w w ^ to
p pop p
bs bs 05 05 05
ppppp
bo ba bo OJ OJ
ro ro ro ro ro
ro ro ro ro ro
5
"3:
s
(n
o
X
(A
fi>
Crt
3-
S)
•a
(D
»
o ^
3 2
S.Q.O
ill
s

DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
W14
Table 6-1 (continued)
Combmed Flexure
and Axial Force
W-Shapes
Fy = 50 ks«
Shape
W14x
342^ 311" 283"
Design
pxW
(kips)-'
ASO LRFD
bfxW pxlO'
(kip-tt)-' (kips)-i
ASO LRFO ASO LRFD
pxW b^xW
(kip-ft)-! (kips)-' (kip-ft)-i
ASO LfiFO ASb LRFD ASD LRFO
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
SO
0.331;
0.355
0.360
0.365i
0.371
0.377
0.384
0.3^2
0.400'
0.409
0.41 ai
0.439
0.463;
o.4Si:
0.523;
0.560
0.602
.0.651
0.706
0.770
0.844
0.931
1.02
1.12
1,22
1.32
0.220
0.236
0.239
0.243
0.247
0.251
0.256
0.261
0.266
0.272
0.278
0.292
0,308
0.327
0.348
0.373
0.401
0.433
0.470
0.513
0.562
0.619
0.680
0.743
0.809
0.878
0.5303
0.530
0,530
0,S30'
0,530
0.530
0.532'
0.534
0.536
0538
0.539
0.543
0.547
0.551
0.555
0.559
0.563
0.567
0.571
0.575
0.580
0.584
0.588
0.593
0.597.
0.602
0.353
0.353
0.353
0.353
0.353
0.353
0.354
0.355
0.356
0.358
0.359
0.361
0.364
0.367
0.369
0.372
0.374
0.377
0.380
0.383
0.386
0.389
0.391
0.394
0.397
0.401
0.365
0.393
0.398
0.404
0.411
0,418
0.426
0.434
0.443
0.453
0.464
0.468
0.515
0.547
0.583
0.625
0.673
0.729
0.79?
0.865
0.951
1.05
1.15
1.26
1.37
1.49
0.243
0.261
0.265
0.269
0.273
0.278
0.283
0.289
0.295
0.302
0.309
0.325
0.343
0.364
0.388
0.416
0.448
0.485
0.527
0.576
0.633
0.697
0.765
0.837
0.911
0.988
0.591
0.591
0.591!
0.591;
0.59t
0.591
0.593
0.596
0.598
0.600-
0.602
0.607
0.612;
0:617;
X1.621
0.626
0.631
0.636
0.641;
0.6475
0.652
0.657
0:663
0,669
0.674
0.680
0.393
0.393
0.393
0.393
0.393
0.393
0.395
0,396
0.398
0.399
0.401
0.404
0.407
0.410
0.413
0.417
0.420
0.423
0.427
0.430
0,434
0.437
0.441
0.445
0.449
0.452
0.401
0.431
0.437
0,444=
0.451;
0.459
0.468
0.478
0.488:
0.499
0.511;.
0.537
0.568
0.6d4
0.645.
0.691
0.745
0.807
0.879
0.961^
1.06
1.17
1.28
1.40
1,52
1.65
0,267
0,287
0.291
0.296
0.300
0.306
0.312
0.318
0.325
0.332
0.340
0.358
0.378
0.402
0.429
0.460
0.496
0,537
0,585
0,640
0.704
0.776
0.852
0.931
1,01
1.10
0.657
0.657
0.657
0.657
0.657
0.658
0.661;
0.663
0:666
0.«69
a672
0.677
0.683
0.689
0.695
o.7oi:
0.707
0.713
0i720
0.726
0;733
0.740
0.747
0.754
0.761
0.768
0.437
0,437
0.437
0.437
0.437
0,438
0,440
0,441
0,443
0.445
0.447
0.451
0,455
0.458
0.462
0.466
0.471
0.475
0.479
0.483
0.488
0.492
0.497
0,501
0,506
0.511
Other Constants and Properties
/?yx103 {kip-ft)-i
fyXlQS, (kips)-i
frx103, (kips)-i
;KO5
0.331
: 0,406
0,701
0,220
0.271
1,17
0;365
0.449
0,780
0,243
0.299
v1.30
• 0:401
a493
0.865
0.267
0.328
rJr. 1,65 1.64 1.63
ry, in. 4,24 4.20 4.17
" Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c. ,,
AMERICAN iNsTrroTE OF STEEL CoNsniucnoN

STEEL BEAM-COLUMN SELECTION TABLES 6-67
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W14
W14X
257 233 211
Design
pxTO^ px103 px103 6,x103
Design (kips)-i (Idp-ft)-' (kips)-' (kip-ft)-i (lcips)-i (kip-«)-i Design
: ASD LRFD m LRFO Asn LRFD ASP LRFD ASD LRFD A.sn LRFD
0 0.442: 0.294 0.732 0.487 0:488 0.324 0.817 0.544 0.539 0.358 0,914 0.608
11 0.476 0.317. 0.732 0.487 0.526: 0.350 0.817 0.544 0.582 0.387 0,914 0.608
12 0.483 0.321 0.732 0.487 0.534s 0.355 0.817 0.544 0.590 0.393 0,914 0.608
13 0.490: 0.326 0.732 0.487 0.542- 0.361 0.817 0.544 0.600 0.399 0,914 0.608
g 14 0.499 0.332 0.732 0.487 0.551 0.367 0;817 0.544 0:610 0.406 0.914 0.608
15 0.508 0.338 0.733 0.488 0.561 0.374 0.819 0.545 0.622. 0.414 0.917 0.610
•ft 'O
16 0.517 0.344 0.736 0.490 0.572 0.381 0.823 0.548 0,634 0.422 0.922 0.613
o c:
§ s
17 0.528 0.351 0.740 0.492 0.584:: 0.389 0.827 0.551 0,647; 0.431 0,927 0.617
II
18 0.540 0.359 0.743 0.494 0.597;. 0.397 0.832 0.553 0,662i 0.440 0.932 0.620
19 0.552 0.367 0.746 0.497 0.611, 0.407 0.836 0.556 0,678 0.451 0.937 0.623
u
20 0.566 0.376 0.750 0.499 0.626. 0.417 0.840 0.559 0,695 0.462 0:942 0.627
22 0.596: 0.396 0.757 0.503 0.660 0.439 0.849 0.565 0,733 0.488 0:953 0.634
9 g 24 0.630 0.419 0.764 0.508 0.699:; 0.465 0.857 0.571 0,777 0.517 0:964 0.641
26 0.671 0.446 0.771 0.513 0.745 0.495 0;866 .0.576 0.828. 0.551 0.975 0.649
28 0.717 0.477 0.778 0.518 0.797 0.530 0.876 0.583 0.887 0.590 0,987 0.656
1 30 0.770 0.512 0.786 0.523 0.857 0.570 0.8^5 0.589 0.955 0.635 0.998 0.664
32 0.831 0.553 0.794 0.528 0.926 0.616 0.895 0.595 103 0.687 1:01 0.672
^ i 34 0.902 0.600 0.801 0.533 1.01 0.669 0.904 0.602 1;12 0.747 -1:02 : 0.680
tt SD
36 0.983 0.654 rO.809 0.539 1.10 0.731 0,914 0.608 1..23 ,0.817 1:04 0.689
a s 38 1.08 : 0.717 a818 0.544 1,20 0.801 0i925 0.615 1.35 0.897 1:05 0.697
,1
40 1.19 0.791 0.826 0.549 1.33 0.886 0.935 0.622 1.49 0.993 1:06 0.706
1 42 1.31 0.872 0.834 0.555 1.47 0.976 0.946 0.629 1.65 1.09 1,08 0,715
44 1.44 0.957 0.843 0.561 1.61 1.07 0.957 0.637 1.81 1.20 1.09 0.725
46 1.57 1.05 0.852 0.567 1.76 1.17 0.968 0.644 1.97 1.31 1.10 0.734
48 1.71 1.14 0.861 0.573 1.92 1.28 0.979 0.652 2.15 • 1.43 1.12 0.744
50 1.86 1.24 0.870 0.579 2.08 1.38 0.991 0.659 2.33 1.55 1.13 0.754
Other Constants and Properties
6^x103, (kip-ft)-i
iyxios, (kips)-i
(kips)-i
rxiry
h, In.
1.45
0:442
0.543
0.964
0.294
0.362
1.62
4.13
1.61
0.488
, 0.599
1.07
0.324
0.399
1.62
4.10
1.80
.0,539
0.662
1.20
0.358
0.441
1.61
4.07
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-68 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W14
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
Shape
W14x
193 176 159
pxlO' bxX 103 pxlO^ Ax X103 pxloa 6,x103
(kips)-l (lcip-ft)-i (kips)-i (kip-ft)-i (kips)-i (kip-ft)-i
ASD ; LRFD ASD LBFD ASO LRFD ASD LRFD ASP LRFD ASD LRFD
0.588 0.391 1.00 • 0.668 0.645 0.429 1.11 • 0.741 0<7i5: 0.476 1.24 ! 0.826
0.636 0.423 1.00 0.668 0.698: 0,464 1.11 0.741 0.774 0,515 1.24: 0.826
0.645 0.429 1.00 0.668 0.708 0.471 1.11 0.741 0.786, 0,523 1.24 : 0,826
0.655: 0.436 i.oo: 0.66B 0.720 0,479 1.11 0.741 0.799 0.532 1.24 0,826
0.657 0.444 1.00 0.668 0.7331 0,487 1.11 0.741 0.814': 0.541 1.24 ' 0,826
0.679 0.452 1.01 0.670 0.747 0,497 1.12 0.745 0.629; 0.552 1.25 • 0.831
0.693 0.461 l.ot • 0.675 0.762' 0.507 1.13 0.750 0.846' 0.563 1 ;26 ; 0,837
0.708 0471 1.02 ' 0.679 0.778; ,0.518 1.13 ^ 0,755 0.8® 0.576 1,27 0,843
0.724 0.482 1.03; 0.683 0.796' 0.530 1.14. 0.760 0.885 0.589 1.28 0,850
0.741; 0.493 1.03 -0.687 0.816' 0.543 1.15; 0.765 0.907 0,603 1.29 ! 0,856
0.760' 0.506 1.04 ' 0.691 0.837: 0.557 1.16 U 0.770 0.931 .0,619 1.30 0.863
0.802i 0.534 1.05 fc 0.700 0.884! 0.588 1.17* 0.781 0.983 0.654 1.32; ,0.876
0.851' 0.566 1.07 ^ • 0.709 0.938: 0.624 1.19" 0.791 1.04 0.695 134: 0.889
0.908 0.604 1.08 0.718 1.00 ' 0.666 1.21 ; 0.803 1.12' 0.742 1:36 . 0,904
0.973 0.647 •1.09;, 0J27 1.07 • 0.715 1.22 -0,814 1.20' 0.797 1.38 0.918
.05:: 0.697 51.11 C 0.737 1.16 0.771 1.24 0,826 1.291- 0.860 1:40; 0.933
1.13 0.755 1.12 0.747 1.26 0.836 1.26 0,838 1.40 ^ 0.934 1:43 • 0,949
1.23 0.822 1.14» 0.757 1,37 0,911 1.28 .0.851 1.53i 1.02 0,965
1.35 0.899 hiS.-0.767 1.50 0.998 :1V30 5 0.B64 1.68- 1.12 m, 0.981
1.49 0.989 1.1? ' 0.77B 1,65 1,10 1.32 0.877 1,8^' 1.23 1.50 i 0.998
1.65 1.09 1.19 3 0.789 1,83 1.22 1.34 0,891 2.05 1.36 1.53 1,02
1.81 1,21 1.20 • 0.800 2,02 1.34 1,36 0,905 2.26 1,50 1.56 1.03
1.99 1.32 1.22 0.812 2.22 1.47 1.38 0,920 2.48 1.65 1,58 1,05
2.18 1.45 1.24 0.824 2.42 1.61 1.41 0.935: 2.71 1,81 1.61 1,07
2.37 1.58 1.26 0.836 2.64 1.75 1.43 ' 0,951 2.95 1,97 l:;64 1.09
2.57 1.71 1.28 0.843 2.86 1,90 1.45 0,957 3.21 2,13 1:68 1,12
Design
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
SO
Other Consents and Properties
byX 103,(kip-ft)-^
fyx103,(kips)-i
frxios, (kips)-i
::1;98
0,588 .
0.722
1,32
0,391
0.482
2.19
: 0.645
0.792
1.45
0.429
0.528
.':2.44
0.715 '
0378
1.62
0.476
0.586
1.60 1.60 1.60
ry, in. 4.05 4.02 4.00
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-69
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W~Shapes
W14
W14x
anape
145 132 120
Design
px103 ftxXlO^
pxloa 6^x103
Design (l<ips)-l (kip-ft)-l (kips)-i (kip-ft)-' (kips)-i (kip-ft)-i Design
ASP LRFD ASO LRFD ASD LRFD ASDi LRFD ASD LRFD ASO LRFD
0 0.782 0520 1.37 0,912 0.861 0.573 1.52 1.01 0,946 0.630 1.68 • 1.12
11 0.848 0.564 1.37 0,912 0.942 0.627 1.52 1.01 •1.04 0.690 1^8; 1.12
12 0.861 0.573 1.37 0,912 0.958 0.638 1.52 1,01 1.05 0.702 1:.1B8 1.12
13 0.875 0582 1.37 0,912 0.976 0.650 1.52 1.01 1;07 0.715 1.68 1.12
c 14 0891 0.593 1.37 0,912 0996 0.663 .1.53 1.02 1.10 0.730 1.69 1.13
1
15 0908 0.604 1.38 0,919 1.02 0.677 1.55 1.03 1,li 0.746 ; 1.14
Sf
16 0.927 0617 1.39 0.926 1.04 0.693 1.56 1.04 cl,15 0,763 1.73 i 1.15
o C
S2 _S
17 0.948 0631 1.40 0.933 1.07 0.710 1.57 1,05 1,18 0.783 1.74' 1.16
1
18 0.970 0.645 1.41 0,941 1.10 0.729 ;1.59 1.06 0.803 .1.76 ^ ,1.17
JO ><
fc- (0 19 0994 0662 1.43 0,949 1.13 0.749 1.60 1.07 1,24 0.826 1-78 : 1.18
S X
20 1.02 0.679 1.44 0.956 1.16 0.771 1.62 1.08 i,2r 0.851 •1:80 ; 1,20
is
22 1.08 0.718 1.4d 0,973 1.23 0.821 1.65 1.10 1,36 0.906 1;84' 1.22
24 1.15 0763 1.49 0.989 1.3? 0.880 1.68 1.12 1,46 0.971 1:88 : 1.25
£ ^
26 1.23 0.816 1,51 1.01 1.4^. 0.948 1.71 1.14 1,57 1.05 1:92 1.28
S £ 28 1.32 0.876 1,54 1.02 1.54 1.03 1.75 1.16 1.71" 1.14 1.96 1.30
'i 1 30 1.42 0.947 1.57 1.04 1.6? 1.12 1.79 1.19 1.24 2;oo 1.33
^ 93
32 1.54 1.03 1.60 1.06 1.85 1.23 1.82 1.21 2.05 1.36 2iD5i 1.37
^ i 34 1.69 1.12 1.63 1.08 2.04 1.35 1.86 1.24 2.26 1.50 • 2:10 1.40
O) 23 36 1.85 1.23 1,66 1.10 2.20 1.51 1.90 1.27 2,51; 1.67 2;15' 1.43
i g 38 2.05 1.36 1,6? 1,12 2.52 1.68 1.95 1.29 2.80 1.86 2421 1.47
40 2.27 1.51 1.72 1,15 2.79 1.86 1.99 1.32 3,10 2.07 2.27 1.51
1
42 2.50 1.66 1,76 1.17 3.08 2.05 2.04 1.36 3,4i 2.28 2.33 1.55
111
44 2.74 1.82 1.79 1,19 3.38 2.25 2.09 1,39 3,76 2.50 2.39 1.59
46 3.00 1.99 1.83 1,22 3.70 2.46 2.14 1.42 4.11 2.73 2:46 1.63
48 3.26 2.17 1J7 1.24 4.02 2.68 2.19 1.46 A'Ai 2.97 2:53 1.68
50 3.54 2.36 1,91 1.27 4.37 2.91 2:25 1,50 4,85 3.23 2.60 1.73
Other Constants and Properties
fiyXl03,(kip-ft)-1
fyXl03 (kipS)-1
trx^o^ (kips)-'
2.68
0.782
0a961
1,78
0.520
0,641
3.15
0.861
1.06
2.10
0.573
0.705
:3:49
0.946
1.16
2,32
0.630
0775
rjry 1.59 1.67 1.67
fy, in. 3.98 3.76 3.74
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-70 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W14
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
Shape
W14x
109 99' gtf
pxIC 6^x10' J px 103 fixXlO' pxlOS fi,x103
{kips)-i (kip-n)-i (kips)-' (kip-ft)-i (kips)-i (kip-f^i
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
1.04 0,694 1.86 1.23 1.15 0.764 2.07 1.38 1.26 : 0.839 2.33 1.55
1.14 0.761 1.86 1.23 1.26 0.838 2,07 1.38 1.38. 0.920 2.33 1.55
1.18 . 0.774 1.86 1,23 1.28 0,853 2.07 1.38 1.41 0.937 2.33 1,55
1.19 0.789 1.86 1,23 1.31 0.869 2.07 1.38 1.44: 0.955 2.33 1,55
1.21 0.805 1.87 1.25 1.33 0,887 2.08 1.38 1.-47 : 0.975 2.33 1.55
1.24 0.823 1.89 1.26 1.36 0.907 2.10 1.40 1.50 0.997 2.33 1.55
1.27 0.843 1.91 1.27 1.40 0.929 2.13 1.42 1.53 1.02 2.35 1.57
1.30 0.864 1.93 1.29 1.43 0.953 2.15 1.43 1.57 1.05 2.38 1.59
1.33 0.887 1.95 1,30 1.47 0.978 2:18 1,45 1.62 1.08 2.42 , •1,61
1.37 0,913 1.98 1.31 1.51 1.01 2.21 1,47 1.66 1,11 2.45 1,63
1.41 0.940 2.00 1,33 1.56 1.04 2.23 1,49 1.71 1.14 2.48 1,65
1.51 1.00 2.04 1.36 1.66 1.11 2.29 1,52 1.83 1.22 2.55 1,70
1.61 1,07 2.09 1,39 1.78 1.19 2.35 1,56 1.96 1.31 2.62^ 1,74
1.74 1,16 2.14 1,43 1.92 1.28 2.41 1.60 2.12 1.41 2.70 1,80
1.89 1,26 2.20 1,46 2.09 1.39 2.48 1.65 2.30 1.53 2.78: 1,85
2.06 1,37 2.25 1.50 2.28 1.52 2.55 1.69 2.52 1.68 2.87 1,91
2.27 1,51 2.31 1,54 2.51 1.67 2.62 1.74 2.77 1.84 2,96 1.97
2.50 1,67 2.37 1,58 2.78 1.85 2.70 1.80 3.07 2.04 3.06 2.03
2.79 1.86 2.44 1,62 3.10 2.06 2.78 1.85 3.42 2,28 3.16 2.10
3.11 2,07 2.51 1,67 3.45 2.30 2.87 1.91 3.81 2,54 3.27 2.18
3.44 2,29 2.58 1.72 3.83 2,55 2.96 1.97 4.23 2,81 3.39 2.26
3.80 2.53 2.66 1.77 4.22 2,81 3.06 2,04 4.66 3,10 3;52 2.34
4.17 2.77 2.74 1.82 4.63 3,08 3.17 2,11 5.11 3,40 3.72 2.48
4.55 3.03 2.82 1,88 5.06 3.37 3.31 2,20 5.59 3.72 3.94 2.62
4.96 3.30 2.92 1,94 5.51 3.67 3.48 2,32 6.08 4.05 4.15 2,76
5.38 3.58 3.05 2,03 5.98 3.98 3.66 2,43 6.60 4,39 4;36 2,90
Design
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
Other Constants and Properties
6yx103,(kip-ft)-<
?yx103, (kips)-^
103,. (kips)-'
3.84
1.04
1.28
2.56
0.694
0.855
4.29
1.15
1.41
2.85
0.764
0.940
4.90
1.26
1.55
3.26
0,839
1.03
1,67 1.86 1.66
ry, in. 3.73 3.71 3.70
' Shape does not meet compact limit for flexure with fy=SO ksi.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-GOLUMN SELECTION TABLES FR-71
Fy = 50 ksi
Table 6-1 (continued)
Combihed Flexure
and Axial Force
W-Shapes
W14
W14x
onaiw
82 74 68
pxltfi pxW 6xx103 px10'
Design (kips)-' (i<ip-ft)-i (i<ips)-i (kip-ft)-' (kips)-i (kip-ft)-i
ASD LRFD ASD LRFD ASD > LBFD ASD; LBFD ASD LRFD ASD LRFD
0 1.39 0.926 2.56 171 1.53 1,02 2:83 1.88 1167 ^ 1,11 3.10 ! 2,06
6 1.48; 0.985 2.56 • 171 1.63 1.08 2,83 1.88 1.78 1,18 3,10 2,06
7 1.51 1.01 2.56 171 1.67; 1,11 2.83 1.88 1.82 .1,21 3,10 2,06
8 1.55 1.03 2.56 .1,71 1.71 1,14 2.83 1,88 1.87 1,24 3,10; 2,06
= 9 1.60 1.06 2.57 171 1.76 1,17 2.84 1,89 1.92 1,28 3.12; 2,07
1
10 1.65 T:io 2.61 1.74 1.82: 1.21 2.i89 1,92 1.99 1,32 3.17 2,11
11 1.71 1.14 2.66 1.77 1.88 1.25 2.94 1,96 2.06 1,37 3.23 215
O fi-
12 1.78i 1.18 2.^0 1,80 1.96 1,30 2.99 1,99 2.15 1,43 3.30 ^ 219
€ 13 1.86 1.24 2.74 1.83 ' 2.05' 1.36 3.05 .2,03 2.24 1,49 3-J6 2,24
II
14 ,1.95 1.30 2.79 ; 1.86 : 2.14 1.43 3.10 2,06 2.35 1,56 343 2,28
15 2.05. 1,36 2.W 1.89 2.25; 1.50 3.16 2,10 2.47 1.64 3 50 2,33
16 1.44 2.89 ; 1.92 2.37 1:,58 3.22 2,14 2.61 1,73 3 57 2,38
It
17 2.28 1,52 2.94 1, 1.96 2.51; 1.67 3.2s 2.19 2.76 1,84 s.-es, 2,43
S J" 18 2.42 1.61 2.99 1.99 2.67 178 3.35 2.23 2.93 1,95 3.73 i 2,48
19 1,72 3.05 2:03 2.84 1.89 3,42 2.28 3.i3 2,08 3.81 2,53
15
20 2.76 1.84 :3.11 j 2.07 3.04 2.02 3.49 2.32 3.35; 2.23 3.90 2,59
!i
22 3.19 2:12 3.23 • 2.15 3.51 • 2,33 3.65 2.43 3.88 2,58 4.08 2,72
24 3.74 2.49 . 3.36 2.24 4.12 2.74 3.81 2.54 4.56 3:03 4.29 '2,85
11
26 4.39 2.92 ; •asi-f 2.33 4.83 3,21 3.99 2.66 5,35 3,56 4:51 3,00
1 ^
28 5.(i 3.39 3.66 • 2.44 •• 5.60 3.73 4.20 2.79 6.21 4,13 477 3,17
1 ^
30 5.84 ,3.89 3.83 2.55 6.43 4:28 4.42 2.94 7.12 4,74 5.10 3,39
1
32 6.65 4.42 4:02 2,67 r 7.32 4.87 4.72 3,14 8.11' 5,39 5.53 3,68
UJ
34 4,99 4.26 2.84 8.26 5,50 5.07 3.38 9.15 6,09 5i96; 3,96
36 8.41 5.60 4.5^ 3,03 9.26 6,16 5.43 3,61 10.3; 6,83 6:38 : 4,25
38 9,37 6.24 4.85 3,22 10.3 6,86 578 3,85 11.4 7,60 6.81 ' 4,53
40 10.4 6.91 5.14 3,42 11.4 7,61 6;14 4,08 . 127 8,43 723 i 4,81
Other Constants and Properties
ftyXlO', (kip-ft)-! 7:95 5.29 8.80 . 5.85 9.65 6,42
fyX 103, (kips)-' 1.39 0,926 1.53 1,02 .: 1.67 : 1,11
fr^103 (kips)-l 1.71 1.14 1. 88 ^ 1,25 2.05 1,37
Fxlry 2.44 2.44 2,44
ry, in. 2.48 2.48 2,46
AMERICAN INSTITUTE OF STEEL CONSTRIJCTION

6-72 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
W14
Table 6-1 (continued)
Gombined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
W14x
:>nape
61 53 48
px103 103 px103 4^x103 px103 fcx103
Design (i(ips)-i (kip-tt)-i {kips)-i {kips)-i (kip-ft)-i
AStf; LRFD ASD LRFD ASp t LRFD ASD LRFD ASD LRFD ASD LRFD
0 1.87 1.24 3.49 -2:32 -2:ij4; -1.42 - 4:0^ -2,72 2.37 1.58 f4.54; 3.02
6 ^ 1.99 • '1.32 3.49 2,32 2.37? 1.58 :4,09 2,72 2.6'3, 1.75 =4.54 3.02
7 2.03 1.35 3.49 2,32 .2,46: 1,64 '4.1:1 -2,74 2.73: 1.82 . i4.57 3.04
8 2.09" 1.39 3.49 2.32 2,57 -1,71 4:2|i 2.80 2:85 1.90 54.70: 3.13
e 9 2.15 1.43 3.5i 2,34 2.7p: 1,80 • 4.32 -2.88 :2.99: 1.99 al.83! 3,21
i
10 2.22 .1.48 3.59 2.39 ,Z85- 1,90 4.44 2.95 3.1jBs 2.10 .4.96, 3,30
>> cn
cn c
t: "d
11 2.31 1.54 3.66 2.44 -3.02;: .2.01 4.56 3.03 3.36: 2.23 5.11- 3,40
o c
S2 S
12 140 1,60 3.74 2.49 3.23: 2.15 • 4.68 3,11 3.5p: 2.39 'S26: 3,50
3 xa
13 2.5,1 1.67 3.82 2,54 ,::3.47:: .2.31 4.81 3,20 3.86 • 2.57 3,61 :
s S 14 2.63 1.75 3.9Q 2.59 ;3.75^ 2,49 3,30 2.77 .'5:60, 3,73.
1%
15 1.84 3;99 : 2,65 :4.07; 2,71 •5.11 3,40 • 4.5r
t
3.02 5.79 3.85
il
16 2:92; 1.95 4.08 2:71 4.45: ,2,96 5:26 3,50 •4:9^' 3.30 3.98
1 g 17 3.10 i 2.06 4.17 -2.78 : 4.89; 3.25 5,43 3.62 -5.45 f 3.63 'fi:20; 4.12
18 3.29:' 2.19 4.27 '2.84 . 5.40 ^ 3.59 5.61 3,74 6.03 4.01 a.42; 4.27
£ €
19 3,^; 2.34 :4.38 2.91 6:01 , ;. 4,00 5.81 3,86 6.72: • 4.47 6.67 4.44
3 1 20 3.76 2.50 4.49 2,98 6.6|6' 4,43 6.0,1 4,00 :;7:45; .4.96 ':6:94; 4.61
22 4.36' 2,90 4:72 3.14 - S.06; 5.36 -6.47 4,31 '9.01 t 6.00 g.69: 5.1,2
s §
24 -5.1-4 • -3.42 4.'99 3.32 9.60'-: 6.38 7.22 4,80 10.7 ^ 7.14 8:64 5,75
26 6.03 4,01 5.28 3.51 11.3 > 7.49 7.99 5,32 12.6 S 8.38 9.59, 6.38
I ^
28 6.99' 4.65 5.66 3.77 i3.i; : 8,69 8,76 5,83 14.S -3 9,72 10,5: 7,01
d)
30 8.02 5.34 6.20 4.13 15.0 ' .-9,98 9.53 6.34 16.8 : 11,2 11.5 7,65
s
32 9.13 ; 6.07 6.74 4,48 i7.r -11,3 10.3 6.85
is
34 10.3; 6.86 7.27 4,84
«
36 11.6^ -7.69 7.81 .5,20
38 12.9: 8.57 8.34 5.55
40 14v3' 9.49 8.87 5,90
Other Constants and Properties
6yx103,(kip-ft)-l
fyx103, (I<ips)-1
frXlOS, (kips)-'
10.9
1.87
. 2.29
7,23
. 1-24
1,53
16.2
c 2.14
- 2.63
10.8
1.42
1,75
18,2
: 2,37 ;
2,91 i
12,1
1,58
1,94
r^ry : 2.44 3.07 3,06
fy, In. 2,45 1.92 •1,91
Note: Heavy line indicates KL/ry equal to or greater ttian 200.
V
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-73
Table 6-1 (continued)
Fy = 50ksi
Combified Flexure
and Axial Force
W-Shapes'
W14
Shape
W14x
Shape
43>: 38'= 34«
pxlOS pxlOS 6xXl0» pxlO^ fexXlC
De« ign (kips)-^ {kip-ft)-i (kip-ft)-l (kips)-i (kip-«)-i
ASd} LRFD ASD LRFD ASP IRFD ASD LRFD ASO • LRFD ASD LRFD
0 • zm 1.78 5.12. 3.41 2.04 .5.79 3,85 3.50-; 2.33 6.53; 4,34
6 2.95 1.96 5.12 3,41 3.51 2.34 5,90: 3,93 4,0i2: ; 2,67 56.67^ 4,44
7 3.06 2.04 5.17 3,44 3.70 r 2.46 6.12 4,07 4.23 2,81 a94' 4.61
8 .3.20t 213 •5.31 3,54 3.95- 2.63 ::6,36' 4,23 ,4.49. 2,99 7.22i 4,80
s
9 : 3.37 2.24 5.47 3,64 4.25 , 2.83 6,61 i 4,40 4.815 3,20 -7.53" 5,01
If
•SI
x/i jg
10 3.56 2.37 5.64 3:75 4.62 3,08 6.89 , 4,58 ;.5.24: 3,48 7.87 5.23
If
•SI
x/i jg
11 3.79 2.52 5.82 3,87 5.07 3,37 719 4,78 : 5.-^ 3,83 8,24 5.48 If
•SI
x/i jg 12 4.05 .2J0 6.01 •4,00 5.61 3.73 7,52 . .5,00 6.38 . 4,25 •8;64i 5,75
1 -S
13 4.36 2.90 6.21 ^ 4.13 6,25 4,16 7.88 5.24 7.14 4,75 59,09; 6,05
S « 14 4.72 3.14 4,27 7.04 4.68 8.27 5,50 ; 8.07? . 5,37 9.58: 6,37
M X '
S ><.
15 -5.15 3.42 6.66 4,43 8.01 5.33 8,71 5.80 9.21 .6,13 10,1 : 6,74
is 16 •3.75 6.90 4,59 ,9.11 : 6.06 9.20 .6.12 10.5 6,97 11,0 • 7,29
g g 17 6 21 4.13 j ji: 4,77 -10.3 6.85 9,99 6,65 11.8 7,87 12,0 8.01
18 6.9D 4.59 a7.46 4:97 11.5 7,68 10,91 7,23 13.3 -. 8,82 13.1 8.73
e g 19 7,68 5.11 : 7.78 5.17 im' 8,55 11;8- 7,82 14.8' 9,83 14.2 9.47
tl
Hi
20 8.51 5.66 8.12 5.40 14.2 9,48 12,6 ^ 8,41 16.4 10,9 15.3 10.2
tl
Hi
21 9.39 6.25 8.71 5.80 15,7 10,4 13.5^ ^ 9,00 18.0 12.0 16:5 ; 11.0 tl
Hi 22 10.3 6.85 9.31 6.19 17.2 11,5 14.4,; ' 9:60 19.8 13.2 17.6 11,7
cn ^
23 11.3 7.49 9.90 6,59 18.8; 12,5 (15.31 ^ 10,2 21.6; 14.4 18.7 12,4
ll
24 12.% 8.16 10.5i 6,99 20.5 13,6 16,2- 10:8 23.6' 15.7 198 13,2
25 13.3; 8.85 11.1- 7,39 22.3 14.8 17^1:' 11.4' M.e" 17.0 21.0 13.9
1
26 14.4^ 9.57 11.7 7.78
LU
27 15.5 10.3 12.3 8.18
28 16.7 11.1 12.9 8,58
29 17.9; 11.9 13.5 8,98
30 19.2 12.7 14.1 9,37
other Constants and Properties
6^x103, (kip-ft)-< -20,6 13.7 : 29.4 19,6 33.6 22,4
fyXl03 {kips)-i r , 2.65 1.76 2.98 1,98 ;:3.34 2.22
trxm (kips)-i ; 3.26 217 3. 66 2,44 ; t .4.10 2,74
fxlfy 3.08 3.79 3.81
in. 1.89 1.55 1.53
' Shape is slender for compression with Fy - 50 ksi.
Note: Heavy line indicates /(/./ry equal to or greater than 200.
I
<1
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-74 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
W14
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
W14x
Shape
30= 26'
220
px 103 brXllfi
pxloa b,x 103 px
103 /»xXl03
Design (Wps)-i (kip-tt)-i • (kips)-i (l<ip-ft)-i (kips)-* (kip-fi)-'
ASD LRFD ASD tiRFD ASD LRfO ASD UIFD ASD LRFD ASD LRFO
0 4.02 • 2,68 , 7.53! 5.01 • 4.73' 3,15 8.86 5.90 5.82 3.87 10.7 i 7.14
6 ' 4.63 3.08 7.76 5.16 6.18: 4,11 10.0r' 6.67 7.65. 5.09 12.4 8.24
7 4.89 f 3.25 8.09 5.38 6.85 4.56 tO.7: 7.10 8.52^ 5 67 13,3 8,83
v? 8 5.20 3.46 8.44 r 5.62 7.75 5,16 11.4' ; 7.59 9.70 6.45 14.3 9,51
g 9 5.59 : 3.72 8.83 5.88 9.02 ; 6.00 12.3: ^ 8.15 11.3 7 54 T5.5 10,3
10 6.0?; 4.04 9.26 6,16 10.7 7.13 13.2 ^ 8,80 13.6 90S 1K9 I 11.2
If
11 6.70 4.46 9.74 C 6,48 12.9 8.60 14.4, 9,56 16.5 11.0 19.2 i 12.8
° i 12 7.47:. 4.97 10.3. 6.83 15.4 ' 10.2 16.5 . 11,0 19.7 13.1 22^3 ' 14,8
'•3 .S2 13 8.41 5.60 10.8 ; 7.21 18.1 12.0 18.7 12,4 23.1 15,3 25:4 ; 16,9
14 9.56 6.36 11.5 • 7.65 20.9; : 13.9 20.9 13,9 26.8 17,8 28:5 19,0
1%
15 11.0; 7.30 12.3:, i 8,20 24.0 16.0 23.2; : 15.4 30.7 20.4 31.8 ; 21,2
sa 16 12.5' 8.31 13.7 : .9.12 27.3 18.2 25.5- t 17.0 34 9 23,2 35;i : 23,3
s g 17 14.1: 9.38 15.1 10.0 30.9 20,5 27.8 18.5 39.4 26,2 3S.4 25.6
1 J' 18 15.8 10.5 16.5 11.0 34.6 23.0 30.1 20.0
e s
19 17.6 11.7 18.0' 12,0
5 f 20 19.'5: 13.0 19.4! 12,9
21 21.5 14,3 20.9- 13.9
s= 1
22 23.6
15.7 22.4; 14.9
£ c 23 25.8; 17.2 23.9: 15,9.
ll
24 28.1 18.7 25.4; 16.9
W
other Constants and Properties
6yXl03,(kip-ft)-'
fyXlOS, (klps)-l
ffXl03, (kips)-i
39.6
,3.77
: 4.64
26,4
2,51
3.09
64.3
•«.4.34 :
5.33
42.8
2.89
3,56
81,2
5.15
6.32
54.0
3.42
4.21
fx/r, 3,85 5.23 5.33
Ty, in. 1.49 1,08 1.04
Shape is slender for compression with F). = 50 l<sl.
Note: Heavy line indicates /a/r,equal to or greater than 200.
AMERICAN INSTITUTB OF STEEL CoNsroucrtON

STEEL BEAM-COLUMN SELECTION TABLES 6-75
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
Shape
W12x
3360 305"
Design
pxlO' /j^rXlO' pxios b„yW px103 b.x 103
Design (kips)-i (kip-ft)-' (kips)-i (Wp-ftH (kips)-i {kip-ft)-i Design
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 0.338 0.225 0.591 0.393 0.373' 0.248 0.663 0.441 0.408 0.271 0.741: 0.493
6 0.349; 0.232 0.591: 0.393 0.385 0.256 0.663 0.441 0:422 0.280 0.741: 0.493
7 0.352 0.235 0.591 0.393 0.390- 0259 0.663 0.441 0.427 0.284 0.741 0.493
8 0.357 0.238 0.591- 0.393 0.395 0.263 , 0.663, 0.441 0.433. 0.288 0.741 0.493
e 9 0.363 0.241 0.591 0.393 0.401> 0.267 -0.663: 0.441 0.43ff : 0.292 .0.741 0.493
s
10 0.369 0.245 0.591 0.393 0.40®: 0.272 0.663 .0.441 0.447 0.296 0.741| 0.493
SI
11 0.375 0.250 0.591 0.393 0.416 0.277 0.663 ,0.441 0.456:; 0,303 0.741 0.493
O c
s S
12 0.383 0.255 0.591 0.393 0.425 0.283 0.663 0.441 0.466 0.310 0.741 0.493
S M
13 0.391 0.260 0.592: 0:394 0.435^ 0.289 0.666 0.443 0.477 0.317 0.744 0.495
S » 14 0.401 0.267 0.594 0.395 0.445 0.296 0.66g' 0.444 0.489: 0.325 0,746 0.497
IS
15 0.411 0.274 0.596 0.397 0.457 0.304 0.670' 0.446 0.502 0.334 0.749 0.499
BS
16 0.422 0.281 0.59&' 0.398 0.470 0.313 0 673 0.448 0.516 0.344 0.752 0.500
8 g 17 0.435 0.289 0.600 0.399 0.484 0.322 0 675 0.449 0.532- 0.354 0.755 0.502
1J 18 0.448 0.298 0.6d2 0.400 0.S(i0i> .0.332 0 677 0.451 0.550 0.366 0.758 0.504
19 0.463 0.308 am 0.402 0.516 ,0.344 0.680 0.452 0.569 0.378 0.761 0506
20 0.479 0.319 0.606 0:403 0.535 0.356 0 682 0.454 0.590 0.392 0:764 €.508
22 0.5lff 0.343 0.6T0' 0.406 0.577 0.384 0,687 0.457 0.637 0.424 0.770 0.512
^ £ 24 0.559 0.372 0.614: 0.408 0.627 0.417 0 692 0.461 0.693 0.461 0.776 0.516
raj
26 0.610 0.406 0,618^ 0.411 0.686 0.456 . 0,697> 0.464 0.760 0.506 0.782 0.520
1 1
28 0.670 0.446 0.622^ 0.414 0.756 0.503 0702 0.467 0.840 0.559 0:788 0.524
30 0.742 0.494 0.626 0.417 0.839 0.558 0.708: 0.471 0.935 0.622 0.795 0.529
1
32 0.827 0.550 0.630 0.419 0.938 0.624 0713 0.474 1.00 0.698 0:80l' 0.533
lU
34 0.930 0.619 0.635 0.422 1,06 0.704 0.7-i8 0.478 1.18 0.788 0B08 0.537
36 1.04 0.694 0.639 0.425 1.19 0.789 0.724 0.481 1.33 0.883 0.814 0.542
38 1.16 0.773 0.644 0,428 1.32 0.879 0.729 0.485 1.48 0.984 0.821: 0.546
40 i;29 0.856 0.648 0.431 1.46 0.974 0.735- 0.489 i:64 1.09 0.828 0.551
Other Constants and Properties
6j,x103,(kip-ft)-i
fyxios, (kipsri
frx103, (kips)-'
1.30
0,338
0.415
0.865
0.225
0.277
.1.46
;0i373
0:458
0.971
0.248
0.306
:1;62
::0i408
1.08
0.271
0.334
hltf 1.85 1.84 1.82
fy, in. 3.47 3.42 3.38
' Range thickness greater flian 2 in. Special requirements may apply per AISC Specification Section A3.1c.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-76 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W12
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes -
Fy = 50 ksi
W12x
252" .230« 210
pxW fi;,Xl03 px1(fi fi,Xl03 px1(fi fi,Xl03
Design (Wps)-i (kip-ft)-i (kips)-i (kip-ft)-1 (kips)-i (kip-ft)-1
ASP LRFD ASD LRFD ASD UiFD •ASD . LRFD ASb; LRFD ASD LRFD
0 0.451S- 0.300 0.832 0.554 0.493;; 0,328 0.923' 0,614 0.540J 0.360 1.02 ^ 0.681
6 0.466 0.310 0.8fe' 0.554 0.511 0,340 0.923 0.614 0.560; 0.372 1.02 0.681
7 0.472 0.314 0.832: 0.554 0.517 0,344 0.923 0.614 0.567; 0.377 1.02 0.681
8 0.479; 0.319 0.832 0.554 0.525 0,349 0.923 ,0.614 0.575.' 0.383 1,02 0.681
g" 9 0.487, 0.324 0.832 ; 0.554 0.533 0,355 ;0i923; 0.614 0.585; 0.389 M2; 0.681
If
10 0.495 0.330 0.832) 0.554 0.543: 0.361 0;923 ,0.614 0.596: 0.397 (1,02 • 0681
If
11 0.505: 0.336 0.832 ,0.554 0.554, 0,369 0.923 0.614 ;Q.6te 0.405 1.02 0.681
12 0.6t6- 0.344 0.833.; 0.554 0.567 0,377 0.924 0.615 0.622^ :.0.4i:4 1:03 0.683
'S .S2 13 0.529 0,352 0.837; 0.557 0.580: 0,386 ,0:928: 0.618 0.638 0.424 1.03 0.686
5
14 0.542 0.361 0.840; 0.559 0,596: 0.396 0.933^ 0.621 ;0.655 0.436 1.04 0.689
to X
S X
15 0.557- 0:371 0.844, 0.561 0.612: 0,407 0.931} 0.623 0,674: 0,448 1.04! 0.693
SS
16 0.574 0.382 0.847;: 0:564 0.631:; 0.420 0.941,; 0.626 0.694: 0.462 105 : 0.696
s ^ 17 0.5^2, 0.394 0.851 0.566 0.651; 0,433 0:946: 0.629 0.717 0.477 1:05i 0.700
1 -5 18 0.612; 0.407 0.854 0.568 0.67i4;- 0.448 0.950 0.632 0.742; Q.494 1^06 , 0.703
g £ 19 0.634 0.422 0.858 0.571 0.698 0.464, 0.954, 0.635 0.769; 0.512 1:06 0,707
\ 1 20 0,657 0.437 0.862 0.573 0.725 0.482 0;959, 0.638 0,799: 0.532 t:07 0.710
^^ 22 0.712.: 0.474 0.869 0.578 0.786 0.523 0,968:; 0.644 0.868' 0.577 i.ue 0.718
24 0.776 0.516 0.877; 0.583 0.858' 0.571 0,977. 0.650 0.950 0,632 1,09 : 0.725
fil 26 0.853:: 0,S68 0.8^ 0.588 0.9451 0,629 0.986: 0.656 1,05., 0.697 1.10 • 0,733
J s
28 : 0.945 • 0,629 0.892; 0.594 1,05 -0.697 0.996 0.663 1.16., 0.775 Ml , 0.741
J
30 1.05': 0.701 0.9QO 0.599 1,17 0,780 1.01 0.669 1.30 0.868 1,13 ' 0.749
1 32 1,19 0.790 0.908, 0.604 1.32 : 0.880 1.02,; 0.676 1.48 . 0.982 1:14 0.757
UJ
34 1.34 0.891 0.916 0.610 1.49 0.993 1.03 0.682 1,6f ; 1,11 1.15 0.755
36 1.50 0.999 0.925 0,615 1.67 1.11 1.04,; 0.689 1.87 1,24 1.16 0.774
38 1.67 1.11 0.933; 0.621 1.87 ;1.24 1.05: 0,696 2.08 1,38 1.18 0.782
40 1.8$ 1.23 0.942 0.627 2.07 1,37 1.06 . 0.704 2.31 1,53 1.19 0.791
other Constants and Properties
6yXl03 (kip-ft)-' -a.82 1.21 , 2;01 1,34 • 2.24 :• 1.49
fyXlQs, (kips)-i ;i;0,451 0.300 ;0i493 0,328 .,:i0,540 ; 0.360
trxW, (klps)-i :.®;554 : 0.369 0.606 0,404 0.664 0.443
r„/ry 1.81 1.80 1.80
ry.
in. 3.34 3.31 3.28
Flange thickness greater ttian 2 in. Special ,requirements may apply \>er NSC Specification Section A3.1c.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-77
Table 6-1 (continued)
Combined Flexure
Fy
= 50 ksi
and Axial Force
W-Shapes
W12
W12x
1«) 170 152
px103 AxXlC pxKP pxlfls 103
Design (kips)-i (kip-ft)-i (kips)-i (kip-ft)-' (kips)-i (kip-ft)-i
ASD LRFO ASD LflFD ASD LRFD ASD LBFD ASD . LRFD ASD LBFD
0 0.596 0.397 Xlf 0.762 0.668> 0,444 1,30 0,862 0,747 0,497 1.47' 0,975
6 0.618 0.411 1.15 0.762 0.6^3 • 0,461 1,30 0.862 0,776 • 0.516 1.47 0,975
7 0.626 0.417 1.15 q.762 0.702 0,467 1.30 0,862 0.523 1.47 0.975
8 0.636 0.423 1.15 0.762 0,713 0,474 1.30 0.862 0,798 0,531 1.47 0,975
c 9 0.647 : 0.430 :1.15 0.762 0.725 0,483 1.30 0,862 0,8^3 0,541 1.47 0.975
1 10 0.659 0.438 ,1,15 0762 0.739 0,492 1.30 0,862 0.8?9: 0,551 1.47 0.975
11 0.673 0.448 1.15 0.762 : 0.7^5 0,503 1.30 0.862 0.847 0,563 tj47 0.975
12 0.6^8 .0.458 1,15 0.764 0.773 0.514 1.30 P.865 0.867 0.577 1.47 0.980
13 0.706 0.470 1.16 ,0.768 0.7^3 0,528 1.31 0.870 0.890 ,0.592 1.48 0,987
2 g
14 :0.725 0.482 1.16 :P.773 0.815 0,542 1.32 0.876 0.915 0,609 1,49 0,994
Is
15 0.746 0.497 1.17 •0.777 0,,839 0.559 1.32 0.881 0,943 .0.627 1.50 1.00
16 0,770 0,512 1.17 <0,781 0,?66 ,0.576 1.33 0,887 0,974 0.648 1.51 1.01
|g 17 0.796 0.529 1.18 0,786 0.896 0.596 1.34 0,892 1.01 0.670 1.52 1.01
1J ia 0.824 0.548 1,19 0,790 0.928 0.618 1.35 0,898 1.04 0.695 1454 1.02
5 £ 19 0.855 0.569 1.19 ,0.794 •0,9S4 0,641 ,1.36 0,903 1.0^ 0.722 1.55 1.03 •
20 6.8§9 0.591 1.20 0;799 1,00 0,667 1.3f 0,909 1.13 ,0.752 1.56, 1.04
22 0.966 0.643 l,2t 0,808 1.09 0,727 1.38 0,921 1.23 ' 0,820 1.58 1.05
24 1.06 0.705 1.23 0,817 ,1.20 0,798 ,1.40 0,932 1.36 0,902 1.-80 1.07
€|
26 1.17 0.778 1,24 0i827 t.33 •0,883 0,945 1.5Q 1,00 1.63' 1,08
a fe 2S 0.867 1,26 0,837 1.48 0,985 1.44 0,957 1.68 1,12 J.'BS 1.10
30 1,46 0.973 ,1.2i 0,847 1.67 1,11 1.46 0.970 1.90 1.26 1,68 1,12
1
32 1.6^ 1:10 1,29 0,857 1.89 1,26 1.48 0,983 216 1.43 1.70 113
lU
34 1.87 1,25 1,30 0,867 2.14 1,42 1.50 0.997 2.43 1,62 1.-73 1,15
36 2.10 1.40 1.32 0,878 2.39 1,59 1,52 1,01 2.73 1.82 1.76 1,17
38 2.34 1.56 1.34 0,889 2.67^ 1.78 :1.54 1,03 3.04 2.02 1.79 1,19
40 2.59 1.72 1,35 0,900 >2.96 1,97 1.56 1,04 3,37 2.24 1.82 1.21
other Constants and Properties
6yXl03,(kip-ft)-i i2.49 1,66 2:83 , 1,{ 18 ;3.21 ^ 2.14
fyXl03 (kips)-l 0,596 0,397 . :0:668 0.444 :-..0.747 • 0,497
frXl03, (kips)-1 f^0:733 ' 0.4 88 0^21 0,547 ; ;0,918 : 0,612 ,
rxiry 1.79 1,78 1.77
/>, in. 3.25 3,22 3.19
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

6-78 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W12
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50ksi
W12x
bnape
136 120 106
Design
pxlO' i)jrXl03 px103 ilxXlO^ pxlO'
Design (kips)-i (kip-ft)-1 {Wps)-l (kip-ft)-i (kips)-i (kip-ft)-i Design
ASD tRFD ASD LRFD ASD LRFD jwgs LRFD ASD . LRFD ASD LRFD
0 0.837V 0,557 '1.i66 1,11 0 949 0.631 1,92 1.27 1.07 i 0.712 217: 1.45
6 0.869 0.578 1.66 1,11 0.986 0.656 1.92 1,27 1.11 i 0.741 2.17 1.45
. 7 0 881 0.586 1.66 1,11 1.00 0.665 1.92 1,27 1.13 0.751 2.17 1.45
8 0,896 0,596 1.66 1,11 1.02 0,676 1.92 '1.27 115 0.764 2,17 : 1.45
9 0 912 0.607 1.66; 1,11 104 0.689 1.92 1.27 1.17 0.778 2.17 ; 1.45
1 ^
10 0930 .0,619 1.66 1,11 106 0.703 1.92 1.27 1.19 0.794 2.17 1.45
CJ) ;
.11 0 951 0.633 1.66 1,11 108 0.719 1.92 1.27 1.22 0,813 217 1.45
"S C
M £ 12 0 974 0.648 1.68 1,11 in 0,737 1.9l 1.28 1.25 0,833 219 1.46
3 -O
'"5 ^ 13 :i,0dt 0.666 1.69 1,12 114 0.757 1:95 1.30 1.29 0,856 ?7? 1.47
£l 14 103 0.685 1.70 113 1.17 0.779 1,96 1.31 1.33 0,882 2.24' 1.49
2 ><
15 1 06 0.706 1,71 114 1>21 0,804 1:9$ 1.32 1.37 0,910 2.26 1.50
s s
16 l.lp, 0.730 1.73 115 1.25 0.831 2,00 1.33 1.41 0,941 2.28 1.52
1 g 17 1.14 0,755 -1i74 116 1.29 ! 0.861 2,02 1.34 1.47 0,976 2.31 1.53
18 1 18 0,784 1.76 1,17 1.34 0.894 2,04 1,35 1.52 1,01 2.33 1.55
S £
19 1 22 0.815 1.77, 1.18 1.40 ? 0.931 2,05 1.37 1.59 1.06 2,35 1.57
-
20 1.28 0.849 1.78 1,19 1.46 0.970 2,07 1.38 1.65 1.10 2.38 1.58
22 1,39 0.928 1.81, 1.21 1,60 1.06 2.11, 1.41 1.81 J 1.21 2.43 1.62
Se 1
24 SI.54. 1.02 1.84 1.23 1.76 1.17 2.15 1.43 2;00 1,33 2.48 1.6S
s 26 1.71 V 1.14 1,87 1.25 1.96 1.31 219 1.46 2.23 1,49 2:54 1.69
28 1.9i 1.27 1.91 1.27 2.20 1.47 2.24, 1.49 2.51 1.67 2:60 1.73
30 2.16 1,44 1.94 1.29 2.50 1,66 2:28 1,52 2.86 1,90 2.66 1.77
i
32 2.46 1,64 1.97 1.31 2.84 1,89 2.33 1,55 3.25 2.16 2.72 1,81
UJ
34 2.78 1,85 2.01 1,34 3.21 2,14 2.38 1.58 3.67 2.44 2;79 1,86
36 3,12 2.07 2.05 1.36 3.60 2,40 2.43 1,62 4.11 2.74 2.86 1.90
38 3,47 2.31 2.09 1.39 4.01 2,67 2.48 1,65 4.58 3.05 2,93 1.95
40 3.85 2.56 2.13 1.41 4.44 2,96 2.54 1,69 5.08 3.38 3i01 2,00
Other Constants and Properties
fyX 103, (Kips)-1
ffXloa, (kips)-'
r,/ry
Ty, in.
3.64
= 0.837
1.03
2.42
0.557
0.685
1.77
3.16
.3t?17
0.949
1.17
2.78
0.631
0.777
1.76
3.13
4.74
1.07
1.31
3.16
0.712
0.877
1.76
3.11
AMERICAN iNSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-GOLUMN SELECTION TABLES FR-79
Table 6-1 (continued)
Combined Flexure
Fy = 50 ksi
and Axial Force
W-Shapes
W12
W12x
96 87 79
px103 6;,X103 px103 px103
Design (kips)-i ((cip-ft)-i (kips)-' (klp-ft)-i (kips)-' (kip-ft)-i
ASD LRFD ASD LRFD ASD UIFD ASD IRFD ASD LRFD ASD LRFD
0 1.18 0.788 2.42 1.61 ,1.30 0.868 2.70 1.80 1,44 0,958 2.99 1,99
6 1.23 0.620 2,42 1.61 ,1.36 0.904 2.70 1.80 1,50 0,998 2.99 1,99
7 1.25 • 0.832 ^2.42 1.61 1.38 0.917 2.70 1.80 1,52 1,01 2.99: 1,99
8 1.27 ^ 0.846 2.42 1,61 1.40 0.932 2.70 1.80 1.55 1,03 2.99 1,99
g 9 1.30 0.862 2.42 1,61 ,1.43 0,950 2.70 1.80 1.58 1,05 2.99 : 1.99
''g 10 .1.32 1 0,880 2.42 1,61 1.46 0,971 2.70 1.80 1,6t 1,07 2.99 : 1.99
11 1.35 0.901 2.43 1,61 1.49 0,994 2.70 1,80 1.65 1,10 3.00 ; 2.00
O C
(/) « 12 1.39 ' 0.924 2.45 1.63 1.53 1,02 2.74 1,82 1.69 1.13 3.04 2.02
'"3 (A 13 1.43 • 0.949 2.48 1,65 1.58 1,05 2.77 1.84 1.74 1,16 3.08 ! 2,05
11
14 1.47 i 0.978 -2.50 1.67 ,1.62 1,08 2,80 1.86 1.80 1,20 3^12: 2,08
T/I X
15 4.52 : 1.01 2.53 1.68 1.68 1,12 2.84 1.89 1.86 1,24 3.16' 2,11
i s 16 1.57 : 1.05 '2.56 1,70 1.74 1,16 2.87 1.91 1.92 1,28 i;2i: 2,13
17 1.63 ; 1.08 2.59 1,72 1.80 1,20 2.91 1.93 2.00 1,33 3.25! 2,16
18 1.69 1,13 2.62 1,74 1.87 1,25 2.94 1.96 2.08 1,38 3.30 ! 2,19
19 1.76 1.17 2.65 1,76 1.95 1,30 2.98 1,98 2.17 1,44 3.34 : 2,22
® f
20 1.84 ? 1,22 2,68 1,78 2.04 1,36 3.02 ,2,01 2.26 ,1,51 3;S9! 2,26
22 2.02 1.34 2.74 1,83 2.24 1,49 .3.10 2,06 2.49 1,66 3.-49 2,32
H e 24 :2.24 ; 1.49 2.81 1.87 2.4g 1,65 3.19 2.12 2.76 1,84 3:60 ; 2.40
26 2.50 : 1,66 2.88 1.92 2.78 1,85 3.28 2,18 3.09 2,06 3.?1 2.47
28 2.81 1.87 2.95 1,97 3.13 2,08 3.37 2.24 3.50 2,33 3.84 2.55
30 3.20 2,13 3.03 2.02 3,57 2,38 3.47 2,31 4.00 2,66 zm 2.64
1
32 3.64 2,42 3.11 2.07 4.07 2,71 3.58 2.38 4.55 3,02 4,10 2.73
LU
34 4.11 2,74 3.20 2,13 4.59 3,05 3.69 2.46 5.13 3,41 4.25 2,83
36 4.61 3.07 3.29 2,19 5.15 3,42 3.81 2,54 5.75 3,83 4i41 2,93
38 5.14 3.42 3.39 2,26 5.73 3,81 3.94 2,62 6.41 4,26 4.58 ; 3,05
40 5.69 3.79 3.49 2,32 6.35 4,23 4.08 2,72 7.10 4,73 4.78; 3,18
other Constants and Prnperties
AyXl03,(kip-ft)-1 5.28 3.51 5.90 3.92 6.56 4,37
fyXl03 (kipS)-^ 1.18 0.788 . 1.30 0.868 •;;.1.44 0,958
txl03 (kips)-i : 1.45 . 0.970 i 1.60 1.07 ,1.77 1.18
rjry 1.76 1.75 1,75
r,. in. 3.09 3.07 3,05
AMERICAN INSTITUTE OF STEEL CONSTRIJCTION

6-80 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
Table 6-1 (continued)
Combined Flexure
r- _ _ crt b-^i
and Axial Force
Fy-: OO KSI
W12
W-Shapes
W12x
72 65' 58
pxlO' bfXW pxios ixxia3 px103 bfXW
Design (kips)-i (idp-ft)-' (kips)-' (kip-ft)-i (l(ips)-i (kip-ft)-'
ASD LRFD ASD LRFD ASD : LRFD ASD LRFD ASD c LRFD ASD LRFD
0 1.58 1.05 3.3(j 2,19 1.75 1.16 3.75 2,50 1.96 1,31 4.12 2.74
6 1.10 3.30 2,19 1,82 1.21 3.75 2,50 2.09 1,39 4.12 2.74
7 1.67 1.11 3.30 2,19 1.85 1.23 3.75 2.50 2.13 1,42 4,12 , 2.74
8 1.70 1.13 3.30 2.19 1.88 1.25 3,75 2.50 2.19 1,45 4.12; 2.74
c 9 1.74 1,16 3.30 2.19 1.92 1.26 3.75 2.50 ' 2.25 1,50 4.13 • 2,75
1
10 1.77 1.18 3.30 2.19 1.90 1.31 3.75 2.50 2:32 1,54 4.21 : 2,80
n S
11 1,82 1.21 3.31; 2,20 2.01! :i.34 3,75 2.50 2.41 1,60 4.28: 2,85
a S
12 1,87 1.24 3:36 2,23 2.06 1.37 3.75 2.50 ^ 2.50 1,66 4.36 2.90
1 -S
13 1.92 1.28 3,40 2,27 2.13 1.41 3,81 2.54 2.6|l 1.73 4.45 2.96
IS S 14 1.98 1.32 '3,45 2,30 2,19 1,46 3.87 2,58 2.73 1.81 4.53 3.02
» ><
S X 15 2.05 1.36 '3.50 2.33 2.27 1.51 3.93 2,62 2.86 1.90 4:62 : 3.07
i £ 16 2.12 1.41 3,56 2,37 2.35 1.56 4.00 2,66 '3.01 2.01 4.71: 3.14
« g 17 2.20 1.46 3.61: 2,40 2.44 1.62 4.06 2,70 3.18 2.12 4.81: 3.20
fj 18 2.29 1.52 =3,67 2.44 2.54 1.69 4.13 2,75 •3'38 2.25 4.91; 3.27
to 2.39 1.59 2.48 2.65 1.77 4.20 2,80 3:59 2.39 5.01 : 3.34
1 20 2.50 1.66 3,7d 2.52 2.77 1.85 4.27 2,84 3.83 2.55 5.12 3.41
£ ta
22 2.75 1.83 3,91 2.80 3.06 2.03 4.43 2.95 4.41 2.94 536 i 3.56
€ 1 24 3.05 2.03 4.04 2.69 3.40 2.26 4.59 3.06 ' 5.15 3.43 5.61 ; 3.74
26 3.42 2.28 2,78 3.82 2.54 4.77 3.17 6.05 4.02 5.«0; 3.92
1 & 28 3.87 2.57 4,33 2.88 4,32 2.88 4.96 3.30 7.01 4.67 6:21 : 4.13
s 30 4.42 2.94 4,49 2.99 4.95 3,29 5.17 3.44 8.05 5.36 e.'57 4.37
32 5.03 3.35 4.67 3.10 5.63 3.75 5.39 3.59 9.16 6.09 7:12 4.74
UJ
34 5.68 3.78 4.86 3.23 6.36 4,23 5.64 3.75 10,3 6.88 7.B6 5.10
36 6.37 4.24 5,08 3.37 7.13 4,74 5.97 3.98 11.6 7.71 8:21 . 5.46
38 7.09 4.72 5,32 3,54 7.94 5.28 6.39 4.25 12.9 8.59 8i75 ' 5.82
40 7.86 5.23 5,66 3,78 8.80 5,85 6:81 4.53 14:3 9.52 9:29 6.18
other Conslante and Properties
6yx103,(kip-ft)-i ;7.24 4.82 0-: 8.31 : 5.53 11.0 7.29
fyx103, (kips)-i .••;1.58 1,05 M.75 : 1,18 ,1.96 1.31
frx103, (kips)-i :\,1.94 1,30 i;: 2.15 1,43 i 2,41 1.61
rx/ry 1.75 1.75 2,10
Ty, in. 3.04 3.02 2,51
f Shape d oes not meet compact limit for flexure with Fy= 50ksi.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-GOLUMN SELECTION TABLES FR-81
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
W12X
aiiape
53 50 45
pxlO' bxxW pxlO' :103 px103 dxXl03
Des ign (kips)-i (kip-ft)-' (kips)-i (kip-ft)-i (kips)-' (kip-ft)-i
ASD = LRFD •ASD LRFD ASD i LRFD ASD LRFD ASD LRFD ASD LRFD
0 2.14' 1.42 4 57 3.04 2.29- 1.52 4.96 3.30 2.55 , 1,70 :5.55 3.69
6 2.2h; 1.52 4 57 ^'3,04 2.52- 1.68 4.96 3.30 2.82 1,87 5.55' 3.69
7 2.33 1.55 4 57 3,04 2.6^: 1,74 4.96 3.30 2.92 1,94 •5.56; 3.70
8 2.39 1.59 4 57 3.04 2.73 1.81 5.08 3.33 3.04^ 2.03 .5.70: 3.79
g 9 2.46 f 1,64 4,59: 3.06 2.86 1.90 5.19 3.46 3,19; 2.12 :5.84 3.89
It
? 10 2.54 ^ 1,69 4.68 . .3.12 , 3.01 • 2.00 5.32 3.54 3.36 2.24 6.00 3.99
It 11 2.63 i 1.75 4.7h ;3;i8 3.19i 2.12 5.45 3.62 3.56 2,37 6;15 4.09
O c
12 2.74.: 1.82 4.87: 3;24 3.39 r 2.26 5.58 3.72 3.80 2,53 4.21
i'S
« 2
13 2.86 1.90 4 97 3.31 . 3.64" 2.42 : 5.73 3.81 4.07 > 2,71 ;6:50i 4.32
i'S
« 2
14 2.99; 1.99 3.38 3,91 : 2.60 a88 3.91 4.39 -2,92 ®69 4.45
S X
15 3.15 2.09 5.18 3.45 4.24 2.82 6.04 4:02 4.75 3.16 K88i 4.58
is 16 3.32 2.21 5.2S 3.52 -4.61 3.07 6.20 4.13 5.18 3,45 7:09; 4.72
« g 17 3.51 2.34 3.60 5.05 3.36 :.e;38' 4.25 5.68 3.78 7.32 4.87
fj 18 ::3.73 2.48 5.53 3.68 5.56 3.70 6.57 4.37 6.25 4,16 ;7:56i 5.03
€ C
19 3.97 2.64 5.66 3.77 6.17 4.10 6.77 • 4.50 6.94. 4,62 5.20
\ g
20 4.25 2.83 5.80 3,86 6.83 4.55 6.98 4.64 :7.69i 5.12 ,8;08| ,5.38
•J s •
22 4.90 :3.26 aob 4,05 8.27 5.50 7.45 4.95 ::9.3i. ,6,19 8.69 5.78
24 '5.7S • 3.83 6.41 4.26 9.84 6.55 8.01 .5.33 1T.1 7.37 a66i '6.43
fig 26 6.?5 4.49 '6.77' iso 11.5' 7.68 8.84 5.88 13.0^ ' 8.65 10.7 i 7.11
» o 28 7.83 5,21 7.16 4.77 13.4' 8.91 9.67 6.44 i5.r 10.0 1fi:7 ' 7.80
30 8.99 5,98 7.8^ 5.20 15.4 10.2 10.5 6:99 17.3 11.5 12:8 8,48
1
32 10.2 6,80 8.48 5.64 17.5 11.6 11.3 7.53 19.7 13.1 13.8 • 9,16
UJ
34 11.5: 7,68 9,15 6.09
36 12.9 8.61 9,81 6.53
38 14.4: 9,59 10.5: 6,97
40 16.0: 10,6 11.1 7,41
Other Constants and Properties
fJ.X103,'(kipS^1
(rXlQS, (kips)-1
12.2
2.14
2.63
8,15
1,42
1.75
16:7
2.29
2.81
11.1
1.52
1.87
18.8
2.55
3.13
12.5
1.70
2.09
rxiry 2.11 2.64 2.64
fy, in. 2.48 1.96 1.95
Note; Heavy'line indicates (fLfry equal to w greater than 200,
AMERICAN INSTITUTE OF STEEL CONSTRIJCTION

6-82 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W12
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
Shape
W12x
40 35= 30f
pxlO' pxVfi /»;,Xl03 pxW 6,x10'
(kips)-i (kip-ft)-i (kips)-i (kip-ft)-1 (kips)-< (kip-ft)-'
ASD LRFD ASO; LRFD ASO LRFD ASD LRFD ASO LRFD ASD LRFD
2.85 1.90 6,25 ; 4.16 3,25. 2.17 6.96 4.63 3,94: 2,62 8.27 5,50
3.16 2.10 6,25 4.16 3,80 • •2.53 :7,09 : 4.72 4.5i(' 3,02 8.46 5,63
3.27 2.18 6,27 • 4.17 4,03 2.68 7.34 • 4.89 ,4,79 J 3,19 '8.79: 5,85
3.41 ; 2.27 ,6,44 4.29 4,31 : 2.87 7.61 5.07 5,10 3,39 .9.14: 6.08
3.58 2.38 6.62 • 4.40 4.65 3.09 7.90:: 5.26 5.50, 3,66 9.53 6.34
3.78 2.51 6,80 : 4.53 5,05 3.36 8,22 5.47 5.99: 3,99 9.94 6.62
4.00 2,66 7^00 .4.66 5,55 3.69 :8,56 • 5.69 6,60! 4,39 10,4 : 6.92
4.27 2.84 7.21 4.79 4.09 8.93 5.94 7,32 4,87 10.9 7.25
4.58 3,05 7.43; 4.94 .6,8^! 4.57 9.33 6.21 8,211 5,46 11,5 7.62
4.94.. 3.29 7.66 5.10 7.74 5.15 ^mi/' 6.50 .9.28 6,18 12.1 8.02
5.36 3.56 7;9il s ,5.26 8.82 5.87 10i:3i ; 6,82 10,6' 7,06 127 , a48
• 5.84; 3.89 8;18' 5.44 10.0 i 6.68 ia:8-; i 7.18 12,1: 8.04 13-7 9.13
6.41 4.26 8.46' 5.63 11.3 7.54 ;1i;,5; i 7.66 13.6 9.07 15,0 10.0
7.07. 4.70 8.77 5.83 127 8.45 12,5 8.30 15.3 10.2 16.4 10.9
:7.85, 5.23 9.10 6.05 14.2 9.42 134 8.94 17,0 11.3 177 11.8
8.713! ,5.79 9.45 6.29 157 , 10.4 14.4; ; 9.59 18.9 12.6 19,0 127
10.5 ^ ;.7.01 10.5 '6.96 19.0 ; 12.6 16,3 10.9 22,8 ' 15.2 217 14.5
12.5i 8.34 11.8 7,83 22.6 15.0 18.3 12.2 27,2 . 18.1 24:4 16.3
14.7; 9.79 13.1 i . 8,69
17.1' 1T.3 i4;4; • 9,56
19.6 13.0 157 10,4
22.3 14.8 16.9 11,3
Design
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
32
Other Constants and Properties
Jbyx103.(kip-ft)-i
fyxios, (kipsH
frx103, (kips)-i
/"y, in.
21..2
2.85
x3.51
14.1
1.90
2.34
2.64
31.0
. 3.24
3.98
20.6
2.16
2.66
3.41
1.54
.37.3
: 3.80
4,67
24.8
2.53
3.11
3.43
1.52
Shape is slender for compression with Fy = 50 ksi.
Note; Heavy line indicates /fi/fy equal to or greater than 200.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-GOLUMN SELECTION TABLES FR-83
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
W12x
onaiiB
26C 22« 19"
px103 ftxXlO^ px(fi pxttfi 6;,Xl05
Design (kips)-i P(ip-ft)-i (kips)-t (kip-ft)-i (kips)-i (kip-ft)-1
ASO LRFD ASD: LRFD ASO LRFD ASO LRFO ASO LRFD ASP LRFD
0 4.66 3.10 9.58, 6,37 5,42 3,60 12.2: 8.09 6,52 4,34 14,4 , 9.60
1 4.67 3.11. 9.58 6.37 5,48 3,65 i2.2 8.09 6,60 : 4,39 14.4 i 9.60
2 : 4,73 3.14 9.58 6.37 5.68 3,78 12.2 8.09 6,84 4,55 14.4 : 9.60
if 3 4,82 3.21 9.58 6.37 6.03 4,01 12.2 8.09 7:28 4,84 14.5 i 9,66
4 ^4,95 3.29 9.58 6.37 6.58 4,38 13.0 8.65 7,95:; 5,29 15,6 i 10,4
f
5 «5.13 3.41 9,58 6.37 7.43 4,95 14.0 9.28 8.97 5,97 16.9 11,2
ta 6 :5;36 3.56 :9,83 6.54 8.73 5,81 15.1: 10.0 1o:5 : 6,99 18.4 ; 12,2
o c
22 S
7 5.64 3.75 10.2 ; 6.81 10.6 7,03 16.4 10.9 12.9 ; 8,56 20.2 13,4
S3 «
8 .i6.0b 3.99 10.7 i 7.11 13:2 8,75 17.9' 11.9 16.3 ?• 10,8 22.3 : 14,9
9 > 6.43 4.28 11.2 7.43 16i7 11,1 19.8 13.1 20.6 13,7 25.7 : 17,1
S X
10 '6.97 4.64 11.7 7.79 20.6 ; 13,7 23.0 15.3 25.5 c 16,9 30.4 ; 20,2
ss 11 :7.64 5.08 12:3 : 8.17 24,9 16,5 26.5 17.6 30,8 ; 20,5 35.2 ' 23,4
s g 12 '8.49 5.65 12.9 8.60 29,6 19,7 30.0 20,0 36,7 n 24,4 40:1 : 26,7
£ ^
13 03 6.34 13.6"' 9.08 34,7" 23,1 33.5 22,3 43,0 28,6 45.1 ; 30,0
£ €
14 10.8! 7,18 14.4 9.61 40,3 26,8 37.1 24,7
•i 1 15 12.4 8.22 15.4 10.3

16 14.1 9,36 17.1 11.4
^ i 17 15.9 10,6 18.8 12.5
18 T7.8 11.8 20.6 13.7
it
19 19.8 13,2 22.3 14.9
20 22.0 14.6 24.1 16,0
1
21 24.2 16.1 25.9 17,2
LU
22 26.6 17.7 27.7 18,4
23 29.1 19.3 29.5 19,6
24 31.6 21,0 31.3 20,8
25 34.3; 22,8 33,1 22,0
Other Constants and Properties
tlyXl03,(kip-ft)-l
fyXl03, (kips)-1
frx103, (kips)-1
/•y, in.
43.6
4.37
5.36
29.0
2.90
3.58
3.42
1.51
97.3
5.15
6.33
64.8
3.43
4.22
5.79
0.848
120
6.00
7.37
79.5
3.99
4.91
5.86
0.822
Shape is slender (or compression with /y = 50 ksi.
Note; Heavy line indicates KLIry equal to or greater than 200.
i
i
N.
AMERICAN INSTITUTE OF STEEL CONSTRIJCTION

6-84 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W12
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
Shape
W12x
16=
14c,v
Design
px103
(kips)-'
ASO LRFD
fijrXlOa
(k!p-ft)-i (Wps)-<
ASO LRFD ASO" LRFD
6^x103
(lcip-ft)-i
ASO LRFD
1
2
3
4
5
6
7
8
9
10
11
12
7;98c
8i08
8.39' •
8.97
9,87'
11.3.-
13.4 ••
16.8
21.8
27.6
34.0
41.2 •
49.0
5.31
5.38
5.59
5.96
6.57
7.49
8.91
11.2
14.5
18.3
22.6
27.4
32.6 .
::177:
"17.7-
:.17i7.
iai
S 21.4-:
2316 •
; 26:3
29.6
^ 36.1
42.9
5o!O
^57.2
1.1.6
11.6
11.6
12.0
13.1
14.3
15.7
17.5
19.7
24.0
28.5
33.3
38.1
9.39
9.50
9;88-
10.5
11.6«
13.3
15.8:'
i9;9 V
26.0 i '
32.9
40.6 '
49.1 e-
ssis
6.24
6.32
6.57
7.02
7.73
8.63
10.5
13.3
17.3
21.9
27.0
32.7
38.9
20;5
^ 20:5
^20:5
2liO
2219
27.8
31.2
• 36.4
44.6
53.3
62.4
71.8
13.6
13.6
13.6
14.0
15.2
16.7
18.5
20.7
24.2
29.7
35.5
41.5
47.8
Other Constants and Properties
6yx103 (kip-ft)-
tyX 103, (kips)-'
ffXl03, (kips)-i
•158
7.09
. 8.71
105
4,72
5.81
•188 ^
8.03
9.86
.125
5.34
6.57
rx/ry 6.04 6.14
/V, in. 0.773 0.753
»Shape is slender for compression with 50 ksi.
• Shape does not meet the h/t^ limit for shear in AISC Specification Section G2.1 (a) with Fy=50 ksi; therefore, (|ii,=0.90 and
£2,= 1.67.
Note: Heavy line indicates KUry equal to or greater than 200.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-GOLUMN SELECTION TABLES FR-85
Table 6-1 (continued) Table 6-1 (continued)
Fy = 50 ksi
Combined Flexure
and Axial Force
-
W-Shapes
W10
Shape
WlOx
Shape
112 100 88
px103 103 pxW pxlO^
Design (kips)-i (kip-ft)-i (Wps)-^ (kip-ft)-1 (kips)-i (kip-ft)-i
ASO LRFD ASO LRFD ASD LRFD ASO LRFD ASO. LRFD ASD LRFD
0 1.02 i 0.675 2.42 1.61 1.14 • 0.758 2.74 1,82 1.28 0.855 3.15 2,10
6 1.07 ( •0.712 2.42 1.61 1.20 . 0,800 2.74 1,82 1.36 0.903 3.15 2.10
7 1.09 • 0.726 2.42 1,61 1,23 0.816 2.74 1,82 1.38 0,921 3.15; 2,10
8 1.12 : 0.742 2.42 1.61 1.25 0.835 2.74 1.82 1.42 0,942 3.15; 2,10
G ,9 1.14 . 0.761 2.42 1.61 1.29 0.856 2.74 1.82 1.45 0,967 3.15 i 2.10
1
10 1.18 0.782 2.43 1.62 1.32 . 0.881 2.7S 1.83 1.50 0,995 3.17 2.11
11 1.21?. .0.807 2.45 1.63 -1.37 : ,0.909 2.78 ,1.85 1.54 1,03 3.20 1 2.13
J S
12 '1.26 ' 0.834 2.47.: 1,64 1.41: • 0.941 2.80 1,86 1.60 1,06 3.23 i 2.15
J S
13 1.30 0.865 2.49 1,66 1.47 : 0.977 2.82: 1.88 1.66 1.11 3.27: 2.17
2 G
14 1.35 ^ 0.900 .2.51, 1,67 1.53 1.02 2,85 1.90 1.73 1.15 3.30 ' 2.19
15 1.41 ' 0.939 2.53 1,68 1.60 1.06 2.87 1,91 1.81 1.20 3.33 1 2:22
sM
16 1.48^ ; 0.983 2.55 1,69 1.67 1.11 2.90 1,93 1.90 1.26 3.36 : 2.24
It
17 1.55 1,03 .2.561 i 1,71 1.76 i 1.17 2.92 1.94 1.99 1.33 3J401 2.26
& -F 18 1.63 . 1,09 2.59 1,72 1.85 1;23 2.95 1.96 :2.ID 1.40 3.43 2.28
si
19 1.72 ' 1,15 2.61' 1,73 1.96 ; 1.30 2.9^ -1.98 2.23 ,1,48 31471 2.31
|l
20 I.82 > ,R,2I 2.63 1.75 2.08 • 1.38 3.00 2.00 2.36^ 1,57 3:50 ; 2.33
22 2.06 1,37 2.6;^ 1.78 2.3f -1.57 3.06 2.03 2.68 " 1.79 3:58 : 2:38
^ i 24 2.36 i 1,57 2.71 1.80 :2.70 1.80 3.11 2.07 3.09 2.05 3.65 2.43
^ A
26 2.74 .1,S2 2.76 1.83 3.15 2.09 3.17 2.11 3.60 2.40 373 i 2.48
I %
28 3.18 2,11 2.80 1.87 3.65 t •2.43 3.23 2.15 4.-1? 2.78 3:82: 2,54
.2
30 3.65 t 2,43 2.85 1,90 4.19 . 2.79 3.30 2.19 4.79 3.19 3^90 ; 2.60
1
32 4.15 ^ 2,76 2.90 1.93 4.77 c 3.17 3.36 2.24 5.46 3,63 4:oo: 2.66
lU
34 4.69 3.12 2.95 1.97 5.38 3.58 3.43 2.28 6.16 4,10 4;09 2.72
36 5.25 3.50 3.01 2.00 6.03 ^ 4.01 3.50 2,33 6.90 4,59 4.19 2,79
38 5.85 3.S0 3.06 2.04 6.72 4.47 3.58 2,38 7.69 5,12 4;30 : 2,86
40 6,49 4.32 3.12 2.08 7.45 -4.96 3.66 2.43 8.52 5.67 4.41 j 2.94
Other Constants and Properties
i5iyXl03 (kip-ft)-i ,5.15 3,43 -.5.84 3.89 '6.71 . 4.46
fyXl03 (l<ips)-1 1.02 0.675 1.14 0,758 1.28 . 0.855
ffXl03 (l<ips)-i :.1.25 : 0.831 • .1.40 0,933 1.58 : 1,05
fx/ry 1.74 1.74 1.73
ry. in. 2.68 2.65 2.63
AMERICAN INSTITUTE OF STEEL CONSTRIJCTION

6-86 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
W10
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
WlOx
anape
77 68 60
px103 PX103 pxW fix X 103
Design (kipsj-i (kip-ft)-i (kips)-i (kip-ft)-i (kips)-i (kip-ftj-i
ASD i LRFD ASD LRFD ASD s IRFD ASO LRFD ASDi LRFO ASD LRFD
0 1.47 0.979 3,65 2.43 1.68 1.12 4-18 2,78 1.89 1.26 4.78 ' 3.18
6 1.56 1.04 3.65 2-43 .1.78 1.18 4.18 2,78 2.00; 1.33 4.78 3.18
7 1.59 1.06 3.65 2.43 ,1.81 1.21 4.18' 2,78 2.O4 1.36 4.78 . 3.18
8 1.63 1.08 3.6S 2.43 1.86 1.23 4.18 2,78 2.09 1.39 4.78 3.18
g" 9 1.67 1.11 3.65 2.43 i.gr 1.27 4.18 2,78 2.1 I 1.43 4.78 ' 3.18
1 n,
10 1.72 1.14 3.68 2.45 1.96 1.31 4.22 2,81 2.21 1.47 4.84 3.22
>> cn
m.E
•K 13
11 1.78 1.18 3.72 2.48 2.03 1..35 4.27 2,84 2.29 1.52 4.90 3.26
O C
12 1.84 1.23 3.76 2.50 2.10 1.40 4.32 2,88 2.37 1.58 4.97 ; 3.31
li
13 1.9t 1.27 3.80 2.53 2.19 1.46 4.38 2,91 2.47 1.64 5.04 3.36
2 iS
14 2.0d 1.33 3.8^ 2.56 2;28 1.52 4.44 2,95 2.58 1.72 5.12; 3,41
<0 X
s ^
15 2.09 1.39 3.89 2.59 2,39 1.59 4.49 2,99 2.70 1.80 5.19 ; 146
as
16 2.19 1.46 3.94 2.62 2,51 1.67 4.55 3,03 2.84 1.89 5.27 i 3,51
gg 17 2.31; 1.54 3.98 2.65 2,64 1.76 4,61 •3,07 2.99 1.99 5.35 ' 3,56
fj 18 2.44 1.62 4.03 2.68 2,79 1.86 '4.67 3,11 3:16 2.10 5.43 3.62
es 19 2,58 1.72 4.08 2.71 2,96 1.97 4.74 3.15 3.36 2.23 5.52 3.67
20 2,74 1.83 4.13 2.74 3,14 2.09 4,80 3.20 ;3.57 2.38 5:61 ' 3.73
§i
22 3,13 2.08 4.23 2.81 3,59 2.39 4.94 .3.29 4.08 2.72 5,79 ' 3.85
24 3.61 2.40 4.33 2.88 4,15 2.76 5,08 3.38 , 4:73 3.14 5.39: 3.99
O) 25 26 4.22 2.81 4.45 2.96 4.85 3.23 5,24 •3.49 5.54: 3.69 6.20 4.13
1 g
28 4.89 3.26 4.56 3.04 5.63 3.74 5,40 3.59 6.42, 4.27 6^3 i 4.28
d>
30 5.62 3.74 4.6d 3.12 6,46 4.30 5,57 3.71 7.38 4.91 6.67 4.44
1
32 6.39 4.25 4.82 3.21 7.35 4.89 5,76 3.83 8.39 5.58 6I94 4.61
111
34 7.22 4.80 4.96 3.30 8.30 5.52 5,96 3.96 9.47 6.30 7.22 4.80
36 8.09 5.38 5.11 3.40 9.30 6.19 6,17 4.10 10.6 7.07 7.53 5.01
38 9.02 6.00 5.26 3.50 10.4 6.90 6,40 4.26 11.8 7.87 7.96 5.30
40 9.99 6.65 5.43 3.61 11;5 7.64 fi,64 4.42 13.1 8.72 8.43 5.61
Other Constants and Properties
/)yx103,(kip-ft)-'
fj,x103 (l<ips)-1
t,x^(>^ (i<ips)-i
Z.76
1.47
1.81 •
5.16
0.979
1.20
SM
1.68
2.06
5.91
1.12
1.37
10.2
1.89
.2.32
6.77
1.26
1.55
rx/Tv 1.73 1.71 1.71
/>, in. 2.60 2.59 2.57
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-GOLUMN SELECTION TABLES FR-87
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W10
WlOx
bnape
54 49 45
px103 bxxW pxlO' px 103
Design (kipsH (kips)-' (kip-ft)-l (kips)-i (kip-ft)-l
ASO LRFD ASOs LRFD ASD LRFD ASD LRFD ASb LRFD ASD LRFD
0 2.11 1.41 5,35 f 3,56 2.32 1.54 ;5.90 3,92 2,51 : 1,67 6,49 4,32
6 2,24 1.49 5.35 f 3,56 2.46 > 1,64 5.90 . 3.92 2,76 1,84 6.49 4,32
7 2.29 1.52 5.35 : 3,56 2.51 1,67 5.90 i .3.92 2.85 1,90 6.49 4,32
8 ^ 2.34 i 1.56 5.35 ; 3,56 2.57" 1,71 5.90 • 3:92 2,97 c 1,97 6.60 4,39
9 2.41 .1.60 5.35 : 3,56 2.65 : 1,76 5.90 : 3.93 3,1b .2,06 6.73 4,48
if
10 2.48 ^ 1.65 5.43 ; 3,61 2.73' : 1,82 6.00 : 3,99 3.26 2,17 6.87 4.57
if
11 •2.57 1.71 5.51 3,67 2.83! ^ 1,88 :6.10 4,06 3,44 2,29 7:00 4,66
S3 S
12 2.66 1.77 5.60 3,72 2.93. 1,95 6.20 : 4,13 3,65 2,43 7.15 4,76
VJ
13 2.77' 1.85 5.69 .3,78 3.06. 2,03 6.31 4,20 3,90 2,60 7.30' 4,86
14 2.9b 1.93 5.78 3.85 3.19^ 2,12 6.42 i 4:27 4.19 ,. 2.78 7.46 4,96
M X
15 3.03 2,02 5.88 3.91 :3.35- 2,23 6,54 4,35 4.51 ' 3.00 7.63; 5,07

16 3.19 2.12 5.97 • 3.97 3.52 •• 2,34 6,66. 4,43 4.89 3.26 7.80 5,19
tS sf
BE, 17 3.36 2.24 6.08 4,04 3.72 2,47 6,78 4,51 5,33 . 3.55 7.98 5,31
l-J 18 3.56 2.37 6.16 4,11 3.94 2.62 6.91 4.60 5,84 3',89 8.17 5,44
S
19 3.78 2.51 6.29 4,19 4.18: 2,78 7.04 : 4.69 6.44 4,28 8.37 5,57
•S cn
S c 20 4.02 2.67 ;6.4b 4,26 • 4.46 2,96 7.18 4.78 7.13 4,75 8,58 5,71
!i
22 4.6b 3.06 6.64 4.42 5.11 . 3,40 7.48; 4,98 8.63 5,74 9.03; 6,01
Se g.
24 5.33 3,55 e.9b 4,59 5.94 3,95 7.80 .5,19 10.3 6,83 9.53' .6,34
26 6.25 4.16 7.18 4.78 '6.97 4,64 8.15 5,42 12,1 8,02 10.1 6,71
1 1 28 7.25 4.83 7.48 :4.98 8.08 .5,38 8,53 5:68 14.0 9,30 1.0.9 7,22
30 8.33 5.54 7.81 5.20 9.28 6,17 8.95 5,96 16.0 10,7 11.7 7,82
1
32 9.47 6.30 8.17 5.43 10.6: 7,03 9.47 6,30 18.3' 12,1 12.6 8,41
Ul
34 10.7 7,12 8,60 5,72 11.9 7,93 10.2 6,77
36 12.0 7,98 9.19 6,11 13.4 8,89 10.9 7,24
38 13.4 8,89 9.77 6.50 14.9 9,91 11.6 7,71
40 14.8^ 9,85 10.4 6.89 16.5: 11,0 12.3 8,18
Other Constants and Properties
/),x103,(kip-ft)-i ,11.4 7.57 12.6 8,38 17.6 11,7
fyx 103, (kips)-' t 2.11 1,41 2,32 1,54 2.51 1,67
frXlQS, (kips)-! 2.60 1,73 2,85 1,90 ' 3. 08 2,06
1.71 1,71 2,15
/>, In. 2.56 2.54 2,01
Note: Heavy line indicates KUty equal to or greater than 200.
i
{
AMERICAN INSTITUTE OF STEEL CONSTRIJCTION

6-88 DESIGN OF MEMBERS SOTJRECT TO COMBINED FORCES
Table 6-1 (continued)
Combined Flexure
c CA
and Axial Force
= 50 ksi
W10

W-Shapes
WlOx
39 33 30
pxlO^ 4;fXl05 pxioa pxioa 4;fXl03
Design (kips)-i (kip-ft)-^
(kips)-i (kip.tt)-i (kips)-i (klp-ft)-i
ASO LRFD ASD LRFO ASO LRFD ASO LRFD ASD LRFD ASD LRFD
0 2.90 ; 1.93 5,06 :3.44' 2.29 9.18 6.11 3.78 ,2.51 9.73 6.48
6 3.201 2.13 7,61 5.06 3.80 i 2.53 9.18 , 6.11 4.62 3.08 10.1 : 6.74
7 3.31 2,20 7.61 5.07 3.95 . 2.62 9.22 6.13 4.97 3.31 10.5 : 6.99
8 : 3.45 2,29 7.78 5.18 4.11 2.74 9.45 , 6,29 5.41 • • 3,60 10.9 : 7,25
9 3.61 2,40 •7:96:: ,5.29 4.31 2.87 9.70 6.45 5.95 ' 3.96 11.3 . 7.53
if
10 3.80 2.53 5,41 4.55 • 3,03 9.96 6.62 6.62 4.41 11.8 : 7.84
if 11 4,02 2.67 8.33' 5.54 4.83 3,21 10.2 6.81 7.45 4,96 12.3 i 8,17
12 4.28' 2.84 - 8;53 5.67 5.15 3,42 10.5 ; 7.00 8.47 5.64 12.8 8.54
1 -3
13 • 4.57( 3.04 : 8.74; 5.81 5.52 -3,67 10.8 . 7.20 9,76 6,49 13.4 8.93
14 4.92 3.27 8.96 5.96 5.95 3.96 11.2 7.42 11.3 7.53 14.1 9.37
m ^
15 •5.3|f-.i :3.54 9.19: 6.12 • 6.45. 4.29 11.5 7.65 13.0 ; 8.64 14,8 9.85
as
16 5.78 3.84 "9.44. 6.28 7.04 4.68 11.9 7.89 14.8 9.83 15.6 10.4
s g 17 6 31 4.20 '9.70 6.45 • 7.72 5.14 12.3 : 8.15 167 11,1 16.8 11.2
18 6.93 4.61 9:97 6,63 8.51 5,67 12.7 8.43 18.7 12.4 18.1 12,1
5 £
19 7 67 5.10 6.82 9.46 6.30 13.1 •8.73 20.8 ' 13.9 19.4 12.9
% f
20 8 50 5,66 10.6 7,03 10.5 = 6.98 13.6 9.05 23.1 ^ 15.4 20.7 13.8
22 10.3 6.84 7.47 12.7 8.44 14.8 : 9.82 27.9 : 18.8 23.2 15.4
i 24 122 8.14 1:2.0' 7.98 15.1 r 10.0 16.5 11.0
26 144 9.56 13.2 8.77 17.7 11.8 18.3 12.2
i ^ 28 16 7 11.1 9.58 20.6 13.7 20.1 13.4
30 191 12.7 15:6;: ^ 10,4 23.6 15.7 21.9; 14.5
£
32 21.8 14.5 16.8 • 11.2 26.8 17.9 23.6. 15.7
SJ
other Constants and Properties
6yx103,(kip-ft)-' ; 20.7 i 13.: 8 "25.4 : 16.9 40.3 : 28. 8
fyxios, (kips)-i ^f'2.90, ' 1,93 3.44 : 2.29 3.78 ' 2.51
FFXIOS, (kips)-' 2,38 4.23 2,82 4.64 : 3.09
rx/r. 2.16 2.16 3.20
ry. In, ' 1.98 1,94 1.37
Note: Heavy line indicates/A/rj, equal to or greater than 200.
AMERICAN INSTITIrrE OF STEEL CONSTRUCTION

STEEL BEAM-GOLUMN SELECTION TABLES fr-89
Table 6-1 (continued)
Fy = 50 ksi
Combined Flexure
and Axial Force
W-Shapes
W10
Shape
WlOx
Shape
26 22c 19
pxlO^ pxlO^ ftjrXlO' pxloa b^xW
De: ign (kips)-i {kip-ft)-i (kips)-i (kip-«)-i (kips)-i (kip-ft)-i
ASD C LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 ? 4.39 2.92 11.4: .7.57 • 5.19 3.45 13.7; 9.12 5.94 3.95 16.5 ; 11,0
1 4.411 2,94 11.4: 7.57 5.22 3,47 137 9,12 6.03- 4,01 16.5 : 11,0
2 4.49 2.99 11.4i 7.57 5.30 3,53 137 9,12 6.28 ! 4,18 16.5 : 11,0
3 :4.62 •3.07 11-.4J 7.57 5.4^ 3.62 137 9,12 6.73 4,48 16.5 11.0
4 4.81 3.20 11.4:: 7.57 5.66 3.77 137 9,12 7.41 4,93 17.4 11,6
1
5 5.06 3.37 11.5 7.63 5.97 3,97 139 '9.23 8.39 5.58 18.6 ; 12,4
" s
6 5.39 3.58 11.9' 7.93 -6.38 4,24 145 9,64 9.76 6.49 19.9 132
fi
7 5.80 3,86 12.4 8.25 6.89 4.58 15.1 10.1 11.7 '7.77 21.4 ; 14,3
fi
8 6.32 . 4,20 12.9;- 8.59 7.53 5,01 15.9 10.6 14.4 9.55 23.2 15,4
ti! S
9 6.96 4,63 135 8.97 8.33 5.55 16.7 11.1 18.1 12.0 25.3 i 16,8
Is
TO 7.76 5,16 14.1;/ 9.38 9.33 6.21 17.6- 11,7 22.3' 14.8 28:2 : 18,8
ss
11 8.74 5,81 14.8'; 9.84 10.6 7.04 18.5 12,3 27.0 18;0 32.3 21.5
12 9.96 6,63 155 10.3 12.1 8.07 19.6 13,1 32.1 21.4 36.4 24.2
13 11.5 7,65 .I6.4! 10.9 14/1f • 9.38 20.9 13,9 37.7 25.1 40.5 , 26.9
Is 14 13.3 8.88 17.3^ 11.5 'leSF 10.9 22.6 15.0, 43.7 29:1 44.6 29.7
3 g
15 15.3 10,2 18.41- 12.2 18.8 12.5 2io 16,6 3 g
16 17.4.' 11,6 20.1- 13.4. 21.4:;; 14.2 27.4' 18,2
17 19.7; 13,1 21.8; 14.5 24:1}.; 16.0 29.9 19,9
f>i
18 22.1 14,7 23.6i 15.7 27.0 ' 18.0 32.4 21,6
1 ^
19 24.6r 16,3 25.3- 16,8 30.1; 20,0 34.9 23,2 1 :
20 27.2; 18,1 27.0: 18.0 33.4: 22.2 37.4; 24,9
1
21 30.0 20,0 28.7 19.1 36.8t 24.5 39.9- 26,5
u
22 32.9 21,9 30.5; 20.3 40.4: 26,9 42.4 28.2
other Constants and Properties
/)yx103 (kip-ft)-1 4K5- 31.1 3 58.4 38,9 106 70.8
?yx103, (kips)-< ; 4;39 2,92 5.15 : 3,42 5.94 ; 3,95
frx103 (kipsH 5,39 3.59 6.32 4.21 7.30 4,87
r^/r, 3.20 ,3.21 4.74
/y, in. 1.36 1,33 0.874
' Shape is slender for compression witti Fy= 50 ksi.
Note; Heavy iine indicates W./r, equai to or greater than 200.
II
AMERICAN INSTITUTE OF STEEL CONSTRIJCTION

fr-90 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
W10
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
fy - 50 ksi
WlOx
anape
15" IZ".'
pxMfi px103 pxlOS
Design (kips)-i (l«ip-ft)-i (kips)-i (kip-ft)-' (kips)-i (kip-ft)-i
iASD LRFD ASb; LRFD ASP LRFD ASD LRFD ASO i LRFD ASD LRFD
0 6.77 ,4.50 19,1: 12.7 7,77 5.17 22.3 14.8 10.3; ' 6.87 28.5; 19.0
1 6.85 4.56 19.1 i: 12.7 7.87 i 5.24 22.3' 14.8 10.5 . 6.96 28.5 19.0
2 7.11 4.73 19,1 i ; 12.7 8.19 • 5.45 22.3 14.8 lo.gi i 7.24 28.5 19.0
3 7.64 5.09 19.1; 12.7 8.76; 5.83 22.5 15.0 11:6; 7.74 28.8 ^ 19.1
g 4 8.47 5.64 20.4i 13.6 9.79- 6.51 24.2; 16.1 12.8' I: ; 8.52 31.1 20.7
I.S
t ^
5 9.68 . 6.44 21.9i 14.5 11.3; 7.53 26.1 17.4 14.6 ; . 9.73 33.9 22.6
I.S
t ^
6 11,4: ; 7.57 23.6 15.7 13.5^ 8.98 28.4; 18.9 17.5; , 11,6 37.3 24.8
o c
7 13.8^ 9.17 25.6 17.0 16.6. 11.1 31.2 20.7 21.8 14.5 41.3 27.5
i
8 17.2 11.4 28.0 18.6 21.2 : 14.1 34.5; 22.9 28.1 J 18.7 46.4 ;. 30.9
E g
9 21.8 14.5 30.9 20.6 26.8: 17.8 39,6: 26.4 35.6 : 23.7 56.5 37.6
c3 x
S X
10 26.9; 17.9 36.0; 23.9 33.1: ; 22.0 46.8^ 31.1 43.9 29.2 67.2 ; 44.7
11 32.5 21,6' 41.4; 27.5^ 40.1 26.7 54.0; , 35.9 53.1 ; 35.4 78.3 i 52.1
12 38,7; 25,8 46.8 31.2 47.7; 31.7 61.4i 40.9 63.2 42.1 89.6 59.6
!l
13 45.4' ^ 30,2 52.3 34.8 56.0 37.2 68.8 45.8 74.2 49.4 101 67.3
!l
14 52.71 35,1 57.8^ 38.5
Si • ; j.
^ i
. ' ' .
II
f ^
1
i
other Constants and Properties
eyx103,(kip-ft)-l
fyXl03 (kips)-l
ffXl03, (kipsH
127
6.69
8.22
84.7
4.45
5.48
155
7.57
9.30
103
5.04
6.20
207
9.44 ;
11.6 ;
138
6.28
7.73
rxiry 4.79 4.88 4.97
fy, in. 0.845 0.810 0,785
c Shape is slender for compression with Fy=50 ksi.
< Shape does not meet compact iimit for flexure with Fy = 50 ksi.
Note: Heavy line indicates KLIry equal to or greater than 200.
AMERICAN INSTITUTE,OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-91
Fy = 50 ksi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W8
W8x
uiape
67 58 48
Design
pxlOa bxxW pxlD^ 6^x10' pxloa bxxVfi
Design (kips)-i (l«ip-ft)-i (l<ips)-' (kip-ft)-i (l<ips)-i (l<ip-ft)-<
Design
ASP LRFO ASD LRFO ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 1.70 1.13 5.08 3.38 1.95 1.30 5.96 3.96 2.37: 1.58 7,27 4.84
6 . 1.84 1.23 5.08 3.38 2.13 1.42 5.96 3.96 2.59 1.72 7,27 4.84
7 1.90 1.27 5.08 3.38 2.20 1.46 5,96 3.96 2.67 1.78 7,27 4.84
8 i1.97 1.31 5.11 i 3.40 2.28 1.51 ;6,00 3.99 :2.77'. 1.84 7.34 4.88
9 2.05 1.36 5.16 3.43 2,37 1,58 6.07 4.04 2.88 1.92 7.44 4.95
If
10 2.14 1.43 5.2i:> 3.47 2.48 1,65 6.14 4.08 i 3,02s, 2.01 7.55 5.02
If
11 2.25. 1.50 5.27 3.50 ;2,61 1.73 :6.21 4.13 ;3.18.; 2.12 :7.65- 5.09
"S e
M ^ 12 2.313 1.58 5.32 3.54 2,75 1.83 6.29 4.18 i3.36 2.24 7.77 5.17
13 S2.52. 1.68 5.38 3.58 2.92 1.95 ;6.3d 4.23 ^3.57', 2.38 7.88 5.24
£ ^
14 ;2.6iB 1.79 5.43 ^ 3.61 3.12 2.08 6.44 4.29 V3,82>: 2.54 8.00' 5.32
15 2.87 1.91 549;; 3.65 >3:34 2.22 6.52 4.34 4.10 . 2.73 8.12 5.41
16 ,3.09 2.05 5.55 3.69 3:60 2.39 •6.61 4.40 4.42: 2.94 8.25 5.49
17 3.34 2.22 5.61 3.73 ,3.89 2.59 6,69 4.45 i4,7a: : 3.18 8,38 5.58
18 :3.62 2.41 5.67 3.77 4;23 2.82 56.78 4.51 :5.21fc; : 3.47 8,52 5.67
£ 4.
19 3.95 2.63 5.74 f 3.82 : 4.62 3.08 6:87 4.57 5.70 3.79 8,66 5J6
.TS CD
9 g 20 '.4.33 2.88 5.80 3.86 5.08 3.38 6.96 4.63 ,6.28 4.18 8,80 5.85
22 >5.24 3.48 5.93 3.95 6,15 4.09 7.15 4.76 7.60 : 5.06 9.10 6.06
§
24 6.23 4.15 6.07 4.04 7.32 4.87,. M5 4.89 9.05 •6.02 9,43 6.27
26 i7.31 4.87 6.22 4.14 8:59 5.71 7,57 5.03 10.6 7.06 9,77 6.50
28 .8.48 5.64 6.38 4.24 9.96 6.63 7:79 5.19 12.3 f :8.19 10:1 i 6.75
30 9.74 6.48 6.54 4.35 11.4 7.61 8,0? 5.35 14.1 9.40 10.6 : 7.02
1
32 11.1 7.37 6.71 4.46 13.0 8.66 8,29 5.52 16,1 , 10.7 11.0 7.31
S
34 12.5 8.32 6,89 4.58 14.7 9.77 i8,56 5.70 18.2 ' 12.1 11.5 7.63
- ,
Other Constants and Properties
/)iyx103,(kip-ft)-'
iyXlQS, (kips)-i
frx103, (kips)-i
10.9
i.ro
2.08
7.25
1.13
1.39
12.8
1.95
2.40
8.50
1.30
1.60
-15.6
2.37
2,91
10.4
1.58
1.94
r^/rv 1.75 1.74 1.74
fy, in. 2.12 2.10 2.08
Note: Heavy line indicates M./ry equal to or greater than 200.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

fr-92 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
W8
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50lcsi
W8x
40 35
7>x103
(kips)-i
ASD LRFD
bxxW pxW
(kiprft)-' (kips)-i
ASD LRFD ASO LRFD
(kip-ft)-l
ASD LRFD
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
32
34
2.85
3.13
3 23
3.36
3.50
3.68
3.8S
4.1-1
4.38
4.69
5.04
5.46 -
5.93
6.48
7.12
7.87'
9.52
11.3
13.3 •
15.4
17.7
20.1
22 7
1.90
2.08
2.15
2.23
2.33
2.45
2.58
2.73
2.91
3.12
3.36
3.63
3.95
4.31
4.73
5.24
6.34
7.54
8.85
10.3
11.8
13.4
15.1
8 95
8 95
:8.95
9 07
9 22
9 38
9 55
-9 72
990
101
103
105
107
109
111
114
118
124
130
136
144
154
165
5.96
5.96
.5.96
6.03
6.14
6.24
6.35
6.47
6.59
6 71
6.84
6.97
7.11
7.25
7.40
7.55
7.88
8.24
8.64
9 07
9.57
10.3
11.0
3.24
3.56
3.68
3 82
399
419
4.42
4 68
499
5.35
5.76
6.24
6.79
7.42.
816
9 03
109
130
15.3 •
177
20 3
231
2.16
2.37
2.4.',
2.54
2.65
2.79:
2.94
3.12
3.32
3,56
3.83
4.15
4.51
4,94
5.43
6,01
7,27
8.65
10.2
11.8
13.5
15.4
10.3
10.3
10.3
1Q.4
10.6
10.8
11.1
11.3
11.5
11.8
'12.0
12.3
12.6
12.9
'13.2
i'13.5
14.2
15.0
15.8
17.0
18.4
19.8
6.83
6.83
6,83
6,94
7,07
7.21
7.36
7.51
7.67
7.83
8.00
8,18
8.37
8.56
8.77
8.99
9.45
9.97
10.5
11.3
12.3
13.2
Other Constants and Properties
ftyxios, (kip-ft)-i
fyxios, (kips)-i
frxios, (kips)-*
19
2 85
3.51
12.8
1.90
2.34
22.1,
3.24
3.98
14.7
2.16
2.66
rjry 1.73 1.73
/•y, in. 2.04 2.03
Note: Heavy line indicates KL/r, equal to or greater than 200,
AMERICAN INSTITUTE,OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-93
Shape
Design
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
32
Fy = 50lcsi
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W8
W8x
31'
(kips)-i
ASD
3.66
4.01
4.15
4.32
4.51
4.74-
5.00
5.30
5.66
6.07
6.54 .
7.08
7.71-
8.44
9.29
10.3 ' •
12.4
14.8
17.4 .
20.2
23.1
26.3
LRFD
2.43
2.67
2.76
2.87
3.00
3.15
3.33
3.53
3.76
4.04
4.35
4.71
5.13
5.62
6,18
8.84
8.28
9.86
11.8
13.4
15.4
17.5
fixXlO^
(kip.ft)-i
ASD
11.7
,11.7
11,7
11.9
12,2
12.5
12,7
M3.0
13.3
13,7
' 14.0
14.4
14.7
• 15.1
15.6
16.0
.17.0
18.0
-.'•19,6
. .21.4
.23.3
•25.1
LRFD
7.80
7,80
7.80
7.94
8,11
8,29
8,48
8,67
8,88
'9,09
9,32'
9,56
9.81
10,1
10,3
10,6
11,3
12,0
13,1
14,3
15,5
16,7
28
pxMfi
(kips)-t
ASD
4.05
4.68
4.93
5.23^
5.60
6.05
6.58
7.21
7.98
8.89.
9 98
11.3
12.8
14.3
16.0 . •
17.7'
^1.4 •• •
25.5
29.9 •
LRFD
2.69
3,11
3,28
3,48
3,73
4,02
4,38
4,80
5,31
5,91
8,64
7,54
8.51
9,54
10,6 .
11,8
14.2
17.0
19.9
fix X 103
(kip-fQ-
-ASD LRFD
13.1
13.2 '
13.5
13.9
14.2
14.6
15.0
15,5
15.9
-16.4 ,•
17.0
17.5
M8.1
18.7
19.4
•20.2
221
.24.5
26.9
8.71
8.77
9.00
9,23
9,48
9,74
10.0
10.3
10,8
10,9
11.3
11,7
12,0
:12,5-
12,9
13.4
14.7 •
16;3
17.9
i
Other Constants and Properties
&yXl03 (kip-ft)~1
fyXlOS, (kips)-i
frXl03, (kips)-'
rxiry
ty, in.
25.3
3.66
4.49
18,8
2,43
3.00
1.72
2.02
35 3
4.05
4.97
23,5
2,69
3.32
2.13
1.82
' Shape does not meet compact limit for flexure with Fy = 50 ksl.
Note: Heavy line Indicates KUry equal to or greater than 200,
X
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

fr-94 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
Shape
W8
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy = 50 ksi
W8x
24 21
pxlC 103 PX103 6xX 103 px103 6xX 103
Design (kips)-t (kip-ft)-V (kips)-< (kip-ft)-i (kips)-' (kip-ft)-l
ASD LRFD ASO LRFD ASD LRFD ASD LRFD ASP LRFD ASD LRFD
0 .f4.72 3.14 15:4-!) 10.3 :5.42 3.61 17.5 11.6 6.35 4,22 21,0 ; 13,9
1 3,15 15.4 10.3 .;5,46 3.63 17.5; 11.6 :6:39:. 4,25 21.0 ; 13,9
2 ;4.79 3.19 15,4:5 10.3 5.57 3.70 17.5; 11.6 ;6.53 4,34 21.0 • 13,9
3 4.89 3.26 15.4:::; 10.3 ;5,76 3,83 17.5: 11.6 'me:.. 4,50 21.0 13,9
4 5.03 3,35 154 10.3 •6,03 4,01 :t7.5! 11.6 7.ID, 4.72 21.0 , 13,9.
••g 5 ;5.22 3.47 154 10.3 •6.40 4,26 ;.17.8' 11.9 7.56 5.03 21.5 14,3
af
6 5.46 3.63 15.6.;; 10.4 6.88 4,58 18.5^ 12.3 ate.: 5.43 22.5 : 15,0
o e
t/i ® 7 :5.76 3.83 16.0;;: •10.6 7.50 4,99 19.2: 12.8 .8.93;:; • 5.94 23,5 : 15,6
'•o (A 8 .•6.12 4.07 16.5«: 11.0 8,29 5,51 20.0; 13.3 :9.ai.; 6.60 24,6 i 16,4
9 :r6,56 4.36 17.0;.' 11.3 9,28 6,17 20.9; 13.9 ii:2>;:: 7.42 25.9: 17,2
10 7.08 4.71 17.5.; 11.7 10.5 7,00 21.9, 14.5 12.7-;;. 8.47 27.3 i 181
11 ; 7.7.1: 5.13 181 12.0 12.1 8.05 22.9 15.2 i4.7:a 9.81 28.8 ; 19,2
•S3 a?
S E-
12 s:8.47 5,63 18 7 12.4 14.1 9.39 24.1' 16.0 17.3 11,5 30.5 • 20,3
13 9.37 6.24 193 12.9 16.6 11.0 : 25.3 16.8 20.3- 13.5 32.5 21,6
'"a ^
14 •10.5 6,96 20.0 :. 13,3 19.2 12.8 26.7: 17.8 15.7 35.3; 23.5
15 7.83 20:8 - . .13,8 22.0 14.7 28.^ 18.9 27;1 ei 18.0 38.8 ; 25,8
16 13.4 8.89 21.6 14,4 25.1 16.7 30.9 20.6 30.8 c., 20.5 42.4 i 28.2
He 17 15.1 • 10.0 22 5 14,9 28.3 18.8 ; 22.2 34.8 23.1 45.9 : 30.5
£ c
18 i,6.a 11.3 23 4 15,6 31.7 21.1 35.9I 23.9 39 0 26,0 49.4 ; 32.9
•S o
19 18.8 12.5 24.5 16,3 35.4 23.5 38.3 25.5 43.5 S 28,9 52.9 • 35.2
20 20,9 13.9 26.1 17,4 39.2 26.1 . 40;7: 27.1 48.2 r 32,0 56.4 37.5
1
21 23.0 15.3 27.8 18,5 43.2 28.7 28.7
UJ
22 25.3 16.8 29.4 19,6
23 27.6 18.4 31.0 20.6
24 30.1 20.0 32.6 21,7
25 32.6 21,7 34,2 22,8
.... '
other Constants and Properties
/)yx103,(kip-tt)-^ 41.6 27.7 62.6 41.7 76.5 • 50.9
(yX 103, (|<jps)-1 4.72 3.14 5.42: 3.61 .6.35 ' ' 4,22
frXl03, (kips)-i ;5.79 , 3.86 6.66 4.44 - s 7. 80 ; 5,20
rjry 2.12 2.77 2.79
ry, in. 1.61 1.26 1,23
Note: Heavy line indicates KUr, equal to or grea; ter than 200,
18
AMERICAN INSTITUTE,OF STEEL CONSTRUCTION

STEEL BEAM-COLUMN SELECTION TABLES 6-95
Table 6-1 (continued)
Fy = 50 ksi
Combined Flexure
and Axial Force
W-Shapes
W8 '
Shape
W8x
Shape
15 13 10'.«
px103 6^x103 px 103 :103 pxlO'
Design (Icips)-' (kip-ft)-< (kips)-i (krp-ft)-i (lcips)-i (kip-ft)-i
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 7.52 5.01 26.2 17.4 8.70 5.79 31.3 20.8 11,7 7.78 40.6 27.0
1 7.63 5.07 26.2 17.4 8.83 5.87 31.3 20.8 11.8 7.88 40.6 27.0
2 7.95 5,29 26.2 17.4 9.23 6,14 31.3 20.8 12.3 8.18 40.6 27.0
3 8.51 5.66 26.2 17.4 9.94 6,61 31.3 20.8 13.1 8.71 40.6 27.0
c" 4 9.37 6.23 27.6 18.4 11.0 7,34 33.4 22.2 14,3 9.55 43.2 28.8
1
5 10.6 7.05 29.4 19.5 12.6 8.38 35.7 23,8 16.4 10.9 46.7 31.1
6 12.3 8.20 31.3 20,8 14.8 9.86 38.5 25.6 19.3 12.8 50.8 33.8
11
7 14.7 9.80 33.6 22.4 18,0 12.0 41.7 27.7 23.4 15.6 55.7 37.0
11
8 18.1 12.0 36.2 24.1 22.5 14,9 45.4 30.2 29.3 19.5 61.6 41.0
11
9 22.8 15.2 39.3 26.1 28.4 18,9 50.0 33,2 37.1 24.7 71.3 47.4
Tn ?<
S X
10 28.1 18.7 42.9 28.6 35.1 23,4 57.4 38.2 45.8 30.4 84.3 56.1
11 34.0 22.6 48.9 32.5 42.5 28.3 65.8 43.8 55.4 36.8 97.6 64.9
12 40.5 26.9 54,9 36.5 50.6 33.6 74.3 49.4 65.9 43.8 111 73,9
£
13 47.5 31.6 60.9 40.5 59.3 39.5 82,7 55.0 77.3 51,5 125 83.0
i €
14 55.1 36.7 66.9 44,5 68.8 45.8 91.2 60.7 89.7 59,7 139 92.2
i|
|l
1 g
other Constants and Properties
ftyxios, (kip-ft)-i 133 88,1 8 166 110 218 145
/yx103,(kips)-i 7,52 5.01 8.70 5.79 11.3 7,51
/rx103, (kips)-i 9.24 6.16 10.7 7.12 13.9 9.24
Of/fy
3.76 3.81 3.83
fy.
in. 0.876 0,843 0.841
' Shape is slender for compression witii fy= 50 l<si.
' Sliape does not meet compact limit for flexure with fy= 50l<si,
Note: Heavy line indicates KUt, equal to or greater than 200.
AMERICAN INSTRRUTE OF STEEL CoNSTRttcnoN

fr-96
DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICAN INSTITUTE,OF STEEL CONSTRUCTION

7-1
PART?
DESIGN CONSIDERATIONS FOR BOLTS
SCOPE K...... ..7-3
GENERAL REQUIREMENTS FOR BOLTED JOINTS 7-3
Fastener Components 7-3
Proper Selection of Bolt Length 7-3
Washer Requirenaents ........ 7-4
Nut Requirenaents 7-4
Bolted Parts 7-4
PROPER SPECIFICATION OF JOINT TYPE 7-4
Snug-Tightened Joints 7-4
Pretensioned Joints 7-5
Slip-Critical Joints . 7-5
DESIGN REQUIREMENTS ,....:...... 7-5
Shear ....7-5
Tension .7-6
> Cotnbined Shear and Tension ^ 7-6
Bearing: Strength at Bolt Holes . r ........ 7-6
Slip Resistance '...... 7-6
ECCENTRICALLY LOADED BOLTGROUPS 7-6
Eccentricity in the Plane of the Faying Surface ^ 7-6
Instantaneous Center of Rotation Method 7-6
Elastic Method : .7-8
Eccentricity Normal to the Plane of the Faying Surface 7-10
Case I—Neutral Axis Not at Center of Gravity 7-10
C ase II—Neutral Axis at Center of Gravity 7-12
SPECIAL CONSIDERATIONS FOR HOLLOW STRUCTURAL SECTIONS 7-13
Through-Bolting to HSS 7-13
Blind Bolts 7-13
Flow-Drilling 7-13
Threaded Studs to HSS 7-14
Nailing to HSS ^ 7-15
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

7-2 DESIGN CONSIDERATIONS FOR BOLTS
Screwing to HSS 7-15
Connection Shear per Screw 7-15
OTHER SPECMCATION REQUIREMENTS AND
DESIGN CONSIDERATIONS 7-16
Placement of Bolt Groups 7-1&
Bolts in Combination with Welds or Rivets ..7-16
Galvanizing High-Strength Bolts and Nuts 7-16
Reuse of Bolts - • 7-16
Fatigue Applications ;............... 7-16
Entering and Tightening Clearances 7-17
Fully Threaded ASTM A325 Bolts ^.. 7-17
ASTM A307 Bolts 7-17
ASTM A449 Bolts .....:.. 7-17
DESIGN TABLE DISCUSSION >7-17
PART 7 REFERENCES 7^21
DESIGN TABLES 7-22
Table 7-1. Available Shear Strength of Bolts 7-22
Table 7-2. Available Tensile Strength of Bolts 7-23
Table 7-3. Slip-Critical Connections, Available Shear Strength 7-24
Tables 7-4 and 7-5. Available Bearing Strength at Boh Holes 7-26
Tables 7-6 through 7-13. Coefficients C for Eccentrically Loaded Bolt Groups ... 7-30
Table 7-14. Dimensions of High-Strength Fasteners 7-78
Tables 7-15 and 7-16. Entering and Tightening Clearance 7-79
Table 7-17. Threading Dimensions for High-Strength and .
Non-High-Strength Bolts 7-81
Table 7-18. Weights of High-Strength Fasteners 7-S2
Table 7-19. Dimensions of Non-High-Strength Fasteners 7-83
Tables 7-20, 7-21 and 7-22. Weights of Non-High-Strength Fasteners 7-85
AMERICAN INSTITUTE OF STBBL CONSTRUCTION

GENERAL REQUIREMENTS FOR BOLTED JOINTS
SCOPE
The specification requirements and other design considerations summarized in this Part apply
to the design of bolts in steel-to-steel structural connections. Additional guidance on bolt design
is available in AISC Design Guide 17, High Strength Bolts—A Primer for Structural Engineers,
(Kulak, 2002). For the design of steel-to-concrete anchorage, see Part 14. For the design of
connection elements, see Part 9, For the design of siniple shear, moment, bracing and other
connections, see Parts 10 through 15.
GENERAL REQUIREMENTS FOR BOLTED JOINTS
Fastener Components
The applicable material specifications for fastener components are as given in Part 2. For
convenience in referencing and consistent with AISC Specification Section J3.1, ASTM
A325 and F1852 bolts have been labelled Group A bolts, and ASTM A490 and F2280 bolts
have been labelled Group B bolts.
Material and storage requirements for fastener components are as given in AISC
Specification Section A3.3 and RCSC Specification Section 2. The compatibility of ASTM
A563 nuts and F436 washers with ASTM A325, F1852, A490 and F2280 bolts is as given
in RCSC Specification Table 2.1. These products are given identifying marks, as illustrated
in RCSC Specification Figure C-2.1. Alternative-design fasteners aiid alternative washer-
type indicating devices are permitted, subject to the requirements in RCSC Specification
Sections 2.8 and 2.6.2, respectively.
Mixing grades of fasteners raises inventor and quality control issues associated with the
use of multiple fastener grades. When both Group A and Group B bolts are used on a projr
ect, different diameters can be specified for each to help ensure that the Group B bolts are
installed in the proper location.
Regardless of the bolt type selected, the typical sizes of ^/4-in., "'/s-in.,. 1-in. and iVs-in.
diameter are usually preferred. Diameters above 1 in. require special consideration for avail-
ability as well as installation, when pretensioned installation is required. Special equipment
may be required to pretension large-diameter Group B bolts.
Proper Selection of Bolt Length
Per RCSC Specification Section 2.3.2, adequate thread engagement is developed when the
end of the bolt is at least flush with or projects beyond the face of the nut. To provide for
this, the ordered length of Group A and Group B bolts should be calculated as the grip (see
Figure 7-1) plus the nominal thickness of washers and/or direct-tension indicators, if used,
plus the allowance from Table 7-14, with the total rounded to the next higher increment of
V4 in. up to a 5-in. length and the next higher V2 in. over a 5-in. length. Note that bolts longer
than 5 in. are generally available only in Vz-in, increments, except by special arrangement
with the manufacturer or vendor. While longer lengths may be ordered, an 8-in. length is
generally the maximum stock length available. Requirements for a minimum stick-through
greater than zero are discouraged because of the risk of jamming the nut on the thread
mnout, particularly in the bolt length range available only in Va-in. increments. See Carter
(1996) for further information.
AMERICAN INSTRRUXE OF STEEL CONSTRUCTION
{

7-4 DESIGN CONSIDERATIONS FOR BOLTS
Washer Requirements
Requirements for the use of ASTM F436 washers and/or plate washers are given in RCSG
Specification Section ^
Nut Requirements
The compatibility of ASTM A563 nuts with Group A and Group B bolts is as given in RCSC
Specification TMt 2.
Bolted Parts
The requirements for connected plies, faying surfaces, bolt holes and burrs are given in
AISC Specification Sections J3.2 and M2.5, and RCSC Specification Ssction 3. Spacing and
edge distance requirements are given in AISC Specification Sections J3.3, J3.4 and J3.5.
PROPER SPECIFICATION OF JOINT TYPE
When Group A or Group B high-strength bolts are to be used, the joint type must be specified
as snug-tightened, pretensioned or slip-critical, per AISC Specification Section J3.1,,;
Snug-Tightened Joints
Snug-tightened joints simplify design, installation and inspection and should be specified
whenever pretensioned joints and slip-critical joints are not required. The applicabihty is
summarized and design requirements, installation requirements and inspection requirements
are stipulated for snug-tightened joints per RCSC Specification Section 4.1. Faying surfaces
in snug-tightened joints must meet the requirements in RCSC Specification Sections 3.2 and
3.2.1, but not those for slip-critical joints in RCSC Specification Section 3,2.2. Note that
there is generally no need to limit the actual level of pretension provided in snug-tightened
joints, per RCSC Speci/icafton Section 9.1.
Ply or plies dosest
to bolt head
Shearplane
Piydosesttonut
- st'di-thmugh
(zero minimum)
Value UromttCSC
Specification Tabb C-Z2
Fig. 7-1. Grip and other parameters for bolt length selection.
AMERICAN iNsrrruTE OF STEEL CONSTRUCTION

DESIGN REQUIREMENTS 7-5
Pretensioned Joints
When pretension is required but slip-resistance is not of concern, a pretensioned joint
should be specified- The applicability is summarized and design requirements, installation
requirements and inspection requirements are stipulated for pretensioned joints per RCSC
Specification Section 4.2. Additionally, pretensioned joints are required by default in some
cases per AISC Specification Section Jl .lO. Faying surfaces in pretensioned joints must
meet the requirements in RCSC Specification Sections 3.2 and 3.2.1, but not those for slip-
critical joints in RCSC Specification Section 3.2.2.
Slip-Critical Joints
The applicability,of slip critical joints is summarized and design requirements, installation
requirements, and inspection requirements are stipulated in RCSC Specification Section 4.3,
except as modified by AISC Specification Sections J3.8 and J3.9. Faying surfaces in slip-
critical joints must meet the requirements in RCSC Specification Sections 3.2 and 3.2.2.
RCSC defines a faying surface as "the plane of contact between two plies of a joint." Note
that the surfaces under the bolt head, washer and/or nut are not faying surfaces.
Subject to the requirements in RCSC Specification Section 4.3, slip-critical joints are
rarely required in building design. Slip-critical joints are appreciably more expensive
because of the associated costs of faying surface preparation and installation and inspection
requirements.
When slip-resistance is required and the steel is painted, the fabricator should be con-
sulted to determine the most economical approach to providing the necessary slip resistance.
Special paint systems that are rated for slip resistance can be specified. Alternatively, a paint
system that is not rated for slip resistance can be used with the faying surfaces masked.
DESIGN REQUIREMENTS
Design requirements are found in the AISC Specification as follows. In each case, the avail-
able strength determined in accordance with these provisions must equal or exceed the
required strength. These requirements are derived from those in the RCSC Specification.
Shear
Available shear strength is determined as given in RCSC Specification Section 5.1 and AISC
Specification Section J3.6, with consideration of the presence of fillers or shims, per RCSC
Specification Section 5.1 and AISC Specification Section J5. The nominal shear strengths
given in Table J3.2 have been reduced by approximately 10% from statistical results of tests
to account for uneven force distributions associated with end loading and other effects nor-
mally neglected in the design process.
When the length of a bolted joint measured parallel to the line of force exceeds 38 in., a
16.7% strength reduction may be applicable, per AISC Specification Table J3.2 footnote a.
The force that can be resisted by a snug-tightened or pretensioned high-strength bolt
may also be limited by the bearing strength at the bolt hole per AISC Specification Section
J3.10. The effective strength of an individual bolt may be taken as the lesser of the shear
Strength per Section J3.6 or the bearing strength at the bolt hole per Section J3.10. The
strength of the bolt group may be taken as the sum of the effective strengths of the indi-
vidual fasteners.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
I

M!
7-6 DESIGN CONSIDERATIONS FOR BOLTS
Tension
Available tensile strength is determined as given in RCSC Specification Section 5.1 and
AISC Specification Section J3.6, with consideration of the effects of prying action, if any.
Prying action is a phenomenon (in bolted construction only) whereby the deformation of a
fitting under a tensile force increases the tensile force in the bolt. While the effect of prying
action is relevant to the design of the bolts, it is primarily a function of the strength and stiff-
ness of the connection elements. Prying action is addressed in Part 9.
Combined Shear and Tension
Available strength for combined shear and tension in bearing-type connections is deter-
mined as given in RGSC Specification Section 5.2 and AISC Specification Section J3.7.
Bearing Strength at Bolt Holes
Available bearing strength at bolt holes is determined as given in RCSC Specification
Section 5.3 and AISC jjpeci^cafton Section J3.10.
Slip Resistance
The available strength of slip-critical connections is determined in accordance with AISC
Specification Section J3.8. The available strength, or R„/Q, is determined by applying
the resistance factor or safety factor appropriate for the hole type used.
ECCENTRICALLY LOADED BOLT GROUPS
Eccentricity in the Plane of the Faying Surface
When eccentricity occurs in the plane of the faying surface, the bolts must be designed to
resist the combined effect of the direct shear, or Pa, and the additional shear from the
induced moment, or Pge. Two analysis methods for this type of eccentricity are the
instantaneous center of rotation method and the elastic method.
The instantaneous center of rotation method is more accurate, but generally requires the
use of tabulated values or an iterative solution. The elastic method is simplified, but may be
excessively conservative because it neglects the ductility of the boh group and the potential
for load redistribution.
Instantaneous Center of Rotation Method
Eccentricity produces both a rotation and a translation of one connection element with
respect to the other. The combined effect of this rotation and translation is equivalent to a
rotation about a point defined as the instantaneous center of rotation (IC), as illustrated in
Figure 7-2(a). The location of the IC depends upon the geometry of the bolt group as well
as the direction and point of application of the load.
The load-deformation relationship for one bolt is illustrated in Figure 7-3, where
R = Rui,il-e-w&)0^5 (7.1)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

ECCENTRICALLY LOADED BOLT GROUPS 7-7
where
R = nominal shear strength of one bolt at a deformation A, kips
Ruu - ultimate shear strength of one bolt, kips
A = total deformation, including shear, bearing and bending deformation in the bolt and
bearing deformation of the connection elements, in.
e = 2.718..., base of the natural logarithm
The nominal shear strength of the bolt most remote from the IC can be determined by
applying a maximum deformation, Amox, to that bolt. The load-deformation relationship is
based upon data obtained experimentally for ^/4-in.-diameter ASTM A325 bolts, where
^u/f = 74 kips, and Atok = 0.34 in.
The nominal shear strengths of the other bohs in the joint can be determined by applying
a deformation A that varies linearly with distance from the IC. The nominal shear strength
of the bolt group is, then, the sum of the individual strengths of all bolts.
(a) Instantaneous center of rotation (IC)
(b) Forces on bolts in group for case o/6 = O°for simplicity
Fig. 7-2. Illustration for instantaneous center of rotation method.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

7-8 DESIGN CONSIDERATIONS FOR BOLTS
The individual resistance of each bolt is assumed to act on a line perpendicular to a ray
passing through the IC and the centroid of that bolt, as illustrated in Figure 7-2(b). If the cor-
rect location of the IC has been selected, the three equations of in-plane static equilibrium
(SFx = O. ZFj, = 0, and 2M = 0) will be satisfied.
For further information, see Crawford and Kulak (1968).
Elastic Method
For a force applied as illustrated in Figure 7-4, the eccentric force,or Pa, is resolved into
a direct shear, Pu or Pa, acting through the center of gravity (CG) of the bolt group and a
moment, PuC or Pge, where e is the eccentricity. Each bolt is then assumed to resist an equal
share of the direct shear and a share of the eccentric moment proportional to its distance
from the CG. The resultant vectorial sum of these forces is, the required strength for the
bolt, r„ or !•„.
CO
D.
q:
R = - e-^o^f-ss
Fig. 7-3. Load-deformation relationship for one ^/4-in.-diameter
ASTMA325 bolt in single shear.
Ay
-CG
-ih
Fig. 7-4. Illustration for elastic method.
AMERICAN INSTRIOTE OF STEEL CONSTRUCTION

ECCENTRICALLY LOADED BOLT GROUPS 7-9
The shear per bolt due to the concentric force, Pu or Pa, is or rpa, where
LRFD ASD
rpu = — (7-2a)
n
(7-2b)
n
and n is the number of bolts. To determine the resultant forces on each bolt when Pu or Pa is
applied at an angle 6 with respect to the vertical, rp„ or rpa must be resolved into horizontal
component; rpxu or Kpxa, and vertical component, rpyu or rpya, where
rpxu == rpuSinQ (LRFD) (7-3a)
rpxa =7>oSine (ASD) (7-3b)
'pyH = VcosG (LRFD) (7-4a)
rpya = rpaCosQ (ASD) (7-4b)
The shear on the bolt inost remote from the CG due to the moment, P„e or PaC, is or r„a,
where
LRFD ASD
(7-5a)
ip
= ^ (7-5b)
Ip
where
c = radial distance from CG to center of bolt most remote from CG, in.
Ip^Ix + iy- polar moment of inertia of the bolt group, in.'* per in.^
To determine the resultant force on the most highly stressed bolt, rmu or Vma must be resolved
into horizontal component rmai or r^ and vertical component Vmyu or rmya, where
LRFD ASD
W = ^ (7-6a)
'p
PueCx rn 1
r„ryu = (7-7a)
tp
(7-7b)
h
In the above equations, Cx and Cy are the horizontal and vertical components of the diagonal
distance c. Thus, the required strength per bolt is r^ or r^, where
LRFD ASD
ru = ^{rpxu + r„^f+[rpyu+r,„y^f (7-8a) ra'^'^pm+rn^f + [rpya + r^af (7-8b)
I
For further information, see Higgins (1971).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

7-10 DESIGN CONSIDERATIONS FOR BOLTS
Eccentricity Normal to the Plane of the Faying Surface
Eccentricity normal to the plane of the faying surface produces tension above and compres-
sion below the neutral axis for a bracket connection as shown in Figure 7-5. The eccentric
force, Pu or Pa, is resolved into a direct shear, Pu or P^, acting at the faying surface of the
joint and a moment normal to the plane of the faying surface, P„e or PaC, where e is the
eccentricity. Each bolt is then assumed to resist an equal share of the concentric force, P^ or
Pa, and the moment is resisted by tension in the bolts above the neutral axis and compres-
sion below the neutral axis.
Two design approaches for this type of eccentricity are available: Case I, in which the
neutral axis is not taken at the center of gravity (CG), and Case 11, in which the neutral axis
is taken at the CG.
Case I—Neutral Axis Not at Center of Gravity
The shear per bolt due to the concentric force, ^uv or r^vs is determined as
LRFD ASD
(7-9a)
n
= — (7-9b)
n
where n is the number of bolts in the connection.
A trial position for the neutral axis can be selected at one-sixth of the total bracket depth,
measured upward from the bottom (line X-X in Figure 7-6(a)). To provide for reasonable
proportions and to account for the bending stiffness of the connection elements, the effec-
tive width of the compression block, beff, should be taken as
bf (7-10)
P..or P.
Tee Bracket
Fig. 7-5. Tee bracket subject to eccentric loading normal to the plane
of the faying surface.
AMERICAN INSTiTuTE OF STBBL CONSTRUCTION

ECCENTRICALLY LOADED BOLT GROUPS 7-11
where
/T/= lesser connection element thickness, in.
Ay = connection element width, in.
This effective width is valid for bracket flanges made from W-shapes, S-shapes, welded
plates and angles. Where the bracket flange thickness is not constant, the average flange
thickness should be used.
The assumed location of the neutral axis can be evaluated by checking static equilibrium
assuming an elastic stress distribution. Equating the moment of the bolt area above the neu-
tral axis with the moment of the compression block area below the neutral axis,
mb)y^b,ffd(d/2) (7-11)
where
DAfc = sum of the areas of all bolts above the neutral axis, in.^
y = distance from line X-X to the CG of the bolt group above the neutral axis, in.
d = depth of compression block, in.
The value of d may then be adjusted until a reasonable equality exists.
Once the neutral axis has been located, the tensile force per bolt, or rat, as illustrated
in Figure 7-6(b), may be determined as
LRFD ASD
(7-12a)
y 'x J
fp^A
rat^ ~ Ah (7-12b)
\ h J
where
c = distance from neutral axis to the most remote bolt in the group, in.
/j = combined moment of inertia of the bolt group and compression block
about the neutral axis, in.^
Depth
T
ii
4444
TT
tl
1
-CG (tens/on group)
(a) Initial approximation
of location ofNA
£
-NA
(b) Force diagram with final
location ofNA
i
Fig. 7-6. Location of neutral axis (NA)for out-of-plane eccentric loading using Case I.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

7-12 DESIGN CONSROERATIONS FOR BOLTS
Bolts above the neutral axis are subjected to the shear force, the tensile force, and the
effect of prying action (see Part 9); bolts below the neutral axis are subjected to the shear
force, Tj^y or r^v? only.
Case II—Neutral Axis at Center of Gravity
This method provides a more direct, but also a more conservative result. As for Case I, the
shear force per bolt, r^v or '"avi due to the concentric force, Pu or Pa, is determined as
LRFD ASD
= ^ (7-13b)
n
where n is the number of bolts in the connection.
The neutral axis is assumed to be located at the CG of the bolt group as illustrated in
Figure 7-7. The bolts above the neutral axis are in tension and the bolts below the neutral
axis are said to be in "compression." To obtain a more accurate result, a plastic stress dis-
tribution is assumed; this assumption is justified because this method is still more
conservative than Case I. Accordingly, the tensile force in each bolt above the neutral axis,
rut or rat, due to the moment, P„e or PaC, is determined as
LRFD ASD
(7-14a)
ra,--^ (7-14b)
<5-
• CG (tension group)
NA
• CG (compression group)
Fig. 7'7. Location of neutral axis (NA) for ,out-of~plane eccentric loading using Case II.
AMERIGAN INSTITUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR HOLLOW STRUCTURAL SECTIONS 7-13
where
«' = number of bolts above the neutral axis
moment arm between resultant tensile force and resultant compressive force, in.
Bolts above the neutral axis are subjected to the shear force, the tensile force, and the
effect of piying action (see P^ 9); bolts below the neutral axis are subjected to the shear
force, r„v or rav, only.
SPECIAL CONSIDERATIONS FOR HOLLOW
STRUCTURAL SECTIONS
Through-Bolting to HSS
Long bolts that extend through the entire HSS are satisfactory for shear connections that do
not require a pretensioned installation. The flexibility of the walls of the HSS precludes
installation of pretensioned bolts. Standard structural bolts may be used, ^though ASTM
A449 bolts may be required for longer lengths. The bolts are designed for static shear and
the only limit-state involving the HSS is bolt bearing. The available bearing strength is
determined as (j)/f„ or R„/Q, where
R„=\.SnFydUesign (7-15)
(!) = 0.75 Q = 2.00
where
n = number of fasteners
d = fastener diameter, in.
Fy = specified minimum yield Strength of HSS, ksi
tdesign = design wall thickness of HSS, in.
Blind Bolts
Special fasteners are available that eliminate the need for access to install a nut (Korol et al,
1993; Henderson, 1996). The shank of the fastener is inserted through holes in the parts to
be connected until the head bears on the outer ply (see Figure 7-8). In some cases, a special
wrench is used on the open side to keep the outer part of the shank from rotating and simul-
taneously turn the threaded part of the shank. A wedge or other mechanism on the blind side
causes the fixed part of the shank to expand and form a contact with the inside of the HSS.
Some fasteners contain a break-off mechanism when the fastener is pretensioned. Recent
versions of these fasteners meet the requirements for a pretensioned ASTM A325 bolt
(Henderson, 1996) and could be used in slip-critical or tension conditions. HSS limit states
are bolt bearing in shear, tear-out of the bolt in tension, and wall distortion. Manufacturers'
literature must be consulted to determine the available strength of blind bolts.
Flow-Drilling
plow-drilling is a process that can be used to produce a threaded hole in an HSS to permit
blind bolting when the inside of the HSS is inaccessible (Sherman, 1995; Henderson, 1996).
The process is to force a hole through the HSS with a carbide conical tool rotating at sufficient
speed to produce high rapid heating, which softens the material in a local area. The material

AMERICAN INSTITUTE OF STEEL CoNSTRtrcriON
Ci

7-14 DESIGN CONSIDERATIONS FOR BOLTS
that is displaced as the tool is forced through the plate forms a truncated hollow cone (bush-
ing) on the inner surface and a small upset on the outer surface. Tools can be obtained with
a milling collar so that the material on the outer surface is removed, producing a flat surface
allowing parts to be brought in close contact. A cold-formed tap is then used to roll a thread
into the hole without any chips or removal of material. The resulting threaded hole has the
approximate dimensions and hardness of a heavy hex nut. Shear and tension strengths of
ASTM A325 bolts can be developed for certain combinations of bolt size and HSS thick-
ness (see Figure 7-9).
Drilling equipment with suitable rotational speed, torque and thrust is required, but with
small sizes and thicknesses, field installation with conventional tools is possible. The bolts
are designed with the normal criteria and the HSS limit kates are bolt bearirig in shear and
distortion of the HSS wall in tension. HSS strength is not affected by the process except for
the reduction in area due to the holes.
Threaded Studs to HSS
Threaded studs are available in Vs-in, to ^/s-in. diameters and can be shop- or field-welded
to an HSS with a stud-welding gun. The connection is similar to a bolted connection with an
Fig. 7-8. Two types of blind bolts.
HSS Thickness
(in.)
BOLT DIAMETER (in.)
HSS Thickness
(in.)
V2 S/e 3/4 Vi 1
3/16 X X
V4 X X X
5/16 X X X
3/8 X ' X X
Vz X
Fig. 7-9. HSS thickness and bolt diameter combinations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SPECIAL CONSROERATIONS FOR HOLLOW STRUCTURAL SECTIONS 7-15
external nut. The strength of the stud in tension or shear is based on manufacturer's recom-
mendations and tests. The HSS Umit state is distortion of the waJl. When using threaded studs,
countersunk holes must be used in the attached element to clear the weld fillet at the base of
the stud.
Nailing to HSS
Power-driven nails that are installed with a power-actuated gun are satisfactory for pure shear
connections where the combined thickness of the attachment and the HSS does not exceed V2
in. This system was tested as splices between telescoping round HSS loaded with an axial
force (Packer, 1996). The shear resistance of the fasteners is taken as the number of nails times
the shear strength of a single nail and ignores any secondary contribution from a dimpling
effect between the materials. The limit state for the HSS is shear-bearing. See Packer (1996).
Screwing to HSS
Self-tapping screws with or without self-drilling points are available for connecting materi-
als with combined thicknesses up to V2 in. The screws have diameters from 0.08 in. to 0.25
in. The limit-states for connections in the AISI North American Specification for the Design
of Cold-Formed Steel Structural Members (AISI, 2007) are associated with bearing failure
of the material or pull-out of the screw either in direct tension or after tilting occurs in a
shear load. Failure of the screws themselves is prevented by requiring that the product be
25% stronger than the available shear or tension strength of the material. Edge distances and
spacing of screws should not be less than 3 times the screw diameter, d. For attaching mate-
rial with thickness t\ and ultimate strength to an HSS with thickness t and strength
the available strength, (|)P„ or P„/0, is determined as follows, with (j) = 0.50 and Q = 3.00.
Connection Shear per Screw
For i/fi < 1, Pn is the smallest of
l.ltidFui
l.ltdFu
(7-16)
For t/ti > 2.5, Pn is the smaller of
l.ltdFu
(7-17)
For 1 < 1//1 < 2.5, P„ is determined by linear interpolation between the above two cases..
Connection tension per screw, P„, is the smaller of i
O.SStcdFa
l.Stid^Fui
(7-18)
AMERICAN INSTITUTE OF STBEL CONSTRUCTION

7-16 ; DESIGN CONSIDERATIONS FOR BOLTS
where
tc = lesser of the depth of penetration and the HSS thickness, in.
dw - larger of the screw head or washer diameter, and shall not be taken larger than V2 in.,
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS
The following other specification requirements and design considerations apply to the
design of bolts;
Placement of Bolt Groups
For the required placement of boh groups at the ends of axially loaded members, see AISC
Specification Section}1.1.
Bolts in Combination with Welds or Rivets
For bolts used in combination with welds or rivets, see AISC Specification Section J1.8 or
J 1.9, respectively.
Galvanizing High-Strength Bolts and Nuts
Galvanizing of high-strength bolts is permitted as follows:
1. By the hot-dip or mechanical process for ASTM A325 Type 1 high-strength bolts, per
ASTMA325 Section 4.3 '
2. By the mechanical process only for ASTM F1852 twist-off-type tension-control bolt
assemblies, per ASTM F1852 Section 6.3
3. By the hot-dip or mechanical process for ASTM A449 bolts, per ASTM A449 Section 5.1
Nuts for ASTM A325 and F1852 bolts must be galvanized by the same process as the bolt
with which they are used. See RCSC Specification Table 2.1 for compatible nut grade and
finish requirements for ASTM A325 and F1852 bolts, and ASTM A563 for compatible nut
grade and finish requirements for ASTM A449 bolts.
Group B bolts are not permitted to be galvanized, per ASTM A490 Section 5.4 and ASTM
F2280 Section 6.6. See also RCSC Specification Commentary Section 2.3 where it discusses
that ASTM A490 bolts and F2280 twist-off-type tension-control bolt assemblies are permit-
ted to be coated using a method compliant with ASTM F1136.
Reuse of Bolts
The reuse of high-strength bolts is limited, per RCSC Specification Section 2.3.3. See also
Bowman and Betancourt (1991) and AISC Design Guide 17, Section 8.6 (Kulak, 2002).
Fatigue Applications
For applications involving fatigue, see RCSC Specification Sections 4.2, 4.3 and 5.5, and
AISC Specification Appendix 3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION • 7-17
Entering and Tightening Clearances
Clearances must be provided for the entering and tightening of the bolts with an impact
wrench. The clearance requirements for conventional high-strength bohs (ASTM A325 and
A490) are 38 given in Table 7-15. When high-strength tension-control bolts (ASTM F1852
and F2280) are specified, the clearance requirements are as given in Table 7-16.
Fully Threaded ASTM A325 Bolts
ASTM A325 bolts with length equal to or,less than four times the nominal bolt diameter
may be ordered as fully threaded with the designation ASTM A325T. Fully threaded ASTM
A325T bolts are not for use in bearing-type X connections since it would be impossible to
exclude the threads from the shear plane. While this supplemental provision exists for
ASTM A325 bolts, there is no similar supplementary provision made in ASTM A490 for
full-length threading.
ASTM A307 Bolts
Limitations are provided on the use of ASTM A307 bolts, per AISC Specification Sections
J1.8 and Jl.lO. ASTM A307 bolts are available with both hex and square heads in diame-
ters from V4 in. to 4 in. in Grade A for general applications and Grade B for cast-iron-flanged
piping joints. ASTM A563 Grade A nuts are recommended for use with ASTM A307 bolts.
Other suitable grades are listed in ASTM A563 Table XI. 1.
ASTM A449 Bolts
Limitations are provided on the use of ASTM A449 bolts, per AISC Specification Sections
A3.3andJ3.1.
DESIGN TABLE DISCUSSION
Table 7-1. Available Shear Strength of Bolts
The available bolt shear strengths of various grades arid sizes of bolts are summarized in
Table 7-1.
Table 7-2. Available Tensile Strength of Bolts
The available bolt tensile strengths of various grades and sizes of bolts are summarized in
Table 7-2.
Table 7-3. Available Resistance to Slip
The available slip resistances of various grades and sizes of bolts are summarized in
Table 7-3.
Tables 7-4 and 7-5. Available Bearing Strength at Bolt Holes
The available bearing strength at bolt holes is tabulated for various spacings and edge dis-
tances in Tables 7-4 and 7-5, respectively. Note that these tables may be applied to bolts with
countersunk heads, by subtracting one-half the depth of the countersink from the material
N
AMERICAN iNSTrruTE OF STEEL CONSTROCTION

7-18 DESIGN CONSIDERATIONS FOR BOLTS
thickness, t. As illustrated in Figure 7-10, this is equivalent to subtracting d^lA from the
material thickness, t.
Tables 7-6 through 7-13. Coefficients C for Eccentrically
Loaded Bolt Groups
Tables 7-6 through 7-13 employ the instantaneous center of rotation method for the bolt pat-
terns and eccentric conditions indicated, and inclined loads at 0°, 15°, 30", 45°, 60° and 75°.
The tabulated non-dimensional coefficient, C, represents the number of bolts that are effec-
tive in resisting the eccentric shear force. In the following discussion, r„ is the least nominal
strength of one bolt determined from the limit states of bolt shear strength, bearing strength
at bolt holes, and slip resistance (if the connection is to be slip-critical).
When Analyzing a Known Bolt Group Geometry
For any of the bolt group geometries shown, the available strength of the eccentrically
loaded bolt group, (|)i?„ or R„/Q, is determined as
R„^Cxr„
(|) = 0.75 £2 = 2.00
(7-19)
When Selecting a Bolt Group
The available strength must be greater than or equal to the required strength, Pu or Pa-Thus,
by dividing the required strength, Pu or Pa, by <j>r„ or rJQ., the minimum coefficient, C, is
obtained. The bolt group can then be selected from the table corresponding to the appropri-
ate load angle, at the appropriate eccentricity, ex, for which the coefficient is of that
magnitude or greater.
These tables may be used with any bolt diameter and are conservative when used with
Group B bolts (see Kulak, 1975), Linear interpolation within a given table between adja-
cent values of e^ is permitted. Although this procedure is based on bearing connections.
Effective thickness
in bearing—
2
1

r ''
V' r-fc
\ A
1 RorR
Fig. 7-10. Effective bearing-thickness for bolts with countersunk heads.
AMERICAN INSTITUTE OF STEEL CoNSTRUcHOn

DESIGN TABLE DISCUSSION 7-19
both load tests and analytical studies indicate that it may be conservatively extended to
slip-critical connections (Kulak, 1975).
A convergence criterion of 1% was employed for the tabulated iterative solutions.
Straight-line interpolation between values for loads at different angles may be significantly
unconservative. Either a direct analysis should be performed or the values for the next lower
angle increment in the tables should be used for design. For bolt group patterns not treated
in these tables, a direct analysis is required if the instantaneous center of rotation method is
to be used.
In some cases, it is necessary to calculate the pure moment strength of a bolt group for
purposes of linear interpolation. For these cases, the value of C has been provided for a load
angle of 0°. This moment strength of the bolt group is based on the instantaneous center of
rotation method and, since a moment-only condition is assumed, the instantaneous center of
rotation coincides with the center of gravity of the bolt group. In this case, the strength is:
where
= (7-20)
, in. (7-21)
k = distance from the center of gravity of the bolt group to the ith bolt, in.
Amax - maximum deformation on the bolt farthest from the center of gravity = 0.34 in. .
Inua = distance from the center of gravity of the bolt group to the center of the fju-thest
bolt, in.
Table 7-14, Dimensions of High-Strength Fasteners
Dimensions of ASTM A325 and A490 bolts, A563 nuts, and F436 washers are given and
illustrated in Table 7-14.
Table 7-15 and 16. Entering and Tightening Clearances
Clearance is required for entering and tightening bolts with an impact wrench. The required
clearances are given for conventional high-strength bolts and twist-off-type tension-control
bolt assemblies in Tables 7-15 and 7-16, respectively.
Table 7-17. Threading Dimensions for High-Strength and
Non-High-Strength Bolts
Data regarding the characteristics of the threading dimensions of high-strength and non-
high-strength bolts is provided in Table 7-17.
Table 7-18. Weights of High-Strength Fasteners
Weights of conventional ASTM A325 and A490 bolts, A563 nuts, and F436 washers are
given in Table 7-18. For dimensions and weights of tension-control ASTM F1852 and
F2280 bolts, refer to manufacturers' literature or the Industrial Fasteners Institute (IFI). For
dimensions of ASTM A449 bolts, refer to Table 7-19.
AMERICAN iNStniiTE OF STEEL CONSTRUCTION

7-20 ; DESIGN CONSIDERATIONS FOR BOLTS
Table 7-19. Dimensions of Non-High-Strength Fasteners
lypical non-high-strength bolt head and nut dimensions are given in Table 7-19. Thread
lengths listed in this table may be calculated for non-high-strength bolts as + V4 in. for
bolts up to 6 in. long and 2d + V2 in. for bolts over 6 in. long, where d is the bolt diameter.
Note that these thread lengths aic longer than those given previously for high-strfength bolts
in Table 7-14. Threading dimensions are given in Table 7-17.
Tables 7-20, 7-21 and 7-22. Weights of Non-High-Strength
Fasteners
Weights of non-high-strength bolts are given in Tables 7-20,7-21 and 7-22.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

PART 7 REFERENCES 7-21
PART 7 REFERENCES
American Iron and Steel Institute (2007), North American Specification for the Design of
Cold-Formed Steel Structural Members, AISI, Washington, DC,
Bowman, M.D. and Betancourt, M. (1991), "Reuse of A325 and A490 High-Strength Bolts,"
Engineering Journal, Vol. 28, No. 3,3rd Quarter, pp. 110-118, AISC, Chicago, IL.
Carter, C J. (1996), "Specifying Bolt Length for High-Strength Bolts," Engineering Journal,
Vol. 33, No. 2,2nd Quarter, pp. 43-53, AISC, Chicago, IL.
Crawford, S.F and Kulak, GJL. (1968), "Behavior of Eccentrically Loaded Bolted
Connections," Studies in Structural Engineering, No. 4, Department of Civil
Engineering, Nova Scotia Technical College, Halifax, Nova Scotia.
Henderson, I.E. (1996), "Bending, Bolting and Nailing of Hollow Structural Sections,"
Proceedings International Conference on Tubular Structures, pp. 150-161, American
Welding Society.
Higgins, f.R. (1971), "Treatment of Eccentrically Loaded Connections in the AISC
Manual," Engineering Journal, Vol. 8, No. 2, April, pp. 52-54, AISC, Chicago, IL.
Korol,RM.,Ghobarah-, A; and Mourad, S. (1993), "Blind Bolting W-Shape Beams to HSS
Co\irm&" Journal of Structural Engineering, ASCE, Vol.119, No.l2, pp. 3,463-3,481.
Kulak, G.L. (1975), Eccentrically Loaded Slip-Resistant Connections," Engineering
Journal, Vol. 12, No. 2,2nd Quarter, pp. 52-55, AISC, Chicago, IL.
Kulak, G.L. (2002), High-Strength Bolts—A Prirnerfor Structural Engineers, Design Guide
17, AISG, Chicago, IL. '
Packer, J.A. (1996), "Nailed Tubular Connections under Axial Loading," Journal of
Structural Engineering, ASCE,No\A22,iio:%,)?'p.%61-%12.
Sherman, D.R, (1995), "Simple Framing Connections to HSS Columns," Proceedings
National Steel Construction Conference, AISC, pp. 30-1 to 30-16.
(
AMERICAN INSTRRUTE OF STCEL CONSTRUCTION

7-22
; DESIGN CONSIDERATIONS FOR BOLTS
Table 7-1
Available Shear
-Strength of Bolts, kips
Nominal Bolt Diameter, d, in. 5/8 5/4 VB 1
Nominal Bolt Area, in.^ 0.307 0.442 0.601 0.785
ASTIVI
Desig.
Thread
Cond.
F„,ia
(ksi) (ksO
Load-
ing
r„/n rnis^ r„ia r«ia
<l)/ii
ASTIVI
Desig.
Thread
Cond.
ASD LRFD
Load-
ing
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
Group
A
N 27.0 40.5
S
D
8.29
16.6 .
12,4
24,9
11.9
23.9
17.9
35,8
16.2
32.5
24.3
48.7
21.2
42.4
31,8
63,6 Group
A
X • 34.0 51,0
S
D
10.4,
20.9
15,7
31.3
,15.0
30.1
22,5
45,1
20.4
40.9
30.7
61.3
26.7
53.4
40.0
80.1
Group
B
N 34.0 51.0
S
D
10.4
20.9
15.7
31.3
15.0 22.5
45,1
20.4,
•40.9
30.7
61.3
26.7
53.4
40.0
80.1
Group
B
X 42.0 63.0
S
D
12!9
25.8
19.3
38.7
18.6
37.1
27.8
55.7
25.2
50.5
37.9
75.7
33.0
65i
49,5
98,9
A307 - lis 20.3
S
D
4;14
8:29
6,23
12,5
5.97
11.9
8.97
17.9
8.11
16.2
12,2
24,4
10.6
21.2
15.9
31,9
Nominal Bolt Diameter, d, in. 1V8 1V4 1'/8 IVJ
Nominal Bolt Area, in.^ 0.994 1.23 1.48 1.77
ASTM
Desig.
Thread
Cond.
Fnvia
(ksi) (ksi)
Load-
ing
R„/a ¥n rJCl rJCl
ASTM
Desig.
Thread
Cond.
ASD LRFD
Load-
ing
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
Group
A
N 27.0 40.5
S
D
26.8
53.7
40,3
80,5
33.2
66.4
49.8
99.6
40.0
79.9
59.9
120
47.8
95.6
71.7
143
Group
A
X 34.0 51.0
S
D
33.8
67.6
50,7
101
41.8
83.6
62.7
125
50.3
101
75.5
151
60.2
120
90.3
181
Group
B
N 34.0 51.0
S
D
33.8
67.6
50,7
101
41.8
83.€
62.7
125
50.3
101
75.5
151
60.2
120
90,3
181
Group
B
X 42.0 63.0
S
D
41.7
83.5
62,6
125
51.7
103
77.5
155
62.2
124
93,2
186
74.3
149
112
223
A307 - 13.5 20.3
S
D
13.4
26.8
20,2
40,4
16.6
33.2
25,0
49,9
20.0
40.0
30.0
60.1
23.9
47.8
35,9
71,9
ASD LRFD
For end loaded connections greater than 38 in., see AISC Specification Table J3.2 footnote b.
n = 2.oo (t> = 0.75
For end loaded connections greater than 38 in., see AISC Specification Table J3.2 footnote b.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-23
Table 7-2
Available Tensile
Strength of Bolts, kips
Nominal Bolt Diameter, d, in. 5/8 3/4 1
Nominal Bolt Area, in.2 0.307 0.442 0.601 0.785
ASTIM Desig.
Fnt'O.
(ksi) (Ksi)
rnia ¥n rJCl r„/n r„ICl
ASTIM Desig.
ASD LRFD ASD LRFD ASD LRFD Asq LRFD ASD LRFD
Group A
Group B
A307
45.0
22.5
67.5
84.8
33.8
l;3.8
'17.3
6.90
20.7
26.0
10.4
19,9
25.0
; 9.94
29.8
37.4
14.9
27.1,
-34.0
'Ma.5:
40.6
51,0
20,3
35.3
44.4
1'7J
53.0
66.6
26,5
Nominal Bolt Diameter, d, in. 1V8 : 1V4 Pit IVJ
Nominal Bolt Area, in.2 0.994 1.23 1.48 1.77
ASTHA Desig.
Fntia
(IcsO (ksi)
f„/n rJCl r„/n r„in
ASTHA Desig.
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD; LRFD
Group A
Group B
A307
45.0 '
56.5
22:5
67.5
84.8
33.8
44.7
56.2
22 4
67.1
84.2
33.5
55.2
69.3
27:6
82.8
104
41.4
66.8
83.9
33:4'
100
126
50.1
79.5
99.8
39.8
119
150
59.6
ASD LRFD
n = 2.oo (t> = 0.75
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

7-24 ; DESIGN CONSIDERATIONS FOR BOLTS
Table 7-3
Slip-Critical Connections
Available Shear Strength, kips
(Glass A Faying Surface, \i = 0.30)
Group A Bolts
Hole Type Loading
Nominal Bolt Diameter, d, in.
5/8 3/4 '/8
Minimum Group A Bolt Pretension, Kips
19
m
ASD LRFD
28
r„/Q
ASDi LRFD
39
ASD LRFD
51
ASD LRFD
STD/SSLT
4.29
8.59
6.44
12,9
6.33
12.7
9,49
19.0 17;6
13.2
26.4 23. T
17.3
34.6
OVS/SSLP
3.66
7.32
5.47
10.9
5.39
10.8
8.07
16.1
,7.51
15.0-
11.2
22.5
9.82
19,6
14.7
29.4
LSL
3.01
.6;02
4.51
9.02
4.44
8,87:
6.64
13.3.,
6.18
12.4
, 9.25
18.5
8.08
16.2
. 12.1
24.2
Hole Type
Nominal Bolt Diameter, d, in.
IVa 1V4 13/8 IV2
Loading
Minimum GroupA Bolt Pretension, laps
56
ASD
(|)rn
LRFD
71
r„ia
ASD
(|)/ii
LRFD
85
r„ia
ASD LRFD
103
r„IQ.
ASD LRFD
STD/SSLT
12.7
25.3
19,0
38.0
16.0
32.1
24.1
48.1
19.2
38.4
28.8
57.6
23,3
46,6
34.9
69.8
OVS/SSLP
10.8
21.6
16.1
32.3
13.7
27.4
20.5
40.9
16.4
32.7
24.5
49.0
19.8
39.7
29.7
59.4
LSL
8.87
17.7
13.3
26.6
11.2
22.5
16.8
33.7
13.5
26.9
20.2
40.3
16.3
32.6
24.4
48.9
STD = standard hole
OVS = oversized hole
SSLT = short-slotted hole transverse to the line of force
SSLP = short-slotted hole parallel to the line of force
LSL = long-slotted hole transverse or parallel to the line of force
S = single shear
D = double shear
Hole Type ASD LRFD Note; Slip-critical bolt values assume no more than one filler has been provided
or bolts have been added to distribute loads in the fillers.
See AISC Specification Sections J3.8 and J5 for provisions when fillers
STD and SSLT n = 1.50 (|) = 1.00
Note; Slip-critical bolt values assume no more than one filler has been provided
or bolts have been added to distribute loads in the fillers.
See AISC Specification Sections J3.8 and J5 for provisions when fillers
OVS and SSLP n = 1.76 (|) = 0.85
are present.
For Class B faying surfaces, multiply the tabulated available strength by 1.67.
LSL a=2.14 <|) = 0.70
are present.
For Class B faying surfaces, multiply the tabulated available strength by 1.67.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-25
Table 7-3 (continued)
Slip^Critical Connections
Available Shear Strength, kips
(Class A Faying Surface, = 0.30)
Group B
Bolts
Group B Bolts
Hole Type Loading
Nominal Bolt Diameter, (f, in.
Hole Type Loading
5/8 3/4 f Va 1
Hole Type Loading
IVIiHimum Group B Bolt Preten^on, kips
Hole Type Loading
24 35 49 64
Hole Type Loading
r„/a fti/ii fnlO. r„/Q UO. <tirn
Hole Type Loading
ASD LRFD ASD LRFD ASD LRFD (ASD LRFD
STD/SSLT
S
D
5.42
10.8
3.14
16,3 315.8;
11,9
23,7
11.1
-22.1
16.6
33.2
. 14.5'
28.9
21.7
43,4
OVS/SSLP
S
D
4.62
9.25
6.92
13.8
^'6,74
iliffi-
10,1
20.2
-9,44
18.9
14.1
28.2 -
.12.3
24.7
18,4
36,9
LSI
S
D
3.80
7.60
5.70
11,4
:: ;i54 8,31
16.6
,.7.76
15.5
11.6
23,3
S10,1i
20.3
15,2
30.4
Hole Type Loading
Nominal Bolt Diameter, in.
Hole Type Loading
11/8 ; 1V4 1^8 J IV2
Hole Type Loading
Minimum Group B Bolt Pretension, kips ,
Hole Type Loading
80 102 121 148
Hole Type Loading
r„/£2 r„/£2 r„/£2 "t""/! , r„/Cl ¥11
Hole Type Loading
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
STD/SSLT
S
D
ia.1
36.2
27,1.
54.2
23.1
46.1
34,6
69,2
'27.3
rj54.7
41.0
82.0
33.4:
66.9
•50.2
100
OVS/SSLP
S
D
15.4
30.8
23.1
46,1
T9.6;
39.3
29,4
58,8
23.3
46.6
34.9
69.7
• 28.5
57.0
42:6
85.3
LSL
S
D
12.7
25.3
19.0
38.0
16.2,
32.3^
24,2
48,4
19.2
38.3
28.7
57,4
23.4 ,
46.9
35.1
70.2
STD = standard hole S = single shear
OVS = oversized hole D = double shear
SSLT = short-slotted hole transverse to the line of force
SSLP = short-slotted hole parallel to the line of force
ISL = long-slotted hole transverse or parallel to the line of force
Hole Type ASD LBFD Note: Slip--critical bolt values assume no more than one filler has been provided
we been added to distribute loads in the fillers.
Specification Sections J3.8 and J5 for provisions when fillers
It, :.
B faying surfaces, multiply the tabulated available strength by 1.67,
STD and SSLT £2 = 1.50 (|) = 1.00
- or bolls
SeeAiSC,
-critical bolt values assume no more than one filler has been provided
we been added to distribute loads in the fillers.
Specification Sections J3.8 and J5 for provisions when fillers
It, :.
B faying surfaces, multiply the tabulated available strength by 1.67,
PVS and SSLP £2 = 1.76 (1) = 0.85
are preset
For Class
-critical bolt values assume no more than one filler has been provided
we been added to distribute loads in the fillers.
Specification Sections J3.8 and J5 for provisions when fillers
It, :.
B faying surfaces, multiply the tabulated available strength by 1.67,
LSL £2 = 2.14 f= 0.70
1 VI WIMvlw
-critical bolt values assume no more than one filler has been provided
we been added to distribute loads in the fillers.
Specification Sections J3.8 and J5 for provisions when fillers
It, :.
B faying surfaces, multiply the tabulated available strength by 1.67,
i
AMERICAN INSTITUTE OF STEEL CONSIRUCTION

7-26 ; DESIGN CONSIDERATIONS FOR BOLTS
Table 7-4
Available Bearing Strength at Bolt Holes
Based on Bolt Spacing
kips/in. thickness
Hole Type
Bolt
Spacing,
s,in.
Nominal Bott Diameter, rf, in.
Hole Type
Bolt
Spacing,
s,in.
5/8 '/4 '/8 1
Hole Type
Bolt
Spacing,
s,in.
r„/£2 <l>/ii H
r„/a
Hole Type
Bolt
Spacing,
s,in.
ASb LRFO ASD LRFO ASD LRFO ASD LRFO
STD
SSLT
22/3 </6
58
65
:a4t1;,
38.2
51.1
57.3
•.41i.3
46.3
62.0
69.5
,48.6;
54.4 i
72.9
81,7
55.8
62,6
83.7
93.8
STD
SSLT
3 in.
58
65
43.5
48.8
65.3
73.1
52.2
:.58.5:
78,3
87.8
60.9
68.3 •
91,4
102
67.4
75.6
101
113
SSLP
22/3 db
58
65
::27.6
30.9
41.3
46,3
34.8
"39.0]
52.2
58,5
,42.t
47.1 ,
63,1
70.7
47.1 :
52.8
70.7
79.2
SSLP
3 in.
58
65
43.5
48.8
65.3
73.1
:52.2
6.58.5:
78.3
87.8
W.9
s68i3 :
91,4
102
58.7
65.8
88,1
987
OVS
22/3 rfft
58
65 313
44.6 .
50.0
• JI7.0'
41.4:
55.5
62.2
•W'
49.6
66,3
74,3
49.3
55.3' -
74,0
82,9
OVS
Sin.
58
65
43.5
48.8
65.3
73.1
52:2.
.58.5,
78.3
87,8
,60.9
68.3
91,4
102
60.9
68.3
91,4
102
LSLP
22/3 di,
58
65
3.62
« 4,06-5
5.44
6,09
'•.4.35
' 4.88
6,53
7.31
5,08
5.69
7,61
8,53
5.80
6.50
8,70
9,75
LSLP
3 in.
58
65
43.5 '
.48.8..
65.3
73.1
39.2:
43.9;
58.7
65.8
28.3 ;
31.7 '
42.4
47.5
17.4 ,
19.5
26,1
29,3
LSLT
22/3 £4,
58
65
' 28:4'"
31.8
42.6
47.7 38:6
51.7
57.9
40.5 •
45.4
60,7
68,0
46.5
52.1 "
69,8
78,2
LSLT
3 in.
58
65
36.3
<40.6
54,4
60,9
43,5:
m.8
65,3
73,1
50.8
56.9 .
76,1
85,3
56.2
63.0
84,3
94,5
STO,SSLT,
SSLP, OVS,
LSLP
S> Stall
58
65
343.5 •
'Mr
65.3
73.1
52.2
;:5a.5r
78,3
87,8 68,3
91.4
102
69.6
78.0
104
117
LSLT S > Siiiii
58
65
36.3
40.6
54.4
60.9
43.5;
.48.8
65,3
73,1
.50;8
56.9
76,1
85,3
58.0
65.0
87,0
97,5
Spacing for full
bearing strength
Sft,//=, in.
STD,
SSLT,
LSLT
1"/I6 2=/16 211/16 3VI6
Spacing for full
bearing strength
Sft,//=, in.
OVS 2Vie 27/16 2«/I6 3V4
Spacing for full
bearing strength
Sft,//=, in.
SSLP 2Vs 2V2 35/16
Spacing for full
bearing strength
Sft,//=, in.
LSLP 2«/,6 33/8 3«/L6 41/2
Minimum Spacing^ = a^/sd, in. I^Vie 2 25/16 2"/16
STD = standard hole
SSLT = short-slotted hole oriented transverse to the line of force
SSLP = short-slotted hole oriented parallel to the line of force
OVS = oversized hole
LSLP = long-slotted hole oriented parallel to the line of force
LSLT = long-slotted hole oriented transverse to the line of force
ASD LRFD
Note: Spa(
"Int in the
;ing indicated is from the center of the hole or slot to the center of the adjacent hole or
line of force. Hole deformation is considered. When hole deformation is not considered,
Specification Section J3.10.
value has been rounded to the nearest siKteentti of an inch.
Q = 2.00 i|) = 0.75
seeAiSCi
^ Decimal
;ing indicated is from the center of the hole or slot to the center of the adjacent hole or
line of force. Hole deformation is considered. When hole deformation is not considered,
Specification Section J3.10.
value has been rounded to the nearest siKteentti of an inch.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-27
Table 7-4 (continued)
Available Bearing Strength at Bolt Holes
Based on Bolt Spacing
kips/in. thickness
Hole Type
STD
SSLT
SSLP
OVS
LSLP
LSLT
STD, SSLT,
SSLP, OVS,
LSLP
Bolt
Spacing,
s,in.
22/3 db
3 In.
22/3 dt
3 in.
22/3 dt
3 in.
22/3 di
3 in.
22/3 rfi,
3 in.
SSSm
LSLT SSSft,//
Spacing for full
bearing strengtii
Sfo/Ain-
fuiksi
58
65
58
65
5&
65
58
65
58
65
58
65
58
65
58
65
58
65
58
65
58
65
58
65
STD,
SSLT,
LSLT
Nominal Bolt Diameter, d, in.
IVb
ASD
63.1
70.7
63.1:
70.7.
52.2
58.5
52.2
58.5
54:4
60.9
54;4
60.9
6.53
7.31
6.53
7.31
52.6
58.9
52.6
58.9
78.3
87.8
65.3
73.1
LRFD
94.6
106
94.6
106
78.3
87.8
78.3
87.8
81.6
91.4
81.6
91.4
9.79
11.0
9,79
11.0
78.8
88.4
78,8
88.4
117
132
97,9
110
3^/16
OVS
SSLP
LSLP
Minimum Spacing^ = Z^id, in.
3"/16
33/4
5Vi6
1V4
ASO
70.3
78.8
59.5
66.6
61.6
69.1
7.25
8.13
58.6
65.7
87.0
97.5
72.5
81,3
LRFD
105
118
89,2
99.9
92.4
104
10.9
12,2
87,9
98,5
131
146
109
122
3"/I6
4VI6
41/8
55/8
35/16
STD = standard hole
SSLT = short-slotted hole oriented transverse to the line of force
SSLP = short-slotted hole oriented parallel to the line of force
OVS = oversized hole
LSLP = long-slotted hole oriented parallel to the line of force
LSLT = long-slotted hole oriented transverse to the line of force
I'/a
r„/a
ASD
77.6
86.9:;
66.7
74.8-
77,2
7,98
8.94
64.6
72.4
95.7
107
78.8
89,4
LRFD
116
130
100
112
103
116
12,0
13.4
97,0
109
144
161
120
134
43/16
4''/L6
4V2
63/16
311/16
1V2
r»/£2
ASD
84;8
95;i
74;o
82.9
76.1
85.3
8.70
9.75
70.7
79:2'
104;
117
87.0
97.5
LRFD
127
143
111
124
114
128
13.1
14,6
106
119
157
176
131
146
43/16
4"/i6
63/4
i
ASD
n = 2,oo
LRFD
<t> = 0,75
— indicates spacing less than minimum spacing required per AiSC Specification Section J3,3,
Note: Spacing indicated Is from the center of the hole or slot to the center of the adjacent hole or
slot in the line of fo'rCe, Hole defomiation is considered. When hole deformation is not considered,
see AISC Specification Section J3.10.
a Decimal value has been rounded to the nearest sixteenth of an inch.
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-28 ; DESIGN CONSIDERATIONS FOR BOLTS
Table 7-5
Available Bearing Strength at Bolt Holes
Based on Edge Distance
kips/in. thickness
Hole Type
Edge
Distance
Le,m.
fu,ksi
Nominal Bolt Diameter, </, In,
Hole Type
Edge
Distance
Le,m.
fu,ksi
'/e 1
Hole Type
Edge
Distance
Le,m.
fu,ksi
rJO.; ¥11 tn/Cl ¥11 <l"il
Hole Type
Edge
Distance
Le,m.
fu,ksi
ASP LRFD ASD LRFD ASD LRFD ASD LRFD
STD
SSLT
IV4
58
65
3.1.5
35.3 .
47.3
53.0 •
; 29.4
32.9
44.0
49.4
27.2 w
30.5,,
40.8
45.7
25.0
'28.0
37.5
42,0
STD
SSLT
2
58
65
43.5
48,8
65.3
73.1
52.2
58.5
78,3
87,8
, . 53.3 sn
59.7
79.9
89,6
51.1
57,3
76.7
85,9
SSLP
IV4
58
65
; 2B.3
' 3;1.7-
42.4
47.5 •
26.1 „
29.3;
39.2
43.9
23.9 ii.
- 26.8 ^ '
35.9
40,2
20.7
23.2
31.0
34,7
SSLP
2
58
65
43.5
.48.8
65.3
73,1
52.2 78.3
87,8
- 50.0 -
'56.1 '
75.0
84.1
46,8
. 52.4
70.1
78.6
OVS
•1V4
58
65
29.4
,32.9-
44,0
49.4 '
' 27.2
^, 30.5 .:
40.8
45,7
^ 25.0 «
28.0
37.5
42.0
21.8
'24.4
32.6
36.6
OVS
2
58
65
,43.5
.,48.8
65.3
73.1
52.2
58.5-
78,3
87,8
• 51.1
•• 57.3
76.7 ,,
. 85.9 .
,47.9
53.6
71.8
80.4
LSLP
58
65
16.3' ,
18.3
24.5
,27.4
10.9
.1,2.2
16.3
18.3 ,
5.44 8.16
9.14 I
LSLP
2
58
65
42.4
-47.5
63.6
71.3
37.0
,41.4
55.5
62,2
3i.5:!i
,35.3 -
47.3
53,0
: 26.1
29.3
39,2
43,9
LSLT
rv4
58
65
: 26.3
-29;5 ' '
39.4
44.2
, 24.5 -
27.4
36,7: •
41.1' :
22.7 34.0
38.1
,20,8
23.4
31.3
35,0
LSLT
2
58
65
3B.3
40.6
54.4
60.9
43.5 :
48.8
65.3 .
73.1
; 44.4;, ,
-49.8
66.6
74.6
342.6
47.7-,
63,9
71.6
STD, SSLT,
SSLP, OVS,
LSLP
ie^Lefull
58
65
,,415
,',48.?, .
65.3
73.] .
•5b •
.:58,5 .
78.3
87,8
91.4
102
• 69.6 ••
78.0
104
117
LSLT Lei Lefull
58
65
36.3
40.6
54.4
60.9
43.5
48.8
65.3
73,1
50.8 „
• 56.9;
76.1
85.3
^^58.0
65.0
87,0
97.5
Edge distance
for full bearing
strength
STD,
SSLT,
LSLT
1=/8 21/4 29/16 Edge distance
for full bearing
strength OVS 2 25/16 25/8
Edge distance
for full bearing
strength
SSLP 2 25/16 211/16
Edge distance
for full bearing
strength
LSLP 21/16 27/16 27/8 31/4
STD = standard hole
SSLT = short-slotted hole oriented transverse to the line of force ,
SSLP = stiort-slotted hole oriented parallel to the line of force Uk '
OVS = oversized hole . .K ' <i
LSLP = iong-slotted hole oriented parallel to the line of force ^
LSLT = long-slotted hole oriented transverse to ttie. line of force y ""
ASOei.. LRFD — indicate? spacing less than minimum spacing required per MSC, Spscification Section J3.3.
.Note; Spacing indicated is from tiie center of tiie hole or slot to tlie center of tlie adjacent hole or
iSlotin tlie line of force. Hole defonnatiBn is considered. When liole deformation is not considered,
see AISC 5pec//!caffon Section J3.T0.
' Decimal value has been rounded to tlie nearest sixteenth of an inch.
n = 2:oo <j) = 0.75'
— indicate? spacing less than minimum spacing required per MSC, Spscification Section J3.3.
.Note; Spacing indicated is from tiie center of tiie hole or slot to tlie center of tlie adjacent hole or
iSlotin tlie line of force. Hole defonnatiBn is considered. When liole deformation is not considered,
see AISC 5pec//!caffon Section J3.T0.
' Decimal value has been rounded to tlie nearest sixteenth of an inch.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-29
Table 7-5 (continued)
Available Bearing Strength at Bolt Holes
Based on Edge Distance
kips/in. thickness
Hole Type
Edge
Distance
i«in.
Nominal Boit Diameter, d, in.
Hole Type
Edge
Distance
i«in.
1V8 1V4 1'/a IV2
Hole Type
Edge
Distance
i«in.
r.ICi r„IQ r„/n <|)/n /•n/n
Hole Type
Edge
Distance
i«in.
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
STD
SSLT
1V4
58
65
22.8
25.6
34.3
38.4
•.a:)?"
232
31.0
34.7
18.5
20.7. •
27,7
31,1
. 16.3
: 18.3f
24,5
21A
STD
SSLT
2
58
65
. 48;C ^
54.8:"
73.4
82.3
46.8
".52.4-::
70.1
78.6
-44:6
50.0
66,9
75,0 47.5
,63,6
71,3
SSLP
^y^
-58
65
; 17.4
i 1,9.5
26.1
29.3
15.2
17,1 ::
22.8
25.6
VI 3.1
.14,^.
19.6
2.1,9
10.9
•.,12.2
16,3
18,3
SSLP
2
58
65
43.5
: 4e;8
65.3
73.1
62.0
69.5
392
43.9.'^
58.7
65.8
37.0 -55,5
62,2
OVS
1V4
58
65
18;5
: 20
, 27.7
. 31.1
;::i6.3 •;
.18.3 : ,
' 24.5
27.4
14.1 :
::15.8':'
21.2
23,8
:i2.o;
::13.4 -
17,9
20.1
OVS
2
58
65
44.6
50.0
66.9
75.0
. .,42.4 :
^ 47.5 !:
63.6
71.3
. 40.2,
45.1
60.4
67:6 ,
:3ii::
!;42.7:-,
57,1
64.0
LSLP
1V4
58
65


v^ i •
• — —i if
I
"J -1
I
LSLP
2
58
65
: 20.7
; 23.2
31.0
34.7
-t5.2 i;
•v. 17.1 ;
. 22.8
25.6
. 9.79: 14.7
-16.5
! 4.35
/: 4l88;,:
6,53
7.31
LSLT
VU
58
65
: -18.0
=21 ;3
. 28,5
32.0
•{17.2 :;
^£19.3
25.8
. 28,9: . •v17.3S!
23.1
25.9 - :15.2
20.4
22,9
LSLT
2
58
65
'40.8
' -45.7
61.2
68.6
39.0 '
43.7 i
58.5
65.5
37 2
.'41.6'-
55.7
62.5
35,3
•-3i6 ' •
53.0
59,4
STD, SSLT,
SSLP, OVS,
LSLP
U^Lefull
58
65
: 78.3
87.8
117
132
87.0
;
131
146
; -95.7:: ^
107 , -
144 "
161
104 - 157
176
LSLT Lei Lefall
58
65 : 73.1
97.9
110 81.3
109
122 :.89.4 :
120
134 97.5
131
146
Edge distance
for full bearing
strengtli
ieSieMAin-
STD,
SSLT,
LSLT
27/8 33/16 3V2 3"/16 Edge distance
for full bearing
strengtli
ieSieMAin-
OVS 3 35/16 35/8 3«/I6
Edge distance
for full bearing
strengtli
ieSieMAin- SSLP 3 35/16 35/8 3'5/I6
Edge distance
for full bearing
strengtli
ieSieMAin-
LSLP 3"/16 4Vie 4V2 4^/8
STD = standard hole
SSLT = short-slotted hole oriented transverse to the line of force
SSLP = short-slotted hole oriented parallel to the line of force
OVS = oversized hole
LSLP = long-slotted hole oriented parallel to ttie line of force
LSLT = long-slotted hole oriented transverse to the line of force .
:,AS0 LRFD
— indicates siwng lep than minimum spacing required per AISC Specification Section J3.3.
Note: Spaiing irtclic&ed is from the center of the hole or slot to the center of the adjacent hole or rf (
slot in the line of force. Hole deformation is considered. When hole deformation is not considered, ^
see/WSC Specification SktmJS.tO.
a Decimal value has been rounded to the nearest sixteenth of an inch.
a = 2.00 <j) = 0.75
— indicates siwng lep than minimum spacing required per AISC Specification Section J3.3.
Note: Spaiing irtclic&ed is from the center of the hole or slot to the center of the adjacent hole or rf (
slot in the line of force. Hole deformation is considered. When hole deformation is not considered, ^
see/WSC Specification SktmJS.tO.
a Decimal value has been rounded to the nearest sixteenth of an inch.
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-30 DESIGN CONSIDERATIONS FOR BOLTS
Table 7-6
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 0°
Available strength of a bolt group,
(t)fl„ or H„/Cl, is determined with
Rn~ Cx Tn
or
LRFD ASD
c • -
^"""'Vn
Cmin - ^
rn
where
P = required force, Puor P^ kips
f„ = nominal strength per bolt, kips
e = eccentricity of P with respect
tocentroidof boltgroup.in.
(not tabulated, may be
determined by geometry)
ex~ horizontal component of e, in.
s = boltspadng,in.
C = coefficient tabulated below
(5
©
^
Number Of Bolts in One Vertical Row, n
s,in. et, 111.
11
s,in. et, 111.
2 3 4 5 6 7 8 9 10 11 12
2 1.18 2.23 3.32 4.39 5.45 6.48 7.51 8.52 9.53 10.5 11.5
3 0.88 1.75 2.81 3,90 4.98 6.06 7.12 8.17 9.21 10.2 11.3
4 .0,69 1.40 2.36 3.40 4.47 5.56 6.64 7.72 8.78 9.84 10.9
5 0.56 1.15 2.01 2,96 3.98 5.05 6.13 7.22 8,30 9.38 10.4
6 0.48 0.97 1.73 2.59 3.55 4.57 5:63 6.70 7.79 8.87 9.96
7 0.41 0.83 1.51 2.28 3.17 4.13 5.15 6.20 7.28 8.36 9.44
8 0.36 0.73 1.34 2.04 2.85 3.75 4.72 5.73 6.78 7.85 8.93
9 0.32 0.65 1,21 1.83 2.59 3.42 4.34 5.31 6.32 7.36 8.42
10 0.29 0.59 1.09 1.66 2.36 3.14 4.00 4.92 5.89 6.90 7.94
3 12 0.24 0.49 0.92 1.40 2.00 2.68 3.44 4.27 5.15 6.09 7.06
14 ^ 0.21 0.42 0.79 1.21 1.74 2.33 3.01 3.75 4.55 5.41 6.31
16 0.18 0.37 0.70 1.06 1.53 2.06 2.67 3.33 4.06 4.85 5.68
18 0.16 0.33 0.62 0.95 1:37 1.84 2.39 3.00 3.66 4.38 5.15
20 0.15 0.29 0.56 0.85 1.24 1.67 2.16 2.72 3.33 3.99 4.70
24 0.12 0.25 0.47 0.71 1.03 1.40 1.82 2.29 2.81 3.37 3.99
28 0.11 0.21 0.40 0.61 0.89 1.20 1.57 1.97 2.42 2.92 3.45
32 0.09 0.18 0.35 0.54 0.78 1.05 1.37 1.73 2.13 2.57 3.04
36 0.08 0.16 0.31 0.48 0.69 0.94 1.22 1.54 1.90 2.29 2.72
C, in. 2.94 5.89 11.3 17.1 25.1 33.8 44.4 55.9 69.2 83.5 100
2 1.63 2.71 3.75 4.77 5.77 6.77 7.76 8.75 9.74 10.7 11.7
3 1.39 2.48 3.56 4.60 5.63 6.65 7.65 8.66 9.66 10.7 11.6
4 1.18 2.23 3.32 4.39 5.45 6.48 7.51 8.52 9.53 10.5 11.5
5 1,01 1.98 3.07 4.15 5.23 6.28 7.33 8.36 9.38 10.4 11.4
6 0.88 1.75 2,81 3.90 4.98 6.06 7.12 8.17 9.21 10.2 11.3
7 0.77 1.56 2.58 3.64 4.73 5.81 6.89 7.95 9.00 10.1 11.1
8 0.69 1.40 2.36 3.40 4.47 5.56 6,64 7.72 8.78 9.84 10.9
9 0.62 1.26 2.17 3.17 4.22 5.30 6.39 7.47 8.55 9.61 10.7
10 0.56 1.15 2.01 2.96 3.98 5.05 6.13 7.22 8.30 9.38 10.4
6
12 0.48 0.97 1.73 2.59 3,55 4.57 5.63 6.70 7.79 8.87 9.96
14 0.41 0.83 1.51 2.28 3,17 4.13 5.15 6.20 7.28 8.36 9.44
16 0.36 0.73 1.34 2,04 2.85 3.75 4.72 5.73 6.78 7.85 8.93
18 0.32 0.65 1.21 1.83 2.59 3.42 4.34 5.31 6.32. 7.36 8.42
20 0.29 0.59 1.09 1,66 2.36 3.14 4.00 4.92 5.89 6.90 7.94
24 0.24 0.49 0.92 1.40 2.00 2.68 3.44 4,27 5.15 6.09 7.06
28/ 0.21 a42 0.79 1.21 1.74 2.33 3^01 3.75 4.55 5.41 6.31
32 0.18 • 0.37 0.70, 1.06 . 1.53 2.06 2.67' 3.33 4.06 4.85 5.68
36 0.16 0.33 0.62 0.95 1.37 1.84 2.39 3.00 3.66 4.38 5.15
C. in. 5.89 11.8 22.5 34.3 50.2 67.6 88.8 112 138 167 199
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-31
Table 7-6 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = IS"'
Available strength of a bolt group,
(])/?n or Rn/Cl, is determined with
Rn=Cxr„
or
LRFD ASD
Cmin — ^
In
where
P = requiredforce, PoOrPa, kips
r„ = nominal strength per bolt, kips
e = eccentricity of f with respect
to centrold of bolt group, in.
(not tabulated, maybe
determined by geometry)
ex = horizontal component of e, in.
s = bolt spacing, in.
C - coefficient tabulated below
s,ln. ex, in.
Number of Bolts in One Vertical Row, n
s,ln. ex, in.
2 3 4 5 6 7 8 9 10 11 12
2 1.15 2.20 3.28 4.34 5.39 6.42 7.45 8.46 9.47 10.5 11.5
3 0.86 1.76 2.78 3.85 4.92 5.98 7.03 8.08 9.11 10.1 11.2
4 0.67 1.42 2.35 3.36 4.41 5.48 6.55 7.61 8.67 9.72 10.8
: 5 0.55 1,17 2.00 2:94 3.94 4.98 6.04 7.11 8.18 9.24 10.3
6 0.47 0.99 1.73 2.58 3.52 4.52 5.55 6.61 7.67 8.74 9.81
7 0.41 0.86 1.52 2.30 3.16 4.11 5,10 6,13 7.18 8.24 9.30
8 0.36 0.75 1.35 2.06 2.86 3.74 4.69 5.68 6.70 7.74 8.80
9 0.32 0.67 1.22 1.86 2.60 3.43 4.32 5,27 6.26 7.28 8.31
n 10 0.29 0.61 1.10 1.69 2.38 3.16 4.00 4,90 5.85 6.84 7.85
0
12 0.24 0.51 0.93 1.43 2,03 2.71 3.46 4,28 5.15 6,06 7.01
14 0.21 0.43 0.81 1.24 1.76 2.37 3.04 3,78 4.57 5.41 6.30
16 0.19 0.38 0.71 1.09 1.56 2.10 2,70 3.37 4.09 4.87 5.69
18 0.17 0.34 0.63 0.97 1:39 1.88 2.43 3,04 3.70 4,42 5.18
20 0.15 0.30 0.57 0.88 1.26 1.70 2,20 2.76 3.37 4.03 4.74
24 0.12 0.25 0.48 0.73 1.06 1.43 1,56 2.33 2.86 3.43 4.04
28 0.11 0.22 0.41 0.63 0.91 1.23 1.60 2.02 2.47 2.97 3.51
32 0.09 0.19 0.36 0.55 0,80 1.08 1.41 1.77 2.18 2.62 3.10
36 0,08 0.17 0.32 0.49 0,71 0.96 1.26 1.58 1.95 2.34 2.78
2 1.61 2.69 3.72 4.74 5,74 6.74 7.73 8.73 9.71 10.7 11.7
3 1.36 2.45 3.52 4.56 5,59 6.60 7.61 8.61 9.61 10.6 11.6
4 1.15 2.20 3.28 4.34 5,39 6.42 7.45 8.46 9.47 10.5 11.5
5 0.98 1.96 3.03 4.10 5,16 6.21 7.25 8.28 9.30 10.3 11,3
6 0.86 1.76 2,78 3.85 4,92 5.98 7.03 8.08 9.11 10.1 11,2
7 0.75 1.57 2,55 3.60 4.66 5.73 6.80 7.85 8.90 9.94 11,0
8 0.67 1.42 2,35 3.36 4.41 5.48 6.55 7,61 8.67 9,72 10,8
9 0.61 1.29 2,16 3.14 4.17 5.23 6.30 7.36 8.43 9,49 10,5
10 0.55 1.17 2,00 2.94 3.94 4.98 6.04 7.11 8.18 9.24 10,3
6
12 0.47 0.99 1,73 2.58 3.52 4.52 5.55 6.61 7.67 8,74 9,81
14 0.41 0.86 1,52 2.30 3,16 4.11 5.10 6.13 7.18 8,24 9,30
16 0.36 0.75 1.35 2.06 2,86 3.74 4.69 5.68 6.70 7,74 8,80
18 0.32 0;67 1.22 1.86 2.60 3.43 4.32 5.27 6.26 7,28 8,31
20 0.29 0.61 1.10 1.69 2.38 3.16 4.00 4.90 5.85 6,84 7,85
24 0.24 0.51 0.93 1.43 2.03 2.71 3.46 4.28 5.15 6,06 7,01
28 0.21 0.43 0.81 1.24 1.76 2.37 3.04 3.78 4.57 .5,41 6,30
32 0.19 0.38 0.71 1.09 1.56 2.10 2.70 3.37 4.09 4.87 5,69
36 0.17 0.34 0.63 0.97 1.39 1.88 2.43 3.04 3.70 4.42 5,18
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-32
DESIGN CONSIDERATIONS FOR BOLTS
Table 7-6 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 30°
Available strength of a bolt group,
(|)/?„ or R„/n, Is determined with
R„==Cxr„
or
LRFO ASO
Omin — "T™
i^rn
where
P = required force, Pu or Pa, Wps
r„= nominal strength per bolt, Idps
e = eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, maybe
determined by geometry)
e, = horizontal component of e. In.
s = bolt spacing. In.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
Si m. Gx, III.
11
Si m.
2 3 4 5 6 7 8 9 10 11 12
2 1.14 2.20 3,25 4.30 5.33 6.36 7.38 8.39 9.40 10.4 11,4
3 0.86 1.80 2,79 3:83 4.87 5.92 6.96 7.99 9.02 10.0 11.1
4 0.69 1.50 2.40 3.39 4.41 5,45 6.49 7;53 8.57 9.61 10.6
5 0.57 1.27 2,08 3.00 3.98 4,99 6.02 7.06 8.11 . 9.15 10.2
6 0.49 1.09 1.82 2.68 3.60 4.57 5.58 6.60 7.64 8.68 9.72
7 0.43 0.95 1.61 2.40 3.27 4.20 5.17 6.17. 7.18 8.21 9.25
8 0.38 0.83 1.44 2.17 2.98 3.86 4.79 5J6 6.75 7.77 8.79
9 0.34 0.75 1.30 1.98 2.74 3.57 4.46 5.39 6.35 7.34 8.35
Q 10 0.31 0.67 1;19 1.82 2.52 3.31 4.15 5.05 5.98 6,95 7.93
0
12 0.26 0.56 •1.01 1.55 2.17 2.87 3.64 4,46^ 5.33 6,24 7.17
14 0.23 0.48 0.87 1.35 1.90 2.53 3.23 3,98 4.78 5.63 6.51
16 0.20 0.42 0.77 1.20 1.69 2.26 2.89 3.58 4.33 5.11 5.94
18 0.18 0,38 0.69 1.07 1.52 2.04 2.62 3.25 3.94 4.67 5.45
20 0.16 0.34 0.62 0.97 1.37 1.85 2.38 2.97 3.61 4,30 5.02
24 . 0.14 0,28 0.52 0.81 1.16 1.57 2.02 2.53 3.09 3,69 4.33
28 0.12 0,24 0.45 0.70 1.00 1.36 1.75 2.20 2.69 3.22 3.79
32 0.10 0.21 0.40 0.61 0.88 1.19 1.54 1.94 2.38 2.85 3.37
36 0.09 0.19 0.35 0.55 0.78 1.07 1.38 1.74 2.13 2.56 3.03
2 1.59 2.66 3.69 4.70 5.71 6.70 7.70 8.69 9.68 10.7 11.7
3 1.34 2.43 3.48 4.52 5.54 6.55 7.55 8.56 9.55 10.6 11.5
4 1.14 2.20 3.25 4.30 5.33 6.36 7.38 8.39 9.40 10.4 11.4
5 0.98 1.99 3.02 4.06 5.11 6.14 7.17 8.20 9.22 10.2 11.2
6 0.86 1.80 2.79 3.83 4.87 5.92 6.96 7.99 9.02 10.0 11.1
7 0.77 1.64 2.59 3.60 4.64 5.68 6.73 7.77 8.80 9.83 10.9
8 0.69 1.50 2.40 3.39 4.41 5.45 6.49 7.53 8.57 9.61 10,6
9 0.63 1.37 2.23 3.19 4.19 5.22 6.26 7;30 8.34 9.38 10,4
10 0.57 1.27 2,08 3.00 3.98 4.99 6.02 7.06 8.11 9.15 10,2
6
12 0.49 1.09 1,82 2.68 3.60 4.57 5.58 6.60 7.64 8,68 9,72
14 0.43 0.95 1,61 2.40 3.27 4.20 5.17 6.17 7.18 8,21 9.25
16 0.38 0.83 1.44 2.17 2.98 3.86 4.79 5.76 6.75 7,77 8.79
18 0.34 0.75 1.30 1.98 2.74 3.57 4.46 5.39 6,35 7,34: 8,35
20 0,31 0.67 1.19 1.82 2.52 3.31 4.15 5.05 5,98 6,95 7.93
24 0.26 0.56 1.01 1.55 2.17 2,87 3.64 4.46 5.33 , 6,24 7,17
28 0.23 0.48 0.87 1.35 1.90 2.53 3.23 3,98 4.78 5,63 6,51
32 0.20 0.42 0.77 1.20 1.69 2.26 2.89 3.58 4.33 5.11 5,94
36 0.18 0.38 0.69 1.07 1.52 2.04 2;62 3.25 3.94 4.67 5,45
AMERICAN INSTITUTE OF STBBL CONSTRUCTION

DESIGN TABLES 7-33
Table 7-6 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 45°
Available strength of a bolt group,
(|)/?„ or R„IQ, Is determined with
FI„=Cxr„
or
LRFD ASD
¥n
P iiPa
I'min - .
In
where
P = required force, Pu or P^, kips
/•„ = nominal strength per bolt, kips
e = eccentricity of Pwith respect
to centro'id of boll group, in.
(not tabulated, may be
determined by geometry)
= horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
s,. e„ in.
Number of Bolts in One Vertical Row, n
s,. e„ in.
2 3 4 5 6 7 8 9 io 11 12
2 1.17 2.23 3.26 4.28 5.29 6.30 7.31 8,32 9,32 10.3 11.3
3 0.92 1.89 2.87 3.87 4,88 5.90 6.91 7,93 8,94 9.95 11.0
4 0.75 1.63 2.54 3.50 4.49 5.49 6.51 7,52 8,53 9.55 10.6
5 0,64 1.42 2.25 3.17 4.13 5.11 6.11 7.11 8,12 9.14 10.2
6 0.55 1.25 2.01 2.88 3.80 4.76 5.73 6.73 7,73 8.73 9.74
7 0.49 1.11 1.81 2.63 3.51 4.43 5.38 6:36' 7.34 8.34 9.34
8 0.44 0.99 1.64 2.41 3.25 4.14 5.06 6.01 6.98 7,96 8.96
9 0.40 0:90 1.49 2.22 3.02 3.87 4.77 5,69 6.64 7.61 8,58
10 0.36 0.81 1.37 2.06: 2.82 3.63 4.50 5,39 6.32 7.27 8,23
i
12 0.31 0.68 1.17 1.79 2.47 3.22 4.02 4,87 5.74 6.65 7,58
14 0.27 0.59 1.03 1.58 2.20 2.88 3.62 4,41 5.24 6.11 6.99
•16 0.24 0.52 0:91 1.41 1.97 2.60 3.29 4,03 .4.81 5.63 6.48
18 0.21 0.46 0.82 1.27 1.78 2.36 3.00 3,70 4.43 5.21 6.02
20 0.19 0.41^ D,74 1.16 1.62 2,16 2.76 3;4t 4.10 4.84 5,61
24 0.16 0.35 0.63 0.98 1.38 1,85 2.37 2,94 3,56 4.22 4,92
28 0.14 0.30 0.54 0.85 1.19 1.61 2.08. 2,58 3.14 3.73 4,37
32 0.12 0.26 0.48 0.75 1.05 1,43 1.84 2,30 2.80 3.34 3,92
36 0.11 0.23 0.43 0.67 0.94 1,28 1.65 2,07 2.53 3.02 3,55
2 1.57 2.64 3.66 4.67 5.67 6,66 7:66 8.65 9.64 10.6 11,6
3 1.35 2.43 3.46 4.48 5.49 6.49 7.50 8.49 9.49 10,5 11,5
4 1.17. 2.23 3.26 4.28 5.29 6,30 7.31 8.32 9.32 10,3 11.3
5 1.03 2.05 3.06 4.07 5.09 6.10 7.12 8,13 9.13 10,1 11.1
6 0.92 1.89 2.87 3.87 4.88 5,90 6.91 7,93 8.94 9,95 11,0
7 0.83 1.75 2.70 3.68 4.68 5,69 6.71 7,72 8.74 9,75 10,8
8 0.75 1.63 2.54 3:50 4.49 5,49 6.51 7,52 8.53 9,55 10.6
9 0,69 1.52 2.39 3.33 4.30 5,30 6.30 7.31 8.33 9,34 10,4
10 0.64 1.42 2.25 3.17 4.13 5,11 6.11 7,11 8.12 9,14 10,2
6
12 0.55 1.25 2.01 2.88 3.80 4,76 5.73 6.73 7.73 8,73 9.74
14. 0.49 1.11 1.81 2.63 3.51 4,43 5.38 6,36 7,34 8.34 9.34
16 '0.44 0.99 1.64 2,41 3.25 4,14 5.06 6.01 6,98 7.96 8.96
18 0.40 0.90 1.49 2.22 3.02 3,87 4.77 5.69 6.64 7.61 8.58
20 0.36 0.81 1.37 2.06 2.82 3.63 4,50 5,39 6.32 7.27 8,23
24 0.31 0.68 1.17 1.79 2.47 3.22 4.02 4,87 5.74 6.65: 7,58
28 0.27 0.59 1.03 1:58 2.20 2,88 3.62 4.41 5.24 6.11 6,99
32 0,24 0.52 0.91 1.41 1.97 2,60 3.29 4.03 4.81 5.63 6,48
36 0.21 0.46 0.82 1.27 1.78 2,36 3.00 3,70 4.43 5.21 : 6,02
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-34 DESIGN CONSIDERATIONS FOR BOLTS
Table 7-6 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 60"
Available strength of a bolt group,
(jjfln or R„/S1, is determined with
Rn=Cxr„
or
LRFD ASD
C - . UPa
where
P = required force, Pu or Pa, kips
r„ - nominal strength per bolt, kips
e - eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ey = horizontal component of e, in,
s - bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
S, III. BXf 111. S, III. BXf 111.
2 3 4 5 6 7 8 9 10 11 12
2 1.27 2.32 3.32 4.31 5.30 6.30 7.29 8.27 9.27 10.3 11.3
3 1.U5 2.05 3.02 4.00 4,98 5.97 6.96 7.94 8.94 9.93 10.9
4 0.89 1.83 2.77 3.72 4.69 5.66 6.64 7.62 8.61 9.60 10.6
5 0.77 1.65 2.54 3.47 4,41 5.37 6.34 7.32 8,29 9.28 10.3
6 0.68 1.49 2,34 3.24 4.16 5.10 6.06 7.02 7.99 8.97 9.95
7 0.61 1.37 2.17 3.03 3,93 4.85 5.79 6,74 7.71 8.67 9.64
8 0.56 1,26 2.01 2.83 3.71 4.61 5.54 6.48 7.43 8.39 9,35
^ 9 0.51 1.16 1,87 2.66 3.51 4.39 5.30 6.23 7.17 8.12 9,07
10 0.47 1.07 1.74 2.50 3.32 4.19 5.08 5.99 6.92 7.86 8,81
3
12 0,40 0.93 1.52 2.22 3.00 3.82 4.67 5,55 6.45 7.37 8,30
14 0.35 0.81 1.35 2.00 2.73 3.50 4.32 5.16 6.03 6.92 7,83
16 0.32 0.72 1,21 1.81 2.49 3.23 4.00 4.81 5.65 6.51 7,40
18 0.29 0.65 1.09 1.66 2.30 2.98 3.72 4.50 5.31 6.14 7,00
20 0.26 0.58 1.00 1.53 2.12 2.77 3.47 4.21 4.99 5.80 6,63
24 0.22 0.49 0.85 1,32 1.84 2.41 3.05 3.73 4.45 5.21 5,99
28 0.19 0.42 0.74 1.15 1.61 2.13 2.71 3.34 4.00 4.70 5,44
32 0.17 0.37 0.65 1.02 1.43 1.91 2.44 3.02 3.63 4.28 4,97
36 0.15 0.33 0.59 0.92 1.29 1.72 2.21 2.74 3.31 3,92 4,57
2 1.60 2.65 3.65 4.64 5.64 6.63 7.62 8.61 9.60 10.6 11.6
3 1.42 2,48 3.48 4.48 5.47 6.46 7.45 8.44 9.44 10.4 11.4
4 1.27 2.32 3.32 4.31 5.30 6.30 7,29 8.27 9.27 10,3 11,3
5 1.15 2,18 3.17 4.15 5.14 6.13 7.12 8.11 9.10 10,1 11,1
6 1.05 2.05 3.02 4.00 4.98 5.97 6.96 7.94 8.94 9,93 10,9
7 0.96 1.93 2.89 3.86 4.83 5.81 6.80 7.78 8.77 9,76 10,8
8 0.89 1.83 2.77 3.72 4.69 5.66 6.64 7.62 8,61 9,60 10.6
9 0.83 1.73 2,65 3.59 4.55 5.51 6.49 7.47 8,45 9,43 10.4
10 0.77 1.65 2.54 3.47 4.41 5.37 6.34 7.32 8,29 9.28 10.3
6
12 0.68 1.49 2,34 3.24 4.16 5.10 6.06 7.02 7.99 8.97 9,95
14 0.61 1,37 2.17 3.03 3.93 4,85 5.79 6.74 7,71 8.67 9.64
16 0.56 1.26 2.01 2.83 3.71 4.61 5.54 6.48 7,43 8.39 9.35
18 0.51 1.16 1.87 2.66 3.51 4.39 5.30 6.23 7.17 8.12 9.07
20 0.47 1.07 1.74 2.50 3.32 4.19 5.08 5.99 6.92 • 7.86 8.81
24 0.40 0.93 1.52 2.22 3.00 3.82 4.67 5.55 6.45 7.37 8.30
28 0.35 0.81 1.35 2.00 2.73 3,50 4,32 5,16 6.03 6.92 7.83
32 • 0.32 0.72 1.21 1.81 2.49 3.23 4.00 4.81 5.65 6.51 7.40
36 0.29 0.65 1.09 1.66, 2.30 2,98 3.72 4.50 5,31 6.14 7.00
AMERICAN INSTITUTE OF STEEL CONSTRUCHON

DESIGN TABLES 7-35
Table 7-6 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle 75°
Available strength of a bolt group,
({ifln or R„/il, is determined with
fl„=Cxr„
or
LRFD ASO
Cmin - ,
In
where
P = required force, or P^, kips
r„ = nominal strength per bolt, l<ips
e = eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometty)
ex = horizontal component of e, in,
s = bolt spacing, in.
C = coefficient tabulated below
—^
ex, in.
Number of Bolts in One Vertical Row, n
2 3 4 5 6 7 8 9 10 11 12
2 1.49 2.51 3.49 4,46 5,44 6,42 7,40 8.38 9.36 10,3 11,3
3 1.32 2.33 3.30 4,27 5.24 6,21 7,18 8.15 9.13 10,1 11.1
4 1.18' 2,18 3.14 4,09 5.05 6,01 6,98 7.95 8,92 9,89 10.9
5 1.07 2,04 2.99 3.93 4.88 5.84 6,79 7,75 8,72 9,68 10.7
6 0.98 1,92 2.85 3.79 4,73 5,67 6,62 7.57 8.53 9,49 10.5
7 0.90 1,82 2.73 3.65 4.58 5,52 6,46 7.40 8.36 9,31 10.3
8 0.84 1,72 2,62 3.52 4.44 5,37 6,30 7.24 8,19 9,14 10.1
9 0,78 1,63 2,51^ 3.40 4.31 5,23 6,16 7.09 8,03 8:97 9.92
o
10 0.73 1,55 2,41 3,29 4.19 5.10 6.02 6.94 7,88 8,81 9.76
o
12 0,65 1,41 2,23 3,08 3.95 4.84 5,75 6.66 7,59 8,51 9.45
14 0,58 1,30 2.06 2,88 3,73 4,60 5,50 6.40 7,31 8.23 9.16
16 0,53 1,20 1,92 2,70 3,52 4.38 5,26 6.15 7,05 7.96 8.88
18 ; 0,48 1,11 1,78 2,53 3.33 4,17 5,03 5.91 6.80 7.70 8.61
20 0,44 1,03 1.66 2.38 3.16 3.97 4,82 5.69 6.56 7.45 8.35
24 0,38 0,89 1.46 : 2.12 2.85 3.63 4,44 5.27 6.13 6.99 7.87
28 0.34 0,79 1,29 1,90 2.59 3.33 4.11 4.91 5.73 6.57 7,43
32 0,30 0,70 1.16 1,73 2.38 3.08 3,81 4.58 5.37 6.19 7.02
36 0,27 0,62 1,05 1.58 2.19 2.85 3,55 4,28 5.05 5.84 6.65
2 1,71 2,72 3,70 4.69 5.67 6.66 7,64 8,79 978 10.8 11.7
3 1.60 2,61 3.59 4.57 5.55 6.53 7,52 8,50 9.48 10.5 11.5
4 1.49 2,51 3.49 4.46 5.44 6.42 7,40 8,38 9.36 10,3 11.3
5 1.40 2,42 3.39 4.37 5.34 6.31 7,29 8,26 9.24 10,2 11.2
6 1.32 2,33 3.30 4.27 5.24 6,21 7,18 8,15 9.13 10,1 11.1
7 1.25 2,25 3.22 4.18 5,14 6,11 7,07 8,05 9,01 10,0 11.0
8 1.18 2,18 3.14 4.09 5.05 6.01 6,98 7,95 8,92 9,89 10.9
9 1.13 2.11 3.06 4.01 4,97 5.92 6,88 7,85 8,81 9,78 10,8
10 1.07 2.04 2.99 3.93 4,88 5.84 6,79 7,75 8,72 9,68 10,7
6
12 0.98 1.92 2.85 3.79 4,73 5.67 6,62 7,57 8.53 9,49 10,5
14 0.90 1.82 2.73 3.65 4,58 5,52 6.46 7,40 8.36 9,31 10,3
16 0.84 1.72 2.62 3,52 4.44 5,37 6.30 7.24 8.19 9.14^ 10,1
18 0.78 1.63 2.51 3,40 4.31 5,23 6.16 7.09 8.03 8,97 9,92
20 0.73 1.55 2.41 3.29 4.19 5,10 ,6.02 6,94 7.88 8,81 9,76
24 0.65 1.41 2.23 3,08 3,95 4,84' 5.75 6,66 7.59 8,51 9,45
28. 0.58 1.30 2.06 2.88 3.73 4,60 5.50 6,40 7.31 8,23 9,16
32 0.53 1.20 1.92 2.70 3.52 4,38 5.26 6,15 7.05 7,96 8,88
36 0.48 1.11 1.78 2,53 1 3.33 4,17 , 5.03
-x—•
5,91 6,80 7,70 8,61
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-36 ; DESIGN CONSIDERATIONS FOR BOLTS
Table 7-7
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 0''
Available strength of a bolt group,
or RJQ., Is determined with
Rn—CxTn
or
LRFD AM
r .-f" . UPa.
— " ^ '
'n
where
P = required force, or Pa. kips
ft = nominal strength per bolt, kips
e = eccentricity of •/'with respect
to centroid of bolt group, in,
(not tabulated, may be
determined by geometry)
e<= horizontal componentofe, In,
s = bolt spacing, in.
C = coefficient tabulated below


Number of Bolts in One Vertical Row, n
s, in. e„iii. s, in. e„iii.
1 2 3 4 5 6 7 8 9 10 11 12
2 0.84 2,54 4.48 6.59 8.72 10.8 12.9 . 15.0 17.1) 19.0 21.0 23.0
3 0.65 2.03 3.68 5.67 7.77 9.91 12.1 14.2 16.3 18.3 20.4 22.5
4 0.54 1.67 3.06 4.86 6.84 8.93 11.1 13.2 15.4 17.5 19.6 21.7
= 5 0.45 1.42 2.59 4.21 6.01 8.00 10.1 12.2 14.4 16.5 18.7 20.8
6 0.39 1.22 2,25 3.69 5.32 7.17 9.16 ,11.2 13.4 15.5 17.7 19.8
7 0.35 1:08 1,99 3.27 4.74 6.46 8.33 10.3 12,4 14.5 16.7 18,8
8 0.31 0.96 1,78 2.93 4.27 5.86 7.60 9.50 11,5 13.6 15.7 17.8
9 0.2i5 0.86 1,60 2.65 3.87 5.34 6.97 ; 8.75 10,7 12.7 14.7 16.8
10 0.26 0.78 1.46 2.42 '3.53. 4.90 6.42 8.10 9.91 11.8 13.8. 15.9
3 12 0.22 0,66 1.24 2.06 . 3.01 4.19 , 5.51 7.01 8.63 10.4 12.2 14.2
14 0.19 0.57 1.08 1.78 2.62 3.66 4.82 6.15 7.61 9.19 10.9 12.7
16 0.17 0.51 0.95 1.57 2.32 3.24 4.27 5.47 6.79 8.23 9.78 11.4
18 0.15 0,45 0.85 1.41 2.07 2.90 3.83 4.92 6.11 ^ 7.43 8.85 10.4
20 0.14 0.41 0.77 1.27 1.88 2.63 3.48 4.47 5.55 6.76 8.07 9.48
24 0.12 0.34 . 0.65' 1.07 1.58 2.21 2.93 3.77 4.69 5.72 6.85 8.06
28 0.10 0.29 0.56 0.92 1.36 1.90 2.53 3.25 405 4.95 5.93 7.00:
32 0.09 0.26 ! 0.49 0.80 1.19 1.67 2.22 2.86 3.57 4.36 5.23 6.18
36 0.08 0.23 0.43 0.72 1.06 1.49 1.98: 2.55 3.18 3:90 4.67 5.52
C, in. 2.94 8.33 15.8 . 26.0 38.7 54.2 72.2 93.1 117 143 172 204
2 0.84 3.24 5.39 7.47 9.51 11.5 13.5 15.5 17.5 19.5 21.5 23.4
3 0.65 2.79 4.93 7.08 9.17 11.2 13.3 15.3 17.3 19.3 21.3 23.3
4 0.54 2.41 4.44 6.60 8.75 10.9 12.9 15.0 17.0 19.1 21.1 23.1
5 0.45 2.10 3.97 6,11 8.27 10.4 12.5 14.6 16.7 18.7 20.8 22.8
6 0.39 1.85 3.55 5.62 7.77 9.93 12.1 14.2 16,3 18.4 20.4 22.5
7 0.35 1,64 3.18 5.17 7.27 9.43 11.6 13,7 15,9 18.0 20.1 22.1
8 0.31 1i47 2.87 4.75 6.79 8.92 .11.1 13,3 15,4 17.5 19.6 21.7
9 0,28 1.34 2.61 4.39 6.34 8.43 10.6 12.7 14,9 17.1 19.2 21.3
10 0.26 1.22 2,39 4.06 5.92 7.96 10.1 12.2 14.4 16.6 18.7 20,9
6 :
12 0.22 1.04 2.04 3.52 5.20 7.10 9.12 .11.2 13.4 15.5 17.7 19:9
14 0.19 0.90 1.77 3.09 4.61 6.36 8.27 10.3 12.4 14.5 16.7 18.9
16 0.17 0.80 1.57 2.75 4.12 5.74 7.52 9.44 11.5 13.5 15.7 17.8
18 ; 0.15 0.71 1.41 2.48 3,72 5.21 , 6.87 8.68 10.6 12.6 14,7. 16.8
20 0,14 0.64 1.28 2.25 3,38 4.77 6.31 8.02 9.85 11.8 13.8 15.9
24 0,12. 0.54 1.07 1.90,, ; 2.86 . ;4.06 , 5.40: 6.91 8.55 10.3 12.2 14.1
28 0.10 0.46 0.93 1.64 : 2.47 ' "3.52 4.70 6.05 7.52 9.12 10.8 12.6
32, 0.09 0.41 . 0.81 1.44 ' 2.18 • 3.11 4.16 '5.37 6.69 8.15 9.71 11.4
36 . 0:08 0.36 0.73 1.29 1.94 2.78 3.72 : 4.81 6.02 7.34 8.78 10.3
C, in. 2.94 13,2 26.5 47.0 71.4 -103 138 180 2'26 279 337 400
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-37
Table 7-7 (continued)
Coefficients G for Eccentrically Loaded Bolt Groups
Angle = 15''
Available strength of a bolt group,
ifR„or R„fCi, is determined with
or
LRFD ASD
¥n
Cmm
In
where
P = required force, P„ or Pa, kips
•' r„ - nominal strength per bolt, kips
e - eccentricity of P with respect
to Centroid Of bolt group, in.
(not tabulated, may be
determined by geometry)
ex = horizontal component of e, in,
s = bolt spacing, in.
C = coefficient tabulated below
ex, in.
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 8 9 10 11 12
2 0.87 2.54 4.47 6.54 8.63 10.7 12.8 14,8 16,9 18.9 20.9 22,9
3 ^ 0.68 2.04 3.71 5.R3 7.69 • 9.80 11.9 14,0 16,1 18.2 20.2 22,3
4 0.55 1.69 3.11 4.85 6.79 8.84 10.9 13,1 15,2 17.3 19.4 21.5
5 0.47 .1.44 2.66 4.21 6.00 7.94 9.98 12,1. 14,2 16.3 18.4 20.5
6 0.41 1.25 2.31' 3.70 5;34 7,15 9.09 11.1 13:2 15,3 17.4 19-.6
7 0.36 1.10 2.04 3.29 4.79 6.46 8.30 10,2 12,3 14.3 16.4 18.6
8 0.32 ; 0.98 1.83 2,96 4:32 5.87 7.60 9.45 11.4 13.4 15.5 17.6
9 0.29 0.88 1.65 2.68 3.94 • 5.37 6.99 8.74 10.6 12.6 14.6 16.6
10 0.27 o.8r 1.51 2,45 3.61 4.93 6.45 8.11 9.88 11.8 • 13.7 15.7
0; .
12 0.23 : 0.68 1.28 2,09 3.08 4.24 5.58 7.05 8.66 10.4 ; 12.2 14.1
14 0.20 0.59 ,1.11 1,82 2.69 3.71 4.90 6.21 7.67 9.23 10.9 12.7
16 :0.17- 0,52 0.98 1.61 2.38 3:29 4.36 5.54 6.86 8.29 9.83 11.5
18 0.16 0.47 0.88 1.44 2.13 2.96 3.92 4.99 6.20 7.51 8.93 10.4
20 0.14 0.42 0:79 1.31 1,93 2.68 •3.56 4.54 5.65 6.85 8.17 9.57
24 0.12 0.35 0.67 1.10 1,62 2.26 3.00 3.84 4.79 5.82 6.96 8.17
28 0.10 0.30 .0.57 0.94 1.40 1.95 2.60 3:32 4.15 5.05 6.05 7.12
32 0.09 0.27 0.50 0,83 1,23 1.72 2.28 2.93 3.66 4.46 5.34 6.29
36 0.08 0.24 0.45 0.74 1,10 1.53 2.04 2.61 3.27 3.98 4.78 5.64
2 0.87 3.21 5.35 7.42 9,45 11.5 13.5 15.5 17.4 19.4 21.4 23.4
3 0.68 2.76 4.88 7.00 9,09 11.1 13.2 15.2 17.2 19.2 21.2 23.2
4 0.55 2,38 4.40 6,53 8,65 10.7 12.8 14.9 16.9 18.9 20.9 22.9
5 0.47 2.07 3.96 6,04 8,17 10.3 12.4 14,5 16.5 18.6 20.6 22.6
6 0.41 1.83 3.56 5,56 7,67 9.80 11.9 14,0 16.1 18.2 20.3 22.3
7 ' 0.36 1.63 3.22 5.12 7,19 9.30 11,4 13,6 15.7 17.8 19.9 21.9
8 0.32 1.47 2.92 4.73 6,72 8.81 10,9 13,1 15.2 17.3 19.4 21.5
9 0.29 1,34 2.66 4.37 6,29 8.33 10,4 12,6 14.7 16.8 18.9 21.0
6
10 0.27 1.23 2.45 4.05 5.90 7.88 9,95 12.1 14.2 16,3 18:5 20.6
6
12 0.23 1.05 2.09 3.53 5.21 7.06 9,04 11.1 13.2 15,3 17.5 19.6
14 0.20 0.91 1.83 3.11 4.64 6.35 8.22 10,2 12.2 14,3 16.5 18.6
16 0.17 0.81 1.62 2.78 4.17 5.75 7.51 9,38 11.4 13,4 15.5 17.6
18 -0.16 0.72 1.45 2.50 3.77 5.24 6.88 8,66 10.5 12.5 14.5 16.6
20 0.14 0.66 1.32 ??8 3,45 4.80 6.34 8,02 : 9.82 11.7 13.7 15.7
24 0.12 0.55 1.11 1.93 2.93 4.10 5.46 6,95 8.57 10.3 12.1 14.0
28 0.10 0.48 0.96 1.67 2.54 3:57 4.78 6,11 7.58 9.15 10.8 12.6
32 0.09 0.42 0.84 1.47 2.24 3.16 4.24 5,44 6.77 8.21 9.75 11.4
36 0.08 0.37 0.75 1.32 2.0Q 2.83 3.80 4,89 6.10 7.42 8,85 10.4
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-38
DESIGN CX3NSIDERATI0NS FOR BOLTS
Table 7-7 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 30°
Available strength of a bolt group,
(|)/fn or /?„/£J, is determined witli
R„==Cxr„
or
LRFD ASD
„ ilPa
In
where
P = required force, or P^, kips
r„ = nominal strength per bolt kips
e = eccentricity of P with respect
to centroid of bolt group, In.
(not tabulated, may be
determined by geometry)
Bx = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
s, In.
11
s, In.
1 2 3 4 5 6 7 8 9 10 11 12
2 0.97 2.60 4.52 6.54 8.59 10.6 12.7 14.7 16.7 18.8 20.8 22.8
3 0.75 2.12 3.83 5.71 7.71 9.75 11.8 13.9 15.9 18.0 20,0 22.1
4 0.62 1.78 3.29 4.99 6.88 8.87 10.9 13.0 15.1 17.1 19.2 21.3
5 0.52 1.53 2.85 4.39 6.16 8.06 10.0 1^1 14.1 16.2 18.3 20.4
6 0.45 1,34 2.51 3.89 5.54 7.33 9.23 11.2 13,2 15.3 17.3 19.4
7 0.40 1.19 2.23 3.48 5.01 6.70 8.51 10.4 12,4 14.4 16.4 18.5
8 0.36 1.07 Z.OO 3.15 4.57 6,14 7.86 9.68 11.6 13.6 15.6 17.6
9 0.32 0.97 1.81 2.87 4.19 5.66 7.28 9.02 10.9 12.8 14.7 16.7
10 0.30 0.88 1.66 2.64 3.87 5.24 6.77 8.43 10.2 12.0 13.9 15.9
3
12 0.25 0.75 1.41 2.27 3.34 4.54 5.92 , 7,43 9,04 10.8 12.5 14.4
14 0.22 0.65 1.23 1.98 2.93 3.99 5.24 6.61 8.09 9.67 11.4 13.1
16 0.19 0.58 1.08 1.76 2.60 3.56 4.69 5.94 7,30 8.77 10.3 12.0
18 0.17 0.52 0.97 1.58 2,34 3.21 4.24 5.38 6.64 8,0 9.45 11.0
20 0.16 0.47 0.88 1.43 2.12 2.92 3.87 4.92 6.08 7.3 8.70 10.1
24 0.13 0.39 0.74 1.21 1.79 2.48 3.29 4.18 5,19 6.3 7.48 8.75
28 0,12 0.34 0.64 1.04 1.55 2.14 2.85 3.63 4.52 5.5 6.54 7.68
32 0.10 0.30 0.56 0.92 1.36 1.89 2.51 3.21 4.00 4.9 5.81 6.83
36 0.09 0.26 0.50 0.82 1.21 1.69 2.25 2.87 3.59 4.4 5.22 6.15
2 0.97 3,20 5.31 7.37 9.39 11.4 13,4 15.4 17.4 19.4 21.3 23.3
3 0.75 2.75 4.86 6.95 9.01 11.1 13.1 15.1 17.1 19.1 21.1 23.1
4 0,62 2.39 4.42 6.49 8.57 10.6 12.7 14.7 16.8 18.8 20.8 22.8
5 0,52 2.10 4.02 6.04 8.11 10.2 12.3 14.3 16,4 18,4 20.4 22,5
6 0.45 1.87 3.67 5,61 7.66 9.73 11.8 13.9 16.0 18.0 20,1 22,1
: 7 0.40 1.69 3.36 5.21 7.21 9.27 11.4 13.4 15.5 17.6 19,6 21,7
8 0.36 1.53 3.08 4.84 6.79 8.82 10.9 13.0 15.1 17.1 19.2 21,3
9 0.32 1.40 2.84 4.51 6,40 8.39 10.4 12.5 14.6 16.7 18.7 20,8
10 0.30 1,29 2.63 4.21 6.04 7.98 9.99 12.0 14.1 16.2 18.3 20,4
6
12 0.25 1.12. 2.28 3.70 5.39 7.23 9.16 11.2 13.2 15.3 17.3 19.4
14 0.22 0.98 2.00 3.29 4.86 6.57 8.41 10.3 12.3 14.4 16.4 18.5
16 0.19 0.87 1.78 2.95 4.40 6.01 7.75 9.6 11.5 13.5 15.5 17.6
18 0.17 0.79 1.60 2.68 4.02 5.52 7.17 8.9 10.8 12.7 14.7 16.7
20 0.16 0.71 1,45 2.45 3.70 5.09 6.65 8.3 10.1 12.0 13.9 15,9
24 0.13 0.60 1.23 2.08 3.17 4.39 5.79 7.3 8.95 10.7 12.5 14.4
281 0,12 0.52 1.06 1.82 2.77 3.85 5.11 6.5 7.99 9.59 11.3 13.0
32 0.10 0.46 0.93 1.61 2.45 3.42 4.56 5.8 7.20 8.68 10.3 11.9
36 0.09 0.41 0:83 1.44 2.20 3.08 4.12 5.3 6.53 7.91 9.37 10,9
V,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-39
Table 7-7 (continued)
Coefficients C for Ecoentricaily Loaded Bolt Groups
Angle = 45°
Available strength of a bolt group,
(|)/i, or R„/a, is determined with
R„=Cxr„
or
LRFD ASD
c -
where
P = required force, Pu or Pa, kips
/>, = nominal strength per bolt, kips
e = eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
Bx = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
f-f-
" i-
QJ
Number of Bolts in One Vertical Row, n
s.(n. e„ in. s.(n.
1 2 3 4 5 6 7 8 9 10 11 12
2 1.17 2.79 4.67 6.62 8.61 10.6 12.6 14.6 16.6 18.6 20.6 22.6
3 0.92 2.32 4.06 5.92 7.86 9.83 11.8 13.9 15.9 17.9 19.9 21.9
4 0.75 1.99 3.57 5.31 7.16 9.09 11.1 13.1 15.1 17.1 19.1 21.1
5 0.64 1.74 3.17 4.78 6.53 8.39 10.3 12.3 14.3 16,3 18.3 20.3
6 0.55 1.54 2.84 4.33 5.98 7.76 9.63 11,6 13.5 15.5 17,5 19,5
7 0.49 1.38 2.57 3.93 5.49 7.20 9.00 10.9 12.8 14.8 16.7 18.7
8 0.44 1.25 2.33 3.60 5.06 6.70 8.43 10.3 12.1 14.0 16.0 18.0
9 0.40 1.14 2.13 3.31 4.69 6.25 7.91 9.67 11.5 13.4 15.3 17.2
o 10. 0.36 1.05 1.96 3.06 4.36 5.85 7.44 9.14 10.9 12.7 14.6 16.5
0
12 0.31 0.90 •1.68 . 2.65 3.83 5.17 6.63 8.20 9.86 11.6 13.4 .15.2
14 0.27 0.78 1.47 2,33 3.40 4.61 5.95 7.41 8.97 10.6 12.3 14,1
16 0.24 0.69 1.31 2.08 3.05 4.16 5.38 6.74 8.20 9.75 11.4 13,1
18 0.21 0.62 1,17 1.88 2.76 3.77 4.91 6.18 7.55 9.00 10.5 12.1
20 0.19 0.56 1.06 1.71 2.52 3.45 4:51 5.69 6.97 8.34 9.80 11.3
24 0.16 0.48 0.90 1.45 2.14 2.94 3.67; 4.91 6.04 7.26 8.57 9.95
28 0.14 0.41 ,0.77 1.26 1.86 2;56 3.38 4.30 5.30 6.41 7.59 8.85
32 0.12 0.36 0.68 • 1.11 1.64 2.27 3.00 3.82 4.73 5.73 6.80 7.94
36 0.11 0.32 0.61 0.99 1.47 2.03 2.70 3.44 4.26 5.17 6.15 7.20
2 1.17 3.24 5.30 7.32 9.33 11,3 13.3 15.3 17.3 19.3 21.3 23.2
3 0.92 2,84 4.90 6.93 8.96 11.0 13.0 15.0 17.0 19.0 21.0 23.0
4 0.75 2.51 4.52 6.53 8.56 10.6 12.6 14.6 16.6 18.6 20.6 22.6
5 0.64 2.24 4.17 6.15 8.15 10.2 12.2 14.2 16.2 18.3 20.3 22.3
6 0.55 2.03 3.86 5.78 7.76 9.77 11.8 13.8 15.8 17.9 19.9 21.9
7 0.49 1.85 3.59 5.45 7.39 9.38 11.4 13.4 15.4 17,5 19.5 21.5
8 0.44 1.70 3.35 5.13 7.03 9.00 11.0 13.0 15.0 17.1 19.1 21.1
9 0.40 1.57 3.13 4.85 6.70 8.63 10.6 12.6 14.6 16.7 18.7 20.7
10 0.36 1,46 2.94 4,58 6.38 8.28 10.2 12.2 14.2 16.3 18.3 20.3
6
12 0.31 1.28 2.60 4.11 5.81 7.64 9.54 11.5 13.5 15.5 17.5 19.5
14 0.27 1.13 2.32 3.71 5.31 7.06 8.89 10.8 12.7 14.7 16.7 18.7
16 0.24 1.01 2.09 3.36 4.88 6.55 8.31 10.2 12.0 14.0 15.9 17.9
18 0.21 0.92 1.90 3.07 4.50 6.09 7.78 9.56 11.4 13.3 15,2 17.2
20 0.19 0.84 1.73 2.83 4.18 5.69 7.31 9.02 10.8 12.7 14.6 16.5
24 0.16 0.72 1.47 2.43 3.64 5.00 6,48 8.08 9.76 11.5 13.3 15.2
28 ' 0.14 0.62 1.28 2.13 3.22 4.45 5.80 7.28 8.86 10.5 12.2 14.0
32 0.12 0.55 1.13 1.90 2.88 3.99 5.24 6.62 8,09 9.65 11.3 13.0
36 0.11 0.49 1.01 1.71 2.61 3.62 4.77 6.05 7.43 8.90 10.4 12.1
AMERICAN INSTRROTE OF STEEL CONSTRUCTION

7-40
DESIGN CONSIDERATIONS FOR BOLTS
Table 7-7 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 60°
Available strength of a bolt group,
(jifln or is determined with
or
LRFD ASD
« ClPa
Owln = r
In
where . .
P = requiredforce, Pi/orPa, kips
/•„= nominal strength per bolt, kips
e = eccentricity of Pwlth respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex = horizontal component of e, in.
s = bolt spacing, in/
C = coefficient tabulated below
H

L^i
Number of Bolts in One Vertical Row, n
s,in. cxi 111* s,in. cxi 111*
1 2 3 4 5 6 7 8 9 10 11 12
2 1.51 3.17 4.97 6.85 8.77 10.7 12.7 14,6 16.6 18,6 20.6 22.5
3 1.24 2,76 4,47 6.30 8.19 10.1 12.0 14,0 16.0 17,9: 19.9 21.9
4 1.04 .2.43 4.04 5.81 7.65 9.53 11,5 13,4 15.3 17.3 19.3 21.2
5 0.89 • 2.16 3.70 5.39 7.17 9.01 10,9 12,8 14.7 16.7 18.6 20.6
6 0.77 1.95 3.40 5.01 6.73 8.52 10,4 12.3 14.2 16.1 18.0 20.0
7 0,68 1.77 3.13 4.67 6.33 8.07 9.88 ,11.7 13.6 15.5 17.4 19.4
8 0.61 1.62 2.90 ,4.37 5.96 7.65 9.42 11.2 13.1 15.0 16.9 18.8
9 0.56 1.49 2.70 4.09 5.62 7.26 8.98 10.8 12.6 14.5 16.3 18.2
10 . 0.51 1.38 2.52 3.84 5.31 6.89 8.58 10.3 12.1 14.0 15.8 17.7
3
12 0.43 1.20 2.21 3.40 4.76 6.25 7.85 9.53 11.3, 13.0 14.9 16.7
14 0.38 1.06 1.96 3.05 4.30 5.71 7.23 8.83 10.5 12.2 14.0 15.8
16 0.34 0.95 1.76 2.75 3.92 5.24 6.68 8.20 9.79 11.5: 13.2 14.9
18 0.30 0.85 1.60 2.51 3.59 4.84 ; 6.19 7.64 ^ 9.16 10.8 12.4 14.1
20 0.27 0.78 1.46 2.30 3.32 4.48 5.76 7.14 8.60 10.1 11.7 13.4
24. 0.23 0.66 1.24 1.97 2.87 3.90 5.04 6.29 7.64 9.06 10.6 12.1
28 0.20 0.57 1.07 1,72 2.52 3.44 4.47 5.61 6.85 8.17 9.55 11.0
32 0.18 0.50 0.95 1.52 2.24 3,07 4.01 5.06 6.20 7.41 8.70 10.1
36 0.16 0.45 0.85 1.37 2.02 2.77 3.63 4;59 5.65 6.77 7.98 9.26
2 1.51 3.39 5.36 7.33 9.31 11.3 13.3 15.2 17.2 19.2 21.2 23.2
3 1.24 3.08 5.04 7.01 8.98 11.0 12.9 14.9 16.9 18.9 20.9 22.8
4 1.04 2.80 4.73 6.69 8.66 10.6 12.6 14.6 16.6 18.6 20.5 22.5
5 0.89 2.57 4.45 6.39 8.35 10.3 12.3 14.3 16.2 18.2 20.2 22.2
6 0.77 2.37 4.20 6.11 8.05 10.0 12.0 13.9 15.9 17.9 19.9 21.8
7 0.68 2.19 3.98 5.85 7.76 9.70 11.7 13.6 15.6 17.6 19.5 21.5
8 0.61 2.04 3.77 5.61 7.49 9.41 11.4 13.3 15.3 17,2 19.2 21.2
9 0.56 1.91 3.59 5.38 7.24 9.13 11.1 13.0 15.0 16.9 18.9 20.9
10 0.51 1.80 3.42 5.17 7.00 8.87 10.8 12.7 14.7 16.6 18.6 20.5
6
12 0.43 1.60 3.11 4.78 6.54 8.37 10.2 12.1 14.1 16.0 18.0 19.9
14 0.38 1.44 2,85 4.43 6.13 7.91 9.74 11.6 13.5 15.4 17.4 19.3
16 0.34 1.31 2.63 4.12 5.74 7.48 9.27 11.1 13.0 14.9 16.8 18.7
18_ 0.30' 1.20 2.43 3,84 5.40 7.08 8.84 10.7 12.5 14.4 16.3 18.2
20 0.27 1.10 2.26 3.58 5.08 6.71 8.43 10.2 12.0 13.9 15.7 176
24, 0.23 0.95 1,97 3.15 4.53 6.06 7.69 9.39 11.2 12.9 14.8 16.6
28 : 0.20 0.84 1.73 2.80 4.08 5.52 7.06 8.68 10,4 12.1 •13.9 15.7
32 0.18 0.74 1.54 2,52 3.71 5.05 6,51 8.05 ' 9,66 11.3 13.1, •14.8
36 0.16 0.67 ,1.39 2.28 3.39 4.65 6,02 7.49 9,03 10.7 12.3 14.0
AMEWCAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-41
Table 7-7 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 75°
Available strength of a bolt group,
or RJCl, Is determined with
R„ = C>ir„
or
LRFD ASD
m
. QPa
I'min = • •
'n
where
P = required force, or Pg, kips
= nominal strength per bolt, kips
e = eccentricity of P with respect
to centrold of bolt group, in.
(not tabulated, may be
determined by geometry)
Bx = horizontal component of e, in.
s = bolt spacing, in.
- C = coefficient tabulated below
5, in. e„ in.
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 8 9 10 11 12
2 1.84 3.63 5.44 ^ 7.29 9.17 11.1 13.0 14,9 16.9 18.8 20.8 22.7
3 1.71 3.41 5.17 6.97 8.82 10.7 12.6 14.5 16.4 18.4 20.3 22^3
4 1.57 3.19 4.90 :6.67 8.50 10.4 12.2 14.1 16.0 18.0 19.9 21.8
5 1.44 2:98 4.65 • 6.39 8.19 10.0 11,9 13,8 15.7 17.6 19.5 21.4
6 1.31 2.79 4.41 '6.12 7.90 9.71 11.6 13,4 15.3 17.2 19.1 21.0
7 1.20 2.61 4.19 5.88 7.62 9.42 11.3 13.1 15.0 16.9 18.8 20.7
8 1.10 2.45 3.99 5.65 tzi 9.14 11.0 12.8 14.7 16.5 18.4 20.3
9 1.01 2.31 3.81 5.43 7.14 8.89 10.7 12.5 14.3 16.2 18.1 20.0
10 0.93 2.18 3.63 5.23 6.91 8.65 10.4 12.2 14.1 15.9 17.8 19.6
12 o:8i 1.95 3.33 •4.86 6.49 8.19 9,94 11.7 13.5 15.3 17.2 19.0
. 14 0.71 1.77 3.06 4.53 6.11 7.76 9.47 11.2 13.0 14.8 16.6 18.4
16 0.63 1.61 183 4.23 : 5.75 7.36 9.03 10.8 12:5 14,3 16.1 17.9
.18 0.57 1.48 2.63 3.96 5.42 6.98 8.61 10.3 12,0 13.8 15.6 17.4
20 0.52 1.36 2.45 3.72 5.12 6,63 8.23 9.88 11,6 13.3 15.1 16.9
24 0.44 1.18 2.15 3.30 4.60 6.02 ^ 7.53 . 9:12 10,8 12.4 14,2 15.9
28 0.38 1.04 1.91 2.95 4.16 ,5.49 6.93 8.45 10,0 11.7 13,3 15,0
32 0.34 0.92 i.71 2,67 3,78 5.04 6.41 7.86 9,37 10.9 12,6 14.2
36 0.30 0.83 1.55 2:43 3.47 4.65 5.94 7.32 8,78 10.3 11,9 13.5
2 1.84 3.66 5.55 7.48 9,42 11.4 13.3 15.3 17,6 19.6 21.5 23.5
3 1.71 3.49 5.36 • 7.27 9.20 11.2 13,1 15.1 17.0 19.0 21.0 22.9
4 1.57 3.32 5.18 7.08 9.00 10,9 12,9 14.8 16.8 18.7 20,7 22.7
5 1.44 3.16 5.01 6.89 8.81 10.7 12,7 14.6 16.6 18.5 20,5 22.4
6 1.31 3.02 4.84 6.72 8.62 10.5 12,5 14.4 16.3 18.3 20,2 22.2
7 1.20 2.88 4.69 6.55 8,44 10.4 12,3 14.2 16.1 18.1 20,0 22.0
8 1.10 2.75 4.54 6.39 8/27 10.2 12.1 14.0 15.9 17.9 19.8 21.8
9 1.01 2.63 4.40 6.24 8,11 10,0 11,9 13.8 15.7 17.7 19.6 21.5
10 0.93 2.52 4.27 6.09 r,95 9,83 11,7 13.6 15.6 17.5 19.4 21.3
12 0,81 2.32 4.03 5.82 7.66 9,52 11,4 13.3 15.2 17.1 19.0 20.9
14 0.71 2.15 3.82 5.57 7.38 9,22 11,1 13.0 14.9 16.7 18.7 20.6
16 0.63 2.00 3.62 5.35 7.13 8,95 10,8 12.7 14.5 16.4 18.3 20.2
18 0,'57 i:87 3.44 5.14 6.90 8,69 10,5 12.4 14.2 16.1 18.0 19.9
20 0.52 1.75 3.28 4.94 6.67 8.45 10,3 12.1 13.9 15.8 17.7 19.5
24 0.44 1.55 2.98 4.57 6:24 7.98 9,75 11.6 13.4 15.2 17.1 18.9
28 0.38 1.40 2.74 4.24 5.85 7.54 9,28 11.1 12.9 14.7 16.5 18.3
32 0.34 1.27 2.52 3.95 5.49 7.13 8.83 10.6 12.4 14.1 16.0 17.8
36 0.30 1.16 2.33 3.68 5.16 6.75 8.41 10.1 11.9 13.7 15.4 17.3
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-42
; DESIGN CONSIDERATIONS FOR BOLTS
Table 7-8
eoefficients C for Eccentrically Loaded Bolt Groups
Angle = 0°
Available strength of a bolt group,
(j)ft„ or is determined with
fin=Cxr„
or
LRFD ASD
^win —
t>'n
^mln - ^^
where
P = required force, Pu or Pa, kips
r„ = nominal strength per bolt, kips
e = eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, maybe
determined by geometry)
ex= horizontal component of e, in.
s - bolt spacing, in.
C - coefficient tabulated below
Number of Bolts in One Vertical Row,/;
s, in. s, in.
1 2 3 4 5 6 7 8 9 10 11 12
? 1.14 2.75 4.59 6.61 8.69 10.8 12.9 14.9 17.0 19,0 21.0 23.0
^ 3- 0.94 2.32 3.92 5.80 7.82 9.90 12.0 14,1 16.2 18,3 20.4 22.4
4 0.80 1.99 3.39 5.10 6.98 9.00 11.1 13.2 15.3 17,4 19.6 21.7
5 0.70 1.74 2.96 4.51 6.24 8.15 10.2 12.3 14.4 16.5 18.6 20.8
• 6 0.62 1.54 2.62 4.03 5.60 7.39 9.30 11.3 13.4 15,5 17.7 19.8
7 0.55 1.38 2.36 3.63 5.07 6.72 8.53 10.5 12.5 14,6 16.7 18.8
. 8 0.50 1.25 2.14 3.30 4.61 6.15 7.84 9.67 11.6 13,6 15.7 17.8
9 0.46 1.14 1.96 3.01 4.22 5.66 7.23 8.97 10.8 12,8 14,8 16.9
10 0.42 1.04 1.80 2.78 3.89 5.23 6.70 8.34 10.1 12.0 13.9 15.9
3 12 0.37 ,0.90 1.55 ,2.39 3.36 4.53 5.82 7.28 8.87 10,6 12.4 14.3
14 0.32 0.79 1.36 2.10 2.96 3.99 5.13 6.44 7.87 9.42 11.1 12.8
16 0.29 0.70 ,1.21 , 1.87 2.64 3.55 4,58 5.76 7.05 8,47 9.99 11.6
18 0.26 0.63 1.09 1.68 2.37 3.20 4.14 5.21 6,38 7.68 9.08 10.6
20 0.24 0.57 0.99 1.53 2.16 2.91 3.77 4.75 5,82 7.02 8.30 9.69
24 0.20 0.48 0.84 1.29 1.83 2.46 3.19 4.03 4.94 5.97 7.07 8.28
28 0.18 0.42 0.73 1.11 1.58 2.13 2.77 3.49 4.29 5.19 6.15 7.21
32 0.16 0.37 0.64 0.98 1:39 1.88 2,44 3.08 3.79 4.58 5.44 6.38
36 0.14 0.33 0.57 0.88 1.24 1.68 2.18 2.75 3.39 4.10 4.87 5.72
C, in. 5.40 12.3 21.2 32.3 45.8 61.8 ; 80.3 102 125 152 181 213
2 1.14 3.25 5.37 7.45 9.49 11.5 13.5 15.5 17.5 19.5 21.4 23.4
3 0.94 2.86 4.93 7.05 9.14 11.2 13.2 15.3 17.3 19.3 21.3 23.3
4 0.80 2.52 4.47 6.59 8.72 10.8 12.9 15.0 17.0 19.0 21.0 23.1
5 0.70 2.24 4.04 6.12 8.25 10.4 12.5 14.6 16.7 18.7 20.8 22.8
6 0.62 2.00 3.65 5.66 7.77 9.91 12.1 14.2 16.3 18.4 20.4 22.5
7 0.55 1.80 3.31 5.23 7.29 9.42 11.6 13.7 15.8 17.9 20,0 22.1
8 0.50 1.64 3.02 4.84 6.83 8.93 11.1 13.2 15,4 17.5 19.6 21.7
9 0.46 1.50 2.77 4,49 6,39 8.45 10.6 12.7 1,4,9 17.0 19,2 21.3
10 0.42 1.38 2.56 4.18 5,99 7.99 10.1 12.2 14,4 16,5 18,7 20.8
6
12 0.37 1.19 2.21 3,65 5,29 7.16 9.15 11.2 13,4 15,5 17,7 19.8
14 0.32 1.04 1.95 3.24 4.72 6.44 8.32 10.3 12,4 14,5 16,7 18.8
16 0.29 0.93 1.74 2,90 4.24 5.83 7.59 9.48 11,5 13,6 15.7 17.8
18 0.26 0.84 1.57 2,62 3.84 5.31 6.95 8.74 10,7 12,6 . 14,7 16.8
20 0.24 0.76 1.43 2,39 3.50 4.87 6.39 8.08 9,89 11.8 13,8 15.9
24, 0,20 0.64 1.21 2.02 2.98 4.16 5.49 6.99 8,61 10,4 12,2 14.1
28 0.18 0.55 1.05 1.76 2.59 3.63 4.80 6,13 7.59 9.18 10.9
12.7
32 0.16 . 0.49 0.93 1.55 2.29 3.21 4.25 5.45 6.77 8.21 9.76 11.4
36 0.14 0.43 0.83 1.38 2.05 2.88 3.81 4.90 6,09 7.41, 8.83 10.4
C, in. 5.40 16,0 30,6 51.0 76.2 107 143 185 232 284 342 406
a.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-43
Table 7-8 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 15°
Available strength of a bolt group,
(t)ft„ or R„/a, is determined with
fl/j—CXTf]
or
LRFD ASD
Omin ~ r
In
where
P = requiredforce, Pi/OrPa, kips
r,i = nominal strength per bolt, kips
e - eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
s,in. Ox, in.
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 8 9 10 11 12
2 1.18 2.78 4.61 6.59 8,64 10.7 12.8 14.8 16.8 18.9 20.9 22.9
3 0.97 2.34 3.97 5.80 7,78 9,83 11.9 14.0 16.1 18.1 20.2 22,2
4 0.83 2.02 3.45 5.11 6,97 8,94 11.0 13.1 15.2 17.3 19.3 21,4
5 0.72 1.77 3.03 4.54 6,26 8,12 10.1 12.1 14.2 16:3 18.4 20.5
6 0.64 1.57 2.70 4,06 5.65 7.39 9.27 11.2 13.3 15.4 17.5 19.6
7 0.57 1.41 2.43 3.66 5.13 6.74 8.52 10.4 12.4 14.4 16.5 18.6
8 0.52 1.28 2.20 3,34 4.68 6.18 7.86 9.65 11.6 13.5 15.6 17.6
9 0.48 1.17 2.01 3.06 4.30 5.70 7.27 8.97 10.8 12.7 14.7 16.7
Q 10 0.44 1.07 1.85 2.82 3.98 5.27 6.76 8.36 10.1 11.9 13.8 15.8
0..
12 0.38 0.93 1.60 2.44 3.44 4.58 5.90 7.34 8.91 10,6 12.4 14.2
14 0.33 0.81 1.40 2.15 3.03 4.05 5.22 6,51 7.94 9.47 11.1 12.8
16 0.30 0.72 1.25 1.91 2.70 3.62 4.68 5.84 7.14 8.54 10.1 11.7
18 0.27 0.65 1.13 1.72 2.44 3.27 4.23 5.28 6.48 7.77 9.16 10.7
20 0.25 0.59 1.02 1.57 2.22 2.98 3.86 4.83 5.93 7.11 8.40 9.78
24 0.21 0.50 0.87 1.33 1.88 2.53 3.27 4.11 5.05 6,07 7.19 8.39
28 0.18 0.43 0.75 1.15 1.63 2.19 2.84 3.57 4.39 5.29 6.28 7.33
32 0.16 0.38 = 0.66 1.01 1.43 1.93 2.50 3.15 3.88 4.68 5.56 6.50
36 0.14 0,34 0.59 0.90 1.28 1.73 2.24 2.82 3.48 4.19 4.99 5.84
2 1.18 3.24 5.34 7,40 9.43 11.5 13.5 15.4 17.4 19.4 21.4 23.4
3 0.97 2.85 4.90 6.99 9.07 .11.1 13:2 15.2 17.2 19.2 21.2 23.2
4 0.83 2.51 4.45 6.53 8,63 10.7 12.8 14,8 16.9 18.9 20.9 22.9
5 0.72 2.23 4.05 6.07 8,16 10.3 12.4 14,5 16.5 18.6 20.6 22,6
6 0.64 2.00 3.68 5.62 7,69 9.80 11.9 14,0 16.1 18.2 20.2 22,3
7 0.57 1.81 3.36 5.20 7,22 9.31 11.4 13,5 15,7 17.7 19.8 21.9
8 0.52 1.65 3.08 4.82 6,78 8.83 10.9 13,1 15.2 17.3 19,4 21.5
9 0.48 1.52 2.83 4.48 6,36 8.37 10.5 12,6 14.7 16.8 18,9 21.0
10 0.44 1.40 2.62 4.18 5,98 7.93 9.97 12,1 14.2 16.3 18,4 20.6
6_
12 0.38 1.21 2.27 3.66 5.31 7,13 9.08 11,1 13.2 15.3 17,4 19.6
14 0.33 1.07 2.00 3.25 4,76 6.44 8.28 10.2 12.3 14.3 16,4 18;6
16 0.30 0.95 1.79 2.92 4,29 5.85 7.58 9.43 11.4 13.4 15.5 17.6
18 0.27 0.86 1.62 2.65 3,90 5.34 6.97 8.72 10.6 12.5 14.6 16.6
20 0.25 0.78 1.47 2.42 3,58 4.91 6.43 8.09 9.87 11.7 13.7 15.7
24 0.21 0.66 1.25 2.06 3,05 4.21 5.55 7.03 8.64 10.4 12.2 14.1
28 0.18 0.57 1.08 1.79 2,66 3.68 4.87 6.19 7.65 9.22 10.9 12.6
32 0.16 0.50 0.95 1.58 2,35 3.26 4.33 5.52 6.84 8.27 9.81 11.4
36 0.14 0.45 0.85 1.42 2,11 2.93 3.90 4.97 6.18 7.49 8.91 10.4
i
AMERICAN INSTITUTE OF STEEL CONSTROCTION

7-44 ; DESIGN CONSIDERATIONS FOR BOLTS
Table 7-8 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 30°
Available strength of a bolt group,
(()/?„ or R„ia, is determined with
R„=C>cr„
or
LRFD ASD
. ClPa
l^m/n - ^^
where
P = required force, Pu or P^, kips
r„ - nominal strength per bolt, kips
e = eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, maybe
, determined by geometry)
ex horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
CXi lll>
1 2 3 4 5 8 7 8 ; 9
10
11 12
2 1.30 2.90 4.72 6.66 8.65 10.7 12,7 14.7 16:7 18.7 20.8 22.8
3 1.08 247 4.13 5.94 7.86 9.85 11.9 13:9 16.0 18.0 20.0 22.1
4 0.92 2.14 3:64 5.30 7.12 9.04 11,0 13.0 15.1 17,1 19.2 21.2
5 0.80 1.89 3.24 4.76 6.46 8.29 10.2 12.2 14,2 16.3 18.3 20.4
6 0.71 1.69 2.91 4.29 5.88 7.61 9.45 114 13.4 154 174 19.5
7 0.64 1.53 2.63 3.90 5.38 7.01 8.76 10.6 12.5 14.5 16.5 18.6
8 0.58 1.39 240 3.57 4.95 6.49 8.14 9.92 11.8 .13.7- 15.7 17.7
9: 0.53 1.28 2.20 3.29 4.58 6.02 7.59 9.29 11:1 12.9 14.9 16.8
Q 10 0.49 • 1.18 2.03 3.04 4.26 5.61 7.09 8.72 104 12.2 14.1 •16.0
0
12 0.42 .1.02 1.76 2.65 3:72 4.92 6.25 •7.73 9.31 '11,0 12.8 14.6
14 0.37 0.90 1.55 2.34 3.29 4.37 5.58 6.93 8.38 9.93 11.6 13.3
16 0.33 0.80 1.38 2.09 2.95 3.92 5.03 6.26 7.59 9.03 10.6 12.2
18 0.30 0.72 1.25 1.89 2.67 3.55 4.57 5,70 6,93 8.27 : 9.70 11.2
20 0.27 0.66 .1.13 1.73 .243 3.25 4.19 5,23 6.36 7.62 • 8.95 104
24 0.23 0.56 0.96 1.46 2.07 ,2.77 3.57 ; 4.47 5.47 • 6.56 7.73 8.99
28 0.20 0.48 0,83 1.27 1.79 2.41 3.11 3.90 4.78 5.75 6.78 7.91
32 .0.18 0.43 0.73 1.12 1.58 2.13 2.76 3.46 4.25 5.11 6.04 , 7.06
36 0.16 0.38 0.66 1.00 1.42 1.91 2.47 : 3,10 3.81 4.59 5.44 6.36
2 1.30 3.27 5.33 7.36 9.38 114 134 154 174 19.3 21.3 23.3
3 1.08; 2.89 4.91 6.96 9.01 11.0 13.1 15.1 17.1 19.1 '21.1 23.1
4 0.92 2.56 4.50 6.53 8.58 10.6 12.7 14.7 16.8 18.8 20.8 22.8
5 0.80 2.29 4.13 6.10 8.14 10.2 12.3 14.3 164 184 20.4 22.5
6 0,71 2.08 3.80 5.69 7.70 9.75 11.8 13.9 15.9 18.0 20.0 22.1
7 ,0.64 1.89 3.51 5.31 7.27 9.30 114 13,4 15,5 17.6 19.6 21.7
8 0.58 1.74 3.25 4.96 6.86 8.86 10.9 13,0 15.0 17.1 19.2 21.3
9 0.53 1.61 3.02 4.64 6.49 8.44 10.5 12,5 14.6 16.7 18.7 20.8
10 . 049 1.49 2.81 4.35 6.13 8.04 10.0 12.1 14.1 16.2 18.3 204
6
12 0.42 1.30 2.47 3.85 5.51 7.31 9.22 11.2 13.2 15.3 17.3 194
14 0.37 1,15 2.19 3.44 4.98 6.67 8.49 104 124 144 164 18,5
16 0.33 1.03 1.96 3.11 4.54 6.12 7.83 9.66 11.6 13.5- 15.6 17.6
18 0.30 0.93 1.78 2.83 4.1,6 5.63 7.26 9.00 10.8 12.8 14.7 16.7
20 0.27 0.85 1.62 2,60 3.83 5.21 6.74 841 10.2 12.0 13.9.. 15.9
24 , 0.23 0.72 1.38 2,23 3,30 4.51 5.89 7.40 9,02 10.7 12.5 144
28 0.20 0.63 1,20 1.«5 2.89 3.96 5.21 6.59 : 8,0.7 9.66 11.3.. 13.1
32 0.18 0.55 1.06 1.73 2.57 3.53 4.67 5.92 7.28 8,75 10.3 12.0
36. 0.16 0,50 0.95 1.55 2.31 3.1,8 4;22 5.36 . i6.61 . 7,98 9.43 •11.0
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-45
Table 7-8 (continued)
Coefficients C for Eccentricaliy Loaded Bolt Groups
Angle = 45°
Available strength of a bolt group,
<!)/?„ or R„IQ., is determined with
or
LRFD ASD
^ CiPa
i/min - ^
•n
where
P = required force, Puor Pa, kips
/•„ = nominal strength per bolt, kips
e = eccentricity of P with respect
to centrpid of bolt group, in,
(not tabulated, may be
determined by geometry)
ex = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
s,in. e„ In.
Number of Bolts in One Vertical Row, /;
s,in. e„ In.
1 2 3 4 5 6 7 8 9 10 11 12
2 1.53 3.18 4.96 6,84 8.77 10.7 ,12,7 14.7 16.7 18.7 20.7 22,6
5 3 1.30 , 2.76- 4.42 6,22 8.09 10.0 12.0 14.0 15.9 17.9 19.9 21,9
^ 4 1.11 2.43 3,97 5.67 7.46 9.32 11.2 13,2 15.2 17.2 19.2 21.2
5 0.98 2.17 3.60 5.19 6.89 8.68 10.6 12,5 14.4 16.4 18.4 20.4
6 0.87 1.95 3.28 4,77; 6.37 8.09 9.90 11.8 13.7 15.6 17.6 19,6
,7 0.78. 1.78 3.01 i 4,40 5.91 7,56: 9.31 11.1. 13.0 14.9 16.9 18.8
8 0.71 1.63 2.77 ,4.07, 5.50 7,07 8.76 10.5 12.4 14.2 16.2 18.1
9 0.65 1.50 2.57 3,78 5.13 6,64, 8.26 9.97 11,8 13.6 , 15.5 17.4
Q
10 0,60 1.39 2,39 3.52 4,81 6,25' 7,81 9.45 11,2 13.0 14.8 16.7
0
12 0.52 1.22, 2.08 3.09 4,26 5,58, 7,01 8.54 10,2, 11.9 13.6 15.4
14 0.45 1.08 1,85 2.75 3.82 5,02 6,34 7.76 9,28 10.9 12.6 14.3
'16 0.41 0.96 1,65 2,48 3.45 4,55 5:77 7.09 8,53 10.1 11.6 13.3
18 0,37 ,0.87 ,1.50 2,25 3.14 4.16 ,5.29' 6.53 7,87 9.30 10.8 12.4
20 0.33. 0:79 1,37 2,06 2.88 3.82 4,87 6.04 7,30 8.65 10.1 11.6
24 0,28 0,68 1,16 1.76 2.47 3.28 4,21 5.23 6,35 7.55 8.85 10.2
28 0,25 0:59 M.01 1.53 2,15 2.87 3.69 4,61 5,61 6.69 7.87 9.11
32 0.22 0.52 0,89 1,35 1,91 2.55 3.29 4.11 5.01 6.00 7.07 8.20
36 0.20 0.46 0.80 1„21 1,71 2.29 2.96 3.70 4.53 5.43 6.40 7.44
2. 1.53 3.39 '5,36 7,35 9,35 11.3 13.3 15.3 17.3 19,3 21.3 23.2
3 1.30 3.04 4,99 6,98 8,98 11.0 13.0 15.0 17.0 19,0 21.0 22.9
4 1.11 2.74 4.64 6,60 8,60 10.6 12.6 14.6 16:6 18,6 .20.6 22.6
5 0.98 2.49 4,31 6.24 8.21 10.2 12.2 14.2 16.3 18,3 20.3 22.3
6 0.87 2.28 4.02 5.89 7.84 9.82 11.8 13.8 15.9 17,9 19.9 21.9
7 0,78 2.10 3.76 5.57 7.48 9.44 11.4 13.4 15.5 17.5 19.5 21.5
8 0,71 1.94 3.53 5.28 7.13 9.07 11.0 13.0 15.1 17.1 19.1 21.1
9 0,65 1.81 3.32 5.00 6.81 8.71 10.7 12.7 ,14.7 16.7 18,7 20.7
10 0.60 1.69 3,13 .4.74 6.50 8.37 10.3 12.3 14,3 16.3 18,3 20.3
6
12 0.52 1,50 2,80 4,29 5.94 7,74 9.61 11.5 13.5 15.5 17,5 19.5
14 •0.45 1,34 ; 2,52 3,89 5.45 7,17 8.98 10.9 12.8 14.7 ,16,7 18.7
16. 0.41 1.21 2,29 3,55 5.02 6,67 8.41 10.2 12.1 14.0 16,0 17,9
18 ;0.37 1.10 2,09 3.25 4.65 6,22 7,89 9.65 11.5 13.4 15,3 17,2
20 0.33 1.01 1,92 3.01 4.33 5.82 7.42 9.11 10.9 12.7 14,6 16.5
24 :0.2a 0,86 1,64 2.61 3.79 5,13 6.60 8.17 9.84 ,11.6, 13.4 15,2
28 0.25 0.75 1,44 2.30 3.36 .4,58 5,92 7.38 8.95 10.6 12,3 14,1
32 ; 0.22, 0.67 1,27 2.05 3.02 4,12 5,35 6.72 8.18 9.73 11.4 13,0
36 0.20, 0.60 1,14 1.85 2.73 3:74 4.88 6.15 7.52 8.98 10,5 12,1
AMERICAN INSTRROTE OF STEEL CONSTRUCTION

7-46
DESIGN CONSIDERATIONS FOR BOLTS
Table 7-8 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 60°
Available strength of a bolt group,
([)/?„ or /?„/a, is determined with
/?„=Cxr„
or
LRFD ASD
l^min — f.
fn
where
P = required force, Pi, or Pa, l<ips
r„ = nominal strength per bolt, kips
e = eccentricity of P with respect
to centroid of bolt group, In.
(not tabulated, maybe
determined by geometry)
fi, = horizontal component of e, in.
s = bolt spacing, In.'
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
5, in. 5, in.
1 2 3 4 5 6 7 8 9 10 11 12
, 2 1.78 3.55 5.34 7.17 9.04 10.9 12.9 14.8 16.7 18.7 20.6 22.6
3 1.62 3.26 4.95 6.71 8.53 10.4 12.3 14.2 16.1 18.1 20,0 22.0
4 1.45 2.97 4.57 6.27 8.04 9.86 11.7 13.6 15.5 17.5 19.4 21,4
5 1.31 2.71 4.23 5.86 7.58 9.36 11.2 13.1 15.0 16.9 18.8 20.7
6 1.18 2.48 3.93 5.50 7.16 8.90 10.7 12,5 14.4 16.3 18.2 20.1
7 1.07 2.28 3.66 5.18 6.79 8.48 10.2 12.0 13.9 15.7 17.6 19.5
8 0.98 2.11 3.43 4.88 6.45 8.09 9.80 11.6 13.4 15.2 17.1 19.0
9 0.90 1.97 3.22 4.61 6.12 7.72 9.39 ,11.1 12.9 14.7 16.6 18.4
10 0.83 1.84 3.03 4.37 5.82 7.37 9.00 10.7 12.5 14.2 16.1 17.9
3
12 0.72 1.62 2.70 3.93 5.28 6.73 8.28 9.91 11.6 13.4 15.1 16.9
14 ^ 0.64 1.45 2.43 3.56 4.81 6.19 7.66 9.22 10.9 12.5 14.3 16.0
16 0.57 1.31 2.21 3.24 4.42 5.71 7.11 8.60 10.2 11.8 13.5 15.2
16 0.52 1.19 2.02 2.98 4.07 5.29 6.63 8.05 9.55 11.1 12.7 14.4
20 0.47 1.09 1.85 2.75 3.77 4.93 6.19 7.55 8.98 10.5 12.1 13.7
24 0.40 0.93 1.59 2,37 3.28 4.32 5.46 6.69 8.01 9.41 10.9 12.4
28 0.35 0.82 1.39 2.08 2.90 3.83 4.86 5.99 7.21 8.51 9.88 11.3
32 0.31 0.72 1.24 1.86 2.59 3.43 4.37 5.41 6.54 7.75 9.02 10.4
36 0.28 0.65; 1.11 1.67 2.34 3.11 3.97 4.93 5.98 7.10 8.29 9.55
2 1.78 3.59 5.48 7.41 9.36 11.3 13.3 15.3 17.2 19.2 21.2 23.2
3 1.62 3.35 5.20 7.12 9.06 11.0 13.0 15.0 16.9 18.9 20.9 22.9
4 1.45 3.11 4.93 6.82 8.75 10.7 12.7 14.6 16.6 18.6 20.6 22.5
5 1.31 2.89 4.66 6.53 8.45 10.4 12.3 14,3 16.3 18.2 20.2 22.2
6 1.18 2.70 4.42 6.26 8.16 10.1 12.0 14.0 15.9 17.9 19.9 21.9
7 1.07 2,52 4,19 6.01 7.88 9.79 11.7 13.7 15.6 17.6 19.6 21.5
8 0.98 2.36 3.99 5,77 7.62 9.51 11.4 13.4 15.3 17,3 19.2 21.2
9 ,0.90 2.23 3.81 5.55 7.37 9.24 11.1 13.1 15.0 17.0 18.9 20.9
10 0.83 2.10 3.64 5.35 7.13 8.98 10.9 12.8 14.7 16.7 18.6 20.6
6
12 0.72 1.89 3.34 4,97 6.70 8.49 10.3 12.2 14.1 16.1 18.0 19.9
14 0.64 1.71 3.08 4,63 6.29 8.04 9.85 11.7 13.6 15.5 17.4 19.3'
16 0.57 1.57 2.85 4.32 5.92 7.62 9.39 11.2 13.1 15.0 16.-9 18.8
18 0.52 1,44 2.65 4.04 5.58 7.22 8.95 10.7 12.6 14,4 16.3 18.2
20 0.47 1.33 2.47 3.79 5.26 6.86 8.55 10.3 12.1 13.9 15.8 17.7
24 0.40 1.16 2.17 3.36 471 6.21 7.82 9.50 11.2 13.0 : 14.8 16.7
28 0.35 1.02 1.92 3.00 4,26 5.67 7.19 8.80 10.5 12.2 14.0 15.8
32 0.31 0.91 1.72 2.71 3.88 5,20 6.64 8.17 9.77 11.4 13.1 14.9
36 0.28 0.82 1.56 2.46 3.55 4.80 6.16 7.61 9.14 10.7 12.4 14.1
AMERICAN INSTITUTE OF STBBL CONSTRUCTION

DESIGN TABLES 7-47
Table 7-8 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 75°
Available strength of a bolt group,
(t)ff„ or R„!n, Is determined with
^^ /"/I
or
LRFD ASD
C -
- O.Pa
^min —
'n
where
P = required force, Pu or Pa kips
r„ = nominal strength per bolt, kips
e = eccentricityofP with respect
to centroid of bolt group, in.
{not tabulated, may be
determined by geometry)
fi, = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
-4-
Number of Bolts in One Vertical Row, n
s,in. Bk, in. Bk, in.
1 Z 3 4 5 6 7 8 9 10 11 12
2 1.92 3.82 5.70 7.57 9.45 11.3 13.2 15.2 17.1 19.0 20,9 22.9
3 1,87 3.72 5,54 7.36 9.19 11.1 12.9 14.8 16.7 18.6 20.5 22.5
4 1.82 3.60 5.37 7.14 8.94 10.8 12.6 14.5 16.3 18.2 20.1 22,1
5 1.75 3.47 5.18 6.92 8.68 10.5 12.3 14.1 16.0 17.9 19.8 21.7
6 1.68 3.33 5.00 6.69 8.42 10.2 12.0 13.8 15.7 17.5 19.4 21.3
7 1.60 3.19 4.81 6.47 8.17 9.92 11.7 .13.5 15.3 17.2 19.1 20.9
8 1.52 3.06 4.63 6.26 7.93 9.66 11.4 13.2 15.0 16.9 18.7 20.6
9 1.45 2.93 4.46 6.05 7.70 9.41 11.2 12.9 14.7 16.5 18.4 20.3
10 1.38 2.80 4.29 5.85 7.48 9.16 10.9 12.6 14.4 16.2 18.1 19.9
3
12 1.25 2.57 3.98 5.48 7.07 8.71 10.4 .12.1 13,9 15.7 17.5 19.3
14 1.13 2.36 3.70 5.15 6.69 8.29 9.96 11.7 13.4 15.2 16.9 18.7
16 1.03 2.18 3.45 4.85 6.34 7.90 9.53 11.2 12.9 14.7 16.4 18.2
18 0.95 2.02 3.23 4.57 6.01 7.54 9.13 10.8 12.5 14.2 15.9 17.7
20 0.87 1.88 3.03 4.32 5.71 . 7.19 8.75 10.4 12.0 13.7 15.4 17.2
24 0.75 1.65 2.69 3.87 5.17 6.57 8.05 9.60 11,2 12.9 14.5 16.2
28 0.66 1.46 2.42 3.50 4.71 6.03 7.44 8.93 10.5 12.1 13.7 15.4
32 0.59 1.31 2.18 . 3.19 4.32 5.56 6.90 8.32 9.81 11.4 12.9 14.6
38 0.53 1.19 1.99 2.92 3.98 5.15 6.42 7.78 9.21 10.7 n'.2 13.8
2 1.92 3.80 5.69 7.59 9.51 11.5 13.4 15.4 17.6 19.6 21.5 23.5
3 1.87 3.70 5,55 7.42 9.32 11.2 13.2 15.1 17.1 19.0 21.0 23.0
4 1.82 3.59 5.40 7.25 9.14 11.1 13.0 14.9 16.9 18.8 20.8 22.7
5 1.75 3.48 5.26 7.09 8.96 10.9 12.8 14.7 16.6 18.6 20.5 22.5
6 1.68 3.36 5.11 6.93 8.78 10.7 12.6 14.5 16.4 18.4 20.3 22.2
7 1.60 3.24 4.97 6.77 8.62 10.5 12.4 14.3 16.2 18.1 20.1 22.0
8 1.52 3.13 4.84 6.62 8.45 10.3 12.2 14.1 16.0 17.9 19.9 21.8
9 1.45 3.02 4.71 6.47 8.29 10.2 12.0 13.9 15.8 17.7 19.7 21.6
10 1.38 2.91 4.58 6.33 8.14 9.98 11.9 13.7 15.6 17.6 19.5 21.4
6
12 1.25 2.72 4.34 6.07 7.85 9.67 11.5 13.4 15.3 17.2 19.1 21.0
14 1.13 2.54 4.13 5.82 7.57 9.38 11.2 13.1 15.0 16.8 18.7 20.6
16 1.03 2.38 3.92 5.59 7.32 9.10 10.9 12.8 14.6 16.5 18.4 20.3
18 0.95 2.24 3.74 5.38 7.09 8.85 10.7 12.5 14.3 16.2 18,1 19.9
20 0.87 2.11 3.57 5.17 6.87 8.61 10,4 12.2 14.0 15.9 17,7 19,6
24 0.75 1.88 3.27 4.80 6.44 8.15 9.90 11.7 13.5 15.3 17.1 19.0
28 0.66 1.70 3.00 4.47 6.06 7.72 9.43 11.2 13.0 14.8 16.6 18.4
32 0.59 1.55 2.77 4.17 5.70 7.31 8.99 10.7 12.5 14.3 16.1 17.9
36 0.53 1.42 2.57 3.90 5.37 6.93 8.57 10.3 12.0 13.8 15.5 17.3
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-48 ; DESIGN CONSIDERATIONS FOR BOLTS
Table 7-9
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 0°
Available strength of a bolt group,
([)/?„ or RnlQ, is determined with
/?„=Cx/-„
or
LRFO ASD
r iiPa
In
where
P - requiredforce, Puorfa, kips
r„ = nominal strength per bolt, l<ips
e = eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex - horizontal component of e, in.
s = bolt spacing, In.
C = coefficient tabulated below
——«
^
^ -
k
-
——«
^ eb—
Number of Bolts In One Vertical Row, n
c in p„ In
Ilia Gxt m.
1 2 3 4 S 6 7 8 9 10 11 12
2 1.31 2,91 4.71 6.66 8.69 10.8 12.8 14.9 16.9 18.9 21.0 23.0
3 1.12 2.54 4,14 5.95 7,90 9.93 12.0 14.1 16.2 18.2 20.3 22.4
4 0.98 2.24 3.66 5.33 7.15 9.10 11.1 13.2 15.3 17.4 19.5 21.6
5 0.87 1.99 3.27 4.80 6,48 8.33 10.3 12.3 14.4 16,5 18.6 20.7
6 0.79 1,80 2,95 4.35 5.90 7.63 9,49 11,5 13.5 15,6 17.7 19.8
7 0.71 1,63 2.68 3,97 5.40 7.02 8,77 10,7 12.6 14,6 16.7 18.8
8 0.65 1.49 2.46 3,65 4.97 6,48 8,13 9,91 11.8 13,8 15.8 17,9
9 0.60 1.38 2.27 3,37 4.59 6.01 7,55 9,24 11,1 13.0 14.9 17.0
10 0.56 1.28 2.11 3,13 4,27 5.59 7.04 8,64 10,4 12.2 14.1 16,1
3 12 0.49 1.11 1.84 2,73 3.73 4.90 6.19 7,63 9,18 ,10.9 12,6 14,5
14. 0.44 0:99 1.64 2,42 3.31 4.36 5.50 6.80 8,20 9.73 11,4 13,1
16' 0,39 0,89 1.47 2,17 2.98 3.91 4.95 6.13 7,40 8.80 10,3 11,9
18 0.36 0,80 1.33 1.97 2.70 3.55 4.50 5.57 6.73 8.02 9,39 10,9
20 0.33 0,73 1.22 '1.80 2.47 : 3.25 4.12 5.10 6,17 . 7.35 8,62 9,99
24 0.28 0.63 1.04 1.53 2.10 2.77 3.51 4.35 5,28 6.30 7,39 8,59
28 0,25 0,55 0.91 1.33 1.83 2.41 3.06 3.79 4.60 5.50 6,46 7,51
32 0.22 0,48 0.80 US 1.62 : 2:13 2.71 3.36 4.08 4.87 5.73 6,67
36 0.20 0.43 0.72 1.06 1.45 1,91 2.43 3.01 3.66 4.37 5,15 5.99
C, in. 7.85 16.8 27,3 39.9 54.6 71.5 90.9 113 137 164 194 , 226
2 1.31 3,28 5.35 7.42 9.47 11,5 13.5 15.5 17.5 19.5 21,4 23,4
3 1.12 2,93 4,94 7.03 9.12 11,2 13.2 15.3 17.3 19.3 21,3 23,3
4 0.98 2,63 4.52 6.59 8.70 10;8 12.9 14.9 17.0 19.0 21.0 23,0
5 0.87 2.37 4.13 6,15 8.25 10.4 12.5 14.6 16.6 18.7 20.7 22,8
6 0.79 2,15 3,78 5,72 7.78 9.90 12.0 14.1 16.2 18,3 20.4 22,4
7 0.71 1.97 3.47 5.32 7.33 9.43 11.6 13,7 15.8 17,9 20.0 22,1
8 0.65 1.81 3.19 4,95 6.89 8.95 11.1 13.2 15.4 17,5 19,6 21,7
9 0.60 1.67 2.95 4,62 6.48 8.49 10.6 12.7- 14.9 17.0 19.1 21,3
10 0.56 1.55 2.75 4,33 6.10 8.05 10.1 12.2 14.4 16.5 18,7 20.8
6
12 0.49 1.35 2.40 3,82 5.43 7.25 9.21 11.3 13,4 15.5 17,7 19,8
14 0.44 1.20 2,14 3,41 4.86 6.56 8,40 10.4 12,4 14,5 16,7 18,8
16 0.39 1.08 1,92 3.07 4.40 5.96 7,69 9.56 11,5 13,6 15.7 17,8
18 0.36 0.97 1.75 2.79 4.00 5.46 7.06 8.83 10,7 12,7 14.7 16,8
20 0.33 0.89 1.60 2.56 3.67 5.02 6.52 8.18 9,97 11.9 , 13.9 15.9
24 0,28 0,76 1.37 2.18 3.14 4.32 5.62 7.11 8,71 10.4 12.3 14,2
28, 0.25 0,66 1.19 1.90 2.75 3.78 4,93 6.26 : 7,70 , 9,27 11.0 :12.7
32' 0.22 0,58 1.05 1,68 2.44 i35 4.38 5.58 6.88 8.31 9.85 ,11,5
36 0,20 0,52 0.95 1.51 2.19 3.01 3.94 5.02 6.21 7.52 8.93 10,4
C, in. 7.85 19,6 35.6 56.6 82.5 114 150 192 239 292 350 414
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-49
Table 7-9 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 15°
Available strength of a bolt group,
or /?„/Q, is determined with
/?„=Cx/'„
or
LRFD ASO
. OPa
^min — r
h
where
P = required force, Pu or Pg, kips
fn = nominal strength per bolt, kips
e = eccentricity of f with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
e, = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
s,in. ex, in.
Number of Bolts in One Vertical Row, n
s,in. ex, in.
1 2 3 4 5 6 7 8 9 10 11 12
2 1.35 2.96 4.75 6,67 8,67 10.7 12.7 14.8 16,8 18,8 20.9 22,9
3 1,16 2.58 4.20 5,98 7,90 9.89 11.9 14.0 16,0 18,1 20.2 22,2
4 1.02 2.28 3.73 5,37 7,17 9.08 11.1 13.1 15,2 17.3 19.3 21,4
5 0.90 2.03 3.35 4,85 6,53 8.34 10;3 12,2 14,3 16.3 18.4 20,5
6 0.81 1.84 3.03 4,40 5.96 7,66 9.48 11,4 13,4 15.4 17.5 19,6
7 0.74 1.67 2.76 4,02 5,48 7,06 8.79 10,6 12,6 14.5 16.6 18,6
8 0.68 1.53 2.53 3,70 5,05 6,53 8.17 9,91 11,8 13,7 15.7 17.7
^ 9 0.63 1,42 2.34 3,43 4,68 6,07 7.61 9,27 11,0 12.9 14,8 16.8
10 0.58 1.31 2.17 3,19 4,36 5,66 7.12 8,69 10,4 12,2 14,0 16.0
0.
12 0.51 1.15 1.90 2,79 3,82 4.97 6.28 7:69 9,23 10,9 12,6 14.4
14 0.45 1.02 1.69 2,48 3,40 4.43 5.61 6,88 8,29 9.79 11,4 13.1
16 0.41 0.91 1.51 2,23 3,05 3.99 5:05 6,21 7,50 8.88 10,4 11.9
18 0.37 0.83 1.37 2,02 2,77 3.63 4.60 5,66 6,84 8,11 9,48 11.0
20 0.34 0.76 1.26 1,85 2,54 3.32 4.21 5,19 6,28 7.45 8,73 10.1
24 0.29 0.65 1.07 1,58 2,16 2.84 3.60 4,45 5,39 6,40 7.52 8.71
28 0.25 0.56 0.93 1,37 1.89 2.47 3.14 3,88 4.71 5.61 6.59 7.64
32 0.23 0.50 ff.83 1,22 1,67 2.19 2.78 3,44 4,18 4.98 5.86 6.80
36 0.20 0.45 0.74 1,09 1.50 1.96 2.49 3,09 3.75 4.47 5,27 6.12
2 1.35 3.29 5.33 7,39 9,42 11.4 13.4 15,4 17.4 19.4 21,4 23.4
3 1.16 2.94 4.93 6,99 9,05 ii.r 13.1 15.2 17.2 19.2 21,2 23.2
4 1.02 2.64 4.52 6,55 8.63 10.7 12.8 14.8 16.9 18,9 20,9 22.9
5 0.90 2.38 4.15 6.12 8.18 10.3 12.4 , 14.4 16.5 18,5 20,6 22.6
6 0.81 2.17 3.82 5,70 7.72 9.80 11.9 "14.0 16.1 18,2 20,2 22.3
7 0.74 1.99 3.52 5,31 7.28 9.33 11.4 13.5 15.6 17,7 19,8 21.9
8 0.68 1.83 3.25 4,95 6.86 8.87 11.0 13.1 15.2 17,3 19,4 21.5
9 0.63 1.69 3.02 4,63 6.46 8.43 10.5 12.6 14.7 16.8 18,9 21,0
10 0.58 1.58 2.81 4,34 6.10 8.00 10,0 12.1 14.2 16.3 18,4 20,5
6
12 0.51 1.38 2.47 3,84 5.45 7.23 9.15 11.2 13.2 15.3 17.4 19,6
14 0.45 1.23 2.20 3,44 4.91 6.56 8.38 10.3 12.3 14.4 16,5 18.6
16 0.41 1.10 1.98 3,11 4.46 5.99 7.69 9.52 11.5 13.5 15.5 17.6
18 0.37 1.00 1,80 2,83 4.08 5.49 7.09 8.82 10.7 12.6 14.6 16.6
20^ 0.34 0.92 1.65 2,60 3.75 5,06 6.56 8.20 9,96 11.8 13.8 15.7
24- 0.29 0.78 1,41 2,23 3.22 4,36 5,70 7.15 8,74 10.4 12.2 14.1
' 28 0.25 0.68 1,23 1,95 2.82 3,83 5,02 6,32 7,76 : 9.31 11,0 12.7
32 0.23 0.60 1,09 1,73 2,50 3,41 . 4,47 5,64 6,96 8.38 9,90 11.5
36 0.20 0.54 0,97 1,55 2.25 3,07 4,03 5,09 6,30 7.60 9,01 10.5
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-50
; DESIGN CONSIDERATIONS FOR BOLTS
'Mil
Table 7-9 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 30°
Available strength of a bolt group,
(j)fl„ or Ri,/Q, is determined with
Rn^'Cxrn
or
LRFD ASD
^min— "'J
'n
where
P = required force, P„ or Pa, kips
r„ - nominal strength per bolt, kips
e = eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex - horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
s,in. ex, in. s,in. ex, in.
1 2 3 5 6 7 8 9 10 11 12
2 1.49 3,12 4.91 6.80 8.75 10,7 12.7 14,7 16,7 18.7 20.8 22.7
3 1.29 2.74 4.39 6.16 8.04 9,98 12.0 14.0 16.0 18.0 20.0 22.1
4 1.13 2.43 3.95 5.60 7.37 9,24 11,2 13,2 15,2 17.2 19.2 21.3
.5 1.00. 2.18 3.58 5.10 6.77 8,55 10.4 12,4 14.3 16.3 18.4 20.4
6 0.90 1.98 3.26 4.67 6.23 7,93 9.72 11,6 13,5 15.5 17.5 19.5
7 0.82 1.81 2.99 4.30 5.76 7,37 9.08 10,9 12,8 14.7 16.7 18.7
8 0,75 1.67 2.76 3.97 5.35 6,87 8.49 10,2 12,0 13.9 15.9 17.8
9 0.70 1.55 2.56 3.69 4.98 6.42 7.96 9.62 11,4 13.2 15.1 17.0
10 0.65 1.44 2.38 3.44 4.66 6.02 7.49 9.07 :10.8 12.5 14.4 16.2
3
12 • 0.57 -1.26 2,09 3.03 4.13 5.34 6.66 8,12 9,67 11.3 13.0 14.8
14 0.50 1.12 1.86 2,71 3,69 4.78 5.99 7.33 8.75 10.3 11,9 13.6
16 0.45 1.01 1.67 2.44 3,33 4,33 5.44 6.66 7.98 9.39 10.9 12.5
18 0.41 0,92 1.52 2.22 3.03 3,95 4.97 6.10 7.32 8.64 10.1 11.5
20 0.38 0.84 1.39 2.03 2.78 3,62 4.57 5.62 6.75 7.98 9.30 10.7
24 0.32 0.72 1,19 1.74 2,38 3,11 3.93 4.84 5.83 6.92 8.08 9.32
28 0.28 0.63 1.04 1.52 2.08 2.72 3.44 4.24 5.13 1 6.09 7.12 8,24
32 0,25 0.56 0.92 1.35 1.84 2.41 3.06 3.77 4.57 5.43 6.36 7.37
36 0.23 0.50 0.83 1.21 1.66 2.17 2.75 3.40 4.11 4.89 5.74 6.66
2 1.49 3.36 5,36 7.37 9.38 11.4 13.4 15.4 17.4 19.3 21.3 23,3
3 1.29 3.02 4.97 6.99 9.01 11.0 13.1 15.1 17.1 19.1 21,1 23.1
4 1.13 2.73 4.60 6,58 8.61 10.7 12.7 14.7 16.7 18.8 20.8 22,8
5 1.00 2.48 4.26 6,18 8.18 10,2 12.3 14.3 16.4 18,4 20,4 22.4
6 0,90 2.27 3.96 5.80 7.76 9,79 11.8 13.9 15.9 18,0 20.0 22.1
7 0,82 2.09 3.68 5.44 7.36 9,35 11.4 13.5 15.5 17,6 19.6 21.7
8 0,75 1.93 3.43 5.11 6.97 8.93 11.0 13.0 15.1 17,1 19.2 21.2
9 0.70 1.80 3.21 4.81 6.61 8.53 10.5 12.6 14.6 16.7 18.7 20,8
10 0.65 1.68 3.01 4.53 6.27 8.14 10.1 12.1 14.2 16.2 18.3 20.4
6
12 0.57 1.49 2.67 4.05 5.67 7.43 9.31 11.3 13.3 15.3 17.4 19.4
14 0.50 1.33 2.39 3.65 5.15 6.81 8.60 10,5 12.4 14.4 16.5 18.5
16 0.45 1.20 2.16 3.31 4.71 6.27 7,96 9,76 11.7 13.6 15.6 17.6
18 0.41 1.09 1.97 3,03 4.34 5.79 7.39 9,12 10.9 12,8 14.8 16.8
20 0.38. 1.00 1,81 2,80 4.01 5.37 .6,89 8,53 10.3 12,1 14.0 15.9
24 0.32 0.86 1,55 2.41 3.48 4.68 : 6,04 7,53 9.14 10.8 12:6 14,5
28 . 0,28 0.75 1,35 2.12 3,06 • 4.13 5,36 6,72 .8.19 9.76 11.4 13,2
^ 32 0.25 1,67 1,20 1.89 2,73 3;69 4,81 6,05 7.40 8.86 10.4 12,0
36 0.23 0,60 1,08 1.70 2,46 3,34 4,36 5,50 6.74 8.09 9.53 11.1
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-51
Table 7-9 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 45°
Available strength of a bolt group,
iffln or R„/0., is determined with
R„=Cxr„
or
LRFD ASD
Cmin =
« QPs
^niin - ,
'n
where
P = requiredforce, PuOrPa, kips
r„ - nominal strength per bolt, kips
e - eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex - horizontal component of e. In.
s = bolt spacing, in.
C = coefficient tabulated below
i—
5, in. ex, in.
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 8 9 10 11 12
2 1.70 3.43 5.22 7,06 8,95 10.9 12.8 14.8 18.8 18.7 20.7 22,7
3 1.51 3.09 4.76 6,52 8,35 10,2 12.2 14.1 16.1 18.0 20.0 22.0
4 1.35 2.78 4.34 6,01 7.78 9,60 11.5 13.4 15.3 17.3 19.3 21.3
5 1.21 2.52 3.97 5,57 7.25 9,01 10.8 12.7 14.6 16.6 18,5 20.5
6 1.10 2.30 3,67 5,17 6.78 8,47 10.2 12,1 13.9 15.9 17.8 19.8
7 1.00 2.12 3.40 4,82 6.35 7,97 9.67 11,5 13.3 15.2 17,1 19.0
8 0.92 1.96 3.17 4,51 5.96 7.51 9.15 10,9 12.7 14.5 16,4 18,3
9 0.85 1.82 2.96 4,23 5,60 7.08 8.68 10.4 12.1 13.9 15,7 17,6
10 0.79 1.70 2.78 3,97 5,28 6.70 8.24 9.86 11.5 13.3 15.1 17,0
3
12 0.69 1.50 2.46 3,54 4,73 6.04 7.46 8,97 10.6 12.2 14.0 15,7
14 0.61 1.34 2.21 3,18 4,27 5.48 6.80 8,21 9.70 11.3 12.9 14.6
16 0.55 1,21 2.00 2,88 3,89 5.01 6.23 7,54 8.95 10.4 12.0 13.6
18 0.50 1.11 1.82 2,64 3,56 4.60 5.74 6.97 8,30 9.71 11.2 12.7
20 0.46 1.02 1.87 2,42 3,29 4.25 5.31 6,47 7,73 9,06 10.5 11.9
24 0.40 0.87 1.43 2,09 2,84 3.68 4.62 5,65 6,77 7,96 9.23 10.6
28 0.35 0.76 1.26 1,83 2,49 3.24 4.07 5,00 6.00 7,08 8.24 9.47
32 0.31 0.68 1.12 1,63 2,22 2.89 3,64 4,47 5.38 6.37 7.43 8.56
36 0.28 0.61 1.00 1,46 2,00 2.60 3.29 4,04 ,4,87 5.78 6.75 7.79
2 1.70 3.52 5.44 7.40 9,37 11.4 13.3 15,3 17,3 19.3 21.3 23.2
3 1.51 3.23 5.11 7.06 9,03 11.0 13,0 15,0 17,0 19.0 21.0 22.9
4 1.35 2.96 4.79 6.70 8,67 10.7 12,7 14.8 16,6 18.6 20.6 22.8
5 1.21 2.72 4.48 6.38 8,30 10.3 12.3 14,3 16,3 18.3 20.3 22.3
6 1.10 2.51 4.20 6.03 7,94 9.90 11,9 13.9 15.9 17.9 19.9 21.9
7 1.00 2.33 3.96 5.73 7,60 9.53 11.5 13,5 15.5 17.5 19.5 21.5
8 0.92 2.18 3.73 5,45 7,27 9.17 11.1 13.1 15.1 17.1 19.1 21.1
9 0.85 2.04 3,53 5,19 6,96 8.83 10.8 12.7 14.7 16.7 18.7 20.7
10 0.79 1.92 3,35 4,94 6,87 8.50 10.4 12.4 14.3 16.3 18.3 20.3
6
12 0.69 1.71 3.02 4,50 6,13 7.88 9,73 11.6 13.6 15.5 17.5 19.5
14 0.61 1.55 2,75 4,12 5,65 7.33 9,11 11.0 12.9 14.8 16.8 18.8
16 0.55 1.41 2,51 3,78 5,22 6.83 8,55 10.3 12,2 14,1 16.0 18.0
18 0.50 1,29 2,31 3,49 4.85 6.39 8,04 9.77 11.6 13,4 15,3 17.3
20 0.46 1,19 2,13 3,24 4.53 6.00 7.57 9.25 11.0 12.8 14.7 16.6
24 0.40 1,03 1,84 2,82 3.99 5.32 6,76 8.32 9.97 11.7 13,5 15.3
28 0.35 0.90 1,62 2,50 3,56 4.76 6,09 7.53 9.08 10.7 12,4 14.2
32 0.31 0.80 1.44 2,24 3.20 4.30 5,52 6.86 8.32 9.85 11,5 13.1
36 0.28 0.72 1,30 2,02 2.90 3.92 5,04 6.30 7.66 9.10 10,6 12.2
N,
AMERICAN INSTRROTE OF STEEL CONSTRUCTION

7-52
; DESIGN CONSIDERATIONS FOR BOLTS
ftp
I I
Table 7-9 (continued)
Coefficients C for Eceentrically Loaded Bolt Groups
Angle = 60°
Available strength of a bolt group,
(])/?„ or /?„/n, Is determined with
Cx fn
or
LRFD ASO
^ CiPa
Cmin - .
'n
where
P = required force, P„or Pa, kips
r„ ~ nominal strength per bolt, kips
e = eccentricity of Pwith respect
to cenfroid of bolt group, in,
(not tabulated, maybe
determined by geometry)
ex = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
-—
-4-4-
Number of Bolts in One Vertical Row, n
5, in. e^in. 5, in. e^in.
1 2 3 4 5 6 7 8 9 10 11 12
2 1.86 3.71 5.56 7.41 9.28 11.2 13.1 15.0: 16.9 18.8 20.8 22,7
3 1.77 3.52 5.29 7.07 8.88 10.7 .12.6 14.5 16.4 18.3 20.2 22.1
4 1.66 3.31 4.99 6.70 8.45 10.3 12.1 13.9 15.8 17.7 19.6 21.6
5 1.54 3.10 4.70 6.34 8.04 9.79 11.6 13.4 15.3 17.1 19.0 21.0
6 1.43 2.90 4.41 6.00 7.64 9.35 11.1 12.9 14.7 16.6 18.5 20.4
7 1.33 2.71 4.15 5.68 7.27 8.94 10.7 12.4 14.2 16.1 17.9 19.8
8 1.24 2.54 3.92 5.39 6.94 8.56 10.3 12.0 13.8 15.6 17.4 19.3
9 1.16 2.38 3.70 5.12 6.63 8.22 9.86 11.6 13.3 15.1 16.9 18.7
10 1.08 2.24 3.51 4.88 6.34 7.89 9.49 11.2 12.9 14.6 16.4 18.2
3
12 0,96 2.00 3.17 4.44 5.82 7.28 8.81 10.4 12.1 13.8 15.5 17.3
14 0,86 1.81 2.88 4,07 5.36 6.73 8.19 9-/2 11.3 13.0 14.7 16.4
16 0.77 1.64 2.64 3,74 4.95 6.25 7.64 9.11 10.7 12.2 13.9 15.6
18 0.70 1.51 2.43 3.46 4.59 5.83 7.15 8.56 10.0 11.6 13.2 14.8
20 0.65 1.39 2.25 3.21 4.28 5.45 6.71 8.06 9.48 11.0 12.5 14.1
24 0.56 1.20 1.95 2.80 3.76 4.81 5.96 7.19 8.50 9.88 11.3 12.8
28 0.49 1.06 1.72 2.48 3.34 4.29 5.34 6.47 7.68 8.97 10.3 11.7
32 0.43 0.94 1.54 2.22 3.00 3.87 4.83 5.87 6.99 8.19 9.46 10.8
36 0.39 0.85 1.39 2.01 2.72 3.S2 4.40 5.36 6.41 7.53 8.71 9.96
2 1.86 3.72 5.59 7.50 9.43 11.4 13.3 15:3 17.3 19.2 21.2 23.2
3 1.77 3.55 5.37 7.25 9.16 11.1 13.0 15.0 17.0 18.9 20.9 22.9
4 1.66 3.36 5.14 6.98 8.88 10.8 12.7 14.7 16.7 18.6 20.6 22.6
5 1.54 3,17 4.90 6.72 8.59 10.5 12.4 14.4 16.3 18.3 20.3 22.2
6 1.43 2.99 4.67 6.46 8.31 10.2 12.1 14.1 16.0 18.0 19.9 21.9
7 1.33 2.82 4.46 6.21 8.05 9.92 11.8 13.8 15.7 17.7 19.6 21.6
S 1.24 2.67 4.26 5.98 7.79 9.65 11.5 13.5 15.4 17.3 19.3 21.3
9 1.16 2.52 4.08 5.76 7.55 9.39 11:3 13.2 .15.1 17.0 19.0 20.9
10 1.08 2.40 3.91 5.56 7.32 9.14 11.0 12.9 14.8 16.7 18.7 20.6
6
12 0.96 2.17 3.61 5.20 6.90 8.66 10.5 12,4 14.2 16.1 18.1 20.0
14 0.86 1.98 3.35 4.87 6.51 8.23 10.0 : 11.8 13.7 15.6 17.5 19.4
16 0.77 1.82 3.11 4.57 6.15 7.81 9.56 11.4 13.2 15.1 16.9 18.9
18 0.70 1.69 2.91 4.30 5.81 7.43 9.13 10.9 12.7 14.5 16.4 18.3
20 0.65 1.57 2.72 4.05 5.50 7.07 8.73 10.5 12.2 14:1 15.9 17.8
24 0.56 1.37 2.41 3.61 4.96 6.43 8.00 9.67 11.4 13.2 15.0 16.8
28 0.49 1.22 2.15 3.25 4.49 5.88 ; 7.38 8.97 10.6 12.3 14.1 15.9
32 0.43 1.09 1.94 2.94 4.10 5.41 e.83 8.34 9.92 11.6' 13.3
15.0
36 0.39 0.99 1.76 2.69 3.77 5.00 6.35 7.78 9.30 10.9 12.5
142
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-53
Table 7-9 (continued)
Goefficients C for Eccentrically Loaded Bolt Groups
Angle - 75°
Available strength of a bolt group,
<t)/?n or fffl/iJ, is determined with
/?„=Cxr„
or
LRFD ASO
. "Pa
^min ~ • ••
In
where
P = required force, P^or Pg, kips
r„ = nominal strength per bolt, kips
e = eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex = horizontal component of e, in.
s - bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
S, Ml. Cjt, lU.
1 2 3 4 5 6 7 8 9 10 11 12
2 1.94 3,87 5.79 7.70 9,61 11,5 13,4 15.3 17,3 19.2 21,1 23.0
: 3 1.92 3.82 5.70 7.58 9,45 11,3 13,2 15.1 17,0 18.9 20,8 22.7
4 1.89 3.75 5,60 7.43 9.26 11,1 12,9 14.8 16,7 18.5 20,4 22.3
5 1.85 3.67 5,48 7.28 9.07 10.9 12.7 14.5 16,4 18,2 20,1 22.0
6 1.81 3.59 5.35 7.11 8,87 10.6 12.4 14.2 16,1 17,9 19,8 21.6
7 1.76 3,50 5.22 6,94 8,67 10.4 12.2 14.0 15,8 17,6 19,4 21,3
8, 1.71 3,40 5,08 6,76 8,46 10.2 11.9 13.7 15.5 17,3 19,1 21,0
9 1,66 3.30 4,94 6.59 8,26 9.96 11.7 13.4 15.2 17,0 18,8 20,6
A
10, 1.61 . 3,20 4,80 6.42 8,06 9,73 11.4 13.2 14,9 16,7 18.5 20,3
0
12 1.51 3,01 4,53 6.08 7,67 9.30 11,0 12.7 14.4 16.2 17.9 19,7
14. 1.41 2,82 4.27 5.76 7,31 8.90 10.5 12.2 13.9 15.6 17.4 19.2
16 1.31 2,65 4.03 5.47 6,96 8.52 10.1 11.8 13.4 15.2 16.9 18.6
: 18 1.23 2.48 3.80 5.19 6,64 8.16 9,73 11.3 13.0 14.7 16.4 18,1
20 1.15 2.34 3.60 4.93 6,34 7.82 9.36 10.9 12.6 14.2- 15.9 17,7
24 1.01 2.08 3.23 4.48 5.80 7.20 8.67 10.2 11.8 13.4 15.0 16,7
28 0.90 1,87 2,93 : 4.08 5.33 6.65 8.06 9,52 11.0 12.6 14.2 15,9
32 0,81 1.69 2,67 375 4.91 6.17 7.51 8.91 10.4 11.9 13.5 15,1
36 0.73 1.5,4 2,45 3.45 4,55 5.74 7,01 8,36 9.77 11,2 12.8 14,3
2 1,94 3.86 5,77 7,68 9.60 11.5 13.5 15.4 17.6 19.6 21.5 23,5
3 1,92 3.80 5,68 7,55 9.45 11.4 13.3 15.2 17.2 19.1 21.1 23,0
4 1.89 3.74 5,57 7.42 9.29 11.2 13.1 15.0 16.9 18.9 20,8 22,8
5 1.85 3.66 5,46 7.29 9.14 11.0 12.9 14.8 16.7 18.7 20,6 22,6
6 1.81 3.58 5.35 7.15 8,98 10.8 12.7 14.6 16.5 18.5 20,4 22.3
7 1.76 3:49 5.23 7.01 8,83 10.7 12.5 14.4 16.3 18.3 20,2 22.1
8 1.71 3.40 5.12 6.88 8,68 10.5 12.4 14.3 16,2 18.1 20,0 21.9
9 1.66 3.31 5.00 6.74 8.53 10.4 12,2 14.1 16,0 17.9 19.8 21,7
10 1.61 3.22 4.89 6.61 8.38 10.2 12.0 13.9 15.8 17.7 19.6 21,5
6
12 1.51 3,05 4.67 6.36 8.10 9.89 11.7 13.6 15.4 17.3 19.2 21,1
14 1.41 2.88 4.46 6.12 7.84 9.61 11.4 13.3 15,1 17.0 18.9 20.8
16 1.31 2.73 4.26 5.89 7.59 9.33 11.1 12.9 14,8 16.6 18.5 20.4
18 1.23 2.58 4,08 5.68 7.35 9.08 10.8 12.7 14.5 16.3 18.2 20.1
20 1.15 2.45 3.90 5.47 7^13 8.84 10.6 12.4 14.2 16.0 17.9 19.7
24 1.01 2,21 3.59 5.10 6.71 8.38 10.1 11.9 13.6 15.5 17,3 19.1
28: 0,90 2.01! 3.32 4.77 6,32 ^ 7.96^ 9.65 11.4 13.1 14.9 16.7 18.5
32 0.81 1.84 3.08 4.47 5,97 7.56 9.21 10,9 12.7 14,4 16.2 18.0
36 0,73 1.70 2.87 4.19 5,64 7,191 8.80 10,5 12.2 13,9 15.7 17.5
AMERRCAN INSTITUTE OF STEEL CONSTRUCHON

7-54
; DESIGN CONSIDERATIONS FOR BOLTS
Table7-10
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 0°
Available strength of a bolt group,
or fln/Q, is determined with
fl/,= Cxr„
or
LRFD ASD
r ^min — ,,
'n
where
P - required force,/V or Pa, l^ips
r„ = nominal strength per bolt, kips
e = eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
Bx = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
T"
— <
---$—

•t-
-i-J
Number of Bolts In One Vertical Row, n
s, in. e„ in. s, in. e„ in.
1 2 3 4 5 6 7 8 9 10 11 12
2 . 1.71 4.07 6.81 9.86 13.0 16.1 19.3 22.3 25.4 28.5 31.5 34.5
3 • 1.42 3.40 5.79 8.61 11.7 14.8 18.0 21.1 24.3 27.4 30.5 33.6
4. 1.21 2.90 4.97 7.53 10,4 13.4 16.6 19.8 23.0 26.1 29.3 32.5
5 1.05 2.51 4.34 6.64 9.24 12.1 15.2 18.3 21.5 24.7 27.9 31.1
6 0.92 2.21 3.85 5.91 8.27 11.0 13.9 16.9 20.0 23.2 26.4 29.7
7 0.81 1.96 3.44 5.31 7.46 9.95 12.7 15.6 18.6 21.8 25.0 28.2
8 0.72 1.76 3.11 4.80 6.78 9.09 11.6 14.4 17.3 20.4 23.5 26.7
9 0.64 1.60 2.83 4.38 6.20 8.34 10.7 13.3 16.1 19.1 22.1 25.2
10 0.58 1.46 2.59 4.02 5.71 7.70 9.91 12.4 15.0 17.9 20.8 23.8
3 12 0.49 1.24 2.21 3,44 4.91 6.65 8.59 10.8 13.2 15.7 18,5 21.3
14 0.42 1.08 1.92 3.00 4.30 5.83 7.57 9.53 11.7 14.0 16.5 19.2
16 0.37 0.95 1.70 2.66 3.82 5.19 6.75 8.51 10.5 12.6 14.9 17.3
18 0.33 0.85 1.52 2.39 3.43 4.67 6.08 7.68 9.45 11.4 13.5 15.8
20 0.29 0.77 1.37 2.16 3.11 4.24 5.53 6.99 8.61 10.4 12.3 14.4
24 0.24 0.64 1.15 1.82 2.62 3.57 4.67 5.92 7.30 8.84 10.5 12.3
28 0.21 0.55 0.99 1.57 2.26 3.08 4.04 5.12 6.33 7.67 9.13 10.7
32 0.18 0.49 0.87 1.38 1.98 2.71 3.55 4.51 5,58 6.77 8.06 9.47
36 0.16 0.43 0.77 1.23 1.77 2.42 3.17 4.03 4.99 6.05 7.21 8.48
C, in. 5.89 15.8 28.0 44.7 64.3 88,5 116 148 183 223 267 315
2 1.71 4.85 8.04 11.2 14.2 17.3 20.3 23.2 26.2 29.2 32.2 35.1
3 1.42 4.24 7.36 10.6 13.7 16.8 19.9 22.9 25.9 28.9 31,9 34.9
4 1.21 3.72 6.66 9.86 13.1 16.2 19.4 22.4 25.5 28.5 31,6 34,6
5 1.05 3.29 6.00 9.14 12.4 15.6 18.7 21.9 25.0 28.1 31.1 34,2
6 0.92 2,93 5.41 8.44 11.6 14.9 18.1 21.2 24.4 27,5 30.6 33,7
7 0.81 2.63 4.90 7.79 10.9 14.1 17.3 20.6 23.7 26,9 30.0 33,2
8 0.72 2.38 4.46 7.20 10.2 13.4 16.6 19.8 23.0 26.2 29,4 32.6
9 0.64 2.17 4.09 6.67 9.54 12.6 15.8 19.1 22.3 25.5 28.7 31.9
10 0.58 2.00 3.78 6.20 8.94 12.0 15.1 18.3 21.6 24.8 28.0 31.2
6
12 0.49 1.71 3,27 5.41 7.88 10.7 13.7 16.8 20.0 23.3 26.5 29.8
14 0.42 1.49 2.87 4.78 7.01 9.61 12.4 15.4 18.6 21.8 25.0 28.2
16 0.37 1.32 2.55 4.28 6,29 8.69 11.3 14.2 17.2. 20.3 23.5 26.7
18 0.33 1.19 2,30 3.86 5.70 7.91 10.4 13,1 15.9 18.9 22.0 25.2
20 0.29 1.08 2,09 3.51 5.20 7.25 9.54 12.1 14.8 17,7 20.7 23.8
24 0.24 0.91 1,76 2,97 4.42 6.19 8.19 10.4 12.9 15.5 18.3 21.2
28 0.21 0.78 1,52 2,57 3.84 5.39 7.14 9.15 11.4 13.7 16.3 19.0
32 0.18 0;69 1.33 2.27 3.39 4.77 6.33 8.13 10.1 12.3 14.6 17.1
• 36 0.16 0.61 1.19 2.03 3.03 4.27 5.67 7.30 9.10 11.1 13.2 15.5
C, in. 5.89 22.4 43.3 74.4 112 158 212 275 345 424 510 606
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-55
Table 7-10 (continued)
Coefficients C for. Eccentrically Loaded Bolt Groups
Angle = 15°
Available strength of a bolt group,
or R„ISt, is determined witti
or
LRFD ASD
. CiP,
where
P = required force, Pu or Pa kips
rn - nominal strength per bolt, kips
e = eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
Bx = horizontal component of e, in.
s = bolt spacing, In.
C - coefficient tabulated below
—4-—4- 7
-M
-J
s,m. ex, in.
Number of Bolts in One Vertical Row, n
s,m. ex, in.
1 2 3 4 5 6 7 8 9 10 11 12
2 1.77 4,10 6.84 9.82 12.9 16.0 19,1 22.2 25.2 28.3 31.3 34.3
3 1.47 . 3.45 5.86 8.61 11.6 14.7 17,8 20.9 24.1 27.2 30,3 33.3
4 1.25 2.95 5.07 7.55 10.4 13.3 16,4 19.5 22 J 25.8 29.0 32.1
5 1.08 2.57 4.44 6.67 9.26 12.1 15,1 18.1 21.3 24.4 27.6 30.7
6 0.94 2.26 3.93 5.96 8.33 11.0 13,8 16.8 19.8 23.0 26.1 29.3
7 0.83 2.01 3.52 5.37 7.55 9.97 12,7 15.5 18.5 21.5 24.7 27.8
8 0.74 1.81 3.18 4.87 6.88 9.13 11,7 14.4 17.2 20.2 23.2 26.4
9 0.66 1.64 2.90 4.45 6.31 8.40 10,8 13.3 16.1 18.9 21.9 25.0
10 0.60 1.50 2.65 4.10 5.81 7.77 9,99 12.4 15.0 17.8 20.7 23.6
12 0.50 1.28 2.27 3.52 5.01 6.74 8,71 10.9 13.2 15,8 18.4 21,2
14 0.43 1.11 1.98 3.08 4.40 5.93 7,69 9.62 11.8 14.1 16.5 19,1
16 0.38 0.98 1.75 2.73 3.91 5.29 6,87 8.62 10,6 12.7 15.0 17,4
18 0.34 0.88 1.57 2.45 3.52 4.77 6,20 7.80 9.59 11.5 13.6 15,9
20 0.30 0.79 1.42 2.22 3.19 4.33 5.65 7,12 8.76 10.5 12.5 14,6
24 0.25 0.67 1.19 1.87 2.69 3.66 4.78 6.04 7.45 8.99 10.7 12,5
28 0.22 0.57 1.02 1.61 2,32 3.17 4.14 5,24 6.47 7.82 9.31 10,9
32 0.19 0.50 0.90 1.42 2,04 2.79 3.65 4,62 5.72 6.92 8.24 9,66
36 0.17 0.45 0.80 1.26 1,82 2.49 3.26 4,13 5.11 6.20 7,38 8,66
2 1.77 4.83 7.98 11.1 14,1 17.2 20.2 23,2 26.1 29.1 32.1 35,0
3 1.47 4.22 7.31 10,5 13,6 16.7 19.7 22,8 25.8 28.8 31.8 34,8
4 1.25 3.71 6.64 9.77 12,9 16.1 19.2 22,3 25.3 28.3 31.4 34,4
5 1.08 3.28 6.01 9,06 12,2 15.4 18.5 21,7 24.8 27.8 30.9 33,9
6 0.94 2.94 5.45 8.38 11,5 14.7 17.8 21.0 24.1 27.2 30.3 33,4
7 0.83 2.65 4.97 7.75 10,8 13.9 17.1 20.3 23.5 26.6 29.7 32,8
8, 0.74 2.40 4.55 7.17 10,1 13.2 16.4 19.6 22.7 25.9 29.1 32,2
9 0.66 2.20 4.18 6.66 9,49 12.5 15.6 18,8 22.0 25.2 28.4 31.5
10 0.60 2.02 3.86 6.20 8,92 11.9 14.9 18,1 21.3 24.5 27.6 30.8
6
12 0.50 1.74 3.34 5,43 7,91 10.6 13.6 16.6 19.8 23.0 26.1 29.3
14 0.43 1.52 2.94 4.82 7,07 9.60 12.4 15.3 18.4 21.5 24.6 27.8
16 0.38 1.35 2.62 4.32 6,38 8.71 11.3 14.1 17.0 20.1 23.2 26.3
18 0.34 1.22 2.36 3.91 5,79 7.95 10.4 13.0 15.8 18.8 21.8 24,9
20 0.30 1.10 2.14 3.57 5.30 7.31 9.60 12.1 14.8 17,6 20,5 23,5
: 24 0.25 0.93 1.81 3.03 4.52 6,26 8.28 10.5 12.9 15,5 18,2 21,1
28 0.22 0.80 1.56 2.63 3.93 5,47 7.26 9.24 11.4 13,8 16.3 18.9
32 0.19 0.71 1.37 2.32 3.47 4,85 6.45 8.23 10.2 .12,4 14.7 17.1
36 0.17 0.63 1.23 2.08 3.11 4,35 5.80 7.41 9.23 11,2 13.3 15.6
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-56 ; DESIGN CONSIDERATIONS FOR BOLTS
Table 7-10 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle- 30°
Available strength of a bolt group,
(ffln or /?„/Q, is determined with
/?„=Cxr„
or
LRFO ASD
r -
^ OPa
Crnin^- , -
rn
where
P = required force, Pu or Pa, kips
r„ = nominal strength per bolt, kips
B = eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
Bx - horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
s,in.
i '
3 .
Number of Bolts in One Vertical Row, n
ex. m. ex. m.
1 Z 3 4 5 6 7 8 9 10 11 12
2 1.94 4.26 6.99 9.90 12.9 16.0 19.0 22.0 25.1 28.1 31.1 34.1
3 1.61 3.63 6.09 8.80 11.7 14.7 17.7 20.8 23.9 27.0 30.0 33.1
4 1.37 3.15 5.35 7.83 10.6 13.5 16.5 19.5 22.6 25.7 28.7 31.8
5 1.19 2.77 4.74 7.00 9.54 12.3 15.2 18.2 21.2 24.3 27.4 30.5
6 1.04 2.45 4.23 6.30 8.67 11.3 14.1 17.0 19.9 23.0 26.0 29.1
7 : 0.92 • 2.19 3.81 5.71 7.92^ 10.4 13.0 15.8 18.7 21.7 24.7 27.8
8 0.82 1,98 3.45 5.22 7.27 9.58 12.1 14.8 17.6 20.5 23.4 26.4
9 0.74 ,1.80 3.16 4.79 6.71 8.88 11.2 13.8 16.5 19.3 22.2 25.2
10 0.67 1.65 2.90 4.42 6.22 8.26 10,5 12.9- 15.5 18.2 21.1 24.0
12 0.56 1.41 2.49 3.82 5.41 7.22 9.23 11.5 13.8 16.4 19.0 21.8
14 0.48 1.23 2.18 3.36 4.78 6.40 : 8.22 10.3 12.4 14.8 17.2 19.8
16 0.42 1.08 1.93 2.99 4.26 5.73 7.40 9.25 11.3 13.4 15.7 18.2
18 0.38 0.97 1.73 2.69 3.85 5.18 6.71 8.41 10.3 12.3 14.4 16.7
20 0.34 0.88 1;57 2.44 3.50 4.73 6.14 7.70 9.42 11.3 13.3 15.4
24 0.28 0.74 1.32 2.06 2.96, 4.01 5.22 6.58 8.08 9.72 11.5 13.4
28 0.24 0.64 1.14 1.78 2.56 3.48 4.54 5.73 7.05 '8.51 10.1 11.8
32 0.21 0.56 1.00 1.57 2.26 3.07 4.01 5.07 6.25 7.55 8.96 10.5
36 0.19 0.50 0.89 1.40 2.02 2.75 3.59 4.54 5.61 6.78 8.06 9.44
2 1.94 4.86 7.96 11.0 14.1 17.1 20.1 23.1 26.0 29.0 32.0 35.0
3 1.61 4.27 7.32 10.4 13.5 16.6 19.6 22.6 25.6 28.6 31.6 34.6
4 1.37 3.78 6.70 9.75 12.9 15.9 19.0 22.1 25;1 28.1 31.1 34.2
5 1.19 3.39 6.14 9.10 12.2 15.3 18.4 21.5 24.5 27.6 30.6 33.7
6 1.04 3.06 5.64 8.48 11.5 14.6 17.7 20.8 23.9 27.0 30.1 33,1
7 0.92 2.78 5.19 7.91 10.9 13.9 17.0 20.1 23.2 26.3 29.4 32.5
8 0.82 2.54 4.80 7.38 10.3 ; 13.3 16.3 19.4 22.6 25.7 28.8 31.9
9 0.74 2.34 4.45 6.90 9.67 12.6 15.7 18.7 21.9 25.0 28.1 31.2
10 0.67 2.16 4.14 6.46 9.14: 12.0 15.0 18,1 21.2 24.3 27.4 30.5
12 0.56 1.87 3.61 5.71 8.20: 10.9 13.8 16.8 19.8 22.9 26.0 29.1
14 0.48 1.65 3.20 5.10 7.41 9.95 12.7 15.6 18.5 21.5 24.6 27.7
16 0.42 1.47 2.86 4.60' 6.74 9.12 11.7 14.5 17.3 20.3 23.3 26.4
18 0.38 1.33 2.58 4.19 6.17: 8.39 10.8 13.5 16.2 19.1 22.0 25.0
20 0.34 1.21 2.35 3.84 5.68 7.75 10.1 12.6 15:2 18.0 20.9 23.8
24 0.28 1.02 2.00 3.29 4.89; 6.71 8.78 11.1 13.5 16.1 18.8 21.6
28 fl.24: 0.88^ 1.73 2.86 4.28 5.90 ' 7.77 9.83 12.1 14.5 17.0 19.6
32 0.21 i 0.78 1.52 2:54 3.80 5.25 6.95 8.83 10.9' 13.1- 15.4 17.9
: 36 ' 0.19 0.70 1.36 2.27 3.41 4.73 , 6.28 8.00 9.88 ,11.9 14.1 16.4
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-57
Table 7-10 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 45''
Available strength of a bolt group,
(t)fl„ or /?n/£J, is determined witli
or
LRFD ASO
C -. aPa
Cmin- ,
rn
wtiere
P = required force, or Pft kips
r„ = nominal strengtli per bolt, l<ips
e = eccentricity of Pwitli respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
e, = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
», 111. I"-», 111. I"-
1 Z 3 4 5 6 7 8 9 10 11 :
2 2.23 4.67 7.33 10.2 13.1 16.0 19.0 22.0 25.0 28.0 31.0 33.9
3 1.89 4.06 6.50 9.19 12.0 14.9 17.9 20.9 23.9 26,9 29.9 32.9
4 1.63 3.57 5.84 8.36 11.1 13.9 16.8 19.7 22.7 25,7 28.7 31.7
5 1.42 3.17 5.27 7.63 10.2 12.9 15.7 18.6 21.5 24,5 27,5 30.5
6 1.25 2.84 4.78 6.99 9.40 12.0 14.7 17.6 20.4 23,4 26,3 29.3
7 1.11 2.57 4.36 6.42 8.70 11.2 13.8 16.6 19.4 22,3 25,2 28.2
8 0.99 2.33 3.99 5,92 8.09 10.5 13.0 15.7 18.4 21,2 24,1 27.0
9 0.90 2.13 i3.68 5.49 7.54 9.80 12.2 14.8 17.5 20,3 23.1 26.0
Q 10 0.81 1.96 3.40 5.10 7.05 9.21 11.6 14.0 16.6 19,3 22.1 24.9
0
12 0.68 1.68 2.95 4.4e 6.22 8.19 10.4 12.7 15.1 17,7 20.3 23.0
14 0.59 1.47 2:59 3.95 5.55 7.35 9.34 11.5 13.8 16,2 18.7 21.3
16 0.52 1.31 2.31 3.54 4.99 6.65 8.49 10.5 12.7 14,9 17.3 19.8
18 • 0.46 1.17 2.08 3.20 4.54 6.06 7.77 9.64 11.7 13,8 16.1 18.5
20 0.41 1.06 1.89 2.92 4.15 5.56 7.15 8.90 10.8 12,8 15.0 17.2
24 0,35 o;9o 1.60 2.48 3.54 4.76 6.15 7.70 9.39 11,2 13,1 15.2
28 0.30 0.77 1:38 2.15 3.08 4.16 5.39 6.77 8.28 9,91 11,7 13.5
32 0.26 0.68 1.22 1:90 2.72 3.68 , 4.79 6.03 7.39 8,87 10,5 12.2
36 0.23 0.61 1.08 1.69 2.44 3.30 4.30 5.42 6.66 8,02 9,49 11.1
2 2.23 5.02 8.01 11.0 14.0 17.0 20.0 23.0 25.9 28.9 31,9 34.8
3 1.89 4.50 7.44 10.4 13.5 16.5 19.5 22.5 25.5 28.4 31,4 34.4
4 1.63 4.05 6.89 9.86 12.9 15.9 18.9 21.9 24.9 27.9 30,9 33.9
5 1.42 3.68 6.40 9.30 12.3 15.3 18.3 21.3 24.4 27.4 30,4 33.4
6 1.25 3,36 5.96 8.78 11.7 14.7 17.7 20.7 23.8 26.8 29.8 32.8
7 1.11 3.09 5.57 8.29 11.2 14.1 17.1 20,1 23.2 26.2 29.2 32.3
8 0,99 2.86 5.22 7.84 10.6 13.6 16.5 19.5 22.6 25.6 28.6 31.7
9 0.90 2.65 4.90 7.43 10,2 13.0 16.0 19.0 22.0 25.0 28.0 31.1
10 0,81 2.47 4.61 7.04 9,69 12.5 15.4 18.4 21.4 24.4 27.4 30.4
6
12 0,68 2.16 4.11 6,35 8,85 11.6 14.4 17.3 20.2 23.2 26.2 29.2
14 0,59 1.92 3.69 5,76 8,11 10.7 13,4 16.2 19.1 22.1 25.0 28.0
16 0,52 1.72 3.34 5,25 7,47 9.94 12.6 15.3 18.1 21.0 23.9 26.9
18 0.46 1.56 3.04 4.82 6,91 9.26 11.8 14.4 17.2 20.0 22.9 25.8
20 0.41 1.43 2.79 4.44 6.43 8.66 11.1' 13.6 16.3 190 21.9 24.7
24 0.35 1.22 2.38 3.84 5,62 7.64 9.84 12.2 14.7 17.3 20.0 22.8
28 0.30 1.06 2.08 3.37 4.98 6.81 8.82 11.0 13.4 15.8 18.4 21.1
32 0.26 0.94 1.84 3.00 4.46 6.12 7.97 10.0 12.2 14.6 17.0 19.5
36 0.23 0.84 1.65 2.71 4.04 5.56 7.27 9.18; 11.2 13.4 15.7 18.1
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

VRR-
7-58 DESIGN CONSIDERATIONS FOR BOLTS
Table 7-10 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 60°
Available strength of a bolt group,
(j)ff„ or ff„/£J, is determined with
/?n=Cxr„
or
LRFD ASD
r .-P" r . _
t^min = .
In
where
P = required force,, P„ or Pa, l<ips
r„ = nominal strength per bolt, kips
e = eccentricityofP with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
Sjt = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
$,in. fix, in. $,in. fix, in.
1 2 3 4 S 6 7 8 9 10 11 12
2 2.59 5.21 7.88 10.6 13.4 16:3 19.2 22,1 25.0 28.0 30.9 33,9
3 2.32 4.73 7.27 9.91 12.7 15.5 18.3 21,2 24.1 27.0 30.0 32,9
4 2.07 4.29 6.69 9.23 11.9 14.6 17,5 20,3 23J2 26.1 29.0 32.0
5 1.84 3.90 6.18 8.63 11.2 13.9 16,6 19,5 22.3 25.2: 28.1 31.0
6 1.65 3.56 5.73 8.08 10.6 13.2 15.9 18,7 21.5 24.3 27.2 30.1
7 1.49 3.27 5.32 7.59 10.0 12.6 15,2 17,9 20.7 23.5 26.3 29.2
8 1.35 3.01 4.95 7.13 9.48 12.0 14,5 17,2 19.9 22.7 25.5 28.4
9 1.23 2.78 4.63 6.71 8.98 11.4 13,9 16,5 19.2 22.0 24.7 27.6
10 1.12 2.58 4.34 6.33 8.52 10.9 13.3 15,9 18.5 21.2 24.0 26.8
3
12 0.95 2.25 3.84 5.67 7.70 9,91 12.3 14.7 17.3 19.9 22.6 25.3
14 0.83 1.98 3.43 5.11 7.00 9,08 11..3 13.7 16.1 18.7 21.3 23.9
16 0.73 : 1.77 3.09 4.64 6.40 8.36 10.5 12,7 15.1 17.5 20.1 22.6
18 0.65 1.60 2.81 4.24 5.89 7,73 9.74 11.9 14.2 16.5 19,0 21.5
20 0.59 1.46 2.57 3.90 5.44 7,19 9.09 .11.1 13.3 15.6 17,9 20.4
24 0.49 1.24 2.20 3,35 4.72 6,27 7.99 9.85 11.9 14.0 16,2 18.5
28 0.42 1.07 1.91 2.93 4.15 5.55 7.10 8.81 10.7 12,6 14,7 16.8
32 0.37 :0.95 1.69 2.60 3.70 4.97 6.38 7.95 9.65 11.5 13.4 15.4
36 0.33 0.85 1.51 2.34 3.34 4.49 5.79 7.23 8.81 10.5 12.3 14.2
2 2.59 5.32 8.17 11.1 14.0 17.0 19.9 22.9 25.8 28.8 31.8 34.7
3 2.32 4.94 7.73 10.6 13.5 16.5 19.4 22.4 25.4 28.3 31.3 34.3
4 2.07 4.57 7.31 10.2 13,1 16.0 19,0 21.9 24.9 27.8 30.8 33.8
5 1.84 4.25 6.91 9.73 12,6 15.5 18.5 21.4 24.4 27.4 30,3 33.3
6 1.65 3.95 6.55 9.32 12.2 15.1 18.0 20.9 23,9 26.9 29.8 32.8
7 1.49 3.69 6.22 8.94 11.8 14.6 17.5 20.5 23.4 26.4 29,3 32.3
8 1.35 3.46 5.92 8.58 11.4 14.2 17.1 20.t) 22,9 25.9 28.8 31.8
9 1.23 3.25 5.64 8.25 11.0 13.8 16.7 19.6 22,5 25.4 28.4 31.3
10 1.12 3.06 5.39 7.94 10.6 13.4 16.3 19.1 22,0 24.9 27.9 30.8
6
12 0.95 2.73 4.92 7.37 9.97 12.7 15.5 18.3 21,2 24.1 27.0 29.9
14 0.83 2.46 4,52 6.85 9.36 12-.0 14,7 17,5 20,3 23.2 26.1 29.0
16 0.73 2.23 4,18 6.39 8.80 11.4 14,0 16.8 19,6 22.4 25.3 28.1
18. 0.65; 2,04 3,87 5.97 8.28 10.8 13.4 16.1 18,8 21.6 24,4 27.3
20 : 0.59 1:88 3.60 5.59 7.81 10.2 12.8 15.4 18,1 20,9 23,7 26.5
24 0.49 1.63 3,15 4.94 6.99 9.25 11.7 14,2 16,8 19.5 ??? 25.0
^ 28 0.42 1-.43 2,79, 4.41 • 6.31 8.44 10,7 13,1.: 15,7 18.2 20,9 23.6
32 0.37 1.27 2.49 3.97 5.74 7.74 9,90 12.2 14,6 17.1 19,7 22.3
36 0.33 1.15 2.25 3.61 5.26 7.13 9,17 11.4 13,7 16.1 18,6 21.1
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-59
Table 7-10 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 75°
Available strength of a bolt group,
or R„l£l, is determined with
R„=Cxr„
or
LRFD ASD
» Pu
Cmin
fn
where
P = requiredforce, PuOrPa, kips
r„ = nominal strength per bolt, kips
e = eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, maybe
determined by geometry)
ex = horizontal component of e, in.
s - bolt spacing, in.
C = coefficient tabulated below
r-4-

^—-4-
Number of Bolts in One Vertical Row, n
12 1 2 3 4 5 6 7 8 9 10 11 12
2 2.86 5.68 8.47 11.3 14.1 16.9 19.8 22.6 25.5 28.4 31.3 34.2
3 2.77 5.49 8.19 10.9 13.7 16.4 19.2 22.1 24.9 27.8 30.7 33.6
4 2.66 5.27 7.89 10.5 13.2 16.0 18.8 21.6 24.4 27.2 30,1 33.0
5 2.53 5.04 7.58 10.2 12.8 15.5 18.3 21.0 23.9 26.7 29.5 32.4
6 '2.40 4.81 7.27 9.81 12.4 15.1 17.8 20.6 23.3 26.2 29.0 31.8
7 2.26 4.57 6,97 9.47 12.0 14.7 17.4 20,1 22.9 25.6 28.4 31.3
8 2.13 4.35 6.69 9.13 11.7 14.3 16.9 19,6 22.4 25.1 27.9 30.7
9 2.00 4.13 6.41 8.82 11.3 13.9 16.5 19,2 21.9 24.7 27.4 30.2
o
10 1.89 3.93 6.15 8.51 11.0 ^3.5 16.1 18,8 21.5 24.2 27.0 29.8
J
12 1.67 3.57 5.67 7.95 10.4 12.9 15.4 18,0 20.7 23.4 26.1 28.8
14 1.49 3.25 5.25 7.44 9.77 12.2 14.7 17,3 19.9 22.6 25.3 28.0
16 1.34 2.97 4.87 6.98 9.23 11.6 14.1 16,6 19.2 21.8 24.5 27.2
18 1.21 2.73 4.54 6.56 8.74 11.1 13.5 16,0 18.5 21.1 23.7 26.4
20 . 1.10 2.53 4.24 6.18 8.28 10.5 12.9 15.3 17.8 20.4 23.0 25.6
24 0.93 2.19 3.75 5.52 7.48 9.59 11.8 14.2 16.6 19.1 21.6 24.2
28 0.80 1.93 3.34 4.97 ^ 6.79 8.78 10.9 13.2 15.5 17.9 20.4 22.9
32 0.71 1.72 3.01 4,51 6.20 8.08 10.1 12.3 14.5 16.8 19.2 21.7
36 0.63. 1.55 2.74 4.12 5.70 7.47 9.40 11.5 13.6 15.9 18.2 20.6
2 2.86 5.66 8.48 11.3 14.2 17.1 20.1 23.0 26.4 29.3 32.3 35.2
3 2.77 5,49 8.25 11.1 13.9 16.8 19.7 22.7 25.6 28.5 31.5 34.4
4 2.66 5.30 8.02 10.8 13.6 16.5 19.4 22.3 25,2 28.2 31.1 34.0
5 2.53 5.10 7.79 10.6 13.4 16.2 19.1 22.0 24.9 27.8 30.8 33.7
6 2.40 4.91 7.56 10.3 13.1 15.9 18.8 21.7 24.6 27.5 30.4 33.3
7 2.26 4.72 7.34 10.1 12.9 15.7 18.5 21.4 24.3 27.2 30.1 33.0
8 2.13 4.54 7.14 9.83 12.6 15.4 18.3 21.1 24.0 26.9 29.8 32.7
9 2.00 4.37 6.94 9.61 12.4 15.2 18.0 20.8 23,7 26.6 29.5 32.4
10 1.89 4.21 6.75 9.40 12.1 14.9 17.7 20.6 23.4 26.3 29.2 32.1
6
12 1.67 3.90 6.39 9.00 11.7 14.4 17.2 20.0 22,9 25.7 28.6 31.5
14 1.49 3.63 6.06 8.63 11.3 14.0 16.8 19.6 22.4 25.2 28.1 30.9
16 1.34 3.39 5.75 8,29 10.9 13.6 16.3 19.1 21.9 24.7 27.5 30.4
18 1.21 3.17 5.47 7.96 10,6 13.2 15,9 18.7 21.4' 24,2 27.0 29.9
20 1.10 2.98 5.22 7.66 10.2 12.9 15.5 18.2 21.0 23.8 26,6 29.4
24 0.93 2.65 4.76 7.10 ; 9.57 12.2 14.8 17.5 20.2 22.9 25.7 28.5
28 0.'80 2.38 4:37 6.60 8.99 1,1.5 14.1 16.7 19.4 22.1 24.8 27.6
32 0.71 2.16 4.03 6.15 8,45 10.9 :li4 16.0 18.7 21.3 24.0 26.8
36 0.63 1.97 3.73 5.75 7,96 10.3 12.8 15.3 17.9 20.6 23.3 26.0
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-60 DESIGN CONSIDERATIONS FOR BOLTS
Table 7-11
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 0°
Available strength of a bolt group,
<!>/?„ or fl„/£2, is determined with
fl„=Cxr„
or
I.RFD ASD
. ClPa
vmin — _
'n
where
P = required force, Pu or Pa, l<ips
rn = nominal strength per bolt l<ips
e = eccentricity of Pwitli respect
to centroid of boltgroup, in.
(not tabulated, maybe
determined by geometry)
Bx = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
--f—f-—f-
U " .1
s,m. e„ in.
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 8 9 10 11 12
2 2.15 4.55 7.17 10.0 13.0 16.0 19.1 22.2 25.3 28.3 31.4 34.4
3 1.91 4.06 6:43 .9.06 11.9 14.9 17.9 21.0 24.1 27.2 : 30.3 33.4
4 1.71 3.65 5.80 8.23 10.9 137 167 19.8 22,9 26.0 29.1 32.3
5 1.55 3.3.1 5.27 7.51 9.97 12.7 15.5 18.5 21.5 247 27.8 31.0
6 1.42 3.02 4,82 6.88 9.16 117 14.4 17.3 20.3 23.3 : 26.4 29.6
7 1.31 2.77 4.44 6.34 8.46 10.8 13.4 16.1 19.0 22.0. 25.1 28.2
8 1.21 2.56 4.10 5.87 7.85 10.1 12.5 15.1 17.9 20.7 23.7 26.8
9 1.12 2.38 3.81 5,46 7.31 9.39 117 14.1 16.8 19.6 22.5 25.5
10 1.05 2.21 3.55 5.09 6.84 8.79 10.9: 13.3. 15.8. 18.5 21.3 24.2
3 12 0.92 1.94 3.12 4,48 6.03 7.78 9.70 11.8 14.1 16.6 19.1 21.9
14 0.81 1.72 2.77 3.99 5.38 6.95 8.69 10.6 12.7 :14.9 17.3 19.9
16 072 1.53 2.48 3.58 4.84 6,27 7.85 9.60 11.5 13.6 15.8 18.1
18 0.64 1.38 235 3.25 4.40 5.70 7.T5 8.75 10.5 12.4 14.4 16.6
20 0.58 1.26 2.05 2.96 4.02 5.21 ^ 6.55 8.03 9.65 11.4 13.3 15.3
24 0.49 1.06 1.73 2.52 3.42 4.45 5.60 6.88 8.29 9.82 11,5 13.2
28 0.42 0.92 i.50 2.19 2.97 3.87 4.88 6.00 7.24 8.59 10.1 11.6
32 0.37 0.81 1.32 1.93 2.63 3.42 4.32 5.32 6.42 7.62 8.93 10.3
36 0.33 0.72 1.18 1'72 2.35 3.06 3.87 4.77 5.76 6.84 8.02 9.29
C',in. 11.8 .26.5 43:3 63.7 .86.8 114 144 178 216 257 302 352
2 2.15 4.94 7.98 11.1 14.2 17.2 20.2 23.2 26.2 29.2 32.1 35.1
3^ 1.91 4.48 7.39 10.5 13.6 167 19.8 22.8 25.8 28.9 31.9 34.8
4 1.71 4.07 6.81 9.86 13.0 16.1 19.3 22.3 25.4 28.5 31.5 34.5
5 1.55 3.71 6.27 9.22 12.3 15.5 18.6 21.8 24.9 28,0 31.0 34.1
6 1.42 3.40 5.79 8.61 117 14.8 18.0 21.1 24.3 27.4 30.5 33.6
7 1.31 3.13 5.35 8.05 11.0 14.1 17.3 20.5 23.6 26.8 29.9 33.1
8 1.21 2.90 4.97 7.53 10.4 13.4 16.6 19.8 23.0 26.1 29.3 32.5
9 1.12 2;69 4.64 7.07 9.78 12.8 15.9 19.0 ??? 25.4 28.6 31.8
TO 1.05 2.51 4.34 6.64 9.24 12.1 15.2 18.3 21.5 24.7 27.9 31.1
6 12 0.92 2,21 3.85 5.91 8.27 11.0 13.9 16.9: 20.0 23.2 :26.4 29.7
14 0.81 1.96 3.44 5.31 7.46 9.95 127 15.6 18.6 21.8 25.0 28.2
16 0.72 1.76 3.11 4.80 6.78 9.09 11.6 14.4 17.3 20.4 23.5 26.7
18 0.64 1.60 2.83 4.38 6.20 8.34 107 13.3 16.1 19.1 22.1 25.2
20 0.58 1.46 2.59 4.02 5.71 ^ 7.70 9.91 12.4 15.0 17.9 20.8 23.8
24 0.49 1.24 2.21 3.44, 4.91 6.65 8.5? 10.8 13.2 157 18.5 21.3
28 0.42 1.08 1,92 3.00 4.30 5.83 • 7.57 9.53 117 14.0' 16.5 19.2
32 : 0.37 0.95 . 1,70 2.66 3.82 5.19 ^ 6.75 8:51 10.5 12.6 14:9 17.3
36 ' 0,33 0,.8i 1.52 2.39 ; 3.43 4.67 6.08 ^ 7.68 •9.45 11,4 13.5 15.8
C, in. 11.8 31.6 56.1 89.4 129 177 232 296 366 446 533 629
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-61
Table 7-11 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 15"^
Available strength of a bolt group,
or /?n/£l, is determined with
R„^Cxr„
or
LRFD ASD
where
P = required force, Pu or Pa, kips
r„ = nominal strength per bolt, kips
e = eccentricity of P with respect
to centrold of bolt group, in.
(not tabulated, may be
determined by geometry)
Ex = horizontal component of e, in,
s = bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 8 9 10 11 12
2 2.22 4.62 7.25 10.1 13.0 16.0 19.0 22.1 25.1 28.2 31.2 34.2
3 1.97 4.13 6.53 9.13 11.9 14.9 17.9 20.9 24.0 27:1 30.1 33.2
4 1.77 3.72 5.91 8.31 10.9 13.7 16.7 19.7 22.7 25.8 28.9 32.0
5 1.61 3.38 5.39 7.60 10.1 12.7 15.5 18.4 21.4 24.5 27.6 30.7
6 1.47 3.10 4,93 6.98 9.28 11.8 14.4 17.2 20.2 23.2 26.2 29.3
7 1.35 2.85 4.54 6.45 8.59 10.9 13.5 16.1 19.0 21.9 24.9 27.9
8 1.25 2.63 4.21 5.98 7.98 10.2 12.6 15.1 17.8 20.7 23.6 26.6
9 1.16 2.44 3.91 5,57 7.45 9.51 11.8 14.2 16.8 19.5 22.4 25.3
10 1.08 2.28 3.65 '5.21 6.97 8.92 11.1 13.4 15.9 18.5 21.2 24.1
' 12 0.94 2.00 3.20 4.59 6.16 • 7.91 9.84 11.9 14.2 16.6 19.2 21.9
14 0.83 1.77 2.85 4.09 S.50 7.08 8.84 10.8 12,8 15.0 17.4 19.9
16 0.74 1.58 2.56 3.68 4.96 6.40 8.00 9.75 11,7 13.7 15.9 18.2
18 0.66 1.43 2.31 3.34 4.51 5.83 7.30 8.91 10.7 12.6 14.6 16.8
20 0.60 1.30 2.11 3.05 4.13 5.34 6.70 8,19 9.82 11.6 13.5 15,5
24 0.50 1.10 1.79 2.59 3.52 4.56 574 7.03 8.45 10.0 11.7 13.4
28 o;43 0,95 1.55 2.25 3.06 3.98 5.01 6.15 7.40 8.77 10.2 11.8
32 0.38 0.84 1.37 1.99 2.70 . 3.52 4.43 5.45 6.57 7.79 9.12 10.5
36 0.34 0.75 1:22 1.78 2.42 -3.15 3.98 4.89 5:90 7.01 8.20 9.49
2 2.22 4.97 7.97 11.0- 14,1 17.1 20.1 23.1 26.1 29.1 32.1 35.0
3 1.97 4.50 7.40 10.5 13.5 16.6 19.7 22.7 25.7 28.7 31.7 34.7
4 1.77 4.10 6.84 9.82 12.9 16.0 19.1 22,2 25.2 28.3 31.3 34.3
5 1.61 3.75 6.32 9.20 12.3 15.4 18.5 21.6 24.7 27.8 30.8 33.9
6 1.47 3.45 5,86 8.61 11.6 14.7 17.8 20.9 24.1 27.2 30.3 33.3
7 1.35 3.18 5.44 8.06 11.0 14.0 17.1 20.3 23.4 26.5 29.6 32.7
8 1.25 2.95 5.07 ^ 7,55 10.4 13.3 16,4 19.5 22.7 25.8 29.0 32.1
9 1.16 2.75 4.73 7.09 9.78 12.7 15,7 18.8 22.0 25.1 28.3 31.4
10 1.08 2.57 4.44 6.67 9.26 12.1 15.1 18,1 21.3 24:4 27.6 30.7
12 0.94 2.26 3.93 5.96 8.33 11.0 13.8 16,8 19.8 23.0 26.1 29.3
14 0.83 2.01 3.52 5.37 7.55 9.97 12.7 15.5 18.5 21.5 24.7 27.8
16 0.74 1.81 3.18 4,87 6.88 9.13 11.7 14.4 17.2 20.2 23.2 26.4
18 0.66 1.64 2.90 4.45 6.31 8.40 10.8 13.3 16.1 18.9 21:9 25.0
20' o:6o 1.50 2.65 4.10 5.81 7.17 9.99 12.4 15.0: 17.8 20.7 23.6
24 0.50 1.28 2.27 3.52 5,01 6.74 8.71 10.9 13.2 15.8 18.4 21.2
28 0.43 1.11 1.98 3.08 4.40 5.93 7,69 9.62 11.8 14.1 16.5 19.1
32 0.38 0:98 1.75 2.73 3.91 5,29 6,87 8.62 10.6 12.7 15.0 17.4
36 0.34 ^ 0.88 1.57 2.45 3.52 4.77 6.20 7.80 9.59 11.5 13.6 15.9
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

8-62 DESIGN CONSIDERATIONS FOR WELDS
Table 7-11 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle - 30°
Available strength of a bolt group,
^Rn or Rn/a, is determined with
fln=Cxr„
or
LRFD ASD
Cmin = I'/ran
In
where
P = requlredforce, PuorPa, kips
r„ = nominal strength per bolt, i<ips
e = eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex - horizontal component of e, in.
s = bolt spacing, in.
C - coefficient tabulated below
Number of Bolts in One Vertical Row, n
s,m. e„ III. s,m. e„ III.
1 2 3 4 5 6 7 8 9 10 11 12
2 2.40 4.89 7.53 10.3 13.2 16.1 19.1 22,1 25.1 28.1 31.1 34.1
3 2.15 4.40 6.84 9.45 12.2 15.1 18.0 21,0 24.0 27.0 30.0 33.0
4 1.94 3.99 6.24 8.69 11.3 14.0 16.9 19,8 22.8 25,8 28.8 31.9
5 1.76 3.65 5.74 8.02 10.5 13.1 15.8 18.7 21.6 24.6 27.6 30.6
6 1.61 3.35 5.29 7.42 9.72 12.2 14.8 17.6 20.4 23.4 26.3 29.3
7 1.49 3.10 4.90 6.89 9,06 1:1.4 13.9 16.6 19.3 2? 2 25.1 28.1
8 1.37 2.87 4,55 6.42 8,47 10.7 13.1 15,6 18,3 21.1 23.9 26.9
9 1.28 2.67' 4.24 6.00 7,94 10.1 12.4 14.8 17.4 20,0 22.8 25.7
10 1.19 2.49 3.97 5.63 7,47 9.49 11.7 14,0 16,5 19,1 21.8 24.6
3
12 1.04 2.19 3.50 4,98 6,64 8.48 10.5 12.6 14.9 17,3 19.9 22.5
14 0.92 1.95 3.12 4,46 5.97 7.64 9.46 11.4 13.6 15.8 18.2 20.7
16 0.82 1.75 2.81 4,03 5.40 6.93 8.61 10.4 12.4 14.5 16.7 19.1
18 0.74 1.58 2.55 3,66 4.92 6.33 7.89 9.59 11.4 13.4 15.5 17.7
20 0.67 1.44 2.33 3,35 4.52 5.82 7.27 8.85 10,6 12.4 14.4 16.4
24 0.56 1.22 1.98 2,86 3.87 i 5.00 6.26 7.65 9.16 10.8, 12.5 14.4
28 0.48 1.06 1.72 2,49 3.37 4.37 5,48 6.71 8,06 9.51 11.1 12.8
32 0.42 0.93 1.52 2,20 2.99 3.88 4,87 5.97 7,18 8.49 9.91 11.4
36 0.38 0.83 1.36 1,97 2.68' 3.48 4,38 5.38 6,47 7.66 8.95 10.3
2 2.40 5.11 8.05 11.1 14.1 17.1 20.1 23.0 26,0 29.0 32.0 34.9
3 2.15 4.66 7.51 10.5 13.5 16.5 19.6: 22,6 25,6 28.6 31.6 34.6
4 1.94 4.26 6.99 9.90 12.9 16.0 19.0 22,0 25.1 28.1 31.1 34.1
5 1.76 3.92 6.52 9.34 12.3 15.3 18.4 21,5 24.5 27.6 30.6 33.6
6 1.61 3.63 6.09 8.80 11.7 14.7 17.7 20.8 23.9 27.0 30,0 33.1
7 1.49 3.38 5.70 8,30 11.1 14.1 17.1 20,2 23.2 26.3 29.4 32.5
8 1.37 3.15 5.35 7,83 10.6 13.5 16.5 19.5 22.6 25.7 28.7 31.8
9 1.28 2.95 5,03 7.40 10.0 12.9 15.8 18.8 21.9 25.0 28.1 31.2
10 1.19 2.77 4,74 7.00 9.54 12.3 15.2 18.2 21.2 24.3 27.4 30.5
6
12 1.04 2.45 4.23 6.30 8.67 11.3 14.1 17.0 19.9 23.0 26.0 29.1
14 0.92 2.19 3.81 5.71 7.92 10.4 13.0 15.8 18.7 21.7 24.7 27.8
16 0.82 1,98 3.45 5.22 7.27 9.58 12.1 14.8 17.6 20.5 23.4 26.4
18 0.74 1.80 3.16 4.79 6.71 8.88 11,2 13.8 16.5 19.3 22.2 25.2
20 0.67 1.65 2,90 4.42 6,22 8.26 10.5 12.9 15.5 18.2 21.1 24.0
24: 0.56 1,41 2.49 3.82 5.41 7.22 9.23 11,5 13.8 16,4 19.0 21.8
28 , 0.48 1,23 2.18 3.36 4.78 6.40 8.22 10,3 12.4 14.8 17.2 19,8
32 0.42 1,08 1.93 2.99 4.26 5.73 7.40 9.25 11.3: 13.4 15.7 18.2
36 0.38 0,97 1.73 2,69 3.85 5.18 6,71 8.41 10.3 12.3 14.4 16.7
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-63
Table 7-11 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 45°
Available strength of a bolt group,
<^R„ or R„/n, Is determined with
«„=Cxr„
or
LRFD ASD
'"m'" ~ TT
Cmm -
In
where
P = requiredforce, PuOrPa, kips
r„ = nominal strength per bolt, kips
e = eccentricity of P with respect
to eentroid of bolt group, in.
(not tabulated, may be
determined by geometry)
Bx = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
"XI ""
1 2 3 4 5 6 7 8 9 10 11 12
2 2.64 5.30 8,01 10.8 13.6 16.4 19,3 22.3 25.2 28.1 31.1 34,0
3 2.43 4.90 7,44 10.1 12.8 15,6 18,4 21.3 24.2: 27.1 30.1 33.1
4 2.23 4.52 6,89 9.38 12.0 14.7 17,5 20.3 23.2 26.1 29,0 32,0
5 2.05 4.17 6,40 8.75 11.2 13.9 16,6 19.3 22.2 25.0 27,9 30.9
6 1.89 3.86 5,96 8.20 10.6 13.1 15,7 18.4 21.2 24.0 26,9 29,8
7 1,75 3.59 5.57 7.70 9.99 12.4 14,9 17.5 20.2 23.0 25,8 28,7
8 1.63 3.35 5,22 7.25 9.43 11.7 14,2 16.7 19.3 22.1 24,8 27,7
9 1.52 3.13 4,90 6.83 8.91 11.1 13,5 15,9 18.5 21.2 23.9 26,7
o 10 1.42 2.94 4.61 6.45 8.44 10.6 12,8 15,2 17.7 20.3 23,0 25,7
12 1.25 2.60 4,11 5.78 7.60 9.58 11.7 14.0 16,3 18.8 21.3 23,9
14 1.11 2.32 3,69 5.21 6,90 8.73 10.7 12,8 15,0 17.4 19.8 22,3
16 0.99 2.09 3,34 4.74 6,29 8.00 9.85 11,8 13,9 16.1 18.5 20,9
18 0.90 1.90 3,04 4.33 5,77 7.36 9.10 11,0 12,9 15.0 17.3 19.5
20 0.81 1.73 2,79 3.98 5,33 6.81 8.44 10,2 12.1 14.1 16.2 18.4
24 0.68 1.47 2.38 3.42 4,60 5.91 7.35 8,91 10.6 12.4 14.3 16.3
28 0.59 1.28 2.08 2.99 4,03 5.20 6.49 7.90 9.42 11.1 12.8 14.6
32 0,52 1.13 1.84 2.65 3,59 4.63 5.80 7.07 8.46 9.95 11.6 13.3
36 0.46 1.01 1.65 2.38 3,23 4.17 ; 5.23 6.40 7.67 9.04 10.5 12.1
2 2.64 5.38 8.22 11.1 14.1 ,17.0 20.0 23.0 25,9 28.9 31.9 34.8
3 2.43 5.02 7.78 10.7 13.6 16.6 19.5 22.5 25,5 28.5 31.4 34.4
4 2.23 4.67 7.33 10.2 13.1 16.0 19.0 22.0 25.0 28.0 31.0 33.9
5 2.05 4,34 6.90 9,66 12.5 15.5 18.4 21.4 24.4 27.4 30.4 33.4
6 1.89 4.06 6.50 9,19 12.0 14.9 17.9 20.9 23.9 26.9 29.9 32.9
7 1.75 3.80 6.16 8.76 11.5 14.4 17.3 20.3 23.3 26.3 29.3 32.3
8 1.63 3.57 5.84 8.36 11.1 13.9 16.8 19.7 22.7 25.7 28.7 31.7
9 1.52 3.36 5,54 7.99 10.6 13,4 16.2 19.2 22.1 25.1 28.1 31.1
10 1,42 3.17 5.27 7.63 10.2 12,9 15.7 18.6 21.5 24.5 27.5 30.5
6
12 1.25 2.84 4.78 6.99 9.40 12.0 14.7 17.6 20.4 23.4 26.3 29.3
14 1.11 2.57 4.36 6.42 8.70 11,2 13.8 16.6 19.4 22,3 25.2 28.2
16 0.99 2.33 3.99 5.92 8.09 10,5 13.0 15.7 18.4 21,2 24.1 27.0
18 0.90 2.13 3,68 5.49 7.54 9.80 12.2 14.8 17.5 20,3 23,1 26.0
20 0,81 1.96 3.40 5.10 7.05 9,21 11.6 14.0 16.6 19,3 22,1 24.9
24 0.68 1.68 2.95 4.46 6.22 8,19 10.4 12.7 15.1 17,7 20,3 23.0
28 0.59 1.47 2.59 3.95 5.55 7.35 9.34 11.5 13.8 16,2 18,7 21.3
32 0.52 1.31 2.31 3.54 4.99 6.65 8.49 10.5 12.7 14,9 17,3 19.8
36 0.46 1,17 2.08 3.20 4.54 6.06 7.77 9.64 11.7 13,8 16,1 18.5
X
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-64 DESIGN CONSIDERATIONS FOR BOLTS
Table 7-11 (continued)
coefficients C for Eccentrically Loaded Bolt Groups
Angle = 60°
Available strength of a bolt group,
(])fl„ or /?„/£), Is determined with
fl„=Cxr„
or
LRFD ASD
Vn
. O.Pa
where
P = required force, Pu or Pa, kips
r„. = nominal strength per bolt, kips
e = eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by :g8ometry)
= horizontal component of e, in,
s = bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
s,in. ex, in. s,in. ex, in.
1 2 3 , 4 5 6 7 8 9 10 11 12
2 2.83 5.64 8.45 11.3 14.1 16.9 19.8 22.6 25.5 28.4 31.3 34.2
3 2.72 5.43 ;8.13 10.8 13.6 16.3 19.1 21.9 24.8 27.6 30.5 33.4
4 2.59 5.18 7.77 10.4 13.0 15.7 18.5 21.2 24.0 26.8 29.7 32.5
•5 2.46 4.92 7.40 9.92 12.5 15.1 17.8 20.5 23.2 26.0 28.9 31.7
6 2.32 4.66 7.03 9.46 12.0- 14.5 17.1 19.8 22.5 25.2 28.0 30.8
7 2.19 4.41 6.68 9.02 11.4 13.9 16.5 19.1 21.8 24.5, 27.2 30.0
8 2.07 .4.17 6.35 : 8.61 11.0 13.4 15.9 18.4 21.1 23.7 26.5 29.2
9 1.95 ; 3.95 6.04 8.22 10.5 12.9 15.3 17.8 20.4 23.0 25.7 28.5
10 1.84 3.74 i 5. 75 7.86 10.1, 12.4 14.8 17.3 19,8 22.4 25.0 27.7
3
12 1.65. 3.38 5.22 7.19 9.28 11.5 13,8 16.2 18.6. 21.1 23.7 26.3
14 1.49 3.06 4.76 6.61 ,8.58 10.7 12.9 15.2 17.5 20.0 22.5 25.0
16: 1>35 2.79 4.37 -6.09 7.95 9.93 12.0 14.2 16.5 18.9 21.3 23.8
18 1.23 2.55 4.02 5.64 7.39 9.28 11.3 13.4 15.6 17.9 20.3 22.7
20 -1,12 2.35 3.72 5.24 : 6.90 8.69 10.6 12.6 14.8 17.0 19.3 21.7
24 0.95 2.02 3.22 4.57 6,06 7.68 9.43 11.3 13.3: 15.4 17.5 19.8
28 0.83 1.76 2.84 4.04 5.39 6.86 8.47 10.2 12.0 14.0 16.0 18.1
32 0.73 1.56 2.53 3.61 4.84 6.19 7.66 9.26 11.0 12,8 14.7 16.7
36 0.65 1.40 2.27 3.26 4.38 5.62 6.98 8.46 10.1 11,7; 13.5 15.4
2 2.83 5.64 8.47 11.3 14.2 17.1 20.0 23.0 25,9 28,9 31.8 34.8
3 2.72 5.44 8.19 11.0 13,8 16.7 19.6 22.6 25.5 28.4 31.4 34.3
4 2.59 5.21 7.88 10.6 13.4 16.3 19,2 22.1 25.0 28.0 30.9 33.9
5 2.46 4.97 7.57 10.3 13.1 15.9 18.8 21.7 24.6 27.5 30.4 33.4
6 2.32 4.73 7.27 9.91 12.7 15.5 18.3 21.2 24.1 27.0 30.0 32.9
7, 2.19 4.51 6.97 9.56 12.3 15.0 17.9 20.8 23.7 26.6 29.5 32.4
8 2.07 4.29 6.69 9.23 11.9 14.6 17.5 20.3 23.2 26.1 29.0 32.0
9 1.95 4.09 6.43 8.92 11.5 14.3 17.0 19;9 22.8 25.6 28.6 31.5
10 1.84 3.90 6.18 8.63 11.2 13,9 16.6 19.5 22.3 25.2 28.1 31.0
6
12 1.65 3.56 5.73 8.08 10.6 13.2 15.9 18.7 21.5 24.3 27.2 30.1
14 1.49 3.27 5.32 7.59 10.0 12.6 15.2 17.9 20.7 23.5 26.3 29.2
16 1.35 3.01 4.95 7.13 9.48 12.0 14.5 17.2. 19.9 22.7 25.5 28.4
18 1.23 2.78 4.63 6.71 8,98 1.1.4 •13.9 16.5 19.2 22,0 24.7 27.6
20 1.12 2.58 4.34 6.33 8.52 10,9 13.3 15.9 18.5 21.2 24.0 26.8
24 0.95 2.25 3.84 5.67 • 7.70 9.91 12.3 14.7 17.3 19.9 22.6 25.3
28 0.83 1.98 3.43 5.11 7.00 r9.08 11.3 13.7. 16.1 18.7 21.3 23.9
; j-32. 1.77 3.09 4.64 5.40 8.36 10.5 12.7 15.1 17.5 20.1 22.6
36 • 0.65: 1.60 2.81 4.24 5.89 7.73 9.74 11.9 14.2 16.5 19.0
21.5
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-65
Table 7-11 (continued)
Coefficients C for Eccentricaliy Loaded Bolt Groups
Angle = 75°
Available strength of a bolt group,
or /?„/£2, Is determined with
Rn=Cxr„
or
LRFD ASD
In
where
P = required force, P,, or Pg, kips
r„ - nominal strength per bolt, kips
e - eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by-geometry)
dx - horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
S, ill. ex, III.
1 2 3 4 5 6 7 8 9 10 11 12
2 .2.92 ^ 5,83 8.73 11.6 14.5 17.4 20.3 23.1 26.0 28.9 31.8 34.7
3 < 2.89 5.77 8.63 11.5 14.3 17.2 20.0 22,8 25.7 28.5 31.4 34.2
4 2.86 5.70 8.51 11.3 14,1 16.9 19.7 22,5 25.3 28.1 30.9 33.7
5 2.82 5.61 8.38 11.1 13.9 16.6 19.4 22,1 24.9 27.7 30.5 33,3
6 2.77 5.51 8.23 10.9 13.6 16.3 19.0 21,8 24.5 27.2 30.0 32,8
7 2.72 5.40 8.06 10.7 13.4 16.0 18.7 21.4 24.1 26.8 29.6 32,3
8 2.66 5.29 7.89 10.5 13.1 15.7 18.3 21.0 23.7 26.4 29:1 31.9
9 2.60 5.16 7.71 10.3 12.8 15.4 18.0 20,6 23.3 26.0 28.7 31.4
Q
10 2.53 5.04 7:53 10.0 12.6 15,1 17.7 20,3 22.9 25.6 28,3 31.0
0
12 2.40 4:78 7.Y6 9.57 12.0 14,5 17.0 19,6 22.1 24,8 27.4 30.1
14 2.26 4.52„ 6.80 9.12 11.5 13,9 16.4 18,9 21.4 24.0 26.6 29.3
16 2.13 4.27 6.45 :8.68 11.0 13,3 15.8 18,2 20,7 23.3 25.9 28.5
18 2,00 : 4.03 6,12 8.27 10.5 12,8 15.2 17:6 20.1 22.6 25,1 27.7
20' 1.89 3.81 5.80 7.88 10.1 12,3 14.6 17,0 19.4 21.9 24,4 27,0
24 : 1.67 3.41 5,24 7.18 9.22 11,4 13.6 15,9 18.2 20.7 23,1 25.6
28 1.49 3.06 •4,75 6.56 8.49 10,5 12.6 14.9 17.1/ 19.5 21,9 24.3
32 1.34 2.77 4,33 6.02 7,84 9,77 11.8 13.9 16,1 18.4 20,7 23.1
36 1.21 2.52 3,97 5.56 7,27 9.10 11.1 13.1 15,2 17.4 19.7 ^22.0
2 2.92 5.82 8,71 11.6 14,5 17.4 20.3 23.5 26,4 29.3 32.3 35.2
3 2.89 5.76 8.60 11.4 14,3 17.1 20.0 22.9 25,8 28.7 31.7 34.6
4 2.86 5.68 8.47 11.3 14,1 16.9 19.8 22.6 25,5 28.4 31.3 34.2
5 2.82 5.59 8.34 11.1 13,9 16.7 19.5 22.4 25.2 28.1 31,0 33,9
6 2.77 5.49 8.19 10.9 13,7 16.4 19.2 22.1 24.9 27.8 30,7 33.6
7 2.72 5.39 8.04 10.7 13.4 16.2 19.0 21.8 24.6 27.5 30,4 33.3
8 2.66 5.27 7.89 10.5 13.2 16.0 18.8 21.6 24.4 27.2 30.1 33.0
9 2.60 5.16 7.74 10.4 13.0 15.8 18.5 21.3 24.1 27.0 29.8 32.7
10 2.53 5.04 7.58 10.2 12.8 15.5 18.3 21.0 23.9 26.7 29.5 32.4
6
12 2.40 4.81 7.27 9.81 12.4 15.1 17.8 20.6 23.3 26.2 29.0 31.8
14 2.26 4.57 6.97 9.47 12.0 14.7 17.4 20.1 22.9 25.6 28.4 31.3
16 2.13 4.35 6.69 9.13 11.7 14.3 16.9 19.6 22.4 25.1 27.9 30,7
18 2.00 4.13 6.41 , 8.82 11.3 13.9 16.5 19.2 21,9 24.7 27.4 30,2
20 1.89 3.93 6.15' fi.51 11.0 13.5 16.1 18.8 21,5 24.2 27.0 29,8
24 1.67 3.57 5.67 .7.95 10.4 12.9 15.4 18.0 20.7 23.4 26.1 28,8
28 1.49 3.25 5.25 7.44 9.77 12.2 14.7 17:3 19.9 22.6 25.3 28,0
32 1.34 2.97 4.87 6.98 9.23 11.6 14.1 .1.6.6 19.2 21.8 24.5 '27,2
; 36 1.21 2.73 4.54 6.56 8.74 11.1 13.5 16.0 18.5 ,21.1 23.7 26,4

AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-66 DESIGN CONSIDERATIONS FOR BOLTS
Table 7-12
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = O''
Available strength of a twit group,
or Is determined with
R„=Cxr„
or
LRFO ASD
^min —
where
P - required force, Pu or Pa, kips
r„ = nominal strength per bolt, kips
e = eccentricity of Pwith respect
to centrold of bolt group, in.
(not tabulated, may be
determined by geometry)
e, = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
•1—i>-—<i>—i—<
Number of Bolts in One Vertical Row, n
S, III. III' S, III. III'
1 2 3 4 5 6 7 S 9 10 11 12
2 2.60 5.70 9.24 13.2 17.3 21,4 25.6 29.7 33.8 37.8 41,9 45.9
3 2.23 4.92 8.05 11.7 15.6 19.7 23.9 28.1 32.3 36.4 40.6 44.7
4 1.94 4.30 7.09 10.4 14.0 18.0 22.1 26.3 30.5 34.7 38.9 43.1
5 1.69 3.79 6.30 9.29 12.6 16.4 20.3 24.4 28.6 32.9 37.1 41.4
6 1.49 3.37 5.65 8.37 11.5 14.9 18.7 22.6 26.7 30.9 35.2 39.4
7 1.32 3.03 5.10 7.59 10.4 13.7 17.2 21.0 24.9 29.0 33.2 37.5
8 1.18 2.74 4.63 6.92 9.56 12.6 15.9 19.5 23.3 27.3 31.4 35.5
9 1.07 2.50 4,24 6.35 8.81 11.6 14.7 18.1. 21.7 25.6 29.6 33.7
10 0.98 2.29 3.89 5,86 8,15 10.8 13.7 16.9 20.3 24.0 27.9 31.9
3 12 0.83 1.96 3.34 5.06 7.06 9,37 12.0 14.8 17.9 21.3 24.9 28.6
14 0.73 1.72 2.92 4.44 6.21 8.27 .10.6 13.2 16.0 19.1' 22^3 25,8
16 0.65 1.52: 2.59 3.95 5.54 7.39 9,48 11,8 14.4 17.2 20.2 23,4
18 0.58 1.37 2.33 3.55 4.99 6.67 8.57 10,7 13.1 15.6 18.4 21.4
20 0.53 1.24 2,11 3.23 4.53 6.07 7.81 9.77 11.9 14.3 16.9 19.6
24 0.44 1.04 1,78 2.72 3.83 5.14 6.62 8.30 10.2 12.2 14.4 16.8
28 0.38 0.90 1.54 2.35 3.31 4.45 5.73 7.20 8.82 10.6 12.6 14.7
32 0.34 0.79 1.36 2.07 2.91 3.92 5.05 6.35 7.79 9.38 11.1 13.0
36 0.30 0.71 1.21 1.85 2.60 : 3.50 4.51 5.68 6.96 8.39 9.95 11.6
C',in. 11.3 26.0 J 44.7 68.1 96.0 129 167 210 258 312 371 435
2 2.60 6.48 10.7 14.8 18.9 23.0 27.0 31.0 34.9 38.9 42.9 46.8
3 2.23 5.75 9.79 14.0 18.2 22.3 26.4 30.5 34.5 38.5 42.5 46.5
4 1.94 5.12 8.91 13.1 17.4 21.6 25.7 29.9 33.9 38.0 42.0 46.1
5 1.69 4.58 8.10 12.2 16.4 20.7 24.9 29.1 33.2 37.4 41.4 45.5
6 1.49 4.13 7.37 11.3 15.5 19.7 24.0 28.3 32.5 36.6 40.8 44.9
7 1.32 3.74 6.74 10.5 14.5 18.8 23.1 27.3 31.6 35.8 40.0 44.1
8 1.18 3.41 6.20 9.73 13.6 17.8 22.1 26.4 30.6 34.9 39.1 43.3
9 1.07 3.13 5.73 9.05 12.8 16.9 21.1 25.4 29.7 34.0 38.2 42.5
10 0.98 2.89 5.31 8.45 12.0 16.0 20.1 24.4 28.7 33.D 37.3 41.5
6
12 0.83 2.50 4.63 7.43 10.7 14.3 18.3 22.4 26.7 31.0 35.3 39.6
14 0.73 2.19 4.09 6.60 9.53 12.9 16.7 20.6 24.7 29.0 33.3 37.6
16 0.65 1.95 3.65 5.93 8.59 11.7 15.2 19.0 22.9 27.1 31,3 35.5
18 0.58 1.76 3.29 5.37 7.81 10.7 14.0 17.5 21.3 25.3 29.4 33.6
20 0.53 1.60 2.99 4.90 7.15 9.85 12:9 16.2 19.8 23,6 27.6 31.7
24 0.44 1.35 2.53 4.16 6.10 8.44 11.1 14.0 17.3 20.8 24.4 28.3
28 0.38 I!I7 2,19 3.61 5.31 7.37 9.69 12.3 15.2 18.4 21.8 25.3
32 , 0.34 1.03 1.93 3.19 4.69 6.53 8.61 11.0 13.6 16.5 19.6 22.9
36 0.30 0.92 1.72 2.85 4.20 5.85 7.73 9.89 12.3 14.9 17.7 20.8
a, In. 11.3 33.7 63.7 106 156 219 291 375 469 574 690 817
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-67
Table 7-12 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 15"
Available strength of a bolt group,
or R„/Q, is determined witii
R„=Cxr„
or
LRFD ASO
r .-I'" „ 0.P,
i'min- ^
In
where
P .- requiredforce. PuOrPa, kips
r„ = nominal strength per bolt, kips
e = eccentrlGityofP with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
ex, in.
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 S 9 10 11 12
2 2.68 5.77 9.31 13.2 17.2 21.3 25.4 29.5 33.6 37.6 41,7 45,7
3 2.30 5.00 8.17 11,7 15.6 19.6 23.7 27.8 32.0 36.1 40.2 44,3
4 1.99 4.38 7.22 10.4 14.1 17.9 21.9 26.0 30.2 34.4 38.5 42,7
5 1.74 3.88 6.43 9,37 12.7 16.4 20.2 24.2 28.3 32.5 36.7 40,9
6 1.53 3.45 5.77 8,47 11.6 15.0 18.6 22.5 26,5 30.6 34:8 39,0
7 1.36 3.10 5.21 7,71 10.6 13.7 17.2 20.9 24.8 28.8 32.9 37,1
8 1.22 2.81 4.74 7,05 9.70 12.7 15.9 19.5 23.2 27.1 31.1 35,2
9 1.11 2.57 4.34 6,48 8.95 11.7 14.8 18.1 21.7 25.5 29.4 33,4
10 1.01 2.36 4.00 5,98 8.29 10.9 13.8 17.0 20.4 24.0 27.7 31.6
3
12 0.86 2.02 3.44 5,18 7.21 9.52 12.1 15.0 18.1 21.4 24.9 28.5
14 0.75 1.77 3.01 4,55 6.36 8.43 10.8 13.3 16.1 19.2 22.4 25.8
16 0.67 1.57 2.68 4,05 5.67 7.54 9.66 12.0 14.6 17.3 20.3 23.5
18 0.60 1.41 2.40 3,65 5.12 6.81 8.74 10.9 13.3 15.8 18.6 21.5
20 0.54 1.28 2.18 3,32 4.66 6.21 7.98 9.95 12.1 14.5 17.1 19.8
24 0.46 1.08 1.84 2,80 3.94 5.26 6.78 8.47 10.4 12.4 14.6 17.0
28 0.40 0.93 1.59 2,43 • 3.41 4.56 5.89 7.37 9.02 10.8 12.8 14.9
32 0.35 0.82 1:40 2.14 , 3.00 4.03 5.19 6.51 7.98 9.59 11.3 13.2
36 0,31 0.73 1.25 1.91 2.68 3.60 4.65 5.83 7.15 8.59 '10,2 11.9
2 2.68 6.48 10.6 14.7 18.8 22.9 26.9 30.9 34.8 38.8 42,8 46.7
3 2.30 5.75 9.75 13.9 18.1 22.2 26.3 30.3 34.3 38.3 42.3 46.3
4 1.99 5,13 8.91 13.0 17.2 21.4 25.5 29.6 33.7 37.7 41.8 45.8
5 1.74 4.61 8.14 12.1 16.3 20.5 24.7 28.8 33.0 37.1 41.1 45.2
6 1.53 4.17 7.45 11.2 15.3 19.5 23.7 27.9 32.1 36,3 40.4 44.5
7 1.36 3.79 6.84 10.4 14.4 18.6 22.8 27.0 31.2 35,4 39.6 43.7
8 1.22 3.46 6.30 9.71 13.6 17.6 21.8 26,0 30.3 34,5 38.7 42.9
9 1.11 3,19 5.83 9.05 12.8 16.7 20.9 25.1 29.3 33,5 37.8 42.0
10 1.01 2.94 5.42 8.47 12.0 15.9 19.9 24.1 28.3 32.6 36.8 41.0
6
12 0.86 2.55 4.73 7.47 10.7 14.3 18.2 22.2 26.4 30.6 34.8 39.1
14 0.75 2.24 4.18 6.66 9.62 12.9 16.6 20.5 24,5 28.6 32.8 37.1
16 0.67 2.00 3.74 6.00 8.71 11.8 15.2 18.9 22,8 26.8 30,9 35.1
18 0.60 1.80 3.38 5.45 7.94 10.8 14.0 17.5 21 ;2 25.1 29,1 33.2
20 0.54 1,64 3.08 4.98 7.28 9.92 13,0 16.2 19,8 23.5 27,4 31.4
24 0.46 1.39 2.60 4.25 6.23 8.54 11,2 14.1 17,3 20.8 24,4 28.1
28 0.40' 1,20 2.26 3.69 5.43 7.48 9,85 12.5 15.4 18.5 21,8 25.3
32 0.35 1.06 1.99 3.26 4.81 6.65 8,77 11.1 13.8 16.6 19,7 22.9
36 0.31 0.94 1.78 2.92 4.31 5.97 7,89 10.0 12.5 15,1 17,9 20.9
i
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

8-68
DESIGN CONSIDERATIONS FOR WELDS
Table 7-12 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 30°
Available strength of a bolt group,
([)/?„ or Rn/Cl, is determined with
Rn—OxTn.
or
LRFO ASO
r • r
where
. P = required foree,P„ or Pa kips
r„ - nominal strength per bolt, kips
e = eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, maybe
determined by geometry)
ex = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
s, in. e„ in.
11
s, in. e„ in.
1 2 3 4 5 6 7 8 9 10 11 12
2 2.90 6.06 9.59- 13.4.. 17.3 21.3 25,3 29.4 33,4 37.4 41.4 45.4
3 2.50 5.31 8.52 12.1 15.8 19.7 23.7 27.8 31.8 35.9 40.0 44.0
4 2.18 4.70 7.62 10.9 14.4 18.2 22.1 26.1 30.1 34.2 38.3 42.4
,5 1.91:. 4.18 6.85 9.86 13.2 16.8 20.5 24.4 28.4 32.5 36.6 40,7
6 1.69 3.75 6,19 8.98 12.1 15.5. 19.1 22,9 26.-8 30.7 34,8 38,9
7 ; 1.51 3.38 5.63 8.21 11.1 14.3 17.8 21,4 25.2 29.1 33.1 37.1
8 1.36 3.07 5.14 7.55 10.3 13.3 16,6 20,0 23.7 27.5 31.4 35.4
• 9 1.23 2,81 4.73 6.97 9,54 12.4 15,5 18.8 22.3 26.0 29:8 33,7
10 1.13 2.59 4.37 6.46 8.88 11.6 14.5 17.7 21.1 24.7 28.3 32.2
3
12 0.96 2,23 3.78 5.62 7.78 10.2 12.9 •15.8 18.9 22.2 25.7 29.3
14 0^84 1;95 • 3.32 4.96 6.90 9.08 11.5 14.2 17.1 20.1 23.4 26.8
16 0.74 1.73 2.96 4.43 6.19 8.17 10.4 12.9 15.5 18.4.; 21.4 24.6
18 0.67 1.56 2.66 4.00 5.60 7.41 9.46 11.7 14.2- 16.8 19.7 22.7
20 0.61 1.42 ,2,42 3.65 5.11 ' 6.77 8.67 10.8 13.1 15.5 18.2 21.0
24 0,51 1.20^ 2.04 3.09 4.34 5.77 7.41 9.22 11.2 13.4 15.7 18.2
28 0.44 1,03 :1.77 2.68 3.77 5.01 6.46 8.05 9.83 11,8' 13.9 16.1
32 0,39 :0.91 1.56 2.36 3.32 4.43 5.71 .7.14 8.72 10.5 12.3 14.4
36 0,35 0,81 1.39 2.11 2.97 3.97 5.12 6.40 7.84 9.41 11.1 13.0
2 2.90 6.59 10.6 14.7 18.7 22.7 26.7 30.7 34.7 38.7 42.6 46,6
3 2.50 5.88 9.83 13.9 18.0 22.0 26.1 30.1 34.1 38.1 42.1 46.1
4 2.18 5,30 9.05 13.0 17.1 21.2 25.3 29.4 33.5 37.5 41.5 45.5
5 1.91 4.81 8.35 12.2 16.3 20.4 24.5 28.6 32.7 36.8 40.8 44.9
6 1.69 4.38 7.72 11.4 15.4 19.5 23.6 27.7 31.8 35.9 40.0 44.1
7 1.51 4.01 7.15 10.7 14.6 18.6 22.7 26.8 31.0 35.1 39.2 43.3
8. 1.36 3.69 6.64 10.0 13.8 17.7 21,8 25,9 30.0 34.2 38.3 42.4
9 1.23 3.41 6.19 9.41 13.0 16.9 20.9 25.0 29.1 33.3 37.4 41.6
10 1.13 3.16 5.79 8.85 12.4 16.1 20.1 24.1 28.2 32.4 : 36.5 40.6
6
12 0.96 2.76 5.09 7.88 11.1 14.7 18.5 22.4 26.4 30.5 34.6 38.8
14 0.84 2,44 4.54 7.08 10.1 13.4 17.0 20.8 24.7 28.8 32,8 36,9
16 0.74 2.18 4.08 6.41 9.21 12.3 15.7 19.4 23.2 27.1 31.1 35,1
18 0.67 1.97 3.70 5.85 8.45 11.4 14.6 18.1 21.7 25.5 29.4 33,4
20 0.61 1.80 3,38 5.37 7,80 10.5 13.6 16.9 20.4 24:1 27.9 31,8
24 0.51 1,53 2.87 4.61 6.74 ,9,16 11.9 14.9 18.1 21.5 25.1 28,8
28 0.44 1.32 2.49 4.02 ::5.91 8.07 10.5 13.3 16.2 1;9..4 22.7 26,2
32 . 0.39, 1.17 2.20 3.57 5.26 7.20 «.45 11.9 14.6 17.6 20.7 23,9
36 0.35 1.05 1.97 3.21 , 4.73 6,49 8.55 10.8 13.3 16.0 18.9 22,0
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-69
Table 7-12 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 45°
Available strength of a bolt group,
<|)fl„ or fl„/n, Is determined with
Rn=Cxr„
or
LRFD ASD
^mm ~ ^
In
where
P =
rn =
e =
C =
required force, Pu or Pa, kips
nominal strength per bolt, kips
eccentricity of Pwith respect
IB centroid of bolt group, in.
(not tabulated, maybe
determined by geometry)
horizontal component of e, in,
bolt spacing, in.
coefficient tabulated below
s,in. ex, in.
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 8 9 10 11 12
2 3.26 6.62 10.2 13.9 17.7 21.5 25.5 29,4 33.4 37.3 41.3 45.3
3 2.87 5.92 9.19 12.7 16.4 20.2 24.0 28,0 31.9 35.9 39.9 43.9
4 2.54 5.31 8.36 11.7 15.2 18.8 22.6 26,5 30.4 34,4 38.4 42.4
5 2.25 4.78 7.63 10.8 14.1 17.6 ^21.3 25,1 29.0 32.9 36.8 40.8
6 : 2.01, 4,33 6.99 9.94 13.1 16.5 20.1 23,8' 27.5 31,4 35.3 39.3
' 7 1.81 3.93 6.42 9,20 12.2 15.5 18.9 22,5 26,2 30.0 33.8 37,7
8 : 1.64 3.60 5.92 8,55 11.4 14.6 17.9 21,3 24,9 28.6 32.4 36,3
9 1.49 3.31 5.49 7.96 10.7 13.7 ,16.9 ;20,3 23,8 27.4 31.1 34,9
0
10 1.37 3.06 5.10 7.44 10.1 12.9 16.0 19,2 22,7 26.2; 29.8 33,6
0
12 1.17 2.65 4.46 6,55 8.93 11.6 14,4 17,5 20,7 24,0 27.5 31,1
14 1.03 2.33 3.95 5,83 8.00 10.4 13.1 15,9 18.9 22.1 25.4 28,8
16 0.91 2.08 3.54 • 5.24 7.23 9.47 11.9 14,6 17.4 20,4 23.6 26,8
18 0.82 1.88 3.20 4,75 6.59 8.66 10.9 13,4 16;1 18.9 21.9 25,0
20 0.74 1.71 2.92 4,35 6.04 7.96 10.1 12,4 15.0 17.6 20.5 23,5
24 0.63 1.45 2.48 3.71 5.18 6.84 8.71 10,8 13.0 15.4 18.0 20.7
28 0.54 1.26 2.15 3.23 4.52 5.99 7.65 9,50 11.5 13.7 16.0 18.5
32^ 0.48 1.1,1 1.90 2.86 4.00 5.31 6.81 8,48 10.3 12,3 14.4 16.7
36 0.43 0.99, 1.69 2.56 3.59 4.77 6.13 7,64 9.30 11.1 13.1 15.2
2 3.26 6.89 10.8 14.7 18.7 22.7 26.6 30,6 34.6 38.5 42.5 46,5
3 2.87 6.28 10.1 14.0 18.0 22.0 26.0 30,0 33.9 37.9 41.9 45,9
4 2.54 5.74 9.38 13.3 17.2 21.2 25.2 29,2 33.2 37.2 41.2 45,2
5 2.25 5.27 8.75 12.6 16.5 20.4 24.5 28.5 32.5 36.5 40.5 44,5
6 2.01 4.85 8.20 11.9 15.7 19.7 23.7 27.7 31.7 35.7 39,7 43,8
7 1.81; 4.49 7.70 11.3 15.0 18.9 22.9 26.9 30.9 34.9 39.0 43,0
8 1.64 4.16 7.25 10,7 14.4 18.2 22.1 26..1 30.1 34,1 38.2 42,2
9 1.49 3.87 6.83 10.2 13.7 ,17.5 21,4, 25.3 29.3 33.3 37.4 41.4
10 1.37 3.62 6.45 9.65 13.1 16.8 20.7 24,6 28.5 32,5 36.6 40.6
6
12 1>17 3.19 5.78 8.75 12.0 15.6 19.3 23,1 27.0 31.0 35.0 39.0
14 1.03 2.84 5.21 7.97 11.1 14.5 18.1 21.8 25.6 29.5 33.4 37.4
16,: 0.91 2.56 4.74 7.30 10.2 13.5 16.9 20.5 24.3 28.1 32.0 35.9
18 0.82 2.33 4.33 6.72 9.48 12.6 ; 15,9 19.4 23.0 26.7 30.6 34.4
^ 20 0.74 2.13 3.98 6.21 8.83 11.8 15.0 18.3 21.8 25,5 29.2 33.1
24: 0.63 1.82 3.42 5.38 7.74 1.0.4 13,3 16,5 19.8 23.2 26.8 30.5
28 0.54 1.59 2.99 4.74 6.87 9.30 12,0 14,9 18.0 21,3 24.7 28.2
32 . 0.48 1.41 2.65 4.22 6.17 8.38 10,8 13,6 16.5 19.5 22.8 26.1
• 36 0.43 1.26 2.38 3.81 5.59 7.62 9.89 12,4 15.2 18.0 21.1 24.3
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

8-70 DESIGN CONSIDERATIONS FOR WELDS
Table 7-12 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 60°
Available strength of a bolt group,
ifRn or fln/fJ, Is determined with
Rn=Cxr„
or
LRFD ASD
I'mm- .
In
where
P = required force, Pu or P3, kips
t„ = nominal strength per bolt, laps
e = eccentricity of P with respect
tocentroidof boltgroup.in.
(not tabulated, maybe
determined by geometry)
e^ = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
—4—
Number of Bolts in One Vertical Row, n
5, in. ex, 1".
12
5, in. ex, 1".
1 2 3 4 5 6 7 8 9 10 11 12
2 3.63 7.25 10.9 14.6 • 18.3 22.1 25.9 29.7 33.6 37.5 41.4 45.3
3 3.38 6.77 10.2 13.8 17,4 21.1 24.8 28.6 32.4 36:3 40.2 44.1
4 3.10 6.27 9.55 13.0 16.5 20.1 23.7 27.5 31.3 35.1 38.9 42.8
5 2.84 5.80 8.92 12.2 15.6 19.1 22.7 26.4 30,1 33.9 37.8 41.6
6 2.60 5.36 8.33 11.5 14.8 18.2 21.7 25.4 29.1 32.8 36.6 40,4
7 2.38 4.96 7.79 10.8 14.1 17.4 20.9 24.4 28.0 31.7- 35.5 ,39.3
8 2.19 4.60 7.30 10.2 13.4 16.6 20.0 23.5 27.1 30.7 34.4 38.2
9 2.02 4.28 ,6.85 9.68 12.7 15.9 19.2 22.6 26.1 29.7 33.4 37.1
10 1.87 3,99 6.45 9.17 12.1 15.2 18.4 21.8 25.3 28.8 32.4 36.1
3
12 1.62 3.51 5,75 8.27 11.0 13.9 17.0 20.3 23.6 27.0 30.6 34.1
14 1.43 3.12 5.18 7.50 10.1 12.8 15.8 18.9 22.1 25.4 28.9 32.4
16 1.27 2.81 4.70 6.85 9.23 11.9 14.7 17.6 20.7 24.0 27.3 30.7
18 1.15 2.56 4.29 6.28 8.52 11.0 137 16.5 19.5 22.6 25.8 29.1
20 1.04 2.34 3.95 5.80 7.89 10.2 12.8 15.5 18.4 21.4 24.5 27.7
: 24 0.88 2.00 3.39 5.01 6.87 8.98 11.3 13.8 16.4 19.2 22.1 25.2
28 0.76 1.74 2.96 4.39 6.07 7.97 10.1 12.3 14.8 17.4 20.1 23.0
32 0.67 1.54 2.63 3.91 5.43 7.15 9.06 11.2 13.4 15.8 18.4 21.1
36 0.60 1.38 2.36 3.52 4.91 6.48 8.22 10.2 12.3 14.5 16.9 19.4
2 3.63 7.29 11.1 14.9 18.8 22.7 26.6 30.5 34.5 38.4 42.4 46.3
3 3.38 6.88 10.6 14.3 18.2 22.1 26.0 29.9 33.9 37.8 41.8 45.7
4 3.10 6.46 10.0 13.8 17.6 21.5 25.4 29.3 33.2 37.2 41.1 45.1
5 2.84 6.06 9.55 13.2 17.0 20.9 24.7 28,7 32.6 36.5 40.4 44.4
6 2.60 5.69 9.09 12.7 16.4 20.3 24.1 28.0 31.9 35.9 39.8 43.8
7 2.38 5.34 8.66 12.2 15.9 19.7 23.5 27.4 31.3 35.2 39.2 43.1
8 2.19 5.03 8.27 11.7 15.4 19.1 22.9 26.8. 30.7 34.6 38.5 42.4
9. 2.02 4.74 7.90 11.3 14.9 18,6 22.4 26.2 30.1 34.0 37.9 41.8
10 1.87 4.47 7.55 10.9 14.4 18.1 21.8 25.6 29.5 33.4 37.3 41.2
6
1?
1.62 4.01 6.93 10.1 13.6 17.1 20.8 24.5 28.3 32.2 36.0 39.9
14 1.43 3.63 6.38 9.46 12.8 16.2 19.8 23.5 27.3 31.0 34.9 38.7
16 1.27 3.31 5.91 8.84 12.0 15.4 18.9 22.5 26.2 30.0 33.8 37.6
18 1.15 3.04 5.49 8.28 11.3 14.6 18.0 21.6 25.2 28.9 32.7 36.5
20 1.04 2.81 5,12 7.77 10.7 13.9 17.2 20.7 24.3 28.0 31.7 35,4
24 : 0.88: 2.44 4.49 6.90 9.62 12.6 15.8 19.1 22.6 26.1' 29.8 33,4
28 0.76 2.15 3.99 6.18 8.70 11.5 14.5 17.7 21.1 24.5 28.0 31.6
32- 0.67 1.91 3.58 5.58 7,93 10.6 13.4 16.5 19,7 23.0 26.4 29.9
36 0.60 1.73 3.24 5.08 7.27; 9.76 12.5 15.4 18.4 21.6 24.9 28.3
.11 AMERICAN INSTiTuTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-71
Table 7-12 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 75°
Available strength of a bolt group,
<|)/?„ or R„in, is determined with
R„=Cxr„
or
LRFD ASD
r — P"
1 O.Pa
^min - ,
'n
where
P = required force, Pv or Pa, l<ips
r„ = nominal strengtii per bolt, kips
e = eccentricityofP with respect
to centroid of bolt group, in.
(not tabulated, maybe
determined by geometry)
e, = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
T—--<1^-4-
s,in. ex, in.
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 8 9 10 11 12
2 3.86 7.69 11.5 15.3 19.1 22.9 26,7 30.5 34.3 38.2 42.0 45.9
3 3.79 7.53 11.2 14.9 18.6 22.4 26.1 29,9 33.6 37.4 41.3 45.1
4 3.70 7.34 11.0 14.6 18.2 21.8 25.5 29.2 33.0 36,7 40.5 44.3
5 3.59 7.13 10.6 14.2 17.7 21.3 24.9 28:6 32.3 36.1 39.8 43.6
6 3.47 6,89 10,3 13.8 :17.2 20,8 24.4 28.0 31.7 35.4 39.1 42.9
7 3.34 6,65 9,98 13.4 16.8 20,3 23.8 27.4 31.1 34.7 38,4 42,2
8 3.20 6,40 9.64 12.9 16.3 19,8 23.3 26,8 30.4 34.1 37.8 41,5
9 3.07 6.16 9.31 12.6 15.9: 19.3 22.8 26.3 29.9 33.5 37.1 40.8
0
10 2.94 5.91 8.98 12.2 15.4 18.8 22? 25.7 29.3 32.9 36.5 40.2
0
12 2.68 5.45 8.36 11.4 14.6 17.9 21.3 24.7 28.2 31.8 35.4 39.0
14 2.45 5.03 7.79 10.7 13.8 17.1 20.4 23.8 27.2 30.7 34.3 37.9
16 2.24 4,65 7.28 10.1 13.1 16.3 19.5 22.9 26.3 29.7 33.2 36.8
18 2.06 4,31 6.81 9.55 12.5 15.5 18.7 22.0 25.4 28.8 32.2 35.8
20 1.90 4.01 6.40 9.03 11.9 14,8 18.0 21.2 24.5 27.9 31.3 34.8
24 1.63 3.51 5.69 8.13 10.8 13,6 16.6 19.7 22.8 26.1 29.5 32.9
28 1.43 3.11 5.11 7.36 9.83 12.5 15.3 18.3 21.4 24.6 27.8 31.1
32 1.27 2.79 4.62 6.71 9.02 11.5 14.2 17.1 20.0 23.1 26.3 29.5
36 1.14 2:53 4.22 6.15 8.31 10.7 13.3 16.0 18.8 21.8 24.9 28.0
. 2 3.86 7.67 11.5 15.3 19.1 23.0 26.9 30.8 35.2 39.1 43.0 47.0
3 3.79 7.51 11.2 15.0 18.8 22.6 26.4 30.3 34.2 38.1 42.1 46.0
4 3.70 7.32 11,0 14.7 18.4 22.2 26.0 29.9 33,8 37.7 41.6 45.5
5 3.59 7,12 10.7 14.4 18.1 21.8 25,6 29.5 33.3 37.2 41.1 45.0
6 3.47 6,92 10.4 14.1 17.7 21.5 25,3 29.1 32.9 36.8 40.7 44.6
7 3.34 6,70 10.2 13.8 17.4 21.1 24,9 28.7 32.5 36.4 40.2 44.1
8 3.20 6.49 9.92 13.5 17,1 20.8 24.5 28.3 32.1 36.0 39.8 43.7
9 3.07 6.28 9.66 13.2 16.8 20.5 24.2 28.0 31.8 35.6 39.4 43.3
10 2.94 6.08 9.42 12.9 16.5 20.2 23.9 27.6 31.4 35.2 39.0 42.9
6
12 2.68 5.69 8.95 12.4 15.9 19.5 23.2 26.9 30.7 34.5 38.3 42.1
14 2.45 5.33 8.51 11,9 15.4 19.0 22.6 26.3 30.0 33.8 37.6 41.4
16 2.24 4.99 8.10 11,4 14.9 18.4 22.0 25.7 29.4 33.1 36.9 40.7
18 2.06 4.69 7.72 11.0 14.4 17.9 21.5 25.1 28.8 32.5 36.2 40.0
20 1.90 4.42 7,36 10.6 13.9 17.4 21.0 24.6 28.2 31.9 35,6 39.3
24 1.63 3.95 6,74 9.83 13.1 16.5 20.0 23.5 27.1 30.7 34,4 38.1
28 1.43 3.57 6.21 9.16 12.3 15.6 19,0 22.5 26.1 29.7 33,3 36.9
32 1.27 3.25 5.74 8.56 11.6 14.8 18.2 21.6 25.1 28:6 32.2 35.9
36 1.14 2.98 5.33 8.02 11.0 14,1 17.3 20.7 24.1 27,6 31.2 34.8
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

8-72 DESIGN CONSIDERATIONS FOR WELDS
Table 7-13
Coefficients C for Eccentrically Loaded Bolt Groups
Angle-0°
Available strength of aJ)olt group,
(|)fln or V£i, is determined witli
Rfi— Cx ffl
or
LRFO ASO
•ti'n
ClPs
l^m/n ~ y
'u
s,in.
.11
where
P = required force, Pp or Ps, kips
, r„ = nominal strength per bolt, kips
e = eccentricityofP with respect
to centroid of bolt group, in.
(not tabulated, maybe
determined by geometry)
Ox - horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below U -J
ex, in.
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 8 9 10 11 12
2 2.82 5.98 9.46 13.3 17.3 21.3 25.5 29.6 33.7 37.7 41.8 45.8
3 2.50 5.31 8.43 12.0 15.7 19.7 23.8 28.0 32.2 36.3 40.4 44.6
4 2.23 4.74 7.58 10,8 14.3 18.2 22.2 26.3 30.4 34.6 38.8 43.0
5 2.01 4.27 6.86 9.82 13.1 16.7 20.5 24.5 28.6 32.8 37.0 41.3
6 i.ai 3.86 6.24 8.96 12.0 15.4 22.9 26,9 31.0 35.2 39.4
7 1.64 3.52 5.70 8.22 11.1 14.2 17.6 21.3 25,2 29.2 33.3 37.5
8 1.49 3,22 5.24 7.57 10.2 13.2 16.4 19.9 23.6 27.5 31.5 •35.6
9 1.36 2,96 4.83 7.01 9.48 12.3 15.3 18.6 22.1 25.9 29.8 33.8
10 1.25 2.73 4:47 6.51 8.83 11.4 14.3 17.5 20.8 24.4 28.2 32.1
3
12 1.07 2.37 3.89 5.68 7.74 10.1 12.6 15.5 18.5 21.8 25.3 29.0
14 0,94 2.08 3.42 5.02 6.86 8,95 11.3 13.8 16.6 19.6 22.8 26.2
16 0.83 1.86 3.05 4.49 6.15 8,04 10.2 12.5 15.0 17.8 20.7 23.9
18 0.75 1.67 2.75 4.06 5.56 7,29 9.22 11.4 13.7 16.3 19.0 21.9
20 0.68 1.52 2.50 370 5.07 6.65 8.43 10.4 12.6 14.9 17.5 20.2
24 0.58 1.29 2.12 3.14 4.30 5.66 7.18 8.88 10.8 12;8 15.0 17,4
28 0.50 1.12 1.84 2.72 3.73^ 4.92 6.24 7.73 9.37 11.2 13.1 15.2
32 0.44 0.98 1.62 2.40 3.30^ 4.34 5.51 6.84 8.29 9.90 11.6 13.5
36 0.40 0.88 1.45 2.15 2,95: 3.89 4.94 6.13 7.43 8.88 10.4 12,1
C, In. 15.0 32.8 54.2 79.9 110 145 184 229 279 333 393 458
2 2.82 6,54 10.6 14.8 18,9 22.9 26.9 30.9 34.9 38.9 42.8 46.8
3 2.50 5.90 9.81 14.0 18.1 22.3 26.4 30.4 34.5 38.5 42.5 46.5
4 2.23 5.33 9.01 13.1 17.3 21.5 25.7 29.8 33.9 37.9 42.0 46.0
5 2.01 4.84 8.27 12.2 16.4 20.6 24.8 29.0 33.2 37.3 41.4 45.5
6 1.81 4.42 7.60 11.4 15.5 19.7 24.0 28.2 32.4 36.6 40.7 44.8
7 1.64 4.05 7.02 10.6 14.6 18,8 23.0 27.3 31.5 35.7 39.9 44.1
8 1.49 3.73 6.51: 9.94 13.7 17.8 22.0 26.3 30.6 34.8 39.1 43.3
a 1.36 3.45 6.06 9.30 13.0 16.9 21.1 25.3 29.6 33.9 38.2 42.4
10 1.25 3.20 5.66 8.72 12.2 16.1 20.2 24.4 28.6 32.9 37.2 41.5
6
12 1.07 2,80 4.98 7.73 10.9 14.5 18.4 22.5 26.7 30.9: 35.2 39.5
14 0.94 2.47 4.43 6.92 9.81 13.2 16.8 20.7 24.8 29,0 33.2 37.5
16 0.83 2.21 3.98 6.25 8.90 12.0 15.4 19.1 23.0 27.1 31.3 35.5
18 0.75 2.00 3.60 5.68 8.13 11.0 14.2 17.7 21.4 25.3 29.4 33.6
20 0.68 1.82 3.29 5.21 7.47 10.1 13.1 16.4 20.0 23.7 27.7 31.7
24 0.58 1.55 2.79 4,45 6.40 8.72 11.3 14.3 17.5 20.9 24.5 28.3
28 0.50 1.34 2.42 3:87 5.59 7.64 9.96 12.6 15.5 18.6 21.9 25.5
32 0.44 1.18 2.14 3.43 4.95 6.79 8.87 11.2 13.8 16.7 19.7 23.0
36 0.40 rioe 1:92 3:07 4.44 6.10 7.98 10,1 12.5 15.1 17.9 20.9
C, In. 15.0 39.4 71.8 115 167 230 304 38S 483 588 705 832
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-73
Table 7-13 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 15°
Available strength of a bolt group,
^Rn or Hnia, Is determined with
fin=Cxr„
or
LRFD ASD
(fOl
. nPa
where
P = required force, P„ or Pa, kips
r„ = nominal strength per bolt, kips
e = eccentricity of P with respect
to centroid of bolt group, in.
{not tabulated, may be
determined by geometry)
Ox - horizontal component of e, in.
s = bolt spacing, In.
C = coefficient tabulated below
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 8 9 10 11 12
2 2.91 6.06 9.56 13.3 17.2 21.3 25.3 29.4 33.5 37.5 41.6 45.6
3 2.57 5.40 8.57 12.0 15.8 19.7 23.7 27.8 31.9 36.1 40.2 44.3
4 2.30 4.84 7.72 10.9 14.4 18.2 22.1 26.1 30.2 34.3 38.5 42.6
5 2.06 4.37 6.99 9.93 13.2 16.7 20.5 24.4 28.5 32.6 36.7 40.9
6 1.86 3.96 6.37 9.09 12.1 15.5 19.0 22.8 26.7 30.8 34.9 39,0
7 1.69 3.61 5.83 8.36 11.2 14.3 17.7 21.3 25.1 29.0 33.1 37.2
8 1.53 3.31 5,36 7.72 10.4 13.3 16.5 19.9 23.6 27.4 31.3 35.3
9 1.40 3.04 4.95 7.15 9,64 12.4 15.4 18.7 22.2 25.8 29.7 33.6
<3 10 1.29 2.81 4.59 6,65 9.0 11.6 14.5 17.6 20.9 24.4 28.1 31.9
0
12 1.11 2.44 4.00 5.82 7.9 10.2 12.8 15.6 18.7 21.9 25.3 28.9
14 0.97 2.15 3.52 5,15 7.0 9.12 11.5 14.0 16.8 19.8 22.9 26,3
16 0.86 1.92 3.15 4.61 6,3 8.21 10,3 12.7 15.2 18.0 20.9 24.0
18 0.78 1.73 2.84 4.17 5.7 7.45 9.41 11.6 13.9 16.5 19.2 22.1
20 0.71 1.57 2.59 3.80 5,2 6.81 8.61 10.6 12.8 15.2 17.7 20.4
24 0.60 1.33 2.19 3.23 4.4 5.80 7.36 9.07 11,0 13.0 15.3 17.6
28 0.52 1.15 1.90 2.80 3.9 5.05 6.41 7.91 9.59 11,4 13.4 15.5
32 0.46 1.02 1.68 2.48 3.4 4.46 5.67 7,01 8.50 10,1 11.9 13.8
36 0.41 0.91 1.50 2.22 3.0 4.00 6.08 6.29 7.63 i09 10.7 12.4
2 2.91 6.57 10.6 14.7 18.8 22.8 26.8 30.8 34.8 38.8 42.7 46,7
3 2.57 5.93 9.81 13.9 18.0 22.1 26.2 30,3 34.3 38.3 42.3 46.3
4 2.30 5.37 9.04 13.0 17.2 21.3 25.5 29.6 33.6 37.7 41.7 45,8
5 2.06 4.89 8.33 12.2 16.3 20.5 24.6 28.8 32.9 37.0 41.1 45,1
6 1.86 4.48 7.70 11.4 15.4 19.5 23.7 27.9 32.1 36.2 40.3 44,4
7 1.69 4.12 7.13 10.6 14.5 18.6 22.8 27.0 31.2 35.4 39.5 43,7
8 1.53 3.80 6.62 9.95 13.7 17.7 21.8 26.0 30.2 34.4 38.6 42,8
9 1.40 3.52 6.17 9.32 12.9 16.8 20.9 25.1 29.3 33.5 37.7 41,9
10 1,29 3.27 5.77 8.76 12.2 16.0 20.0 24.1 28.3 32.5 36.8 41,0
6
12 1.11 2.86 5.09 7.80 11.0 14.5 18.3 22.3 26.4 30.6 34.8 39,0
14 0.97 2.54 4.53 7.00 9.92 13.2 16.8 20.6 24.6 28.7 32.8 37,1
16 0.86 2,27 4,08 6.34 9.02 12.0 15.4 19.0 22.9 26.9 30.9 35,1
18 0.78 2.06 3.70 5.78 8.26 11.1 14.2 17.7 21.3 25.2 29.1 33,2
20 0.71 1.88 3,38 5.30 7.60 10.2 13.2 16.4 19,9 23.6 27.5 31,4
24 0.60 1.59 2.88 4.54 6.54 8.84 11.5 14.4 17.5 20.9 24.5 28,2
28 0.52 1.38 2.50 3.96 5.72 7.77 10.1 12.7 15.6 18.7 22.0 25.4
32 0.46 1.22 2.21 3.51 5.08 6.92 9.03 11.4 14.0 16.8 19.9 23.1
36 0.41 1.09 1.98 3.15 4.56 6.23 8.15 10.3 12.7 15.3 18.1 21.1
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

8-74
DESIGN CONSIDERATIONS FOR WELDS
Table 7-13 (continued)
Coefficients G for Eccentrically Loaded Bolt Groups
Angle=30°
Available strength of a bolt group,
it)B„ or HnlCl, is determined with
Hfi~ Cx fn
or
LRFD ASD
C -
. "Pa
^min— _
In
where
P = required force, Pu or Pa, l<ips
r„ = nominal strength per bolt, l<ips
e = eccentricity of F with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
Bx = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
tiHHv
—i—(t)—
Number of Bolts in One Vertical Row, n
s,m. ejt.Hi. s,m. ejt.Hi.
1 2 3 4 5 6 7 8 9 10 11 12
2 3.14 6.41 9.91 13,6 17,5 21.4 25.4 29.4 33.4 37.4 41.4 45.4
3 2.79 5.75 8.95 12.4 16.1 20.0 23.9 27,9 31.9 35.9 40.0 44.0
4 2.50 5.19 8.16 11.4 14.9 18.5 22.4 26.3 30.3 34.3 38.4 42.4
5 2.25 4.71 7.45 10.5 13.7 17.2 20.9 24.7 28.6 32.6 36.7 40.7
6 2.04 4;29 6.83 9.65 12.7 16.0 19.6 23.3 27.1 31.0 35.0 39.0
7 1.85 3.93 6.28 8.92 11.8 15.0 18.3 21.9 25.6 29.4 33.3 37,3
8 1,69 3.61 5.80 8.27 11.0 14.0 17.2 20.6 24,2 27.9 31.7 35.6
9 1.55 3.33 5.38 7.70 10.3 13.1 16.2 19.4 22.9 26.5 30.2 34.0
10 1.43 3.08 5.00 7.19 9.64 12.3 15.3 18.4 21.7 25.2 28.8 32.5
3
12 1.23 2.68 4.37 6.32 8.52 11.0 13.6 16.5 19.6 22.8 26.2 29:8
14 1.08 2.36 3,88 5.62 7.61 9.83 12.3 14.9 17.8 20.8 24.0 27.3
16 0.96 2.11 3.47 5.05 6.86 8.89 •11.1 13.6 16.2 19.0 , 22.0 25.2
, 18 0.87 1.91 3.14 4.57 6.24 8.10 10.2 12.4 14.9 17.5 20.3 23.3
20 0.79 1.74 2.86 4.18 5.71 7.43 9.35 11.5 13.8 16.2 18.9 21.6
24 0.67 1.48 2.43 3.56 4.88 6.36 8.03 9.87 11.9 14.1 16.4 18.9
28 0.58 1.28 2.11 3.10 4.25 5.55 7.02 8.65 10.4 12.4 14.5 16.7
32 0.51 1.13 1.87 2.74 3.76 4.92 6.23 7.69 9.29 11.0 12.9 14.9
36 0.46 1.01 1.67 2.45 3.37 4.41 5.60 6.91 8.36 9.95 11.7 13.5
2 3.14 6.75 10.7 14.7 18.7 22.7 26.7 30.7 34.7 38.6 42.6 46.6
3 2.79 6.12 9.94 13.9 18.0 22.0 26.1 30.1 34.1 38.1 42.1 46.1
4 2.50 5.58 9.23 13.1 17.2 21.2 25.3 29.4 33.4 37.5 41.5 45.5
5 2.25 5.13 8.58 12.4 16.3 20.4 24.5 28.6 32.7 36.7 40.8 44.8
6 2.04 4.73 8.00 11.6 15.5 19.5 23.6 27.7 31.8 35.9 40.0 44.1
7 1.85 4.38 7.47 10.9 14.7 18.7 22.7 26.8 31.0 35.1 39.2 43.3
8 1.69 4.06 6.98 10.3 14.0 17.9 21.9 25.9 30.1 34.2 38.3 42.4
9 1.55 3.78 6.55 9,72 13.3 17.1 21.0 25.1 29.2 33.3 37.4 41.5
10 1.43 3.53 6.15 9.18 12.6 16.3 20.2 24.2 28.3 32.4 36.5 40.6
6
12 1.23 3.10 5.47 8.25 11.4 14.9 18.6 22.5 26.5 30.6 34.7 38.8
14 1.08 2.76 4.90 7.46 10.4 13.7 17.2 21.0 24.9 28.8 32.9 37.0
16 0.96 2.48 4.43 6.79 9.55 12.6 16.0 19.6 23.3 27.2 31.2 35.2
18 0.87 2.25 4.04 6.22 8.79 11.7 14.9 18.3 21.9 25.7 29.5 33.5
20 0.79 2.06 3.70 5.72 8.14 10.9 13.9 17.1 20.6 24.2 28.0 31.9
24 0.67 1.76 3.17 : 4:93 7.06 9.48 12.2 15:2 18.3 21.7 ,25.3 28.9
28 0.58 il.53 2.76 4.32 6.22 8.38 10.8 13.5 16.5 19.6 22.9 26.3
32 ! 0.51 1.35 2.45 3.84 5.54 7.50 9.73 12.2 14.9 17.8 20.9 24.1
36 0.46 1.21 2.19 3.46 5;00 6.77 8.82 11.1 13.6 16.3 19.1 22.2
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-75
Table 7-13 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle = 45°
Available strength of a bolt group,
<|)Bn or is determined with
fl„=Cxr„
or
LBFD ASD
C
'n
where
' P = required force, P„or Pa, kips
r„ = nominal strength per bolt, kips
e = eccentricityofP with respect
to centroid of bolt group, in.
(nottabulated, maybe
determined by geometry)
e, = horizontal component of e, in.
s = bolt spacing. In.
C = coefficient tabulated below
J ««
---<t)—-(fe-^-
P
Number of Bolts in One Vertical Row, n
s,in. e„ in.
1 2 3 4 5 6 7 8 9 10 11 12
2 3.46 6.96 10.5 14.2 18.0 21.8 25.7 29.6 33.5 37.4 41.4 45.3
3 3.15 6.38 9.73 13.2 16.8 20.6 24.4 28.2 32.1 36.1 40.0 44.0
4 2.87 5.84 8.97 12.3 15.7 19.3 23.1 26.9 30.7 34.6 38.6 42.5
5 2.61 5.36 8.30 11.4 14.7 18.2 21.8 25.5 29.3 33.2 37.1 41.0
6 2.39 4.93 7.69 10.7 13.9 17.2 20.7 24.3 28.0 31.8 35.6 39.5
7 2.19 4.55 7.15 9.98 13.0 16.2 19.6 23.1 26.7 30.4 34.2 38.1
8 2.01 4.21 6.66 9.34 12.2 15.3 18.6 22.0 25.5 29.2 32.9 36.7
9 1.86 3.90 6.21 8.76 11.5 14.5 17.7 21.0 24.4 27.9 31.6 35.3
o
10 1.72 3.63 5.82 8.24 10.9 13.8 16.8 20.0 23.3 26.8 30.4 34.0
J
12 1.49 3.18 5.14 7.33 9.76 12.4 15.2 18.3 21.4 24.7 28.1 31.6
14 1.32 2.82 4.59 6.58 8,81 11.3 13.9 16.7 19.7 22.8 26.1 29.5
16 1.17 2.53 4.14 5.95 8.00 10,3 12.7 15.4 18.2 21.2 24.3 27.5
18 1.06 2.29 3.76 5.43 7.32 9.44 11.7 14.2 16.9 19.7 22.7 25,7
20 0.96 2.10 3;44 4.98 6.74 8.71 10.9 13.2 15.7 18.4 21.2 24,2
24 0.82 1.79 2.94 4.26 5.81 7.53 9.43 11.5 13.8 16.2 18.7 21.4
28 0.71 1.56 2.56 3.73 5.09 6.61 8.31 10.2 12.2 14.4 16.7 19.2
32 0.63 1.38 2.26 3.31 4.52 5,89 7.42 9.11 11.0 12.9 15.1 17.3
36 0.56 1.23 2.03 2.97 4.06 5,30 6.69 8.23 9.91 11.7 13.7 15.8
2 3.46 7.09 10.9 14.8 18.7 22.7 26.7 30.6 34.6 38.5 42.5 46.5
3 3.15 6.58 10.3 14.1 18.1 22.0 26.0 30.0 33.9 37.9 41.9 45.9
4 2.87 6.09 9.65 13.4 17.3 21.3 25.3 29.3 33.3 37.3 41.2 45.2
5 2.61 5.66 9.07 12.8 16.6 20.6 24.5 28.5 32.5 36.5 40.5 44.5
6 2.39 5.26 8.54 12.1 15.9 19.8 23.8 27.8 31.8 35.8 39.8 43.8
7 2.19 4.91 8.07 11.6 15.3 19.1 23.0 27.0 31.0 35.0 39.0 43.0
8 2.01 4.59 7.63 11.0 14.6 18.4 22.3 26.2 30.2 34.2 38.2 42.2
9 1.86 4.30 7.23 10.5 14.0 17.7 21.5 25.5 29.4 33.4 37.4 41.4
10 1.72 4.04 6.85 10.0 13.4 17.1 20.8 24.7 28.6 32.6 36,6 40.6
6
12 1.49 3.59 6.19 9.14 12.4 15.9 19.5 23.3 27.2 31.1 35.1 39.1
14 1.32 3.22 5.62 8.38 11.4 14.8 18.3 22.0 25.8 29.6 33.5 37.5
16 1.17 2.91 5.13 7.71 10.6 13.8 17.2 20.8 24,4 28.2 32,1 36.0
18 1.06 2.66 4.71 7.12 9.87 12.9 16.2 19.6 23.2 26.9 30.7 34.6
20 0.96 2.44 4.35 6.61 9.22 12.1 15.3 18.6 22.1 25.7 29,4 33.2
24 0.82 2.10 3.76 5.76 8.11 10.8 13.7 16.7 20.0 23.4 27,0 30.6
28 0.71 1.83 3.30 5.08 7.22 9.64 12.3 15.2 18.3 21.5 24,9 28.4
32 0.63 1.63 2.94 4.54 6.50 8.71 11.2 13.9 16.7 19.8 23.0 26.3
36 0.56 1.46 2.64 4.11 5.90 7.93 10.2 12.7 15.4 18.3 21.3 24.5
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

8-76 DESIGN CONSIDERATIONS FOR WELDS
Table 7-13 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle- 60°
Available strength of a bolt group,
([)/?„ or H„/£i, is determined with
— Cx /"n
or
LRFD ASD
c -A
^ ClPa
where
. P - requlredforce, PiyOrPa, kips
r„ = nominal strength per bolt, kips
e = eccentricityofP with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
e, = horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
---—p
Number of Bolts in One Vertical Row, n
s, in. ex, in. s, in. ex, in.
1 2 3 4 5 6 7 8 9
10 11 12
2 3.74 7,46 11.2 . 14.9 18.6 22,4 26,2 30,0 33.9 37.7 41.6 45.5
3 3.57 7,12. 10.7 14.3 17.9 21,6 25,3 29.0 32.8 36.7 40.5 44.4
4 3.38 6.75 10.2 13.6 17.1 20,7 24:3 28.0 31,8 35.6 39.4 43.2
5 3.17 6.36 9.61 12.9 16.4 19,8 23,4 27.0 30.7 34.5 38.2 42.0
6 2.97 5,99 9.09 12.3 15.6 19,0 22,5, 26.1 29.7 33.4 37.1 40.9
7 2.78 5.63 8.59 11.7 14.9 18,2 21,6 25,1 28.7 32.3 36.0 39.8
8 2.60 5.29 8.13 11.1 14.2 17.5 20,8 24,3 27.8 31.4 35,0 38.7
9 2.44 4.98 7.69 10.6 13.6 16,8 20,1 23,4 26:9 30.4 34.0 37.7
10 2.28 4.69 7.28 10.1 13.0 16.1 19,3 22,7 26.1 29.5 33,1 36.7
3
12 2.02, 4.18 6.56 9.16 11.9 14.9 18.0 21,2 24.5 27.8 31.3 34,8
14 1.80 3.76 5.95 8.38 11.0, 13.8 16.7 19,8 23.0 26.3 29.6 33,1
16 1.62 3.40 5.43 7,70 10.2 12.8 15.6 18,6 21.6 24.8 28.1 31,4
18 1.47 3.10 4.99 7.11 9.42 11.9 14.6 :17.4 20.4 23.5 26.7 29,9
20 1.34 2.85 4.61 6,59 8.76 11.1 13.7 .16.4 19.3 22? 25.3 28,5
24 1.15 2.45 3.99 5,73 7.67 9,82 12.2 14.6 17.3 20.1 23.0 26,0
28 1.00 2,15 3.51. 5,06 6.80 8.76 10.9 13.2 15.6 18.2 20.9 23,8
32 0.88 1.91 3.13 4,52 6.11 7.89 9.83 11,9 14.2 16.6 19.2 21,8
36 0.79 1.72 2.81 4.08 5.53 7,16 8.95 10.9 13.0 .15.3 .17.7 20,2
2 3.74 7.47 11.2 15,0 18.9 22.8 26.7 30,6 34.5 38.5 42.4 46,4
3 3.57 7.16 10.8 14;6 18.4 22.2 26.1 30,0 33.9 37.9 41.8 45,8
4 3.38 6.82 iO.4 14,1 17.8 21,7 25.5 29,4 33.3 37.3 41,2 45,1
5 3.17 6.47 9.94 13,6 17,3 21,1 24,9 28,8 32.7 36,6 40,5 44,5
6 2.97 6.14 9.52 13,1 16,7 20,5 24,3 28,2 32.1 36.0 39,9 43,8
7 2.78 5.82 9.11 12,6 16,2 19,9 23,7 27,6 31.5 35.3 39,3 43,2
8 2.60 5.52 8.73 12,1 15.7 19,4 23,2 27,0 30.8 34.7 38,6 42,5
9 2,44 5.24 8.37 11,7 15.2 18.9 22.6 26,4 30.2 34.1 38.0 41,9
10 2.28 4.98 8.03 11,3 14.8 18.4 22.1 25,8 29.7 33.5 37,4 41.3
6
12 2.02 4.51 7.41 10,6 14.0 17.5 21.1 24,8 28.5 32.3 36.2 40.1
14 1.80 4.10 6.86 9,91 13.2 16,6 20.1 .23,8 27.5 31.2 35.0 38.9
16 1.62 3.76 6.37 9,29 12,4 15,8 19,2 22,8 26.5 30.2 33,9 37.7
18 1.47 3.46 5.94 8.74 11.8 15,0 18,4 21,9 25.5 29.2 32.9 36.6
20 1,34 3.21 5.56 8.23 11,2 14.3 17,6 21.0 24.6 28.2 31,9 35.6
24 1.15 2.79 4.91 7.34 :iO,i 13.0 16.2 19,5 22.9 -26.4 30.0 33.6
28 1,00 2.47 4.38 6.61 9,13 11,9 14,9 18.1 21.4 24.7 28.2 31,8
; 32 0.88 2.21 3;95 5.99 8,33 11,0 13,8 16.8 20.0 23.2 26.6 30,1
36 0.79 2.00 3.58 5:46 7,65 10,1 12,8 15.7 18.7 21.9 25.1 28.5
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-77
Table 7-13 (continued)
Coefficients C for Eccentrically Loaded Bolt Groups
Angle - 75°
Available strength of a bolt group,
or Hn/a, is determined witli
Rn—Cxfn
or
LRFD ASD
In
Where
P = required force, Pu or Pa. kips
r„ = nominai strength per bolt, l<ips
e = eccentricity of P with respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
Bx - horizontal component of e, in.
s = bolt spacing, in.
C = coefficient tabulated below
-i-jif-TO
in. ex, in.
Number of Bolts in One Vertical Row, n
1 2 3 4 5 6 7 8 9 10 11 12
2 3.89 7.75 11.6 15.5 . 19.3 23,1 26.9 30.8 34,6 38.5 42.3 46.2
3 3.84 7.66 11.5 15.2 19,0 22.7 26.5 30.3 34.1 37.9 41.7 45,5
4 3.79 7.54 11.3 15.6 18,7 22.4 26.1 29.8 33.5 37.3 41.0 44.8
5 3.72 7.40 11.1 14.7 18.3 21.9 25.6 29.3 32.9 36.7 40.4 44.1
6 3.65 7.25 10.8 14,4 17,9 21,5 25.1 287 32.4 36.1 39.8 43.5
7 3.56 7.08 10.6 14.1 17,6 21.1 24.6 28.2 31.8 35.5 39.1 42.8
8 3.47 6.90 10.3 13.7 17,2 20.6 24.1 27.7 31.3 34.9 38.5 42.2
9 3.37 6.71 10.0 13.4 16,8 20.2 23.7 27.2 30.7 34.3 37.9 41.6
n 10 3.27 6.52 9.77 13.1 16.4 19.8 23.2 26.7 30.2 33.7 37.3 41:0
0
12 3.07 6.14 9.23 12.4 15,6 18.9 22.3 257 29.1 32.6 36.2 39.8
14 2.87 5.76 8.71 11.8 14.9 18.1 21.4 24.7 28.1 31.6 35.1 38.7
16 2.68 5.40 8.22 11.1 14.2 17.3 20.5 23.8 27.2 30.6 34.1 37,6
18 2.50 5.07 7.76 10.6 13.5 16.6 19.7 23.0 26.3 29,7 33.1 36.6
20 2.34 4.76 7.33 10.0 12.9 15.9 19.0 22.2 25.5 28.8 32.2 35.6
24 2.06 4.23 6.57 9.10 11.8 14.7 17.6 .207 ' 23.9^ 27.1 30.4 33.8
28 1.82 3.78 5.94 8.30 10.9 13.5 16.4 19.3 22.4 25.5 28.7 32.0
32 1.63 3.41 •5.41: 7.61 10.0 12.6 15.3 18.1 21.0 24.1 27.2 30.4
36 1.48 3.11 4.95 7.01 9.26 11.7 14.3 17.0 19.8 22.8 25.8 28.9
2 3.89 7.74 11.6 15.4 19.3 23.1 27.0 30.9 35.2 39.1 43.0 47.0
3 3.84 7.64 11.4 15.2 19.0 22.8 26.6 30.5 34.4 38.3 42.2 46.1
4 3.79 7.52 11.2 14.9 18.7 22.5 26.3 30.1 34.0 37.8 41.7 45.6
5 3.72 7,38 11.0 14.7 18.4 22.1 25.9 29.7 33.6 37.4 , 41.3 45.2
6 3.65 7.23 10.8 14.4 18.1 21.8 25.6 29.3 33.2 37.0 40.8 44.7
7 3.56 7.07 10.6 14.2 17.8 21.5 25.2 29.0 32.8 36.6 40.4 44.3
8 3.47 6.90 10,4 13.9 17.5 21.2 24.9 28.6 32.4 36.2 40.0 43.9
9 3.37 6.73 10.1 13.6 17.2 20.8 24.5 28.3 32.0 35.8 39.6 43,5
10 3.27 6.56 9,92 13.4 16.9 20.5 24.2 27,9 317 35.5 39.3 43,1
6
12 3.07 6.21 9.48 12.9 16.4 19.9 23.6 27.3 31.0 34.7 38.5 42.3
14 2.87 5.88 9.07 12.4 15.9 19.4 23.0 26.6 30.3 34.1 37.8 41,6
16 2.68 5.57 8.67 11.9 15.4 18.8 22,4 26.0 29.7 33.4; 37.1 40,9
18 2.50 5.27 8.29 11.5 14.9 18.3 21.9 25.5 29.1 32.8 36.5 40,2
20 2.34 4.99 7.94 11.1 14.4 17.8 21.3 24,9 28.5 32.2 35.8 39.6
24 2.06 4.50 7.29 10.3 13.6 16.9 20.4 23.9 27.4 31.0 34.7 38,3
28 1.82 4.08 6.73 9.67 12.8 16.1 19.4 22.9 26.4 30.0 33.6 37.2
32 1.63 3.73 6.25 9.06 12.1 15.3 18.6 22.0 25.4 29.0 32.5 36.1
36 1.48 3.43 5.82 8.51 11.4 14.5 17.8
X
21.1 24.5 28.0 31.5 35.1
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

8-78 DESIGN CONSIDERATIONS FOR WELDS
Table 7-14
Dimensions of High-Strength Fasteners, in.
J u
Measurement
Nominal Bolt Diameter, in
V2 5/8 3/4 Vs 1 iVs 1V4
Width Across
Flats, F
IV16 IV4 1'/16 15/8 1"/16 23/16
Height, H 5/16 25/64 '=/32 ®/64 39/64 "/16 25/32 "/32
8
S
Thread Length IV4 13/s IV2 13/4 2V4
Bolt Length =
Grip + Washer
Thickness + ^
'V16 TVs IV4 IV2 15/8 13/4
Width Across
Flats,IV
IV16 IV4 1'/16 15/8 1»/16 23/16
Height, H 3V64 33/64 55/64 1^/64 1^/32 1"/32
Norn. Outside
Diameter, 00
IV16 15/16 115/32 13/4. 2V4 2V2 23/4
Nom. Inside
Diameter, ID
"hi "/16 "/16 «/l6 IVB 1.V4 13/8 IV2
Thckns.,
r
IVIin. 0.097 0.122 0.122 0.136 0.136 0.136 0.136 0.136
Max. 0.177 0.177 0.177 0.177 0.177 0.177 0.177 0.177
Min. Edge
Distance, f °
'/IB 9/16 21/32 25/32 13/32 1%2
Min. Side
Dimension, A
13/4 13/4 13/4 13/4 13/4 21/4 2V4 21/4
Mean
Thickness, r
5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16
Taper in
Thickness
2;12 2:12 2:12 2:12 2:12 2:12 2:12 2:12
Min. Edge
Distance, f^
'/16 3/16 21/32 25/32 '/8 13/32 1%2
Tolerances as specified in ASME B18.2.6
AS™ F436 washer tolerances, in.:
Nominal outside diameter -1/32; +1/32
Nominal diameter of hole -0;+1/32
Flatness: max. deviation from straight-edge placed on cut side shall not exceed 0.010
Concentricity: center of hole to outside diameter (full indicator runout) 0.030
Burr shall pot project above immediately adjacent washer surface more than 0.010
For clipped washers'only
•I For use with American standard beams (S) and channels (C)
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-79
Staggered Bolts
C,-lignletmg
stsniam
socket
UpT
stagger P, in.
Nominal Bolt Diameter, in.
Notes:
Wi = height of head
Hz- maximum shank extension*
C, = clearance for tightening
C2 = cleatance for entering
Table 7-15
Entering and Tightening Clearance, in.
Conventional ASTM A325 and A490 Bolts
Aligned Bolts
Hi Hp
Cs
—nftr
c
JIE
Nominal
Bolt Dia.
Socket
Dia. «1 Hz CI Ci
C3
Nominal
Bolt Dia.
Socket
Dia. «1 Hz CI Ci Circular Clipped
'/A 13/4 25/64 IV4 1 "/16 "/16 S/16
3/4 2V4 "/32 1% 1^4 5/4 3/4 "/16
2V2 ®/64 IV2 13/8 '/8 % "/16
1 25/8 33/64 15/8 1^/16 15/16 1
IVA 2^/8 "/16 1^/8 1^/16 IV16 IVB 1
1V4 31/8 25/32 2 1"/16 1V8 1V4 1V8
I'/A 31/4 2^/32 21/8 13/4 IV4 1'/8 IV4
1V2 3V2 ^5/16 2V4 1^/8 1«/16 IV2 15/16
F S/8 3/4 '/8 1 11/8 IV4 13/8 IV2
1 15/8
IVB IV2
IV4 IV2 115/16
13/8 1^/16 1'/8 23/16
IV2 IV4 113/16 21/8 25/16
IS/8 IV4 13/4 21/16 25/16 29/16
13/4 13/16 111/16 2 21/4 29/16 213/16 3
iVs 1®/16 115/16 23/16 21/2 23/4 3 33/4
2 1 IV2 113/16 21/8 27/16 23/4 215/16 31/4
2V8 13/16 13/8 111/16 2 23/a 211/16 215/16 33/16
2V4 11/4 1^/16 1^/8 21/4 26/8 2% 33/16
23/8 11/8 IV2 13/4 ; 21/8 21/2 2"/,6 31/8
2V2 '/8 13/8 15/8 2 27/16 23/4 31/16
25/8 13/16 IV2 115/16 26/16 2% 3
23/4 15/16 13/8 1% 21/8 21/2 27/8
2'/s 13/16 13/4 2VI6 23/8 213/16
3 15/8 2 21/4 211/16
3V8 11/2 1% 21/a 21/2
3V4 11/4 13/4 2 23/8
33/8 15/16 16/8 115/16 21/4
3V2 13/8 13/4 21/8
35/8 11/16 1^/16 2
33/4 16/16 17/8
37/8 111/16
4 13/8
Ca = clearance for fillet*
P = bolt stagger
F = clearance for tightening staggered bolts
* Based on the use of one ASTM F43e washer {
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-80 DESIGN CONSIDERATIONS FOR WELDS
Table 7-16
Entering and Tightening Clearance, in.
Tension Control ASTIVI F1852 and F2280 Bolts
Aligned Bolts
&
a
c
a
c
Tools
Large Tools
Small Tools
Nominal
Bolt Dia. Hi Hi Ci C2
C3
Circular Clipped
4V4-in. Diameter Critical
3/4 1/2 13/8 2'/8 '/8 3/4
8/16 IV2 21/8 1 —
1 5/8 13/4 21/8 11/8 1 —
23/4-in. Diameter Critical
3/4 1/2 13/8 13/8 Ve 3/4

VB 11/2 . 13/8 1 %

1 5/s
13/4 13/8 11/8 1 —
3Vs-in. Diameter Critical
11/4 15/8 13/16 11/16

3/4 13/8 15/8 % 3/4

^/8 .®/l6 11/2 15/8 1 '/B —
ZVs-in. Diameter Critical
5/8 ^/16 11/4 11/8 13/16 11/16
3/4 1/2 13/8 11/8 '/8 3/4
7/8 S/16 11/2 11/8 1 '/8
Staggered Bolts
1V4
13/8
V/2
15/8
pm
1^/8
2
2Ve
2V4
23/8
Z'lz
25/8
23/4
2'/e
3
33/e
Stagger P, in.
Nominal Bolt Diameter, in.
=/e
1"/!6
13/4
1"/I6
1«/16
IV2
1^/16
15/16
IV4
13/16
iVs
1
3/4
2Vi6
2
1%
113/16
13/4
15/8
19/16
IV2
13/8
15/16
13/16
1V8
^/8
21/4
23/16
2VI6
2
1^/8
13/4
1"/16
19/16
IV2
13/8
15/16
13/16
1V8
1
2'/16
23/8
21/4
23/16
2V8
115/16
1%
13/4
1'Vl6
19/16
IV2
13/8
15/16
15/16
Notes:
= height of head C3- clearance for fillet*
th = maximum shank extension* .. P = bolt stagger
C, = clearance for tightening F = clearance for tightening staggered bolts
£2 = clearance for entering • Based on one standard hardened washer
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-81
Table 7-17
Threading Dimensions for High-Strength
and Non-High-Strength Bolts
SCREWTHREADS
UniriedStandanlSefies-UNC/UNRCand4UN/4UNR
M/SIB1.1
Nomina! size (basic major dia.)
No. threads per inch (n)
Thread series symbol
Thread dass symbol'
-Leu hand thread
No symbolreq'd for
right hand thread
-10 UNC 2A LH
Thread Dimensions
Diameter Area
Bolt Diameter IVIin. Root fr, Gross Bolt Mill. Root Net Tensile Tiireads per
d,. in. Area, in.z Area, in? Area', in-^^ incii, n'>
V4 0.196 0.0490 0.0301 0.0320 20
'/e 0.307 0.110 0.0742 0.0780 16
Vz
0.417 0.196 0.136 0.142 13
5/8
0.527 0.307 0.218 0,226 11
V4 0.642 0442 0.323 0,334 10
'/8 0,755 0.601 0.447 0,462 9
1 0.865 0,785 0.587 0.606 8
IVe 0.970 0.994 0.740 0.763 7
1V4 1,10 1.23 0.942 0.969 7
1^/8 1.19 1.49 1.12 1.16 6
IVz 1,32 1.77 1.37 1.41 6
13/4 1.53 2.41 1.85 1.90 5
2 1,76 3.14 2.43 2.50 4.5
2V4 2.01 3.98 3.17 3.25 4.5
2V2
2.23 4.91 3.90 4.00 4
23/4 2.48 5.94 4.83 4.93 4
3 2,73 7,07 5.85 5.97 4
3V4 2.98 8,30 6.97 7.10 4
3V2 3,23 9,62 8.19 8.33 4
33/4 3,48 11,0 9.51 9.66 4
4 3.73 12.6 10.9 11,1 •4
»Wet tensile area = 0.7854 X (cf-
' For diameters listed, thread series is UNC (coarse). For larger diameters, ttiread series is 4UN.
' 2A denotes Class 2A fit applicatile to external threads;
2B denotes corresponding Class 2B fit for internal threads.
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

7-82
DESIGN CONSIDERATIONS FOR BOLTS
JL}
II I
Tabte 7-18
Weights of High-Strength Fasteners,
pounds per 100 count
Nominal Bolt Diameter, in.
%
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Bolt Length, in.
5/8 3/4 Ve 1 IVa IV4 1'/8 1V2
1 16.5 29.4 47.0
IV4 17.8 31.1 49.6 74.4 104 — — —
IV2 19.2 33.1 52.2 78.0 109 148 197 — ~
T3/4 20.5 35.3 55.3 81,9 114 154 205 261 333
2 21.9 37.4 58.4 86.1 119 160 212 270 344
2V4 23.3 39.8 61.6 90,3 124 167 220 279 355
2V2 24.7 41.7 64.7 94,6 130 174 229 290 366
2'/4 26.1 43.9 67.8 98,8 135 181 237 300 379
-
27.4 46.1 70.9 103 141 188 , 246 310 391
31/4 28.8 48.2 74.0 107 146 195 255 321 403
3Vz 30.2 50.4 77,1 111 151 202 263 332 416
z:
3^/4 31.6 52.5 80,2 116 157 209 272 342 428
§
4 33.0 54.7 83.3 120 162 216 280 353 441
41/4 34.3 56.9 86,4 124 168 223 289 363 453
a
4V2 35.7 59.0 89,5 128 173 230 298 374 465
S
43/4 37.1 61,2 92.7 133 179 237 306 384 478
1
5 38.5 63.3 95,8 137 184 244 315 395 490
5
51/4 39,9 65,5 98,9 141 190 251 324 405 503
O
SVz 41.2 67.7 102 146 196 258 332 416 515
§ 53/4 42.6 69.8 105 150 201 265 341 426 527
•5
6 44.0 71.9 108 154 207 272 349 437 540
1
6V4

74.1 111 158 212 279 358 447 552
1
6V2
— 76.3 114 163 218 286 367 458 565
S
63/4 ; • 78.5 118 167 223 293 375 468 577
S
7 80.6 121 171 229 300 384 479 589
71/4
82.8 124 175 234 307 392 489 602
7V2
— 84.9 127 179 240 314 401 500 614
7'/4
87.1 130 183 246 321 410 510 626
8 89,2 133 187 251 328 418 521 639
8V4
— — 192 257 335 427 531 651
8V2
— — 196 262 342 435 542 664
83/4 444 552 676
9 453 . 563 689
Per inch
add'tl.Add
5.50 8.60 12.4 16,9 22,1 28.0 34,4 42,5 49,7
1
Circi
00,F436
liar Washers
2.10 3.60 4.80 7,00 9,40 11.3 13,8 16.8 20.0
100, F436
Square Washers
23.1 22.4 21,0 .20:2 19,2 34,0 31,6 31,2 32,9
This table conforms to weight standards adopted by the Industrial Fasteners lnstitiite.(IFIj, updated for washer weights.

DESIGN TABLE DISCUSSION 8-83
Table 7-19
Dimensions of Non-High-Strength
Fasteners, in.
p ,
H^liesvyHex ' CWitemt
Bolts Dia
d,m.
Square •
f,in. ftin. H,in.
Hex
f,in. C,in. H,.
Heavy Hex
F, in. H,in.
Countersunk
C,in. tf,in.
Minjhrd.
Length,in.
is
6 in.
L>
6 in.
V4 %
S/16
Vs
"/ie
3/16
V4 S/16
V2
5/8
7I6
V4
V2
"/16
Vs
3/16
'/A
1
1
IV4
V2
«/8
3/4
7/8
3/4
15/16
iVs
15/16
IV16
15/16
1®/16
1'/a
5/16
Vk
Vz
5/8
3/4
'5/16
IVs
15/16
IV16
15/16
IV2
'/16
V2
IV16
IV4
I'yie
V4
7/16
'V16
3/8
^/16
V2
'/8
1V8
13/8
18/16
V4
5/16
3/8
'/16
IV4
IV2
13/4
2
IV2
13/4
2
2V4
1
1V8
IV4
1^/8
IV2
1"/16
-1'/8
2V16
2%
23/8
25/8
2«/16
"/16
3/4
'5/18
IV2
1'Vl6
2Vi6
13/4
1«/16
23/16
23/8
'V16
3/4
«/l6
15/8
1'3/,6
2
23/16
%
2Vi6
25/16
2V2
"/16
3/4
'5/16
1'3/16
2Vi6
2V4
2V2
V2
8/16
5/8
'V16
21/4
2V2
23/4
3
21/2
23/4
3
31/4
V/2
13/4
21/4 33/16 21/4
25/8
25/8
3
1
13/16
23/8
23/4
23/4
33/16
211/16 3/4
13/16
31/4
33/4
31/2
4
2
2V4
3
33/8
3'/16
37/8
13/8
11/2
31/8
31/2
35/8
41/16
13/8
11/2
41/4
43/4
41/2
5
2V2
23/4
33/4
41/8
45/16
43/4
111/16
113/16
37/8
41/4
41/2
4«/i6
111/16
113/16
51/4
53/4
51/2
6
3
31/4
41/2
4^/8
53/16
55/8
2
23/16
45/8 55/16 61/2
7
3V2
33/4
51/4
55/8
61/16
61/2
25/16
21/2
71/2
615/16 211/16 81/2
Notes:
For high-strength bolt and nut dimensions, refer to Table 7-14,
Square, hex and heavy hex bolt dimensions, rounded to nearest Vis in., are In accordance with ANSI B18.2.1.
Countersunk bolt dimensions, rounded to the nearest Vie In., are in accordance with ANS118.5.
Minimum ttiread length = 2d + Vi in. for bolts up to 6 In. long, and 2d + V? In. for bolts longer than 6 in.
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

8-84
DESIGN CONSIDERATIONS FOR WELDS
Table 7-19 (continued)
Dimensions of Non-High-Strength
Fasteners, in.
-CJ \N
Scfuare, ^vy Square
O
a
Ha, Heavy Hen
Nut Size,
in.
Square
W, in. C, in. N, in.
Hex
W, in. C, in. N, in.
Heavy Square
W,in. C,in. /V,ia
Heavy Hex
W, in. C, in. N, in.
V4
3/8 5/6
5/8
'/8
V4
"5/16
7/16
3/16
1/2
5/8
3/16
V4
Vz
'Vl6
"/16
1
V4 V2
"/16 «/l6
V4
V2
'/8
"/S
1
1V8
15/16
IVa
1^/16
19/16
I'/S
'/16
9/16
lVl6
3/4
3/4
»/l6
lVa
16/16
'/8
V/16
15/16
IV2
3/8
'/16
V2
9/16
V8
iVie
IV4
Tyie
1V4
1V2
13/4
2V«
V2
5/6
3/4
%
iVlS
IV4
1^/16
1
IV4
17/16
1"/16
</2
5/s
3/4
1
1'/8
IV4
13/8
1V2
1'Vl6
1'/8
2 Vie
21/8
23/8
25/«
215/16
7/8
1
11/8
11/4
11/2
111/16
17/8
21/16
13/4
1«/16
23/16
23/8
11/16
3/4.
7/8
15/16
15/8
1«/,6
2
23/16
25/16
29/16
213/16
31/8
1
IVs
11/4
13/8
15/8 •
113/16
2
23/16
17/8
21/16
25/16
21/2
1
iVs
11/4
13/8
IV2
13/4
21/4 33/16 15/16 2V4 25/8 23/8 33/8 11/2 23/8
23/4-
23/4
33/,e
11/2
13/4
2
21/4
31/8
31/2
35/8
41/16
2
23/16
2V2
23/4
37/8
41/4
41/2
4'5/16
27/16
211/16
3
31/4
45/8
5
55/16
53/4
215/16
33/16
31/2
33/4
53/8
53/4
63/16
65/s
37/16
311/16
71/16 3'5/,6
Notes;
For high-strength bolt and nut dimensions, refer to Table 7-14.
Square, hex and heavy hex bolt dimensions, rounded to nearest Vie in,, are in accordance with ANSI B18.2.1.
Countersunk bolt dimensions, rounded to the nearest Vw in., are in accordance with ANS118.5.
Minimum thread length = 2d+ Vi in. for bolts up to 6 in. long, and 2d+ Vz in. for bolts longer than 6 In.
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-85
Table 7-20
Weights of Non-High-Strength
Fasteners, pounds
Nominal Bolt Jliameter, in.
ouii Lcngin, iii.
V4 3/8 V2 5/8 3/4 '/8 1 IVa IV4
1 2.38 6.11 13.0 24.1 38.9
— — — —
1V4
2.71 6.71 14.0 25.8 41.5
— — — —
1V2 3.05 7.47 15.1 27.6 44.0 67.3 95.1 — —
1'/4 3.39 8.23 16.5 29.3 46.5 70.8 99.7

— •
2 3.73 8.99 17.8 31.4 49.1 74.4 104 143

2V4 4.06 9.75 19.1 33.5 52,1 77.9 109 149 —
2V2 4.40 10.5 20.5 35.6 55.1 82.0 114 155 206
23/4 4.74 11.3 21.8 37.7 58.2 86.1 119 161 213
3 5.07 12.0 23.2 39.8 61.2 90.2 124 168 221
3V4
5.41 12.8 24.5 41.9 64.2 94.4 129 174 229
31/2 5.75 13.5 25.9 44.0 67.2 98.5 135 181 237
3^4 6.09 14.3 27.2 46.1 70.2 103 140 188 246
4 6.42 15.1 28.6 48.2 73.3 107 145 195 254
4V4 6.76 15.8 29.9 50.3 76.3 111 151 202 262
4V2 7.10 16.6 31.3 52.3 79.3 115 156 208 271
43/4 7.43 17.3 32.6 54.4 82.3 119 162 215 279
h 5 7.77 18.1 33.9 56.5 85.3 123 167 222 288
3
Z 5V4 8.11 18.9 35.3 58.6 88.4 '127 172 229 296
"5 5V2 8.44 19.6 36.6 60.7 91.4 131- 178 236 304
s>
53/4 8.78 20.4 38.0 62.8 94.4 136 183 242 313
CO
6 9.12 21,1 39.3 64.9 97.4 140 188 249 321
X 6V4
9.37 21.7 40.4 66.7 100 143 193 255 329
£
61/2 9.71 22.5 41.8 68.7 103 147 198 262 337
s 63/4 10.1 23.3 43.1 70.8 106 151 204 269 345
f
7 10,4 24.0 44.4 72.9 109 156 209 275 354
m
71/4 10.7 24.8 45.8 75.0 112 160 214 282 362
S
71/2 11.0 25.5 47.1 77.1 115 164 220 289 371
i-
73/4 11.4 26.3 48.5 79.2 118 168 225 296 379
U)
o 8 11.7 27.0 49.8 81.3 121 172 231 303 387
s
81/2
9
— 28,6 52.5 85.5 127 180 241 316 404
81/2
9
— 30.1 55.2 89.7 133 189 252 330 421
91/2
— 31.6 57.9 93.9 139 197 263 343 438
10

66.1 60.6 98.1 145 205 274 357 454
101/2
— 34.6 63.3 102 151 213 284 371 471
11

36.2 66.0 106 157 221 295 384 488
11 1/2
— 37.7 68.7 110 163 230 306 398 505
12

39.2 71.3 115 170 238 316 411 522
121/2
— — 74.0 119 176 246 327 425 538
13
— —
76.7 123 182 254 338 439 556
131/2
— — 79.4 127 188 263 349 452 572
14

82.1 131 194 271 359 466 589
141/2 —• 84.8 135 200 279 370 479 605
15 87.5 140 206 287 381 493 622
151/2 — — 90,2 144 212 296 392 507 639
16
— — 92.9 148 • 218 304 402 520 656
Per inch
1.3 3.0 5.4 8.4 12,1 16.5 21.4 27.2 33.6
add'ti. Add
1.3 3.0
Notes:
For weight of high-strength fasteners, see Table 7-19.
This table conforms to weight standards adopted by the Industrial Fasteners institute (IFI).
"Square boll per ANSI B 18.2.1, hexagonal nut per ANSI B18.2.2. For other non-high-strength fastfiners, refer to Tables 7-21 and 7-22.
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

8-86
DESIGN CONSIDERATIONS FOR WELDS
•Iable7-21
Weight Adjustments
for Combinations of Non-High-Strength
Fasteners Other than Tabulated in Table 7-20
Combinations of 100
Add
orSubtr.
iVominal Bolt Diameter, in.
Combinations of 100
Add
orSubtr.
V4 V2 Va 3/4 7/8 1 1V8 IV4
fss
Square Nuts -1- 0.1 1.0 2:0 3.4 . 3.5. 5.5 8.0 12.2 16.3
fss
Heavy Square Nuts + 0.6 2.1 4,1 7.0 11.6 17.2 23.2 32.1 41.2
fss
Heavy Hex Nuts + 0.4 1.5 2.8 4.6 7.6 10.7 14.2 18.9 24.3
teS "
III!
Square Muts 0.1 0.6 1.1 1.4 0.2 0.5 -0.2 -0.1 -1.7
teS "
III!
Hex Nuts
- 0.0 0.4 0.9 2,0 3.3 5.0 8.2 12.3 18.0
teS "
III!
Heavy Square Nuts + 0.6 1.7 3.2 5.0 8.3 12.2 15.0 13.8 23.2
teS "
III!
Heavy Hex Nuts + 0.4 1.1 1.9 2.6 :4:3 5.7 6.0 6,6 6.3
§ii
r- ^ eo
Heavy Square Nuts + — 4.7 7.3 11.3 16.5 20.7 27.0 33.6
§ii
r- ^ eo
Heavy Hex Nuts -1- — — 3.4 4,9 7.3 10.0 11.7 13.8 16.7
Notes:
For weights of high-strength fasteners, see Table 7-18.
This table conforms to weight standards adopted by the Industrial Fasteners Institute (IFl).
•Add or subtract value in this table to or from the value in Table 7-20.
ilk
III
ii'-:
\v
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 7-87
Table 7-22
Weights of Non-High-Strength Bolts
of Diameter Greater than 1V4 in., pounds
Weight of 100 Each
Nominal Bolt Diameter, in.
Weight of 100 Each
1^/6 IV2 1^/4 2 2V4 2V2 2^/4 3 31/4 3V2 3'/4 4
•s
Square Bolts 105 130
V)
Hex Bolts 84.0 112 178 259 369 508 680 900 1120 1390 1730 2130
£ Heavy Hex Bolts 95.0 124 195 280 397 541 720 950
— — — —
One Linear Inch,
Unthreaded Shanic 42.0 50.0 68.2 89.0 113 139 168 200 235 272 313 356
One Linear Inch,
Threaded Shank 35.0 42.5 57.4 75.5 97.4 120 147 178 210 246 284 325
Square Nuts 94.5 122
Heavy Square l^uts 125 161
Heavy Hex Nuts 102 131 204 299 419 564 738 950 1190 1530 1810 2180
- Indicates that the bolt size is not available
i
{
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-964 DESIGN CONSIDERATIONS FOR WELDS
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-1
PARTS
DESIGN CONSIDERATIONS FOR WELDS
SCOPE 8-3
GENERAL REQUIREMENTS FOR WELDED JOINTS 8-3
Consumables 8-3
Thermal Cutting .....8-3
Air-Arc Gouging . 8-3
Inspection . 8-4
Visual Testing (VT) 8-4
Penetrant Testing (PT) 8^
Magnetic-Particle Testing (MT) 8-5
Ultrasonic Testing (UT) 8-6
Radiographic Testing (RT) 8-7
PROPER SPECIFICATION OF JOINT TYPE 8-7
Selection of Weld Type 8-7
Weld Symbols ....8-8
Available Strength 8-8
Effect of Load Angle 8-9
CONCENTRICALLY LOADED WELD GROUPS 8-9
ECCENTRICALLY LOADED WELD GROUPS . 8-9
Eccentricity in the Plane of the Faying Surface 8-9
Instantaneous Center of Rotation Method 8-9
Elastic Method .8-12
Eccentricity Normal to the Plane of the Faying Surface 8-14
O THER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS 8-15
Special Requirements for Heavy Shapes and Plates 8-15
Placement of Weld Groups 8-15
Welds in Combination with Bolts or Rivets 8-15
Fatigue 8-15
One-Sided Fillet Welds 8-15
Welding Considerations and Appurtenances 8-15
Clearance Requirements • • • 8-15
Excessive Welding • • • • * • . 8-17
AMERICAN INSTITUTE OP STEEL CONSTRUCTION

8-2 DESIGN CONSIDERATIONS FOR WELDS
Minimum Shelf Dimensions for Fillet Welds 8-17
Beam Copes and Weld Access Holes 8-18
Corner Clips 8-18
Backing Bars 8-19
Spacer Bars 8-19
Weld Tabs 8-19
Tack Welds 8-21
Lamellar Tearing 8-21
Prior Qualification of Welding Procedures 8-21
Painting Welded Connections 8-22
WELDING CONSIDERATIONS FOR HSS 8-23
HSS Welding Requirements in AWS Dl.l 8-24
Clause 2, Part D 8-25
Clauses 8-25
Clause 4 8-25
Clauses .8-26
Clause 6 8-26
Weld Sizing for Uneven Distribution of Loads 8-26
Detailing Considerations 8-27
DESIGN TABLE DISCUSSION 8-27
PART 8 REFERENCES 8-32
DESIGN TABLES 8-33
Table 8-1. Coefficients, C, for Concentrically Loaded Weld Group Elements .... 8-33
Table 8-2. Prequalified Welded Joints 8-34
Table 8-3. Electrode Strength Coefficient, Ci 8-65
Table 8-4, Coefficients, C, for Eccentrically Loaded Weld Groups 8-66
Table 8-5. Coefficients, C, for Eccentrically Loaded Weld Groups 8-72
Table 8-6. Coefficients, C, for Eccentrically Loaded Weld Groups 8-78
Table 8-7. Coefficients, C, for Eccentrically Loaded Weld Groups 8-84
Table 8-8. Coefficients, C, for Eccentrically Loaded Weld Groups 8-90
Table 8-9. Coefficients, C, for Eccentrically Loaded Weld Groups ! 8-96
Table 8-10. Coefficients, C, for Eccentrically Loaded Weld Groups 8-102
Table 8-lOa. Coefficients, C, for Eccentrically Loaded Weld Groups ...... 8-108
Table 8-11. Coefficients, C, for Eccentrically Loaded Weld Groups 8-113
Table 8-lla. Coefficients, C, for Eccentrically Loaded Weld Groups :... 8-119
Tables 8-12. Approximate Number of Passes for Welds .... 8-124
AMERICAN INSTITWE OF STEEL CONSTRUCTION
!

GENERAL REQUIREMENTS FOR WELDED JOINTS 8-3
SCOPE
The specification requirements and other design considerations summarized in this Part apply
to the design of welded joints. For the design of connecting elements, see Part 9. For the
design of simple shear, moment, bracing cind other connections, see Parts 10 through 15.
GENERAL REQUIREMENTS FOR WELDED JOINTS
The requirements for welded construction are given in AISC Specification Section M2.4,
which requires the use of AWS D1.1, except as modified in AISC Specification Section J2.
For further information see also Blodgett et al. (1997).
Welding in structural steel is performed in compliance with written welding procedure
specifications (WPS). WPS are qualified by test or prequalified in AWS DLL WPS are used
to control base metal, consumables, joint geometry, electrical and other essential variables
for welded joints.
Consumables
Requirements for welding consumables are given in AISC Specification Sections A3.5,
J2.6 and J2.7. Permissible filler metal strengths are shown in Table J2.5, based on matching
filler metals shown in AWS Dl.l Table 3.1. Filler metal notch-toughness requirements are
given in AISC Specification Section J2.6. Low-hydrogen electrodes for shielded metal arc
welding (SMAW) are required, as shown in AWS Dl.l Table 3.1. Low-hydrogen SMAW
electrodes have a limited exposure time and rod ovens are necessary near the point of use
for storage.
Requirements for the manufacture, classification and packing of consumables are given
in AWS A5.X specifications. Consumables vary based upon their welding process. SMAW,
or "stick" welding, is a manual process. Submerged arc welding (SAW) is a semiautomatic
or automatic process. Consumables are classified as an electrode flux combination because
the weld metal properties are dependant on both the electrode and the flux. SAW is suitable
for. long straight or circumferential welds but the work must be performed in horizontal or
flat positions. Flux-cored arc welding (FCAW) uses,wire electrode that contains flux in the
center. FCAW electrodes are provided for use with a gas shield or self shield. Gas for shield-
ing is argon, carbon dioxide or a combination of the two. Gas metal arc welding (GMAW)
uses wire electrodes that are solid or have a metal core. GMAW is performed with gas
shielding.
Thermal Cutting
Oxygen-fuel gas cutting can be used to cut almost any commercially available plate thick-
ness. If the plate being cut contains large discontinuities or nonmetallic inclusions,
turbulence may be created in the cutting stream, resulting in notches or gouges in the edge
of the cut. Plasma-arc cutting is much faster and less susceptible to the effects of disconti-
niiities or nonmetallic inclusions, but leaves a slight taper in the cut as it descends and can
be used only up to about 1 Va-in. thickness.
Air-Arc Gouging
In this method, a carbon arc is used to melt a nugget-shaped area of the base metal, which
is blown away with a jet of compressed air. Air-arc gouging can be used to remove weld
X
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
I

DESIGN CONSIDERATIONS FOR WELDS
defects, gouge the weld root to sound weld metal, form a U groove on one side of a square
butt joint, and for similar operations.
Inspection
The five most commonly used methods for welding inspection are discussed following and
in the Guide for the Nondestructive Examination of Welds (AWS Bl.lO) (AWS, 1992).
Chapter N of the AISC Specification contains requirements for nondestructive examination
(NDE) of welds. The general contractor or owner must arrange for this. This work must be
scheduled to minimize interruption of the fabricator and erector. See AISC Specification
Section N5.2.The designer may specify in the contract documents the types of weld inspec-
tion required as well as the extent and application of each type of inspection differing from
the requirements of Chapter N. In the absence of instructions for weld inspection, the fab-
ricator or erector is only responsible for those weld discontinuities found by visual
inspection (see AWS Dl.l). Welds may have defects that cannot be rejected based on AWS
criteria. Stipulation of various NDE methods has the effect of selecting acceptance criteria
and therefore has a related effect on costs. Weld repairs which may be difficult to perform
and which may potentially damage other aspects of the connection are best referred to the
engineer of record to determine the necessity of the correction with due consideration of
fitness for purpose.
Visual inspection is the most commonly required inspection process. The designer must
realize that more stringent requirements for inspection can needlessly add significant cost to
the project and should specify them only in those instances where they are essential to the
integrity of the structure.
Visual Testing (VT)
Visual inspection provides the most economical way to check weld quality and is the most
commonly used method. Joints are scrutinized prior to the commencement of welding to
check fit-up, preparation bevels, gaps, alignment and other variables. After the joint is
welded, it is then visually inspected in accordance with AWS D1.1. If a discontinuity is sus-
pected, the weld is either repaired or other inspection methods are used to validate the
integrity of the weld. In most cases, timely visual inspection by an experienced inspector is
sufficient and offers the most practical and effective inspection alternative to other, more
costly methods.
Penetrant Testing (PT)
This test uses a red dye penetrant applied to the work from a pressure spray can. The dye
penetrates any crack or crevice open to the surface. Excess dye is removed and white devel-
oper is sprayed on. Dye seeps out of the crack, producing a red image on the white developer
(See Figure 8-1).
Penetrant testing (PT) can be used to detect tight cracks as long as they are open to the
surface. However, only surface cracks are detectable. Furthermore, deep weld ripples and
scratches may give a false indication when PT is used.
Dye penetrant examination tends to be messy and slow, but can be helpful when deter-
mining the extent of a defect found by visual inspection. This is especially true when a
defect is being removed by gouging or grinding for the repair of a weld to assure that the
defect is completely removed.
AMERICAN iNsrrruTE OF STEEL CoNSTRuerioN

GENERAL REQUIREMENTS FOR WELDED JOINTS 8-5
Magnetic-Particle Testing (MT)
A magnetizing current is introduced with a yoke or contact prods into Uie weldment to be
inspected, as sketched in Figure 8-2 (prods shown). This induces a magnetic field in the work,
which will be distorted by any cracks, seams, inclusions, etc. located on or near (within
approximately 0.1 in. of) the surface. A dry magnetic powder blown lightly on the surface by
a rubber squirt bulb will be picked up at such discontinuities making a distinct maik. The
magnetically held particles,show the location, size, and shape of the discontinuity.
The method will indicate surface cracks that might be difficult for liquid penetrant to
enter and subsurface cracks to about 0.1-in. depth, with proper magiietization. Records may
be kept by picking up the powder pattern with clear plastic tape. Cleanup is easy, but demag^
netizing, if necessary, may not be. If the magnetizing prod is lifted from the work while the
current is still on, an arc strike which could lead to cracking could result. If arc strikes occur,
they should be ground out.
Magnetic particle examination can be useful when a defect is suspected from visual
inspection or when the absence of cracking in areas of high restraint must be confirmed.
Relatively smooth surfaces are required for MT and it is reasonably economical. Where
delayed cracking is suspected, the nondestructive examination may have to be performed
after a cooling time—typically 48 hours.
Subvisible
Crack
Visible
Indication
Cleaned Surface Penetrant Applied Excess Removed Developer Applied
Fig. 8-1. Schematic illustration of penetrant testing (PT).
Current
Magnetic
Field
Fig. 8-2. Schematic illustration of magnetic particle testing (MT).
X,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-970 DESIGN CONSIDERATIONS FOR WELDS
Ultrasonic Testing (UT)
The ultrasonic inspection process is analogous to sonar. A short pulse of high-frequency
sound is broadcast from a crystal into a metal, after which the crystal waits to receive reflec-
tions from the far end of the metal member and from any voids encountered on the way
through. The technique is called pulse echo. The sound beam is produced by a piezoelectric
transducer energized by an electric current which causes'the crystal to vibrate and transmit
through a liquid couplant into the metal. Any reflections are displayed as pips on a cathode
ray tube (CRT) grid whose horizontal scale represents distance through the metal. The ver-
tical scale represents the strength (or area) of the reflecting surface. The system is shown
schematically in Figure 8-3.
The accuracy of ultrasonic inspection is highly dependent upon the skill and training of
the operator and frequent calibration of the instrument. There is a "dead" area beneath most
transducers that makes it difficult to inspect members less than in. in thickness.
Austenitic stainless steels and extremely coarse-grained steels, e.g., electroslag welds, are
difficult to inspect; but on structural carbon and low-alloy steels, the process can detect flat
discontinuities (favorably oriented for reflection) smaller than '/64 in. The crystal, which is
Vs in. to 1 in. in size, can be readily moved about to check many orientations and can pro-
ject the beam into the metal at angles of 90°, 70°, 60° and 45°. With the latter three angles,
Weld fusion line
Transducer-^
Sound waves-
V
A ID
•iillllll
iiailllPWiliiiliiiiilliBi
^^^^Mmmrnmmm
Good bond
"A V
Slag inclusion
A
3:
V
3
f
Crack or
incomplete fusion
w
Fig. 8-3. Variations in UT reflections caused by defects at the boundary.
AMERICAN INSTITUTE OP STEEL CONSJBUCTION

PROPER SPECIHCATION OF JOINT TYPE 8-7
the beam can be bounced around inside the metal, producing echoes from any discontinuity
on the way. For more information see Krautkramer (1990) and Institute of Welding (1972).
Ultrasonic testing (UT) is a more versatile, rapid and economical inspection method than
radiography, but it does not provide a permanent record like the X-ray negative. The oper-
ator, instead, makes a written record of discontinuity indications appearing on his CRT.
Certain joint geometry limits the use of the ultrasonic method.
Ultrasonic examination has limited applicability in some applications, such as HSS fab-
rication. Relatively thin sections and variations in joint geometry can lead to difficulties in
interpreting the signals, although technicians with specific experience on weldments similar
to those to be examined may be able to decipher UT readings in some instances. Similarly,
UT is usually not suitable for use with fillet welds and smaller partial-joint-penetration (PJP)
groove welds. Complete-joint-penetration (CJP) groove welds with and without backing
bars also give readings that are subject to differing interpretations. Ultrasonic examination
may be specified to validate the integrity of CJP groove welds that are subject to tension.
Ultrasonic examination has largely replaced radiographic examination for the inspection
of critical CJP groove welds in building construction. New technology called phased array
is in development and in use in some applications. Phased array is a computer controlled
ultrasonic examination capable of providing an informative display, AWSDl.l provisions
for acceptance criteria have not been adopted for this method at this time.
Radiographic Testing (RT)
Radiographic testing (RT) is basically an X-ray film process. To be detected by radiography,
a crack must be oriented roughly paiallel to the impinging radiation beam, and occupy about
1 V2% of the metal thickness along that beam. There are problems with radiographs of fil-
lets, tee and corner joints, however, because the radiation beam must penetrate varying
thicknesses.
Precautions for avoiding radiation hazards interfere with shop work, and equipment and
film costs make it the most expensive inspection method. Ultrasonic systems have gradually
supplemented and even supplanted radiography.
Radiographic examination has very limited applicability in some applications; such as for
HSS fabrication, because of the irregular shape of common joints and the resulting varia-
tions in thickness of material as projected onto film. RT can be used successfully for butt
splices, but can only provide limited information about the condition of fusion at backing
bars near the root comers. The general inability to place either the radiation source or the
film inside the HSS mean&.that exposures must usually be taken through both the front and
back faces of the section with the film attached to the outside of the back face. Several such
shots progressing around the member are needed to examine the complete joint.
PROPER SPECIFICATION OF JOINT TYPE
Selection of Weld Type
The most common weld types are fillet and groove welds. Fillet welds are normally mbre
economical than groove welds and generally should be used in applications for which
groove welds are not required. Additionally, fillet welds around thfc inside of holes or slots
require less weld metal than plug or slot welds of the same size, even though the diameters
of holes and widths of slots for fillet welds must be larger to accommodate the necessary tilt
of the electrode. ^
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
I

7-8 DESIGN CONSIDERATIONS FOR BOLTS
PJP groove welds are more economical than CJP groove welds. When groove welds are
required, bevel and V groove welds, which can be flame-cut, are usually more economical
than J and U groove welds, which must be air-arc gouged or planed. Also, double-bevel,
double-V, double-J, and double-U welds are typically more economical than welds of the
same type with single-sided preparation because they use less weld metal, particularly as the
thickness of the connection element(s) being welded increases. The symmetry also results
in less rotational distortion strain. However, in thinner connection elements, the savings in
weld-metal volume may not offset the additional cost of double edge preparation, weld-root
cleaning, and repositioning. As a general rule of thumb, double-sided joint preparation is
normally less expensive than single-sided preparation above 1-in. thickness.
Weld Symbols
For guidance on the proper use of weld symbols, refer to Table 8-2. More extensive infor-
mation oh weld symbols may be found in AWS A2.4, Standard Symbols for Welding,
Brazing, and Nondestructive Examination (A^S, 2001). ' " '
Available Strength
The available strength of a welded joint is determined in accordance with AISC
Specification Section J2.4 and Table J2.5. The calculation of the available strength of a
longitudinally loaded fillet weld can be simplified from that given m AISC Specification
Table J2.5. For a fillet weld less than or equal to 100 times the weld size in length, the
available shear strength, <j)/?„ or R„/Q., rhay be calculated as follows;
R„ = 0.60Fsa:
(t)=0.75 i2 = 2.00
(S]
2
\ / liej
(8-1)
where
• I = length, in.
D - weld size in sixteenths of an inch
ForF£xx = 70ksi:
LRFD ASD
<!)/?„= 1.392D/ (8-2a) -^ = 0.9280/ (8-2b)
When the fillet weld is not longitudinally loaded, the alternative provisions in AISC
Specification Section J2.4(a) may be used to take advantage of the increased strengtii due to
load angle. The maximum strength increase will be for a transversely loaded fillet weld,
which is 50% stronger than the same fillet weld longitudinally loaded.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

ECCENTRICALLY LOADED WELD GROUPS 8-9
Effect of Load Angle
When designing fillet welds, the increased stretigth due to loading angle may be accounted
for by multiplying the available strength of the weld by the following expression, as given
in AISC Specification Equation J2-5:
(1.0 + 0.50sinl-5e)
where
0 = angle of loading measured from the weld longitudinal axis, degrees
For transversely loaded welds, 6 = 90°. This accounts for a 50% increase in weld strength
over a longitudinally loaded weld. However, this increased weld strength is accompanied
by a decrease in ductility. For a single line weld, the decreased ductility is inconsequen-
tial for most applications. However, for weld groups composed of welds loaded at various
angles, this change in ductility means that the designer must consider load-deformation
compatibility.
CONCENTRICALLY LOADED WELD GROUPS
The load-deformation curves shown in Figure 8-5 highlight the need for consideration of
deformation compatibility, since the transversely loaded weld will fracture before the lon-
gitudinally loaded weld obtains its full strength.
A simplified procedure for determining the available strength of concentrically loaded fil-
let weld groups is discussed later in Part 8 using Table 8-1. In lieu of using this procedure,
it is permitted to sum the capacities of individual weld elements, neglecting load-deforma-
tion compatibility, when no increase in strength due to the loading angle is assumed.
ECCENTRICALLY LOADED WELD GROUPS
Eccentricity in the Plane of the Faying Surface
Eccentricity in the plane of the faying surface produces additional shear. The welds must be
designed to resist the combined effect of the direct shear, /•„ or Pa, and the additional shear
from the induced moment, P^e or Pae. Two methods of analysis for this type of eccentricity
are the instantaneous center of rotation method and the elastic method.
The instantaneous center of rotation method is more accurate, but generally requires the
use of tabulated values or an iterative solution. The elastic method is simplified, but may be
excessively conservative because it neglects the ductility of the weld group and the poten-
tial load increase.
Instantaneous Center of Rotation Method
Eccentricity produces both a rotation and a translation of one connection element with
respect to the other. The combined effect of this rotation and translation is equivalent to a
rotation about a point defined as the instantaneous center of rotation (IC) as illustrated in
Figure 8-4(a). The location of the IC depends upon the geometry of the weld group as well
as the direction and point of application of the load.
X,.
AMERICAN-INSTITUTE OF STEEL CONSTROCTION

8-10 DESIGN CONSIDERATIONS FOR WELDS
The load deformation relationship for a unit length segment of the weld, as illustrated in
Figure 8-5, is an approximation of the equation by Lesik and Kennedy (1990). The nominal
shear strength of the weld element, Fnwu is limited by the deformation, A„j, of the weld seg-
ment that first reaches its limit, where
Fnm = 0.60FHXX(1.0 +0.50 sini-sei) [pi{l.9 - 0.9pi)f -^ (8-3)
orP,
(a) Instantaneous center of rotation (IC)
orp
(b) Forces on weld elements
Fig. 8-4. Instantaneous center of rotation method.
AMERICAN INSTITUTE OF STEEL CoNSTRUcrioN

ECCENTRICALLY LOADED WELD GROUPS 8-11
where
Fnwi = nominal shear strength of the weld segment at a deformation. A, ksi
= weld electrode strength, ksi'
e,- = load angle measured relative to the weld longitudinal axis, degrees
Pi = ratio of element deformation. A,-, to its deformation at the maximum stress, A«i
A; = deformation of the element taken as the critical deformation, A„cr, proportioned
by the ratio of the IC to element distance to the IC to critical element distance, in.
A„cr = ultimate deformation of the critical element, A„,-, of the element with the mini-
mum A„,7(IC to element distance), in.
^ui = 1.087M'(e, + 6)-0-65<0.17w,in. (8-4)
w = weld leg size, in.
Unlike the load-deformation relationship for bolts, the strength deformation bf welds is
dependent upon the angle, 6/, that the resultant elemental force makes with the axis of the
weld element. Load-deformation curves in Figure 8-5 for values of weld element shear
strength, P, relative to PO=0.6QFEXX for values of 6; = 0^ 15°, 30°, 45°, 60°, 75° and 90° are
shown. For further information, see AISC Specification Section J2.4 and its commentary.
The nominal strengths of the other unit-length weld segments in the joint can be deter-
mined by applying a deformation. A, that varies linearly with the distance from the IC.
The nominal shear strength of the weld group is, then, the sum of the individual strengths
of all weld segments. Because of the nonlinear nature of the requisite iterative solution,
for sufficient accuracy, a minimum of 20 weld elements for the longest line segment is
generally recommended.
I
Normalized Weld Deforraafio«,A/w
Fig. 8-5. Fillet weld strength as a function of load angle, 6.
AMERICAN INSTITLTE OF STEBL CONSTRUCTION

8-12 DESIGN CONSIDERATIONS FOR WELDS
The individual resistance of each weld segment is assumed to act on a line perpendicular
to a ray passing through the IC and the centroid of that weld segment, as illustrated in Figure
8-4(b). If the correct location of the instantaneous center has been selected, the three equa-
tions of in-plane static equilibrium, ZFxAwei = 0, XFyAwei = 0, and XM = 0, will be satisfied,
where Ami is the effective weld area.
For further information, see Crawford and Kulak (1968) and Butler et al. (1972).
Elastic Method
For a force applied as illustrated in Figure 8-4, the eccentric force, P„ or Pa, is resolved into
a force, Pu or Pa, acting through the center of gravity (CG) of the weld group and a moment,
Pue or PaC, where e is the eccentricity. Each weld element is then assumed to resist an equal
share of the direct shear, P^ or Pa, and a share of the eccentric moment, PuC or Pae, propor-
tional to its distance from the CG. The resultant vectorial sum of these forces,Tu or r^, is the
required strength for the weld.
The shear per linear inch of weld due to the concentric force, r^u or tpa, is determined as
LRFD ASD
rpu^Y (8-5a) rpa^^ (8-5b)
where
I = total length of the weld in the weld group, in.
To determine the resultant shear per linear inch of weld, Tpu or VpQ must be resolved into
horizontal components, rpux or rpax, and vertical components, rp^y or rpay, where
fpiw = TpaSine (LRFD)
rpax = fpasine (ASD)
rpuy = (LRFD)
rpay = '•paCOSG (ASD)
(8-6a)
(8-6b)
(8-7a)
(8-7b)
The shear per linear inch of weld due to the moment, or is r^u or rma, where
LRFD ASD
= ^ (8-8a)
h
r^^^f (8-8b)
h
where
c = radial distance from CG to point in weld group most remote from CG, in.
Ip~ Ix + ly- polar moment of inertia of the weld group, in.^ per in. Refer to Figure 8-6.
For section moduli and torsional constants of various welds treated as line elements,
refer to Table 5 in Section 7 of Blodgett (1966).
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

ECCENTRICALLY LOADED WELD GROUPS
8-13
-eg
(PJ
Yo
I I
'/p
eg
"J
yo
4 = 0
I.'-K'iyf
C:T
1 —
m 1
(Pj^
yo y^(p)
/=6.283R
4 =
/o y\p)
a = 0.6371?
JT_4
2 K
2
yo H y
a-=0.637R
l=1.57R
Jt 2
4 Jt
4 kJ
lyO —
Fig. 8-6. Moments of inertia of various weld segments.
4 It
4 71
fit
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-14 DESIGN CONSIDERATIONS FOR WELDS
To determine the resultant force on the most highly stressed weld element, r„a or r^ must
be resolved into horizontal component r„ux or r^ax and vertical component r„uy or r^^j,,
where
LRFD ASD
W = (8-9a)
(8-lOa)
P
W = ^ (8-9b)
h
(8-lOb)
h
In the above equations, Cx and Cy are the horizontal and vertical components of the radial
distance c at the point where r^ or ra is a maximum. The point in the weld group where the
stress is highest will usually be at a comer, or a termination, or where the element is farthest
from the center of gravity. Thus, the resultant force, r„ or ra, is determined as
LRFD ASD
'•« = ^J(rpu, + rnuix f + [rpuy + rmuyf (8-1 la) ra = sl(rpax + r„^-f + {rpay + r„u,yf (8-llb)
which should be compared against the available strength, found in AISC Specification
Table J2.5. For further information, see Higgins (1971).
Eccentricity Normal to the Plane of the Faying Surface
Eccentricity normal to the plane of the faying surface produces tension above and compres-
sion below the neutral axis, as illustrated in Figure 8-7 for a bracket connection. The
eccentric force, P^ or Pa, is resolved into a direct shear, Pu or Pa, acting at the faying surface
Fig. 8-7. Welds subject to eccentricity normal to the plane of the faying surface.
AMERICAN INSTITUTE OP STEEL CONSTRUCTION

1
OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 8-15
of the joint and a moment normal to the plane of the faying surface, PuC or PaC, where e is
the eccentricity. Each unit-length segment of weld is then assumed to resist an equal share
of the concentric force, Pu or Pa, and the moment is resisted by tension in the welds above
the neutral axis and compression below the neutral axis.
In contrast to bolts, where the interaction of shear and tension must be considered, for
welds, shear and tension can be combined vectorially into a,resultant shear. Thus, the solu-
tion of a weld loaded eccentrically normal to the plane of the faying surface is similar to that
discussed previously for welds loaded eccentrically in the plane of the faying surface.
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS
The following other specification requirements and design considerations apply to the
design of welded joints.
Special Requirements for Heavy Shapes and Plates
For CJP groove welded joints in heavy shapes with a flange thickness exceeding 2 in.
or built-up sections consisting of plates with a thickness exceeding 2 in., see AISC
Specification Sections A3.1c and Section A3.Id.
Placement of Weld Groups
For the required placement of weld groups at the ends of axially loaded members, see AISC
Specification Section J1.7.
Welds in Combination with Bolts or Rivets
For welds used in combination with bolts or rivets, see AISC Specification Section J1.8.
Fatigue
For applications involving fatigue, see AISC Specification Appendix 3.
One-Sided Fillet Welds
When lateral deformation is not otherwise prevented, a severe notch can result at locations
of one-sided welds. For the fillet-welded joint illustrated in Figure 8-8, the unwelded side
has no strength in tension and a notch may form from the unwelded side. Using one fillet
weld on each side will eliminate this condition. This is also true with PJP groove welds.
Welding Considerations and Appurtenances
Clearance Requirements
Clearances are required to allow the welder to make proper welds. Ample room must be pro-
vided so that the welder or welding operator may manipulate the electrode and observe the
weld as it is being deposited.
In the SMAW process, the preferred position of the electrode when welding in the hori-
zontal position is in a plane forrning 30° with the vertical side of ^he fillet weld being made.
However, this angle, shown as angle jr in Figure 8-9, may be varied somewhat to avoid
AMERICAN INSTRRUTE OF STEEL CONSTRUCTIGN

8-16 DESIGN CONSIDERATIONS FOR WELDS
contact with some projecting part of the work. A simple rule to provide adequate clearance
for the electrode in horizontal fillet welding is that the clear distance to a projecting element
should be at least one-half the distance y in Figure 8-9(b).
A special case of minimum clearance for welding with a straight electrode is illustrated
in Figure 8-10, The 20° angle is the minimum that will allow satisfactory welding along
the bottom of the angle and therefore governs the setback with respect to the end of the
beaim. If a '/2-in. setback and Vs-in. electrode diameter were used, the clearance between
the angle and the beam flange could be no less than 1'A in. for an angle with a leg dimen-
sion, w, of 3 in., nor less than I'/s in. with a w of 4 in. When it is not possible to provide
Crack Initiation -
S
Fig. 8-8. Notch effect at one-sided weld.
SECWNA-A
END VIEW PLAN VIEW
(a)
(b)
-A
PLAN VIEW.
•Fig. 8-9. Clearances for SMAW welding.
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 8-17
this clearance, the end of the angle may be cut as noted by the optional cut in Figure 8-10
to allow the necessaiy angle. However, this secondary cut will increase the cost of fabri-
cating the connection.
Excessive Welding
The specification of over or excessive welding will increase the amount of heat input into
the parts joined and thereby add to distortion in the joint. Distortion of the joint is caused by
three fundamental dimensional changes that occur during and after welding:
1. Transverse shrinkage that occurs perpendicular to the weld line,
2. Longitudinal shrinkage that occurs parallel to the weld line, and
3. Angular change that consists of rotation around the weld line.
If these dimensional changes alter the joint so that it is no longer within fabrication tol-
erances, the joint may need to be repaired with additional heating to bring the joint back to
within fabrication tolerances. This added work will result in expensive repair costs which
could have been avoided with appropriately sized welds.
Over-specification of weld size also increases the cost of welding for no structural benefit.
Minimum Shelf Dimensions for Fillet Welds
The recommended minimum shelf dimensions for normal size SMAW fillet welds are sum-
marized in Figure 8-11. SAW fillet welds would require a greater shelf dimension to contain
Setback
ELEVATION END VIEW
Fig. 8-10. Clearances for SMAW welding. (
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

8-18 DESIGN CONSIDERATIONS FOR WELDS
the flux, although auxiliary material can be clamped to the member to provide for this. The
dimension b illustrated in Figure 8-12 must be sufficient to accommodate the combined
dimensional variations of the angle length, cope depth, beam depth and weld size.
Beam Copes and Weld Access Holes
Requirements for beam copes and weld access holes are given in AISC Specification
Sections J1.6 and M2.2. Weld access holes, as illustrated in Figurfe 8-13, are used to permit
down-hand welding to the beam bottom flange, as well as the placement of a continuous
backing bar under the beam top flange. Weld access holes also help to mitigate the effects
of weld shrinkage strains and prevent the intersection or close juncture of welds in orthog-
onal directions. Weld access holes should not be filled with weld metsil because doing so
may result in a state of triaxial stress under loading.
Corner Clips
Corners of stiffeners and similar elements that fit into a comer should be clipped generously
to avoid the lack of fusion that would likely result in that corner. In general, a V4-in. clip will
be adequate, although this dimension can be adjusted to suit conditions, such as when the
fillet radius is larger or smaller than that for which a V4-in. clip is appropriate. For further
information, see Butler et al. (1972) and Blodgett (1980).
Vertical or horizontal section
Fillet Weld
Size (in.)
Min.
Shelf
Dim. (in.)
%6-
"As
Fig. 8-11. Recommended minimum shelf dimensions for SMAW fillet welds.
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 8-19
Backing Bars
Backing bars, illustrated in Figure 8-13, should be of approved weldable material as speci-
fied in AWS D1.1 Section 5.2.22. Per AWS Dl.l, backing bars on groove-welded joints are
usually continuous or fully spliced to avoid stress concentrations or discontinuities and
should be thoroughly fused with the weld metal. Backing bar removal is addressed in AISC
Specification Section J2.6 and AWS Dl.l.
i
Spacer Bars
Spacer bars, illustrated in Figure 8-13, must be of the same material specification as the base
metal, per AWS Dl.l Section 5.2,2.3. This can create a procurement problem, since small
tonnage requirements may make them difficult to obtain in the specified ASTM designation.
Weld Tabs
To obtain a fully welded cross section, the termination at either end of the joint must be of
sound weld metal. Weld-tabs, illustrated in Figure 8-13, should be of approved weldable
material as specified in AWS Dl.l Section 5.2.2.1. Two configurations of weld tabs are
illustrated in Figure 8-14, including flat-type weld tabs, which are normally used with bevel
and V groove welds, and contour-type weld tabs, which are normally used with J and U
/
17-
Fig. 8-12. Illustration of shelf dimensions for fillet welding.
AMERICAN INSTITUTE OF STEEL CoNSTRUcrioN

8-20 DESIGN CONSIDERATIONS FOR WELDS
groove welds. Weld-tab removal is addressed in AWS DLL Frequently, the backing bar can
be extended to serve as the weld tab. Some welds performed in the horizontal position
require shelf bars. Shelf bars will be left in place unless they are required to be removed by
the engineer. .
>
-Weld tabs
- Backing bar
-Weld access
hole
-Seat angle
-Weld access hole
-Spacer bar
(when req'd)
Beam flange
Overlapping cover
plate
Note: Extension bars should be at least 'A
fWc(f to reduce hazard of weld t)low through'
Fig. 8-13. Illustration of backing bars, , spacer bars, w^ld tabs and
other fittings for welding.
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

OTHER SPEAFICATIGN REQUIREMENTS AND DESIGN CONSIDERATIONS 8-21
Tack Welds
Tack welds placed as shown in Figure 8-15(a) should be avoided as they may cause notches.
An improved detail is as shown in Figure 8-15(b), with the tack welds placed Where they
will be consumed in the final welded joint.
Lamellar Tearing
Figures 8-16 and 8-17 illustrate preferred welded joint selection and connection configura-
tions for avoiding susceptibility to lamellar tearing. Refer to the discussion "Avoiding
Lamellar Tearing" in Part 2.
Prior Qualification of Welding Procedures
Evidence of prior qualification of welding procedures, welders, welding operators or tack-
ers may be accepted at the discretion of the owner's designated representative for design,
Runoutplate
or backing
bar extension
Weld tabs
Fig. 8-14. Illustration of weld tabs.
Fillet weld tad(s
can result in
noteljesttiat
reduce fytigue
resistance.

(a) Susceptible Detail
tacks are
incorporated
in weld
-V
(b) Improved Detail
Fig. 8-15. Backing bar tacic welding.
AMERICAN INSTITUTE OF STEEL CoNSTRUcnoN

8-22 DESIGN CONSIDERATIONS FOR WELDS
resulting in significant cost savings. Fabricators that participate in the AISC Quality
Certification Program have the experience and documentation necessary to assure that such
prior qualifications could be accepted. For more information about the AISG Quahty
Certification Program, visit www.aisc.org.
Painting Welded Connections
Paint is normally omitted in areas to be field-welded, per AISC Specification Section M3.5.
Note that this requirement does not generally apply to shop-assembled connections, because
painting is normally done after the welds are made. When required, the small paint-fi-ee
(a)
-V-
Susceptible Detail
-V
Improved Detail
(b)
IL7
Susceptible Detail
•M
-V
improved Detail
(c)
At
Susceptible Detail
-V improved Detail
Fig. 8-16. Susceptible and improved details to reduce
the incidence of lamellar tearing.
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

WELDING CONSIDERATIONS FOR HSS 8-23
areas can generally be identified with a general note (e.g., "no paint on OSL of connection
angles," where OSL stands for outstanding leg).
WELDING CONSIDERATIONS FOR HSS
Flare welds are more common in HSS because of the increasing likelihood that the HSS
comer is a part of the welded joint. A common flare bevel configuration which occurs
when equal width sections are joined is illustrated in Figure 8-18. The easiest arrangement
for welding occurs with equal wall thickness sections. However, when the corner radius
increases due to wall thickness or manufacturing tolerances, the root gap may need to be
adjusted by profile shaping, building out with weld metal, or by use of backing. See Figures
8-18 and 8-19.

1
Susceptible Detail.
Tzzyzz
Improved Detail
Fig. 8-17. Susceptible and improved details to avoid
intersecting welds with high restraint.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-24 DESIGN CONSIDERATIONS FOR WELDS
HSS Welding Requirements in AWS D1.1
AWS uses the terminology "tubular" for all hollow members including pipe, hollow struc-
tural sections, and fabricated box sections. The following sections in AWS Dl.l apply to
welded HSS-to-HSS connections:
(nominal)
Fig. 8-J8. Flare bevel weld, equal width HSS weld joint.
Weld
Build Out
Backing
Fig. 8-19. Welding methods accounting for the HSS comer radius.
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

' WELDING CONSIDERATIONS FOR HSS 8-25
Clause 2, Part D
As explained in AWS D1.1 Commentary Section C-2.21, "In commonly used types of tubu-
lar connections, the weld itself may not be the factor limiting the capacity of the joint. Such
limitations as local failure (punching shear), general collapse of the main member, and
lamellar tearing are discussed because they are not adequately covered in other codes."
Because of these various failure modes, the design of HSS-to-HSS connections must be part
of the member sizing process. The members selected must be capable of transmitting the
required strength or adequate reinforcement must be shown on the design documents.
Differences in the relative stiffness across HSS walls loaded normal to their surface can
make the load transfer highly nonuniform. To prevent progressive failure and to ensure duc-
tile behavior of the joint, minimum welds must be provided in T-, Y- and K-connections to
transmit the factored load in the branch or web member. For normal building applications,
fillet welds and PJP welds can be used.
While Part D deals primarily with HSS-to-HSS connections, some of these provisions are
applicable to welded attachments that deliver a load normal to the wall of a tubular member.
Clause 3
AWS D1.1 Figure 3.2 shows prequalified fillet weld details for tubular joints that differ from
details for nontubular skewed T-joints. These details will provide the minimum weld
strength needed to ensure ductile joint behavior.
AWS Figure 3.3 shows the joint detail and the effective throat for a flare-bevel and flare-
V PJP groove weld that is commonly used for welding connection material to the face of an
HSS. Groove welded joint details for HSS are designed to accommodate both the geometry
of the section and the lack of access to the back side of the joint.
AWS Figure 3.5 shows various PJP groove welded HSS joint details and AWS Figures
3.6, 3.8,3.9 and 3.10 show CJP groove welded HSS joint details. The joint preparation and
weld sizing are complex and critical to obtain a sound weld. These details also provide the
weld strength needed to ensure ductile joint behavior.
Clause 4
AWS Dl.l Clause 4, Qualification, covers the requirements for qualification testing of
welding procedure specifications (WPS, see p. 8-3) and performance testing of the welder's
ability to produce sound welds. HSS connections may not always meet the requirements for
a prequalified WPS because of unique geometry, connection access or for other reasons.
This section also gives the requirements for a procedure qualification record (PQR), which
is the basis for qualifying a WPS.
The performance testing of welders and welding operators considers process, material
thickness, position, nontubularor tubular joint access. AWS Dl.l Tables 4.1 through 4.4 Ust
the required qualifications needed for each type of joint. Most welders are qualified for a
particular process and position-in-plate (nontubular) joints. These qualifications will allow
the welder to make similar fillet, PJP groove and backed CJP welds in tubular members.
However, certain types of tubular connections, such as unbacked T-, Y- and K-connections,
require special welder certifications because the lack of access to the back of the joint, the
position of the connection, and the access to the connection require special skill to produce
a sound connection.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-26 DESIGN CONSIDERATIONS FOR WELDS
Clause 5
Clause 5, Fabrication, covers the requirements for the preparation, assembly and workman-
ship of welded steel structures. AWS Table 5.5, Tubular Root Opening Tolerances, gives
the acceptable fitup for unbacked groove welds. AWS Table 5.8, Minimum Fillet Weld
Size, and Section 2.25.1.3 give the minimum weld pass size based on material thickness
and process. '
Clause 6
Clause 6, Inspection, contains all of the requirements for the inspector's qualifications and
responsibilities, acceptance criteria for discontinuities, and procedures for NDE. AWS Dl .1
considers fabrication/erection iiispection and testing a separate function from verification
inspection and testing. Fabrication/erection inspection and testing is usually the responsi-
bility of the contractor and is performed as appropriate prior to assembly, during assembly,
during welding, and after welding to ensure the requirements of the contract documents are
met. Verification inspection and testing are the prerogatives of the owner. The extent of
NDE and verification inspection must be specified in the contract documents.
The inspection covers WPS qualification, equipment, welder qualification, joint prepara-
tion, joint fitup, welding techniques, and weld size length and location. It is especially
important when inspecting HSS-to-HSS joints that joint preparation and fitup be checked
prior to welding.
In addition to inspecting the above items, AWS requires all welds to be visually inspected
for conformance to the standards in AWS Table 6.1, Visual Acceptance Criteria.
Four types of nondestructive testing can be used to supplement visual inspection. They
are penetrant testing, magnetic particle testing, radiographic testing, and ultrasonic testing.
The AWS ultrasonic testing (UT) acceptance criteria for non-HSS type groove welds
starts at ^/le-in.-thick material. The procedures for HSS T-, Y- and K- connections have a
minimum applicable thickness of V2 in., and diameter of 12^/4 in. AWS does, however, make
provision for qualifying UT procedures for smaller size applications. It is possible to UT
portions of butt-type splices with backing bars using the non-HSS criteria, however, the cor-
ners of rectangular HSS cannot be inspected.
AWS Dl.l makes provision for using alternate acceptance criteria based upon an evalu-
ation of suitability for service using past experience, experimental evidence or engineering
analysis. This can be especially important when deciding if and how to make any repairs.
Weld Sizing for Uneven Distribution of Loads
The connection strength for a member welded normal to an HSS wall is a function of the
geometric parameters of the connected members and is often less than the full strength of
the member. When limited by geometry, the available strength cannot be increased by
increasing the weld strength. Due to the varying relative flexibility of the HSS wall loaded
normal to its surface and the axial stiffness of the connected member, the transfer of load
along the weld line is highly nonuniform. To prevent progressive failure, or "unzipping"
of the weld, it is important to provide adequate welds to maintain ductile behavior of
the joint.
Welds that satisfy this ductility requiremerit can be proportioned for the required strength
using an effective width criteria similar to that used for checking the axial strength of the
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

WELDING CONSIDERATIONS FOR HSS 8-27
branch member or plate. For effective weld length of HSS-to-HSS connections, refer to
AISC Specification Section K4.
An alternative to the effective length procedure is the use of the prequalified fillet and PJP
groove weld details in AWS Dl.l that are sized to ensure ductile behavior. In addition, fil-
let welds with an effective throat of 1.1 times the thickness of the branch member can be
used. Either of these two alternatives will, in most cases, be conservative.
(
Detailing Considerations
1. Butt joints will require a groove weld detail. Where possible the joint should be a pre-
qualified PJP groove weld sized for actual load or a CJP groove weld with steel
backing.
2. T-, Y- and K-connections should, where possible, use either fillet welds or PJP groove
welds sized for the design forces and checked for the minimum size needed to ensure
ductile joint behavior. Where CJP welds are required, joint details using steel
backing should be used whenever possible. For a detailed discussion of various types
of backing and the advantages of using backing, see Post (1990).
DESIGN TABLE DISCUSSION
Table 8-1. Coefficients, C, for Concentrically Loaded Weld
Group Elements
Concentrically loaded fillet weld groups must consider the effect of loading angle and defor-
mation compatibility on weld strength.
By multiplying the appropriate values of C from Table 8-1 by the available strength of
each weld element, an effective strength is determined for each weld element. The available
strength of the weld group can be determined by summing the effective strengths of all of
the elements in a weld group. It should be noted that this table is to be entered at the largest
load angle on any weld in the weld group. For the weld group shown in Figure 8-20, this is
calculated as:
LRFD ASD
<SfR^ = l392D (8-12a)
x[l.5(l)-i-1.29(l.4l)-(-0.825(l)]
= 5.77Z)
«w/ii = 0.928D (8-12b)
x[l.5(l)-(-1.29(l.4l)-(-0.825(l)]
= 3.85Z)
Table 8-2. Prequalified Welded Joints
The prequalified welded joints details given in AWS Dl.l and Table 8-2 provide joint
geometries, such as root openings, angles and clearances (see Figures 8-21 and 8-22) that
will permit the deposition of sound weld material. Prequalified welded joints are not, in
themselves, adequate consideration of welded design details and the other provisions in
AWS Dl.l must be satisfied as they are referenced in AISC Specification Section J2. The
design and detailing for successful welded construction requires consideration of factors
which include, but are not limited to, the magnitude, type and distribution of forces to be
i
AMERICAN INSTITUTE OF STEEL CONSTROCTION

8-28 DESIGN CONSIDERATIONS FOR WELDS
transmitted, access, restraint against weld shrinkage, thickness of connected materials,
residual stress, and distortion. AWS Dl.l has provisions for material that is thinner than is
normally considered applicable for structural applications. See AWS Dl.l and D 1.3 for
welding requirements and limits applicable to these materials in lieu of provisions such as
AISC Specification Table J2.3.
The designations such as B-Lla, B-U2 and B-P3 are those used in AWS Dl.l. Note that
lowercase letters (e.g., a, b, c, etc.) are often used to differentiate between joints that would
otherwise have the same joint designation. These prequalified welded joints are limited to
those made by the SMAW, SAW, GMAW (except short circuit transfer), and FCAW proce-
dures, Smdl deviations from dimensions, angles of grooves, £ind variation in depth of
groove joints are permissible within the tolerances given.
In general, all fillet welds are prequalifled, provided they conform to the requirements in
AWS Dl.l. Groove welds are classified using the conventions indicated in the tables.
Welded joints other than those prequalified by AWS may be qualified, provided they are
tested and qualified in accordance with AWS Dl.l.
Table 8-3. Electrode Strength Coefficient, Ci
Electrode strength coefficients, Cj, which can be used to adjust the tabulated values of
Tables 8-4 through 8-11 for electrodes other than E70XX, are given in Table 8-3. Note that
this coefficient includes an additional reduction factor of 0.90 for E80 and E90 electrodes
and 0.85 for ElOO and El 10; this accounts for the uncertainty of extrapolation to these
higher-strength electrodes.
Tables 8-4 through 8-11. Coefficients, C, for Eccentrically
Loaded Weld Groups
Tables. 8-4 through 8-11 employ the instantaneous center of rotation method in accordance with
AISC Specification Section J2.4 for the weld patterns and eccentric conditions indicated and
inchned loads at 0°, 15°, 30°, 45°, 60° and 75°. The tabulated nondimensional coefficient, C,
represents the effective strength of the weld group in resisting the eccentric shear force.
Load, P, passes through
the geometric center
of the weld group
Fig. 8-20. Concentrically loaded weld group.
AMERICAN iNsxrruTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-29
When Analyzing a Known Weld Group Geometry
For any of the weld group geometries shown, the available strength, (|)/?„ or Rn/ii, of the
eccentrically loaded weld group is determined by
Rn=-CClDl
(]) = 0.75 n = 2.oo
where
C = tabular value
Ci = electrode coefficient from Table 8-3
D = number of sixteenths-of-an-inch in the weld size
I = length of the reference weld, in.
(8-13)
Weld face
Penetration
Normal Throat Size
CONVEX CONCAVE
Fig. 8-21. Fillet weld nomenclature.
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

8-30 DESIGN CONSIDERATIONS FOR WELDS
Groove
face
Groove
angle
Bevel
angle
Root
opening'
Backing
bar
RooU
Groove (and
bevel) angle
r Groove
radius •
Root
Rootfyce
opening
PREPARATION
Spacer
bar
Root
opening
COMPLETE-JOINT-PENETRA TION
opening
PARTIAL-JOINT-PENETRA TION
Groove angle
Fillet size
PARTIAL-JOINT-PENETRA TION
(When Reinforcing Fillet
is Specified)
Fig. 8-22. Groove weld nomenclature.
.11 AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 8-31
In developing these tables, the instantaneous center of rotation method was used, with a
convergence criterion of less than V2% and considering deformation compatibility of adja-
cent weld elements. The first row in each table (a - 0) gives the available strength of a
concentrically loaded weld group in accordance with AISC Specification Section J2.4.
Linear interpolation within a given table between adjacent a and k values is permitted.
Straight-line interpolation between values for loads at different angles may be signifi-
cantly unconservative. Either a rational analysis should be performed or the values for the
next lower angle increment in the tables should be used for design. For weld group patterns
not treated in these tables, a rational analysis is required.
Table 8-12. Approximate Number of Passes for Welds
Table 8-12 lists the approximate number of passes required for various welds. The actual
number of passes can vary depending on the welding position and process used. The table
can be used as a guide in selecting economical welds because the labor required will be
roughly proportional to the number of passes. Longer single-pass welds will generally be
more economical than shbrter multi-pass welds because the number of passes, and therefore
the cost, required to deposit the larger multi-pass weld increases faster than the strength of
the weld.
<
i
AMERICAN INSTITUTB OF STEEL CONSTRUCTION

S-32 DESIGN CONSIDERATIONS FOR WELDS
PART 8 REFERENCES
AWS (1992), Guide for the Nondestructive Inspection of Welds, AWSBl.lO, American
Welding Society, Miami, FL.
AWS (2007), Standard Symbols for Welding, Brazing, and Nondestructive Examination,
American Welding Society, Miami, FL.
Blodgett, O.W. (1966), Design of Welded Structures, James F. Lincoln Arc Welding
Foundation, Cleveland, OH.
Blodgett, O.W. (1980), "Detailing to Achieve Practical Welded Fabrication," Engineering
Journal, AISC, Vol. 17, No. 4,4th Quarter, pp. 106-119, Chicago, IL.
Blodgett, O.W., Funderburk, R.S. and Miller, D.K. (1997), Fabricator's and Erector's Guide
to Welded Steel Construction, James F. Lincoln Are Welding Foundation, Cleveland, OH.
Butler, L.J., Pal, S. and Kulak, G.L. (1972), Eccentrically Loaded Welded Connections,"
Journal of the Structural Division, ASCE, Vol. 98, No. ST5, May, pp. 989-1005, Reston,
VA. .
Crawford, S.F and Kulak, G.L. (1968), "Behavior of Eccentrically Loaded Bolted
Connections," Studies in Structural Engineering, No. 4, Department of Civil Engineering,
Nova Scotia Technical College, Halifax, Nova Scotia.
Higgins,T.R. (1971), "Treatment of Eccentrically Loaded Connections in the AISC Manual,"
Engineering Journal, AISC, Vol. 8, No. 2, April, pp. 52-54, Chicago, IL.
Institute of Welding (1972), Procedures and Recommendations for the Ultrasonic Testing
of Butt Welds, London, England.
Kaufmann, J.A., Pense, A.W. and Stout, R.D. (1981), "An Evaluation of Factors Significant
to Lamellar Tearing," Welding Journal Research Supplement, AWS, Vol. 60, No. 3, March,
Miami, FL.
Krautkramer, J. (1990), Ultrasonic Testing of Materials, 4th Ed., Springer-Verlag, Berlin,
West Germany. •
Lesik, D.F. and Kennedy, D.J.L. (1990), "Ultimate Strength of Fillet-Welded Connections
Loaded in Plane," Canadian Journal of Civil Engineering, National Research Council
of Canada, Vol. 17, No. 1, Ottawa, Canada.
Post, J.W. (1990), "Box-Tube Connections: Choices of Joint Details and Their Influence on
Costs," National Steel Construction Conference Proceedings, AISC, Chicago, IL.
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

DESIGN TABLES 8-33
Table 8-1
Coefficients, C, for Concentrically Loaded
Weld Group Elements
Load angle
on weld
Largest |oad angle on any weld group element, degrees
element,
degrees
90 75 60 45 .30 15 0
0 0.825 0.849 0.876 0.909 0.948 0,994 1.00
15 1.02 1.04 1.05 1.07 1.06 0,883
30 1.16 1.17 1.18 1.17 1.10
45 1.29 1.30 1.29 1.26
60 1.40 ,1.40 1.39
- 75 1.48 1.47
90 1.50
i
AMERICAN INSTITUTE OF STEEL CONSTRCICTION

8-34 DESIGN CONSIDERATIONS FOR WELDS
Table 8-2
Prequallfied Welded Joints
Symbols for Joint Types
butt joint
comer joint
T-joint
BC butt or comer joint
TC . T-or corner joint
ETC butt, T-or comer joint
Symbols for Base Metal Thickness and Penetration
L limited ttiickness, compiete-joint-penetration
U unlimited ttiickness, complete-joint-penetration
P . partial-ioint-penetration
Symbols for Weld Types
square-groove
singie-V-groove
double-V-groove
single-bevei-groove
doufale-bevel-groove
6 single-U-groove
7 double-U-groove
8 single-J-groove
9 doubie-J-groove
10 flare-bevel-groove
Symbols for Welding Processes if not Sliielded Metal Arc Welding (SMAW):
S submerged arc welding (SAW)
G gas metal arc welding (GiVlAW)
F flux cored arc weiding (FCAW)
Symbols for Welding Positions
F flat
H tiorizontai
V vertical
OH overliead
Symbols for Joint Oesignatian
The lower case letters (e.g., a, b, c, d, etc.) are used to difterentiate between joints that wouid otherwise have the same joint
Symbols for Dimensions
R Root opening
a, p Groove angles
f Root face
r J- or U-groove radius
S, Si, S2 PJP groove weld depth of groove
E, Ei, Ej PJP groove weld sizes corresponding to S, Si, Sj, respectively
Notes to Prequallfied Welded Joints
8
9
10
11
12
Not prequalified for gas metal arc welding (GMAW) using short circuiting transfer nor GTAW. Refer to AWS D1.1 Annex A
Joint is welded from one side only.
Cyclic load application limits these joints to the horizontal welding position. Refer to AWS D1.1 Section 2,18,2.
Backgouge root to sound metai before welding second side.
SiVlAW joints may be used for prequalified GiVlAW (except GMAW-S) and FCAW.
iVIinimum effective throat ttiickness (E) as shown in AiSC Specificatml3b\e J2.3; S as specified on drawings.
If fillet welds are used in buildings to reinforce groove welds in comer and T-joints, they shall be equal to 'A Ti, but
need not exceed ^/s in. Groove welds in comer and T-joints of cyclically loaded structures shall be reinforced with fillet
welds equal to '/4 Ti, but need not exceed ^/s in.
Double-groove welds may have grooves ol unequal depth, but the deptti of the shallower groove shall be no less than
one-fourtii of the thickness of the thinner part joined.
Double-groove welds may have grooves of unequal depth, provided these conform to the limitations of Note 6. Also, the
effective throat thickness (E) applies individually to each groove.
The orientation of the two members in the joints may vary from 135° to 180° for butt joints, or 45° to 135° for comer
joints, or 45° to 90° for T-joints.
For corner joints, the ouside groove preparation may be in either or both members, provided the basic groove
configuration is not changed and adequate edge distance is maintained to support the welding operations without
excessive edge melting.
Effective throat thickness (E) is based on joints welded Hush.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-35
Table 8-2 (continued)
Prequalified Welded Joints
Basic Weld Symbols
Back Fillet
Plug
or
Slot
Groove or Butt
Square
V
Bevel
V
V
Flare V
Flare
Bevel
r
Supplementary Weld Symbols
Backing Spacer
-a-
Weld Alt
Around
o
Field Weld
Contour
Flush Convex
For other basic and
supplementary
weld symbols, see
AWS A2.4
Standard Location of Elements of a Welding Symbol
Finish symbol
Contour symbol
Root opening, depth
of filling for plug
and slot welds
Effecfive throat
Depth of preparation
or size In inches
Reference line
Groove angle or included
angle or countersinic
for plug welds
Length of weld in inches
Pitch (c. to c. spacing)
of welds in inches
Spedfication, process,
or other reference
Tail (omitted when
reference is not used)
Basic weld symbol
or detail reference
Elements in this
area remain as
shown when tail
and arrow -
are reversed.
Arrow connects reference line to amjwside
of joint. Use brealc as at A or B to signify
that anow is pointing to the grooved
member in bevel or J-^rooved joints.
Note:
Size, weld symbol, length of weld, and spacing must read in that order, from left to right, along the reference
line. Neither orientation of reference nor location of the arrow alters this mie.
The perpendicular leg of fck, K, , I/", weld symbols must be at left.
Dimensions of fillet welds must be shown on both the arrow side and the other side.
Symbols apply between aboipt changes in direction of welding unless governed by the "all around" symbol or
otherwise dimensioned.
These symbols do not explicitly provide for the case that frequently occurs in structural work, where duplicate
material (such as stilfeners) occurs on the far side of a web or gusset plate. The fabricating industry has
adopted this convention: that when the billing of the detail material discloses the existence of a member on the
far side as well as on the near side, the welding shown for the near side shall be duplicated on the far side.
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-36 DESIGN CONSIDERATIONS FOR WELDS
Table 8-2 (continued)
Prequalified Welded Joints
Fillet Welds
FILLET
P1/16 in.
J_(2mm]
{
ON
} { 3
BASE METAL 1/4 in. [6 mm]
OR iWORE INTHiCKNESS
BASE iWETAL LESS THAN
1/4 in. [6 mm] THICK
(A) (B)
MAXIMUM DETAILED SIZE OF FILLET WELD ALONG EDGES
(A) (B)
(D)
(See Note 2)
Notes:
1. (E»). (E'«) = Effective throat thickness dependant on magnlaide of root opening (Rn). Refer to AWS D1.1 Section 5.22.1.
Subscript n represents 1,2,3,4, or 5.
2. t = thici^ness of thinner part.
3. Not ptsqualified ifer gas meW arc weiding (GMAW) using sliort circuit transfer nor GTAW. Refer to flWS Dt.l AnnexA for GMAW-S.
4. Rgure D.Appiy Z loss dimension of AWS 01.1 Table 22 to.determine effective tliroatttiiclmss.
5. Figure D. Not prequlained for angles under 30°.ftr welder qualifications see AWS 01 .iTable 4.8.
6. Angles under 60° are pennissit)le, however, if the weld is considered to be a partial-joint-penetration groove weld.
AMEWCAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-37
Table 8-2 (continued) CJP
Prequalified Welded Joints
Complete-Joint-Penetratlon Groove Welds
Square-groove weld (1)
Butt joint (B)
Corner joint (C)
C-Lla
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Gas
Sliielding
for FCAW
Notes
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Root
Opening
Tolerances
Allowed
Welding
Positions
Gas
Sliielding
for FCAW
Notes
Welding
Process
Joint
Designation
n T2
Root
Opening
As Detailed
(see 3.13.1)
As Rt-Up
(see 3,13.1)
Allowed
Welding
Positions
Gas
Sliielding
for FCAW
Notes
SMAW
B-L1a V4 max - R=Ti +Vl6,-0 +V4,-Vl6 All — 5,10
SMAW
C-Lla 'A max U R = Ti +'/l6,-0 +V(,-Vie All _
5,10
FCAW
GMAW
B-L1a-GF % max — R = Ti +Vl6,-0 +V4,-Vl6 All Not Required 1,10
Square-groove weld (1)
Butt joint (B)
<
BACKGOUGE
(EXCEPT B-L1-S)
f s
Weiding
Process
Joint
Designation
Base Metal Tliickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Weiding
Process
Joint
Designation
Base Metal Tliickness
(U = unlimited)
Root
Opening
Tolerances
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Weiding
Process
Joint
Designation
Ti Tj
Root
Opening
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
SMAW B-LIb V4 max
-
R- +Vl6,-0 +Vi6,-Vg All
- 4,5,10
GMAW
FCAW
B-Llb-GF '/emax — R = 0toV8 +Vl6,-0 +Vl6,-V8 All
Not
Required
1,4,10
SAW B-L1-S Vemax R = 0 ±0 +Vl6,-0 F _
10
SAW B-Lla-S max - R = 0 ±0 +Vl6,-0 F - 4,10
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-38 DESIGN CONSIDERATIONS FOR WELDS
Table 8-2 (continued)
Prequalified Welded Joints
CJP
Complete-Joint-Penetration Groove Welds
Square-groove weld (1)
T-joint (T)
Corner joint (C)
BACKGOUGE
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Root -
Opening
Tolerances
As Detailed
(see 3.13.1)
As Fit-Up
;see 3.13,1)
Allowed
Welding
Positions
Gas
Shielding
forFCAW
Notes
SIVIAW TC-LIb V4 max R =
T
+Vl6,-0 +Vi6,-Ve All 4,5,7
GMAW
FCAW
TC-L1-GF R = 0 to 1/8 +Vie,-0 +Vie, -1/8 All
Not
Required
1,4,7
SAW TC-L1-S R = 0 ±0 +Vie-0 — .4,7
Single-V-groove VKeld (2)'
Butt joint (B)
Tolerances
As Detailed
(see 3.13,1)
R = +VI6,-0
a = +10°,-0°
As Fit-Up
(see 3.13.1)
-fV<,-Vr6
+10°,-5°
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
AllovKed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
Ti T2 Root Opening Groove Angle
AllovKed
Welding
Positions
Gas
Shielding
for FCAW
Notes
SMAW B-U2a U -
R = V4 a = 45° All - 5,10
SMAW B-U2a U - R = % a = 30° F,V,OH — 5,10 SMAW B-U2a U -
R = V2 a = 20° F,V,OH - 5,10
GMAW
FCAW
B-U2a-GF U -
R = 3/,6 a = 30° F,V,OH Required 1,10
GMAW
FCAW
B-U2a-GF U - R = % a = 30° • F,V,OH Not req. 1,10
GMAW
FCAW
B-U2a-GF U -
R= 1/4 a = 45° F,V,OH Nofreq. 1,10
SAW B-L2a-S 2 max — R^Vi a = 30° F — 10
SAW B-U2-S U - R = VB a - 20° F - 10
Reprinted from AWS D1.1 with psrrriission from th© American Welding Socifity (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 8-39
Table 8-2 (continued) CJP
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
Single-V-grocwe weld (2)
Comer joint (C)
Tolerances
As Detailed
(see 3,13,1)
As Fil-Up
(see 3,13,1)
R = +Vi6,-0
a = +10^-0° +10°,-5°
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Alloviied
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
Ti h Root Opening Groove Angle
Alloviied
Welding
Positions
Gas
Shielding
for FCAW
Notes
SIMAW C-U2a U U
R = V4 a = 45° Ail — 5,10
SIMAW C-U2a U U R = 3/B a = 30° F,V,OH - 5,10 SIMAW C-U2a U U
R = Vz a = 20° F,V,OH — 5,10
GIMAW
FCAW
C-U2a-GF U u
R = 3/16 a = 30° F,V,OH Required 1
GIMAW
FCAW
C-U2a-GF U u R = 3/8 a = 30° F,V,OH Not req. 1,10
GIMAW
FCAW
C-U2a-GF U u
R=V4 a = 45° F,V,OH Not req. 1,10
SAW C-L2a-S 2 max u R = V4 a = 30° F - 10
SAW C-U2-S U u R = 5/8 a = 20° F
- 10
(
Reprinted from AWS Dl.1 with permission from the American Welding Society .(AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

8-40 DESIGN CONSIDERATIONS FOR WELDS
CJP Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
Single-V-groove weld (2)
Butt joint (B)
BACKGOUGE
Welding
Process
Joint
Designation
Base Metal Ttiickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
Base Metal Ttiickness
(U = unlimited)
Root
Opening
Root Face
Groove Angle
Tolerances
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
Ti T2
Root
Opening
Root Face
Groove Angle
As Detailed
(see 3,13.1)
As Fit-Up
(see 3.13,1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
SMAW B-U2 U

R = Oto Vb
f = 0toV8
a = 60'
+Vl6,-0
+Vl6,-0
+ io°,-o°
+Vl6,-V8
Not Limited
+10°,-5°
All — - 4,5,10
GiVlAW
FCAW
B-U2-GF U -
R = 0 to Vb
f = 0toV8
0 = 60°
+Vre,-0
+Vl6,-0
+ 10°,-0°
+Vl6,-V8
Not Limited
+10°,-5°
All
Not
Required
1,4,10
SAW B-L2C-S
Over V2 to 1 -
R = 0
f = 'A max
a = 60°
R = ±0
f = +0,-f
+Vl6,-0
±Vk
+10°,-5°
F - 4,10 SAW B-L2C-S Overl tolV2 —
R = 0
f = V2 max
0 = 60°
R = ±0
f = +0,-f
+Vl6,-0
±Vk
+10°,-5°
F - 4,10 SAW B-L2C-S
0verlV2to2 -
R = 0
f = Ve max
a = 60°
R = ±0
f = +0,-f
+Vl6,-0
±Vk
+10°,-5°
F - 4,10
Reprinted ftom AWS 01.1 with pemiission fnjm the American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 8-41
Table 8-2 (continued) CJP
Prequalifled Welded Joints
Complete-Joint-Penetration Groove Welds
Single-V-grodve weld (2)
Comer joint (C)
BACKGOUGE
Welding
Process
SMAW
GMAW
FCAW
SAW
Joint
Designation
C-U2
C-U2-GF
C-U2b-S
Base Metal Thickness
(U = unlimited)
Groove Preparation
Root
Opening
Root Face
Groove Angle
R = 0toV8
f = OtoVa
a = 60°
R = Oto Vb
f = 0 to Va
0 = 60°
R = 0 to Vs
f = V4 max
a = 60°
Tolerances
As Detailed
(see 3.13.1)
+Vl6,-0
+ 10°,-0°
+Vl6, -0
+Vl6,-0
+ 10°,-0°
±0
+1o°,-o°
As Fit-Up
(seeai3.1)
+V16,-V8
NotUmited
+10°,-5°
+V16,-V8
Not Limited
+10°,-5°
+V16, -0
±Vl6
+10°,-5°
Double-V-groove weld (3)
Buttjoitrt(B)
u
BACKGOUGE
s
Spacer
SAW
SMAW
Allowed
Welding
Positions
All
All
Gas
Shielding
for FCAW
Not
Required
Notes
4,5.7,
10
1,4,7,
10
4,7,10
Tolerances
As Detailed
(see 3.13.1)
R = ±0
1 = 10
a = +10°,-0°
±0
±0
As Rt-Up
(see 3.13,1)
+1/4,-0
+Vl6,-0
+10°,-5°
+Vf6,-0
Vb,-0
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
T, Tz
Root
Opening
Root Face
Groove
Angle
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
SMAW B-U3a
U
Spacer =
VbxR

R = V4 f = Oto Vb a = 45° All -
4,5,8,
10
SMAW B-U3a
U
Spacer =
VbxR
— R = 3/8 f = Oto Ve 0 = 30° F.V.OH —
4,5,8,
10
SMAW B-U3a
U
Spacer =
VbxR

R = Vz f = Oto Vb a =20° F.V.OH

4,5,8,
10
SAW B-U3a-S
U
Spacer =
V4XR
- R = 5/8 f = Oto V4 a = 20° F - 4,8,10
Reprinted from AWS D1.1 wfth permission from the American Welding Society (AWS) I
AMBRICATJ INSTITUTE OF STEEL CONSTRUCTION

S-42 DESIGN CONSIDERATIONS FOR WELDS
Table 8-2 (continued) CJP
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
Double-V-grqove weld (3)
Butt joint (B)
yX^ —<^ACKG BACKGOUGE
T,
T, s,
Over to
1% 2 2V2 1%
2V2 3 15/4
3 35/8 2Ve
3% 4 2%
4 4% iVi
43/4 51/2 31/4
5'/! 6V4 35/4
For B-U3C-S only
ForTi>6V4orT,S2
S, = 2/3(Ti-V4)
Welding
Process
Joint
Designation
Base Metal Tliickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
Base Metal Tliickness
(U = unlimited) Tolerances
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
T, T2
Root Opening
Root Face
Groove Angle
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
SIVIAW B-U3b
• U -
R = 0 to Va
f = Oto Vs
a = p = 60°
+Vl6,-0
+Vi6,-0
+10°,-0°
+Vl6,-V8
Not limited
+10°,-5°
All — 4,5,8,10
GMAW
FCAW
B-U3-GF
• U -
R = 0 to Va
f = Oto Vs
a = p = 60°
+Vl6,-0
+Vi6,-0
+10°,-0°
+Vl6,-V8
Not limited
+10°,-5°
All Not required 1,4,8,10
SAW B-U3C-S U —
R = 0
f = Vi min
ct = p = 60»
+1/4,-0
+10°,-0°
+Vl6,-0
+V4,-0
+10°,-5°
F 4,8,10 SAW B-U3C-S U —
To find S] see table atxive: S2=T, - (Si+f)
F 4,8,10
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

DESIGN TABLES 8-43
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
Tolerances
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
R = +VI6,-0 -hV4,-Vl6
a = +10°,-0° +10°, -5"
Single-bevel-groove weld (4)
Butt joint (B)
rT
T, U TC
Welding
Process
Joint
Designation
Base Metal Tliickness
(U = unlimited)
Groove Preparation
Root Opening Groove Angle
Allov»ed
Welding
Positions
Gas
forFCAW
Notes
SMAW B-U4a
R = V4 a = 45° All 3,5,10
R = 3 a = 30° All 3, 5,10
GMAW
FCAW
R = '/16 a = 30° All Required 1,3,10
B-U4a-GF R = V4 a = 45° All Not req. 1,3,10
a = 30° F,H Not req. 1,3,10
SAW B-U4a-S
R = V8 a = 30°
R = Vfl a = 45°
3,10
SIngle-bevel-groove vijeld (4)
T-joint (T)
Comer joint (C)
Tolerances
As Detailed
(see 3.13.1)
TC
y-7
~r
• T,
"K
R = +Vi6, -0
a = +10°,-0°
As Fit-Up
(see 3.13.1)
+V4,-Vl6
+10°,-6°
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Allov»ed
Welding
Positions
Gas
Shielding
forFCAW
Notes
Welding
Process
Joint
Designation
T, T2 Root Opening Groove Angle
Allov»ed
Welding
Positions
Gas
Shielding
forFCAW
Notes
SMAW TC-U4a U U
R = V4 a = 45° All - 5,7,10,11
SMAW TC-U4a U U
. R = V8 a = 30° F,V,OH - 5,7,10,11
GMAW
FCAW
TC-U4a-GF U U
R=3/I6 a = 30° All Required 1,7,10,11
GMAW
FCAW
TC-U4a-GF U U R = % a = 30° F Not req. 1,7,10,11
GMAW
FCAW
TC-U4a-GF U U
R = V4 a = 45° All Not req. 1,7,10,11
SAW TC-U4a-S U u
R = 3/8 a = 30°
F
- 7,10,11 SAW TC-U4a-S U u
R = 1/4. a = 45°
F
- 7,10,11
Reprint^ from AWS D1.1 with permission from the American Welding Society (AWS)
X
AMERICAN INSTITUTE OF STEEL CONSTRCICTION

-44 DESIGN CONSIDERATIONS FOR WELDS
CJP Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
Single-bevel-groove weld (4)
Butt joint (B)
BACKOOUGE
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Root
Opening
Root Face
Groove Angle
Groove Preparation
Tolerances
As Detailed
(see 3.13.1)
AS Fit-Up
(see 3.13.1)
Alkiwed
Welding
Positions
Gas
Shielding
for FCAW
Notes
SMAW B-U4b
GMAW
FCAW
B-U4h-GF
R = Oto V«
f = 0toV8
a = 45°
+Vl6,-0 +Vl6,-V8
Not Limited
+10°,-5°
All 3,4,5,10
All Not Required 1,3; 4,10
SAW B-U4b-S
R = 0
fs'Amax
a = 60°
±0
+0, -Vs
+ 10°,-0°
+V4,-fl
±Vl6
10°,-5°
3,4,10
Single-bevel-groove weld (4)
T-joint (T)
Comer joint (C)
<^BACKGOUGE
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Allowed
WeWing
Positions
Gas
Shielding
forFCAW
Notes
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Root
Opening
Root Face
Groove Angle
Tolerances
Allowed
WeWing
Positions
Gas
Shielding
forFCAW
Notes
Welding
Process
Joint
Designation
Ti
T2
Root
Opening
Root Face
Groove Angle
As Detailed
(see 3.13.1)
As Fit-Up
(366 3.13.1)
Allowed
WeWing
Positions
Gas
Shielding
forFCAW
Notes
SIVIAW TC-U4b U u R^OtoVs
(= 0 to Vb
a = 45°
+V16, -0
+Vl6,-0
+ 10°,-0°
+V16, -Vs
Not Limited
+10°,-^°
All -
4,5,7,
10,11
GMAW
FCAW
TC-U4b-GF U u
R^OtoVs
(= 0 to Vb
a = 45°
+V16, -0
+Vl6,-0
+ 10°,-0°
+V16, -Vs
Not Limited
+10°,-^° All Not Required
1,4,7,
10,11
SAW TC-U4b-S U u
R = 0
( = 1/4 max
a = 60°
±0
+0,-V8
+ 10°,-0°
+V4,-0
±Vl6
10°,-5°
F -
4,7,10,
11
• Reprinted from AWS D1.1 with permission from tile American Welding .Society (AWS)
AMERICAN INSTITUTE OF STEBL CONSTRUCTION

DESIGN TABLES
Table 8-2 (continued) CJP
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
Double-bevel-groove weld (5)
Butt joint (B|
T-joint (T)
Comer joint (C)
A
Jj-R %
T,
t
Tolerances
As Detailed
(see 3.13.1)
R = ±0
f = +Vl6,-fl
AsRt-Up
(see 3.13.1)
±Vis
Welding
process
Joint
Designation
Base IVIetal Thickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Gas
Shielding
forFCAW
Notes
Welding
process
Joint
Designation
Ti
Root
Opening
Root Face
Goaove
Angle
Allowed
Welding
Positions
Gas
Shielding
forFCAW
Notes
SIVIAW
8-U5b
U
Spacer =
.VbxR .
U R = Vi f = 0toV8 a = 45° All —
3,4,5,
8,10
SIVIAW
TC-U5a
U
Spacer =
Vixfi
U
R = 1/4 f = 0toV8 a = 45° All
4,5,7,8,
10,11
SIVIAW
TC-U5a
U
Spacer =
Vixfi
U
f = 0toV8 a = 30° F,OH
-
4,5,7,8,
10,11
Doubie-bevel-groove weld
Butt joint (B)
\ '
BACKGOUGE
Welding
Process
Joint
Designation
Base IVIetal Thicl<ness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Gas
Shielding
forFCAW
Notes
Welding
Process
Joint
Designation
Base IVIetal Thicl<ness
(U = unlimited) Root
Opening
Root Face
Groove Angle
Tolerances
Allowed
Welding
Positions
Gas
Shielding
forFCAW
Notes
Welding
Process
Joint
Designation
Ti Tz
Root
Opening
Root Face
Groove Angle
As Detailed
(see 3.13.1)
As fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
forFCAW
Notes
SMAW B-U5a U —
R = OtoVB
f = OtoVs
a = 45°
(3 = 0'>tQl5''
+Vl6,-0
+Vl6,-0
+10°
-fVl6,-V8
Not limited
„+10°
All -
3,4,5,8,
10
GMAW
FCAW
B-U5-GF U -
R = 0toV8
f = 0toV8
a = 45°
(3 = 0° to 15°
+Vl6,-0
+Vl6,-0
a + p =
+ 10°,-0°
+Vl6,-V8
Not limited
a + P =
+ 10°,-5°
All
Not
Required
1,3,4,8,
10
Reprinted.from AWS D1.1 with permission from ttie American Weiding Society (AWS)
X,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-46
DESIGN CONSIDERATIONS FOR WELDS
CJP Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
ODuWe-bevel-gfdbve weld (5)
T-joint (T)
Comer joint (C)
/ ,
\ •
BACKC30UGE
Welding
Process
Joint
Designation
Base IVIetal Thickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
Base IVIetal Thickness
(U = unlimited) Root
Opening
Root face
Groove Angle
Tolerances
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
Ti tz
Root
Opening
Root face
Groove Angle
As Detailed
(see 3.13.1)
As Fit-Up
(see 3,13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
SMAW TC-U5b U U
R = OtoVs
f = 0toV8
a = 45°
+'/l6,-0
+Vi6,-<)
+10°,-0
+V16.-V8
Not limited
+10°,-6°
All -
1,5, r, 8,
10,11
GMAW
FCAW
TC-U5-GF U u
R = OtoVs
f = 0toV8
a = 45°
+'/l6,-0
+Vi6,-<)
+10°,-0
+V16.-V8
Not limited
+10°,-6°
All
Not
Required
1,4,7,8,
10,11
SAW TC-U5-S U u
fl = 0
f = V4max
a = 60°
±0
+0,-3/16
+10°,-0°
+V16, -0
+V16
+10°,-6°
F —
4,7,8,
10,11
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 8-47
Table 8-2 (continued) CJP
Prequalified Welded Joints
Complete^Joint-Penetration Groove Welds
Single-U-groove weld (6)
Butt joint (B)
Comer joint (C)
Toietances
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13,1)
R = +VI6,-0 +Vl6,-V8
a = +10°,-0° +10°,-5°
f = ±Vl6 Not Limited
r = +V9,-0
Welding
Process
Joint
Designation
Base IMetal Thicl^ness
(U = unlitnited)
Groove Preparation
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
Ti T2
Root
Opening
Groove
Angle
Root
Face
Bevel
Radius
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
SIMAW
B-U6 U u
R = 0toV8 a = 45» f = V8 r = V4 All - 4,5,10
SIMAW
B-U6 U u
R = Oto V» a = 20° f=V6 r = V4 F,OH - 4,5,10
SIMAW
C-U6 U u
R = Otn Vs 0 = 45° f = V8 r = V< All - 4,5,7,10
SIMAW
C-U6 U u
R = 0toV8 0 = 20° f=V8 r = V4 F,OH - 4,5, 7,10
•GMAW
FCAW
B-U6-GF U u R = 0 to Ve a = 20° f = V8 r = V4 All Not req. 1,4,10
•GMAW
FCAW
C-U6-GF u u R = Oto Vs 0 = 20° f = V8 r=V4 All Not req. 1,4, 7,10
Reprinted from AWS D1.1 with permission from Uie American-Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
(

8-48 DESIGN CONSIDERATIONS FOR WELDS
Table 8-2 (continued) CJP
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
Tolerances
As Detailed As Rt-Up
(see 3.13.1) (see 3.13.1)
ForB-U7and B-U7-GF
R = +VI6,-0 . Vi6,-Va
a = +10°,-0° +10°,-5°
f = ±Vl6, -0 Not Limited
r = +V4,-0 ±Vl6
For B-U7-S
R = ±0 +Vl6, -0
f = +0, +V4 ±Vl6
Double-Urgraove weld (7)
Butt joint (B)
BACKGOUGE
Welding
Process
Joint
Designation
Base Metal Thickness
(U i unlimited)
Groove Preparation
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
Ti T2
Root
Opening
Groove
Angle
Root
Face
Bevel
Radius
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
SMAW B-U7 U -
R = 0toV8 a = 45° f = V8 r = V4 All -
4,5,
8,10
SMAW B-U7 U -
R = 0toV8 a = 20° f = Vs r = V4 F,OH -
4,5,
8,10
GMAW
FCAW
B-U7-GF U - R = Oto Vs 0 = 20° f = V8 r = V4 All Not req.
1,4,
10,8
SAW B-U7-S U - R = 0 a = 20°
f=V4
max
r=V4 F
- ' 4,8,10
Reprinted from AWS D1.1 with permission from the American Welding Society (AW5)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-49
Table 8-2 (continued) CJP
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
Single-J-groove weld (
Butt joint (B)
BACKQOUGE
Tolerances
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
B-U8 and B-U8-GF
R = +VI6,-0 +Vl6,-V8
a = +10°,-0'' +10°,-5°
f=+1/8,-0 Not Limited
r = +V<,-0 ±Vl6
B-U8-S
R = ±0 +V4,-0
a = +10°,-0° +10°,-5°
f = +0,-Vs ±Vl6
r = +V4, -0 ±1/16
Welding
Process
Joint
Designation
Base H/letal Ttiickness
(U = unlimited)
Groove Preparation
Root
Opening
Groove
Angle
Root
Face
Bevel
Radius
Allowed
Welding
Positions
Shielding
for FCAW
Notes
SMAW B-U8 R = 0 to Vb a = 45° f=V8 All
3, 4,
5,10
GMAW
FCAW
B-U8-GF R = 0 to Ve a = 30° f=V8 r = 3/8 All Not req.
1,3,
4,10
SAW B-U8-S R = 0
a = 45°
f=V4
max
r = 3/8 3,4,10
Reprinted from AW5 D1.1 with permission from tiie American Welding Society (AW5)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

S-50 DESIGN CONSIDERATIONS FOR WELDS
Table 8-2 (continued) CJP
Prequaiified Welded Joints
Complete-Joint-Penetration Groove Welds
Singte-J-grQpre weld (8)
T-ioint(T).
Corner joint (C)
• -'lO ,
JL I'
BACKGouae
Tp
Tolerances
As Detailed As Fit-Up
(see 3.13.1) (see 3.13.1)
TC-U8aandTC-U8a-GF
R = +Vl6,-fl Vi6,-Ve
a = +10°,-0° +10°,-5°
f=+Vl6,-0 Not Limited
±Vl6
TC-U8a-S
R = ±0 +V4,-0
+10°,-s°
f = +0,-Vs ±Vl6
r =+1/4,-0 ±Vl6
Welding
Process
Joiiit
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joiiit
Designation
h
' Root
Opening
Groove
Angle
Root
Face
Bevel
Radius
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
SMAW TC-U8a U u
R = 0 to Vs a = 45° f = V8 r = '/8 All -
4,5,7,
10,11
SMAW TC-U8a U u
R = 0 to Vs a = 30° f = V8 r = V8 F,OH -
4,5,7,
10,11
GMAW
TC-U8a-GF U u R = 0 to Vs a = 30° f = Ve r = % All Not req.
1,4,7,
10,11
SAW TC-U8a-S u u R = 0
a = 45°
f = V4
max
r = 3/5 F -
4,7,
10,11
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CoNSTRUcnoN

DESIGN TABLES 8-51
Table 8-2 (continued) CJP
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
Oouble-J-groove weld (
Butt joint (B)
Tolerances
As Detailed As Fit-Up
(see 3.13.1) (see 3.13.1)
R = +Vi6, -0 +Vis,-VB
a = +10'',-0° +10°,-5°
f=+Vl6,-0 Not Limited
r = +Vs,-0 ±Vis
< BACKGOUQE
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Root
Opening
Groove
Angle
Root
Face
Bevel
Radius
Allowed
Welding
Positions
Gas
Shielding
forFCAW
Notes
SMAW B-U9 R = Otoi a = 45° f = Vb r = % All
3,4,5,
8,10
GMAW
FCAW
B-U9-GF R = 0 to Va a = 30° f = V8 All Not req.
1,3,4,
8,10
Double-J-groove weld (9)
T-jointm
Comer joint (C)
lAOKGOUGE
Tolerances
As Detailed As Fit-Up
(see 3.13.1) (see 3,13.1)
R = +VI6,-0 +Vl6,-'/8
a = +10°,-0° +10°,-5°
f = +Vl6, -fl Not Limited
r = Ve, -0 ±Vl6
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Welding
Process
Joint
Designation
Ti h
Root
Opening
Groove
Angle
Root
Face
Bevel
Radius
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
SMAW TC-U9a U U
R = Oto VB a = 45° f=Va r = 3/8 All -
4,5,7,8,
10,11
SMAW TC-U9a U U
R = 0 to Vs a =30° f = V8 r = 3/8 F,OH -
4,5,7,
8,11
GMAW
FCAW
TC-U9a-GF U u R = 0 to Ve oc = 30° f = V8 r = 3/8 All Not req.
1,4,7, 8,
10,11
Reprinted from AWS D1.1 with permission from tlie American Weldi ng Society (AWS)
AMERICAN INSTITUTE OF STEEL GONSTRUCTION

8-52 DESIGN CONSIDERATIONS FOR WELDS
Table 8-2 {continued)
Prequalified Welded Joints
PJP
Partial-Joint-Penetration Groove Welds
Square-groove weld (1)
Butt joint (B)
i - ,
, . 3T REINFORCEMENT 1/32 TO 1/8
_J NO TOLERANCE
Base Metal Thickness Groove Preparation
Ailov^ed
Welding
Positions
Welding Joint
(U = unlimited) Tolerances
Ailov^ed
Welding
Positions
Weld Size
MnfdC
Process Designation
T, T2
Root
Opening
As Detailed
(see 3.12.3)
As Fit-Up
(see 3,12.3)
Ailov^ed
Welding
Positions
(E)
nuies
B-Pla • , VS - R = Oto Vf6 -1-V16, -0 ±Vl6 All T, -V32 2,5
SMAW
B-PIc V4MAX -
T,
R = min +Vl6,-<) ±Vl6 All
T,
2
2,5
Square-groove weld (1)
Butt joint (B)
m
(Et) R
El +E2 must not exceed 3Ti
Base Metal Ttiicl<ness Groove Preparation
Allowed
Welding
Positions
Total Weld
Size
(El + Ea)
Welding Joint
(U = unlimited) Tolerances
Allowed
Welding
Positions
Total Weld
Size
(El + Ea)
Notes
Process Designation
T, T2
Root
Opening
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total Weld
Size
(El + Ea)
Notes
SMAW B-P1b V4max —
T,
-l-Vt6,-0 ±Vl6 Ail
3Ti
4
6
Reprinted from AWS OT .1 with permission from the American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-53
PJP Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
Singte-V-groove weld (2)
Butt Joint (B)
Corner joint (C)
Welding
Process
Joint
Designation
Base Metal Thickness
(U unlimited)
Groove Preparation
Allowed
Welding
Positions
Weld Size
(E)
Notes
Welding
Process
Joint
Designation
Base Metal Thickness
(U unlimited)
Root Opening
Root Face
Groove Angle
Tolerances
Allowed
Welding
Positions
Weld Size
(E)
Notes
Welding
Process
Joint
Designation
T, Tz
Root Opening
Root Face
Groove Angle
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Weld Size
(E)
Notes
SMAW 8C-P2 V< min U
R = 0
f = V32min
a = 60°
-0,+Vl6
+10°,-0°
±Vl6
+ 10°,-5°
All S
2,5,6,
10
GMAW
FCAW
BC-P2-GF 1/4 min U
R = 0
f= Vsmin
a = 80°
-0,+Vl6
+10°,-0°
+V8,-Vl6
±V16
+ 10°,-5°
All S
1,2,6,
10
R=:0 iO +Vi«,-0
SAW BC-P2-S '/i6 min U f = i/4 min ±Vl6 F S 2,6,10
a = 60° +10°,-0° + 10°,-5°
Reprinted from AWS 01.1 with permission from ttie American Weiding Society {AWS)
N,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-54 DESIGN CONSIDERATIONS FOR WELDS
PJP Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
Double-V-grpove weld (3)
Butt joint (B)
Welding
Process
Joint
Designation
Base IVIetal Thickness
(U = un/imitedj
Groove Preparation
Allowed
Welding
Positions
Total
Weld Size
(Ei+E2)
Notes
Welding
Process
Joint
Designation
Base IVIetal Thickness
(U = un/imitedj Root
Opening
Root Face
Groove Angle
Tolerances
Allowed
Welding
Positions
Total
Weld Size
(Ei+E2)
Notes
Welding
Process
Joint
Designation
Ti h
Root
Opening
Root Face
Groove Angle
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(Ei+E2)
Notes
SMAW B-P3 Vz min
R = 0
t = 1/8 min
a = 60°
+Vl6,-0
+U,-0
+10°,-0°
+V«,-V)«
±Vl6
+ 10°,-5°
All Si + S2
5,6,9,
10
GMAW
mw
B-P3-GF , V2 min -
R = 0
f=:V8min
a = 60°
+Vr6, -0
+U,-0
+10°,-0°
+V«, -V16
±Vl6
+ 10°,-5°
All Si +S2
1,6,9,
10
SAW B-P3-S min -
R = 0
f = 1/4 min
a = 60°
±0
+U,-0
+10°,-0°
+V)6,-0
sVw
+ 10°,-5°
F Si + S2 6,9,10
. Reprinted fratn AWS D1.1 with permission from ttie American Weiding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-55
PJP Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
Single-bevel-groove weld (4)
Butt joint (B)
T-joint (T)
Comer joint (C)
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Total
Weld Size
(E)
Notes
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited) Root
Opening
Root Face
Groove Angle
Tolerances
Allowed
Welding
Positions
Total
Weld Size
(E)
Notes
Welding
Process
Joint
Designation
T, h
Root
Opening
Root Face
Groove Angle
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(E)
Notes
SMAW BTC-P4 U U
R = 0
f = Vsmin
a = 45°
+Vl6,-0
-i-a-o
+V8, -V16
±Vl6
+ 10°,-5°
All &-V8
2,5,6,
7,10,11
GMAW
FCAW
BTC-P4-GF V4 min U
R = 0
f = Vemin
a = 45°
+Vl6,-0
+10°,-0°
+'/8,-Vl6
±Vl6
+ 10°,-5°
F.H S
1,2,6,
7,10,11
GMAW
FCAW
BTC-P4-GF V4 min U
R = 0
f = Vemin
a = 45°
+Vl6,-0
+10°,-0°
+'/8,-Vl6
±Vl6
+ 10°,-5°
V,OH &-V8
1,2,6,
7,10,11
SAW TC-P4-S Vk min u
R = 0
f = V4min
a = 60°
±0
+U,-0
+10°,
+Vl6,-0
±Vl6
+ 10°,-5°
F s
2,6,7,
10,11
(
Reprinted from AWS D1.1 with permission frDm the American Welding Society (AWS)

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

8-56 DESIGN CONSIDERATIONS FOR WELDS
PJP Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
Double-beyel-groove weld (5)
Butt joint (B)
T-joint g)
Comer Joint (C)
S2{E2j
vyelding
Process
Joint '
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Total
Weld Size
(E1+E2)
Notes
vyelding
Process
Joint '
Designation
Base Metal Thickness
(U = unlimited) Root
Opening
Root Face
Groove Angle
Tolerances
Allowed
Welding
Positions
Total
Weld Size
(E1+E2)
Notes
vyelding
Process
Joint '
Designation
Ti h
Root
Opening
Root Face
Groove Angle
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(E1+E2)
Notes
SMAW BTC-P5 Vie min U
R = 0
t = Vs min
a = 45°
+Vl6,-0
+U,-0
+10°,-0°
+V8,-Vl6
±Vl6
+ 10°,-5°
All
Si +Sz
-V,
5.6,7,
9,10,11
GIViAW
FCAW
BTC-P5-GF V2 mill U
R = 0
1 = Ve min
a = 45°
+Vl6,-0
+U,-0
+10°,-0°
+V8,-Vl6
±Vl6
+ 10°,-5°
F,H Si +S2
1,6, 7,9,
10,11
GIViAW
FCAW
BTC-P5-GF V2 mill U
R = 0
1 = Ve min
a = 45°
+Vl6,-0
+U,-0
+10°,-0°
+V8,-Vl6
±Vl6
+ 10°,-5°
V,OH
Si +S2
-V,
1,6, 7,9,
10,11
SAW TC-P5-S min U
R = 0
t = V4 min
a = 60°
±0
+U,-0
+10°,-0°
+Vl6,-0
±V,6
+ 10°,-5°
F Si +S2
6, 7, 9,
10,11
Reprinted from AWS D1.1 with permission from tlie American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-57
PJP Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
Single-U-groove weld (6)
Butt joint (B)
Comer joint (C)
Base Metal Thlcl<ness Groove Preparation
Allowed
Welding
Positions
Total
Weld Size
(E)
Weiding Joint
(U = unlimited) Root Opening
Root Face
Bevel Radius
Groove Angle
Tolerances
Allowed
Welding
Positions
Total
Weld Size
(E)
Notes
Process Designation
T, T2
Root Opening
Root Face
Bevel Radius
Groove Angle
As Detailed
(see 3,12,3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(E)
Notes
R = 0 +V8,-'/l6
SMAW BC~P6 'A tnin U
f = Vszmin
r = V4
a = 45°
+U,-0
+)/4,-0
+10°,-0°
±Vl6
±Vl6
+ 10°,-5°
All S
2,5,6,
10
R = 0 +Vl6,-0 +Vs, -Vk
GMAW
FCAW
BC-P6-GF V4 min U
t sVsmin
r = V4
a =20°
+V4,-0
+10°,-0°
±Vl6
±Vt6
+ 10°,-5°
All S
1,2,6,
10
R = 0 ±0 +Vl6, -0°
SAW fiC-P6-S '/wmin U
f = V4min
r=V4
a = 20°
+U,-0
+V4,-0
+10°,-0°
±V|6
±Vl6
+ 10°,-5°
F S 2,6,10
Reprinted from AWS D1.1 with petrnission from ttie American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-58 DESIGN CONSIDERATIONS FOR WELDS
PJP Table 8-2 (continued)
Prequalified Weided Joints
Partial-Joint-Penetration Groove Welds
Double-U-groove weld (7)
Butt joint (B)
Welding
Process
Joint
Designation
Base Metal Thicl<ness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Total
Weld Size
(El + E2)
Notes
Welding
Process
Joint
Designation
Base Metal Thicl<ness
(U = unlimited) Root Opening
Root Face
Bevel Radius
Grwve Angle
Tolerances
Allowed
Welding
Positions
Total
Weld Size
(El + E2)
Notes
Welding
Process
Joint
Designation
T, h
Root Opening
Root Face
Bevel Radius
Grwve Angle
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(El + E2)
Notes
SMAW B-P7 V2 min
R = 0
f = Vamin
r = V4
a = 45°
+Vl6,-0
+U,-0
+V4,-0
+10°,-0°
+Va,-Vi6
±Vl6
±Vl6
+ 10°,-5°
All S, + S2
5,6,9,
10
GMAW
FCAW
B-P7-GF Vz min
R = 0
f = Vamin
r = V4
a = 20°
+Vl6,-0
+U,-0
+V4,-0
+Ve,-VM
±Vl6
±Vl6
+ 10°,-5°
All S1+S2
1.6,9,
10
R = 0 ±0 +Vl6,-0°
f = 1/4 min ±Vl6
Si +S2 e,9,io
SAW B-P7-S V4 min

r = V4 iVl6
F Si +S2 e,9,io
SAW B-P7-S
r = V4 +V4,-0 iVl6
a = 20° +10°, -0° + 10°,-5°
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 8-59
PJP Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
Singie-J-groove weld (8)
Butt joint (B)
T-joint (7)
Comer joint (C)
•ooc = Outside comer graove angle.
**aic = Inside corner groove angle.
INSIDE
CORI\LER
Base Metal Tliickness Groove Preparation
Allowed
Welding
Positions
Total Weld
Size
(E)
Welding Joint
(U = unlimited) Root Opening
Root Face
Bevel Radius
GrooveAngie
Tolerances
Allowed
Welding
Positions
Total Weld
Size
(E)
Notes
Process Designation
T, T2
Root Opening
Root Face
Bevel Radius
GrooveAngie
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total Weld
Size
(E)
Notes
R = 0 +V8,-Vl6
B-P8 V4 min U
f s= Vs min
r = 3/8
a = 30°
+V4,-0
±Vl6
±Vl6
+10°,-5°
All S
5,6, 7,
10,11
sum R = 0 +V6, -V16
TC-PB V4 min U
f= Vsmin
r = %
+U,-0
+V4,-0
±Vl6
±Vl6 All S
5, 6, 7,
10,11
Ooc = 30" +10°,-0° +10°,-5°
5, 6, 7,
10,11
Oic = +10°,-5°
R = 0 +Va,-Vi6
B-P8-GF V4 min u
f = Vsmin
r = 3/s
+U,-0
+V4,-0
±Vl6
^ All S
1,6, 7,
10,11
GMAW
FCAW
a = 30° +10°,-0° +10°,-5°
GMAW
FCAW
R = 0
f = Vs min
+Vl6,-0
+U-0
+V8,-Vl8
sVl6
1,6, 7,
10,11
TC-P8-GF 1/4 min u r = 3/8
Ooc = 30°*
tti, = 45°"
+10°,-fl°
+10°,-fl°
j'/is
+10°,-5°
+10°,-5°
All S
1,6, 7,
10,11
R = 0 ±0 +V16, -0
B-PB-S Viemin u
f = 'Amin
r = V2
a = 20°
+U,-0
+V4,-0
+10°,-0°
±Vl6
±Vl6
+10°,-5°
F S
6,7,
10,11
SAW R = 0 ±0 +Vl6,-0
f = V4 min ±V16
6, 7,
10,11
TC-P8-S Vn min u r = '/2
Otoe = 20°'
010 = 45°"
+10°,
+10°,-0°
±Vl6
+10°, -5°
+10°,-5°
F S
6, 7,
10,11
i
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-60 DESIGN CONSIDERATIONS FOR WELDS
Table 8-2 (continued)
Prequalified Welded Joints
PJP
Partial-Joint-Penetration Groove Welds
Double-J-groove weld (9) 1 N
F %
Butt joint (B) ]
T-joint (T)
82(62) >
Corner joint (C)
S,(E,)
'Ooc = Outside comer groove angle.
""Oic == Inside comer groove angle.
Base Metal Thickness . . Groove Preparation
Allowed
Welding
Positions
Total Weld
Size
(El + E2)
Welding Joint
(U = unlimited) Root Opening
Root Face
Bevel Radius
Groove Angle
; Tolerances
Allowed
Welding
Positions
Total Weld
Size
(El + E2)
Notes
Process Designation
Ti • Tz
Root Opening
Root Face
Bevel Radius
Groove Angle
As Detailed
(see 3,12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total Weld
Size
(El + E2)
Notes
R = 0 +Vl6,-0 +Ve,-Vi6
5,6,7,
9,10,
11
B-P9 V2 min U
f = Vs min
r = %
+U,-0 ±V,6
±Vl6
All S,+S2
5,6,7,
9,10,
11
a = 30° +10°,-0° +10°,-5°
5,6,7,
9,10,
11
SMAW R = 0
f = Ve min
+V16, -0
+U,-0
+Ve,-Vi6
±Vl6 5, 6,7,
TC-P9 ' Vz min U • ,r = 3/e
a,,: = 30"
otic = 45®**
+V4, -0
+10°,-0°
+10°,-0°
±Vl6
+10°,-5°
+10°,-5°
All Si +S2 9,10,
11
R = 0 +Vl6,-0 +V8,-Vl6
1,6,7,
9,10,
11
B-P9-GF V2 min U
f = Ve min
i = %
+U,-0
+V4, -0
±Vl6
±Vl6
All Si+$2
1,6,7,
9,10,
11
GMAW
FCAW
a = 30° +10°,-0° .+10°,-5°
1,6,7,
9,10,
11
GMAW
FCAW
R = 0
f = Ve min
±0
+U,-0
+Vis,-0
±Vl6 1,6,7,
TC-P9-GF V2 min U r = %
ooc = 30"
(Xic = 45"*
+V4,-0
+10°,-0°
+10°.-0°
±Vl6
+10°,-5°
+10°,-5°
All S1+S2 9,10,
11
R = 0 ±0 +Vl6,-0
B-P9-S '/4 min U
f = Vflmin
r = V2
a = 20°
+U,-0
+V4,-0
+10°,-0°
±Vl6
+V16
+10°,-5°
F S, +$2
6, 7, 9,
10,11
SAW R = 0 ±0 +Vie,-0
TC-P9-S min U
f = V-i min
r = Vz
+U,-0
+V4, -0
±Vl6
±Vl6 F -Si +S2
6,7,9,
10,11
aoc = 20" +10°,-0° +10°,-5°
6,7,9,
10,11
Oic = 45°** +10°,-0° +10°,-5°
Reprinted from AWS D1J with permission from the American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 8-61
Table 8-2 (continued)
Prequalified Welded Joints
Flare-Bevel Groove Welds
FLARE
Hare-bevel-groove weld (10)
Butt joint (B)
T-iointO)
Comer joint (C)
TT
I-
f
V
R
T
LJ
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Groove Preparation
Allowed
Welding
Positions
Total
Weld Size
(E)
Notes
Welding
Process
Joint
Designation
Base Metal Thickness
(U = unlimited)
Root Opening
Root Face
Bend Radius*
Tolerances
Allowed
Welding
Positions
Total
Weld Size
(E)
Notes
Welding
Process
Joint
Designation
T, T2 T3
Root Opening
Root Face
Bend Radius*
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(E)
Notes
SMAW
FCAW-S
BTC-P10
3/16
min
U
T,
min
R = 0
( = 3/i6niin
3Ti
C = — min
2
+Vie,-0
+U,-0
+11,-0
+1/8,-Vl6
+U,-'/l6
+U,-Q
All
5Ti
8
5, 7,10,
12
GMAW.
FCAW-G
BTC-P10-GF
3/16
min
U
T,
rain
R = 0
f = 3/i6 min
3Ti
C = — min
2
+Vl6,-0
+U,-0
+U,-0
+V8,-Vl6
+U,-'/l6
+U,-0
All
5T,
4
1,7,10,
12
SAW B-P10-S
min
N/A
'/2
min
R = 0
f=V2min
3T,
C = — min
2
±0
+U,-0
+U,-0
+Vl6, -0"
+U,-Vl6
F
5T,
8
7,10,12
' Rir cold formed {A500} rectangular tubes, C dimension is not iimited. See the following:
Effective Weld Siie of Flare-Bevei-Groove Welded joints. Tests have been performed on cold formed ASTM A 500 material exhibiting a "C" dimeosion as small as Tf with a
nominal radius of 2t. As the radius increases, the "C" dimension also increases. The comer curvature may not be a quadrant of a circle tangent to tfw sides. The comer
dlmerision, "C," mtf be less ttian the radius of tfie ctjmer.
Reprinted from AWS D1,1 with permission from the American Weldirtg Society (AWS)
AMBRICATJ INSTITUTE OF STEEL CONSTRUCTION

8-62 DESIGN CONSIDERATIONS FOR WELDS
TUBE
Table 8-2 (continued)
Prequaiified Welded Joints
PJP T-, Y- and K-Tubular Connections
TOE ZONE
-SIDE ZONE
(A) CIRCULAR CONNECTION
- MITER CUT FOR
« < 60°
HEEL ZONE
CORNER
THANSITION
t i f
HEEL
1
, K BEVEL—
SIDE
(B) STEPPED BOX CONNECTION
TOE ZONE
PUN SECTION
HEEL ZONE
V \ '"miter CUT
\ BRANCH END
^ ADDITIONAL BEVEL-^
(C) MATCHED BOX CONNECTION
^ Reprinted from AWS D1.1 with pemilssion from the American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-63
TUBE
Table 8-2 (continued)
Prequalified Welded Joints
PJP T-, Y- and K-Tubular Connections
/
1
1.51 MIN
45° MIN
THIS LINE
TANGENT
ATW.P.
TRANSITION A TRANSITION B
•F = TS'-eo"
TRANSITION OR HEEL
SKETCH FOR ANGULAR
DEFINITION
90° > > 30°
, Reprinted from AWS D1.1 with permission from the Atnerican Welding Society (AVJS)
X,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-64 DESIGN CONSIDERATIONS FOR WELDS
TUBE
Table 8-2 (continued)
Prequalified Welded Joints
PJP T", Y- and K-Tubular Connections
— 1.5tMIN »-1.5tMIN I.StMIN-^
A.
60" MIN '
A
45° MIN
TOE
f^lOS'-gO"
TOE OR HEEL
•f = 90°-?S'
SIDE OR HEEL
CORNER DIMENSION
C ^ lb + 1/6 in. (3 mm)
AND r i 21^ OB ROOT
OPENING s 1/16 in. C2 mm]
OR SEE 3.12.4.1
RADIUS
1.5 tb MIN OR AS
REQUIRED TO FLUSH
OUT (WHICHEVER
IS LESS)
1-VJ
TOE CORNER SIDE MATCHED
General Notes;
• t-ttitchness of Ihinnef section.
' Bevel to feather edge except in transition and heel zones.
• Rootopening;0to3/16tn,[5mm3.
• Not prequalified for under 30".
' Weld 3)2® teflective thrxigt) t^ 2: t; Z Loss Dimensaons shown in Table 2.8.
• Calculations per 2.24.1,3 stiall be done for leg length less than 1.5t, as shown.
• For Box Section, joint preparation Ibr corner transitions shall provide a smooth transition from one detail to another. Welding shall be
carried continuously around corners, with comere fully built up and all weld starts and stops within flat feces.
• See Anne* B(ardefinilionot local dihedral angle, H".
• W.P. = work point.
Reprinted from AWS D1.1 wHh permission from the American Welding Society (AWS)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-65
Table 8-3
Electrode Strength Coefficient, Ci
Electrode fm(Ksi)
E60 60 0.857
E70 70 1.00
E80 80 1.03
E90 90 1.16
El 00 100 1.21
E110 110 1,34
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-66 DESIGN CONSIDERATIONS FOR WELDS
Table 8-4
Coefficients, G,
for Eccentrically Loaded Weld Groups
Angle = 0"
Available strength of a weld group, <|)/?„ or RJSl, Is determined with
R„^CC^DI ((!i = 075, 0 = 2,00)
LRFD ASO
i/CxDl
p„
i/CCil
Pu
(|)CCiD
^min ~
qPg
C,Dl
„ _ QPa , _ O.Pa
'^min ~ ^^ , hnin '
CQl CCxD
where
P = required force, P„ or Pa, kips
0 = number of sixteenths-of-an-inch in the fillet weld size
1 = characteristic length of weld group, in.
a = ey/l
ex = horizontal component of eccentricily of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
C) = electrode strength coefficient from Table 8-3
(1.0torE70XX electrodes)
Special Case
(Load not in plane
of weld gnoup)
UseC-va(uesforiif=0
•Any equal (HslatKes
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 3.71 3.71. 3.71 3,71 3,71 3,71 3.71 3.71 3.71. 3.71- 3.71 3,71 3.71 3.71 3.71 3.71
0.10 3.72 3.72 3.72 3,71 3,70 3,69 3.67 3,65 3.63 3.61 3.59 3,55 3,52 3.48 3.44 3.43
0.15 3.67 3.66 3.65 3,64 3.62 3,60 3.58 3,56 3.54 3.52 3.50 3,46 3,43 3.39 3.36 3.33
0.20 3.51 3.51 3.50 3,49 3.47 3.46 3,44 3,42 3.41 3.39 3.38 3,35 3,32 3.30 3.27 3.25
0.25 3.31 3.31 3,31 3,30 3.29 3,28 3,28 3,27 3,26 3.25 3.25 3,23 3,21 3.20 3.18 3.16
0.30 3.09 3.09 3,10 3,10 3.10 3,10 3.11 3,11 3,11 3.11 3.11 3,11 3,10 3.09 3.08 3.07
0.40 2.66 2.67 2.68 2.70 2.73 2,75 2.77 2,80 2,81 2.83 2.84 2,87 2,88 2.89 2.90 2.90
0.50 2.30 2.30 2,32 2.36 2,40 2,44 2,48 2,52 2,55 2.58 2.60 2,65 2.68 2.70 2.72 2.73
0.60 2.00 2.00 2.03 2.07 2,12 2,18 2,23 2,28 2,32 2.36 2.39 2,45 2.49 2.53 2.56 2.58
0.70 1.76 1.77 1.79 1.84 1.90 1,96 2,02 2,07 2,12 2.16 2.20 2,27 2.33 2.38 2.41 2.45
0.80 1.57 1.57 1.60 1.65 1.71 1,78 1,84 1.90 1.95 2.00 2.04 2,12 2.18 2.24 2.28 2.32
0.90 1.41 1.42 1.45 1.50 1.56 1,62 1.69 1.75 1.80 1.85 1.90 1,98 2.05 2.11 2.16 2.20
1.0 1.28 1.29 1.32 1.37 1.43 1,49 1.56 1.62 1.67 1.72 1.77 1,86 1.93 2.00 2.05 2.10
1.2 1.08 1.08 1.12 1.16 1.22 1,28 1,35 1.41 1.46 1.51 1.56 1,65 1,73 1.80 1.86 1.91
1.4 0.928 0.936 0.966 1,01 1.07 1.13 1,19 1.24 1.30 1.35 1.40 1,49 1,57 1.64 1.70 1.75
1.6 0.815 0.823 0.852 0,894 0.945 1.00 1,06 1.11 1.16 1.21 1.26 1,35 1,43 1.50 1.56 1.62
1.8 0.727 0.734 0.761 0,800 0.848 0.899 0,953 1.00 1,05 1,10 1.15 1,24 1,31 1.38 1.45 1.50
2.0 0.655 0.663 0.688 0.724 0.768 0.817 0,867 0,916 0,964 1,01 1.06 1,14 1,22 1.28 1.35 1.40
2.2 0.597 0.604 0.627 0.661 0.702 0.747 0.794 0.841 0.887 0.931 0.975 1.06 1.13 1.20 1.26 1,31
2.4 0.547 0.554 0.576 0.608 0,646 0.689 0,733 0,777 0.821 0.864 0.905 0.983 1.06 1.12 1.18 1,24
2.6 0.506 0.512 0,533 0.562 0,598 0.638 0.680 0,722 0.764 0.805 0.845 0.920 0.990 1.05 1.11 1.17
2.8 0.470 0.476 0.495 0,523 0.557 0.595 0.634 0.674 0.714 0.753 0.791 0,864 0.932 0.994 1.05 1,10
3.0 0.439 0.445 0,463 0,489 0.521 0.557 0.594 0,632 0.670 0.708 0.745 0,815 0.880 0.940 0.996 1,05
Stiaded values indicate ttie value is based on ttie greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CoNsraucnoN
•V

DESIGN TABLES 8-67
Table 8-4 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
Available strength of a weld group, or /?„/n, Is determined with
R„=CCiDI (<|) = 0.75, fi = 2.00)
LRFD
Cinin —
Pu
<!fCiDl
Dniin
<|)CC|/
linin —
<|)CCiD
ASD
QP, _ ClPa
i^m in ~
C\Dl CCxl
hiiin —
CClD
Where
P = required force, or Pg, l^ips
D = number of sixteenths-of-an-incli in the fillet weld size
I = characteristic length of weld group, in.
a = ey/
horizontal component of eccentricity of P
with respect to centrold of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 3-3
(1.0 for E70XX electrodes)
Special Case
(Load not ir plane
of weld group)
Use C-values for = 0
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 3.96 3.96 3.96 3,96 S.96 3.96 3.'96 3.86 3.96 3.96' 3,96 3,96 3,96 3.96 3.96 3.96
0.10 3.79 3.79 3.78 3.78 3.77 3.76 3.75 3.74 3.73 3.72 3.71 3,69 3.67 3.65 3.64 3.62
0.15 3.68 3.68 3.67 3.66 3.65 3.64 3.63 3.62 3.61 3.61 3,60 3.58 3.57 3.55 3.54 3.53
0.20 3.51 3.51 3.51 3.50 3.50 3.49 3.49 . 3.48 3.48 3.47 3,47 3.46 3.46 3.45 3.44 3.43
0.25 3.31 3.31 3.31 3.31 3.31 3.32 3.32 3.32 3.33 3.33 3,33 3,34 3.34 3,34 3.34 3.34
0.30 3.09 3.09 3.10 3.11 3.13 3.14 3.15 3.16 3.17 : 3.18 3.19 3.21 3.22 3.23 3.24 3.24
0.40 2.68 2.68 2.69 2.72 2.75 2.79 2,82 2.85 2.88 2.90 2.93 2.96 3.00 3,02 3.04 3.06
0.50 2.32 2.32 2.35 2.38 2.43 2.48 2.53 2.57 2.61 2.65 2.68 2.74 2.79 2.83 2.86 2.89
0.60 2.03 2.03 2.06 2.10 2.16 2.22 2,27 2.33 2.38 2.42 2.46 2.54 2.60 2.65 2.69 2.72
0.70 1.79 1.80 1.82 1.87 1.93 2.00 2.06 2.12 2.18 2,23 2.27 2.36 2,42 2.48 2.53 2.58
0.80 1.60 1.60 !.63 1.68 1.75 1.81 1.88 1.94 2.00 2.06 2.11 2.20 2,27 2.34 2.39 2.44
0.90 1.44 1.45 1.48 1.53 1.59 1.66 1.73 1,79 1.85 1,91 1,96 2,05 2,14 2.21 2.27 2.32
1.0 1.31 1.32 1.35 1.40 1.46 1.53 1.60 1.66 1.72 1.78 1,83 1.93 2,01 2.09 2.15 2.21
1.2 1.10 , 1.11 1.14 1.19 1.25 1.32 1.38 1,45 1.51 1,56 1,62 1.72 1,80 1.88 1.95 2.01
T.4 0.954 0.961 0.993 1.04 1.10 1.16 1.22 1,28 1.34 1,39 1,45 1.54 1,63 1.71 1.78 1.84
1.6 0.839 0.847 0.876 0.919 0.972 1.03 1.09 1,15 1.20 1,25 1.31 1,40 1,49 1.57 1.64 1.70
.1.8 0.748 0.756 0.783 0.824 0.872 0.926 0.981 1,04 T.09 1,14 1,19 1,28 1.37 1.45 1.52 1.58
2.0 0.675 0.683 0.708 0.746 0.791 0,841 0.893 0,945 0.995 1,04 1,09 1,18 1,26 1.34 1.41 1.47
2.2 0.615 0.622 0.646 0,681 0.723 0.770 0.819 0.868 0.916 0,963 1.01 1,10 1.18 1.25 1.32 1,38
2.4 0.565 0.572 0.594 0.626 0.666 0.710 0.756 0,802 0.848 0,893 0.937 1,02 1,10 1.17 1.24 1.30
"2.6 0.522 0.529 0.550 0.580 0.617 0.658 0.702 0.746 0.789 0,832 0,874 0,954 1,03 1.10 1.16 1,22
2.8 0.485 0.491 0.511 0.540 0.575 0.614 0.655 0.697 0.738 0,779 0.819 0,896 0.969 1.04 1.10 1.16
13.0 0,453 0.459 0.478 0.505 0.538 0.574 0.614 0.653 0.693 0.732 0.771 0,845 0.915 0.980 1.04 1,10
Shaded values indicate Uie value is based on the greatest available strengtti permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
(
i
AMERICAN iNstrruTE OF STEEL CONSTRUCTION

8-68 DESIGN CONSIDERATIONS FOR WELDS
Table 8-4 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
Available strength of a weld group, or RnlCl, is determined witii
R„=CCiDI {1^^0.75, a = 2.00)
LRFD ASD
^min ~
Pu
ifCiDl ())CC,/ <))CC,D
Cmin —
dPg
CxDl
t^min —
cc,/
aPa
CC,£)
where
P = required force, P„ or Pj, l<ips
D - number of sixteenths-of-an-inch in the fillet weld size
I = ciiaracteristic lengtii of weld group, in.
a = e,//
Bx = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C - coefficient tabulated below
ft = electrode strength coefficient from Table 8-3
(1,0 for E70XX electrodes)
U-£U
(Load not in plane
of wdid group)
UseC-valuesfor/c=o
d
k
d
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00- 4.37 4,37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 ~ 4 3/ 4.37 n; 4:37 4,37
0,10 4;05 4.05 4.05 4.05 4.06 4.06 4.07 4.08 4,08 4.08 4.08 4.08 4.08 4.08 4,07 4,06
0,15 3.83 3.83 3.83 3.84 3.84 3.84 3.85 3.85 3,86 3.87 3.87 3.89 3.91 3.92 3.92 3,93
0,20 3.64 3.64 3.64 3,65 3.65 3.66 3.67 3.68 3,69 3.70 3.71 3.72 3.74 3.76 3,77 3,79
0.25 3.43 3.43 3.43 3,45 3.46 3.48 3,50 3,51 3.53 3.54 3.56 3.58 3.60 3.62 3.64 3.66
0.30 3.22 3.22 3.23 3,24 3.27 3.30 3,32 3,35 3.37 3.39 3.41 3.45 3.48 3,50 3.52 3.54
0,40 2,81 2.81 2.83 2,86 2.90 2.94 2.99 3,03 3.07 3.11 3.14 3.19 3,24 3.28 3.31 3.34
0,50 2.46 2.46 2.49 2,53 2.58 2.64 2,69 2,75 2.80 2.85 2.89 2.96 3.02 3.08 3.12 3,16
0.60 2.17 2.17 2.20 2,25 2.31 2.37 2.44 2,50 2,56 2.62 2.67 ! 2.75 2.83 2.89 2.94 2.99
0.70 1.93 1.93 1.96 2,02 2.08 2.15 ??? 2,29 2,36 2.42 2.47 2.57 2,65 2.72 2.78 2.84
0.80 1.73 1,74 1.77 1.82 1.89 1.96 2.03 2,11 2,18 2,24 2.30 2.40 2,49 2.57 2.64 2.69
0.90 1.57 1.57 1.61 1.66 1.73 1.80 1.88 1.95 2,02 2.08 2.14 2.25 2.34 2.43 2.50 2,56
1.0 1.43 1.44 1.47 1.52 1.59 1.66 1.74 1.81 1.88 1,95 2.01 2.12 2.22 2.30 2.38 2,44
1.2 1.21 1,22 1.25 1.31 1.37 1.44 1.51 1.59 1.65 1.72 1.78 1.89 1.99 2.08 2,16 2.23
1.4 1.05 1.06 1.09 1.14 1.20 1.27 1.34 1.41 1.47 1.53 1.59 1.71 1.81 1.90 1,98 2.05
1.6 0.926 0,934 0.966 1.01 1.07 1.13 1,20 1.26 1.33 1.39 1.44 1.55 1.65 1.74 1,82 1.90
1.8 0.827 0.835 0,865 0.909 0.962 1.02 1.08 1.14 1.20 1.26 1.32 1.42 1.52 1.61 1,69 1.76
2.0 0.747 0.755 0.783 0.824 0.874 0.929 0.987 1.04 1.10 1.16 1.21 1.31 1.41 1.49 1.57 1.64
2.2 0.681 0.689 0.715 0.754 0.800 0.852 0.906 0,961 1.01 1.07 1.12 1.22 1.31 1.39 1.47 1,54
2.4 0.626 0.634 0,658 0,694 0.737 0.786 0.837 0,889 0.940 0.990 1.04 1.13 1;22 1.30 1,38 1,45
2.6 0.579 0.586 0,609 0,643 0,684 0.729 0.778 0,827 0.875 0.924 0.971 1.06 1.15 1,23 1.30 1,37
2.8 0.538 0.545 0.567 0.599 0.637 0.680 0.726 0.773 0,819 0.865 0.910 0.997 1.08 1.16 1.23 1,30
3.0 0.503 0,510 0.530 0.560 0.596 0.637 0.681 0.725 0.769 0.813 0.856 0.940 1i02 1,09 1,16 1.23
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABFCES 8-69
Table 8-4 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle =
Available strength of a weld group, or R„/a, is determined with
Rn-CCrDI (iti = 0.75, Q. = 2.00)
LRFD ASD
^min ~
(])C|£)/ (t>CCi/
hlun ~
^CCiD
„ ___ dPa „ „ QPa SIP,.
CC,D
where
P = required force, Pu or Pj, kips
D = number of sixteenths-of-an-inch in the fillet weld size
/ = characteristic length of weld group, in.
a = V ^ '
e* = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
special Case
(Load not in plane
of weld group)
Use G-values for ^ = 0
Mai, -filtyeuiialaislanoe!'
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 4.82 4.82 482 4.fi2- 4.82 4.82 4.82 4,82 4.82 4 82 4.82 4.82- 4.82 4.82 4.82 4.82
0.10 . 4.49 4.49 4.50 4.51 • 4.53 4.55 4.57 4,59 4,61 4.62 4.63 4.66 4.67 •4,68 4.69 4,69
0.15 4.18 4.18 4.20 4:23 4.26 4.30 4.34 4,37 4,40 4.43 4.46 4.50 4.54 4,57 4.60 4.61
0.20 3.92 3.92 3.94 3.96 3.99 4.03 4.08- 4,13 4,18 4.22 4.26 4.33 4.38 4,43- 4.47 -4.50
0.25 3.70 3.70 3.71 3.74. 3.77 3.81 3,86 3.91 3.96 4.01 4.06 4,14 4.21 4,27 4.33 4.37
0.30 3.49 3.49 3.51 3.54 3.57 3.62 3,67 3.72 3.77 3.81 3.86 3.96 4.04 4,12 4.18 4.23
•0.40 . 3.10 3.10 3,12 3.16 3.21 3.27 3.33 3.39 3.45 3.50 3.55 3.64 3.73 3,82 3.90 3.96
0.50 2.75 2.76 2.79 2.83 2,89 2.96 3:03 3.10 3.17 3.24 3.29 3.39 3:48 3,56 3.64 3.72
0.60 2.46 2.47 2.50 2.55 2.62 2.70 2.77 2.85 2.93 3.00 3.06 3.17 3.27 3,36 3.43 3.50
0.70 2.21 2.22 2.26 2.31 2.39 2.47 2.55 2.63 2.71 2.79 2.85 2.98 3.08 3,17 3.25 3.33
0.80 2.01 2.01 2.05 2.11 2.19 2.27 2.35 2.44 2.52 2.60 2.67 2.80 2.91 3,01 3.09 3.17
0.90 1.83 1.84 1.88 1.94 2.01 2.10 2.18 2.27 2.35 2.43 2.51 2.64 2.75 2,85 2.95 3.03
1.0 1.68 1.69 1.73 1.79 1.87 1.95 2.04 2.12 2.20 2.28 2.36 2.49 2.61 272 2.81 2.89
1.2 1.44 1.45 1.49 1.55 1.62 1.70 1,79 1.87 1.95 2.03 2.11 2,24 2.36 2,47 2.57 2.66
1.4 1.25 1.26 1.30 1.36 1.43 1.51 1.59 1.67 1.75 1.83 1.90 2.03 2.15 2,26 2.36 2.45
1.6 1.11 1.12 1.16 1.21 1.28 1.35 1,43 1.51 1.58 1.66 1.73 1.86 1.98 2,09 2.19 2.28
1.8 0.996 1.01 1.04 1.09 1.15 1.22 1.30 1,37 1.44 1.51 1.58 1.71 1.82 1,93 2.03 2.12
2.0 0.902 0.911 0.944 0.993 1.05 1.12 1.19 1,26 1.32 1.39 1.46 1.58 1.69 1,80 1.90 1.99
2.2 0.824 0.833 0.864 0.910 0.965 1.03 1.09 1,16 1.22 1.29 1.35 1.47 1.58 1,68 1.78 1.87
2.4 0.758 0.767 0.796 0.839 0.891 0.949 1.01 1,07 1,14 1.20 1.26 1.37 1.48 1.58 1.67 1,76
2.6 0.702 0.711 0.738 0.778 0.827 0.882 0.940 1,00 1.06 1.12 1.17 1.28 1.39 1.49 1.58 1,66
.2.8 0.653 0.662 0.688 0.726 0.772 0.823 0.879 0,936 0.992 1.05 1.10 1.21 1.31 1.40 .1.49 1,58
•:3.o 0,611 0.619 0.644 0.680 0.723 0.772 0.825 0,879 0.932 0.986 T.04 1.14 1.24 1.33 1.42 1,50
Shaded values, indicate the value is based on the greatest available strength permitted by A<iSC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-70
DESIGN CONSIDERATIONS FOR WELDS
Table 8-4 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60^
Available strength of a weld group, (\iR„ or /?„/n, Is determined with
fl„=CCiD; {(|) = 0.75, n = 2.00)
LRFD ASD
Cm in
Pu
(jiCiD/
Pu
(t,CCi(
Imin ~
Pu
(|)CCiD
O.Pa
CxDl
D,nin =
CCil
Imin ~~
ilPa
CCxD
where
P = required force, Pu or P,, kips
D = number of sixleenths-of-ati-itich in the fillet weld size
I = characteristic length of weld group, in.
a =e,//
ex = horizontal component of eccentricity of P
with respect to cenfroid of weld group, in.
C = coefficient tabulated below
C, = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
uu
special Cese
(Load not in plane
of weld group)
Use C-values for fc = 0
•Any equal distani»s
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 -5 21 5.21 5.21 5 21 5.21 f.2l 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21
0.10 4.86 4.87 4.90 4.94 4.99 5.03 5.07 5.10 5.12 5,13 5.14 5.15 5.15 5.15 5.15 5.15
0.15 4.61 4.62 4.65 4.70 . 4.77 4.84 4.91 4,96 5.01 5.04 5.07 5.10 5.12 5.13 5.14 5.14
0.20 4.36 4.37 4.41 4.46 4.54 4.62 4.71 4.79 4.86 4.92 4.97 5.03 5.07 5.09 5.11 5.12
0.25 4.13 4.14 4.17 4.23 4.31 4.40 4.51 4,61 4.70 4.78 4.84 4.94 5.00 5.04 5:06 5.08
0,30 3,93 3.94 3.97 4.03 4.10 4.19 4.30 4.41 4.52 4:62 4.70 4.83 4.91 4.97 5.01 5.04
0.40 3.58 3.59 3.62 3:68 3.75 3.84 3.93 4.04 4.15 4.27 4.39 4.57 4.71 ,4.81 4.88 4.93
0.50 3.26 3.27 3.31 3.37 3,45 3.54 3.64 3.74 3.84 3.95 4.07 4.29 4.47 4.61 4.71 4.79
0.60 2.98 2.99 3.03 3.10 3.19 3.28 3.39 3.49 3.59 3.69: 3.78 4.01 4.22 4.39 4.52 4.63
0.70 2.74 2.75 2.79 2.86 2.95 3.05 3.16 3.26 3.37 3.47 3,56 3.76 3.97 4.16 4.32 4.45
0.80 2.52 2.53 2.58 2.65 2.75 2.85 2.96 3.06 3.17 3.27 3.37 3.55 3.74 3.94 4,11 4.26
0.90 2.34 2.35 2.39 2.47 2.56 2.67 2.78 2.88 2.99 3.09 3.19 3,37 3.54 3.72 3,90 4.07
1.0 2.17 2.18 2.23 2.31 2.40 2.50 2.61 2.72 2.83 2.93 3.03 3.21 3.37 3.54 3.71 3.88
1.2 1.89 1.90 1.95 2.03 2.12 2.23 2.33 2.44 2.54 2.65 2.74 2.93 3.09 3.24 3.39 3.54
1.4 1.67 1.69 1.73 1.81 1.90 2.00 2.10 2,20 2.31 2.41 2.50 2.68 2.85 2.99 3.13 3.27
1.6 1.50 1.51 1.56 1.63 1.71 1.81 1.91 2.01 2.11 2.20 2.30 2.47 2.63 2.78 2.92 3.05
1.8 1.35 1.36 1.41 1.48 1.56 1.65 1.74 1.84 1.94 2.03 2.12 2.29 2.45 2.60 2.73 2.85
2.0 1.23 1.24 1.29 1.35 1.43 1,51 1.60- 1.70 1.79 1.88 1.97 2.13 2.29 2.43 2.56 2.69
2.2 1.13 1.14 1,18 1.24 1.32 1.40 1.48 1.57 1.66 1.75 1.83 1.99 2.14 2.28 2.41 2.54
2.4 1.04 1.06 1.10 1.15 1.22 1.30 1.38 1.46 1.55 1.63 1.71 1.87 2.02 2.15 2.28 2.40
2.6 0.970 0.981 1.02 1.07 1.14 1.21 1.29 1.37 1.45 1.53 1.61 1.76 1.90 2.03 2,16 2.28
2.8: 0.905 0.916 0.951 1.00 1.06 1.13 1.21 1.29 1.36 1.44 1.51 1.66 1.80 1.93 2,05 2.16
3.0 0.848 0.859 0.892 0.941 1.00 1.07^ 1.14 1.21 1,28 1.36 1.43 .1:57 1.70 1,83 1.95 2.06
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4{b) and J2.4{c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-71
Table 8-4 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75"
Available strength o1 a weld group, (tifl„ or fl„/n, is determined with
R„=CCiDI ((1) = 0.75, n = 2,00)
LRFD ASD
^min
(tiC)£)/
^min ~
Pu
ilCC\D
^min —
Hfi.
CiDl
D„,i„ =
CCd
^min —
ilPg
CCiD
where
P - required force, Pu or Pa, kips
D = number of sixleentlis-of-an-incti in the fillet weld size
I = characteristic length of weld group, in.
a =ex/r
e, = horizontal component of ecceritriclty of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
C, = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
UiJ
' Special Case
\ p (Load not in plane
of weld grou p)
Use C-values for/r = 0
a
k
a
0 0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 Z.0
0.00 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5 47 5.47 5.47
0.10 5.17 5.19 .5^25 5.32 5.38 5.42 5.44 5.45 5.45 5.46 5,46 5'.46 5.46 5.46 5.45 5.45
0.15 . 5.00 5.03 5.10 5.19 5.28 5.34 5.38 5.41 5.43 5.44 5.45 5,45 5.45 5.45 5.45 5.45
0.20 4.85 4.87 4.95 5.06 5.16 5.25 5.32 5.36 5.39 5.41 5:42 5.44 5.45 5.45 5,45 5.45
0.25 4.71 4.73 4.80 4.92 5.04 5.15 5.24 5.30 5.34 5.37 5.39 5.42 5:43 5.44 5,44 5.45
0.30 4.57 4.59 4.65: 4.78 4.92 5.04 5.15 5.23 5.28 5.33 5.36 5.40 5.42 5.43 5,44 5.44
0.40 4.32 4.33 4.39 4.51 4.67 4.82 4.95 ' 5.06- 5.15 5,22 5.27 5.33 5.37 5.40 5,41 5.42
0.50 4.09 4.11 4.17 4.27 4.43 4.60 4.76 4.89 5.00 5.09 5.16 5.25 5.32 5.35 5.38 5.40
0.60 3.88 3.90 3.96 4.07 4.21 4.38 4.56 4.71 4.84 4,95 5.04 5.16 5.25 5.30 5.34 5.36
0.70 3.69 3.71 3.77 3.87 4.01 4.18 4.36 4.53 4.68 4,80 4.91 .5.06 5.17 5.24 5.29 5.33
0.80 3.51 3.53 3,59 3.70 3.83 3.99 4.17 4.35 4.51 4.65 4.77 4.96 5.08 5.17 5.24 5.28
0.90 3.34 3.36 3.42 3.53 3.66 3.81 3.99 4.18 4.35 4.50 4.64 4.84 4.99 5.10 5.17 5.23
1.0 3.18 3.20 3.27 3.37 3.50 3.65 3,83 4.01 4.19 4.35 4.49 4.73 4.90 5.02 5.11 5.18
1.2 2.90 2.92 2.99 3.09 3.22 3.37 3.53 3.70 3.88 4.06 4.22 4.49 4.69 4.85 4.97 5.06
1.4 2.65 2.67 2.74 2.85 2.97 3.11 3.27 3.43 3.61 3.78 3.95 4.24 4.48 4.67 4.81 4.92
1.6 2.44 2.46 2.53 2.63 2.75 2.89 3.04 3.19 3.36 3.53 3.70 4.01 4.27 4.48 4.65 4,78
1.8 2.26 2.27 2.34 2.44 2.56 2.69 2.84 2.99 3.14 3.30 3.47 3.78 4.06 4.29 4.48 4,63
2.0 2.09 2.11 2.18 2.27 2.39 2.52 2.66 2.80 2.95 3.10 3.26 3.57 3.86 4.10 4,31 4.48
2.2 1.95 1.97 2.03 2.13 2.24 2.36 2.50 2.63 2.78 2.92 3.07 3.38 3.66 3.92 4.14 4.32
2.4 1.82 1.84 1.90 1.99 2.10 2.22 2.35 2:48 2.62 2.76 2;90 3.20 3.48 3.74 3.97 4.16
2.6 1.71 1,73 1.79 1.88 1.98 ,2.10 2.22 2.35 2.48 2.62 2.75 3.04 3.31 3.57 3.80 4.01
2.8 1.61 1.63 1.69 1177 1.87 1.98 2:10 2.23 2.36 2.49 2.62 2.88 3.16 3,41 3.64 3.85
3.0 1,52 1.54 1.60 1.68 1.77 1.88 -2.00 2.12 2.24 2.37 2.49 2.75 3.01 3.26 3.49 3.71
Shaded values indicate the value Is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2,4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-72 DESIGN CONSIDERATIONS FOR WELDS
Table 8-5
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0'^ -
Available strength of a weld group, finlii, is determined with
R„ = CCiD/ {If, = 0.75, fl = 2.00)
LRFD ASO
Cmin =
il,C,Dl
Pu
iSfCCiD
Cmin ~
gPq
CiDl CCil
O-Pa
CCiD
where
P = required force, P„ or P^, kips
D - number of sixteenths-of-an-inch in the filiet weld size
I = characteristic length of weld group, In.
a = ex/I
ex = horizontal component of eccentricity of P
with respect to centrold of weld group, In.
C = coefficient tabulated below
C| = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
B=al P
kl
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 t.O 1.2 1.4 1.6 1.8 2.0
0.00 5.57 5,57 5.57 5.57 5.57 5.57 5.57 5,57 5.57 5.57 •3 57 •-,5' 5.57 5.57 5.57 5.57
0.10 4.32 4.36 4.48 4.65 4.82 4.97 5.11 5.21 5.29 5.35 5.39. 5.45 5,48 5.50 5.52 5.53
0.15 3.90 3.94 4.04 4.20 4.39 4.58 4.75 4.90 5.02 5.12 5.20 5.31 5.38 5.42 5.45 5.48
0.20 3.54 3.57 3.67 3.81 3.99 4.20 4.40 4.57 4.73 4.86 4.97 5.13 5.24 5.32 5.37 5.41
0,25 3.22 3.25 3.34 3.47 3.64 3.85 4.06 4.26 4.43 4.59 4.72 4.93 5.08 5.19 5.26 5.32
0.30 2.94 2.97 3.06 3.19 3.34 3.53 3.74 3.95 4.14 4.32 4.47 4.72 4.91 5.04 5.14 5,22
0.40 2.48 2.51 2.60 2.71 2.85 , 3.01 3.19 3.40 3.61 3.81 3.99 4.29 4.54 4.72 4.87 4.99
0.50 2.14 2.17 2.24 2.34 2.47 2.62 2.78 2.95 3.15 . 3.35 3;54 . 3.88 4.16 4.39 4.58 4.73
0.60 1.87 1.89 1.96 2.06 2.17 2.31 2.45 2,61 2.78 2.96 3.15 3.50 3.81 4.06 4.28 4.46
0.70 1.65 1.68 1.74 1.83 1.93: 2.06 2.19 2.33 2.48 2.64 2.81 3.17 3.48 3.75 3.99 4.19
0.80 1.48 1.50 1.56 1.64 1.74 1.85 1.97 2.10 2.24 2.38 2.54 2.87 3.18 3.46 3.71 3.92
0.90 1.34 1.36 1.41 1.49 1.58 1.68 1.79 1.91 2.04 2.17 2.31 2.61 2.92 3.20 3.45 3.68
1.0 1.22 1.24 1.29 1.36 1.44 1.54 1.64 1.75 1.87 1.99 2.12 2.39 2.69 2.97 3.22 3.45
1.2 1.04 1.05 1.10 1.16 1.23 1.31 1.41 1.50 1.60 1.71 1.82 2.05 2.30 2.56 2.81 3.03
1.4 0.900 0.914 0.952 1.00 1.07 1.14 1.23 1.31 1.40 1.49 1.59 1.79 2.00 2.24 2.47 2.69
1.6 0.794 0.807 0.840 0.888 0.946 1.01 1.08 1.16 1.24 1.33 1.41 1.59 1.78 1.98 2.19 2,40
1.8 0.710 0.722 0.752 0.795 0.848 0.907 0.973 1.04 1.12 1.19 1.27 1.43 1.60 1.77 1.96 2.16
2.0 0.643 0.653 0.680 0.719 0.767 0.822 0.881 0.945 1.01 1.08 1.15 1.30 1.45 1.61 1.77 1.95
2.2 0.586 0.596 0.621 0.657 0.701 0.751 0.805 0.864 0.925 0.988 1.05 1.19 1.33 1.47 1.62 1.78
2.4 0.539 0.548 0.571 0.604 0.644 0.691 0.741 0.795 0.852 0.910 0.970 1.09 1.22 1.35 1.49 1.64
2.6 0.498 0.507 0.528 0.559 0.597 0.640 0.687 0.737 0.789 0.844 0.899 1.01 1.13 1.26 i:38 1.51
2.8 0.464 0;472 0.491 0.520 0.555 0.595 0.639 0.686 0.735 0.786 0,838 0.946 1.06 1.17 1.29
1.41
3.0 0.434 0.441 0.459 0.486 0.519 0.557 0.598 0.642 0.688 0.736 0.785 0.886 0.990 1.10. 1.21 1.32
Shaded values indicate the value is based on the greatest available strength permitted by A\SC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE .OF STEEL CONSTRUCTION

DESIGN TABLES, 8-73
Table 8-5 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
Available strength of a weld group, <])/?„ or fl„/Cl, is determined with
f?„=CCiD; (((> = 0.75, SI = 2.00)
LRFO ASO
C'mm ~
^CjDl
^inin ~
<|)CCi;
imin —
^CCiD
O.Pa
^mn —
QPg
CC,l
O-Pa
CQD
where
P - required force, Pa or fj, M'ps
D = number of slxteenths-of-an-incti in the fillet weld size
I - characteristic length of weW group, in,
a = ex/1
fi, = horizontal component of eccentricity of P
witii respect to centroid.of weld group, in.
C = coefficient tabulated below
C] = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
P
ki
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 5.47 5.47 5.47 5.47 5.47- 5.47 5.47 5 47 5.47 5.47 5.47 5,47 5.47 5.47 5.47 •5.47
0.10 4.38 4.40 4.46 4.58 4.73 4.88 5.01 5.11 5.19 5.25 5.29 5.35 5.39 5,41 5.42 5.43
0.15 3.97 3,98 4.04 4.15 4.29 4.47 4,64 4.78 4.91 5.01 5.09 5.20 5.28 5.32 5,36 5.38
0.20 3.60 3.62 3.69 3.79 3.92 4.09 4.27 4.45 4.60 4.74 4.85 5.01 5.13 5.21 5.27 5.31
0.25 3.29 3.30 3.37 3.48 3.61 3.76 3.94 4.12 4.29 4.45 4.59 4.81 4.96 5.07 5.15 5.21
0.30 3.01 3.03 3.09 3.20 3.33 3.48 3.64 3.82 4.00 4.17 4.33 4.58 4.78 4.92 5.03 5.11
0.40 2.55 2.57 2.64 2.74 2.87 3.01 3.16 3.32 3.49 3.66 3.83 4.13 4.38 4.58 4.74 4.86
0.50 2.20 2.22 2.29 2.38 2.50 2.63 2.77 2.92 3.07 3.23 3.40 3.71 3.99 4.23 4.42 4.58
0.60 1.92 1.94 2.01 2.10 2.21 2.33 2.47 2.60 2.74 2.89 3.04 3.35 3.63 3.88 4.10 4.29
0.70 1.71 1.72 1.78 1.87 1.97 2,09 2.21 2.34 2.47 2.61 2.74 3.03 3.30 3,56 3.79 4,00
0.80 1.53 1.55 1.60 1.68 1.78 1.89 2.00 2.12 2.25 2.37 2.50 2.76 3.02 3.27 3.50 .3.72
0.90 1.38 1.40 1.45 1.53 1.62 1.72 1.83 1.94 2.06 2.18 2.29 2.53 2.77 3.02 3.24 3.46
1.0 1.26 1.28 1.33 1.40 1.48 1.58 1.68 1.79 1.90 2.01 2.12 2.34 2.56 2.79 3.01 3.22
1.2 1.07 1.09 1.13 1.19 1.26 1.35 1.44 1.53 1.63 1.73 1.83 2.03 2.23 2.42 2.63 2.82
1.4 0.931 0.944 0.982 1.04 1.10 1.18 1.26 1.34 1.43 1.52 1.61 1.79 1,97 2.14 2.32 2.50
1.6 0.822 0.834 0.868 0.916 0.975 1.04 1.12 1.19 1.27 1.35 1.43 1.60 1.76 1.92 2.08 2.24
1.8 0.735 0.746 0.777 0.821 0.874 0.935 1.00 1.07 1.14 1.22 1.29 1,44 1.59 1.74 1.88 2.03
2.0 0.665 0.675 0.703 0.743 0.792 0.848 0.909 0.973 1.04 1.11 1.18 1.31 1.45 1.59 1.72 1.85
2.2 0.607 0.616 0.642 0.678 0.723 0.775 0.831 0.890 0,951 1,01 1.08 1.21 1.33 1.46 1.58 1.71
2.4 0.558 0.666 0.590 0.624 0.666 0.713 0.765 0.820 0.877 0.935 0.994 1.11 1.23 1.35 1.47 1.58
2.6 0.516 0.524 0.546 0.578 0.617 0,661 0.709 0.760 0.813 0.867 0.922 1.03 1.15 1.26 1.37 1.47
2.8 0.480 0.488 0.508 0.538 0.574 0.615 0.660 0.708 0.758 0.808 0.860 0.965 1.07 1.17 1.28 1.38
3.0 , 0.449 0.456 0.475 0.503 0.537 0.576 0.618 0,663 0.709 0.757 0.806 0.905 1.00 1.10 1.20 1.30
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2,4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-74 DESIGN CONSIDERATIONS FOR WELDS
Table 8-5 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
Available strength of a weld group, (])/?„ or /?„/£!, Is determined with
/?„=CCiO/ ((|) = 0.75, SI = 2.00)
LRFO ASO
C/jim —
Pu
ifiCiDl
^inin ~
Pu , . _ Pu
^CCil ""'• ^CQD
Cfft/ji
CiDl
D„u„ =
QPa
CCxl
hnin ~
^Pn
CCiD
where
P = required force, or Pa, kips
0 = number of sixteenttis-of-an-inch in tlie fillet weld size
/ = characteristic length of weld group, in.
a = e,/l
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1,0 for E70XX electrodes)
e=al p
kl
k
a 0 0.1 0.2 0.3 0,4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 5.21 5.21 5 21 5.21 5.21 5.21 5.21 5.21. 5,21 5.21 5.?1 5.21 .5,21' 5.21 •5.21 •5.21
0.10 4.49 4.50 4.54 4.59 4.66 4,74 4.82 4.89 4.94 4.99 5.02 5.07 5,10 5.11 5.12 5.13
0.15 4.09 4v10 4,13 4.19 4.27 4.36 4.46 4.57 4.66 4,75 4.81 4.91 4,98 5.03 5.05 5.07
0.20 3.76 3.77 3.80 3,86 3.93 4,01 4.12 4.23 4.35 4.46 4.56 4.71 4,82 4.90 4.95 4.99
0.25 3.47 3.48 3.51 3.57 3.65 3.74 3.83 3.93 4.04 4.16 4.28 4.48 4,63 4.74 4.83 4,89
0.30 3.21 3.21 3.25 3.32 3.40 3,49 3.59 3.69 3,79 3.89 4.01 4.24 4,42 4.57 4.68 4.76
0.40 2.76 2.77 2.81 2.88 2.97 3,07 3.17 3.28 3,38 3.48 3.58 3.77 3,99 4.18 4.33 4.46
0.50 2.40 2.41 2.45 2.53 2.62 2,73 2.84 2.94 3.05 3.15 3.25 3.43 3,60 3.79 3.97 4.13
0.60 2.11 2.12 2.17 2.25 2.34 2,45 2.55 2.66 2.77 2,87 2,97 3.15 3,31 3.47 3.64 3.81
0.70 1.88 1.89 1.94 2.01 2.11 2.21 2.32 2.42 2.53 2,63 2,73 2.91 3,07 3.22 3.37 3.52
0.80 1.69 1.70 1.75 1.82 1.91 2.01 2.12 2,22 2.32 2,42 2,52 2.70 2,86 3.01 3.15 3.28
0.90 1.53 1.54 1.59 1.66 1.75 1.84 1.94 2.05 2.15 2,24 2,34 2.51 2,68 2.82 2.96 3.09
1.0 1.40 1.41 1.46 1.53 1.61 1.70 1.80 1.89 1.99 2,09 2,18 2.35 2.51 2.66 2.79 2.92
1.2 1.19 1.20 1.24 1.31 1.38 1.47 1.55 1.65 1.74 1.83 1,91 2.08 2.23 2.37 2.50 2,62
1.4 1.03 1.05 1.08 1.14 1.21 1.29 1.37 1.45 1.54 1.62 1,70 1.85 2.00 2.14 2.26 2,38
1.6 0.914 0.925 0.960 1.01 1.07 1.14 1.22 1.30 1.37 1,45 1,53 1.67 1.81 1,94 2.06 2,18
1.8 0.818 0.829 0.861 0.908 0.965 1.03 1.10 1.17 1.24 1,31 1.38 1.52 1.65 1,78 1.90 2,01
2.0 0.740 0.750 0.780 0.823 0.876 0.935 0.999 1,07 1.13 1.20 1,27 1.40 1.52 1,64 1.75 1,86
2.2 0.675 0.685 0.712 0.752 0.801 0,856 0.915 0,978 1.04 1.10 1.17 1.29 1.41 1.52 1.63 1.73
2.4 0.621 0.630 0.656 0.693 0.738 0,789 0.845 0,902 0.961 1.02 1.08 1.19 1.31 1.41 1.52 1.62
2.6 0.575 0.583 0.607 0.642 0.684 0,732 0.784: 0,838 0.893 0,948 1.00 1.11 1.22 1.32 1.42 1.52
.2.8 0.535 0543 0.565 0.598 0.637 0,682 0.731 0.782 0.834 0,886 0.939 1,04 1.14 1.24 1.34 1.43
3.0 0,500 0.508 0.529 0.559 0.596 0,639 0.684 0.732 0.781 0.831 0.881 0.980 1.08 1.17 1.26 1.35
Stiaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 8-75
Table 8-5 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
Available strength of a weld group, or R„/Q., is determined with
R„=CC\DI {(1) = 0.75, n = 2.00)
LRFO ASD
^nun ~
i^CiDl (|)CC,/ (FCCIO
Ciiiiii ~
qPg
CtDl
Dfnin —
SlPg
CCil CCxD
where
P = required force, Pu or Pa. Wps
D = number of sixteenths-of-an-inch in the fillet weld size
I = characteristic length of weld group, in.
a =e,/;
e„ = horizontal component of eccentricity of P
with respect to centrold of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
kt
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 4.82 4.82 4.82" 4.82 4.82 4.82 4 82 4,82 4.82 4.82 482 4.82 4.82 4.82 4.82 4.82
0.10 4.49 4.49 4.50 4.51 4.53 4.55 4.57 4.59 4.61 4.62 4.63 4.66 4.67 4.68 4.69 4.69
0.15 4.18 4.18 4.20 4.23 4.26 4.30 4.34 4.37 4.40 4.43 4.46 4.50 4.54 4.57 4.60 4,61
0.20 3.92 3.92 3.94 3.96 3.99 4.03 4.08 4.13 4.18 4.22 4.26 4.33 4.38 4.43 4.47 4.50
0.25 3.70 370 3.71 3.74 3.77 3.81 3.86 3.91 3.96 4.01 4.06 4.14 4.21 4.27 4.33 4.37
0.30 3.49 3.49 3.51 3.54 3.57 3.62 3.67 3.72 3.77 3.81 3.86 3.96,: 4.04 4.12 4,18 4.23
0.40 3.10 3.10 3.12 3.16 3.21 3.27 3.33 3.39 3.45 3.50 3.55 3.64 3.73 3.82 3.90 3.96
0.50 2.75 2.76 2.79 2.83 2.89 2.96 3.03 3.10 3.17 3.24 3.29 3.39 3.48 3.56 3.64 3.72
0.60 2.46 2.47 2.50 2.55 2.62 2.70 2.77 2.85 2,93 3.00 3.06 3.17 3,27 3.36 3.43 3.50
0.70 2.21 2.22 2.26 2.31 2.39 2.47 2.55 2.63 2.71 2.79 2.85 2.98 3.08 3.17 3.25 3.33
0.80 2.01 2.01 2.05 2.11 2.19 2.27 2.35 2.44 2.52 2.60 2.67 2.80 2.91 3.01 3.09 3.17
0.90 1.83 1.84 1.88 1.94 2.01 2.10 2.18 2.27 2.35 2.43 2.51 2.64 2.75 2.85 2.95 3.03
1.0 1.68 1.69 1.73 1.79 1.87 1.95 2.04 2.12 2.20 2.28 2.36 2.49 2.61 2.72 2.81 2.89
1.2 1.44 1.45 1.49 1.55 1.62 1.70 1.79 1.87 1,95 2.03 2.11 2.24 2.36 2.47 2.57 2.66
1.4 1,25 1.26 1.30 1.36 1.43 1.51 1.59 1.67 1.75 1.83 1.90 2.03 2.15 2.26 2.36 2.45
1.6 1.11 1.12 1.16 1.21 1.28 1.35 1.43 1.51 1.58 1.66 1.73 1.86 1.98 2.09 2.19 2.28
1.8 0.996 1.01 1.04 1.09 1.15 1.22 1.30 1.37 1.44 1.51 1.58 1.71 1.82 1.93 2.03 2.12
2.0 0.902 0.911 0.944 0.993 1.05 1.12 1.19 1.26 1.32 1.39 1.46 1.58 1.69 1.80 1.90 1.99
2.2 0.824 0.833 0.864 0.910 0.965 1.03 1.09 1.16 1.22 1.29 1.35 1.47 1.58 1.68 1.78 1.87
2.4 0.758 0.767 0.796 0.839 0.891 0.949 1.01 1.07 1.14 1.20 1.26 1.37 1.48 1.58 1.67 1.76
2.6 0.702 0.711 0.738 0.778 0.827 0.882 0.940 1.00 1.06 1.12 1.17 1.28 1.39 1.49 1.58 1.66
<2.8 0.653 0.662 0.688 0.726 0.772 0.823 0.879 0.936 0.992 1.05 1.10 1.21 1.31 1.40 1.49 1.58
3.0 0.611 0.619 0.644 0.680 0;723 0.772 0.825 0.879 0.932 0.986 1.04 1.14 1.24 1.33 1.42 1.50
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
x
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-76 DESIGN CONSIDERATIONS FOR WELDS
Table 8-5 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
Available strength of a weld group, ^Rn or fl„/n, is determined with
fl„=CCiD/ ((t> = 0.75, <:3 = 2.00)
LRFD ASD
r — n _ ^H
"""" ^CiDl """
Imin —
qPg
CxDl
ClPg
CC|/
^min —
ClPa
CCiD
where
P = required force, P„or Pa, kips
D = number of sixteenths-of-an-inch in tlie fillet weld size
/ = characteristic length of weld group, in.
a = ey/l
ex ~ horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
kl 1 h
60'
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 4.37 4.37 4.37 4.37 4.37 4.37 4,37 4?/ 4,37 4,37 4,37 4.37 ^
4 3? 4.37
0.10 4.26 4.26 4.26 4.25 4.25 4.25 4.25 4,24 4.24 4,23 4,23 4,22 4,21 4.20 4.19 4.17
0.15 4.12 4,12 4.13 4.13: 4,13 4.13 4.13 4.14 4.14 4.14 4,13 4.13 4,13 4.12 4.11 4.10
0.20 3.97 3.97 3.97 3.97 3.98 3,98 3.99 4.00 4.01 ,4.01 4.02 4.03 4,03 4.03 4.03 4.02
0.25 3.86 3.86 3.86 3.86 3.86 3.86 3,87 3.87 3.88 3.89 3.90 3,92 3,93 3.94 3,94 3.94
0.30 3.74 3.74 3.74 3.75 3.75 3.76 3,76 3.77 3.78 3.78 3.79 3,81 3.83 3.84 3.85 3.86
0.40 3.51 3.51 3.51 3.52 3.54 3.55 3.56 3.57 3.59 3.60 3.61 3.63 3.65 3.67 3.69 3.70
0.50 3.26 3.26 3.27 3.29 3.31 3.34 3.36 3.38 3.40 3,42 3.44 3.48 3.50 3.53 3,55 3.57
0.60 3.02 3.02 3.04 3.06 3.09 3.13 3.17 3.20 3.23 3,26 3.28 3:33 3.36 3.40 3.42 3.45
0.70 2.80 2.80 2.81 2:85 2.89 2.93 2.98 3.02 3.06 3.09 3.13 3,18 3.23 3.27 3.30 3.33
0.80 2.59 2.59 2.61 2.65 2.70 2.75 2.80 2,85 2,90 2.94 2.98 3,05 3.10 3.15 3.19 3.23
0.90 2.40 2,40 2.43 2.47 2.52 2,58 2.64 2,70 2.75 2.80 2.84 2.92 2.98 3.04 3.09 3.13
1.0 2.23 2.23 2.26 2.31 2.36 2.43 2.49 2.56 2.61 2.67 2.71 2.80 2.87 2.93 2,98 3.03
1.2 1.94 1.95 1.98 2.03 2.09 2.16 2.23 2,30 2.37 2.43 2.48 2,58 2.66 2.73 2.79 2.85
1.4 1.72 1.72 1.75 1.81 1.87 1.95 2.02 2,09 2.16 2.23 2.28 2,39 2.48 2.56 2,62 2.68
1.6 1.53 1.54 1.57 1.63 1.69 1.77 1.84 1,91 1.98 2.05 2.11 ?.?? 2.31 2.40 2.47 2.53
1.8 1.38 1.39 1,42 1.48 1.54 1.62 1.69 1,76 1.83 1.90 1.96 2,07 2.17 2.25 2.33 2.40
2.0 1.25 1.26 1.30 1.35 1.42 1.49 1.56 1.63 1,70 1.77 1.83 1,94 2.04 2.13 2.21 2.28
2.2 1.15 1.16 1.19 1.24 1.31 1.38 1.45 1.52 1,59 1.65 1.71 1,82 1.92 2.01 2.09 2,17
2.4 1.06 1.07 1.10 1.15 1.21 1.28 1.35 1.42 1,48: 1,55 1,61 1,72 1.82 1.91 1,99 2.06
2.6 0.983 0.991 1.02 1.07 1.13 1.20 1.26 1,33 1,39 1.46 1,51 1,62 1.72 1.81 1.90 1.97
•2.8 0.917 0.925 0.956 1.00 1.06 1,12 1.19 1.25 1.31 1,37 1,43 1.54 1.64 1.73 1,81 1.88
3.0 0.858 0.866 0.897 0.942 0.996 1,06 1,12 1,18 1,24 1,30 1,36 1,46 1.56 1.65 1,73 1.81
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-77
Table 8-5 (continued)
Coefficients, Cj
for Eccentrically Loaded Weld Groups
Angle = 75°
Available strength of a weld group, ifiRn or RnlH, is determined witii
R„=CGiDI ((t> = 0.75, fi = 2.00)
LRFD ASD
^miti ~
Pu
Dmin —
J^U J _ ^!/
i>CC\l """ (|)CC|£)
Cinin —
ClPa
C,Dl
J) mill —
ap„
CCtl
Imin
SlPa
CCiD
where . ,
P = required force, PoOr P^, kips
D = number of sixteenths-of-an-incli in tlie fillet weld size
I = characteristic length of weld.group, in.
a = Si/I
e* = horizontal component of eccentricity of P
with respect to centroid of weld group, in,
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
e=al
kl
a
0 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 3.96 3,96 3.96 3.96 3.96 3.96 3.96 396 3.96 3.9V- 396 396 3.96 3.96 "356 396
0.10 3.82 3.83 3.84 3.84 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.84 3.82 3.80 3.78 3.76
0.15 3,85 3,86 3.86 3.86 3.86 3.85 3.85 3.85 3.84 3.83 3.83 '3.81 3.79 3.77 3.75 3.73
0.20 3.84 3.84 • 3.84 3.84 3.83 3.83 3.82 3.82 3.81 3.80 3.80 3.78 3.76 3.74 3.72 3.71
0.25 3.83 3.83 3.83 3.82 3.82 3.81 3.80 3.80 3.79 i 3.78 3.77 3.75 3.73 3.72 3.70 3.68
0.30 3.82 3.82 3.81 3.81 3180 3.79 3.78 3.77 3.76 3.76 3.75 3.73 3.71 3.69 3.67 3.66
0.40 3.78 3.78 3.77 3.76 3;75 3.74 3.73 3.72 3.71 3.70 3.69 3.67 3.66 3.64 3;62 3.61
0.50 3.72 3.72 3.71 3.70 3.69 3,68 3.67 3.66 3.65 3.64 3.64 3.62 3.60 3.59 3.57 3.56
0i60 3.65 3.64 3.64 3.63 3.62 3.61 3.60 3.60 3.59 3.58 3.57 3.56 3.54 3.53 3.52 3.51
.0.70 3.56 3.55 3.55 3.54 3.54 3.53 3.52 3,52 3.51 3.51 3.50 3.49 3.48 3.47 3.47 3.46
0.80 3.46 3.45 3.45 3.45 3.45 3.44 3.44 3,44 3.44 3.43 3.43 3.43 3.42 3.42 3.41 3.41
0.90 3.35 3,35 3.35 3.35 3.35 3.35 3.35 3,35 3.35 3.36 3.36 3.36 3.36 3.36 3.36 3,35
1.0 3.23 3.23 3.24 3,24 3.25 3.25 3.26 3.27 3.27 3.28 3.28 3.29 3.30 3.30 3.30 3.30
1.2 3.00 3.00 3.01 3.02 3.04 3.06 3.08 3.09 3,11 3.12 3.14 3.16. 3.17 3.19 3.20 3.20
1.4 2.78 2.78 2.79 2.81 2.84 2.87 2.90 2.93 2.95 2.97 2.99 3.02 3.05 3.07 3.09 3.10
•1:6 2.57 2.57 2.59 2.62 2.65 2.69 2.73 2.77 2.80 2.83 2.85 2.90 2.93 2.96 2.99 3.01
1.8 2.38 2.38 2.40 2,44 2.48 2.53 2.58 2.62 2.66 2.69 2.72 2.78 2.82 2.86 2.89 2.91
2.0 2.21 2.21 2.24 2.27 2.32 2.38 2.43 2.48 2.52 2.56 2.60 2.66 2.72 2.76 2.80 2.83
2.2 2.05 2.06 2.09 2,13 2.18 2.24 2.30 2.35 2.40 2.44 2.48 2.56 2.61 2.66 2.71 2.74
2:4 1.92 1,92 1.95 2.00 2.05 2.12 2.18 2.24 2.29 2.33 2.38 2.45 2.52 2.57 2.62 2.66
2:6 1.80 1.80 1,83 1.88 1.94 2.00 2.07 2.13 2.18 2.23 2.28 2.36 2.43 2.49 2.54 2.58
2.8 : 1.69 1.69 1.72 1.77 1.83 •1.90 1.97 2.03 2.09 2.14 2.19 2,27 2.35 2.41 2.46 2.51
3:0 C 1.59' 1.60 1.63 1.68 1.74 1.81 1.87 1.94, 2.00 2.05 2.10 2.19 2.27 2.33 2.39 2.44
Shaded values, indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4{a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-78 DESIGN CONSIDERATIONS FOR WELDS
Table 8-6
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
Available strength of a weld group, or R„/Q, is determined with
R„ = CCiDI {(|) = 0.75, 0 = 2.00)
LRFD ASD
(j)CiZ)/
Pu
<|)CC|/
^miii —
(|)CCID ' C,Dl
aPa
CC\l
^min ~
CIP„
CC,D
By- si
Where
P = required force, Pu or Pa, kips
D = number of sixteenths-of-an-inch in the fillet weld size
I = characteristic length of weld group, in.
a = e,//
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0,00 3.71 4.08 4.45 4.83 5.38 5.94 6.50 7.05 7.61 8.17 8.72 9.84 10.9 12.1 13.2- 14,3
6.10 3.72 4.09 4.55 5.04 5.54 6.04 6.55 7.07 7.58 8.10 8.62 9.66 10.7 11.8 12.8 13,9
0.15 3.67 4.06 4.49 4.94 5,41 5.89 6.38 6.87 7.36 7.86 8.36 9,36 10.4 11.4 12.4 13,4
0.20 3.51 3.93 4.34 4.77 5.21 5.66 6.13 6.59 7.07 7.54 8,03 9.00 9.98 11.0 12.0 13,0
0.25 3.31 3.72 4.13 4.54 4.96 5.39 5.84 6.29 6.74 7.20 7.67 8.61 9.57 10.5 11,5 12.5
0.30 3.09 3.48 3,89 4.29 4.69 5.11 5,53 5.97 6.41 6,86 7,31 8.23 9.17 10.1 11.1 12.1
0.40 2;66 3.01 3.39 3.77 4.16 4.55 4.94 5.35 5.76 6.19 6.62 7.50 8.40 9.33 10.3 11.2
0.50 2.30 2.60 2,94 3.30 3.67 4.04 4.41 4.79 5.19 5.59 6.00 6,84 7.71 8.61 9.52 10.5
0,60 2,00 2.27 2.57 2.90 3.25 3,60 3.96 4.32 4.69 5.07 5.46 6,27 7.11 7.97 8.86 9.77
0.70 1.76 2,00 2.27 2.57 2.90 3.24 3.57 3.91 4.26 4.63 5.00 5.77 6.58 7,41 8.27 9.15
0.80 1.57 1.78 2,02 2.30 2.61 2.93 3,25 3.57 3.90 4.24 4.60 5,34 6.11 6,91 7.74 8.59
0.90 1.41 1.60 1.82 2.08 2.36 2.67 2.97 3.27 3.59 3,91 4.25 4,95 5.69 6,45 7.25 8.07
1.0 1.28 1.45 1.66 1.90 2.16 2.45 2.73 3.02 3.32 3.62 3.94 4,61 5.31 6.04 6.81 7.60
1.2 1.08 1.22 1.40 1.61 1.84 2.09 2.35 2.61 2.87 3.15 3.43 4.03 4.67 5.34 6.04 6.77
1.4 0.928 1.05 1.21 1.40 1.60 1.83 2.06 2.29 2.53 2.78 3,03 3,58 4.16 4.77 5.42 6.09
1.6 0.815 0.927 1.07 1.23 1.42 1.62 1.83 2.04 2.25 2.48 2.71 3.21 3.74 4.30 4.90 5.53
1.8 0.727 0.S27 0.954 1.10 1.27 1.45 1.64 1.83 2.03 2.24 2.45 2.90 3.39 3.92 4.47 5.05
2.0 0.655 0.746 0.861 0.996 1.15 1.31 1.49 1.66 1.85 2.04 2.23 2.65 3.10 3.59 4.10 4.65
2.2 0.597 0.679 0.785 0.908 1.05 1.20 1.36 1.52 1.69 1.87 2.05 2.44 2.86 3.31 3.79 4.30
2.4 0,547 0.623 0.721 0.835 0.963 1.10 1.25 1.41 1.56 1.72 1.89 2.26 2.65 3.07 3.52 4.00
2.6 0.506 0.576 0.666 0.772 0.891 1,02 1.16 1.30 1.45 1.60 1.76 2.10 2,47 2.86 3.29 3.74
2.8 0.470 0.536 0.620 0.718 0.829 0.950 1.08 1.21 1.35 1.49 1.64 1.96 2.31 2.68 3,08 3.50
3.0 0.439 0.500 0.579 0.671 0.775 0.888 1.01 1.14 1.27 1.40 1.54 1.84 2.17 2.52 2.90 3.30
Shaded values indicate the value is based on ttie greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERFCAN iNSTiTUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-79
Table 8-6 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle =: 15°
Available strength of a weld group, or R„Jn, is determined with
R„=CC^DI ((|) = 0,75, Cl = 2.00)
LRFD ftSO
Cmiii —
(|)Ci£i/
P" , _ ft
hiiii ~
tfCQI (|)CC|0
gPc
CiDl
^min ~
O-Pg
CC,l
hnin ~
(IPc
CC,D
where
P = required force, P„ or Pa, kips
D = number of sixteenths-of-an-lnch in ttie fillet weld size
/ = characteristic length of weld group, in.
a =
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
y
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 3.96 4.39 4.94' 6.48 6.03 6.57 7.12 7.66 8.21 8 75 9.30 10.4 11.5 12.6 13,7 14.7
0.10 3.79 4.22 4.70 5.19 5.70 6.21 6.73 7.25 7.77 8.29 8.82 9.87 10.9 12.0 13.0 14.1
0.15 3.68 4.14 4.59 5.05 5.53 6.01 6.49 6.98 7.48 7.97 8.47 9.47 10.5 11.5 12.5 13.6
0.20 3.51 3.95 4.40 4.85 5.31 5.76 6.23 6.69 7.17 7.64 8.12 9.09 10.1 11.1 12.1 13.1
0.25 3.31 3.72 4.16 4.61 5.04 5.49 5.93- 6.38 6.84 7.30 7.76 8.71 9.66 10.6 11.6 12.6
0.30 3.09 3.48 3.90 4.33 4.76 5.19 5.62 6.06 6.50 6.95 7.40 8.32 9.26 10.2 11.2 12,2
0.40 2.68 3.02 3.39 3.79 4.20 4.62 5.02 5.44 5.86 6.29 6.72 7.60 8.51 9.43 10.4 11.3
0.50 2.32 2.62 2.95 3.31 3.70 4.10 4.49 4.88 5.29 5.69 6.10 6.95 7.83 8.73 9,65 10.6
0.60 2.03 2.29 2.59 2.92 3.28 3.85 4.03 4.41 4.79 5.17 5.57 6.39 7.23 8.10 8.99 9.91
0.70 1.79 2.03 2.30 2.60 2.93 3.28 3.64 4.00 4.36 4.73 5.11 5.89 6.70 7.55 8.41 9.30
0.80 1.60 1.81 2.05 2.33 2.64 2.97 3.31 3.65 4.00 4.35 4.71 5.45 6.23 7.04 7.88 8.73
0.90 1.44 1.63 1.86 2.11 2.40 2.71 3.03 3.36 3.68 4.01 4.35 5.07 5.81 6.59 7.39 8.22
1.0 1.31 1.48 1.69 1.93 2.20 2.49 2.80 3.10 3.40 3.72 4.05 4.72 5.43 6.18 6.95 7.75
1.2 1.10 1.25 1.43 1.64 1.88 2.14 2.41 2.68 2.95 3.24 3.53 4.14 4.79 5.47 6.19 6,93
1.4 0.954 1.08 1.24 1.43 1.64 1.87 2.11 2.36 2.60 2.86 3.12 3.68 4.27 4.90 5.56 6.25
1.6 0.839 0.953 1.10 1.26 1.45 1.66 1.87 2.10 2.32 2.55 2.79 3.30 3.85 4.43 5.04 5.68
1.8 0.748 0.850 0.980 1.13 1.30 1.49 1.68 1.89 2.09 2.31 2.53 3.00 3.50 4.03 4.60 5.-19
2.0 0.675 0.768 0.885 1.02 1.18 1.35 1.53 1.72 1.90 2.10 2.30 2.74 3.20 3.70 4,23 4.78
2.2 0.615 0.700 0.808 0.934 1.08 1.23 1.40 1.57 1.75 1.93 2.12 2.52 2.95 3.41 3.91 4.43
2.4 0.565 0.642 0.742 0.859 0.990 1.13 1.29 1.45 1.61 1.78 1.96 2.33 2.74 3.17 3.63 4.12
2.6 0.522 0.594 0.687 0.795 0.916 1.05 1.19 1.34 1.50 1.65 1.82 2.17 2.55 2.96 3.39 3.85
2.8 0.485 0.552 0.639 0.739 0.853 0.977 1.11 1.25 1.40 1.54 1.70 2.03 2.38 2.77 3.18 3.61
3.0 0.453 0.516 0.597 0.691 0.798 0.914 1.04 1.17 1.31 1.45 1.59 1.90 2.24 2.60 2.99 3.40
Shaded values.indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2,4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-80 DESIGN CONSIDERATIONS FOR WELDS
Table 8-6 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
Available strength of a weld group, Or fl„/a, is determined witfi
fl„=CCiD/ (i|) = 0,75, n = 2.00)
LRFD ASD
Cmill ~
(jiCiO/
Omin ~
^u _ J _ ^n
i^CCtl """ i^CCiD
_ _ QPa _ QPg
where
P = required force, P„or P^, kips
0 = number of slxteenths-of-an-inch in the fillet weld size
1 - characteristic length of weld group, in.
a = Bx/I
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
C, = electrode strength coefficient from Table 8-3
(1.0forE70XX electrodes)
30'
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 4.37 4.89, 5.40, 5.91 6.43 ^94 7.46 7.97 8.48 9 00 9.S1 10.5 11.6 12.6 13.6 • 14.7
0.10 4.05 4.60 5.13 5.65 6.16 a67 7.17 7,68 8.18 8,69 9.20 10,2 11.2 12.3 13.3 14.4
0.15 3.83 4.33 4.85 5.36 5.86 6.36 6.86 7.35 7.85 8.35 8.85 9.85 10.9 11.9 12.9 14.0
0.20 3.64 4.09 4.57 5.06 5.55 6.04 6.52 7.00 7.48 7.97 8.46 9.45 10;4 11.5 12.5 13.5
0.25 3.43 3.85 4,30 4.77 5.24 5.72 6,20 6.66 7.12 7.59 8.06 9.03 10.0 11.0 12.1 13.1
0.30 3.22 3.61 4.03 4.47 4.93 5.40 5,87 6.33 6.78 7,24 7.70 8.64 9.61 10.6 11.6 12.6
0,40 2.81 3.15 3.53 3.93 4:36 4,80 5,25 5.71 6.15 6.59 7.03 7.94 8.86 9.81 10.8 11.8
0.50 2.46 2.77 3.10 3,47 3,86 4.28 4,71 5.15 5.58 6.01 6.44 7.31 8.21 9.14 10.1 11.0
0.60 2.17 2.44 2.75 3.08 3.45 3.84 4,25 4.67 5.09 5.50 5.91 6.76 7,64 8.54 9.45 10.4
0.70 1.93 2.17 2.45 2,76 3.11 3.47 3,86 4.26 4.67 5.06 5.46 6.27 7.12 7.99 8.88 9.79
0.80 1.73 1.95 2.21 2,50 2.82 3.16 3.53 3.91 4.30 4.67 5.05 5.84 6.65 7,49 8.35 9.24
0,90 1.57 1.77 2.00 2,28 2.58 2.90 3.25 3.61 3.97 4.33 4.70 5.44 6.23 7.04 7.87 8.74
1.0 1.43 1.61 1.83 2.09 2,37 2.68 3,00 3.35 3.69 4.03 4.38 5.09 5.84 6.63 7.44 8.27
1.2 1,21 1.37 1.56 1,79 2,04 2.31 2,61 2.91 3.22 3.53 3.85 4.50 5.19 5,92 6.67 7.46
1.4 1,05 1.19 1.36 1.56 1.79 2,03 2.29 2.57 2.85 3.13 3.42 4.02 4.66 5.33 6.03 6.76
1.6 0,926 1.05 1.20 1.38 1.59 1,81 2.05 2.29 2.55 2.80 3.07 3.62 4.21 4.84 5.49 6.18
1.8 0.827 0.938 1.08 1.24 1.43 1,63 1.84 2.07 2.30 2.54 2.78 3.29 3.84 4.42 5.03 5.67
2.0 0,747 0.848 0.977 1.13 1.29 1.48 1.68 1.89 2.10 2.32 2.54 3.02 3.52 4.07 4.64 5.24
2.2 0.681 0.774 0.892 1.03 1.18 1,35 1.54 1.73 1.93 2.13 2.34 2.78 3.26 3.76 4.30 4.86
, 2.4 0.626 0.711 0,821 0.948 1.09 1.25 1.42 ,1.60 1.78 1.97 2.16 2.58 3.02 3.50 4.00 4.53
2.6 0,579 0.658 0.760 0,878 1,01 1,16 1.31 1,48 1,65 1.83 2.01 2.40 2.82 3.27 3.74 4,24
2,8 0.538 0.612 0.707 0,618 0.942 1,08 1.23 1.38 1.54 ,1.71 1.88 2.25 2.64 3.06 .3.51 3.99
'3.0 0.503 0.572 0.661 0.765 0.882 1.01 1.15', 1.29 1.45 1.60 1.77 2.11 2.48 2.88 3,31 3:76
Stiaded values indicate the value is based on the greatest available strength permitted by AISC SpedficaHon
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES
Table 8-6 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45"
Available strength of a weld group, i^iRn or R„IQ, Is determined with
/?„=CCiW((|) = 0.75, fi = 2.00)
LRFD ASD
^min ~
Pu Pu
n . = I • -
^CiDl """ (fCCi/ """ «)CCiD
^inin ~
C,Dl
Dinin ~
QPg
CC,l
^min —
np„
CC|0
where
P = required force, or Pj, kips
0 = number of si*teenfhs-of-an-inch in the fillet weld size
1 = characteristic length of weld group, in.
a = e,//
e, = horizontal component of eccentricity of P
witli respect to centroid of weld group, In,
C = coefficient tabulated below
C| = electrode strength coefficient from Table 8-3
(1,0 for E70XX electrodes)
3
k
3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
4.82 M-1 5.61 6.08 6,54 7.01 7.48 7.95 8,41 8 88 9.35 10.3 11.2 12.2 13,1 14.0
0.10 4,49 4.99 5.48 5.96 6,45 6.94 7.43: 7.92 8,41 8.90 9.39 10.4 11.4 12.3 13.'3 14.3
0.15 4.18 4.69 5.19 5.67 6.16 6.65 7.15 7.65 8,15 8.65 9,14 10.1 11.1 12,1 13,1 14.1
0.20 3,92 4.39 4.87 5;36 5.84 6.33 6.83 7.33 7,84 8,34 8.85 9.86 10.9 11.9 12;9 13.9
0.25 3,70 4.13 4.58 5.05 5.52 6.01 6.50 7.00 7,50 8,02 8.53 9.54 10.6 11.6 12.6 13.6
0.30 3,49 3.89 4,32 4.76 5.22 5.70 6.18 6.67 7,18 7,69 8.20 9.21 10.2 11.3 12.3 13.3
0.40 3.10 3.45 3.84 4.25 4.68 5.13 5.60 6.07 6,56 7.06 7.57 8.56 9.57 io:6 11.6 12.7
0.50 2,75 3.07 3.42 3.81 4.22 4.65 5.10 5.56 6.03 6.52 7.01 7.96 8.94 9.96 11.0 12.0
0.60 2,46 2.75 3.08 3.44 3.83 4.24 4.67 5.11 5.58 6,05 6.52 7.43 8.38 9.37 10.4 11.4
0.70 2,21 2.48 2.78 3.12 3.49 3.88 4.30 4.73 5.17 5,62 6.08 6.96 7.87 8.83 9.81 10.8
0.80 2,01 2.25 2.53 2.85 3,20 3.57 3.97 4.39 4.81 5,25 5.69 6.54 7.42 8.34 9.29 10.3
0.90 1.83 2.06 2.32 2.62 2,95 3.31 3.69 4.08 4.49 4.91 5.33 6.16 7.01 7.89 8.81 9.76
1.0 1,68 1.89 2.13 2.42 2,73 3.08 3.44 3.81 4.20 4.60 5.01 5.81 6.63 7.48 8.38 9.30
1.2 1,44 1.62 1.84 2.10 2.38 2.69 3.02 3.36 3,71 4.08 4.46 5.20 5.97 6.77 7.60 8.47
1.4 1,25 1.41 1.61 1.84 2,10 2.38 2.68 2.99 3.32 3,65 4.00 4.69 5.41 6,17 6.95 7.76
1.6 1,11 1.25 1.43 1.64 1.88 2.13 2.40 2.69 2.99 3.30 3.62 4.27 4.94 5.65 6.38 7.15
1.8 0.996 1.13 1.29 1.48 1.70 1.93 2.18 2.44 2.72 3.00 3.30 3.90 4.53 5.20 5.89 6.62
2.0 0.902 1.02 1.17 1.35 1,55 1.76 1.99 2.23 2.49 2.75 3.03 3.59 4,18 4.81 5.46 6.15
2.2 0,824 0.934 1.07 1.24 1.42 1.62 1.83 2.06 2.29 2.54 2.80 3.32 3.88 4.47 5.09 5.74
2.4 0.758 0.860 0.990 1.14 1.31 1.49 1.69 1.90 2.12 2.36 2.60 3.09 3.62 4.17 4.76 5.37
.2,6 0.702 0.797 0.918 1.06 1.22 1.39 1.57 1.77 1.98 2.19 2.42 2.89 3.38 3.91 4.46 5.05
2.8 0.653 0.742 0.855 0.987 1.14 1.30 1.47 1.66 1.85 2.05 2.27 2.71 3.18 3.67 4.20 4.76
3.0 0,611 0.694 0.801 0.925 1.06 1.22 1.38 1.55 1.74 1.93 2.13 2.55 2.99 3,47 3.97 4.50
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-82 DESIGN CONSIDERATIONS FOR WELDS
Table 8-6 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60"^
Available strength of a weld group, i^Rn or H„Kl, Is determined with
R„^C(aDI ((|) = 0.75, £J = 2.00)
LRFD ASO
^min ~
. p.
(fCiW ^min ~
. --Jk^
(fCCiZ
f^min Cinin
CxDl
^miu —
ClPg
CCil
l^min ~
^Pa
CC,D
wfiere
P = required force, fi,or Pa, kips
0 = number of sixteentfis-of-an-inch in the fillet weld size
1 = characteristic length of weld group, in.
a = eg/I
Sx = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0 00 5.21 5.58 6.01 6.45 6.89 7:33. 7 76 8.20 8.64 9.07 9.51 10.4 11.3 12.1 13.0 T3.9
0.10 4.86 5.29 5.73 6.19 6.65 7.12 7.59 8.06 8.52 8.98 9.43. 10.3 11.2 12.1 13.0 13.9
0.15 4.61 5.04 5.48 5.93 6.40 6,88 7.37 7.86 8.34 8.81 9.28 10.2 11.1 12.0 12.9 13.8
0.20 4.36 4.80 5.23 5.67 6.14 6.63 7.13 7.62 8.12 8.61 9.10 10.1 11.0 11.9 12.8 13.7
0.25 4.13 4.56 4.99 5.43 5.89 6.37 6.87 7.38 7.89 8.39 8.89 9.87 10.8 11.8 12.7 13.6
0.30 ; 3.93 4.34 4.76 5,19 5.64 6.12 6.62 7.13 7.65 8.16 8.67 9.67 10.6 11.6 12.5 13.5
0.40 3.58 3.95 4.35 4,77 5.20 5.66 6.15 6.66 7.17 7.69 8.21 9.24 10.2 11.2 12.2 13.2
0.50 3.26 3.60 3,98 4.39 4.82 5.27 5.74 6.24 6.75 7.27 7.78 8,81 9.83 10.8 11.8 12.8
0.60 2.98 3.30 3,66 4.05 4.47 4.92 5.39 5.86 6.36 6.87 7.38 8,41 9.44 10.4 11.4 12.4
0.70 2.74 3.04 3,38 3.75 4.17 4.60 5.06 5.52 6.00 6.50 7.01 8.03 9.05 10.1 11.1 12.1
0.80 2.52 2.81 3,13 3.49 3.89 4.31 4,75 5.21 5.68 6.16 6.65 7.66 8.68 9.70 10.7 11.7
0.90 2.34 2.60 2.91 3.26 3.64 4.05 4,48 4.92 5.38 5.85 6.33 7.32 8.32 9.32 10.3 11,3
1.0 2.17 2.42 2.71 3.05 3.42 3.82 4.23 4.66 5.11 5,56 6.03 6.99 7.98 8.96 9.95 10.9
1.2 1.89 2.12 2.39 2.70 3.04 3.41 3.79 4.20 4,61 5,05 5.49 8.40 7.33 8.28 9.24 10.2
1.4 1.67 1.88 2,12 2.41 2.73 3.07 .3,43 3.80 4.20 4.60 5.02 5.89 6.76 7.66 8.60 9.55
1.6 .1,50 1.68 1.91 2.18 2.47 2.78 3,12 3.47 3,84 4.22 4.62 5.44 6.26 7.12 8.01 8.93
1.8 1,35 1.52 1.73 1.98 2.25 2.54 2.86 3.19 3.53 3.89 4.26 5.04 5.82 6.63 7.49 8.37
2.0 1.23 1.39 1.59 1.81 2.07 2.34 2.63 2.94 3,26 3.60 3.96 4.69 5.44 6.20 7.02 7.86
2.2 1.13 1,28 1.46 1.67: 1.91 2.16 2.44 2.73 3.03 3.35 3.68 4.38 5.10 5.82 6.59 7.41
2,4 1.04 1.18 1.35 1.55 1.77 2.01 2.27 2.54 2,83 3.13 3.44 4.10 4.79 5.49 6.22 6.99
2.6 0.970 1,10 1.26 1.45 1.65 1.88 2.12 2.38 2.65 2.94 3.23 3.86 4.51 .5.18 5.88 6.62
2.8 0.905 1.02 1.18 1.35 1.55 1.76 1.99 2.23 2.49 2.76 3.04 3.64 4.26 4.90 5.57 6.28
3.0 0.848 0.961 ,1.10 1.27 1.46 1.66 1.88 2.11 2.35 2.61 2.87 3:44 4.04 4.65 5.29 5.97
Shaded values indicate the vakje is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4{a), J2,4{b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-83
Table 8-6 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
Available strength of a weld group, or /?„/a, is determined witti
fl„=CCiO/((j) = 0.75, i3 = 2.00)
LRFO ASD
Cnun —
^CiDl (|)CC,Z (i,CC,D
Ciuin
ClPg
CiDl
^min ~
SlPa
CCd CCtD
where
P = required force, Pu or Pj, kips
D = number of slxteenths-of-an-inch in the fillet weld size
I = characteristic length of weld group, in.
a = e,/l
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
C) = electrode strength coefficient from Table 8-3
(1,0 for E70XX electrodes)
7S'
P
a
0 0.1 0.Z 0.3 0.4 0.5 0,6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 5.47 5,83 6.22 6.60 .6.99 7.37 7.76 8,14 8.-53 8.91 9.30 10,1 108 12.4 13.1
0.10 5.17 5.55 5.97 6.41 6.84 7.26 7.67 8,07 8.47 8.86 9,25 10,0 10.8 11.6 12.3 13.1
0.15 5.00 5.38 .5.80 6.25 6.70 7.14 7.57 7,99 8.40 8.80 9.20 9.98 10.8 11.5 12.3 13.1
0.20 4.85 5.22 5.64 6.09 6.56 7.01 7.46 7,89 8.31 8.72 9.13 9.93 10.7 11.5 12.3 13.1
0.25 4.71 5.07 5.48 5.94 6.41 6.87 7.33 7.78 8.21 8.63 9.05 9.87 10.7 11.5 12.2 13.0
0.30 4.57 4.94 5.34 5.79 6.26 6.73 7.20 7.66 8.10 8.54 8.96 9.79 10.6 11,4 12.2 13.0
0.40 4.32 4.68 5.07 5.52 5.99 6.48 6.95 7.42 7.88 8.32 8.76 9.62 10.5 11.3 12.1 12.9
0.50 4.09 4.45 4.84 5.27 5.74 6.23 6.72 7.20 7.67 8.13 8.58 9.44 10.3 11.1 11.9 12.7
0.60 3.88 4.23 4.62 5.05 5,51 5.99 .6.49 6.98 7.46 7.94 8.40 9.28, 10.1 11.0 11.8 12.6
0.70 3.69 4.03 4.41 4.84 5.29 5.77 6.26 6.76 7.25 7.74 8.21 9.12: 10.0 10.8 11.7 12.5
0.80 3.51 3.84 4.22 4.64 5.09 5.56 6.05 6.55 7.04 7.54 8.02 8.96 9.85 10.7 11.5 12.4
0.90 3.34 3.66 4.03 4.45 4.90 5.36 5.84 6.34 6.84 7.34 7.83 8.78 9.70 10.6 11.4 12.3
1.0 3.18 3.49 3.86 4.27 4.72 5.17 5.64 6,14 6.64 7.14 7.63 8,60: 9.54 10.4 11.3 12.2
1.2 2.90 3.19 3.55 3.95 4.38 4.82 5.28 5.76 6.25 6.75 7.25 8.24: 9.21 10,1 11.0 11.9
1,4 2.65 2.93 3.27 3.65 4.07 4.51 4.95 5.41 5.89 6.38 6.88 7.88 8.86 9,82 10,8 11.7
1.6 2.44 2.71 3.03 3.40 3.79 4.22 4.65 5.10 5.56 6.04 6.53 7,52 8.51 9.49 10.4 11.4
1.8 2.26 2.51 2.82 3.17 3.55 3.96 4.38 4.82 5.26 5.73 6.21 7.19 8.17 9.16 10.1 11.1
2.0 2.09 2.33 2.63 2.96 3.33 3.72 4.13 4.55 4.99 5.44 5.90 6.86 7.84 8.83 9.80 10.8
2.2 1.95 2.18 2.46 2.78 3.13 3.50 3.90 4.31 4.74 5.17 5.62 6.56 7.53 8.50 9.47 10.4
2.4 1.82 2.04 2.31 2.61 2.95 3.31 3.69 4.09 4.50 4.93 5.36 6.28 7.22 8.19 9.16 10.1
2.6 1.71 1.92 2,18 2.47 2.79 3.13 3.50 3.89 4.29 4,70 5.12 6.01 6.93 7.88 8.85 9.81
•2.8 1.61 1.81 2.06 2.34 2.64 2.97 3.33 3.70 4.09 4,49 4.90 5.76 6.66 7.60 8.55 9.51
' 3.0 , 1.52 1.71: 1.95 2.21 2.51 2.83 3.17 3.53 3.90 4,29 4.69 5.53 6.41 7.32 8.26 9.21
Sliaded values indicate ttie value is based on the greatest available strength permitted by AISC Specification
Sections J2.4. J2.4(a), J2.4{b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-84 DESIGN CONSIDERATIONS FOR WELDS
Tables-?
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle-0°
Available strength of a weld group, <|)ffnOr fl^/n, is determined wltti
fl„=CCiO/ ((|) = 0,75, Q = 2.00)
LRFD ASO
^min ~
p,,
(|)C|D/
^min —
Pu , ^ Pu
i^Cil """ ^CCiD
Cmiij
qPg
C,D1
Dmin ~
ilPg
CCxl
Lnin ~
aPa
CCiD
where
P = required force, P„or Pa, kips
D = number of sixteehths-of-an-inch in the fillet weld size
I = characteristic length of weld group, in.
a = Bx/I
ex = horizontal component of eccentricilv of P
with respect to centroid of weld group. In.
C = coefficient tabulated below
C, = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
—^—
kl
+
"1
P
•.'•I
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 5.57 5,68 6.20 6.51 6.83 7.15 7,46 7J& 8.09 .8.41 8.72 9.35 9.98 10.6 11.2 11.9
0.10 4.32 4.68 5,08 5.54 6.02 6.49 6:95 7.40, 7.82 8.23 8.62 9.37 10.1 10.8 11.5 12.1
0.15 3.90 4.24 4.65 5.08 5.55 6.04 6.52 7.00 7.47 7.92 8.36 9.18 9.96 10.7 11.4 12.1
0.20 3.54 3.86 4.26 4.69 5.14 5.61 6.10 6.60 7.08 7.56 8.03 8.92 9.76 10.6 11.3 12.1
0.25 3.22 3.53 3.91 4.34 4.77 5.23 5.71 6.20 6.69 7.19 7;67 8,61 9.50 10.3 11.2 12.0
0.30 2.94 3.24 3,60 4.01 4.44 4,88 5.35 5.83 6.32 6.82 7.31 8.27 9.20 10.1 11.0 11.8
0.40 2.48 2.76 3.09 3.46 3.87 4.30 4.73 5.18 5.65 6.13 6.62 7.60 8.57 9.52 10.4 11.3
O.SO 2.14 2.38 2.69 3.03 3.40 3.80 4;21 4.64 5.07 5.53 6.00 6.96 7.93 8.90 9.85 10.8
0.60 1.87 2.09 2.37 2.68 3.02 3.39 3.78 4.18 4.59 5.02 5.46 6.38 7.34 8.30 9.26 10.2
0.70 1.65 1.86 2.11 2.40 2.71 3.05 3.41 3.79 4.18 4.58 5.00 5.87 6.79 7.73 8.69 9.64
0.80 1.48 1.67 1,90 2.16 2.45 2.77 3.10 3.46 3:82 4.20 4.60 5.42 6.30 7.21 8.14 9.09
0.90 1.34 1.51 1.73 1.97 2.24 2,53 2.84 3.17 3.52 3.88 4.25 5.03 5.86 6.73 7.64 8.56
1.0 1.22 1.38 1.58 1.81 2.06 2.33 2.62 2.92 3.25 3.59 3.94 4.68 5.47 6.31 7.18 8.07
1.2 1.04 1.17 1.35 1.55 1.76 2.00 2.26: 2.53 2.82 3.12 3.43 4.10 4.81 5.57 6.37 7.21
1.4 0.900 1.02 1.17 1.35 1.54 1.75 1.98 2.22 2.48 2.75 3.03 3.64 4.29 4.98 5.71 6.48
1.6 0.794 0.902 1.04 1.19 1.37 1.56 1.76 1.98 2.21 2.45 2.71 3.26 3.85 4.48 5.16 5,85
1.8 0.710 0.807 0.930 1.07 1.23 1.40 1.59 1.78 1.99 2.22 2.45 2.95 3.49 4.08 4.69 5,33
2.0 0.643 0.731 0.842 0.972 1.12 1.27 1.44 1.62 1.81 2.02 2.23 2,69 3.19 3.73 4.30 4,89
2.2 0.586 0.667 0.770 0.888 1.02 1.17 1.32 1.49 1.66 1.85 2.05 2,48 2.94 3.44 3.97 4,51
2.4 0.539 0,613 0.708 0.818 0.941 1.07 1.22 1,37 1.54 1.71 1.89 2,29 2.72 3.18 3.68 4,19
2.6 0.498 0.568 0.656 0.758 0.872 0.996 1.13 1.27 1.43 1.59 1,76 2.13 2.53 2.97 3.42 3.90
2.8, 0.464 0.528 0.611 0.706 0.812 0.929 1.05 1.19 1.33 1.48 1.64 1.99 2.37 2.77 3.20 3.65
3.0 0.434 0.494 0.571 0.661 0.760 0.870 0.988 1.11 1.25 1.39 1.54 1.87 2.22 2.60 3.01 3.43
Shaded values indicate the value Is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES, 8-85
Table 8-7 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15"
Available strength of a weld group, ^Rn or fln/n. is determined with
f!n=-CC^DI (i|) = 0.75, n = 2.00)
LRFO ASD
_ Pu
^C^Dl
Pu I - P-
Cmin ~
O-Pg
CxDl
Dmin ~
ClPg
CC|/
Imin —
aPa
CC,D
where
P = required force, P„ or P^, kips
D = number of sixteenths-of-an-inch in the fillet weid size
/ = characteristic length of weld group, in.
a = Bx/I
ft = horizontal component of eccentricilv of P
with respect to centroid of weld group, in,
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0forE70XX electrodes)
e„=s/ P
k!
•f
/
15'
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 5.47 5.83 6.22 6.60 li.9:l 7.37 7.76 8.14 8.53 8.91 9.30 10.1 108 11.6 12 4 13.1
0.10 4.38 4.75 5.14 5.59 6.06 6.54 7.02 7.48 7.93 8.38 8.82 9.67 10.5 11.3 12.1 12.9
0.15 3.97 4.32 4.71 5.13 5.60 6,09 6.58 7.07 7.55 8.01 8.47 9.35 10.2 11.0 11.8 12.7
0.20 3.60 3.94 4.32 4.75 5.19 5,67 6.16 6.66 7.16 7.64 8.12 9.05 9.93 10.8 11.6 12.4
0.25 3.29 3.60 3.98 4.39 4.84 5,29 5.77 6.27 6.77 7.27 7.76 8.72 9.65 10.5 11.4 12.2
0.30 3.01 3.31 3.67 4.07 4.51 4.95 5.42 5.91 6.40 6.90 7.40 8.39 9.34 10.3 11.2 12.0
0.40 2.55 2,82 3.16 3.53 3.94 4.37 4.81 5.26 5.74 6.22 6.72 7.71 8.70 9.67 10.6 11.5
0.50 2.20 2.45 2.75 3.10 3.47 3.87 4.30 4.73 5.17 5.63 6.10 7.08 8.06 9.05 10.0 11.0
0.60 1.92 2.15 2.43 2.75 3.09 3.46 3.86 4.27 4,69 5.12 5.57 6.50 7.46 8.44 9.41 10.4
0.70 1.71 1.91 2.17 2.46 2.78 3.12 3.49 3.88 4.28 4.69 5.11 5.99 6.92 7.87 8.83 9.79
0.80 1.53 1.72 1.95 2.22 2.52 2.84 3.18 3.54 3.92 4.31 4.71 5.54 6.42 7.34 8.28 9.23
0.90 1.38 1.56 1.78 2.03 2.30 2.60 2.92 3.25 3.61 3.98 4.35 5.15 5.99 6.86 7.77 8.70
1.0 1.26 1.42 1.63 1.86 2.12 2.39 2.69 3.01 3.34 3.69 4.05 4.80 5.59 6.44 7.31 8.20
1.2 1.07 1.21 1.39 1.59 1.82 2.06 2.32 2.60 2.^0 3.21 3.53 4.21 4.93 5.70 6.48 7.30
1.4 0.931 1.05 1.21 1.39 1.59 1.81 2.04 2.29 2.55 2.83 3.12 3.74 4.40 5.09 5.80 6.56
1.6 0.822 0.932 1.07 1.23 1.41 1.61 1.82 2.04 2.28 2.53 2.79 3.36 3.96 4.60 5.25 5.93
1,8 0.735 0.834 0.961 1.11 1.27 1.45 1.64 1.84 2.06 2.29 2.53 3.04 3.59 4.18 4.78 5.42
2.0 0.665 0.755 0.870 1.00 1,15 1.31 1.49 1.68 1.87 2.08 2.30 2.78 3.29 3.83 4.39 4.98
2.2 . 0.607 0.690 0.795 0.918 1.05 1.20 1.37 1.54 1.72- 1.91 2.12 2.55 3.03 3.53 4.05 4.60
2.4 0.558 0.634 0.732 0.845 0.972 1.11 1.26 1.42 1.59 1.77 1.96 2.36 2.80 3.27 3.76 4.27
2.6 0.516 0,587 0.678 0.783 0.901 1.03 1.17 1.32 1.47 1.64 1.82 2.20 2.61 3.05 3.50 3.99
2.8 0.480 0.546 0.631 0.730 0.840 0.960 1.09 1.23 1.38 1.53 1.70 2.05 2.44 2,85 3.28 3.73
' 3.0 0.449 0.511 0.591 0.683 0.786 0.899 1.02 1.15 1.29 1.44 1.59 1.93 2.29 2.67 3.08 3.51
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-86 DESIGN CONSIDERATIONS FOR WELDS
Table 8^7 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
Available strength of a weld group, (jifl^ or R„/Q, is determined with
fi„= CCiD/ {(|) = 0.75, 0 = 2.00)
LRFD ASD
^min ~ J./-, r\i ^min ~
Pu
it>C|D/ ^CCxl (|)CC|£>
Cmin ~
ClPg
CxDl
Diniii —
ClPg
CC,/
Imiii ~
^Pa
CC,D
where
P = required force, P„ or Pa, kips
D = number of sixteenths-of-an-inch in the fillet weld size
I = characteristic length of weld group, in.
a =e,//
ex = horizontal component of eccentricity of P
with respect to centroid ot weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0forE70XX electrodes)
e^-al
kl i
I
: ^
A"'
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
fl.OO 5.21. 5.58 6.01 6.45 6.89 7.33 7.76 8.20 8.64 9.07 9.51 10.4 11.3 12.1 13.0 13,9
0.10 4.49 4.93 5.36 5.81 6.28 6.77 7.26 7.75 8.24 8.72 9.20 10.1 11.1 12.0 12.9 13.8
0.15 4.09 4.51 4.94 5.38 5.84 6.32 6.82 7.33 7.84 8.35 8.85 9.83 10,8 11.7 12.7 13.6
0.20 3.76 4.15 4.56 4.99 5.43 5.90 6.40 6.91 7.42 7.94 8.46 9.47 10.5 11.4 12.4 13.3
0.25 3.47 3.83 4.22 4.64 5.07 5.52 6.01 6.51 7.03 7.55 8.06 9.09 10.1 11.1 12.1 13.0
0.30 3.21 3.54 3.92 4.32 4.75 5.20 5.67 6.16 6.67 7.19 7.70 8.73 9.75 10.8 11.7 12,7
0.40 2.76 3.06 3.40 3.77 4.19 4.62 5.08 5.55 6.03 6.53 7.03 8.06 9.08 10.1 11.1 12,1
0.50 2.40 2,67 2.98' 3.33 3.72 4.14 4.57 5.02 5.48 5.95 6,44 7.43 8.44 9.45 10.4 11.4
0.60 2.11 2.35 2.64 2.98 3.34 3.73 4.14 4.56 5.00 5.45 5.91 6.87 7.85 8.82 9.81 10.8
0.70 1.88 2.10 2.37 2.68 3.02 3.38 3.77 4.17 4.59 5.02 5.46 6.37 7.29 8.24 9.20 10,2
0.80 1,69 1.89 2,14 2.43 2.75 3.09 3.45 3.83 4.22 4.63 5,05 5.92 6,80 7.71 8.64 9.59
0.90 1.53 1.72 1.95 2.22 2.52 2.84 3.18 3.53 3.91 4.30 4,70 5.52 6.36 7.23 8.13 9.05
1.0 1.40 1.57 1.79 2.04 2.32 2.62 2.94 3,28 3.63 4.00 4,38 5.17 5,96 6.79 7.66 8.56
1.2 1.19 1.34 1.53 1.76 2.00 2.27 2.55 2,85 3.17 3.50 3.85 4.56 5.30 6.05 6.84 7.68
1.4 1.03 1.17 1.34 1.54 1.76 2.00 2.25 2.52 2.81 3.11 3.42 4.07 4.75 5.45 6.17 6,94
1.6 0.914 1.03 1.19 1.37 1.56 1.78 2.01 2,25 2.51 2.79 3.07 3.67 4.30 4.94 5.61 6,32
1.8 0.818 0.927 1.07 1.23 1.41 1.60 1.81 2.04 2.27 2.52 2.78 3.33 3.92 4,51 5.14 5.80
2.0 0.740 0.840 0.966 1.11 1.28 1.46 1.65 1.86 2.07 2.30 2.54 3.05 3.59 4.15 4.74 5.35
2.2 0.675 0.767 0.884 1.02 1.17 1.34 1.51 1.70 1.90 2.12 2.34 2.81 3.31 3.83 4.39 4.97
2.4 0.621 0.706 0.814 0.939 1.08 1.23 1.40 1.57 1.76 1.96 2.16 2.61 3.07 3.56 4.08 4.63
2.6 0.575 0.653 0.754 0.871 1,00 1.14 1.30 1.46 1.64 1.82 2,01 2.43 2.87 3.32 3.81 4.33
2.8 0.535 0.608 0.702 0.812 0.934 1.07 1.21 1.37 1.53 1.70 1.88 2.27 2.G8 3.11 3.57 4.06
3.0 0.500 0.569 0.657 0.760 0.874 1.00 1.14 1.28 1.43 1.59 1,77 2.13 2.52 2.93 3.36 3.83
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4{a), J2.4(b) and J2.4{c).
AMERICAN INSTITUTE .OF STEEL CONSTRUCTION

DESIGN TABLES, 8-87
Table 8-7 (continued)
Coefficients, C,
for Eccentricaliy Loaded Weld Groups
Angle = 45°
Available strength of a weld group, or fl„/n, is determined with
/7„=CC,D/ ((|) = 0.75, Q = 2,00)
LRFD ASD
•^CiDl
Dniin —
(t)CC|/
f-nnn ~
(1>CC|D
JUjl
CiDl
r, _ SlPa , , _ O.P,
^niiii— J hnin — '
Where
P = required force, fij or Pa; kips
D = number of sixteenttis-of-an-inch in the fillet weld size
/ = characteristic length of weld group, in.
a = e,/l
Bx = liorizontal component of eccentricity of P
with respect to centroid of weld group, In.
C = coefficient tabulated below
Cf = electrode strength coefficient from Table 8-3
(1,0 for E70XX electrodes)
kl
-^45'
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 482 5.14 5.61 6.08 6.54 7;oi 7.48 7.S5 8.41 8.88 9.35 10.3 11.2' 12.2 13.1 14.Q-
0,10 4.49 4,99 5.48 5.96 6.45 6,94 7.43 7.92 8.41 8.90 9.39 10,4 11.4 12.3 13.3 14,3
0.15 4.18 4.69 5.19 5.67 6.16 6.65 7.15 7.65 8.15 8.65 9.14 10.1 11.1 12.1 13,1 14,1
0.20 3.92 4.39 4.87 5.36 5.84 6.33 6.83 7.33 7.84 8.34 8.85 9.86 10.9 11.9 12.9 13:9
0.25 3.70 4.13 4.58 5.05 5.52 6.01 6.50 7.00 7.50.; 8.02 8,53 9.54 10.6 11.6 12.6 13.6
0.30 3.49 3.89 4.32 4.76 5.22 5.70 6.18 6.67 7.18 7,69 8,20 9.21 10.2 11.3 12,3 13.3
0.40 3.10 3.45 3,84 4.25 4.68 5,13 5.60 6.0/ 6.56 7.06 7,57 8.56 9.57 10.6 11,6 12,7
0.50 2.75 3.07 3,42 3.81 4.22 4,65 5.10 5.56 6.03 6.52 7.01 7.96 8.94 9.96 11.0 12.0
0.60 2.46 2.75 3.08 3.44 3.83 4.24 4.67 5.11 5.58 6.05 6,52 7.43 8.38 9.37 10,4 11.4
0.70 2.21 2.48 2,78 3.12 3.49 3.88 4.30 4.73 5.17 5,62 6.08 6.96 7.87 8.83 9.81 10,8
0.80 2.01 2.25 2.53 2.85 3.20 3.57 3.97 4,39 4.81 5.25 5.69 6.54 7,42 8.34 9.29 10,3
0.90 1.83 2.06 2:32 2.62 2.95 3.31 3.69 4.08 4.49 4.91 5.33 6.16 7,01 7,89 8.81 9,76
1.0 1.68 1.89 2.13 2.42 2.73 3.08 3.44 3,81 4.20 4.60 5.01 5.81 6.63 7.48 8.38 9,30
1.2 1.44 1.62 1.84 2.10 2.38 2.69 3.02 3,36 3.71 4.08 4.46 5.20 5.97 6.77 7.60 8,47
1.4 1.25 1.41 1.61 1.84 2.10 2,38 2.68 2.99 3.32 3.65 4.00 4,69 5.41 6,17 6.95 7,76
1.6 1.11 1.25 1.43 1.64 1.88 2.13 2.40 2.69 2.99 3.30 3.62 4.27 4.94 5,65 6.38: 7.15
1.8 0.996 1.13 1,29 1.48 1.70 1.93 2.18 2.44 2.72 3.00 3.30 3.90 4.53 5,20 5.89 6,62
2.0 0.902 1.02 1.17 1.35 1.55 1,76- 1.99 2.23 2.49 2.75 3.03 3,59 4.18 4,81 5.46 6,15
2.2 0.824 0.934 1.07 1.24 1.42 1.62 1.83 2.06 2.29 2.54 2.80 3.32 3.88 4.47 5.09 5,74
2.4 0.758 0.860 0.990 1.14 1.31 1.49 1.69 1.90 2.12 2.36 2.60 3.09 3.62 4,17 4.76 5,37
2.6 0.702 0.797 0.918 1.06 1,22 1.39 1.57 1.77 1,98 2.19 2.42 2.89 3,38 3.91 4.46 5.05
2.8 0.653 0.742 0.855 0.987 1.14 1.30 1.47 1.66 1.85 2.05 2.27 2.71 3.18 3.67 4.20; 4.76
3.0 0.611 0.694 0.801 0.925 1,06 1.22 1.38 1.55 1.74 1.93 2.T3 2.55 2.99 3.47 3.97 4.50
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-88 DESIGN CONSIDERATIONS FOR WELDS
Table 8-7 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
Available strength of a weld group, or is determined with
R„=Ca,DI {41 = 0.75, a = 2.00)
LRFD ASD
Cniin ~
P.
(^CiDl
Omiii -
Pg I _ PII
(fCCiJ ifCCiD
Cmin ~
O-Pg
C\Dl
Dniin —
qPg
CCd
I - ^Po
where
P = required force, Pu or Pa. I<ips
D = number of sixteenttis-of-an-inch in the fiilet weld size
I = characteristic length of weld group, in,
a = ex/I
ex = horizontal component of eccentricity of P ,
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
kl
1
+
1
60'
a
0 0.1 0.2 0.3 0.4 0.5 .0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 4.37 4.89 '5.40 5.91 6.43 6.94 7.46 7.97 8.48 9.00 9.51 1f5.5 11.6 12.6 13.6 14:7
0.10 4.26 4.79 5.31 5,82 6.34 6.85 7.37 7.88 8.40 8.91 9.43 10.5 11,5 12.5 13.6 14.6
0;15 4.12 4.67 5.19 5,71 6.22 6.73 7.24 7.75 8.26 8.77 9.28 10.3 11.3 12.4 13.4 14.5
0.20 3.97 4.51 5.05 5,57 6.07 6.58 7.08 7.58. 8.09 8.59 9.10 10.1 11.-1 12:2 13.2 14.2
0.25 3.86 4.36 4.88 5,39 5.90 6.40 6.90 7.39 7.89 8.39 8.89 9.90 10.9 11.9 13.0 14.0
0.30 3.74 4.22 4.72 5.22 5.72 6.21 6.70 7.19 7.68 8.17 8.67 9.67 10.7 11.7 12:7 13.8
0.40 3.51 3.94 4.40 4.88 5.36 5.84 6.32 6.79 7.25 7.73 8.21 9.19: 10.2 11.2 12.2 13.3
0.50 3.26 3.66 4.09 4.54 5.00 5.47 5.94 6.40 6.86 7.32 7.78 8.73 9.70 10.7 11.7 12.7
0.60 3.02 3.39 3.79 4.21 4.66 5.11 5.57 6.03 6.48 6.93 7.38 8.30 9.25 10.2 11.2 12.2
0.70 2.80 3.14 3.51 3.91 4.33 4.77 5.23 5.68 6.12 6.56 7.01 7.91 .8.84 9.78 10.8 11.8
0.80 2.59 2.91 3.26 3.64 4.04 4.47 4.90 5.35 5.79 6.22 6.65 7.54 '8.45 9.38 10.3 11.3
0,90 2.40 2.70 3.03 3.39 3.78 4.19 4,61 5.05 5,48 5.90 6.33 7.20 8.09 9.01 9.95 10.9
1.0 2.23 2.51 2,82 3.17 3.54 3.93 4:34 4.77 5,20 5.61 6.03 6.88 7.76 8.67 9.59 10.5
1.2 1.94 2.19 2.47 2.79 3.13 3.50 3.88 4.28 4,69 5.09 5.49 6.31 7.15 8.02 8.92 9.84^
1.4 1.72 1.94 2.19 2.48 2.80 3.14 3.50 3.88 4,27 4.64 5.02 .5.80 6.61 7.45 8.31 9,20;
1.6 1.53 1.73 1.96 2.23 2.52 2.85 3.19 3.54 3,90 4.26 4.62 5.36 6.13 6.94 7.77 8.62^
1.8 1.38 1.56 1.77 2.02 2.30 2.60 2.92 3.25 3.59 3.92 4.26 4.97 5.71 6.4e 7.28 8.10
2.0 1.25 1.42 1.62 1.85 2.11 2.39 2.69 3.00 3.32 3.63 3.96 4.62 5.33 6.07 6.83 7.63
2.2 1.15 1.30 1.49 1.70 1.94 2.21 2.49 2.78 3.08 3.38 3.68 4.32 4.99 5.70 6.43 7.20
2;4 1,06 1.20 1.37 1.58 1.80 2,05 2.31 2.59 2.87 3.15 3.44 4.05 4.69 5.37 6.07 6.81
2.6 0.983 1.11 1.28 1.47 1.68 1.91 2.16 2.42 2,69 2.96 3.23 3.81 4.42 5.07 5.75 6.45
2.8 0:917 1.04 1.19 1.37 1.57 1.79 2.03 2.27 2.53^ 2.7S: 3.04 3:59 4.18 4.80 5.45 6.13
3.0 0.858 0:973 1.12 1.29 .1.48 1.69 1.91 2.14 2:38 2.62: 2.87 3.40 3.96 4.55 5.18 5:84
Shaded values indicate the value is based on the'greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4{b) and J2.4(c).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES
Table 8-7 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
Available strength of a weld group, ifRn or fl„/£2, Is determined with
R„=CC^DI ((t) = 0.75, a = 2.00)
LRFD
Cmin — Dniin —
P. Pu
ASD
qPg
CiDl
Dm,I ~
O-Pa
CCil
ilPa
cc,o
where
P = required force, P„ or Pa, l<ips
0 = number of sixteenths-of-an-inch in tfie fillet weld size
1 = characteristic length of weld group, in.
a = Sx/I
ex = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C a coefficient tabulated below
C, = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
kl
t-
1
75'
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0,7 0.8 0.9 1.0 1,2 1.4 1.6 1.8 2.0
0.00 3.96' 4.'39 4.94 5.48 6.03 6.57 7:12 7.66 8.21 8.75 •9.30 10.4 11.5 12.6 13,7 14.7
0.10 3.82^ 4.36 4.90 5.44 5.99 6.53 7.07 7.62 8.16 8.70 9.25 10.3 11.4 12.5 13.6 14.7
0.15 3.85 4.32 4.86 5.41 5.95 6.49 7.03 7.57 8.11 8.65 9.20 10,3 11.4 12.4 13.5 14.6
0.20 3.84 4.26 4.81 5.36 5.90 6.44 6.98 7.52 8.05 8.59 9.13 10.2 11.3 12.4 13.4 14.5
0.25 3.83 4.23 4.75 5.30 5.84 6.38 6.91 7.45 7.98 8.52 9.05 10.1 11.2 12.3 13.3 14.4
0.30 3.82 4.22 4.72 5.24 5.77 6.30 6.84 7.37 7.90 8.43 8.96 10.0 11.1 12.1 13.2 14.3
0.40 3.78 4.21 4.68 5.18 5.68 6.18 6.69 7.21 7.72 8.24 8.76 9.81 10.9 11.9 13.0 14.0
0.50 3.72 4.17 4.63 5.11 5.59 6,08 6.57 7.07 7.57 8.07 8.58 9.59 10.6 11.7 12.7 13.7
0.60 3.65 4.10 4.56 5.02 5.49 5.96 6.44 6.92 7.41 7.90 8.40 9.39 10.4 11.4 12.4 13.5
0.70 3.56 4.00 4.46 4.91 5.37 S.83 6.30 6.77 7.25 7.73 8.21 9.19 10.2 11.2 12.2 13.2
0.80 3.46 3.89 4.34 4.78 5.23 5.69 6.14 6.61 7.07 7.54 8.02 8.98 9.96 10.9 11.9 12.9
0.90 3.35 3.76 4.20 4.65 5.09 5.54 5.98 6.44 6.90 7.36 7.83 8.77 9.74 10.7 11.7 12.7
1.0 3.23 3.64 4.06 4.51 4.94 5,38 5.82 6.27 6.72 7.17 7.63 8.57 9.52 10.5 11.5 12.5
1.2 3.00 3.38 3,79 4.21 4.64 5.06 5.49 5.92 6.36 6.80 7.25 8.16 9.10 10.0 11.0 12.0
1.4 2.78 3.13 3.51 3.92 4.34 4.75 5.17 5.59 6.01 6.44 6.88 7.77 8.69 9.62 10.6 11.5
1.6 2.57 2.90 3.26 3.64 4.05 4.46 4.86 5.27 5.69 6.11 6.53 7.41 8.30 9.22 10.2 11.1
1.8 2.38 2.69 3.02 3.39 3.78 4.19 4,58 4,98 5.38 5.79 6,21 7,06 7.94 8.85 9.77 10.7
2.0 2.21 2.50 2.81 3.16 3.54 3.93 4.32 4.70 5.10 5.50 5,90 6.74 7.61 8.49 9.40 10,3
2.2 2.05 2.32 2.63 2.96 3.32 3.70 4.08 4.45 4.84 5,23 5.62 6.44 7.29 8.16 9.06 9.97
2.4 1.92 2.17 2.46 2.77 3.12 .3.48 3.86 4.22 4.59 4.97 5.36 6.16 7.00 7.85 8.74 9.64
2.6 1.80 2.03 2.30 2.61 2.94 3.29 3.66 4.01 4.37 4.74 5.12 5.91 6.72 7,56 8.43 9.32
2.8 1.69 1.91 2.17 2.46 2.78 3.12 3.47 3.82 4.17 4.53 4.90 5.66 6.46 7.29 8.14 9.01
3.0 1.59 1.80 2.05 2.32 2.63 2.96 3.30 3.64 3.98 4.33 4.69 5.44 6.22 7,02 7.86 8.71
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4{a), J2.4(b) and J2,4{c). ,
AMERICAN INSTITUTE OF STEEL CON^RUCTION

8-90 DESIGN CONSIDERATIONS FOR WELDS
Table 8-8
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
Available strength of a weld group, or R„IC1, Is determined with
fl„=CCiW ((|> = 0.75, n = 2.00)
LRFO ASO
^inin ~
Pu
(fCiDf
^min ~
Pu
Iniin —
Pu
Cmiii ~
ClPg
C,Dl
Dmiii -
qPg
CCil
aPa
CCiD
where
P = required force, P„ or Pa, kips
D = number of sixteenths-of-an-inch in tlie fillet weld size
I = characteristic length of weld group. In.
a = sx/l
Bx = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
a
k
a
0 0.1 0.2 0.3 0.4 o.s 0.6 0.7 0.8 0.9 1.0 1.2 1,4 1,6 1,8 2.0
0.00 1.86 2.23 2,69 3.25 3.80 4.36 4.92 5.47 6.03 6.59 7.15 8.26 9.37 10.5, 11.6 12.7
0.10 1.86 2.28 2,78 3.30 3.83 4.37 4.92' 5.46 6.01 6.56 7.11 8.22 9,32 10.4 11.5 12.7
0.15 1.83 2.25 2.73 3.23 3,75 4.27 4.80 5.33 5.87 6.41 6.94 8.02 9.11, 10.2 11.3 12.4
0.20 1.76 2.18 2,63 3.11 3.60 4.11 4.61 5.13 5.64 6.16 6.68 7.72 8.77, 9.83 10.9 12.0
0.25 1.66 2.07 2.51 2.96 3,42 3.90 4.38 4.87 5.37 5:86 6,36 7.37 8.39 9.42 10.5 11.5
0.30 1.55 1.95 2.36 2.79 3,23 3.68 4.14 4.60 5.08 5.55 6.03 7.01 8.00 9.00 10.0 11.0
0.40 1.33 1.69 2.07 2.45 2.84 3.24 3.65 4.07 4.50 4.94 5,39 6.30 7.24 8.19 9.16 10.1
0.50 1.15 1.46 1.79 2.14 2.49 2.85 3.22 3.60 4.00 4.40 4.82 5.67 6.56 7.47 8.40 9.35
0.60 0.999 1.27 1.57 1.88 2.19 2.52 2.85 3.20 3.57 3.94 4.33 5.13 5.97 6.84 7.74 8.65
0.70 0.879 1.12 1.38 1.66 1.95 2.24 2.55 2.87 3.20 3.55 3.91 4.66 5.46 6.29 7.15 8.04
0.80 0.783 0.996 1.23 1.48 1.75 2.02 2.30 2.59 2.90 3.22 3.56 4.27 5.02 5.82 6.64 7.50
0.90 0.704 0.896 1.11 1.34 1.58 1.83 2.09 2.36 2.65 2.95 3.26 3.93 4.65 5.40 6.19 7.01
1,0 0.639 0.813 1.00 1.21 1.44 1.67 1.91 2.16 2.43 2.71 3.01 3.64 4.31 5.03 5.78 6.56
1.2 0.538 0.684 0.845 1.02 1.21 1,42 1.63 1.85 2.08 2.33 2.59 3.15 3.75 4.39 5.07 5.79
1.4 0.464 0.589 0.729 0.883 1.05 1.23 1.42 1.61 1.82 2.04 2.27 2.77 3.31 3.89 4.50 5.15
1.6 0.408 0.517 0.640 0.775 0.924 1.09 1.25 1.43 1.61 1.81 2.02 2.46 2.95 3.48 4.04 4.64
1.8 0.363 0.461 0.570 0.691 0.825 0.970 1.12 1.28 1.45 1.62 1.81 2.22 2.66 3.14 3.66 4.21
2.0 0.328 0.415 0.514 0.623 0.744 0.877 1.01' 1.16 1.31 1.47 1.64 2.01 2.42 2.86 3.34 3.85
2.2 0.298 0.378 0.468 0.567 0.678 0.800 0.926 1.06 1.20 1.35 1.50 1.84 2.22 2.62 3.07 3.54
2.4 0.274 0.347 0,429 0.521 0.623 0.735 0.852 0.973 1.10 1.24 1.38 1.70 2.04 2.42 2.84 3.28
2.6 0.253 0.320 0.396 0.481 0.576 0.680 0.788 0.901 1.02 1.15 1.28 1.57 1.90. 2.25 2.64 3.05
2.8 0.235 0.297 0.368 0.447 0.535 0.632 0.734 0.839 0.950 1.07 1.19 1.47 1.77 2::10 2.46 2.85
3,0 0.219 0.278 0.343 0.417 0.500 0.591 .0.686 0.784 0,889 1.00 1.12 1.37 1.66 1.97 2.31 2.68
0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
AMERICAN INSTITUTE .OF STEEL CONSTRUCTION

DESIGN TABLES <•-91
Table 8-8 (continued)
Coefficients, G,
for Eccentrically Loaded Weld Groups
Angle = 16° -
Available strength of a weld group, or R„!ii, Is determined with
fl„=CCi £?/((!) = 0.75, n = 2.00)
LRFD ASO
r • - fi' n . -
((QDl
^min """
p.
ifCC\D
SHjl
CiDl
I^m 'm ~
OPc,
CC^l
^niin ~
CCiD
wliere
P ~ required force, Pu or Pa, Wps
D = number of sixteenths-of-an-inch In the fillet weld size
/ = characteristic lengtli of weld group, iii,
a = ex/I .
= liorijontal component of eccentricity of P
with respect to centroid of weld group, In.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table S-3
(J.Ofor E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
c.g.
15'
y
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2,0
0.00 1,98 2.47 3.01 3.56 4.10 4.65 5.19 5.74 6.28 6.83 7.37 8.46 9.55 10.6 ' 11.7' 12.8.
0.10 1.90 2.35 2.87 3.41 3.95 4.50 5.05 5.60 6.15 6.70 7.24 8.34 9.43 ^ 10.5 11.6 12.7
0.15 1.84 2.30 2.79 3.30 3.81 4.33 4.86 5.39 5.92 6.45: 6.98 8.06 9.13 10.2 11.3 12.4
0.20 1.76 2.21 2.68 3.16 3.65 4.15 4.65 5.16 5.67 6.18 6.69 7.72 8.76 9.80 10.9 11.9
0.25 1.65 2.08 2.54 3.00 3.47 3.94 4.42 4.91 5.39 5.89 6.38 7.38 8.39 9.40 10.4 11.5
0.30 1.55, 1.95 2.39 2.82 3.27 . 3.72 4.18 4.64 5.11 5.58 6.06 7.03 8.01 9.00 10.0 11.0
0.40 1.34 1.69 2.07 2.47 2.88 3.28 3.70 4.12 4.55 4.99 5.43 6.34 7.27 8.23 9.19 10.2
0,50 1.16 1.47 1.80 2.16 2.53 2.89 3.27 3.66 4.05 4.46 4.87 5.73 6.62 7.53 8.46 9.41
0.60 1.01 1.28 1.58 1.89 2.23 2.56 2.91 3.26 3.63 4.00 4.39 5.20 6.04 6.91 7.81 8.73
0.70 0.895 1.13 1.40 1.68 1.98 2.29 2,60 2.93 3.27 3.62 3.98 4.74 b.54 6.38 7.24 8.13
0.80 0.799 1.01 1.25 1.50 1.77 2.06 2,35 2.65 2.96 3.29 3,63 4.35 5.11 5.91 6.74 7.60
0.90 0.720 0.912 1.12 1.35 1.60 1.87 2,14 2.42 2.71 3.01 3.33 4.01 4.74 5.50 6,29 7.11
1.0 0.654 0.829 1.02 1.23 1.46 1.70 1.96 2.22 2.49 2.78 3.08 3.72 4.40 5.12 5.88 6.67
1.2 0.552 0.700 0.863 1.04 1.24 1.45 1.67 1.90 2.14 2.40 2,66 3.23 3.84 4.49 5.18 5.90
1.4 0.477 0.604 0.746 0.902 1.07 1.26 1.46 1.66 1.87 2.10 2.34 2.84 3.39 3.98 4.61 5.27
1.6 0.420 0.531 0.656 0.794 0.946 1.11 1.29 1.47 1.68 1.86 2.08 , 2.53 3.03 3.57 4.14 4.75
1.8 0.374 0.474 0,585 0.709 0.845 0.995 1.16 1.32 1.49 1.68 1.87 ^ 2.28 2.74 3.23 3.75 4.32
2.0 0.338 0.427 0,528 0.640 0.764 0.900 1.05 1.19 1.35 1.52 1.70 2.08 2.49 2.94 3.43 3.95
2.2 0.308 0.389 0.481 0.583 0.696 0.822 0.956 1.09 1.24 1.39 1.55 1.90 2.28 2.70 3.16 3.64
2.4 0.282 0.357 0.441 0.535 0.640 0.756 0.880 1.00 ,1.14 1.28 1.43 1.75 2.11 2.50 2.92 3.37
2.6 0.261 0.330 0.408 0.495 0.592 0.699 0.814 0.931 1.05 1.19 1.32 1.63 1.96 2.32 2.72 3.14
2.8 0.242 0.307 0.379 0.460 0.551 0.651 0.758 0.866 0.982 1.10 1.23 1.51 1.83 2.17 2.54 2,94
3.0 0.226 0,286 0.354 0.430 0.515 0.609 0.709 0.810 0.918 1.03 1.15 1.42 1.71 2.03 2.38 2.76
* 0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-92 DESIGN CONSIDERATIONS FOR WELDS
Table 8-8 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30''
Available strength of a weld group, ^Rp or fl„/Q, is determined with
/f„=CCiO/((ti = 0.75, £2 = 2.00)
LRFO ASO
^miii —
Pu
^min ~
(fCCiD
Qiiin ~
qPg
C,Dl
qPg
CCd
n/>
CC,D
where
P = required force, fi/or Pa, kips
D = number of sixteenttis-of-an-incli in the fillet weld size
I = characteristic length of weld group, in.
a = ex/I
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table S-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 2.18 2.70 3.21 3.73 4.24 4.76 5.27 5.78 6.30 6.81 7.33 8.35 9.38 10.4 11.4 125
0.10 2.02 2.57 3.10 3.62 4.14 4.67 5,19 5.71 6,23 6.75' 7.28 8,32 9.37 10.4 11.5 12.5
0.15 1.92 2.43 2.95 3.47 3.98 4.49 5.00 5.52 6,03 6.54 7.05 8,09 9.12 10.2 11.2 12.2
0.20 1.82' 2.29 2.79 3.29 3.78 4.28 4.77. 5.27 5,77 6.27 6.77 7.78 8,80 9.83 10.9 ^ 11.9
0.25 1.71 2.15 2.62 3.10 3,58 4.06 4,53 5.01 5.49 5.97. 6.46 7,45 8,45 9.47 10.5 11.5
0.30 1.61 2.01 2.45 2.91 3.37 3.83 4.29 4.75 5.21 5.68 6.15 7,11 8.09 9.10 : 10.1 ^ 11.1
0.40 1.41 1.76 2.15 2.55 2.97 3.40 3.83 4.26 4.69 5.13 5.57 6.49 7.42 8.38 ' 9.36 10.4
0.50 1.23 1.54 1.88 2.24 2,62 3.01 3.41 3.81 4.22 4.63 5.05 5.92 6.82 7.74 8.68 9.65
0.60 1.08 1,36 1.66 1.99 2.33 2.68 3.06 3.43 3.81 4.20 4.60 5.42 6.28 7.17 8.09 9.03
0.70 0.964 1.21 1.48 1.77 2.08 2.41 2.75 3.11 3.46 3.83 4.20 4.99 5.81 6.67 7.56 8.47
0.80 0.865 1.09 1.33 1.60 1.88 2.18 2.50 2.83 3.16 3,51 3.86 4.61 5.40 6.22 7.07 7.95
0.90 0.783 0.986 1.21 1.45 1.71 1.99 2.29 2.60 2.91 3,23 3.57 4.28 5.03 5.81 6.63 7.47
1.0 0.714 0.900 1.10 1,33 1.57 1.83 2.10 2.39 2.69 3,00 3.31 3.98 4.70 5.45 6.23 7.04
1.2 0.606 0.764 0.939 1.13 1.34 1.57 1.81 2.07 2.33 2.60 2,89 3.49 4.13 4.81 5.53 ,6.29
T.4 0.525 0.663: 0.815i 0,983 1.17 1.37 1.58 1.81 2.05 2.29 2,55 3.09 3.67 4.30 4.96 5.66
1.6 0.463 0.584 0.719 0.868 1.03 1.21 1.41 1.61 1.82 2.04 2.27 2.77 3.30 3.87 4.49 5.13
1.8 0.414 0.522 0.643 0,777 0.925 1.09 1.27. 1.45 1.64 1.84 2.05 2.50 2.99 3.52 4.09 4.69
2.0 0.374 0.472 0.581 0.703 0.838 0.988 1.15 .1.32 1.49 1.67 1.87 2.28 2.73 3.22 3.75. 4.31
2.2 0.341 0.430 0.530 0.642 0.766 0.903 1.05 1.21 1.37 1.53 1.71 2.09 2.51 2.97 3.46 3.98
2.4 0.313 0.395 0.487 0.590 0.705 0.832 0.970 1.11 1.26 1.41 1.58: 1.93 2.32 2.75 3.21 3.70
2.6 0.289 0.365 0.451 0.546 0.653 0.771 0.899 1.03 1.17 1,31 1.47 1.80 2,16 2i56 2.99 3.45
2.8 0.269 0.340 0.419 0.508 0.608 0.718 0,838 0.960 1.09 1.22 1,37 1.68 2.02 2.39 2,80 3.24
3,0 0.251 0.317 0.392 0.475 0.569 0.672 0,784 0.899 .1.02 1.15 1,28 1.57 1.89 2.25 2.63 3.04
X 0.000 O.OOS 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-93
Table 8-8 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
Available strength of a weld group, or /fn/fi!, Is determined with
Rn=CCiDI {<^==0.75, n = 2.00)
LRFD ASO
^mii] ~
K
(IfCiOl
Dniin —
Pu
i/CCd 4)CC|£) C,D1
^111 in ~~
qPg
cc,i
ilPa
CCiD
where
P = required force, p„ or Pa, kips
D ~ number of sixteentlis-of-an-inch in the fillet weld size
/ = characteristic length of weld group, in.
a =e,//
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tatwiated below
C, = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2,4(a), J2.4(b) and J2.4(c).
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 2 41 280 3.27 3.74 4.21 4.67 5.14 5.61 6.08 6.54 7.01 7.95 8.88 9.82 10.8 11.7
0,10 2.24 2.74 3.24 3.73 4.23 4.73 5.22 5.72 6.21 6.71 7.20 8.19 9.17 10.1 11.1 12.1
0,15 2.09 2.60 3.09 3.58 4.07 4.57 5.06 5.56 6.06 6.55 7,05 8.04 9.03 10.0 11.0 12.0
0.20 1.96 2.44 2.92 3.40 3.88 4.37 4.86 5.36 5.85 6.35 6,84 7.83 8.83 9.82 10.8 11.8
0.25 1.85 2.29 2.75 3.21 3.68 4.16 4.64 5.13 5.62 6.11 6,60 7.58 8.58 9.58 10.6 11.6
0.30 1.74 2.16. 2.59 3.03 3.48 3.94 4.42 4.89, 5.38 5.86 6.34 7.32 8.31 9.32 10.3 11.3
0.40 1.55 1.91 2.30 2.70 3.12 3,55 3.99 4.44 4.91 5.37 5.83 6.77 7.75 8.76 9.77 10.8
0.50 1.38 1.70 2.05 2.42 2.80 3,20 3.62 4.04 4.48 4.93 5.37 6.27 7.22 8.20 9.20 10.2
0.60 1.23 1.52 1.84 2.18 2.53 2.90 3.29 3.70 4.11 4.54 4.96 5.83 6.73 7.68 8.65 9.65
0.70 1.11 1.38 1.66 1.97 2,30 2.65 3.01 3.40 3.79 4,20 4.61 5.44 6.30 7.21 8.15 9.12
0.80 1.00 1.25 1.51 1.80 2.11 2.43 2.77 3.13 3.51 3.91 4.29 5.08 5.91 6,78 7.69 8.64
0.90 0.915 1.14 1.39 1.65 1,94 2.24 2.56 2.91 3.27 3.64 4,01 4.76 5.56 6.39 7.27 8.19
1.0 0.839 1.05 1.28 1.52 1,79 2,08 2.38 2.71 3.05 3.40 3,75 4.47 5.24 6.04 6.89 7.77
1.2 0.719 0.900 1.10 1.31 1.55 1,80 2.08 2.37 2.68 3.00 3.31 3.98 4.68 5.43 6.22 7.04
1.4 0,627 0.786 0.961 1.15 1.36 1.59 1.84 2.11 2.39 2,67 2.96 3,57 4.22 4.91 5.65 6.42
1.6 0.555 0.697 0,854 1.03 1.22 1.42 1.65 1.89 2.15 2.40 2.67 3.23 3.83 4.48 5.16 5.88
1.8 0.498 ,0.625 0.767 0.923 1.10 1.29 1.49 1.72 1.95 2.18 2.42 2,94 3.50 4.10 4.74 5.42
2.0 0.451 0.567 0.696 0.839 0.997 1.17 1.36 1.57 1.78 1.99 ??? 2,70 3.22 3.78 4.38 5.02
2,2 0.412 0.518 0.636 0.768 0.914 1.08 1.25 1.44 1.63 1.83 2.04 2.49 2.97 3.50 4.07 4.67
2.4 0.379 0.477 0.586 0.708 0.844 0.995 1.16 1.33 1.51 1.70 1.89 2.31 2.76 3.26 3.79 4.36
2.6 0.351 0.442 0.543 0.657 0.784 0.924 1.08 1.24 1.40 1.58 1.76 2.15 2.58 3.05 3,55 4,09
2.8 :0.327 0.411 0,506 0.612 0.731 0,863 1,01 1.16 1,31 1.47 1.64 2.01 2.42 2.86 3,33 3.84
3.0 ,0.306 0.385 0,474 0.573 0.685 0.809 0.943 1.09 1,23 1.38 1.54 1.89 2.27 2.69 3,14 3,63
X 0.000 0.008 0.029 0.056 0.089 0.125 0,164 0.204 0.246 0.289 0.333 0.424 0.516 0,610 0,704 0,800
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-94 DESIGN CONSIDERATIONS FOR WELDS
Table 8-8 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60° ^
Available strength of a weld group, <])fln or RJQ, is determined with
R„=CCiDI {(t) = 0,75, £2 = 2.00)
LRFD ASD
r . - n . -
(|)C,D/ """" ifCCit
I mill ~~
(t)CC|D
Cmin —
O-Pc
CxDl
D,iiin —
Ml
cc,i
^min ~
qPg
CCiD
where
P = required force, Pu or Pa, kips
D = number of sixteenths-of-an-inch in the fillet weld size
I = characteristic length of weld group, in.
a = e,/l
% = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C - coefficient tabulated below
Ci = electrode strength coefficient frbm Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 2.60 3.01 3.44 3,88 4.32 4.76 5.19 5.63 6.07 6.50 6.94 7.82 8.69' .9.56 10.4 ' 11.3
0.10 2.43 2.86 3.30 3.75 4.21 4.68 5.14 5.61 6.07 6.53 6.99 7.89 8.79 9.67 10.5 11.4
0.15 2.31 2.74 3.17 3.62 4.07 4.54 5.01 5.49 5.96 6.44 6.90 7.83 8.74 9.64 10.5 11.4
0.20 2.18 2,61 3.04 3.47 3.93 4.39 4.86 5.34 5.83 6.31 6.79 7.73 8.66 9.57 10.5 11.4
0.25 2.07 2.49 2.91 3.33 3.77 4.23 4.70 5.18 5.67 6.16 6.64 7.61 8.55 9.48 10.4 11.3
0.30 1.97 2.37 2.78 3.20 3.63 4.07 4.54 5,02 5.51 6.00 6.49 7.46 8.42 9.36 10.3 11.2
0.40 1.79 2.16 2.55 2.94 3,35 3.77 4.22 4.69 5.17 5.66 6.15 7.14 8.12 9.09 10.0 11.0
0.50 1.63 1.98 2.34 2.71 3,10 3.50 3.93 4.38 4.85 5.33 5.82 6.80 7.79 8.77 9.73 10.7
0.60 1.49 1.81 2.15 2.50 2,87 3,26 3.67 4.10 4.55 5.02 5.50 6.48 7.46 8.42 9.38 10.3
0.70 1.37 1.67 1.99 2.32 2.67 3.05 3.44 3.86 4.29 4.74 5.21 6.16 7.11 8.07 9.04 10.0
0.80 1.26 1,54 1.84 2.16 2.50 2.85 3.23 3.63 4.05 4.48 4.94 5.85 6.78 7.73 8.69 9.65
0.90 1.17 1.43 1.71 2.02 2.34 2.68 3.04 3.43 3.83 4.25 4.68 5.57 6.47 7.40 8.35 9.31
1.0 1.08 1.33 1.60 1.89 2.19 2.52 2.87 3.24 3.63 403 4.45 5.30 6.18 7.09 8.03 8.98
1.2 0.946 1.17 1.41 1.67 1.95 2.25 2.58 2.92 3.28 3.65 4.04 4.82 5.65 6.52 7.42 8.35
1.4 0.837 1.04 1.25 1.49 1.75 2.03 2.33 2.65 2.98 3.33 3.69 4.42 5.19 6.01 6.87 7.77
1.6 0.748 0.930 1.13 1.34 1.58 1.84 2.12 2.42 2.73 3.05 3.38 4.07 4.79 5.56 6.38 7.24
1.8 0.676 0.842 1.02 1.22 1.44 1.68 1.94 2.22 2.51 2.81 3.12 3.76 4.45 5.17 5.95 6.77
2.0 0.616 0.768 0.936 1.12 1.32 1.55 1.79 2.05 2.32 2.60 2.90 3.50 4.14 4.83 5.56 6.34
2.2 0.565 0.706 0.861 1.03 1.22 1.43 1.66 1.90 2.15 2.42 2.69 3.26 3.87 4.53 5.22 5.96
2,4 0,522 0.653 0.797 0.958 1.14 1.33 1.55 1.77 2.01 2.26 2.52 3.05- 3.63 4.25 4.91 5.62
2.6 0.485 0.607 0.742 0.893 1.06 1.25 1.44 1.66 1.88 2.12 2.36 2.87 3.42- 4.01 4.64 5.31
2,8 0.453 0,567 0.694 0.835 0.994 1.17 1.36 1.56. 1.77 1.99 2.22 2.70 : 3.22 3.79 4.39 5.03
3.0 0.424 0.531 0.651 0.785 0.934 1.10 1.28 1.47 1.67 1.88 2.09 2.55 3.05 3.59 4.17 4.78
* 0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289: 0.333 0.424 0.516 0.610 0.704 0.800
AMERICAN INSTITUTE OF STBEL CONSTRUCTION

DESIGN TABLES <•-95
Table 8-8 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
Available strength of a weld group, (jiR„ or R„/Q., is determined with
/f„=CCiW ((t) = 0.75, 0 = 2.00)
LRFD ASO
^iniii ~
p.,
0,1,in —
p.,
(t)CC,/
An//1 —
P„
(t)CC|D
Cmin
O.P,,
cm
Oiniii ~
QPg
CC,l
^miii —
CCiO
where
P = required force, P„ or Pa, kips
0 = number of s/xteenths-of-an-inch in the fillet weld size
/ = characteristic lengtti of weld group, in.
a =e,//
e, = horizontal component of eccentricity of P
with respect to.centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4{a), J2.4(b) and J2.4(c).
a
k
a
0 0.1 0,2 0.3 0.4 0,5 0.6 0.7 0.8 0,9 1.0 1.2 1,4 1.6 1,8 2,0
000 2,74 3.11 3.49 3.88- 4.26 4.65 5.03 5.42 5.80 6.19 6.57 7.34 8.11 8.,88 9.65 10.4 ^
0.10 2.59 2.95 3.34 3.75 4,16 4.58 4.99 5.40 5.80 6.20 6.59 7.37 8.15 8.92 9.69 10.5
0.15 2.50 2.87 3.26 3.67 4,09 4.51 4.94 5.35 5.76 6.17 6.57 7.36 8.14 8.91 9.69 10.5
0.20 2.43 2,79 3.18 3.59 4,01 4.44 4.87 5.29 5.71 6.13 6.53 7.33 8.12 .8.90 9.67 10.4
0.25 2.35 2.72 3.10 3.51 3,93 4.36 4.80 5.23 5.66 6.08 6.49 7.30 8.09 8.88 9.66 10.4
0.30 2.28 2,65 3.03 3.43 3.85 4.28 4.72 5.16 5.59 6.02 6;44 7.26 8.06 8.85 9.63 10.4
0.40 2.16 2.52 2.88 3.27 3.69 4.12 4.57 5.01 5.45 5.88 6,31 7.15 7.97 8.78 9.57 10.4
0.50 2.05 2.40 275 3.13 3.54 3.97 4.41 4.86 5.30 5.75 6.18 7.04 7.86 8.68 9.48 10.3
0.60 1.94 2.28 2.63 3.00 3.40 3.82 4.26 4.71 5.16 5.61 6.06 6.93 7:77 8.59 9.39 10.2
0.70 1.85 2.18 2.52 2.88 3.26 3.68 4.11 4.56 5.02 5.47 5.92 6.81 7.67 8.51 9.32 10.1
0.80 1.75 2.08 2.41 2.76 3.14 3.54 3.97 4.42 4.87 5.33 5.79 6.69 7.57 8.42 9.25 10.1
0.90 1.67 1.98 2,31 2.65 3.02 3.42 3.84 4.28 4.73 5.19 5.64 6.56 7.45 8.32 9.16 9.98
1.0 1.59 1.90 2.21 ! 2.55 2.91 3.30 3.71 4.14 4.59 5.04 5.50 6.42 7.33 8.21 9.07 9.91
1.2 1.45 1.74 2,04 2.36 2.71 3,08 3.47 3.89 4.32 4.77 5.22 6.15 7.07 7.97 8.86 9,72
1.4 1.33 1.60 1.89 2.20 2.53 2,88 3.26 3.66 4.07 4.51 4.95 5.87 6.79 7.71 8.62 9,51
1.6 1.22 1.48 1.75 2.05 2.37 2.71 3.06 3.44 3.85 4.27 4.70 5.60 6.52 7.44 8.36 9,27
1.8 1.13 1,37 1.63 1.91 2.22 2.54 2.89 3.25 3.64 4.04 4.46 5.34 6.25 7.17 8.10 9,01
2.0 1.05 1.28 1.52 1.79 2.09 2.40 2.73 3.08 3.45 3.84 4.24 5.10 5.99 6.90 7.81 8.73
2.2 0.975 1.19 1.43 1.69 1.97 2.27 2.58 2.92 3.27 3.65 4.04 4.87 6.74 6.62 7.53 8.44
2.4 0.912 1.12 1.34 1.59 1.86 2.15 2.45 2.77 3.11 3.47 3.85 4.65. 5.50 6.36 7.25 8.15
2.6 0.856 1.05 1.27 1.50 1.76 2.04 2.33 2.64 2,97 3.31 3,68 4.45 5.26 6.10 6.98 7.87
2.8. 0.806 0.993 1.20 1.42 1.67 1,94 2.22 2.52 2.83 3.17 3,52 4.27 5.05 5.86 6.72 7.60
3,0 0.762 0.940 1.14 1.35 1.59 1.84 2.12 2.40 2.71 3.03 3.37 4.09 4.84 5.64 6.47 7.34
X 0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0:289 0.333 0.424 0.516 0.610 0.704 0.800
X
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-96 DESIGN CONSIDERATIONS FOR WELDS
Table 8-9
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
Available strength of a weld group, (])/?« or fl„/a, is determined with
/?„=CCiD/((|) = 0.75, n = 2.00)
LRFD ASO
Cmiii ~
(jiCiW
C^niin ~
p„
(|)CCi/ ^min ~
ifCCiD
Cmin ~
SMjl
CxDI
J^min —
qPg
CC|/
^min r-
QPa
CC[D
where
P = required force, Pu or Pa, kips
0 = number of sixteenths-of-an-incti in the fillet weld size
/ = characteristic length of weld group, in.
a = e,//
e^ = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated helow
01 = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AI8G Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0 00 1.86 2.23 2.69 3.25 3.80 4.36 4.92 5.47 6.03 6.59 7,15 8.26 9;37 10.5 11.6. 12.7
0.10 1.86 2.30 2.80 3.30 3.82 4.32 4.83 5.34 5.84 6.34 6.84 7.84 8.84 9.83 10.8 11.8
0.15 1.83 2.26 2.73 3.21 3.69 4.18 4.66 5.14 5.62 6.10 6.58 7.54 8.51 9.48 10.4 11.4
0.20 1.76 2.18 2.62 3,07 3.53 3.99 4.45 4.91 5.37 5.83 6.30 7.22 8.16 9.11 10.1 11.0
0.25 1.66 2.06 2.48 2.91 3.35 3.79 4.23 4.67 5.11 5.55 6.00 6.90 7;81 8.73 9.67 10.6
0.30 1.55 1.93 2.33 2.74 3.15 3.57 3.99 4.41 4.84 5.27 5.70 6.57 7.46 8.37 9.29 10.2
0.40 1.33 1.67 2.03 . 2.39 2.77 3.15 3.53 3.92 4:32 4.72 5.12 5.95 6.79 7.66 8.54 9.44
0.50 1.15 1.45 1.75 2.07 2.41 2.76 3.12 3.47 3.84 4.21 4.59 5.37 6.17 7.00 7.86 8.73
0.60 0.999 1.26 1.52 1.81 2.11 2.43 2.77 3.10 3.44 3.79 4.14 4.88 5.65 6.45 7.27 8.11
0.70 0.879 1.11 1.34 1.60 1.88 2.18 2.48 2.80 3.12 3.44 3.78 4.47 5.20 5.96 6.75 7.56
0.80 0.783: 0.982 1.20 1.43 1.69 1.96 2.25 2.55 2.84 3.15 3.47 4.12 4.81 5.54 6.29 7.07
0.90 0.704, 0.882 1.08 1.30 1.53 1.78 2.05 2.33 2.61 2.90 3.20 3.82 4.47 5.16 5.89 6.64
1,0 0.639 0.800 0.980 1.18 1.40 1.64 1.88 2.14 2.41 2.69 2.97 3.55 4.17 4.83 5.52 6.24
1.2 0.538 0.674 0.829 1.00 1.19 1.40 1.61 1.84 2.08 2.33 2.58 3.11 3.67 4.27 4.90 5.57
1.4 0.464 0.582 0.717 0.869 1.04 1.22 1.41 1.61 1.83 2.05 2.28 2.76 3.27 3.82 4.40 5.01
1.6 0.408 0.511 0.631 0.766 0.915 1.08 1.25 1.43 1.63 1.83 2.04 2.48 2.95 3.45 3.98 4.55
1.8 0,363 0.456 0.563 0.684 0.818 0.964 1.12 1.29 1.46 1.65 1.84 2.24 2.67 3.14 3.63 4.16
2.0 0.328 0.411 0.508 0.618 0.740 0.872 1.01 1.17 1.33 1.49 1.67 2.05 2.45 2.88 3.34 3.82
2.2 0.298 0.375 0.463 0.563 0.675 0.796 0.926 1.06 1.21 1.37 1.53 1.88 2.25 2.65 3.08 3.54
2.4 0.274 0.344 0.425 0.518 0.620 0.732 0.852 0.980 1.11 1.26 1.41 1.73 2.09 2.46 2.86 3.29
2.6 0.253 0.318 0.393 0.479 0.574 0.678 0.789 0.908 1.03 1.16 1.30 1.61 1.94 2.29 2.67 3.07
2.8 0.235 0.295 0.365 0.445 0.534 0.630 0.735 0.845 0.960 1.08 1.21 1.50 1.81 : 2.15 2.50 2.88
3.0 0.219 0.276 0.341 0.416 0.499 0.589 0.687 0.791 0.897 1.01 1.13 1.40 170 2.02 2.35 2.71
* 0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-97
Table 8-9 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
Available strength of a weld group, 4fl„ orif„/fi, is determined with
/?„=CCiD/ ((|) = 0.75, a = 2.00)
LRFD ASD
Ciinn —
Pu
<1)CC|/
^min '
Pi,
ifCCxD
Cnlin
Q.P„
C,Dl
^ _ QPa . _ aPa
. LJmin — ; hnin ~ '
CCil CCiD
where
P = required force, Pu or Pa, kips
D = number of sixteenttis-of-an-inch in tlie fillet weld size
I = characteristic length of weld group, in.
a = e,//
Bx = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
{1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greafest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
IS'
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 1.98 • 2.47 3.01 •• 3.56 4.10' 4.65- 5.19 5.74 6.28 6.83 7.37 8.46' 9.55, 10.6 11.7 12.8
0.10 1.90 2.36 2.87 3.38 3.88 4.38 4.88 5.38 5,87 6.37 6.86 7.85 8.84 9.84 10.8 11.9
0.15 1.84 2.30 2.78 3.26 3.74 4.21 4.69 5.16 5,63 6.10 '€57 7.52 8.47 9.43 10.4 11.4
0.20 1.76 2.20 2.65 3.11 3.56 4.02 4.47 4.92 5.37 5.82 6.27 7.18 8.10 9.04 9.98 10.9
0.25 1.65 2.07 2,49 2.93 3.37 3.80 4.23 4.66 5.09 5.53 5.96 6.84 7.74 8.65 9.58 10:5
0.30 1.55 1.93 2.33 2.74 3.16 3.58 3.99 4.41 4.82 5.24 5.66 6.52 7.39 8.28 9.19 10.1
0.40 1.34 1.67 2.02 2.38 2.75 3.13 3.52 3.92 4.31 4.70 5.10 5.90 6.74 7.59 8,47 9.37
0.50 1.16 1.45 1.75 2.06 2.39 2.74 3.10 3.47 3.85 4^22 4.60 5.38 6.18 7.00 7.85 8.73
0.60 1.01 1.27 1.53 1.80 2,10 2.42 2.75 3.10 3.46 3.82 4.19 4.92 5.69 6.48 7.30 8.15
0.70 0.895 1.12 1.35 1.60 1.88 2.17 2.48 2.80 3.14 3.48 3.83 4.53 5.26 6.02 6.81 7.62
0.80 0.799^ 0.997 1.21 1.44 1.69 1.96 2.25 2.55 2.86 3.19 3.52 4.19 4.89 5.61 6.37 7,15
0.90 0.720: 0.898 1.09 1.31 1.54 1,79 2.05 2.33 2.63 2:94 3.25 3.89 4.56 5.25 5.97 6.73
1.0 0.654' 0.816 0.996 1.20 1.41 1.64 1.89 2.15 2.43 2.72 3.02 3.63 4.26 4.92 5,62 6.34
1.2 0.552 0.689 0.845 1.02 1.21 1,41 1.63 1.86 2.10 2.36 2.63 3.18 3.76 4,37 5.01 5.68
1.4 0.477 0.596 0.733 0.886 1.05 1.23 1.43 1.63 1.85 2.08 2.32 2.83 3.36 3.91 4.50 5.12
1.6 0.420 0.525 0.646 0.782 0.933 1.10 1.27 1:45 1.65 1.86 2.08 2.54 3.03 3.54 4.08 4,66
1.8 0.374 0.468 0.577 0.700 0.836 0.983 1.14 1.31 1.49 1.68 1.88 2.30 2.75 3.23 3.73 4.27
2.0 0.338 0.423 0.522 0.633 0.757 0.891 1.04 1.19 1.35 1.53 1.71 2:10 2.52 2.96 3.43 3.93
2.2 0.308 0.385 0:476 0.578 0.692 0.815 0.948 1.09 1.24 1.40 1.57 1.93 2.32 2.73 3.17 3.64
2,4 0.282 0.354 0.437 0.532 0.636 0.750 0.873 1.00 1.14 1.29 1.45 1.79 2.15 2.54 2.95 3.39
2.6 0.261 0.327 0,404 0.492 0.589 0.695 0.809 0.93t 1.06 1.20 1.34 1.66 2.00 2.36 2.75 3.17
2.8 0.242 0.304 0.376 0:458 0.548 0.647 0.754 0.868 0.989 1.12 1.25 1.54 1.87 2.21 2.58 2.97
3.0 0.226 0.284 0.352 0.428 0.513 0.606 0.706 0.812 0.926 1.04 1.17 1.45 1.75 2.08 2.43 2.80
X 0.000 0.008 0.029 0,056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0,810 0.704 0.800
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-98 DESIGN CONSIDERATIONS FOR WELDS
Table 8-9 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30"
Available strength of a weld group, ([)/?„ or is determined with
fi„=CCiO/ ((|) = 0.75, n = 2.00)
LRFD ASD
Cmin ~
n - -P- ; -
^min ~ , , hnin ~
Pu
ifCxDl (fCC,/ (|)CC,£>
Cm'm —
HP.
C|£)/
Dmhi ~
qPg
cc,i
hnin ~
CC^D
where
P = required force, Pu or Pa, Wps
0 = number of sixteenths-of-an-inch in the fillet weld size
1 = characteristic length of weld group, in.
a = ex/I
ex horizontal component of eccentricity of P
with respect to centroid of weld group, in,
C ~ coefficient tabulated below
Cj = electrode strength coefficient from Table 8-3
(t.OforETOXX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
30-
e.^sl
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
o.oo' 2.18 2.70 3.21- 3.73 4.24 4.76 5.27 5.78 6.30 6,81 7.33 8.35 9.38 10.4 11,4 12.5
0.10 2.02 2.56 3.06 3.54 4.02 4.50 4.98 5:46 5,94 6,43 6,92 7.90 8,89 9.89 10.9 11.9
0.15 1.92 2.41 2.90 3.37 3.83 4.28 4.73 5.19 5,65 6.12 6.58 7.54 8.51 9.50 10.5 11,5
0.20 1.82 2.27 2.72 3.16 3.60 4.03 4.46 4.89 5.34 5.78 6.23 7.16 8.11 9.08 10.1 11,1
0.25 1.71 2.13 2.55 Z97 3.37 3.78 4.19 4.60 5,02 5.46 5.90 6.79 7.72 8.68 9.66 10,7
0.30 1.61 1.99 2.38 2.77 3.16 3.55 3.94 4.34 4.75 5.18 5.61 6,48 7.38 8.31 9.27 10.2.
0.40 1.41 1.74 2.08 2.43 2.78 3.14 3.50 3.89 4.29 4.70 5.12 5.95. 6.81 7.69 8.61 9.54
0.50 1.23 1.52 1.82 2.13 2.45 2.79 3.14 3.51 3.89 4.28 4.69 5.50 6.31 7.16 8,04 8.94
0.60 1.08 1.34 1.60 1.88 2.18 2,50 2.83 3;i8 3.54 3.92 4.30 5.09 5.88 6.69 7.53 8.40
0.70 0.964 1.20 1.43 1.69 1.96^ 2.26 2.57 2.90 3.25 3.60 3.97 4.73 5.48 6.26 7.07 7.91
0.80 0.865 1.07 1.29 1.53 1.79 2.06 2.35 2.66 2.99 3.32 3.67 4,40 5.13 5.88 6.66 747
0.90 0.783 0.970; 1,17 1.40 1.64 1.89 2.16 2.45 2.76 3.08 3.41 4.11 4.81 5.53 6.29 7.07
1.0 0.714 0.885 1,07 1.28 1.51 1.75 2.00 2.28 2.56 2.87 3.18 3,85 4.53 5.22 5,94 6.70
1.2 0.606 0.753 0,918 1.10 1.30 1.51 1.74 1.98 2.24 2.51 2.80 3,40 4.03 4.67 5.34 6.05
1.4 0.525 0.653 0.800 0.963 1.14 1.33 1.53 1.75 1.98 2.23 2.49 3,04 3.63 4.22 4.84 5.50
1.6 0.463 0.577 0.708 0.854 1.01 1.19 1.37 1.57 1,78 2.00 2.24 2.74 3.29 3.84 4,42 5.03
1.8 0.414 0.516 0.634 0.767 0.913 1.07 1.24 1.42 1,61 1.81 2.03 2.49 3.00 3.51 4,05 4.63
2.0 0.374 0.467 0.574 0.695 0.829 0,974 1.13 1.29 1.47 1.66 1.85 2,28 2.75 3.23 3.74 4.28
2.2 0.341 0.426 0.525 0;636 0.759 0,893 1.04 1.19 1.35 1.52 1.71 2,11 2.54 2.99 3.47 3.97
2.4 0.313 0.392 0.483 0.586 0.699 0,823 0.956 1.10 1.25 1.41 1.58 1.95 2.36 2.78 3.23 3.71
2.6 0.289 0.362 0.447 0.542 0.649 0.764 0.888 1.02 1.16 1.31 1.47 1,82 2.20 2.60 3.02 3.47
2.8 0.269 0.337 0.416 0.505 0.604 0,713 0.829 0.953 1.09 1.23 i:38 1.70 2.06 2.44 2.84 3.27
3.0, 0.251 0.315 0.389 0:473 0.566 0.667 0.777 0.894 1,02 1.15 1.29 1:60 1.93 2.29 2.68 3.08
* 0,000 o.ooa 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-99
Table 8-9 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45"
Available strength of a weld group, (ffin or /?„/a, is determined with
fl„ =CCiD/ ((]) = 0.75, n = 2.00)
LRFO ASO
C'muVJ ""
Pa
(|)C|D/
^min —
p„
(|)CC|/ I'lnin ~
Pu
(|)CC|0
Ciii'm ~~
qPg
CiDl
CiPa , _ QPg
CQl ~ CC,D
where
P = required force, Pa or Pa, Kips
D = number of sixteenths-of-an-inch in the fillet weld size
I = characteristic length of weld group, in.
a = e^/l
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in,
C = coefficient tabulated below
Cx = electrode strength coefficient from Table 8-3
(1.0forE70J(X electrodes)
Note: Shaded values Indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.1, J2.4(a), J2.4(b) and J2.4(c).
46"
t^i—i
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 2.41 2.80' 3.27 3.74 4,21 4.67 5,14 5.61 6.08' 6.54' 7.01 7.95 S.88 9.82 10.8 11.7
0.10 2.24 2.72 3:17 3.61 4.05 4.49 4.94 5.41 5.88 6.35 6.82 7,78 8.74 9.71 10.7 11.7
0.15 2.09 2.57 3.00 3.41 3.82 4.24 4.67 5.13 5.59 6.06 6.54 7.51 8,48 9.46 10.4 11.4
0.20 1.96 2,41 2.83 3.21 3,59 3.99 4.41 4.85 5.30 5.77 6.24 7.21 8,19 9.17 10.2 11.2
0.25 1.85 2.27 2.66 3.02 3.38 3.76 4,16 4.59 5.03 5.49 5.95 6.91 7,88 8.87 9.87 10.9
0.30 1.74 2.13 2.50 2.86 3.20 3.57 3.96 4.38 4.81 5.25 5.70 6.64 7.59 8.56 9.55 10.6
0.40 1.55 1.89 2.22 2.55 2,89 3.24 3.62 4.01 4.42 4.84 5,28 6.18 7,11 8.05 8.99 9.95
0.50 1.38 1.68 1.98 2.29 2.61 2.96 3.32 3.69 4.08 4.49 4.91 5.78 6,69 7.60 8.52 9.45
0.60 1.23 1.50 1.77 2,06 2.37 2.71 3.05 3.41 3.78 4.17 4.58 5.42 6,30 7.18 8,08 ,8.99
0.70 1.11 1.36 1.60 1.88 2.17 2.48 2.81 3.16 3.52 3.89 4.28 5.09 5,94 6.79 7.67 8.57
0.80 1.00 1.23 1.46 1.72 2.00 2.29 2.61 2.93 3.28 3.63 4.01 4.79 5.61 6.43 7.29 8,16
0.90 0.915 1.12 1.34 1.59 1.84 2.12 2.42 2.73 3.06 3.41 3.76 4.51 5.31 6.10 6.93 7.78
1.0 0.839 1.03 1.24 1.47 1.71 1.98 2.26 2.56 2.87 3,20 3.54 4.26 5.03 5.80 6.60 7.43
1.2 0.719 0.886 1.07 1.28 1.50 1.73 1,99 2.26 2.54 2.84 3.16 3.83 4.54 5.26 6.01 6.79
1.4 0.627 0.775 0.943 1.13 1.33 1.54 1.77 2.02 2.28 2.55 2.84 3.46 4.12 4.81 5.50 6.23
1.6 0.555 0.688 0.840 1.01 1.19 1.39 1,60 1.82 2.06 2.31 2.58 3.15 3.77 4.41 5.07 5.75
1;8 0.498 0.618 0.756 0.910 1.08 1.26 1,45 1.66 1.87 2.11 2.36 2.89 3.47 4.07 4.69 5.34
2.0 0.451 0.561 0.687 0.829 0.984 1.15 1.33 1.52 1.72 1.94 2.17 2.66 3.20 3.78 4.36 4.97
2.2 0.412 0.513 0.630 0.760 0.904 1.06 1.22 1.40 1.59 1.79 2.01 2.47 2.97 3.52 4.07 4.65
2.4 0.379 0.473 0.581 0.702 0.836 0981 1.14 1.30 1.48 1.66 1.86 2.30 2.77 3.29 3.81 4.36
2.6 .0,351 0.438 0.539 0.652 0.777 0.913 1.06 1.21 1.38 1.55 1.74 2.15 2.60 3.08 3.58 4.10
2:8 0.327 0.408 0.502 0.608 0.726 0.853 0.990 1.14 1.29 1.46 1.63 2.02 2.44 2.90 3.37 3.87
3.0 0.306 0.382 0.470 0.570 O!680 0,801 0.930 1.07 1.21 1.37 1.54 1.90 2:30 2.74 3.19 3.66
X 0.000 0.008 0.029 0.056 0.089 0,125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-100 DESIGN CONSIDERATIONS FOR WELDS
Table 8-9 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60^
Available strength of a weld group, iS>R„ or R„/£l, is determined witli
/?„ = CCiD/ (<!) = 0,75,.Q - 2.00)
LRFD ASO
(fCiDl
Cmin — Dmin =
P.
<!)CC|/
^min —
(jiCCiO
qpg
C,Dl
qpg
CCi/ ^niin ~
aPg
CCiD
wliere
P = required force, Pu or P^, kips
D = number of sixteenttis-of-an-inch in tfie fillet weld size
; = characteristic length of weld group, in.
a = e,//
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C - coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(I.OforETOXX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
60'
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 2,§0 ' 3.01 3.44 3.88 4.32 4.76 5.19 5 63 6.07 6.50 6:94 7.82 8.69 9.56 10.4 1U
0.10 2.43 2.84 3.23 3.62 4.04 4.47 4.91 5.36 5.81 6.26 6.71 7.61 8.51 9.40 10.3 11.2
0.15 2.31 2.70 3.07 3.44 3.84 4.26 4.69 5.14 5.59 6.05 6.51 7:43 8.34 9.25 10,2 11.1
0.20 2.18 2.58 2.92 3.27 3.65 4.06 4.48 4.92 5.37 5.83 6.30 7.23 8.16 9.08 9.99 10.9
0.25 2.07 2.46 2.79 3.12 3.49 3.89 4.30 4.73 5.17 5.62 6.08 7.01 7.95 8.89 9.81 10.7
0.30 1.97 2.34 2:67 3.00 3.36 3.75 4.15 4.58 5.01 5.45 5.90 6,81 7.73 8.68 9,62 10.6
0.40 1.79 2.13 2.45 2.78 3.12 3.49 3.89 4.30 4.72 5.16 5.60 6.49 7.39 8.30 9,22 10.1
0.50 1.63 1.95 2.25 2.57 2.91 3.27 3.65 4.05 4.46 4.89 5.33 6.21 7.11 8.01 8.92 9.82
0.60 1.49 1.79 2.08 2.39 2,72 3.06 3.43 3.82 4.22 4.64 5.07 5.95 6.85 7.75 8.65 9.56
0.70 1.37 1.64 1.92 2.22 , 2.54 2.88 3.23 3.60 4.00 4.40 4.83 5.70 6.59 7.49 8.40 9.30
0.80 1.26 1.52 1.78 2.07 2.38 2.71 3.05 3.41 3.79 4.19 4.60 5.45 6.33 7,23 8.14 9.05
0.90 1.17 1.41 1.66 1.94 2.24 2.55 2.88 3.23 3.60 3.98 4.38 5.22 6.09 6.98 7.89 8.80
1.0 1.08 1.31 1.56 1.82 2.11 2.41 2.73 3.07 3.42 3.79 4.18 5.00 5.85 6.74 7.64 8.54
1.2 0.946 1.15 1.38 1.62 1.88 2.16 2.46 2.78 3.11 3,46 3.82 4.59 5.41 6.27 7.15 8.04
1.4 0.837 1.02 1.23 1.46 1.70 1.96 2.23 2.53 2.84 3.17 . 3.51 4,24 5.02 5.84 6.69 7.56
1.6 0.748 0.919 1.11 1.32 1.54 1.78 2.04 2.32 2.61 2.91 3.24 3.92 4.66 5.45 6.27 7.10
1.8 0.676 0.832 1.01 1.20 1.41 1.64 1.88 2.13 2.41 2.69 3.00 3.65 4.35 5.09 5.88 6.67
2.0 0.616 0.760 0.924 1.11 1.30 1.51 1.73 1.97 2.23 2.50 2.79 3,40 4.07 4.78 5.52 6.28
2.2 0.565 0.699 0.852 1.02 1.21 1,40 1.61 1.84 2.08 2.33 2.60 3.19 3.82 4.49 5.20 5.93
2.4 0.522 0.647 0.790 0.948 1.12 1.31 1.51 1.72 1.94 2.19 2.44 2.99 3.59 4.24 4.91 5.61
2.6 0.485 0.602 0.735 0.885 1.05 1.22 1.41 1.61 1.82- 2.05 2.30 2,82 3.39 4,00 4.65 5.32
2.8 0.453 0.562 0.688 0.829 0.983 1.15 1.33 1.52 1.72 1.94 2.17 2,66- 3.21 3,79 4.42 5.05
3.0 0.424 0.528 0.646 0.779 0.926 1.08 1.25 1.43 1.62 1.83 2.05 2;52 3.04 3,60 4.20 4.81
X 0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0,424 0.516 0.610 0.704 0.800
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-101
Table 8-9 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
Available strength of a weld group, $/?„ or is determined with
/?„=CC,D/(<(. = 0.75, £2 = 2.00)
LBFD ASD
^niin ~
Pu
^€[01
p,
^CCil hnin ~
Pu
(}CCiD
O-Pc
CiDl
qPg
CCil
liuin —
CCiD
where
F = required force, or Pg, kips
D = number of sixteenttis-of-an-inch In the fillet weld size
! = characteristic length of weld group, in,
a = e,/l
% = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
C, = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 2.74 3.1 f 3.49' 3.88 4.26 4.65 5.03 5.42 5.80' 6.19 6.57 7.34 8.11 • 8.88 S'.65 10.4
0.10 2.59 2.94 3,30 3.68 4.07 4.47 4.88 5.28 5.69 6,08 6.48 7.27 8.05 8.83 9.61 10.4
0.15 2.50 2.84 3.19 3.56 3.94 4.34 4.75 5.16 5.57 5.98 6,39 7.19 7.98 8.77 9.55 10.3
0.20 2.43 2.76 3.09 3.46 3.84 4.24 4,63 5.04 5.45 5,86 6.28 7.10 7.90 8.70 9.49 10,3
0.25 2.35 2.68 3.01 3,37 3.76 4.15 4,55 4.95 5.35 5,75 6,16 6.99 7.81 8.62 9.42 10.2
0.30 2.28 2.61 2.93 3.29 3.68 4.07 4.47 4.88 5,28 5.68 6.07 6.88 7.71 8.53 9.34 10.1
0.40 2.16 2.48 2.80 3.15 3.53 3.93 4.33 4.74 5.15 5.55 5.95 6.75 7.54 8.33 9.14 9.97
0.50 2.05 2.37 2.68 3.02 3.40 3.79 4.20 4,61 5.02 5.43 5.84 6.64 7.44 8.22 9.01 9.80
0.60 1,94 2.25 2.57 2.90 3.27 3.66 4.06 4.48 4.89 5.31 5.73 6.55 7.35 8.14 8.92 9.70
0.70 1.85 2.15 2.46 2.79 3.15 3.53 3.93 4.35 4.77 5.19 5,61 6.44 7.26 8.06 8.85 9.63
0.80 1.75 2.05 2.36 2.69 3.03 3.41 3.81 4.22 4.64 5.06 5.49 6.33 7.16 7.98 8.78 9.57
0.90 1.67 1.96 2.26 2.59 2.93 3.29 3.69 4,09 4.51 4.93 5.36 6.22 7.06 7.89 8.70 9.50
1.0 1.59 1.87 2,17 2.49 2.83 3.18 3.57 3.97 4.38 4.81 5.24 6.10 6.95 7.79 8.62 9.43
1.2 1.45 1.72 2.00 2.31 2.64 2.98 3.35 3.74 4.14 4.56 4.99 5.85 6.72 7.59 8.43 9.27
1.4 1.33 1.58 1.86 2.15 2.47 2.80 3.15 3.53 3.92 4.33 4.75 5.61 6.48 7,36 8.23 9.08
1.6 1.22 1.46 1.73 2.01 2.31 2.63 2.97 3.33 3.71 4.11 4.52 5.37 6.24 7.12 8.00 8.87
1.8 1.13 1.36 1.61 1.88 2.17 2.48 2.81 3.15 3.52 3.90 4.30 5.14 6.00 6,88 7.77 8.65
2.0 1.05 r.27 1.51 1.77 2.04 2.34 2.66 2.99 3.34 3.71 4.10 4.92 5.77 6.65 7,53 8.42
2.2 0.975 1.18 1.41 1.66 1.93 2.21- 2.52 2.84 3.18 3.54 3.91 4.71 5.54 6.41 7.30 8.19
2.4 0.912 1.11 1.33 1.57 1.82 2.10 2.39 2.70 3.03 3.38 3.74 4.51 5,33 6.18 7.06 7,95
2.6 0.856 1.04 1.26 1.48 1.73 1.99 2.27 2.57 2,89 3.23 3.58 4.32 5.12 5.96, 6.83 7.71
2.8 0.806 0.986 1.19 1.4T 1.65 1.90 2.17 2.46 2.76 3.09 3.43 4.15 4.93 5.75 6.61 7.48
3.0 0.762 0.933 1.13 1.34/ 1.57 , 1.81 2.07 2.35 2.64 2.96 3.29 3.99 4.75 5.55. 6.39 7.26
X 0.000 0,008 0.029 0.056 0.089 0.125 0.164 0.204 0,246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-102 DESIGN CONSIDERATIONS FOR WELDS
Table 8-10
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0"
Available strength of a weld group, <^R„ or R„IQ., is determined with
ff„=CCiO/(<[) = 0.75, £2 = 2.00)
LRFD ASO
Cmin
Pu
<t)CiD/
Djii/n =
f„
i/CCil
P.
^CCiD
Cinin —
Ofi,
CiDl
^min —
O-Pg
CCA
i^niin —
CCiD
where
P - required force, P„ or Pa, kips
D = number of aixteenths-of-an-inch in the fillet weld size
/ = characteristic length of weld group, in.
a = e./l
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
C, = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
ft!!
xL
e.g.
k
9
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 1.86 2.04 2,23 2 41 2.69 2.97 3.25 3.53 3,80 4.08 4.36 4.92 5.47 6.03 6,59 7.15
0.10 1.86 2.04 2,28 2.53 2.78 3.04 3.31 3.57 3.84 4.11 . 4,38 4.93 5.48 . 6.00 6.55 7.10
0.15 1.83 2.03 2.25 : 2.49 2.74 2.99 3.24 3.50 3.75 4.01 4.28 4.81 5.34 5.89 6.44 7.00
0.20 1.76 1.97 2.18 2.40 2.64 2.87 3.11 3.36 3.60 3.85 4.11 4.62 5.14 5.66 ' 6.20 6.73
0.25, 1.66 1.86 2.07 2.29 2.50 2.73 2.95 3.19 3.42 3.66 3.90 4.40 4.90 5.42 5.94 6.47
0.30 1.55 1.74 1.94 2.15 2.36 2.57 2.78 3.00 3.22 3.45 3.69 4.17 4.66 5.17 5.68 6.20
0.40 1.33 1.49 1.67 1.85 2.05 2.24 2.44 2.63 2.84 3.05 3.27 3.73 4.20 4.69 5.19 5.70
0.50 1.15 1.29 1.44 1.60 1.77 1.95 2.13 2.31 2.50 2.70 2.90 3.33 3.78 4.25 4.74 , 5.23
0.60 0.999 1.12 ; 1.25 1.39 1.54 1.70 1.87 2.04 2.21 2.40 2.59 2.99 3.42 3.87 4.34 4.82
0.70 0.879 0.987; 1.10 1.22 1.35 1.50 1.66 1.82 1.98 2.15 2.32 2.71 3.11 3.55 4.00 4.47
0.80 0.783 0.878 0.978 1.09 1.20 1.34 1.48 1.63 1.78 1.94 2.11 2.46 2.85 3.27 3.70 4.15
0.90 0.704 0.790 0.879 0,976 1.08 1.20 1.33 1.48 1.62 1.77 1.92 2.26 2.63 3.02 3.43 3.86
1.0 0.639 0.717 0.797 0.885 0.983 1.09 1.21 1.35 1.48 1.62 1.76 2.08 2.43 2.80 3.20 3.61
1.2 0.538 0.603 0.671 0.745 0.828 0.922 1.03 1.14 1.26 1,38 1.51 1.79 2.10 2.44 2.80 3.18
1.4 0.464 0.520 0.579 0.643 0.715 0.796 0.888 0.991 1.10 1,21 1.32 1.57 1.85 2.15 2.48 2.83
1.6 0.408 0.457 0.508 0.564 0.628 0.700 0.783 0.874 0.972 1,07 1.17 1.40 1.65 1.93 2.22 2.54
1.8 0.363 0.407 0.453 0.503 0.560 0.625 0.699 0.782 0.871 0.957 1.05 1.26 1.49 1.74 2.01 2.31
2,0 0.328 0.367 0.408 0.454 0.505 0.564 0.632 0.706 0.788 0.867 0.952 1.14 1.35 1.58 1.84 2.11
2,2 0.298 0.334 0.372 0.413 0.460 0.514 0.576 0.644 0.719 0.792 0.870 1.04 1.24 1.45 1.69 1.94
2.4 0.274 0.306 0.341 0.379 0.422 0.472 0.529 0.592 0.661 0.728 0.801 0.960 1.14 1.34 1,56 1.79
2.6 0.253 0.283 0.315 0.350 0.390 0.437 0.489 0:547 0.611 0.674 0.741 0.890 1.06 1.24 1.45 1.67
2.8 0.235 0.263 0.293 0.325 0.363 0,406 0.455 0.509 0.568 0.628 0.690 0.829 0.986 1.16 1,35 1.56
3.0 • 0.219 0.246 0.273 0.304 0.339 0,379 0.425 0,475 0.531 0.587 0.645 0>776 0.924 1..09 1.27 1.46
X 0.000 0.005 0.017, 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y
0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0,250 0.227 0.208 0.192 0.179 0.167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-103
Table 8-10 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
Available strength of a weld group, ([)/?« or RnlO., is determined with
R„=CChDt (.|) = 0.75, a = 2.00)
LRFO ASD
Cmin —
P.
i^CiDl
^liiin
I _ ^u
(t)CC|/ ""'" <1)CC|D
Cniiii —
IHjl
CiDl
^inin ~
QPg
CCll
hnin ~
^Pg
CCiD
Where
P - required force, P^ or Pa, kips
0 = number of sixteenths-of-an-inch In the fillet weld size
1 = characteristic length of weld group, in.
a = e,//
Bx = horizontal component of eccentricity of P
with respect to centrold of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on ttie
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), JZA(b) and J2.4(c).
k
3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 1.98 2.20 2,47 2.74 3.01 3.29 3.56 3.83 4.10 ' 4.38 4.65 5.19 • 5.74 6;28. 683 7.37
0,10 1.90 2.13 2.41 2.68 2.97 3.25 3.53 3.81 4.09 4.36 4.64 5.18 5,73 6.28 6.83 7.37
0.15 1.84 2.10 2.35 2,62 2.88 3.15 3.42 3.69 3.96 4.23 4.50 5.04 5,58 6.12 6.66 7,20
0.20 1.76. 1.99 2.26 2,52 2.77 3.02 3.28 3.53 3.79 4.05 4.31 4,84 5,37 5.90 6.44 6.98
0.25 1.65 1.87 2.11 2,37 2.63 2.87 3.11 3.36 3.60 3.85 4.10 4.61 5,13 5.66 6.19 6.72
0.30 1.55 1.75 1,97 2,20 2.45 2.69 2,93 3.16 3.40 3.64 3,88 4.38 4,89 5.41 5.93 ; 6.46
0.40 1,34 1.51 1,69 1,89 2.10 2.33 2,56 2.77 2.99 3,21 3.44 3.91 4.41 4.91 5.42 5.94
0.50 1,16 1.31 1.46 1,63 1.81 2.01 2,21 2.42 2.63 2,83 3.05 3.50 3.97 4.45 4,95 5.46
0.60 1.01 1.14 1.27 1.42 1,58 1.75 1.93 2.13 2.32 2.51 2.71 3.14 3.59 4.06 4,54 5.04
0.70 0.895 1.01 1.12 1.25 1,39 1.54 1.71 1.89 2.07 2.25 2.44 2.84 3.26 3,71 4,18 4.66
0.80 0,799 0.898 1.00 1.11 1,24 1.38 1.53 1,69 1.86 2.03 2.21 2.58 2,99 3.41 3,86 4.32
0.90 0.720 0.809 0,901 1.00 1,11 1.24 1,38 1.53 1.69 1.85 2.01 2.36 2,75 3.15 3,58 4.03
1,0 0.654 0.735 0,818 0.910 1,01 1.13 1.25 1.39 1.54 1.69 1.85 2.18 2.54 2.92 3,33 3.76
1.2 0.552 0.620 0,690 0.767 0,854 0.951 1.06 1.18 1.31 1.45 1.58 1.87 2,20 2.54 2,92 3.31
1,4 0.477 0.535 0,596 0.662 0.737 0,822 0.918 1.03 1.14 1.26 1.38 1.64 1.93 2.25 2,58 2.94
1.6 0.420 0.471 0,524 0.582 0.648 0,724 0,809 0.905 1.01 1,11 1.22 1.46 1,72 2.01 2,32 2.65
1.8 0.374 0.420 0,467 0.519 0.578 0,646 0.723 0.809 0.902 0,997 1.09 1.31 1,55 1.81 2,09 2.40
2.0 0.338 0.378 0,421 0.468 0.522 0,583 0.653 0.731 0,816 0,902 0.991 1.19 1,41 1,65 1,91 2.19
2.2 0.308 0.345 0,383 0,426 0.475 0,532 0.596 0.666 0,744 0,824 0.905 1.08 1,29 1,51 1,75 2.01
2.4 0.282 0.316 0,352 0,391 0.436 0,488 0.547 0.612 0.684 0,757 0.833 0.999 1,19 1,39 1,62 1.86
2.6 0.261 0.292 0.325 0,362 0.403 0,451 0.506 0.566 0.632 0.701 0.771 0,925 1,10 1,29 1,50 1,73
2.8 0.242 0.272 0.302 0,336 0.375 0.420 0.470 0.526 0.588 0.652 0.717 0,862 1.03 1,21 1,40 1,62
3.0 0.226 0.254 0.282 0,314 0.350 0.392 0.439 0.492 0;549 0.610 0.671 0,806 0.960 1,13 1,32 1,52
* 0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0,327 0.408 0.492 0,579 0,667
y
0.500 0,455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0,227 0.208 0.192 0,179 0,167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-104 DESIGN CONSIDERATIONS FOR WELDS
Table 8-10 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30"
Available strength of a weld group, <^R„ or Is determined with
fl„ = CCiDI (<!) = 0.75, a = 2.00)
LRFD ASD
^min —
(fCC,/
^min ~
Pu
(|>CC,D
CiPg
cm
Dmin —
ClPg
CC,l
^niiii
ClPa
CCiD
where
P = required force, P„ or P,, kips
0 = number of si)cteentlis-of-an-inch in tiie fillet weld size
1 - characteristic length of weld group, in.
a = e,//
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
C| = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a). J2.4(b) and J2.4(c).
e.g.
30"
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 2.18 2.44 2.70 2.96. 3.21 3.47 3.73 398 4.24' 4.50 4.76 5.27 5.78 fi.30. 6.81 7.33
0.10 2.02 2.35 2.66 2.96 3.24 3.52 3.79 4.06 4.33 4.59 4.86 5.38 5.90 6.43 6.95 7.47
0.15 1.92 ?7? 2.53 2.84 3.13 3.41 3.69 3.96 4.23 4.49 4.76 5.29 5.81 6.34 6.86 7.38
0.20 1:82 2.09 2.38 2.67 2.97 3.26 3.53 3.80 4.07 4.33 4.60 5.13 5.65 6.18 6.71 7.23
0.25 1.71 1.96 2.22 2.50 2.78 3.06 3.34 3.60 3.87 4.13 4.39 4.92 5.45 5.98 6.51 7.05
0.30 1.61 1.83 2.07 2.32 2.59 2.86 3.13 3.40 3.65 3.91 4.17 4.70 5.23 5.76 6.30 6.83
0.40 1.41 1.59 1.79 2.01 2.23 2.47' 2.72 2.98 3.24 3.48 3.72 4.23 4.75 5.28 5.82 6.37
0.50 1.23 1.39 1.56 1.74 1.94 2.15 2.37 2.61 2.85 3.09 3.32 3.80 4.30 4.83 5.36 5.90
0.60 1.08 1.22 1.37 1.53 1.70 1.89 2.09 2.30 2.53 2.75 2.97 3.43 3.91 4.41 4.94 5.47
0.70 0.964 1.09 1.21 1.35 1.51 1.67 1.86 2.05 2.26 2.48 2.68 3.12 3.58 4.06 4.56 5.07
0.80 0.865 0.974 1.09 1.21 1.35 1.50 1.66 1.84 2.04 2.24 2.44 2.84 3.28 3.74 4.22 4.72
0.90 0.783 0.881 0.983 1.09 1.22 1.36 1.51 1.67 1.85 2.04 2.23 2.61 3.03 3.47 3.93 4.40
1.0 0.714 0.803 0.896 0,997 1.11 1.24 1.38 1.53 1.70 1.88 2.05 2.41 2.80 3.22 3.66 4.12
1.2 0.606 0.681 0.759 0.844 0.940 1.05 1.17 1.30 1.45 1.61 1.76 2.08 2.43 2.81 3.22 3.64
1.4 0.525 0.590 0.657; 0.731 0.814 0.908 1.02 1.13 1.26 1.40 1.53 1.82 2.14 2.49 2.86 3.25
1.6 0.463 0.520 0.579 0.644 0.717 0.801 0.897 1.00 1.12 1.24 1.36 1.62 1.91 2.23 2.57 2.92
1.8 0.414 0.464 0.517 0.575 0.641 0.716 0.802 0.897 1.00 1.11 1.22 1.46 1.72 2.01 2.32 2.66
2.0 0.374 0.419 0.467 0.519 0.579 0.647 0.725 0.811 0.905 1.01 1.11 1.32 1.57 1.83 2.12 2.43
2.2 0.341 0.382 0.425 0.473 0.528 0.590 0.661 0.740 0.826 0.919 1.01 1.21 1.44 1.68 1.95 2.24
2.4 0.313 0.351 0.391 0.434 0.485 0.543 0.608 0.680 0.760 0.845 0.930 1.12 1.32 1.55 1.80 2.07
2.6 0.289 0.324 0.361 0.402 0.448 0.502 0.562 0.629 0.703 0.782 0.861 1.03 1.23 1.44 1.67 1.92
2.8 0.269 0.302 0.336 0.373 0.417 0.467 0.523 0.585 0.654 0,727 0.801 0.963 1.15 1.35 1.56 1.80
3.0 0.251 0.282 0.314 0.349 0.389 0.436 0.489 0.547 0.611 0.680 0.749 0.901 1.07 1.26 1.47 1.69
X 0.000 0.005 0.017 0.035 0.057 0:083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y
0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0,278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-105
Table 8-10 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
Available strength of a weld group, or is determined with
fl„=CCiDI ((|) = 0.75, FI = 2.00)
LRFO ASO
Cniin —
P.
(|)C|D/
n . - / . _
"""" (|)CCi/ """" i^CCxD
Cmin —
qPg
CiDl
gpu
cc,i
Q.Pa
CC|D
where
P = required force, P„or Pa, kips
0 = number of sixteenths-of-an-inch in the fillet weld size
/ = characteristic length of weld group, in.
a =e,//
e, = horizontal component of eccentricity of P
with respect to centroid of weld group. In.
C = coefficient tabulated below
Cr = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
0..= si
45°
?
k
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
•0.00 2.41 2.57 2.80 3.04 •3;27 3.51' 3.74 3.97 4:21 -4.44 4.67 -5.14 5.61 6.08- 6.54 7.01
0.10 2.24 2;54 2.83 3.12 3.40 3.67 3.94 4.20 4.45 4.71 4.95 5.44 5.93 6.41 6.89 7.36
0.15 2.09 2.41 2.71 3.00 3.28 3.57 3.85 4.13 4.40 4.67 4.93 5.43 5.92 6.41 6.90 7.38
0.20 1.96 2.26 2.56 2.84 3.13 3.42 3.71 4.00 4.28 4.56 4.84 5.35 5.85 6.35 6.85 7.34
0.25 1.85 2.12 2.40 2.68 2.96 3.25 3.54 3.83 4.12 4,41 4.69 5.22 5;74 6.25 6.75 7.25
0.30 1.74 1.99 2.25 2.51 2.79 3.07 3.35 3.64 3.93 4.23 4.52 5.06 5.59 6.11 6.63 7.14
0.40 1.55 1.76 1.98 2.21 2.46 2.71 2.98 3.26 3.54 3.83 4.13 4.68 5.23 5.77 6.31 6.84
0.50 1.38 1.56 1.75 1.95 2.17 2.40 2.64 2.90 3.17 3.45: 3.74 4.29 4.84 5.40 5.95 6.49
0.60 1.23 1.39 1.56 1.74 1.93: 2.14 2.36 2.60 2.85 3.12 3.39 3.92 4.46 5.02 5.58 6.13
0.70 1.11 1.25 1.40 1.56 1.73 1.92 2.13 2.35 2.59 2.84 3.10 3.59 4.12 4.66 5.21 5.77
0.80 1.00 1.13 1.26 1.41 1.57 1.74 1.93 2.14 2.36 2.59 2.84 3.30 3.80 4,33 4.87 5.42
0.90 0.915 1.03 1.15 1.28 1.43 1.59 1.76 1.96 2.16 2.38 2.61 3.06 3.53 4.04 4.56 5.10
1.0 0.839 0.945 1.06 1.18 1.31 1.46 1.62 1.80 2.00 2.20 2.42 2.84 3.29 3.77 4.28 4.80
1.2 0.719 0.809 0:902 1.00 1.12 1.25 1.39 1.55 1.72 1.90 2.10 2.48 2.88 3.32 3.79 4.28
1.4 0.627 0.705 0.786 0.875 0.975 1.09 1.22 1.36 1.51 1.67 1.84 2.19 2.56 2.96 3.39 3.85
1.6 0.555 0.624 0.695 0.774 0.863 0.964 1.08 1.20 1.34 1.49 1.64 1.96 2.30 2.66 3.06 3.48
1.8 0.498 0.559 0.623 0.693 0.773 0.865 0.968 1.08 1.20 1.34 1.48 1.76 2.08 2.42 2.78 3.17
2.0 0.451 0.506 0.564 0;62& 0.700 0.783 0.877 0.980 1.09 1.21 1.34 1,61 1.89 2.21 2.55 2.91
2.2 0.412 0.462 0.515 0.573 0.639 0.716 0.801 0.896 0.999 1.11 1.23 1.47 1.74 2.03 2:35 2.69
2.4 0.379 0.425 0.474 0.527 0.588 0.659 0.738 0.825 0.920 1.02 1.13 1.36 1.61 1.88 2.17 2.49
2.6, 0.351 0.394 0.438 0.488 0.545 0.610 0.683 0.764 0.853 0.948 1.05 1.26 1.49 1.75 2.03 2.32
2.8 0.327 0.366 0.408 0.454 0.507 0.568 0.636 0.712 0.794 0.883 0.979 1.18 1.39 1.63 1.89 2.18
3.0 0.306 0.343 0.381 0.424 0.474 0.531 0.595 0.666 0.743 0.825 0.916 1.10 1.31 1.53 1.78 2.04
X 0.000 0.005 0.017 0.035 0.057 0,083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y 0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0,208 0.192 0.179 0.167

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-106 DESIGN CONSIDERATIONS FOR WELDS
Table 8-10 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60"
Available strength of a weld group, ^Rf, or R„/Q, is determined with
fl„=CCWI (il) = 0.75, fi = 2.00)
LRFD ASD
(t)C,0/
Pu , Pu
(|)CC|/ """ <t)cc,r)
^inin —
C,£)/ cc,/ CC|0
where
P = required force, Pa or Pa, kips
0 = number of sixteenths-of-an-inch in the fillet weld size
1 = characteristic length of weld group, in.
a =V/
ex = tiorizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c),
at
ff
k
a
0 0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2,0
•0.00 • 2.60 2.79 3.01 3.23 3,44 3.66 3.88 4.10' 4.32 4.54 4.76 5.19 5.63 6.07^ 6.50 6.94
0.10 2.43 2.70 2.97 3.23 3,48 3.72 3.96 4,19 4.42 4.«4 4,87: 5.31 5.75 6.18 6.62 7.05
0.15 2.31 2.59 2.86 3.13 3,40 3.66 3.91 4,16 4.40 4.64 4.87 5.32 5.77 6.21 6.64 7.08
0.20 2.18 2.47 2.74 3.01 3.29 3.56 3.83 4.09 4.35 4.59 484 5.30 5.76 6.21 6.65 7.09
0.25 2.07 2.35 2.62 2.89 3.16 3.44 3.72 3.99 4.26 4.52 4.77 5.26 5,73 6.19 6.64 7.08
0.30 1.97 2.24 2.50 2.76 3.03 3.31 3.59 3.88 4.16 4.43 4,69 5.20 5,68 6.15 6.61 7.06
0.40 1.79 2.03 2.27 2.52 2.77 3.04 3.32 3.61 3.90 4.19 4,48 5.02 5.54 6.04 6.52 6.98
0.50 1.63 1.84 2.06 2.29 2.53 2.78 3.05 3.34 3.63 3.93 4,22 4.79 5.34 5.87 6.37 6.86
0.60 1.49 1.68 1.88 2.09 2.31 2.55 2.81 3.08 3.37 3.66 3,96 4.55 5.11 5.66 6.19 6.69
0.70 1,37 1.54 1.73 1.92 2.12 2.35 2.59 2.85 3.12 3.41 3.71 4.30 4.87 5.43 5.97 6.50
0.80 1.26 1.42 1.59 1.77 1.96 2.17 2.40 2.64 2.90 3.18 3.47 4.05 4.64 5.20 5.74 6.28
0.90 1.17 1.32 1.47 1.63 1.81 2.01 2.23 2.46 2.71 2.97 3.25 3.82 4.39 4.95 5.50 6.04
1.0 1.08 1.22 1.36 1.52 1.69 1.87 2.08 2.30 2.53 2.78 3.05 3.60 4.15 4.71 5.26 5.80
1.2 0.946 1.07 1.19 1.32 1.47 1.64 1.82 2.02 2.23 2.46 2.70 3.21 3.72 4.26 4.80 5.34
1.4 0.837 0.942 1.05 1.17 1.30 1.45 i 1.62 1.80 1.99 2.20 2.42 2.88 3.36 3,86 4.38 4.92
1.6 0.748 0.842 0.939 1.04 1,16 1.30 1.45 1.61 1.79 1.98 2,18 2.60 3.04 3.52 4.02 4.53
1.8 0.676 0.760 0.847 0.943 1.05 1.17 1.31 1.46 1.62 1.80 1.98 2.37 2.78 3,23 3.70 4.19
2.0 0.616 0.692 0.772 0.859 0.958 1.07 1.20 1.33 1.48 1.64 1.82 2.18 2.55 2,97 3.42 3.88
2.2 0.565 0.635 0,708 0.788 0.879 0.983 1,10 1.23 1.36 1.51 1.67 2.01 2.36 2.75 3.17 3.61
2.4 0.522 0.585 0,653 0.728 0.812 0.908 1.02 1.13 1.26 1,40 1:55 1.86 2.19 2.56 2.95 3.37
2.6 0.435 0.544 0.607 0.675 0,754 0.844 0.944 1.05 1.17 1,30 1.44 1.74 2,05 2.39 2.76 3.16
2.8 0.453 0,508 0.566 0.630 0.704 0.787 0,881 0.984 1.10 1,22 1.35 1.63 1.92 2:24 2:59 2.97
3.0' 0.424 0.476 0.530 0.590 0.659 ,0:738 0.826 0,923 1:03. 1,14 1.26 • •1.53 1.80 2.11 2.44 2.80
* 0.000 0,005 0.017 0.035 0.057 0.083 0.113 0;i44 0.178 0.213 0.250 0.327 0.408 0.492 0:579 0.667
/
0.500 0,455 0.417 0.385 0.357 0.333 0,313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
^fSlte

DESIGN TABLES <•-107
Table 8-10 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
Available strength of a wsld Qroup, or f^nf^tdstsrminsd with
/?„=cci0; {(|) = o.75, n = 2.oo)
LRFD ASD
. -
(^min ~
ijCiDl
^min —
Pu I .
<1)CC,/ """ (|)CC|Z)
Pu
Cm in ~
qpg
C,Dl
n - / -
^inin ~ ^^ , i-min ~
cc,/ CCiD
where
P = requirBd force, Pu or pj, kips
0 = number of sixteentlis-of-an-inch in tlie fillet weld size
/ = characteristic length of weld group, in.
a =ey//
= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 (or E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4{c).
J
Zj
e.g.
"V
k
3
0 0,1 0.2 0.3 0.4 0.S 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 2.74 2.92 3.11 3.30 3.49 3.69 3.88 4.07 4.26 4.46 4,65 5.03 5,42 5,80 6.19 6,57
0.10 2.59 2.86 3.11 3.31 3.50 3.69 3.88 4.07 4.27 4.46 4,65 5.04 5,42 5,81 6.20 6,58
0.15 2.50 2.78 3.04 3.28 3.50 3,70 3.90 4.09 4.28 4.47 4.67 5.05 5.44 5,83 8.21 6,60
0.20 2.43 2.69 2.96 3.22 3.46 3.68 3.89 4.09 4.29 4.48 4.68 5.06 5,45 5.84 6.22 6.61
0.25 2.35 2.62 2.88 3.14 3.40 3.63 3.86 4.07 4.28 4,48 4.68 5.07 5.46 5.84 6.23 6.61
0.30 2.28 2.55 2.80 3.07 3.33 3.58 3.82 4.04 4.26 4,46 4.67 5,06 5.46 5.84 6.23 6.62
0.40 2.16 2.41 2.66 2.92 3.19 3.45 3.71 3.95 4.18 4,41 4.62 5,04 5.44 5.83 6.23 6.61
0.50 2.05 2.29 2.53 2.78 3.05 ' 3.32 3,58 3.84 4.09 4.32 4.55 4.99 5.40 5,81 6.21 6.60
0.60 1.94 2.18 2;41 2.64 2.90 3.18 3.45 3.72 3.97 4.22 4.46 4.92 5.35 5.77 6.17 6.57
0.70 1.85 2.07 2.29 2.52 2.77 3.04 3.31 3.58 3.85 4.11 4.36 4.83 5.28 5.71 6.12 6.53
0.80 1.75 1.97 2.18 2.40 2.64 2.90 3.18 3.45 3.73 3.99 4.25 4.74 5.20 5.64 6.06 6.48
0.90 1.67 1.87 2.08 2.29 2.52 2.77 3.04 3.32 3.60 3.87 4.14 4.65 5.12 5.57 6.00 6.42
1.0 1.59 1.79 1.98 2.19 2.41 2.65 2.92 3.19 3.47 3.75 4.02 4.55 5.04 5.50 5.94 6.37
1.2 1.45 1.63 1.81 200 2.21 2.44 268 2.95 3.22 3.50 3.78 4.33 4.85 5.34 5.81 6.25
1.4 1.33 1.49 1.66 1.84 2.03 2.24 2.47 2.72 2.99 3.27 3.55 4.11 4.65 5.16 5.65 6.12
1.6 1.22 1.37 1.53 1.69 1.88 2.07 2.29 2.53 2.78 3.05 3.32 3.88 4.43 4.97 5.48 5.96
1.8 1.13 1.27 1.41 1.57 1.74 1.93 2.13 2.35 2.59 2.85 3.11 3.66 4.22 4.76 5.29 5.79
2.0 1.05 1.18 1.31 1.46 1.62 1.79 1.99 2.20 2.42 2.67 2.92 3.46 4.01 4,56 5.09 5.61
2.2 0.975 1.10 1.22 1.36 1.51 1.68 1.86 2.06 2.27 2.50 2.75 3.27 3.81 4.36 4.90 5.42
2.4 0.912 1.03 1.14 1.27 1.41 1.57 1.74 1.93 214 2.36 2.59 3.09 3.62 4:16 4.70 5.23
2.6 0.856 0.963 1.07 1.19 1.33 1.48 1.64 1.82 2.02 2.22 2.45 2.93 3.44 3.97 4.50 5.03
2.8 0.806 0.906 1.01 1.12 1.25 1.39 1.55 1.72 1.90 2.10 2,32 2.78 3.28 3.79 4.30 4.83
3.0 0.762 0.856 0.954 1.06 1.18 1.32 1.47 1.63 1.80 2.00 2,20 2,64 3.12 3.61 4.12 4.64
* 0.000 0.005 0.017 0,035 0.057 0.083 0.113 0.144 0,178 0.213 0,250 0.327 0.408 0.492 0.579 0.667
y 0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0:208 0.192 0.179 0.167

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-108 DESIGN CONSIDERATIONS FOR WELDS
Table 8-10a
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
Available strength of a weld group, or R„/n, is determined with
/?„=CCiO/((!) = 0,75, Q = 2.00)
LRFD ASD
Cm in Dmin —
Pu I ^ fu
r - n _
Imin '
QPa
CCiD
where
P = required force, P„ or Pa, kips
0 = number of sixteenths-of-an-inch in the fillet weld size
1 = characteristic length of weld group, in.
a
ex = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
ft = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
P?:
k
3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 1.98 2.20 2.47 2.74 3.01 3.29 3.56 3.83 4.10 4 38 4.6,5 5.19 5.74 6.28 6.83 7.37
0.10 1,90 2.08 2.30 2.54 2.97 3.04^ 3.30 3.57 3.84 4.12 4.41 4.99 5.57, 6.15 6.72 7.29
0.15 1.84 2.04 2.25 2.47 2.70 2.94 3.18 3.43 3.68. 3.94 4.19 4.72 5.26 5.82 6.38 6.95
0.20 1.76 1.97 2.17 2,38 2.59 2.82 3.04 3.28 3.52 3.76 4.00 4.51 5.02 5.55 6.08 6.63
0.25 1,65 1.86 2.07 2,26 2.46 2.67 2,89 3.11 3.33 3.57 3.80 4.29 4.79 5.30 5.82 6.35
0.30 1.55 1.74 1.95 2.13 2.32 2.52 2.72 2.93 3.15 3.37 3.60 4.07 4.56 5.06 5,57 6.09
0.40 1,34 1.5'1 1.70 1.87 2.04 2.22 2.40 2.59 2.79 3.00 3.21 3.66 4.12 4.61 5.10 5.61
0.50 1.16 1.31 1.47 1.63 1.79 1.95 2,12 2.29 2.47 2.67 2.87 3.29 3.74 4.20 4.69 5.18
0.60 1,01 1.15 1.29 1.42 1.57 1.72 1.88 2.04 2.21 2,38 2.57 2.97 3,40 3.85 4,32 4.80
0.70 0.895 1.01 1.13 1.25 1.39 1.53 1.68 1.82 1.98 2.15 2.32 2.70 3,11 3.54 3.99 4.46
0.80 0.799 0.906 1.01 1.12 1.24 1.37 1.51 1.65 1.79 1.95 2.11 2.47 2,86 3.27 3.71 4.16
0.90 0.720 0.816 0.909 1.01 1.12 1.24 1.37 1.50 1.63 1,78 1.94 2.27 2,64 3.04 3.45 3.89
1.0 0.654 0.742 0.825 0.915 1.01 1.12 1.25 1.37 1.50 1,64 1.78 2.10 2,45 2.83 3.22 3.64
1.2 0.552 0.626 0.695 0.771 0.856 0.950 1.06 1.17 1.29 1,41 1.54 1.82 2.13 2.47 2.84 3.22
1.4 0.477 ; 0.540 0.600 0.665 0.739 0.822 0.916 1.02 1,12 1.23 1.35 1.60 1.88 2.19 2.52 2.87
1.6 0.420 0,474 0.527 0.585 0.650 0.724 0.808 0.901 0.995 1.09 1.20 1.43 1.68 1.96 2.27 2.59
1.8 0.374 0,422 0.469 0.521 0.580 0.646 0.722 0.806 0.892 0.981 1.08 1.28 1,52 1.78 2.05 2.35
2.0 0.338 0.381 0.423 0.470 0.523 0.584 0.653 0.729 0.809 0.889 0.976 1,17 1,38 1.62 1.88 2.16
2.2 0.308 0.346 0.385 0.428 0.476 0.532 0.595 0.665 0.739 0.813 0.893 1.07 1,27 1.49 1.73 1.99
2.4 0.282 0.318 0.353 0.393 0.437 0.489 0.547 0.612 0.680 0.749 0.822 0.986 1.17 1.37 1.60 1.84
2.6 0.261 0.294 0.326 0.363 0.404 0.452 0.506 0.566 0.630 0.694 0.762 0.914 1,09 1.28 1.49 1.71
2.8 0.242 0.273 0.303 0.337 0.376 0.420 0.470 0.526 0.586 0,646 0.710 0.852 1.01 1.19 1.39 1,60
3.0 0.226 0.255 0.283 0,315 0.351 0.392 0.439 0.492 0.549 0,604 0.664 0.798 0.949 1.12 1.30 1,50
* 0.000 0,005 0.017 0.035 0:057 0.083 0.113 0.144 0.178 0,213 0.250 0.327 0.408 0,492 0.579 0.667
y
0.500 0,455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0,263 0.250 0.227 0.208 0.192 0,179 0.167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-109
Table 8-10a (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30''
Available strength of a weld group, or fl„/Q, Is determlned with
R„=CC:DI ((l) = 0.75, 0 = 2.00)
LRFD
Cmin ~
Pu
Dmin ~
Pi. I - p"
<i>cc,l <i,CQD
ASD
(^nihi ~
Ofi,
CiDl
^iniii ~
QPg
CCil
hnin
CClD
Where
P = required force, P„or P,, kips
D - number of sixteenths-of-an-lnch In the fillet weld size
I = characteristic length of weld group. In.
Bx - horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for ETOXX electrodes)
Note; Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specitication
Sections J2,4, J2,4(a), J2.4(b) and J2.4(o}.
m:
a/
30'
F-9;
30'
Q
k
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 • 2.18 2.44 2.70 2.96 3,21 3.47 3.73 3.98 4.24 4.50 4.76 5.27 5.78 6.30 6.81 ' 7.33
0.10 2.02 2.24 2.47 2.70 2.94 3.18 3.43 3.69 3.95 4.21 4.48' 5.01 5.56 6.11 6.65 7.20
0.15 ' 1.92 2,13 2.34 2.55 2.77 3.00 3.23 3.47 3.71 3.96 4.21 4.73 5.27 5.82 6.37 6,93
0.20 1.82 2.02 2.23 2.43 2.64 2.85 3.07 3.29 3.52 3.76 4.00 4.50 5.01 5.55 6.09 6.64
0.25 1.71 1,91 2.11 2.31 2.50 2.70 2.91 3.12 3,34 3,57 3.80 4.28 4.78 5.30 5.83 6.37
0.30 1.61 1.79 1.98 2.18 2,37 2.56 2.75 2.96 3.17 3.39 3.61 4.08 4.57 5,08 5.60 6.13
0.40 1.41 1.57 1.74 1.92 2.10 2.28 2.45 2.64 2.84 3.04 3.26 3.71 4.18 4.67 5.18 5.69
0.50 1.23 1.38 1.53 1.70 1.87 2.03 2.19 2.36 Z55 2.74 2.94 3.37 3.83 4.30 4.80 5.30
0.60 1.08 1.22 1.36 1.51 1.66 1.81 1.96 2.13 2.30 2.48 2.67 3.08 3.52 3.98 4.46 4.95
0.70 0.964 1.08 1.21 1.35 1.49 1.63 1.77 1.92 2.08 2.26 2.44 2.83 3.25 3.69 4.15 4.64
0.80 0.865 0.974 1.09 1.22 1.34 1.48 1.61 1.75 1.90 2.06 2.23 2.60 3,01 3.44 3.89 4.35
0.90 0.783 0.882 0.989 1.10 1.22 1.34 1.47 1.60 1.74 1.90 2.06 2,41 2,80 3,21 3.64 4.09
1.0 0.714 0.805 0.904 1.01 1.11 1.23 1.35 1.48 1.61 1.75 1,91 2.24 2,61 3.00 3.42 3.86
1.2 0.606 0.684 0.769 0.852 0.944 1.05 1.16 1.27 1.39 1.52 1.66 1.96 2,29 2.65 3.04 3.44
1.4 0.525 0.593 0.665 0.737 0.818 0.908 1.01 1.11 :1.22 1.34 1,46 1.73 2.04 2.37 2.72 3.09
1.6 0.463 0.523 0.585 0.649 0.720 0.801 0.892 0.990 1.09 1.19 1.30 1.55 1.83 2.13 2.46 2.80
1.8 0.414 0.468 0.522 0.579 0.644 0.717 0.799 0.890 0.978 1.07 1.18 1,40 1.66 1.93 2.23 2.56
2.0 0.374 0.423 0.471 0.523 0.581 0.648 0.724 0.807 0.889 0.977 1.07 1,28 1.51 1.77 2.05 2.35
2.2 0.341 0.386 0.429 0.476 0.530 0.591 0.661 0.738 0.814 0.895 0.982 1.17 1,39 1.63 1.89 2.17
2.4 0.313 0.354 0.394 0.437 0.487 0.543 0:608 0.679 0.750 0,825 0.906 1.08 1.29 1.51 1.75 2.02
2.6 0.289 0.327 0.364 0.404 0.450 0.503 0.562 0.628 0.696 0.766 0.841 1,01 1.20 1.40 1.63 1.88
2.8 0.269 0.304 0,338 0.376 0,418 0.467 0.523 0.585 0.648 0.714 0.784 0.940 1.12 1,31 1.53 1.76
3.0 . 0.251 0.284 0,316 0.351 0.391 0.437 0.489 0.547 0.607 0,668 0.734 0,881 1.05 1,23 1.44 1.66
* 0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0,492 0.579 0.667
y 0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167 I
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-1074 DESIGN CONSIDERATIONS FOR WELDS
Table 8-1 Oa (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
Available strength of a weld group, ^Rn or R„/0., is determined with
fl„=CC,0/,(tt) = 0.75, a = 2.00)
LRFD ASD
Cmiii ~
JjL_ n . = —
<stC\Dl
Inihi —
_ Pu
(|>CC|£l
Cinin ~
ClPg
QDl
^min ~
tiPg
CC|(
' Imin —
£2F„
CC,D
where
P = required force, P„ or P,, kips
0 = number of sixteenths-of-an-inch in the fillet weld size
1 = chatacterisfic length of weld group, in.
a = e,//
e,= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
C] = electrode strength coefficient from Table 8-3
(1.0forE70XX electrodes)
Note: Shaded values indicate the value Is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
31
k
B
0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2,0
0 00 2.41 2.57 2.80 3.04 3.27 3.51 3.74 3:97" 4.21 4 44 4.67 5.14 5.61 6.08 6.54 7.01
0.10 2.24 2.44 2.65 2.86 3.07 3.29 3.52 3.76 4.00 4.24 4.49 5.01 5.53 6.06 6.59 7.12
0.15 2.09 2.28 2.48 2.68 2.89. 3.11 3.33 3.56 3.79 4.03 4.28 4.79 5.32 5.85 6.40 6.94
0.20 1.96 2.14 2.33 2.54 2.74 2.95 3.16 3.38 3.61 3.84 4.08 4.58 5,10 5.64 6.19 6.74
0.25 1.85 2.02 2.21 2.40 2,61 2.81 3.01 3,22 3.44 3.67 3.90 4.39 4.90 5.43 5.98 6.53
0.30 1.74 1.91 2.09 2.28 2,47 2.67 2.87 3,07 3.29 3.51 3.73 4.21 4,72 5.24 5.78 6.33
0.40 1.55 1,70 1.87 2.04 2,23 2.42 2.60 2,80 3.00 3.21 3.43 3.89 4,38 4.89 5.41 5.95
0.50 1.38 1,52 1.67 1.84 2.01 2.19 2.36 2.55 2.74 2.94 3.15 3.60 4.07 4.57 5.09 5.62
0.60 1.23 1,36 1.50 1.66 1.82 1.99 2.16 2.33 2.51 2.70 2.90 3.33 3.80 4.28 4.79 5.31
0.70 1.11 1,23 1.36 1.50 1.66 1.82 1.97 2.13 2.31 2.49 2.68 3.10 3.55 4.02 4.52 5.03
0.80 1.00 1,12 1.24 1.37 1.52 1.67 1.81 1.97 2.13 2.31 2.49 2.89 3.33 3.79 4.27 4.77
0,90 0.915 1,02 1.13 1.26 1.39 1.54 1.67 1.82 1.98 2.14 2.32 2.71 3.12 3.57 4.04 4.53
1.0 0.839 0,938 1.04 1.16 1.29 1.42 1.55 1.69 1.84 2.00 2.17 2.54 2.94 3.37 3.83 4.30
1.2 0.719 0,805 0.900 1.00 1,12 1.24 1.35 1.48 1.61 1.76 1.91 2.25 2.62 3.02 3.45 3.90
1,4 0.627 0,704 0,788 0.880 0,979 1,08 1.19 1.31 1,43 1.56 1.70 2.01 2.36 2.73 3.13 3.54
1.6 0.555 0,624 0.700 0.783 0,868 0.962 1.07 1.17 1,28 1,40 1.53 1.82 2.14 2.48 2.85 3.24
1.8 0.498 0,560 0.629 0.701 0.778 0.864 0.961 1.06 1.16 1,27 1.39 1,66 1.95 2.27 2.61 2.98
2.0 0.451 0,508 0.571 0.635 0.704 0.784 0.873 0.964 1.06 1.16 1.27 1.52 1.79 2.09 2.41 2.75
2.2 0.412 0,464 0.522 0.579 0.643 0.716 0.799 0.885 0.974 1.07 1.17 1.40 1.65 1.93 2.23 2.55
2.4 0.379 0.428 0.480 0.532 0.592 0.660 0.736 0.818 0.900 0.989 1.08 1.30 1.53 1.79 2.08 2.38
2.6 0.351 0.396 0.444 0.493 0.548 0.611 0.683 0.760 0.837 0.920 1.01 1.21 1.43 1.67 1,94 2.23
2.8 0.327 0.369 0.413 0.458 0.510 0.569 0.636 0.709 0.781 0.859 0.943 1.13 1:34 1.57 1,82 2.10
3.0 0.306 0.345 0.386 0.428 0.477 0.532 0:595 0.665 0.733 0.806 0.885 1.06 1.26 1.48 1.72 1.98
X 0,000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0,213 0.250 0.327 0.408 0.492 0.579 0.667
Y
0,500 0.455 0.417 0:385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0:227 0.208 0.192 0.179 0.167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-111
Table 8-1 Oa (continued)
Goefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
Available strength of a weld group, ijifln or RnlQ, is determined wim
FI„=CC^DI ((t) = 0.75, n = 2.00)
LRFD ASD
<S/CiDl
D„!„ =
Pu
^min ~
Pu
^CCiD
^min "
nPq
n - , -
i^min — f ^rniti — "
cc,/ CC,D
where
P = required force, Pu or P,, kips
fl = number of sixteenths-of-an-inch in the fillet weld size
I = characteristic length of weld group, in.
a = e^/l
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, In.
C = coefficient tabulated below -
C, = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted byAISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
ex''el
<d
k
8
0 0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0,9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 2.60 2.79 3.01 3.23 3.44 3.66 3,88 4.10 4.32 4,54 4.76 11 5.63 6.07 6.50 6.94
0.10 2.43 2.59 2.76 2.94 3.14 3.35 3.57 3.80 4.03 4.28 4.52 5.04 5.56 6.07 6.56 7.03
0.15 2.31 2.45 2.62 2.80 3.00 3.21 3.43 3.66 3.89 4.13 4.38 4.89 5.43 5.96 6.48 6.97
0.20 2.18 2.32 2.49 2.67 2.87 3.08 3.30 3.52 3.75 3.99 4.23 4.75 5.28 5.83 6.37 6.88
0.25 2,07 2.21 2.38 2.56 2.75 2.96 3.17 3.40 3.62 3.86 4,10 4.60 5.14 . 5.69 6.24 6.78
0.30 1,97 2.11 2.27 2.45 2.64 2.84 3.06 3.28 3.50 3.73 3.97 4.47 5.00 5.55 6.11 6.66
0.40 1.79 1.93 2.08 2.25 2.44 2.64 2.84 3,06 3.27 3.50 3.73 4,22 4.74 5.28 5.84 6.41
0.50 1.63 1.76 1.91 2.08 2.26 2.45 2.65 2.86 3.06 3.28 3.51 3.99 4.50 5.03 5.58 6.15
0.60 1.49 1,62 1.76 1.92 2.09 2.28 2.47 2.67 2.87 3.08 3.30 3.77 4.28 4.80 5.35 5.91
0.70 1.37 1.49 1.63 1.78 1.95 2.12 2.31 2.50 2.70 2.90 3.12 3.58 4.07 4.59 5.13 5.68
0.80 1.26 1.38 1.51 1.66 1.82 1.99 2.17 2.35 2.54 2.74 2.95 3.39 3.88 4.39 4.92 5.46
0.90 1.17 1.28 1.41 1.55 1.70 1.86 2.04 2.21 2.39 2.58 2.79 3.23 3.70 4.20 4.72 5.25
1.0 1.08 1.19 1.31 1.45 1.59 1.75 1.92 2.08 2.26 2.45 2.64 3.07 3.53 4.02 4.53 5;05
1.2 0.946 1.05 1.16 1,28 1.41 1.56 1.71 1.87 2.03 2.20 2.39 2.79 3.22 3.69 4.17 4.68
1.4 0.837 0.928 1.03 1.14 1.27 1.40 1.54 1.68 1.83 2.00 2.17 2.54 2.96 3.40 3.86 4.34
1.6 0.748 0.832 0.926 1.03 1.14 1.27 1.40 1.53 1.67 1.82 1.98 2.33 2.72 3.14 3.58 4.04
1.8 0.676 0.754 0.840 0.936 1.04 1.16 1.28 1.40 1.53 1.67 1.82 2.15 2.52 2.91 3.33 3.77
2.0 0,616 0.688 0.768 0.857 0.957 1.07 1.17 1.29 1.41 1.54 1.68 1.99 2.34 2.71 3.11 3.53
2.2- 0,565 0.632 0.707 0,790 0.883 0.981 1.08 1.19 1.30 1.43 1.56 1.85 2.18 2.53 2.91 3.31
2.4 0.522 0.585 0.655 0.733 0.S18 0.909 1.01 1.11 1.21 1.33 1.46 1.73 2.04 2.37 2.73 3.11
2.6 0.485 0.544 0.609 0.682 0.760 0.845 0.940 1.03 1.13 1.24 1.36 1.62 1.91 2.23 2.57 2.93
2.8 0.453 0.508 0.570, 0.638 0.709 0.789 0.879 0.969 1.06 1.17 1.28 1.53 1.80 . 2,10 2.43 2.78
3.0 0.424 0.476 0.535 0.598 0.665 0.740 0.825 0.911 1.00 1.10 1.21 1.44 1.70 1.99 2.30 2.63
X 0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
Y 0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0,278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-112 DESIGN CONSIDERATIONS FOR WELDS
Table 8-10a (continued)
Coefficients, C;
for Eccentricaily Loaded Weld Groups
Angle = 75°
Available strength of a weld group, or fl„/n, is determined with
(<1) = 0.75, £2 = 2.00)
LRFD ASO
Cmin~ TTTTTT ~ . ^^ , ~ ir^
<j)C]D; 9CC1/ <^CC\D C,Dl
Dtnin —
CC|Z
Imin ~
aPa
CC|0
where
P = required force, PuOt Pa, kips
D - number of sixteenths-of-an-inch in the fillet weld size
; characteristic length of weld group, in.
a =e,/l
ex = horizontal component of eccentricity of p
with respect to centroid of weld group, in.
C = coefficient tabulated below
C] = electrode strength coefficient from Tabic 8 3 i
(1.0 for E70XX electrodes)
Note; Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2,4(b) and J2.4(c).
<hc=
..c
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 2/-1 2.92 3.11 3.30 3.49 3,69 ;is;i 4.07 4.26 4.46 465 5 03 5.42 5 80 6.19 6.57
0;l6 2.59 2.68 2.81 2.97 3.16 3.36 : 3.58 3.82 4.07 . 4.33 : 4.58 5.06 . 5.50 5.91 6.31 6.69
0.15 2.50 2.60 2.74 2.90 3.08 3.29 3.51 3.75 4.00 4.26 4.52 5.02 5.48 5.90 6.30 6.69
0.20 2.43 2.53 2.66 2.83 3.01 3.22 3.44 3.68 3.93 4.19 4.46 4.98 5.45 5.88 6.29 6.69
0.25 2.35 2.46 2.60 2.76 2.94 . 3.15 3.37 3,61 3.86 4.12 4.39 4.92 5.42 5.86 6.28 6.68
0.30 2.28 2.39 2.53 2.69 2.88 3.09 3.31 3.54 3.79 4.05 4.32 4,86 5.37 5.84 6.26 6.67
0.40 2.16 2.27 2.41 2.57 2.76 : 2.96 3.18 3.42 3.66 3.92 4.19 4.72 5.27 5.77 6.22 6.64
0.50 2.05 2.16 2.30 2.46 2.64 2.85 3.06 3.30 3.54 3.80 4.06 4.59 5.13 5.66 6.15 6.59
0.60 1.94 2.05 2.19 2.35 2.54 2.73 2.95 3.18 3.42 3.68 3.93 4.46 5.00 5.54 6.06 6.54
0.70 1.85 1.96 2.10 : 2.25 2.43 2.63 2.84 3.07 3.31 3.56 3.81 4.33 4.87 5.42 5.95 6.45
0.80 1.75 1,87 2.00 2.16 2.34 2.53 2.74 2.97 3.20 3.45 3.69 4.21 4.75 5.30 5.84 6.35
0.90 1.67 1.78 1.92 2.07 2.25 2.44 2.65 2.87 3.10 3.34 3.58 4.09 4.62 5.17 5.72 6.24
1.0 1.59 1.70 1.84 1.99 2.16 2.35 2.55 2.77 3.00 3.24 3.47 3.97 4.50 5.05 5.60 6.13
1.2 1.45 1.56 1.69 1.84 2.00 2.18 2.38 2.60 2.82 3.04 3.27 3.76 4.27 4.81 5,37 5,91
1.4 1.33 1.43 1.56 1.70 1.86 2.04 2.23 2.44 2.65 2.86 3.08 3.55 4.06 4.59 5,13 5,68
1.6 1.22 1.32 1.45 1.58 1.74 1.91 2.09 2.29 2.49 2.69 2.91 3.37 3.86 4.37 4,91 5,46
1.8 1.13 1.23 1.35 1.48 1.63 1.79 1.97 2.16 2.34 2.54 2.75 3.19 3.67 4.17 4.70 5.24
2.0 1.05 1.14 1.26 1.38 1,52 1.68 1.85 2.03 2.21 2.40 2.60 3.03 3.50 3.99 4.50 5,03
2.2 0.975 1.07 1.18 1.30 1.44 1.59 1.75 1.92 2.09 2.27 2.47 2.88 3.33 3.81 4.31 4,83
2.4 0.912 1,00 1.11 1.22 1.35 1.50 1.66 1.82 1.98 2.16 2.34 2.74 3.18 3.64 4.13 4.64
2.6 0.856 0.943 1.04 1.15 1.28 1.42 1.57 1.72 1.88 2.05 2.23 2.62: 3.04 3.49 3.96 4,46
2.8 0.806 0.890 0.986 1.09 1.21 1.35 1.49 1.64 1.79 1.95 2.12 2.50- 2.91 3.35 3.81 4,29
3.0 0.762 0.8te 0.934 -1.04 1.15 1.28 1.42 1.56:; 1.70 1.86 2.03 2.39 2.78 3.21 3.66 4.13
O.OOO 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0,667
y 0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.T92 0.179 0,167
AMERICAN INSTITUTE OF STEEI, CONSTRUGTION

DESIGN TABLES <•-113
Table 8-11
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
Available strength of a weld group, or Fi„/Q, is determined with
/?„=CC)0/ ((j) = 0.75, a = 2.00)
LRFD ASO
P P
(j)CCiD
aPa
CxDl CQl
Imin —
SlPa
CCiD
where
P = required force, Pa or kips
0 = number of sixteenths-of-an-inch in the fillet weld size
1 = characteristic length of weld group, in.
a = e,/l
ex = hofl2ontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
C] = electnide strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based or the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
M
m:
k
3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1,0 1.2 1.4 1.6 1.8 2.0
1.86 2.04 2.23 2.41 2.69 2.97 3 2'. 3.53 3.80 4.08 4,36 4.92 5.47 ul.3 G5'J 7.15
0.10 1.86 2.06 2.32 2.57 2.83 3.08 3.32 3.55 3.77 3.98 4.19 4,60 5.02 5.45 5.89 6.35
0.15 1,83 2.04 2.27 2.51 2,74 2.97 3.18 3.39 3.58 3.78 3.97 4.37 4.79 5.22 5.66 6.11
0.20 1.76 1.96 2.17 2.38 2.59 2,78 2.98 3.17 3.36 3.56 3.76 4.16 4.57 5.00 5.44 5.89
0.25 1.66 1.85 2.03 2.22 2.40 2.58 2.76 2.95 3.14 3.34 3.55 3.95 4.36 4,78 5:22 5.67
0.30 1.55 1.72 1.89 2.06 2.22 2.39 2.56 2.74 2.94 3.14 3.35 3.76 4.16 4.58 5.02 5.46
0.40 1.33 1.48 1.63 1.76 1.90 2.05 2.22 2.40 2.59 2.78 2.99 3.40 3.80 4.21 4.64 5.08
0.50 1,15 1.28 1.40 1.52 1.65 1,79 1.94 2.11 2.29 2.48 2.68 3.08 3.48. 3.88 4.30 4.73
0.60 0.999 1.11 1.22 1.33 1.45 1,58 1.72 1.88 2.05 2.23 2.41 2.81 3.20 3.59 3.99 4.41
0.70 0.879 0.979 1.08 1.18 1.29 1.41 1.54 1.69 1.85 2.01 2.19 2.56 2.95 3.33 3.72 4.12
0.80 0.783 0.871 0.960 1.06 1.16 1.27 1.39 1.53 1.67 1.83 2.00 2.35 2.73 3.10 3.48 3.87
0,90 0.704 0.783 0.865 0.954 1.05 1.15 1.27 1.39 1.53 1.68 1.84 2.17 2.53 2.89 3.26 3.63
1.0 0.639 0.711 0.786 0.869 0.959 1.06 1.16 1.28 1.41 1.55 1.69 2.01 2.36 2.71 3.06 3.42
1.2 0.538 0.599 0.664 0.735 0,814 0.900 0.993 1.09 1.21 1.33 1.46 1.75 2.07 2,40 2.72 3.06
1.4 0.464 0.517 0.574 0.636 0.706 0.782 0.865 0.956 1.06 1.17 1.28 1.54 1.83 2.14 2.44 2.76
1.6 0.408 0.454 0.505 0.560 0.622 0.691 0.766 0.847 0.937 1.04 1.14 1.38 1.64 1.92 2.21 2.51
1.8 0.363 0.405 0.450 0.500 0.556 0.618 0.686 0.760 0.841 0.931 1.03 1.24 1.48 1.75 2.02 2.29
2.0 0.328 0.365 0.406 0.451 0.502 0.559 0.621 0.689 0.763 0.845 0.935 1.13 1.35 1.60 1.85 2.11
2.2 0.298 0.333 0.370 0.411 0.458 0.510 0.567 0.630 0.698 0.773 0.856 1.04 1.24 1.47 1.71 1.95
2.4 0.274 0.305 0.340 0.378 0.421 0.469 0.522 0.580 0.643 0.713 0.789 0.959 1.15 1.36 1.58 1.82
2.6 0.253 0.282 0.314 0.349 0.389 0.434 0.483 0.537 0.596 0.661 0.731 0.890 1.07 1.26 1.47 1.69
2,8 0.235 0.262 0.292 0.324 0.362 0.403 0.450 0.500 0.555 0.615 0.682 0,830 0.997 1.18 1.37 1.58
3.0 0.219 0.245 0.272 0.303 0.338 0.377 0,420 0.468 0.519 0.576 0.638 0,777 0.934 1.10 1.28 1.48
jf 0.000 0.005 0.017 0.035 0.057 0.083 0,113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
/ 0,500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
N,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-114 DESIGN CONSIDERATIONS FOR WELDS
Table 8-11 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle =15°
Available strength of a weld group, or R„IQ., Is determined with
B„=CC|£)/ ((t) = 0.75, 42 = 2.00)
LRFD ASD
Cmin ~
(|)C,D/
^min —
Pu , ^ Pu
ifCCxl """ (t.CC,£)
Cmin ~
-Ek
CxDl
P^min ~
qPg
CQl CCxD
where
P = required force, Pa or Pa, kips
0 - number of sixteenths-of-an-inch In the fillet weld size
1 - characteristic length of weld group, in.
a = e,//
ex = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70)0( electrodes)
Note; Shaded values indicate the value is t)ased on the
greatest available strength permitted byAISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
ttl
15°
e.g.
•1
k
a
0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1:0 1.2 1.4 1.6 1.8 2.0
0.0Q 1.98 zw 2.47 2.74 3.01 3.29 3.59 3.83 . 4.10 4.38 4.65 5.19 5.74 628 6.83 7.37
0.10 1.90 2.09 2.32 2.55 2.79 3,02 3.26 3.49 3.71 3.94 4.16 4.60 5.04 5.49 5.95 6.42
0.15 1.84 2.05 2.26 2.48 2.70 2.92 3.13 3.35 3.56 3.77 3.98 4.40 4.83 5.27 5.72 6.18
0.20 1.76 1.96 2.17 2.38 2.58 2.78 2.99 3.19 3.38 3.58 3.78 4.19 4.61 5.05 5.49 5.95
0.25 1.65 1.85 2,05 2.25 2.44 2.63 2.82 3.01 3.20 3.39 3.58 3.99 4.41 4.84 5.28 5.74
0.30 1.55 1.74 1.92 2.10 2.28 2.46 2.64 2.82 3.01 3.21 3.40 3.81 4.22 4.65 5.09 5.54
0.40 1.34 1.51 1.67 1.82 1.97 2.12 2.29 2.48 2.67 2.87 3.08 3.47 3.88 4.29 4.73 5.17
0.50 1.16 1.31 1.44 1.58 1.71 1.86 2,02 2.19 2.37 2.56 2.77 3.17 3.57 3.97 4.39 4.83
0.60 1.01 1.14 1.26 1.38 1.51 1.65 1,79 1.95 : 2.12 2.31 2.50 2.91 3.29 3.69 4.09 4.51
0.70 0.895 1.01 1.12 1.23 1.34 1.47 1,61 1.75 1.91 2.09 2.27 2.66 3.04 3.43 3.82 4.23
0.80 0.799 0.897 0.995 1.10 1.21 1.32 1.45 1.59 1.74 1.90 2.07 2.44 2.83 3.19 3.58 3.97
0.90 0.720 0.809 0.897 0.991 1.09 1.20 1.32 1.45 1.59 1.74 1.90 2.26 Z63 2.99 3.36 3.74
1.0 0.654 0.735 0.816 0.902 0.996 1.10 1.21 1.33 1.46 1.60 1.76 2.09 2.45 2.80 3.16 3.53
1.2 0.552 0.621 0.689 0.763 0.845 0,936 1.03 1.14 1,25 1.38 1.52 1.82 2.15 2.48 2.81 3,16
1.4 0.477 0.536 0.595 0.660 0.733 0,813 0.900 0.994 1.10 1.21 1.33 1.60 1.90 2.22 2.53 2,85
1.6 0.420 0.471 0.523 0.581 0.646 0.718 0.796 0.881 0.974: 1.08 1.19 1.43 ^ 1.70 2.00 2.29 2.59
1.8 0.374 0.420 0.467 0,519 0.577 0.642 0.713 0.790 0.874 0.967 1.07 1.29 1.54 1.81 2.09 2.37
2.0 0.338 0.379 0.421 0.468 0.521 0.580 0.645 0.716 0.793 0.877 0.969 1.18 1.41 1.66 1.92 2.19
2.2 0,308 0.345 0.384 0.426 0.475 0.529 0.589 0.654 0.725 0.803 0.888 1.08 1.29 1.52 1.77 2.02
2.4 0.282 0.317 0,352 0.391 0.436 0.486 0,542 0.602 0.668 0.739 0.818 0.994 1.19 1.41 1.64 1.88
2.6 0.261 0.292 0.325 0.362 0.403 0.450 0,501 0.557 0.619 0.685 0.758 0.923 1.11 1.31 1.52 1.75
2.8 0.242 0.272 0.302 0.336 0.375 0.418 0,466 0.519 0.576 0.638 0.707 0.860 1.03;: 1.22 1.42 1.64
3.0 . 0.226 0.254 0.282 0.314 0.350 0.391 0.436 0.485 0.539 0.598 0.662 0.806 0.967 1.14 1.33 1,53
X 0.000 0.005 0.0i7 0,035 0,057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y
0.500 0.455 0.417 0,385 0,357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
AMERICAN INSTITUTE OF STEEI, CONSTRUGTION

DESIGN TABLES <•-115
Table 8-11 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
. Angle = 30°
Available strength of a weld group, or R„/Q, is determined with
# = 0.75, D = 2.00)
LRFD
Cmin ~
Pu
(|)CiD/
Pu I ^ Pu
(tiCC,/ """ (t.CCi£)
ASD
^niin
qPg
QDl
Dmin —
qPg
CCil
Imin ~
^Pa
CQD
where
P = required force, Pu or Pa, kips
D = number of sixteenths-of-an-inch in the fillet weld size
( = characteristic length of weld group, in.
a = ex/I
ex = horizontal component of eccentricity of P
with respect to centrold of weld group, in.
C = coefficient tabulated below
C, = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note; Shaded values indicate the value is based on the
greatest available strength permitted by ABC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2,4(c).
30»
a/
Mil
4
pm
"V
k
g
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 ' 2.18 2.44 2.70 2 96 3.21 347 3,73 3.98 4.24 4.50 4.76 5.27 5.78 6.30 6,81 7,33
0.10 2.02 2.24 2.47 2.70 2.93 3.17 3,40 3.63 3.87 4.10 4.34 4.82 5.31 5.80 6.30 6,81
0.15 1.92 2.12 2.33 2.54 2.76 2.98 3,20 3.42 3.64 3.86 4.09 4.55 5.02 5.51 6.01 6.53
0.20 1.82 2.01 2.21 2.41 2.62 • 2.83 3,03 3.24 3.46 3.67 3.89 4.33 4.79 5.26 5.74 6.24
0.25 1.71 1.90 2.08 2.28 2.47 2.67 2.88 3.08 3.28 3.4? 3.70 4.13 4.57 5.03 5.50 5.99
0.30 1,61 1.78 1.96 2.14 2.32 2.52 2.72 2.91 3.11 3.31 3.51 3.93 4.37 4.82 5.29 5.76
0.40 1,41 1.56 1.72 1.87 2.05 2.24 2.43 2.63 2.82 3.01 3.21 3.62 4.04 4.48 4.93 5.39
0:50 1,23 1.37 1.50 1.66 1.82 2.00 2.19 2.37 2.56 2.75 2.95 3.34 3.75 4.18 4,62 5.06
0.60 1.08 1.21 1.33 1.48 1.63 1.80 1.96 2.13 2.31 2.51 2.71 3.10 3.50 3.91 4,33 4.77
0.70 0,964 1.07 1.19 1.33 1,47 1.62 1.77 1.93 2.10 2.28 2.48 2.87 3.26 3.66 4,08 4.50
0.80 0.865, 0.965 1,07 1.20 1.33 1.46 1.60 1.75 1.92 2.09 2.27 2.67 3.05 3.44 3,84 4.25
0.90 0,783 0.874 0.976 1.09 1,21 1.33 1.46 1.60 1.76 1.92 2.10 2.47 2.85 3.23 3,62 4.03
1.0 0.714 0.798 0.893 0.997 1,10 1.22 1.34 1.48 1.62 1.77 1.94 2.30 2.68 3.04 3,42 3.81
1.2 0.606 0.678 0.761 0.847 0,938, 1.04 1.15 1.27 1.39 1.53 1.68 2.01 2.37 2.71 3,07 3.44
1.4 0.525 0.589 0.661 0.734 0,815 0.904 1.00 1.11 1.22 1.35 1.48 1,78 2.10 2.44 2,77 3.12
1.6 0.463 0.520 0.582 0.647 0,719 0.799 0.887 0.982 1.09 1.20 1.32 1,59 1.89 2.21 2,52 2.85
1.8 0.414 0.465 0.520 0.577 0,642 0.715 0.795 0.882 0,975 1.08 1.19 1.43 1.71 2.01 2,31 2.61
2.0 0.374 0.421 0.469 0.521 0,580 0,647 0.720 0.799 0.885 0.978 1.08 1.31 1.56 1.84 2,12 2.41
2.2 0.341 0.384 0.427 0.475 0,529 0.590 0.657 0.730 0.809 0.895 0.989 1.20 1.44 1.69 1,96 2.24
2.4 0.313 0.353 0.392 0.436 0,486 0.542 0.604 0.672 0.745 0.825 0.912 1.11 1.32 1.56 1,81 2.08
2.6 0.289 0,326 0.363 0,403 0,450 0.502 0.559 0.622 0.690 0.765 0.845 1.03 1.23 1.45 1,68 1.94
2.8 0.269 0,303 0.337 0,375 0.418 0.467 0.520 0.579 0.643 0.712 0.788 0.958 1.15 1,35 1,57 1.81
3:0 0.251 0,283 0.315 0,350 0.391 0.436 0.487 0.542 0.602 0.667 0.738 0.898 1.07 1,26 1,47 1.70
X • 0.000 0,005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0,492 0,579 0.667
y
0.500 0,455 0.417 0.385 0.357 0,333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0,192 0,179 0.167
X
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-116 DESIGN CONSIDERATIONS FOR WELDS
Table 8-11 (continued)
Coefficients, C,
for Eccenthcaliy Loaded Weid Groups
Angle == 45"
Available strength of a weld group, <t)fl„ or R„/Sl, is determined with
R„ = CC]DI ((|) = 0.75, £2 = 2.00)
LRFD ASD
^CiDl
Pu
t!CC\l
^min ~
(^CCiD
^min ~
qPg
CiDl
O.Pa _ Qn
where
P = required force, Pu or Pg, kips
D = number of sixteenttis-of-an-inch in the fillet weW size
/ = characteristic length of weld group, in.
a = e,/l
ex = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values Indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
ol
Bx-al
45°
e.g.
k
3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 o.g 1.0 1.2 1.4 1.6 1.8 2.0
0.00 241 ?•,/ 2.80 3.04 3.27 3.51 3.74 3.97 4.21 4,44 4 67 5.14 5,61 6.08 6.54 7.01
fl.10 i 2.24 2.44 2.65 2.87 3.09 3.32 3.56 3.79 4.03 4.26 4.50 4.99 5,47 5.96 6.45 6.94
0.15 2.09 2.28 2.48 2.69 2.91 3.14 3.38 3.62 3.85 4.09 4,33 4.83 5,32 5.82 6.31 6.81
0.20 1.96 2.14 2.32 2.51 2.72 2.94 3.17 3.42 3.66 3.90 4.15 4.65 5.15 5.65 6.15 6.65
0.25 1.85 2.02 2.19 2.37 2.56 2.76 2.98 3.21 3.45 3.70 3.95 4.45 4.95 5,46 5.97 6.47
0.30 .1.74 1.90 2.06 2.23 2.41 2.61 2.82 3.04 3,26 3.50 3.74 4.24 4.75 5.26 5.77 6.28
0.40 1.55 1.69 . 1.84 1.99 2.17 2.36 , 2.56 2.77 2.99 3.22 3.44 3.89 4.36 4.86 5.37 5.88
0.50 1.38 1.51 1.64 1.80 1.97 2.15 2.35 2.56 2.77 2.98 3.20 3.63 4.07 4.54 5.02 5.52
0.60 1.23 1.35 1,48 1.63 1.79 1.97 2.16 2.36 2.57 2.78 2.99 3.41 3.84 4.28 4.74 5:21
0.70 1.11 1.22 1,34 1.48 1.64 1.81 1.99 2.19 2.38 2.59 2.80 3.20 3.62 4.05 4.50 4.95
0.80 . 1.00 1.11 1,22 1.36 1.51 1.67 1.84 2.03 2.22 2.42 2.62 3.01 3.42 3.84 4.28 4.72
0.90 0.915 1.01 1,12 1.25 1,39 1.54 1.71 1.88 2.07 2.25 2.44 2.84 3.24 3.65 4.07 4.51
1.0 0.839 0.929 1.03 1.15 1.29 1.43 1.59 1.75 1.92 2.10 2.28 2.68 3.07 3.47 3.88 4;31
1.2 0.719; 0.799 0.891 0.997 1.12 1.25 138 1.52 1.67 1.83 2.00 2.37 2.76 3.14 3.53 3.94
1.4 0.627 0.699 0.782 0.877 0.981 1.09 1.21 1.34 1.47 1.62 1.78 2.11 2.49 2.86 3.23 3.62
1.6 0.555 0.620 0.695 0.781 0.870 0.967 1.07 1.19 1.31 1.45 1.59 1.90 2.24 2.61 2.97 3.34
1.8 0,498 0.557 0.625 0.701 0.780 0.868 0.965 1.07 1.18 1.31 1.44 1.72 2.04 2.38 2.73 3.09
2.0 . 0.451 0.505 0.568 0.634 0.706 0.786 0.875 0.972 1.08 1.19 1.31 1.57 1.86 2.18 2.53 2.86
2.2 0.412 0.462 0.520 0.579 0.644 0.718 0.800 0.889 0.986 1.09 1.20 1.44 1.72 2.01 2.33 Z67
2.4 0.379 0.426 0.479 0.532 0.593 0.661 0.737 0.819 ,0.909 1.01 1.11 1.33 1.59 1.87 2.17 2.49
2.6 0.351 0.394 0.443 0.492 0.549 0.612 ,0.682 0.760 0.843 0.933 1.03 1.24 1.48 1.74 2.02 2.32
2.8 0.327 0,367 0.412 0.458 0.510 0.570 0.635 0.707 0.786 0.870 0.961 1,16 1.38 1.63 1.89 2.18
3.0 0.306 0.344 0.385 0.428 0.477 0.533 0.594 0.662 0.735 0.814 0.900 1.09- 1.29 1.53 1.78 2.05
* 0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y
0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 8-117
Table 8-11 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
Available strength of a weld group, or /?„/£!, is determined with
R„=CC-,DI (((> = 0.75, a = 2.00)
LRFD ASD
Cmin ~
Pa
<fCiDl
Dnm =
P.
ifCCll
Imin — •
Pu
(|)CC,D
r - ^Pa n -
CYW
'm/n =
aPa
CC|D
where
P = required force, Pa or Pa, kips
0 = number of sixteenttis-of-an-inch in the fillet weld size
1 = characteristic length of weld group, in.
a = e,/l
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
C\ ~ electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
60°
60°
'e.g.
c.g.
a
k
ft
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1,2 1.4 1.6 1.8 2.0
0.00 2.60 279 3.01 3.23 3.44 3.66 3.88 4.10 4.32 4.54 4.76 5.19 5.63 6.07 6.50 6.94
0.10 2.43 2.59 2.76 2.94 3.14 3.36 3.59 3.83 4.07 4.30 4.54 5.00 5.46 5.92 6.37 6.82
0.15 2.31 2.45 2.61 2.79 2.98 3.20 3.42 3.67 3.91 4.16 4.41 4.89 5.36 5.82 6.28 6.74
0.20 2.18 2.32 2.48 2.64 2.83 3.04 3.27 3.51 3.75 4.00 4.25 4.76 5.24 5.72 6.19 6.65
0.25 2.07 2.21 2,35 2.51 2.70 2.91 3.14 3.38 3.62 3.87 4.11 4.61 5.11 5.60 6.08 6.55
0.30 1.97 2.10 2.24 2.40 2.59 2.79 3.01 3.25 3.50 3.75 3.99 4.46 4.97 5.47 5.96 6.44
0.40 1.79 1.92 2.05 2.21 2.39 2.59 2.81 3.03 3.27 3.52 3.77 4.26 4.75 5.23 5.71 6,20
0.50 1.63 1.75 1.88 2.04 2.22 2.42 2.63 2.85 3.07 3.31 3.55 4.06 4.55 5.04 5.52 5,99
0.60 1.49 1.61 1.74 1.89 2.07 2.26 2.47 2.68 2.90 3.13 3.36 3.85 4.36 4.85 5.34 5,81
0.70 1.37 1.48 1.61 1.76 1.93 2.12 2.32 2.53 2.75 2.97 3.20 3.67 4.16 4.67 5.16 5,64
0.80 1.26 1,37 1.49 1.64 1.81 1.99 2.18 2.39 2.60 2.82 3.04 3.51 3.98 4.48 4.98 5,47
0.90 1.17 1.27 1.39 1.53 1.69 1.87 2.06 2.26 2.46 2.68 2.90 3.35 3.82 4.30 4.79 5.29
1.0 1.08 1.18 1.30 1.44 1.59 1.76 1.94 2.14 2.34 2.55 2,76 3.21 3.67 4.13 4.61 5.11
1.2 0.946 1.04 1.15 1.27 1.41 1.57 1.74 1.92 2.11 2.30 2.49 2.92 3.37 3.83 4.29 4.75
1.4 0.837 0.921 1.02 1.14 1.27 1.41 1.57 1.74 1.90 2,07 2.26 2.66 3.09 3.55 4.00 4.45
1.6 0.748 0.827 0.920 1.03 1.15 1.28 1.43 1.58 1.73 1,89 2.06 2.43 2.84 3.28 3.74 4.17
1.8 0.676 0.749 0,836 0.935 1.05 1.17 1.31 1.44 1.58 1.72 1.88 2.23 2.62 3.04 3.49 3.92
2.0 0.616 0.684 0.765 0.856 0.961 1.08 1.20 1.32 1.45 1.59 1.73 2.06 2.43 2.83 3.25 3.69
2.2 0.565 0,629 0.704 0.790 0.887 0.991 1.10 1.22 1.34 1.47 1.61 1.91 2.26 2.64 3.04 3.46
2.4 0.522 0.582 0.652 0.732 0.822 0.916 1.02 1.13 1.24 1.36 1.49 1.78 2.11 2.47 2.85 3.26
2.6 0.485 0.541 0.607 0.682 0.763 0.851 0.948 1.05 1.16 1,27 1.39 1.67 1.98 2.32 2,68 3.07
2.8 0.453 0.506 0.568 0.638 0.712 0.794 0.885 0.984 1.08 1,19 1.31 1.57 1.86 2.18 2,53 2.90
3.0 0.424 0,475 0.533 0.599 0.667 0.744 0.830 0.923 1.02 1.12 1.23 1.47 1.75 2.06 2.39 2.74
* 0.000 0.005 0.017 0.035 0,057 0.083 0,113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y 0.500 0.455 0.417 0.385 0.357 0.333 0,313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
AMERICAN INSTITUTE OF STEEL CONSTEHCTION

8-118 DESIGN CONSIDERATIONS FOR WELDS
Table 8-11 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75"
Available strength of a weld group, or B„IS1, is determined witli
fl„=CCiO/ ((1) = 0.75, Q = 2.00)
LRFO ASD
Pu
tifCiDl
Ctn in ~ Dmin —
«!fCC^l
Imin ~
ifCC^D
^min ~
QPg
CiDl
D,„
Ml
CCil
Iniin ~
n/>„
CC|D
where
P = required force, Po or Pa, kips
D - number of sixteenths-of-an-incii in tlie fillet weld size
I = characteristic lengtli of weld group, in.
a = ex//
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note. Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(l)) and J2.4(c).
ex=al
5-
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1,8 2.0
0.00 2.74 2.92 3.11 3.30 3 49 3.69 3.88 4.07. 4.26 4.46 4,65 5.0'3 5.42 5 80 6.19 6.57
0.10 2.59 2.67 2.78 2.93 3.12 3.32 3.53 3.75 3.96 4.17 4.38 4.78 5.22 5.64 6.06 6.46
0.15 2.50 2.59 2.70 2.86 3.05 3.26 3.48 3.70 3.92 4.13 4,34 4.74 5.15 5.58 6.01 6.42
0.20 2.43 2.52 2.63 2.79 2.98 3.19 3.42 3.64 3.87 4.09 4,30 4.71 5.11 5.52 5.95 6.37
0.25 2.35 2.44 2.56 2,73 2.92 3.13 3.36 3.59 3.82 4.04 4,26 4,68 5.08 5,48 5.89 6.31
0.30 2.28 2.38 2.50 2.66 2.85 3.07 3.30 3.53 3.77 4.00 4,22 4.65 5.06 5.45 5.85 6.26
0.40 2.16 2.25 2.38 2.55 2.74 2.95 3.17 3.41 3.66 3.90 4.13 4.58 5.00 5.41 5.80 6.19
0.50 2.05 2.14 2.27 2.44 2.63 2.83 3.06 3.30 3.55 3.79 4.04 4.50 4.94 5,35 5.76 6.15
0.60 1.94 2.04 2.17 2.34 2.52 2.73 2.95 3.19 3.43 3.69 3.94 4.42 4.87 5,30 5.71 6.11
0.70 1.85 1.94 2.08 2,24 2.42 2.63 2.85 3.08 3.32 3.58 3.83 4.33 4.80 5,24 5.66 6.07
0.80 1.75 1.85 1.99 2.15 2.33 2.53 2.75 2.98 3.22 3.47 3.73 4.23 4.72 5,17 5.60 6.02
0.90 1.67 1.77 1.90 2.06 2.24 2.44 2.66 2.89 3.12 3.37 3.62 4.14 4.63 5.10 5.54 5.97
1.0 1.59 1.69 1.82 1.98 2.16 2.36 2.57 2.60 3.03 3.27 3,52 4.04 4.54 5,02 5.47 5.91
1.2 1.45 1.55 1.68 1.83 2.00 2.20 2.40 2.62 2.85 3.09 3.33 3.83 4.35 4,85 5.33 5.78
1.4 1.33 1.43 1.55 1.70 1.86 2.05 2.25 2.47 2.69 2.92 3.15 3.64 4.15 4,67 5.16 5.64
1.6 1.22 1.32 1.44 1.58 1.74 1.92 2.11 2.32 2.54 2.76 2.98 3.45 3.96 4,48 4.99 5.48
1.8 1.13 1.22 1.34 1.47 1.63 1.80 1.99 2.19 2.40 2.61 2.82 3.27 3.76 4.28 4.81 5.31
2.0 1.05 1.14 1.25 1.38 1.53 1.69 1.87 2.07 2.27 2.46 2.67 3.11 3.58 4.09 4.61 5.14
2.2 0.975 1.06 1.17 1.30 1.44 1.60 1.77 1.95 2.14 2.33 2.53 2.95 3.41 3.90 4.42 4.95
2.4 0.912 0.998 1.10 1.22 1.36 1.51 1,68 1.85 2.03 2.21 2.40 2.81 3,25 3.73 4.23 4.75
2.8 0.856 0.940 1.04 1.15 1.29 1.43 1.59 1.76 1.92 2.09 2.28 2.67 3.11 3.57 4.06 4.57
2.8 0.806 0.887 0.983 1.09 1.22 1.36 1.51 1.67 1.83 1.99 2.17 2.55 2.97 3.42. 3.90 4.40
3.0. 0.762 0.839 0.932 1.04 1.16 : 1.29 1.44 1.59 1.74 1.90 2.07 2.44 . 2.84 3.28 3.75 4.24
*
0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
/
0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
AMERICAN INSTITUTE OF STEEL CoNSTRUcnoN

DESIGN TABLES <•-119
Table 8-11a
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15^
Available strength of a weld group, (|)/!„ or R„ICl, Is determined with
fi„=CCiO/ ((1) = 0.75, £i = 2.00)
LRFD ASD
^CiDl (|.cc,; ^CCiD
_ QPa „ _ aPa
' CiD/ CCtl
^min —
CC|0
where
P = required force, or /'a, l<ips
0 = number of sixteenths-of-an-inch in the fillet weld size
/ = characteristic length of weld group. In.
a = Bx/t
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C ~ coefficient tabulated below
C] = electrode strength coefficient from Table 8-3
(1.0forE70XX electrodes)
Note; Shaded values indicate the value is based on the
greatest available strength permitted byAISC Specification
Sections J2.4, J2,4(a), J2.4(h) and .J2.4(c,).
15'
P
ev= a/
ME
c.g.
SJ k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 1.98 2 20 2.47 2.74 = 3.01 ^ 3.29 3.56 3.83 4.10 4.38- 4.65 5.19 5.74 6.28 6.83 7.37
0.10 1.90 2.15 2.44 2.71 2.97 3:20 3.42 3.62 3.82 4.02 4.22 ^ 4.64 5.07 5.52 5.99 6.47
0.15 1.84 2.09 2.34 2,58 2,80 3.00 3,19 3.38 3.57 3.77 3.98 4.40 4.83 5.28 5.75 6.22
0.20 1.76 1.98 2.20 2.41 2.61 2.79 2.97 3.15 3.35 3.55 3.76 4.18 4.61 5.05 5.51 5.99
0.25 1.65 1.85 2.05 2.24 2.42 2.59 2.76 2.94 3.14 3.34 3.55 3.97 4.40 4.84 5.30 5.77
0.30 1.55 1.73 1.90 2.07 2.24 2.40 2.57 2.75 2.94 3.14 3.35 3.78 4.20 4.64 5.09 5.56
0.40 1.34 1.49 1.64 1.77 1.92 2.07 2.24 2.42 2.60. 2.80 3.00 3.42 3.84 4.27 4.71 5.17
0.50 1.16 1.29 1.41 1.54 1.67 1.81 1.97 2.14 2.32 2.50 2.70 3.11 3.52 3.94 4.37 4.81
0.60 1.01 1.13 1.24 1.35 1.47 1.60 1.75 1.91 2.08 2.26 2.44 2.83 3.25 3.65 4.06 4.50
0.70 0.895 0.998 1,10 1.20 1.31 1.43 1.57 1.72 1.88 2.05 2.22 2.60 3.00 3.39 3,79 4.21
0.80 0.799 0.889 0.980 1.08 1.18 1.29 1.42 ,1.56 1.71 1.87 2.03 2.39 2.77 3.16 3.55 3.95
0.90 0.720 0.801 0.885 0.975 1.07 1.18 1.29 1.42 1.56 1.71 1.87 2.21 2.58 2.95 3.33 3.71
1.0 0.654 0.728 0.806 0.889 0.980 1.08 1.19 1.31 1.44 1.58 1.73 2.05 2.40 2.77 3.13 3.50
1.2 0.552 0.615 0.682 0.755 0.835 0.921 1.02 1.12 1.24 1.36 1.50 1.79 2.11 2.45 2,79 3.14
1.4 0.477 0.532 0.590 0.654 0.725 0.803 0.887 0.980 1.08 1.20 1.32 1.58 1.87 2.19 2.51 2.83
1.6 0.420 0.468 0.520 0.577 0.640 0.710 0.786 0.870 0.963 1.07 1.17 1.42 1.68 1.97 2.27 2.58
1.8 0.374 0.417 0.464 0.515 0.573 0.636 0.706 0.781 0.866 0.958 1.06 1.28 1,52 1,79 2.07 2,36
2.0 0.338 0.377 0.419 0.465 0.518 0.576 0.639 0.709 0.786 0.870 0.962 1.16 1.39 1.64 1.91 2.17
2.2 0.308 0.343 0.382 0.424 0.472 0.526 0.584 0.648 0.719 0.797 0.882 1.07 1.28 1.51 1.76 2.01
2.4 0.282 0.315 0,350 0.390 0.434 0,483 0.538 0.597 0.662 0.735 0.813 0.987 1,18 1.40 1.63 1.87
2.6 0.261 0.291 0.324 0.360 0.401 0.447 0.498 0.553 0,614 0.681 0.754 0.917 1,10 1.30 1.51 1.74
2.8 0.242 0.271 0.301 0.335 0.373 0.416 0.464 0.516 0.572 0.635 0.703 0.856 1.03 1.21 1.41 1.63
3.0 0.226 0.253 0,281 0.313 0.349 0.389 0,434 0.483 0.536 0.594 0.659 0.802 0.963 1.14 1.32 1.53
* 0.000 0.005 0.017 0,035 0.057 0:083 0,113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y
0.500 0.455 0.417 0.385 0:357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-120 DESIGN CONSIDERATIONS FOR WELDS
Table 8-1 la (continued)
Coefficients, C,
for Eccentricaiiy Loaded Weld Groups
Angle = 30"
Available strength of a weld group, iSfR„ or R„IQ, is determined witii
./?„=CCiO/ ((l) = 0.75, n = 2.00)
LRFD ASD
Crtj/n —
i^CiDl
Dmin —
ifCCil
Imin —
(fCCiO
Cmin ~
QPa ^ _ aPa , _ aPc
QDl ^""'''"CCiZ
where
P ~ required force, Pa or Pa, kips
D = number of sixteenths-of-an-incli In the fillet weld size
I = characteristic length of weld group, in,
a = e,/l
e, = horizontal component of eccentricil^i of P
with respect to centroid of weld group, In.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by WSC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
ex^al
30°
xl
30°
e^- a/
e.g.
41
'c.g.
3
k
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 2.18 244 2.70 2.96 3.21 3.47 3.73' •3.98 4 24 4.50 4.76 5.27; 5.78 6.30 6.81 7 33
0.10 : 2.02 2.34 2.61 2.86 . 3.08 3.27 3.46 3.66 3.86 4.08 4.31 4.78 5.27 5.76 6.26 6.77
0.15 1.92 2.20 2.46 2.68 2.88 3.05 3.23 3.42 3,63 3.85 4.07 4.54 5.03 5.52 6.02 6.52
0.20 1.82 2.07 2.30 2.50 2.68 2.85 3.02 3,21 3,41 3.63 3,86 4.33 4.81 5.30 5.79 6.29
0.25 1.71 1.93 2.14 2.33 2.50 2.66 2.83 3,02 3,22 3.43 3,65 4.12 .4.61 5.09 5.58 6.07
0.30 1.61 1.81 1.99 2.16 2.32 2.49 2.66 2,84 3.04 3.25 3,47 3.93 4.41 4.89 5.38 5.87
0.40 1.41 1.57 1.72 1.87 2.02 2.18 2.35 2.53 2.72 2.92 3.13 3.58 4.05 4.53 5.01 5.49
0.50 1.23 1.37 1.50 1.63 1.78 1.93 2.09 2.26 2.45 2.64 2.84 3.27 3.73 4.20 4.67 5.14
0.60 1.08 1.21 1.33 1.45 1.57 1.72 1.88 2,04 2.21 2.40 2.59 3.00 3.45 3.91 4.36 4.82
0.70 0.964 1.08 1.18 1.29 1.41 1.54 1.69 1.85 2.01 2,19 2.37 2.77 3.19. 3.64 4.08 4.53
0.80 0.865, 0.965 1.06 1.17 1.28 1.40 1.54 1.68 1.84 2.01 2.18 2.56 2.97 3.40 3.83 4.27
0,90 0.783 0.873 0.964 1,06 1.16 1.28 1.40 1.54 1.69 1,85 2.02 2^38 2.77 3.19 3.60 4.03
1.0 0,714: 0.796 0.881 0.971 1.07 1.17 1.29 1.42 1.56 1,71 1.87 2.22 2.59 2.99 3.39 3.81
1.2 0.606 0.676 0.749 0,828 0.914 1.01 1.11 1.23 1.35 1,49 1.63 1.95 2.29 2.66 3.04 3.42
1.4 0,525 0.586 0.650 0.720 0.797 0.881 0.974 1,08 1.19 1.31 1.44 1.73 2.04 2.38 2.74 3.10
1.6 0,463 0.516 0.574 0.636 0.706 0.782 0.865 0,958 1.06 1.17 1,29 1.55 1.84 2.15 2.49 2.82
1.8 0.414 0.462 0.513 0.570 0.633 0.702 0.778 0.862 0.955 1.06 1,17 1.41 1.67 1.96 2.27 2.59
2.0 0.374 0.417 0.464 0.515 0.573 0.637 0.706 0.783 0.868 0.961 1.06 1.28 1.53 1.80 2.09 2.39
2.2 0.341 0.380 0.423 0.470 0.523 0.582 0.646 0.717 0.795 0.881 0.974 1.18 1.41 1.66 1.93 2.21
2.4 0.313 0.349 0.389 0.432 0.481 0.536 0.595 0.661 0.733 0.813 0.900 1.09 1.30 1.54 1.79 2.06
2.6 0.289 0.323 0.360 0.400 0.445 0.496 0,552 0.613 0.680 0.755 0.836 1.01 1.21 1.44 1.67 1.92
2.8 0,269 0.300 0.334 0.372 0.415 0.462 0,514 0,571 0.634 0.704 0.780 0.947 1.14 1.34 1.56 1.80
3.0 0.251 0.281 0.313 0,348 0.388 0.432 0.481 0,535 0.594 0.659 0.731 0;889 1.07 1.26 1.47 1.69
* 0.000 0.005 0.017 0,035 0.057 0.083 0.113 0,144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
/
0.500 0,455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-121
Table 8-1 la (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45'
Available strength of a weld group, is determined with
«„=CC|0/ ((1) = 0.75, n = 2.00)
LRFD
r • ~ -Jjt— n . - ^"
" (1)C,£>/ """" ~ (fCC,/
I mill ~
Pu
<S)CCxD
m
ClPg
C,Dl
• _ aPa , _ np^
^mih ~~ r'n i ~ '
CCxl CCiO
where
P = required force, Pa or Pa, kips
0 = number of sixteentiis-of-an-incli in tiie fillet weld size
/ = characteristic length of weld group, in.
% =. horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C - coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4{c).
al
al
Mt
k
3
0 0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0.00 241 2.57 2.80 3.04 3.27 3.51 yi-' 3.97 4.21 4.44 5.14 5.61 6.08 6.54 7.01
0.10 2.24 2.52 2.76 2.97 3.17 3.37 3.58 3.80 4.02. 4.25' 4:49 4.98 5.47 5,96 6.45 6.94
0.15 2.09 2.38 2.61 2.80 2.98 3.17 3.37 3.58 3.81 4.04 4.28 4.77 5.27 5.77 6.27 6.77
0.20 1.96 2.23 2.45 2.63 2.80 2.98 3.18 3.39 3:61 3,84 4.08 4.57 5.06 5.57 6.08 6.59
0.25 1.85 2.10 2.30 2.47 2.63 2.81 3:00 3.21 3.44- 3.67 3,90 4.39 4.88 5:38 5.88 6.39
.0.30 1.74 1.97 2.16 2.33 2.49 2.65 2.84 3.05 3.27 3.50 3.73 4.22 4.71 5.21 5.71 6.22
0,40 1.55 1.73 1.90 2.06 2.22 238 2.56 2.76; 2.97 3.19 3.43 3.91 4.40 4.90 5.41 5.91
0.50 1.38 1.54 1.68. 1.83 1.99 2.15 2.32 2.51 . 2:71 2.92 3.15 3.62 4.12 4.62 5.12 5.62
0.60 1.23 1.38 1.51 1..64 1.79 i.95 2.11 2.29 2.48 2.69 2.90 3.36 3.85 4.34 4.84 5.35
0.70 1.11 1.24 1.36 1.48 1.62 1.77 1.93 2.10 2.28 2.48 2.68 3.13 3.60 4.09 4.59 5.09
0.80 : 1.00 1.12 1.23 1.35 1.48 1.62 1.77 1.94 2.11 2.29 2.49 2.92 3.38 3.85 4.34 4.84
0.90 0.915 1.02 1.13 1.24 1.36 1.49 1.64 1.79 1.96 2.13 2.32 2.73 3.17 3.64 4.12 4.60
1.0 0.839: 0,937 1.04 1.14 1.25 1.38 1.51 1.66 1.82 1.99 2.17 2.56 2.99 3.44 3.90 4.38
0.71 0.802 0.889 0.982 1.08 1.19 1.31 1.45 1.59. 1.75 1,91 2.27 2.66 3,09 3.53 3.98
.1.4 0.627 0.700 0.777 0.860 0.950 1.05 1.16 1.28 1.41 1.55 1.70 2.03 2.40 2.79 3.20 3,64
1.6 0.555 0.620 0.689 0.764 0.846 0,935 1.03 1.14 1.27 1.40 1.53 1.84 2.17 2.54 2.93 3.34
1.8 0.498 0.556 0.618 0.686 0.761 0.843 0.933 1.03 1.14 1.26 1.39 1.67 1.98 2.32 2.69 3.08
2.0 0.451 0.504 0.560 0.622 0.691 0.766 0.849 0.942 1.04 1.15 1.27 1.53 1.82 2.14 2.48 2.85
2.2 0.412 0.460 0.512 0.569 0.632 0.702 0.779 0,864 0.959 1.06 1.17 1.41 .. 1.69 1.98 2.30 2.65
-2.4 0.379 0.423 0.471 0.524 0.583 0.648 0.719 0.798 0.886 0.982 1.08 1.31 1.57 1.84 2.15 2.47
2.6 0.351 0.392 0.436 .0.485 0.540 o.ebi 0.668 0.741 0:823 0.913 1.01 1.22 1.46 1.72 2.01 2.31
2.8 0.327 0.365 0.406 0.452 0.503 0.560 0.623 0.692 0.768 0.852 0.943 1.14 1.37 1.62 1.88 2.17
3.0 0.306 0.341 0.380 0.423 0.471 0.525 0.584 0.649 0.720 0.799 0.885 1.07 1.29 . 1.52 1.77 2.04
* 0,000 0.005 0.017 0.035 0:057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0,667
0.500 0.455 0.417 0.385 0.357 0:333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
N.
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-122 DESIGN CONSIDERATIONS FOR WELDS
Table 8-11a (continued)
Coefficients, G,
for Eccentrically Loaded Weld Groups
Angle = 60°
Available strength of a weld group, <fFl„ or /?„/a, is determined witti
R„=CC^DI ((|) = 0.75, n = 2,00)
LRFD ASD
Cmin —
P..
Dmin —
P.
<fCC,l
Pu
^CCiD
Cmin "
aPa
C,Dl
SlPg
CCil
Imin —
qpg
CCiD
where
P s= required force, P„ or Pa, Wps
0 = number of sixteenths-of-an-inch in the fillet weld size
1 = characteristic length of weld group, In.
a =ex/l
ex = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C - coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(1.0 for EroXX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted byAISC Specification
Sections J2.4, J2.4(a), J2.4{b) and J2.4(c),
p
60'
Mr
W"
c.g.
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0
0,00 2.60 2.79 3.01 3.23 3.44 3.66 3.88 4.10 4,32 4.54 4.76 5.19 5.63 6.07 6,50 6.94
0.10 2.43 2.68 2.91 3.12 3.34 3.56 3.79 4.01 4.24 4.46 4.69 5,14 5.58 6.02 6,47 6.91
0.15 2.31 2.56 2.77 2.97 3.18 3.40 3.62: 3.85 4.08 4.32 4.55 5.01 5.47 5.93 6.38 6,83
0.20 2.18 2.44 2.63 2.82 3.02 3.24 3.46 3.69 3.92 4.15 4,39 4.87 5.34 5.81 6.27 6.73
0.25 2.07 2.32 2,50 2.68 2.88 3.09 3.31 3.54 3.77 4,01 4.24 4.71 5.19 5.67 6.15 6.61
0.30 1.97 2.21 2.39 2.56 2.75 2.96 3,18 3.41 3.64 3.88 4.11 4.58 5.05 5.53 6.01 6.49
.0.40 1.79 2.00 2.19 2.35 2.53 2.72 2.94 3.16 3.40 3.64 3.88 4,35 4.83' 5.29 5.76 6.23
0.50 1.63 1.82 1.99 2.16 2.33 2.51 2.72 2.94 3.17 3.41 3.65 4.14 4.62 5.10 5.57 6.03
0,60 1.49 1.67 1.82 1.99 2.15 2.33 2.52 2.74 2.97 3.20 3.44 3.94 4.43 4,91 5.39 5.86
0,70 1.37 1.53 1.68 1.83 2.00 2.17 2.35 2.55 2.77 3.01 3.24 3,74 4.23 4,73 5.21 5.69
0.80 1.26 1.41 1.55 1.70 1.85 2.02 2.20 2.39 2.60 2,83 3.06 3,55 4.04 4.54 5.03 5.52
0.90 1.17 1.30 1.44 1.57 1.73 1.89 2.06 2.24 2,44 2.66 2,89 3,37 3.86 4.36 4.86 5,35
1.0 1.08 1.21 1.34 1.47 1.61 1.77 1.93 2.11 2.30 2.51 2,73 3,20 3,69 4.18 4.68 5,18
1.2 0.946 1.06 1.17 1.29 1.42 1.56 1.71 1.88 2,06 2.25 2,45 2,89 3.36 3.85 4.35 4,84
1.4 0.837 0.935 1.04 1.15 1.26 1.39 1.53 1.69 1,85 2.03 2.22 2,63 3.08 3.55 4.04 4.53
1.6 0.748 0.837 0.929 1.03 1.13 1.25 1.38 1.53 ; 1,68 1.85 2.02 2.41 , 2.83 3.28 3.75 4,23
1.8 0.676 0.756 0.840 0.931 1.03 1.14 1.26 1.39 1.54 1.69 1.85 2.21 2.61 3.04 3,49 3,96
2.0 0.616 0.689 0.766 0.850 0.941 1.04 1.15 1.28 1.41 1.56 1.71 2.05 2.42 2.83 3,26 3,71
2.2 0.565 0.632 0.703 0.781 0.866 0.960 1.06 1.18 1,30 1,44 1.58 1.90 2,26 2.64 3,05 3,49
2.4 0.522 0.584 0.650 0,722 0.802 0.889 0.986 1.09 1.21 1.34 1.47 1.77 2,11 2.48 2,87 3.28
2.6 0.485 0.542 0.604 0.671 0.746 0.828 0:918 1.02. 1,13 1,25 1.38 1.66 1.98 2.33 2.70 3.10
2.8 0.453 0.506 0.563 0.626 0.697 0,774 0.859 0.954 1.06 1.17 1.29 1,56 1.86 2.19 2.55 2.93
3.0 0.424 0.474 0.528 0.587 0.653 0.727 0.807 0.896 0.995 1.10 1.22. ,1.47 1.76 2,07 2.41 2.77
X O.OD0 0.005 0.017 0.035 0.057 0.083 Q.113 0:144 0.178 0.213 0.250 0,327 0.408 0,492 0.579 0.667
y
0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0,278 0,263 0.250 0.227 0.208 0,192 0,179 0.167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES
Table 8-11a (continued)
Coefficients, C,
for Eccentricialiy Loaded Weld Groups
Angle = 75°
Available strength of a weld group, (|)/?„ or is determined with
R„ = CCiO; ((|> = 0.75, a = 2.'00)
LRFD ASO
Cmin —
6|C^Dl
.D,n
P. . _ P.
(l)CCi/ """ ^CCiD
Cniin —
qPg
CxDl
qpg
CCil ^min —
QPa
CQD
where
P = required force, P„ or Pa, Icips
0 = number of sixteenths-of-an-inch in the fillet weld size
1 = characteristic length of weld group, in.
a = ex/I
e, = horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C = coefficient tabulated below
Ci = electrode strength coefficient from Table 8-3
(f.O for EroXX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC Speciftation
Sections J2.4, J2.4(a), J2.4{b) and J2.4{c).
ex=al
75°
Hit
ex=al
a
k
a
0 0.1 0.2 0.3 0.4 0.5 0.6 0,7 0.8 0.9 1.0 1.2 1,4 1.6 1.8 2.0
' 0.00 2.74 2.92 3.11 3.30 3.49 3.69 3.88 4.07 4.26 4.46 4,65 5.03 5.42 5.80 6.19 6.57
0.10 2.59 2.86 3.11 3.30 3.49 3.69 3.88 4.07 4.26 4.46 4,65 5,03 5.42 5.80 6.19 6.57
0.15 2.50 2.76 3.02 3.26 3.48 3.68 3.88 4.07 4.26 4.45 4,65 5,03 5.42 5,80 6.19 6.57
0.20 2.43 2.67 2.92 3.17 3.40 3.63 3.84 4.05 4.25 4,45 4.64 5.03 5.41 5.80 6.18 6.57
0.25 2.35 2.59 2.83 3.07 3.30 3.53 3.76 3.97 4.19 4,39 4.59 4.99 5.39 5.78 6.17 6.56
0.30 2,28 2.52 2.74 2.97 3.21 3.44 3.67 3.89 4.10 4,32 4.53 4.93 5.34 5.73 6,13 6.52
0.40 2.16 2.39 2.59 2.81 3.04: 3.27 3.50 3.73 3.95 4,16 4.37 4.79 5.21 5,62 6,02 6.42
0.50 2.05 2.27 2.46 2.67 2.89 • 3.13 3.36 3.60 3.82 4,04 4.25 4.67 5.07 5,48 5.90 6.31
0.60 1.94 2.16 2.35 2.54 2.76 ; 2.99 3.23 3.47 3.70 3,93 4.15 4.58 4.99 5,38 5.78 6.18
0.70 1.85 2.05 2.24 2,43 2.64 a86 3.10 3.34 3.58 3.82 4.05 4.49 4.91 5.32 5.71 6.11
0.80 1.75 1.95 2.14 2.32 2.52 2.74 2.98 3.22 3.46 3.71 3,95 4.40 4.84 5.25 5,66 6.05
0.90 1.67 1.86 2.04 2.22 2.41 2.63 2.86 3.10 3.35 3.59 3.84 4,31 4.76 5.19 5.60 6.00
1.0 1.59 1.77 1.95 2.13 2.31 2.52 2.75 2.98 3.23 3.48 3.73 4.21 4.67 5.11 5.54 5.95
1.2 1.45 1.62 1.78 1.95 2.13 2,32 2.54 2.77 3.01 3.26 3.51 4.01 4.49 4,96 5,40 5.83
1.4 1.33 1.48 1.64 1.80 1.97 2.15 2.35 2.57 2.81 3.05 3.30 3.81 4.31 4.79 5.25 5.70
1.6 1.22 1.36 1.51 1.66 1.82 2.00 2.19 2.40 2.62 2.86 3.11 3.61 4.12 4.61 5.09 5.55
1.8 1.13 1.26 1.40 1.54 1.69 1.86 2.04 2.24 2.45 2.68 2.92 3.42 3.93 4.43 4.92 5.40
2.0 1.05 1.17 1.30 1.43 1.58 1.74 1.91 2.10 2.30 2.52 2.75 3.24 3.75 4.25 4.75 5.23
2.2 0.975 1.09 1.21 1.34 1.48 1.63 1.80 1.97 2.17 2.38 2.60 3.07 3.57 4.07 4.58 5.07
2.4 0.912 1.02 1.13 1.26 1,39 1.53 1.69 1.86 2.05 2.25 2.46 2.92 3.41 3.91 4.41 4.90
2.6 0.856 0.959 1.07 1.18 1.31 1.44 1.59 1.76 1.94 2.13 2.33 2.78 3.25 3.74 4.24 4,74
2.8 0.806 0.903 1.00 1.11 1.23 1.36 1.51 1.67 1.84 2.02 2.21 2.64 3.11 3.59 4.08 4.58
3.0 0.762 0.853 0.949 1.05 1.17 1.29 1.43 1.58 1.74 1.92 2.11 2.52 2,97 3.44 3,93 4,42
* 0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0,579 0,667
y 0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0,167
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

8-124 DESIGN CONSIDERATIONS FOR WELDS
Table 8-12
Approximate Number of
Passes for Welds
Single-Bevel Groove Welds Single-V Groove Welds
(Back-Up Weld Not Included) (Back-Up Weld Not Included)
Weld Size* Fillet 30° 45° 30° 60° 90°
in. Welds Bevel Bevel Groove Angle Groove Angle Groove Angle
3/16 1
— — — — __
V4 1 1 1 2 3 3
1 1 1 2 3 3
% 3 2 2 3 4 6
'/16 4 2 2 3 4 6
Vz 4 2 2 4 5 7
% 6 3 3 4 6 8
3/4 8 4 5 4 7. 9
% — 5 8 5 10 10
1 — 5 11 5 13 . 22
1Ve — 7 11 9 15
27
1V4 — 8 11 12 16 32
1% — 9 15 13 21 36
IV2 — 9 18 13 25 40
1% — • 11 21 13 25 40
•Plate thickness for groove welds.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-1
PART 9
DESIGN OF CONNECTING ELEMENTS
SCOPE : 9-3
GROSS AREA, EFFECTIVE NET AREA, AND WHITMORE SECTION . 9-3
Gross Area 9-3
Effective Net Area 9-3
Whitmore Section (Effective Width) 9-3
CONNECTING ELEMENTS SUBJECT TO COMBINED LOADING 9-3
CONNECTING ELEMENTS SUBJECT TO TENSION 9-4
CONNECTING ELEMENTS SUBJECT TO SHEAR 9-4
CONNECTING ELEMENTS SUBJECT TO BLOCK SHEAR RUPTURE 9-5
CONNECTING ELEMENT RUPTURE STRENGTH AT WELDS 9-5
CONNECTING ELEMENTS SUBJECT TO COMPRESSION
YIELDING AND BUCKLING 9-5
AFFECTED AND CONNECTING ELEMENTS SUBJECT TO FLEXURE 9-6
Yielding, Lateral-Torsional Buckling, and Local Buckling 9-6
Rupture 9-6
Coped Beam Strength 9-6
BEARING LIMIT STATES i 9-10
Bearing Strength at Bolt Holes 9-10
Steel-on-Steel Bearing Strength (Other Than at Bolt Holes) 9-10
Bearing Strength on Concrete or Masonry 9-10
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS 9-10
Prying Action 9-10
Rotational Ductility 9-14
Concentrated Forces 9-15
Shims and Fillers 9-15
Copes, Blocks and Cuts 9-16
Web Reinforcement of Coped Beams 9-17
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

!>-2 DESIGN OF CONNECTING ELEMENTS
DESIGN TABLE DISCUSSION 9-19
PART 9 REFERENCES 9-22
DESIGN TABLES ... / 9-23
Table 9-1. Reduction in Area for Holes 9-23
Table 9-2. Elastic Section Modulus for Coped W-Shapes 9-24
Table 9-3. Block Shear Rupture 9-33
Table 9-4. Beam Bearing Constants 9-40
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

CONNECTING ELEMENTS SUBJECT TO COMBINED LOADING
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of connecting elements (angles, plates, tees, gussets, etc.) used to trans-
fer load from one stiuctural member to another, as well as the affected elements of the
connected members (beam webs, beam flanges, column webs, column flanges, etc.). For
design considerations for bolts and welds, see Parts 7 and 8, respectively. For design provi-
sions specific to particular connection configurations, see Parts 10 through 15.
GROSS AREA, EFFECTIVE NET AREA, AND
WHITMORE SECTION
In the determination of the available strength of connecting elements, the gross area, A^, is
used for the yielding limit states, and the net area, An, is used for the rupture limit states. In
either case, the Whitmore section may limit the effective width to less than the overall
dimension of a connecting element.
Gross Area
The gross area, is determined as specified in AISC Specification Section B4.3, subject
to the limitations given below for the Whitmore section.
Effective Net Area
The effective net area, A^, is determined as specified in AISC Specification Section J4.1,
subject to the limitations given below for the Whitmore section. The reduction in area for
bolt holes can be determined using Table 9-1.
Whitmore Section (Effective Width)
When connecting elements are large in comparison to the bolted or welded joints within
them, the Whitmore section may limit the gross and net areas of the connecting element to
less than the full area (Whitmore, 1952). As illustrated in Figure 9-1, the width of the
Whitmore section, is determined at the end of the joint by spreading the force from the
start of the joint 30° to each side in the connecting element along the line of force. The
Whitmore section may spread across the joint between connecting elements, but cannot
spread beyond an unconnected edge.
CONNECTING ELEMENTS SUBJECT TO
COMBINED LOADING
Connection design has traditionally been based on simple stresses, such as shear, tension,
compression or flexure, not taken in combination. This simplification is adequate because
connection elements are usually small or short enough that an interaction-type distribution
cannot form. Even a theoretical combination analysis using the von Mises criterion for
plane stress is not any more refined. To illustrate this point, von Mises criterion is
expressed as
fe = if!-fxfy + fy + Vl ^ Fy (9-1)
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

!>-4 DESIGN OF CONNECTING ELEMENTS
where
fx and fy - norma) stresses, ksi
. fxy shear stress, ksi
Fy = specifiedminimum yield stress, ksi
This formulation requires three stresses at any one point. Assuming fxy and are known for
any one cut section, fy on the perpendicular cut section is still undefined and must be
assumed, thereby bringing inaccuracy into the formulation. Compounding this dilemma,/j,
could be assumed as equal to zero, equal to and having the same sign as f^, or equal to and
having the opposite sign of fx- Thus, what might appear to be a more sophisticated approach
to the analysis and design of a connection does not necessarily add any reliability to the
resulting design.
Though shear and normal stress interaction is generally not included in AISC design pro-
cedures, it is explicitly considered in the design of the extended configuration of the single
plate shear connection in Part 10 (Muir and Hewitt, 2009). The intent is to prevent other
limit states from controlling.
CONNEGTING ELEMENTS SUBJECT TO TENSION
The available strength due to tension yielding and tension rupture, ^R^ or RJSi, which
must equal or exceed the required tensile strength, Ru or Ra, respectively, is determined in
accordance with AISC Specification Section J4.1.
CONNECTING ELEMENTS SUBJECT TO SHEAR
The available strength due to shear yielding and shear i-upture,'(|)/?„ or RjQ, which must
equal or exceed the required shear strength, Ru or Ra, respectively, are determined in accor-
dance with AISC SpeaTicaft'on Section J4.2.
(a) Boiled Joint
Gusset or other
Connection elements
(b) Welded Joint
Fig. 9-1. Illustration of the width of the Whitmore section.
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

CONNECTING ELEMENTS SUBJECT TO COMPRESSION YIELDING AND BUCKLING
I
CONNECTING ELEMENTS SUBJECT TO BLOCK
SHEAR RUPTURE
The available strength due to block shear rupture, (|)/f„ or RJ^i, which must equal or exceed
the required strength, Ru or Ra, respectively, is determined in accordance with AISC
Specification Section J4.3. The values tabulated in Table 9-3 are used to calculate the available
block shear rupture strength.
CONNECTING ELEMENT RUPTURE STRENGTH AT WELDS
In many cases, the load path from a weld to the connecting element is such that the strength
of the connecting element can be evaluated directly. However, in some cases, the available
strength of the connecting element is not directly calculable. For example, while the strength
of the beam-web welds for a double-angle connection can be directly calculated, the
strength of the beam web at this weld cannot. In cases such as these, it is often convenient
to calculate the minimum base metal thickness that will match the available shear rupture
strength of the base metal to the available shear rupture strength of the weld(s).
For fillet welds with Fexx = 70 ksi on one side of the connection, the minimum base metal
thickness required to match the shear rupture strength of the connecting element to the shear
rupture strength of the base metal is
I—\ ,
0.60FEXX ^
t . (g.2-)
t^ _ ^ (y ji)
3.09P
Fu
For fillet welds with FEXX = 70 ksi on both sides of the connecting element, the minimum
base metal thickness required to match the shear rupture strength of the connecting element
to the shear rupture strength of the base metal is 2 times Equation 9-2:
tmin - — K^-i)
ru
where
D = number of sixteenths of an inch in the weld size on each side of the connecting
element
Fu = specified minimum tensile strength of the connecting element, ksi
CONNECTING ELEMENTS SUBJECT TO
COMPRESSION YIELDING AND BUCKLING
When connecting-elements are subject to compression, the available strength, (|)P„ or PJ^,
which must equal or exceed the required compressive strength, P„ or Pa, respectively, is
determined in accordance with AISC Specification Section J4.4.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

!>-6 DESIGN OF CONNECTING ELEMENTS
AFFECTED AND CONNECTING ELEMENTS SUBJECT
TO FLEXURE
Affected and connecting elements are normally short enough and thick enough that flexural
effects, if present at all, do not impact the design. When such elements are long enough and
thin enough that flexural effects must be considered, the following provisions are used for
determining the available strength.
Yielding, Lateral-Torsional Buckling, and Local Buckling
Generally, the available flexural strength, M„/£2, which must equal or exceed the
required flexural strength of affected and connecting elements, M„ or Ma, respectively, is
determined in accordance with AISC Specification Section J4.5 and Chapter F. Section F1.1
provides guidance based upon cross-section shape for the applicable Chapter F section.
Treatment of coped beams is provided in the following.
Rupture
For beams and rolled girders with bolt holes in the tension flange, see AISC Specification
Section F13.1. For affected and connecting elements, the available flexural rupture strength,
^hMnOT M„IQ.I,, is
M„ = f„ Zne, (9-4)
(|)J, = 0.75 Ok = 2.00
where
Znet = net plastic section modulus of the affected or connecting element, in.^
Coped Beam Strength
For beam ends with short copes no greater than the length of the connection angle(s), plate,
or tee, flexural local web buckling will generally not occur. Otherwise, the end reaction for
a coped beam may be limited by the flexural limit states of yielding, rupture, flexural local
buckling, or lateral-torsional buckling. The strength of coped beams with bolted shear con-
nections as shown in Part 10 will rarely be governed by flexural rupture. Other limit states,
such as block shear rupture, bolt shear rupture, and bolt bearing will generally limit the
strength of the connection.
For a coped beam, the required flexural strength is
LRFD ASD
Mu = Rue (9-5a) = (9-5b)
where
Ru or Ra = beam end reaction (LRFD or ASD), kips
e = distance from the face of the cope to the point of inflection of the beam, in. It
is Usually assumed that the point of inflection is located at the face of the sup-
porting member and e is as shown in Figure 9-2. However, depending upon
the connection type and stiffness and support condition, the point of inflection
may move away from the face of the supporting member; when this is the
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

AFFECTED AND CONNECTING ELEMENTS SUBJECT TO FLEXURE 9-7
case, a lesser value of e may be justified, and the use of e shown in Figure
9-2 is conservative.
The available flexural local buckling strength of a beam coped at the top flange or both the
top and bottom flanges must equal or exceed the required strength. The available strength,
tfbM„ or MnlQ.b, is
Mn = FcrSne, (9-6)
<!);, = 0.90 ^£,= 1.67
where
Fcr = flexural local buckling stress, determined according to the following, ksi
Snet - net section modulus, in.' Values of Snet for beams coped at the top flange only are
tabulated in Table 9-2.
1. When a beam is coped at the top flange only, the flexural local buckling stress is
based upon the classical plate buckling formula with buckling coefficient, k, corre-
sponding to the condition with three edges simply supported and one free edge. An
additional plate buckling model adjustment factor,/ is applied to account for stress
concentrations at the cope and to correlate the solution with experimental results
(Cheng and Yura, 1986).
The flexural local buckling stress for i beam coped at the top flange only when c
< Id and 4 < d/2 (see Figure 9-2) is
12(l-v^)UJ
fk<Fy
= 26,210
ho)
fk<Fy{ks) (9-7)
where
E = 29,000 ksi = modulus of elasticity of steel
Fy = specified minimum yield stress of beam web material, ksi
V = 0.3 = Poisson's ratio
/ = plate buckling model adjustment factor determined as follows
When-<1.0
d
a
When->1.0
d
/ = 1 + (9-9)
d
t,v = thickness of web, in.
k = plate buckling coefficient determined as follows
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-8 DESIGN OF CONNECTING ELEMENTS
When —<1.0
ho
^ = 2.2
ho:
V C,
1.65
(9-10)
When —>1.0
ho
/t =
2.2ho
(9-11)
ho= d~dc, reduced beam depth, in. Note that, for convenience, the dimension ho, as
illustrated in Figure 9-2, is used in these calculations instead of the more precise
dimension h\ to eliminate the detailed calculation required to locate the neutral
axis of the coped beam. Alternatively, the dimension hi may be substituted for hg
in the local buckling calculations,
c = cope length as illustrated in Figure 9-2, in.
<i =: beam depth, in.
(ic = cope depth as illustrated in Figure 9-2, in.
2. For a beam with the same cope length at both flanges, the flexural local buckling stress
when c<2d and dc < 0.2d (see Figure 9-3) is (Cheng and Yura, 1986)
Fcr = 0.62nE^fd<Fy
cho
(9-12)
where
fd =3.5-7.5 f^l
d }
(9-13)
da = cope depth at the compression flange as illustrated in Figure 9-3, in.
ho - reduced beam depth as illustrated in Figure 9-3, in.
Buckling checked here
N.A.
Simple shear connection
Fig. 9-2. Flexural local buckling of beam web coped at top flange only.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

AFFECTED AND CONNECTING ELEMENTS SUBJECT TO FLEXURE 9-9
3. For all other conditions, a conservative procedure also based upon the classical plate
buckling equation can be used. Including both elastic and inelastic buckling, the avail-
able buckling stress, (l)Fcr or Fc,/Q, is
When?. <0.7
When0.7<X<1.41
When 1.41
Fcr=^QFy
' G==l
g = (1.34-0.486?.)
where
I =-
ho^y
(9-14)
(9-15)
(9-16)
(9-17)
(9-18)
10r„J475 + 280
/i(, = reduced beam depth as illustrated in Figure 9-3, in.
4. When the tension flange cope is longer than the compression flange cope, flexural yield-
ing Should be checked at the end of the tension flange cope. The available strength, ^bMn
oiMJQ.b,is
^n ~ FySfiet
(|)i, = 0.90 0^=1.67
where
Sne, - net elastic section modulus at the end of the tension flange cope, in.^
Buckling chacked here
(9-19)
NA.
Simple shear connection
Fig. 9-3. Flexural local buckling of beam web coped at both flanges.
AMERICAN INSTITUTE OF STEEL CoNSTRUcnoN

!>-10 DESIGN OF CONNECTING ELEMENTS
BEARING LIMIT STATES
Bearing Strength at Bolt Holes
For available bearing strength at bolt holes, see Part 7.
Steel-on-Steel Bearing Strength (Other Than at Bolt Holes)
Bearing strength for applications other than at bolt holes is determined as given in AISC
Specification Section J7. The fabrication and erection requirements in AISC Specification
Sections M2.6, M2.8 and M4.4 are applicable to connecting elements that transfer load by
contact bearing on steel.
Bearing Strength on Concrete or Masonry
The bearing strength of concrete is determined as given in AISC Specification Section J8. For
bearing on masonry, see Building Code Requirements for Masonry Structures, ACI530/
ASCE 5/TMS 402 (ACI/ASCE/TMS, 2005a) and Specification for Masonry Structures,
ACI 530.1/ASCE 6/TMS 602 (ACI/ASCE/TMS, 2005b). The fabrication and erection
requirements in AISC Specification Sections M2.8 and M4.1 are applicable to connecting ele-
ments that transfer load by contact bearing on concrete or masonry.
OTHER SPECIFICATION REQUIREMENTS AND DESIGN
CONSIDERATIONS
The following other specification requirements and design considerations apply to the
design of connecting elements:
Prying Action
Prying action is a phenomenon whereby the deformation of a connecting element under a
tensile force increases the tensile force in the bolt above that due to the applied tensile force
alone. Design for prying action includes the selection of bolt diameter and fitting thickness
such that there is sufficient strength in the connecting element and the bolt. The following
discussion of prying action is similar to what has been considered prior to the 13th Edition
Steel Construction Manual, except that the design is based on Fu, which provides better cor-
relation with available test data than previous design methods. For the development of the
prying action equations presented here, see Thornton (1992) and Swanson (2002).
Consider the tee or angle used in a hanger connection as shown in Figure 9-4. The defor-
mation of the connected tee flange or angle leg is assumed to be in double curvature, as
shown in Figure 9-4. The dimension p identifies the tributary length for each bolt shown.
Note that p may be limited by the edge of the plate for the bolt closest to the edge.
The thickness required to eliminate prying action, i„„„, is determined as
LRFD ASD
\ATb'
= ~ (9-20a)
(9-20b)
H pFu
= 0.90 n=1.67
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 9-11
where
T =
b' =
specified minimum tensile strength of connecting element, ksi
required strength, r„( or Vat, per bolt, kips
b--
2)
(9-21)
b = for a tee-type connecting element, the distance from bolt centerline to the face of
the tee stem, in,; for an angle-type connecting element, the distance from bolt cen-
terline to centerline of angle leg, in.
di, = bolt diameter, in.
p - tributary length; maximum = 2b, but < unless tests indicate larger lengths can be
used. See Dowswell (2011) and Wheeler et al. (1998).
5 = bolt spacing, in.
When the fitting thickness, t, is greater than or equal to tmi„, no further check of prying
action is necessary. In this solution, the additional force in the bolt due to prying action, q,
is essentially zero.
Alternatively, it is usually possible to determine a lesser required thickness by designing
the connecting element and bolted joint for the actual effects of prying action with q greater
(I
pss
p<s
Line of
r+q
Line of /
Deformation
2T
(a) Prying forces in tee
T+Cl
a'
Defonnation
T->-q
a'
J
T
r-t
T
(b) Prying forces in angle
Fig. 9-4. UluMration of variables in prying action calculations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

!>-12 DESIGN OF CONNECTING ELEMENTS
than zero. To do so, a preliminary fitting thickness, /, can be selected based upon flexural
yielding such that
LRFD ASD
2b
(9-22b)
(Ji = 0.90 Q = 1.67
Table 15-1 can be used to select the preliminary fitting thickness. Subsequently, the thick-
ness required to ensure an acceptable combination of fitting strength and stiffness and bolt
strength, tmim can be determined as
LRFD ASD
^min —
4Tb'
(t>pF^(l+5a')
(9-23a) (niin —
Q4Tb'
pF4l + da')
(9-23b)
$ = 0.90 1.67
where
8 =1- (9-24)
= ratio of the net length at bolt line to gross length at the face of the stem or leg of angle
a' = 1.0ifp> 1
= the lesser of 1 and 1
6
P
U-PJ
ifp<l
d' = width of the hole along the length of the fitting, in.
1
P
I
a + - l.25b +
db
(9-25)
(9-26)
(9-27)
a = distance from the bolt centerline to the edge of the fitting, in.
B = available tension per bolt, (|)r„ or r„/D, kips
If t,nir, 51, the preliminary fitting thickness is satisfactory. Otherwise, a fitting with a thicker
flange, or a change in geometry (i.e., b and p) is required.
Although it is not necessary to do so, if desired, the prying force per bolt, q, can be deter-
mined as
5ap (9-28)
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS
«=6
B t
V y
-1 where 0<a< 1.0
9-13
(9-29)
The parameter a is the ratio of the moment at the face of the tee stem or at the center
of the unconnected angle leg thickness, to the moment at the bolt line. When a = 0, the
connection is strong enough to prevent prying action. When a > 1 the connection is not
adequate.
i
LRFD ASD
]j(j>pFu
, Pf (9-30b)
V P^"
tc - flange or angle thickness required to develop the available strength of the bolt, B,
with no prying action, in.
The total force per bolt including the effects of prying action is then T+q.
Alternatively, when the fitting geometry is known, the available tensile strength per bolt,
B, determined per AISC Specification Sections J3.6 or J3.7, can be multiplied by Q to deter-
mine the available tensile strength including the effects of prying action, Tavaih as follows:
Tavail=BQ (9-31)
When a' < 0, which means that the fitting has sufficient strength and stiffness to develop the
full bolt available tensile strength,
<2=1- (9-32)
When 0 < a' < 1, which means that the fitting has sufficient strength to develop the full bolt
available tensile strength, but insufficient stiffness to prevent prying action.
(2 = (l + 6a') (9-33)
Wlien a' > 1, which means that the fitting has insufficient strength to develop the full bolt
available tensile strength.
where
a =
6(l + p) t J
-1
0 =
tc)
:+6) (9-34)
(9-35)
= value of a that either maximizes the bolt available tensile strength for a given thick-
ness or minimizes the thickness required for a given bolt available tensile strength
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

!>-14 DESIGN OF CONNECTING ELEMENTS
Rotational Ductility
Simple shear connections provide for the rotational ductility required by AISC Specification
Section J1.2 as follows:
1. For double-angle, shear end-plate, single-angle, and tee shear connections, the geom-
etry and thickness of the connecting elements attached to the support (angle legs, plate,
or tee flange) are configured so that flexing of those connecting elements accommo-
dates the simple-beam end rotation.
2. For unstiffened and stiffened seated connections, the geometry and thickness of the top
or side stability angle is configured so that flexing of that connecting element accom-
modates the siniple-beam end rotation.
3. For single-plate connections, the geometry and thickness of the plate are configured so
that the plate will yield, bolt group will rotate, and/or the bolt holes will elongate at
failure prior to the failure of the welds or bolts.
For each of the simple-shear connections in Part 10, except tee shear connections, prescrip-
tive guidance is provided to ensure adequate rotational ductility. Rotational ductility can be
ensured for tee shear connections as follows. Note that this approach can also be used to
demonstrate adequate rotational ductility in other simple shear connections that flex to
accommodate the simple beam end rotation, but with configurations that differ from those
prescribed in Part 10.
When the flanges of the tee stub are welded to the support and bolted to the supported
beam, weld size, h-, with Fexx - 70 ksi, must be such that the minimum weld size, w^in, is
= 0.0155- (9-36)
but need not exceed (Thornton, 1996), where
b = flexible width in connecting element as illustrated in Figure 9-5, in.
tf = thickness of the tee flange, in.
ts - thickness of the tee stem, in.
L - depth of connecting element as illustrated in Figure 9-5, in.
For a tee bolted to the support and bolted or welded to the supported beam, the minimum
diameter for bolts through the tee flange for ductility is
d„;„=0.163r/ (9-37)
but need not exceed 0.69t^ • Additionally, to provide for rotational ductility when the tee
stem is bolted to the supported beam, the maximum tee stem thickness is
r.«,x=| + Vi6in. (9-38)
where
d = bolt diameter, in.
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 9-15
When the tee stem is welded to the supported beam, there is no perceived ductility prob-
lem for this weld.
Concentrated Forces
If the connecting element delivers a concentrated force to a member or other connecting ele-
ment, see AISC Specification Section JlO or Section Kl, as appropriate. See also AISC
Design Guide 13, Stiffening of Wide-Flange Columns at Moment Connections: Wind and
Seismic Applications (Carter, 1999).
i
Shims and Fillers
Shims are furnished to the erector for use in filling the spaces allowed for field clearance
which might be present at connections such as simple shear connections, PR and FR moment
connections, column base plates, and column spUces. These shims, illustrated in Figure 9-6,
may be either strip shims, with round pijnched holes, or finger shims, with slots cut through
the edge. Whereas strip shims are less expensive to fabricate, finger shims may be laterally
inserted and eliminate the need to remove erection bolts or pins already in place.
Finger shims, when inserted fully against the bolt shank, are acceptable for slip-critical
connections and are not to be considered as an internal ply with the slotted hole determining
o 2k
Note: weld returns on top of
tee per AISC Specification
Section J2.2b
(a) Welded flange
c
1
h !
I c
L
r
) 1
1
>
1 I.
1 c
J
>
L
Is.
r
7
^
1
1 f
)
^
L
-f
J 1
1
^ 1
1 L
1 c
J
L
7 r
1
i
1 L )
L
(b) Bolted flange
Fig. 9-5. Illustration of variables in shear connection ductility checks.
Strip Finger
Fig. 9-6. Shims.
X,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

!>-16 DESIGN OF CONNECTING ELEMENTS
the available strength of the connection. This is because less than 25% of the contact surface
is lost, which is not enough to affect the performance of the joint.
A filler is furnished to occupy spaces which will be present because of dimensional sep-
arations between elements of a connection across which load transfer occurs. Examples
where fillers might be used are beams framing off center on a coluirin and raised beams.
For the effect of fillers and shims on available joint strength, see AISC Specification
Sections J3.8 and J5.2.
Copes, Blocks and Cuts
When structural members frame together, a minimum clearance of '/2 in. should be provided,
when possible. In cases where material removal is necessary to provide such a clearance,
material may be removed by coping, blocking or cutting as illustrated in Figure 9-7.
Material removal is costly and should be avoided when possible. In some cases, it may
be possible to do so by setting the elevations of the tops of infill beams a sufficient distance
below the tops of girders to clear the girder fillet radius. Alternatively, a connection such as
that illustrated in Figure 9-8 could be.used.
When material removal is necessary, coping is usually the most economical method to
remove material. The recommended practices for coping are illustrated in Figure 9-9. The
potential notch left by the first cut will occur in waste material and subsequently be removed
by the second cut. All re-entrant comers must be shaped notch-free per AWS DI .1/DI .IM
(AWS, 2010) to a radius. An approximate minimum radius to which this comer must be
shaped is '/2 in. Copes, blocks and cuts can significantly reduce the available strengths of
members and may require web reinforcement; it may be more economical to use a heavier
member than to provide such reinforcement.
Vut not grind" preferred
"Cut and grind" If surface
must be flush with web
s
—vA-
(a) Cope (b) Blocks (c) Cut
Fig. 9-7. Copes, blocks and cuts.
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 9-17
Web Reinforcement of Coped Beams
When the strength of a coped beam is inadequate, either a different beam with a thicker Web
can be selected to diminate the need for reinforcement, or reinforcement can be provided to
increase the strength. In spite of the increase in material cost, the former soliition may be the
most economical option due to the appreciable labor cost associated with adding stiffeners
and/or doubler plates. When the latter solution is ifequired, some typical reinforcing details
are illustrated in Figure 9-10.
The doubler plate illustrated in Figure 9-10(a) and the longitudinal stiffener illustrated
in Figure 9-lOb are used with rolled sections where /f/^H, < 60. When a doubler plate is
used, the required doubler-plate thickness, td reg, is determined by substituting the quantity
{tw + td req) for tw in the available strength calculations for flexural yielding and local web
buckling. To prevent local crippling of the beam web, the doubler plate must be extended
at least a distance dc (depth of cope) beyond the cope as illustrated in Figure 9-10(a). When
longitudinal stiffening is used, the stiffening elements must be proportioned to meet the
width-to-thickness ratios specified in AISC Specification Table B4.1b. The stiffened cross
section must then be checked for flexural yielding, but web local buckling need not be
(a) Coping Required (b) Coping Eliminated
Fig. 9-8. Eliminating coping requirements.
first cut
second cut ina
i ^potential j
/ notch
-xA-
in waste
first cut
0 to 15° Bevel as required
resulting /second Cut (Along Bevel Line)
notch occurs—i /
s
AVOID RECOMMENDED
Fig. 9-9. Recommended coping practices.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

!>-18 DESIGN OF CONNECTING ELEMENTS
checked. To prevent local crippling of the beam web, the longitudinal stiffening must be
extended a distance dc beyond the cope as illustrated in Figure 9-10(b).
The combination of longitudinal and transverse stiffeners shown in Figure 9-10(c) may
be required for thin-web plate girders, where h/tw > 60. When longitudinal and transverse
stiffening is used, the stiffening elements must be proportioned to meet the width-to-thick-
ness ratios specified in AISC Specification Table B4.1b. The stiffened cross section must
then be checked for flexural yielding, but web local buckling need not be checked. To pre-
vent local crippling of the beam web, longitudinal stiffeners must be extended a distance c/3
beyond the cope, as illustrated in Figure 9-10(c).
Simple
Shear
connection^
-Doubler plate
(a) Doubler plate (b) Longitudinal stiffener
simple
Shear
connection—
a a
- Longitudinal Stiffemr
- Transverse Stiffener
(c) Combination longitudinal and
transverse stiffeners
Fig. 9-10. Web reinforcement of coped beams.
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 9-19
DESIGN TABLE DISCUSSION
Table 9-1. Reduction in Area for Hole
Area reduction for standard, oversized, short-slotted and long-slotted holes in material
thicknesses from in. to 1 in. are given in Table 9-1. For material thicknesses not listed,
the tabular value for 1-in. thickness can be multiplied by the actual thickness. The table is
based on a net area using a width that is Vi6 in. greater than the actual hole width.
Table 9-2. Elastic Section Modulus for Coped W-Shapes
Values are given for the gross and net elastic section modulus for coped W-shapes, as illus-
trated in the table header.
Tables 9-3. Block Shear Rupture
The terms in AISC Specification Equation J.4-5 are tabulated in Tables 9-3a, 9-3b and 9-3c.
The indicated values are given per inch of material thickness. Note that when the stress dis-
tribution is nonuniform, the tension component from Table 9-3a must be reduced by a factor
of 0.5 to account for
Table 9-4. Beam Bearing Constants
At beam ends and at any location on beams or columns where concentrated loads occur, the
available strength for web local yielding and web local crippling, (})/?„ or RJQ, at concen-
trated loads is determined per AISC Specification Sections J10.2 and J10.3, Values of i?„ are
given for a bearing length, k = 3'/4 in. The web local yielding (Equations JlO-2 and JlO-3)
and web local crippling (Equations JlO-4, J10-5a and J10-5b) equations can be simplified
using the bearing length, k, and the constants Ri through R^ as follows.
Ri = 2.5kFywtw
R2 = Fyy^tK,
/?3 = 0.40f,1
EFywtf
tw
Ra =0.404
Rs = 0.40fJ
/?6=0.40f2
r3/
dj
{'fJ
EFyy^,tf
tw
f 1.5^
1-0.2
bt

Jfj
y
EFyy,tf
r
tw
.d)
Jf)
1,5
EFyytf
tw
(9-39)
(9-40)
(9-41)
(9-42)
(9-43)
(9-44)
AMERICAN INSTITUTE OF STEEL CoNsiRucnoN

!>-20 DESIGN OF CONNECTING ELEMENTS
Web Local Yielding
The available strength for web local yielding, (|)i?„ or is determined per AISC
Specification Section J10,2 using Equations JlO-2 or JlO-3, which can be simplified using
the constants Ri and R2 from Table 9-4 as follows, where (|) = 1.00 and = 1.50.
When the compressive force to be resisted is applie4 at a distance, A", from the member end
that is less than or equal to the depth of the member (x<d).
LRFD ASp
(t)i?„ = (|)i?i + Ibmi) (9-45a) Rnia^RllQ. + lhiR2im (9-45b)
When the compressive force to be resisted is applied at a distance, x, from the member end
that is greater than the depth of the member ix>d)i
LRFD ASD
(l)i?„ = 2((!)«i) + Ibmz) (9-46a) Rja = 2(i?i/i2) + hiRd^) (9-46b)
Note that the minimum length of bearing, is A:,per AISC Specification Section J10.2 for end
beam reactions, where fc = for W-shapes.
Web Local Crippling
The available strength for web local crippling, (t)i?„ or is determined per AISC
Specification Section J10.3 using Equations JlO-4, J10-5a or J10-5b, which can be simplir
fied using constants R^, Rn, Rs and R^ from Table 9-4 as follows, where (j) = 0.75 and Q =
2.00.
When the compressive force to be resisted is applied at a distance, x, from the member end
that is less than one-half of the depth of the member {x < dl2).
For hid < 0.2:
LRFD ASD
= + (9-47a) RJQ. = /?3 /n + /i(i?4/i2) (9-47b)
For hid > 0.2:
LRFD ASD
<l)i?„ = <t)/?5 + hm6) (9-48a) RJO. = i?5/n + h{R6m (9-48b)
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 9-21
When the compressive force to be resisted is applied at a distance, x, from the member end
that is greater than or equal to one-half of the depth of the member (x > rf/2),
LRFD ASD
Rja = 2[(«3/i2) + (9-49b)
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

!>-22 DESIGN OF CONNECTING ELEMENTS
PART 9 REFERENCES
ACI/ASCE/TMS (2005a), Building Code Requirements for Masonry Structures, ACI
530/ASCE 5/TMS 402, Farmington Hills, MI.
ACI/ASCE/TMS (2005b), Specification for Masonry Structures, ACI 530,1/ASCE 6/
TMS 602, Farmington Hills, MI.
AWS (2010), Structural Welding Code-Steel, AV/S Dl.l/Dl.lM, American Welding
Society, Miami, FL,
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind
and Seismic Applications, Design Guide 13, AISC, Chicago, IL.
Cheng J.J. and Yura, J.A, (1986), "Local Web Buckling of Coped Beams," Journal of
Structural Engineering, ASCE Vol. 112, No. 10, pp. 2,314-2,331.
Dowswell, R.S. (2011), "A Yield Line Component Method for Bolted Flange
Connections," Engineering Journal, AISC, Vol. 48, No. 2,2nd Quarter, Chicago, IL.
Muir, L.S. and Hewitt, C.M. (2009), "Design of Unstiffened Extended Single-Plate
Shear Connections," Engineering Journal, AISC, Vol. 46, No. 2, 2nd Quarter, pp.
67-79, Chicago, IL,
Swanson, J.A. (2002), "Ultimate Strength Prying Models for Bolted T-Stub
Connections," Engineering Journal, Vol. 39, No. 3,3rd Quarter, pp. 136-147, AISC,
Chicago, IL.
Thornton, W.A. (1992), "Strength and Serviceability of Hanger Connections,"
Engineering Journal, AISC, Vol. 29, No. 4, 4th Quarter, pp. 145-149, Chicago, IL.
See also ERRATA, Engineering Journal, Vol. 33, No. 1,1st Quarter,. 1996, pp. 39,40.
Thornton, W.A. (1996), "Rational Design of Tee Shear Connections," Engineering
Journal, AISC, Vol. 33, No.l, 1st Quarter, pp. 34-37, Chicago, IL.
Wheeler, A.T., Clarke, M.J., Hancock, G.J. and Murray, T.M. (1998), "Design Model
for Bolted Moment End-Plate Connections Joining Rectangular Hollow Sections,"
Journal of Structural Engineering, ASCE, Vol. 124, No. 2.
Whitmore, R.E. (1952), "Experimental Investigation of Stresses in Gusset Plates,"
Bulletin No. 16, Civil Engineering, The University of Tennessee Engineering
Experiment Station, Knoxville, TN.
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

DESIGN TABLES 9-23
Table 9-1
Reduction in Area for Holes, in.^
STD
StandardHole
OVS
Oversized Hole
SSL
Short-Slotted Hole
LSL
Long-Slotted Hole
Thick- Axt Bxt
ness t, Bolt Diameter, d, in. Bolt Diameter, d, in.
in.
% % 1 iVa IV4 IV2 V4 % 1 IVs IV4 IV2
Vl6 0.164 0.188 0.211 0.234 0.258 0,281 0,305 0.188 0.211 0,246 0.281 0.305 0,328 0,352
V4- 0.219 0.250 0.281 0,313 0,344 0,375 0,406 0.250 0.281 0.328 0.375 0.406 0,438 0,469
Vis 0.273 0.313 0,352 0.391 0.430 0,469 0,508 0.^13 0.352 0,410 0,469 0,508 0,547 0,586
% 0.328 0.375 0,422 0.469 0.516 0,563 0,609 0.375 0.422 0,492 0,563 0,609 0.656 0.703
0.383 0.438 0,492 0.547 0.602 0,656 0,711 0.438 0.492 0,574 0,656 0,711 0.766 0,820
0.438 0.500 0.563 0.625 0.688 0,750 0,813 0.500 0,563 0,656 0,750 0,813 0,875 0,938
0.492 0.563 0.633 0.703 0.773 0,844 0,914 0,563 0,633 0,738 0,844 0.914 0.984 1,05
% 0.547 0.625 0.703 0.781 0.859 0,938 1,02 0,625 0,703 0.820 0,938 1.02 1,09 1.17
0.602 0.688 0.773 0.859 0.945 1,03 1,12 0,688 0,773 0.902 1.03 1,12 1,20 1.29
% 0.656 0.750 0.844 0,938 1,03 1.13 1,22 0,750 0,844 0.984 1.13 1,22 1,31 1.41
0.711 0.813 0.914 1.02 1.12 1,22 1.32 0,813 0,914 1.07 1.22 1,32 1,42 1,52
% 0.766 0.875 0,984 1,09 1,20 1.31 1,42 0,875 0.984 1,15 1,31 1,42 1,53 1,64
0.820 0.938 1,05 1,17 1.29 1,41 1.52 0,938 1.05 1,23 1,41 1,52 1,64 1,76
1 0.875 1.00 1.13 1.25 1.38 1.50 1.63 1.00 1.13 1,31 1,50 1,63 1,75 1.88
Thick- Cxt Dxt
ness t, Bolt Diameter, d, in. Bolt Diameter, d, in.
in.
% % 1 iVs IV4 IV2 % 'h 1 IVs IV4 IV2
0.199 0.223 0.258 0.293 0,316 0,340 0,363 0.363 0.422 0.480 0.539 0.598 0,656 0.715
Vi 0.266 0.297 0.344 0.391 0.422 0,453 0,484 0.484 0.563 0.641 0.719 0.797 0,875 0,953
0.332 0.371 0.430 0.488 0,527 0,566 0,605 0.605 0.703 0.801 0:898 0.996 1,09 1.19
% 0.398 0.445 0.516 0.586 0,633 0,680 0.727 0.727 0.844 0.961 1,08 1.20 1.31 1,43
'As 0.465 0.520 0.602 0.684 0,738 0,793 0.848 0.848 0.984 1.12 1.26 1,39 1,53 1,67
'A 0.531 0.594 0.688 0.781 0,844 0,906 0.969 0.969 1.13 1.28 1,44 1,59 1,75 1,91
'/ie 0.598 0.668 0.773 0.879 0,949 1,02 1,09 1.09 1.27 1.44 1.62 1,79 1,97 2,14
% 0.664 0.742 0,859 0,977 1,05 1,13 1,21 1.21 1.41 1.60 1,80 1,99 2,19 2,38
0.730 0.816 0,945 1,07 1,16 1,25 1,33 1.33 1.55 1.76 1,98 2,19 2,41 2,62
0.797 0.891 1,03 1.17 1,27 1,36 1,45 1,45 1.69 1.92 2,16 2,39 2,63 2,86
0.863 0.965 1,12 1.27 1,37 1,47 1,57 1.57 1.83 2.08 2,34 2,59 2,84 3,10
% 0.930 1.04 1,20 1.37 1,48 1,59 1,70 1.70 1,97 2.24 2,52 2.79 3,06 3,34
0.996 1,11 1,29 1.46 1,58 1,70 1.82 1.82 2,11 2.40 2,70 2.99 3,28 3,57
1 1.06 1,19 1,38 1.56 1,69 1,81 1,94 1.94 2,25 2,56 2,88 3,19 3,50 3.81
i
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

!>-24 DESIGN OF CONNECTING ELEMENTS
Table 9-2
Elastic Section Modulus for Coped W-Shapes
Shape
It
in.
tl,
in. in?
So.
in.'
Snet, in.
3
Shape
It
in.
tl,
in. in?
So.
in.'
rfcin. Shape
It
in.
tl,
in. in?
So.
in.'
2 3 4 5 6 7 8 9 ID
W44X335 44.0 1.77 1410 494 453 433 413 394 375 357 339 321 304
x290 43.6 1.58 1240 415 380 363 346 330 314 298 283 268 254
x262 43.3 1.42 1110 372 340 325 310 295 281 267 253 240 227
x230 42.9 1.22 971 330 301 288 274 261 249 236 224 212 200
W40x593 43.0 3.23 2340 810
— • —
671 639 607 575 545 515 486
x503 42.1 2.75 1980 671 — 582 554 527 500 473 448 423 398
x431 41.3 2,36 1690 567
— 491 467 444 421 398 376 355 334
x397 41.0 2.20 1560 512

444 422 400 379 359 339 319 300
x372 40.6 2.05 1460 480
— 415 394 374 354 335 316 298 280
x362 40.6 2:01 1420 463
— 400 380 361 342 323 305 287 270
x324 40.2 1.81 1280 408 371 352 335 317 300 284 268 ' 252 237
x297 39.8 1.65 1170 374 339 323 306 290 275 259 245 230 216
x277 39.7 1.58 1100 335 304 289 274 260 246 232 219 206 193
x249 39:4 1.42 993 299 271 258 245 232 219 207 195 183 172
x215 39.0 1.22 859 256 231 220 208 197 186 176 166 156 146
x199 38.7 1.07 770 247 224, 213 202 191 180 170 160 150 141
W40X392 41.6 2.52 1440 579

503 478 454 431 408 386 364 343
x331 40.8 2.13 1210 483 — 419 398 378 358 339 320 302 284
x327 40.8 2.13 1200 470
— 407 387 367 348 329 311 293 276
x294 40.4 1.93 1080 417 379 360 342 325 308 291 .275 259 243
x278 40.2 1.81 1020 397 361 344^ 326 310 293 277 262 246 232
x264 40.0 1.73 971 371 337 321 305 289 274 259 244 230 216
x235 39.7 1.58 875 320 291 276 262 249 235 222 210 197 185
x211 39.4 1,42 786 286 259 246 234 221 209 198 186 175 165
x183 39.0 1.20 675 243 221 210 199 188 178 168 158 149 140
x167 38.6 1,03 600 234 212 201 191 181 171 161 152 143 134
x149 38.2 0.830 513 217 196 186 177 167 158 149 140 132 123
—Indicates that cope depth is less than flange thickness.
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-25
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
Shape
in.
tf,
in.
s.,
in?
Sc,
m?
3
Shape
in.
tf,
in.
s.,
in?
Sc,
m?
rfc, in. Shape
in.
tf,
in.
s.,
in?
Sc,
m?
2 3 4 5 6 7 8 9 10
W36X652 41,1 3.54 2460 816
— —-
669 635 601 568 536 505 475
X529 ; 39.8 2,91 1990 636 — 547 519 491 464 438 413 388 364
x487 39.3 2.68 1830 581

499 473 448 423 399 375 352 330
x441 38.9 2.44 1650 518 — 444 420 398 375 354 332 312 292
x395 38,4 2.20 1490 457 — 391 370 350 330 311 292 274 256
x361 38.0 2.01 1350 412 — 352 333 315 297 279 262 246 230
x330 37,7 1.85 1240 371 335 317 300 283 267 251 235 220 206
x302 37.3 1,68 1130 338 305 289 273 258 243 228 214 200 187
x282 37.1 1.57 1050 314 283 268 253 239 225 211 198 185 173
x262 36.9 1.44 972 294 264 250 236 223 210 197 185 172 161
x247 36.7 1,35 913 277 249 236 223 210 198 185 174 162 151
x23l 36.5 1,26 854 260 234 222 209 197 186 174 163 152 142
_ W36X256 37.4 1,73 895 329 297 281 266 251 237 223 209 196 183
x232 37.1 1.57 809 295 266 251 238 224 211 199 186 174 163
x210 36.7 1.36 719 272 245 232 219 207 195 183. 172 161 150
x194 36.5 1.26 664 249 224 212 201 189 178 167 157 146 137
x182 36.3 1.18 623 234 211 199 188 178 167 157 147 137 128
x170 36.2 1.10 581 218 196 185 175 165 155 146 137 128 119
x160 36.0 1,02 542 206 185 175 165 156 147 138 129 120 112
x150 35.9 0,940 504 195 176 166 157 148 139 130 122 114 106
x135 ^ 35.6 0,790 439 181 163 154 145 137 129 121 113 105 98.1
W33X387 36.0 2,28 1350 413

349 329 310 291 272 254 237 220
x354 35.6 2.09 1240 373 — 315 297 279 262 245 229 213 198
x318 35.2 1.89 1110 330 295 278 262 246 230 216 201 187 173
x291 34.8 1,73 1020 300: 268 253 238 223 209 195 182 169 157
x263 34.5 1,57 919 268 239 226 212 199 186 174 162 151 139
x241 34.2 1,40 831 250 223 210 197 185 173 162 150 140 129
x221 33.9 1,28 759 230 205 193 181 170 159 148 138 128 118
x201 33.7 1,15 686 209 186 175 165 154 144 135 125 116 107
—Indicates that cope depth is less than flange thicl<ness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

!>-26 DESIGN OF CONNECTING ELEMENTS

Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
Shape
d,
in.
tf,
in.
s,.
in?
So,
m?
Shape
d,
in.
tf,
in.
s,.
in?
So,
m?
dcm. Shape
d,
in.
tf,
in.
s,.
in?
So,
m?
2 3 4 5 6 7 8 9 10
W33X169 33.8 1.22 549 191 170 161 151 141 132 124 115 107 98.6
x152 33.5 1.06 487 176 157 148 139 130 122 114 106 97.9 90.5
X141 : 33.3 0.960 448 165 147 139 130 122 114 106 98.8 91.6 84.6
x130 ; 33.1 0.855 406 155 138 130 122 114 107 99.6 92.5 85.7 79.2
x118 32.9 0.740 359 143 128 120 113 106 98.6 91.9 85.4 79.1 73.0
W30X391 33.2 2.44 1250 378
— 315 295 276 257 239 222 205 188
x357 32.8 2.24 1140 339
— 282 264 246 230 213 197 182 167
x326 32.4 2.05 1040 305
— 254 237 221 206 191 177 163 150
x292 32.0 1.85 930 269 238 223 208 194 180 167 155 142 130
x261 31.6 1.65 829 240 212 198 185 172 160 148 137 126 115
x235 31.3 1.50 748 211 186 174 163 152 141 130 120 110 101
x211 30.9 1.32 665 192 170 159 148 138 128 118 109 99,8 91.2
x191 30,7 1.19 600 174 153 143 133 124 115 106 97.7 89,6 81.8
x173 30.4 1.07 541 158 139 130 121 112 104 96.1 88.4 81.0 73.9
W30X148 30,7 1.18 436 152 134 125 117 109 101 93.3 86.0 78.9 72.1
x132 30,3 1,00 380 139 123 115 107- 99.3 92.1 85.1 78.3 71.8 65.5
, x124 30,2 0.930 355 131 115 108 : 100 93.4 86,5 79.9 73.6 67.4 61.5
X116 30.0 0,850 329 124 109 102 95.3 88.6 82.1 75.8 69.7 63.9 58.2
x108 29.8 0.760 299 118 103 96.5 89.9 83.6 77.4 71.4 65.7 60.1 54.8
x99 29.7 0.670 269 110 96.4 90.0 83,9 77.9 72.1 66.5 61.1 56.0 51.0
x90 29,5 0.610 245 98.7 86.7 80.9 75.4 70.0 64.8 59.7 54,9 50,2 45.7
W27X539 32,5 3.54 1570 509
— — 394 367 341 316 292 269 247
x368 30,4 2.48 1060 321 — 262 244 226 209 193 177 162 147
x336 30,0 2.28 972 287 — 234 218 202 186 172 157 143 130
x307 29,6 2.09 887 259
— 211 196 181 167 154 141 128 116
x281 29,3 1.93 814 233 203 189 176 162 150 137 126 114 104
x258 29,0 1.77 745 212 185 172 159 147 136 124 114 103 93.3
x235 28.7 1.61 677 193 168 156 145 134 123 113 103 93.2 84.2
x217 28.4 1.50 627 174 152 141 130 120 111 101 92.3 83.7 75.5
x194 28.1 1.34 559 155 134 125 115 106 97.6 89.3 81.3 73.6 66.3
x178 27.8 1.19 505 145 126 117 108 99.7 91.5 83.6 76.1 68.8 61.9
x161 27.6 1,08 458 131 113 105 97.2 89.5 82.0 74.9 68.1 61.5 55.3
x146 27.4 0.975 414 118 102 95.0 87.7 80.7 74.0 67.5 61.3 55.3 49.7
—Indicates that cope depth is less than flange thickness.
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-27
Table 9-2 (continued)
Elastic Section Modulus for Coped W-^Shapes
Shape
d.
in.
tf,
in. In?
So,
in?
S„et, in?
Shape
d.
in.
tf,
in. In?
So,
in?
dc, in. Shape
d.
in.
tf,
in. In?
So,
in?
2 3 4 5 6 7 8 9 10
W27X129 27.6 1.10 345 117 101 94.0 86.9 80.1 73.5 67.2 61.1 55:3 49.7
x114 . 27.3 0.930 299 106 91.6 84.9 78.4 72.2 66.2 60.5 54.9 49.6 44.6
x102 27.1 0.830 267 94.2 81.6 75.6 69.8 64.2 58.9 53.7 48,8 44.0 39.5
x94 26.9 0.745 243 88.0 76.2 70.6 65.1 59.9 54.9 50.1 45.4 41.0 36.8
x84 26.7 0.640 213 80.5 69.7 64.5 59.5 54.7 50.1 45.7 41.4 37.4 33.5
W24x370 28.0 2.72 957 295

237 219 201 184 168 153 138 124
x335 27.5 2.48 864 261
— 209 193 177 162 147 133 120 108
x306 27.1 2.28 789 234
— : 186 172 157 144 131 118 106 94.9
x279 26.7 2.09 718 210 167 154 141 128 116 105 94.3 84.0
x250 26.3 1.89 644 184 158 146 134 123 112 101 91.2 81.7 72.6
x229 26.0 1.73 588 167 143 132 121 111 101 91,0 81.8 73.1 64.9
x207 25.7 1.57 531 149 i27: 117 107 98.0 89.0 80.4 72.2 64.4 57.0
x192 25.5 1.46 491 136 117 107 98.2 89.5 81.2 73.3 65.8 58.6 51.8
x176 25.2 1.34 450 124 106 97.6 89.4 81.4 73.8 66.5 59.6 53.0 46.8
x162 25.0 1.22 414 115 98.0 90.0 82.3 74.9 67.9 61.1 54.7 48.6 42.8
. x146 24.7 1.09 371 104 88.5 81.2 74.2 67.5 61.1 54.9 49.1 43.6 38.3
x131 24.5 0.960 329 94.4 80.3 73.7 67.3 61.1 55.3 49.7 44.3 39.3 34.5
x117 24.3 0.850 291 84.4 71.7 65.7 60,0 54.5 49.2 44.2 39.4 34.8 30,5
x104 24.1 0.750 258 75.4 C4.i 5S.7 53.5 48.6 43.8 39.3 35.0 30.9 27.1
W24X103 24,5 0.980 245 82.9 70.7 64.9 59,3 53.9 48.8 43.9 39,2 34.8 30.6
x94 24.3 0.875 222 76.2 64.9 59.5 54.3 49.4 44.6 40.1 35,8 31.7 27,9
x84 24.1 0.770 196 68.3 58.0 53.2 48.6 44.1 39.8 35.8 31.9 28.2 24,8
x76 23.9 0.680 176 62.6 53.2 48,7 44.5 40.4 36.4 32.7 29.1 25.8 22,6
x68 23.7 0.585 154 57.5 48.8 44.7 40.8 37.0 33.4 29.9 26.6 23.5 20,6
W24X62 23.7 0.590 131 56.9 48.3 44,3 40.4 36.7 33.1 29.7 26.5 23.4 20,5
x55 23.6 0.505 114 51.1 43.4 39.7 36,2 32.9 29.7 26.6 23,7 20.9 18.3
W21X201 23.0 1.63 461 125 105 95.2 86.2 77.6 69.4 61.6 54,2 47.3 40.8
x182 22.7 1.48 417 111 93.3 84.8 76.6 68.8 61.4 54.4 47,8 41.6 35.8
x166 22.5 1.36 380 99.3 83.0 75.3 68.0 61.0 54.4 48.1 42.2 36.6 31.4
x147 22.1 1.15 329 91.2 76.1 68.9 62.1 55.7 49.5 43.7 38.2 33.1 28.2
x132 21.8 1.04 295 81.0 67.5 61.1 55.0 49.2 43.7 38.5 33.6 29.0 24,7
x122 21.7 0.960 273 74.1 61.6 55.7 50.2 44.8 39.8 35.0 30.5 26,3 22,4
x111 21.5 0.875 249 67.1 55.7 50.4 45.3 40.4 35.9 31.5 27,4 23.6 20,1
x101 21.4 0.800 227 60.4 50.1 45.3 40.7 36.3 32.1 28.2 24.5 21.1 17.9
—indicates that cope depth is iess than flange thicl<ness.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-28 DESIGN OF CONNECTING ELEMENTS
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
[f
Shape
d,
in.
tf,
in.
Sx,
in.'
So,
in?
Shape
d,
in.
tf,
in.
Sx,
in.'
So,
in?
Shape
d,
in.
tf,
in.
Sx,
in.'
So,
in?
2 3 4 S 6 7 8 9 10
W21x93 21.6 0.930 192 67.2 56.0 50.7 45:7 40:9 36.3 32.0 27.9 24,1 20.5
x83 21,4 0.835 171 59.0 49.1 44.4 40.0 35.7 31.7 27.9 24.3 20,9 17.8
x73 21.2 0.740 151 51.5 42.7 38.7 34.8 31.0 27.5 24.2 21,0 18.1 15.3
x68 21.1 0.685 140 48.1 39.9 36.1 32.4 29.0 25.6 22.5 19,6 16.8 14.2
x62 21.0 0.615 127 44.1 36.5 33.0 29.7 26.5 23.4 20.5 17.8 15.3 12,9
x55 20.8 0.522 110 40.1 33.2 30.0 26.9 24.0 21.2 18.6 16.1 13.8 11.7
x48 20.6 0.430 93.0 36.2 30.0 27.0 24.2 21.6 19.1 16.7 14.5 12,4 10.4
W21x57 21.1 0.650 111 43.4 36.1 32.6 29.3 26.2 23.2 20.4 17,7 15,2 12.9
x50 20.8 0.535 94.5 39.2 32.5 29.4 26.4 23.6 20.8 18.3 15,9 13,6 11.5
x44 20.7 0.450 81.6 35.2 29.1 26.3 23.6 21.0 18.6 16.3 14,1 12.1 10.2
W18x311 22.3 2.74 624 186
— 140 126 113 100 88.2 77,0 66,5 56.8
x283 21.9 2.50 565 166
— 124 111 99.3 87.8 77.1 67,0 57,6 48,9
x258 21.5 2.30 514 148

110 98.3 87.4 77.2 67.5 58.5 50,0 42,3
x234 21.1 2.11 466 130
— 96.1 85,9 76.2 67.1 58.5 50,4 43,0 36.1
x211 20.7 1.91 419 115 94.5 84.8 75.6 66.9 58.7 51.0 43.8 37,1 31.0
x192 20.4 1.75 ^ 380 102 83.4 74.7 66.5 58.7 51.4 44.5 38.1 32.1 26.7
x175 20,0^ 1.59 344 92.1 75.1 ; 67.2 59.7 52.6 4B.9 39,6 33.8 28.4 23.5
x158 19.7 1.44 . 3io 81.7 66.4 59.3 52.6 46.2 40.2 34,6 29.4 24.6
x143 19.5 1.32 282 72.5 58.8 52.4 46.4 40.7 35.4 30,4 25.7 21.5
x130 19.3 1.20 256 65.2 52.8 47.0 41.5 36.4 31.5 27.0 22.8 19.0
x119 19.0 1.06 231 61.7 49.8 44.3 39.1 34.2 29.5 25.2 21.2 17.6
x106 18.7 0.940 204 54.4 43.8 38.9 34.3 29.9 25.8 22,0 18.5 15.2
x97 18.6 0.870 188 48.9 39.3 34.9 30.7 26.8 23.1 19.6 16.4 13.5
x86 18.4 0.770 166 43.1 34.6 30.6 26.9 23.4 20,2 17.1 14.3 11.7
x76 18.2 0.680 146 37.6 , 30.1 26.7 23.4 20.3 17.5 14.8 12.3 10.1
W18x71 18.5 0.810 127 42.4 34.1 30.3 26.7 23.3 20,1 17.1 14.3 11.8
x65 18.4 0.750 117 38.3 30.8 27.3 24.0 20.9 18,0 15.3 12.8 10.5
x60 18.2 0.695 108 35.0 28.1 24.9 21,9 19.1 16,4 13.9 11.6 9.53
x55 18.1 0.630 98.3 32.4 26.0 23.0 20.2 17.6 15,1 12.8 10.7 8.72
x50 18.0 0.570 88.9 29.1 23.4 20.7 18.2 15.8 13,5 11,5 9.54
W18x46 18.1 0.605 78.8 28.9 23.2 20.6 18.1 15.7 13,5 11.5 9.56 7,81
x40 17.9 0.525 68.4 24.9 20.0 17.7 15.5 13.5 11,6 9,80 8.16
x35 17,7 0.425 57.6 22.7 18,2 16.1 14.1 12,3 10,5 8.88 7.37
—Indicates that cope depth is less than flange thickness.
Note: Values are omitted when cope depth exceeds dIZ.
AMERICAN INSTITUTE OF STEEL CONSTRUCTTION

DESIGN TABLES <•-29
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
T:
Shape
d.
in.
tf,
in. in.'
s,.
in.'
Shape
d.
in.
tf,
in. in.'
s,.
in.'
rfcin. Shape
d.
in.
tf,
in. in.'
s,.
in.'
2 3 4 S 6 7 8 9 10
W16X100 17.0 0.985 175 44.4 34.9 30.5 26.4 22,6 19.0 15,7 12.8
x89 16.8 0.875 155 39.0 30.6 26.7 23.1 19,7 16.5 13,6 11.0
x77 16.5 0.760 134 33.1 25.9 22.6 19.4 16.5 13.8 11,4 9,13
x67 ^ 16.3 0.665 117 28.3 22.1 19.2 16.5 14.0 11.7 •9,58 7,66
W16X57 16.4 0.715 92.2 29.4 23.0 20.1 17.3 14.8 12.4 10,2 8,17
x50 16.3 0,630 81.0 25.6 20.0 17.4 15.0 12.7 10.7 8,74 6,99
x45 16.1 0.565 72.7 22.9 17.9 15.5 13.4 11.3 9.47 7,75 6,19
x40 16.0 0.505 64.7 20,1 15.6 13.6 11.7 9.89 8.24 6,73 5,35
x36 15.9 0.430 56.5 18.8 14.6 12.7 10.9 9.21 7.67 6,25
W16x31 15.9 0,440 47.2 17.1 13.3 11.6 9.96 8.44 7.03 5,73
x26 15.7 0.345 38.4 14.9 11.6 10.1 8.64 7.31 6.08 4,95
W14x730 22,4 4.91 1280 365
— — — 220 195 172 151 132 114
x665 21.6 4.52 . 1150 317
— — — • 187 165 144 126 109 93.3
x605 20.9 4.16 1040 275
— — —^ 158 139 121 105 89.6 76.2
x550 20.2 3.82 931 238
' — — 153 134 117 101 86,9 73.8 62.1
x500 19.6 3,50 838 208
— —
131 115 99.4 85,3 72.5 60.9
x455 19.0 3.21 756 182
, — • — 113 98.2 84.6 72,1 60,7 50.6
x426 18.7 3.04 706 164 — — 101 87.6 75.2 63,8 53.4 44.2
x398 18.3 2.85 656 150 — , 104 91.1 78.7 67.2 56.7 47.2 38.7
x370 17.9 2.66 607 135
—, 93.7 81.4 70.1 59.6 50.0 41.3
x342 17.5 2.47 558 122 — 83.4 72.3 61.9 52.3 43.6 35.8
x311 17,1 2.26 506 107 —^^ ' 72.7 62.7 53.5 44,9 37.2 30.2
x283 16.7 2.07 459 94.4 63,6 54.6 46.3 38.7 31.8 25.6
x257 16,4 1.89 415 83.1 64.1 55.5 47.4 40.0 33.3 27.1 21.6
x233 16.0 1.72 375 73.2 56.1 48,4 41.3 34.6 28,6 23.2 18.3
x211 15.7 1.56 338 64.9 49.5 42.6 36.1 30.2 24,8 19.9
x193 15.5 1.44 310 57.6 43.8 37.5 31.7 26.4 21,6 17.3
x176 15.2 1.31 281 52.2 39.5 33.8 28.5 23.6 19,2 15,2
x159 15.0 1.19 254 45.7 34.5 29.4 24.7 20.4 16,5 13,0
x145 14.8 1.09 232 40:9 30.7 26,1 21.9 18.0 14,5 11,4
—Indicates that cope depth is less than flange thickness.
Note: Values are omitted when cope depth exceeds d/2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

!>-30 DESIGN OF CONNECTING ELEMENTS
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shiapes
IT
Shape
d.
in.
ti,
in. in.'
So,
in.'
5<Te/, in.
3
Shape
d.
in.
ti,
in. in.'
So,
in.'
d„in. Shape
d.
in.
ti,
in. in.'
So,
in.'
2 3 4 5 6 7 8 9 10
W14X132 14.7 1.03 209 38.1 28.6 24.3 20.3 16.7 13.4 10.5
x120 14.5 0.940 190 34,2 25.5 21,7 18,1 14.8 11.8 9.20
x109 14.3 0,860 173 30.0 22.3 18.9 15.7 12.8 10.2 7.91
x99 14.2 0.780 157 27.2 20.2 17,0 14.2 11.5 9.15 7.04
x90 14.0 0.710 143 24.3 18.0 15.2 12.6 10.2 8.07 6.18
W14x82 .14.3 0.855 123 28.0 20.9 17.7 14.8 12.1 9.64 7.46
x74 14.2 0.785 112 24.4 18.2 15.4 12.8 10.4 8.31 6.40
x68 14.0 0.720 103 22.2 16.5 13.9 11.6 9.41 7.46 5.72
x61 13.9 0.645 92.1 19.7 14.6 12.3 10.2 8.28 6.54
W14X53 13.9 0.660 77.8 19.1 14.2 12.0 9.93 8.07 6.39
x48 13.8 0.595 70.2 17.3 12.8 10.8 8.93 7.23 5.71
x43 13.7 0.530 62.6 15.3 11.3 9.49 7.84 6.34 4.99
W14x38 14.1 0.515 54.6 16.0 12.0 10.2 8.48 6.94 5.54 4.28
x34 14.0 0.455 48.6 14.4 10.8 9.14 7.62 6.22 4.95
x30 13.8 0.385 42.0 13.2 9.88 8.37 6.96 5.68 4.51
W14x26 13.9 0.420 35.3 12.3 9.20 7.80 6.50 5.31 4.23
x22 13.7 0.335 29.0 10.7 7.97 6.75 5.62 4.58 3.64
W12x336 16.8 2.96 483 123

83.1 71.4 60.6 50.8 41.9 34.1
x305 16.3 2.71 435 108 — 71.4 61.0 51.4 42.7 34.9 28.0
x279 15.9 2.47 393 96.1 — 63.1 53.5 44.8 36.9 29.8
x252 15.4 2.25 353 83.7 — 54.2 45.7 38.0 31.0 24.8
x230 15.1 2.07 321 74.2 — 47.5 39.9 32.9 26.7 21.1
x210 14.7 1.90 292 65.6 49.0 41.6 34.7 28.5 22.9 17.9
x190 14.4 1.74 263 57.0 42.3 35.7 29.7 24.2 19.3 14.9
x170 14.0 1.56 235 49,6 36.5 30.7 25.3 20.5 16.2 12.4
x152 13.7 1.40 209 43.3 31.6 26.5 21.7 17,5 13.7
x136 13.4 1.25 186 37.9 27.5 22.9 18.7 14.9 11.6
x120 13.1 1.11 163 32.8 23.7 19.7 16.0 12.6 9.70
x106 12.9 0.990 145 27.6 19.8 16.3 13.2 10.4 7.91
x96 12.7 0.900 131 24.3 17.4 14.3 11.5 9.03 6.83
x87 12.5 0.810 118 22.2 15.8 13.0 10.4 8.11 6.09
x79 12.4 0.735 107 19.9 14.1 11.5 9.23 7,16 5.35
x72 12.3 0.670 97.4 17.9 12,6 10.3 8.24 6,37 4.73
x65 12.1 0.605 87.9 16.0 11,2 9.16 7.28 5.61 4.14
—Indicates that cope depth is less than flange thicl<ness.
Note: Values are omitted when cope depth exceeds rf/2.
AMERICAN INSTTtUTE OF STEEL CONSTRUCTION

DESIGN TABLES 9-31
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
Shape
It,
in.
th
in. in.'
s,.
in.'
3
Shape
It,
in.
th
in. in.'
s,.
in.'
Shape
It,
in.
th
in. in.'
s,.
in.'
2 3 4 5 6 7 8 9 10
W12x58 12.2 0.640 78.0 14.8 10.4 8.52 6.79 5,24 3.88
x53 12.1 0.575 70.6 13.9 9.75 7.94 6.31 4,85 3.58
W12x50 12.2 0.640 64.2 14.8 10,4 .8,54 6.82 5.27 3.91
x45 12.1 0.575 57.7 13.1 9.27 7,56 6.02 4.63 3.42
x40 11.9 0.515 51.5 11.4 8,03 6.54 5.19 3.98
W12x35 12.5 0.520 45.6 12.3 8.85 7,30 5.89 4,61 3.48
x30 12.3 0.440 38.6 10.5 7.47 6,15 4.94 3.86 2.90
x26 12.2 0.380 33.4 9.08 6.47 5,32 4.27 3.32 2.48
W12x22 12.3 0.425 25.4 9.60 6.89 5,69 4.59 3.59 2.71
x19 12.2 0.350 21.3 8.39 6.01 4,95 3,98 3.11 2.33
x16 12.0 0.265 17.1 7.43 5,30 4.36 3.50 2.72
x14 11.9 0.225 14.9 6.61 4,71 3,86 3.10 2,41
W10x112 11.4 1.25 126 25.7 17,5 13,9 10.8 8,02
xlOO 11.1 1.12 112 22.3 15,0 11,9 9.12 6.72
x88 10.8 0.990 98.5 19.1 12.8 10,0 7,62 5.54
x77 10.6 0.870 85.9 16.2 10.7 8.35 6,29 4.52
x68 '10.4 0:770 75.7 13,9 9.13 7,10 5.30 3.77
x60 10.2 0.680 66.7 12.1 . 7.88 6,09 4.52 3.18
x54 10.1 0.615 60.0 10.5 6.78 5,22 3.85 2.69
x49 10.0 0.560 54.6 9.49 6.13 4.71 3.46 2.40
W10x45 10.1 0.620 49.1 9.75 6.33 4,88 3.61 2.52
x39 9.92 0.530 42.1 8.49 5.48 4,20 3.08
x33 9.73 0.435 35.0 7.49 4.80 3,67 2.67
W10x30 10.5 0.510 32.4 8.64 5.75 4,51 3.41 2.45
x26 10.3 0.440 27.9 7.33 4.86 3,80 2.85 2.04
x22 10.2 0.360 23.2 6.51 4.29 3.34 2.50 1.77
W10x19 10.2 0.395 18.8 6.52 4.33 3.39 2.55 1.82
x17 10.1 0.330 16.2 6.01 3.98 3.10 2.33 1.65
x15 9,99 0.270 13.8 5.53 3.65 2.84 2.12 1.50
x12 9.87 0.210 10.9 4.43 2.91 2.26 1.68
Note: Values are omitted when cope depth exceeds rf/2.
I
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-32
DESIGN OF CONNECTING ELEMENTS
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
Shape
d,
in.
tf,
in.
Sx,
in.'
So,
in?
Snet,ifl.'
10
W8X67
x58
x48
x40
x35
x31
W8x28
x24
W8x21
x18
W8x15
x13
xlO
9.00
8.75
8.50
8.25
8.12
8.00
8.06
7.93
8.28
8.14
8.11
7.99
7.89
0.935
0.810
0.685
0.560
0.495
0.435
0.465
0.400
0.400
0.330
0.315
0.255
0.205
60.4
52.0
43,2
35.5
31.2
27.5
24.3
20.9
18.2
15.2
11.8
9,91
7.81
12.2
10,4
7.89
6.71
5,66
5,06
5,04
4,23
4,55
4.02
4.03
3.61
2.65
7.42
6.24
4,63
3.89
3.24
2.88
2.89
2.40
2.67
2.35
2.36
2.10
1.54
Note: Values are omitted wtien cope depth exceeds d/2.
5.44
4.52
3.32
2.74
2.28
2.01
2.02
1.67
1.91
1.66
1.68
1.49
1.08
3.77
3.08
2.21
1.80
1.47
1.28
1.30
1.26
1.09
1.10
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-33
ASO
a = 2j)o
LRFO
) = 0,75
i/i,s = 1.0
Table 9-3a
Block Shear
Tension Rupture
Component
per inch of thickness, Icips/in.
SSksi
Bolt diameter, d, in.
% 1
I'M"?
MM <t>MM
tn / tci / Ki t
ASO LRFO I ASD LRFD ASD LRFI}
1 16.3 24.5 , 14.5 21.8 12.7 19.0
• • 19.9 • 29.9 : 18.1 27.2 16.3 24.5
11/4 23.6 35.3 ; 21.8 32.6 19.9. 29.9
1% : 27.2 40.8 . ; 25;4 38.1 23.6 35.3
VA , 30.8 f 46.2 i. 29:0. 43.5 ;27.2 40.8
1H i : 34.4 ?. 51.7 : 32.6 48.9 • 30.8 46.2
1% . ; 38.1 57.1 • 36.3 54.4 34.4 . . . 51.7
1% : : 41,^: 62.5 ^ 39.9 59.8 38.1':.; 57.1
2 ; 45.3:, • 68.0. : 415 65.3 62.5
ZVA ': 52i 78.8 i. 5d.r 76.1 48.9;'': 73.4
ZM ^; 89.7 1 58.0 870 56.2 84.3
2%: J : f 101 ; 65.3 97.9 63.4 ft 95.2
3 - ; 74.3 111 .
. 72.5 109 70.7 106
6SI(Si
Bolt diameter, </, in.
Ve 1
£«*.in.
ifMrt Mn( <t>Mnt <fF„A„,
m t tci t to. t
ASD^ I.RFD ASD : LRFb ASD; LRFD
1 18.3 27.4 16.3 24.4 14.2"' 21.3
VA 33.5 26.3 30.5 .18.3:: 27.4
1'/4 26.4 39.6 24.4 36.6 22.3: 33.5
1% ; 30.5 45.7 28.4 42.7 26.4::- 39.6
34.5 51.8 I 32.5 48.8 30.5,-:; 45.7
15/8 38.6 57.9 36.6 54.8 51.8
1% 42.7 64.0 : 40.6 60.9 38.6;::; 57.9
1% 46.7 70.1 44.7 67.0 42.7" 64.0
2 50.8 76.2 48.8 73.1 46.7;/ 70.1
2'/. ^ 58.9 88.4 56.9 85.3 54.8 82.3
21/4 67;0 101 65.0 97,5 63.0'- 94.5
2% 75.2 113 73.1 110 71.1-7 107
3 ' 83.3' 125 • SI'S 122 ' 79.2 119
i
i
I
I
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-34 DESIGN OF CONNECTING ELEMENTS
Table 9-3b
Block Shear
Shear Yielding
Component
per inch of thickness, kips/in.
nboHs
3":
Fy,
ksi Fy, ksi
36 50 36 50
Lev, in. n •^OSFfAg, 0.6/y/l„ n
ta t ta t tci t tci t
ASO LRFD ASD LRFD ASO LRFD ASO LRFD
1V4 370 555 514 • 771 273 409 379 568
iVa 371 ' : 557 516 ; 773 274 411 381 571
iVz 373 559 518 : 776 , 275 413 383 574
m , 374 . 561 519 779 ' 277 415 384 ^ 577
1% 375 563 521 782 -1278 417 386 579
1% 12 377 565 523 ; 785 9 279 419 ,388 582
2 ; 378 567 525: 788 281 421 ,390 585
21/4 381 :, 571 529 793 284 425 394 591
2V2 i 383.: 575 533 i 799 286 429 398 596
2% ! 386 . 579 536 804 289 433 401 602
3 389 583 ' 540.:. 810 292 437 405 608
iy4 i 337 506 469 703 240 360 334 501
m 339 508 471 706 242 362 336 503
VA 340 510 473 ^ 709 243 364 :338 506
m 342 512 . : m 'l: 712 244 367 339 509
m 343 • 514 476 • 714 246 369 341 512
1% 11 . 344 - .. 516 4.78; - 717 8 .247 ; 371 . 343 515
2 346,, 518 v; ,480 :; 720 248 37,3 345 518
21/4 ^ 348. , 522 484 „ 726 251 377_ - ;349 523
^ 351"S 526 488 731 254 381 353 529
2% 354' 531 491 • 737 257 385 356 534
3 ' 356: 535 495 743 259 389 360 540
11/4 305 458 424 636 208 312 289 433
1% 306 460 426 638 209 314 291 436
1% , 308 . 462 428 : 641 . 211 316 293 439
1% , 309 iL 464 429; 644 212 318 :294 442
310 466 431 : 647 213 320 296 444
1% 10 312 468 433 650 7 215 322 298 447
2 313 470 435 653 216 324 .300 450
2y4 316' 474 439 658 219 328 304 456
2% . 319 . 478 443 664 221 332 308 461
2% i 32V,.: 482 446 i 669 .224 , 336 i311: 467
3 324 486 450/, 675 227 340 315: 473
ASD LrFD
a = 2.00 ) = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-35
m
a = 2.00
LRFD
= 0.75
Table 9-3b (continued)
Block Shear
Shear Yielding
Component
per inch of thiclcness, kips/in.
u
F„
ksi Ay, ksi
36 50 36 50
n
0.6FyAg,
n 0.6F,Ag, 0.6FyAg, ^OMyAg,
tSi t tn t tn t ta t
: ASD LRFD ASD LRFD ASD LRFD ASD LRFD
iy4 • 175 263 244 366 78.3 117 163
1% 177 ' 265 246 368 79.6 119 illl ' - 166
VA ; 178 : 267 248 371 81,0 ; 121 511-3^ 169
180 269 249 374 82.3 124 Il4 172
181 271 251 377 83.7 : . 126 {1.16 174
1% 6 ; 182 : : 273 253 380 3 85.0 H' 128 •^1,18.; - 177
2 184 275 255- 383 ^ 86.4 130 ..120;. 180
186 279 259' . 388 89.1 134 M'24l 186
^ 189 283 263 394 • 91.8 138 m' 191
2% 192 288 ;266 • 399 94.5 142 131 197
3 194 292 ;27P 405 97.2 146 135 203
m ; 143 215 199 ' • 298 45.9 68.8 63.8 95,6
1% 144 ' 217 201'^ ' 301 47.2 ' 70.9 65.6 98,4
146 219 203 ; ; 304 48.6 72.9 67.5 101
15/6 147 • 221 204 307 49.9 " 74.9 " 69.4 104
13/4 148 223 206" 309 51.3 76.9 71,3 • 107
1% 5 150 225 208 312 • 2 :S2.7 79.0 73.1 110
2 151 227 :210; ; 315 54.0 81,0 ' 75.0 113
21/4 • 154 : 231 214 321 56.7 85.0 78.8 118
2V4 ' 157 235 218 326 59.4 ; 89.1 -82.5 124
2% 159 239 221 332 62.1 93,1 86,3 129
3 162 243 225 338 64.8 •, 97.2 ' :90.0 135
11/4 111 166 154 231
1% 112 168 156 : 233
1V4 113 170 158 ' 236
m 115 172 159 239
1% 116 174 161- 242
1% 4 117 , 176 163 245
2 119 178 165.- 248
21/4 121 ' 182 169 253
2% 124 : 186 173. 259
2% - 1.27 ^190 , - 264
3 • 130: : 194 180 . : 270
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-36 DESIGN OF CONNECTING ELEMENTS
Table 9-3c
Block Shear
Shear Rupture
Component
per inch of thickness, kips/In.
La^
nboHs
Fu, ksi 58 65
Bolt diameter, (/, in.
V4 , Va: 1 % '/a 1
n Le„ in.
•O-WA,, to.6M« OSMi, O-SFAv 0.6M«
.Id t ta . , 1 (Q ( ISl t ta ( , la t
ASD U1FD ASP LRFD ASD LRFO ASOv LRFD ASD' LRFD ASD LRFD
1V4 631 396 • 594 371 556 47Z'-707 444 i 665 416 623
iVs >:423 635 398 ( 597 373 560 474 711 446 i 669 418 627
iVz j,425 638 . 400 j 600 375 563 4.77.,. 715 449 i 673 420 631
iVe '427 641 402 604 377 566 479 718 451^ 676 "423 : 634
1V4 a430 644 405 607. e380 569 481' 722 453 680 425 ! 638
12 1% r:432 648 407 610 382 573 484' 726 456 684 428 642
2 ,434 651 409 613 384 576 486, 729 458 687 430 645
2V4 ;:438 657 413 620 388 582 491:,:.. 737 .463' 695 435 653
2V2 r443 664 418 , 626 393 589 496,; 744 468 702 440 660
2% 5:447 670 422 •'633 397 595 501'- 751 ,473 709 445 • 667
3 -451^'- 677
-426 639 401 602 506 759
478:
717 450 675
IV4 384 576 361 ' 542 338 507 430, 645 405 607 379 ^ 569
1% 386 579 363 -545 340 511 433,: 649 407: 611 381 ' 572
m 388 582 365 548 343 514 435 653 410 614 384 ' 576
1% So 586 3:68 f 551 • 345 517 438 656 412 618 386 580
1% a393 589 370 , , 555 .347 520 440,, 660 414 622 389 583
11 m ;395 592 372 558. '349 524 442" 664 417' 625 391 ' 587
2 397 595 374 ; ' 561 3Sl 527 445 667 419: 629 394 590
ZVA ^401 602 378 ! 568 336 533 45d"" 675 ,424: 636 399 ; 598
l^h IO6 608 383 ' 574 360 540 455 682 429 644 403 605
2% 410 615 387 : 581 364 546 45S 689 434 651 408 612
3 414 622 391: 587 309 553 46C, 697 439, 658 413 620
1% 347 520 326 489 306 458 389 583 366 548 342^ 514
1% 349 524 328 493 308 462 391 587 368 552 345 517
351 527 331 496 310 465 394 590 371 556 347 521
1% 353 530 333 499 312 468 396' 594 373 559 350 525
1% 356 533 335 502 314 471 399 598 375 563 352 528
10 1% 358 537 337 506 316 475 401' 601 378 567 355 532
2 360 540 339 509 319 478 403 605 380 570 357 536
21/1 364 546 344 515 323 484 408 612 385 578 362 543.
2Vi! 369 553 348 522 327 491 413 620 390 585 367 550
2% 373 560 352 529 332 498 4w 627 395 592 , 372 i 558
3 377 566 357 535 3^6 504 423 634 400 600 • 377 ' 565
ASD LRFO
n = 2.00 l) = 0,75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 9-37
Table 9-3c (continued)
Block Shear
Shear Rupture
Component
per inch of tliickness, kips/in.
Lw
n^Hs
ASD LRFD
n = 2.00
58 65
Bolt diameter, tf, in.
) = 0.75
% 1 V4 Va 1
n U, in.
JWK, •ll.6fAv awm WMii' o.ew„
m ( ta t m 1 JQ 1 ta ( to 1
ASD LRFD ASD LRFD < ASD LRFD ASD LRFD ASD LRFD ASD LRFD
VA 310 465 : 291 437 273- 409 : 347: 521. ; 327 490 ' 306. 459
m 312 468 i 294 440 ; 275 413 350 525 • 329 494 308 463
314: 471, : 296 444 277 416 352 528 332 497 .. 311 466
1% : 316 475 i 298 447 S 279 419 355 532 334 501. ^ 313 470
1% 319 478 300 450: ! 282 422 : 357. 536 336: 505 : 316 473
9 1% 321: 481 302 453 ' 284, 426 360 539 339 508 : 318 477
2 323 484 i 305 457 : 286 429 362 543 • 341 512 : 321 481
2V4 327 491 309 463 ? 290 436 367 550 ! 346: 519 , 325 488
2V4 -332 498 : 313 470 ; 295 442 372 558 : 351: 527 1 ^ 330': 495
2% i 336 504 318 476 ; 299 449 377 565 : 356 534 335 503
3
340 . 511 ; 322 483 : 303. 455 : 381 572 : 361 541. 340 510
; 273: 409 : 257. 385^ ' 240 361 306 459 : 288 431 269 : 404
1% ' 275 413 259 388 ; 243 364 308 463 ; 290 435 272 408
: 277 416 261 392 ? 245 367 ; 311": 466 ' 293 439 i 274 411
1% i 279 419 : 263 395 i 247 370 ' 3m 470 : 295 442 ' 277' . 415
1% ' 282 422 : 265 398- ' 249 374 : 316;, 473 : 297 446 279: 419
8 1% ; 284 426 : 268 401 f 25f: 377 ; 318: 477 ! 300 450 282' 422
2 286 429 ; 270 405 ; 253 380 • 321 : 481 ^ 302 . 453 : 284: 426
2% 290 436 ' 274. 411.: : 2S8 387 325 488 307 461, ' 289 433
2% 295 442 278 418 ' 262 393 ; 330 495 312 468 : 294 441
2% 299 449 283 424 266. 400 ' 335 503 ! 317 475 299 448
3 : 303 455 : 287 431: 271 406 340 510 : 322 483 303 455
VA 236 . 354 222 333 208 312 264 ' 397 249 373 : 233 349
1% 238 357 224 336 210 315 ; 267 400 251 377 235:: 353
1% ; 240 361 226 339 : 212 318 , 269 404 ; 254 380 238 356
1% i 243 364 228 343 214 321 272 408 : 256 384 : 240 360
1% 245 367 231 346 2T6 325 : 274 411 258 388 ' 243 364
7 m ^ 247 370 233 349 219 328 ' 277 415 261 391 : 245 367
2 249 374 ; 235 352 : 221 331' . 279 419 ; 263 395 i 247: 371
2V4 • 253. 380 ; 239 359 225 338 ' 284 . 426 268 402 252- 378
2V2 258 387 ; 244. 365 ; 229 344 289 433 : 273 410 . 257; 386
2% i zez 393 i 24® 372 ! 234; 351: ' 294.: 441 i 278 417 i 262S 393
3 ! 2m 400 ' 25? 378 i 238' 357 : 299 448 283 424 : 267" 400
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-38 DESIGN OF CONNECTING ELEMENTS
Table 9-3c (continued)
Block Shear
Shear Rupture
Component
per inch of thickness, l<ips/in.
ksi 58
1 1
65
Bolt diameter, d, in.
'/4 '/8 1 % Vs 1
n
0.6M., O-eFu'm, <|i0.6M». OSF^A,.
ta t ta t la 1 ta t la ( ta 1
ASO LRFD ASD; LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
1V4 • 199 299 187; ; 281 175 263 223 335 210 314 196 294
1% 201 302 189 284 • 177 266 225 338 212 318 199 298
PA , 203 305 , 191. 287 ; 179 269 228 342, 215 322 201 302
1% ; 206 308 194 290 182 272 ' 230 346 : 217 325 204 305
1% 208 , 312 196 294; 184 276 ; 233 349 219 329 206 309
6 1% 210 315 ; 198 297 186 279 235 353 222 333 208 313
2 212 318 200 300 188 282 238 356, 224 336 211 316
2VA 216 325 204 307 192 289 : 243 364 229 344 216 324
2% ^ 221 331 ' 209 313, • 197 295 247 371 ' 234 351 2214. 331
2% 225 338 213 320 201 302 252 378 239^ 358 225 338
3 • 229 344 : 217: 326 206 308 257 386 244 366 230 346
11/4 ; 162 243 152 228 142 214 ; 182 272 171 256 i 160,: 239
1% 1,64 246 : 154. 232 145 217 184 276 173 260 162 243
VA ; 166 250 : 157- ' 235 ; 147 220 186 280 176 , 263 : 165: 247
1% 169 253 159 238 149 223 , 189 283 178 267 ' 167 250
1% 171 256 161 241 ' 151 227 191 287 , 180 271 ^ 169 254
5 1% : 173 259 163 245 153 230 194 291 183 274 ; 172 258
2 175 263 i 165 , 248 ; 156 233 196 294 185 278 174 261
2V4 179 269 170 254 160 240 ' 201 302 ; 190 . 285 179 269
2Vi 184 276 174 261 ; 164 246 206 309 195 293 184 276
2% 188 282 : 178 268 ' 169 253 211: 316 200 300 189 283
3 , 192 289 183 274 173 259 216 324 205 307 194 291
1V4 125 188 117 176 110 165 140 210 132 197 123 185
PA, 127 191 120 179 112 168 143 214 134 201 126 188
PA ; 129 194 122 183 : 114
171 145 218 137 205 128 192
PA i 1:32 197 : 124 186 116. 175 147 221 139 208 130i 196
PA : 1:34, 201 126 189 119 178 150 225 141 212 133 199
4 1% ' 136 204 128 192 121 181 152 229 ^ 144 216 135 203
2 ; 138 207 131 196 ^ 123 184 155 232 146 219 138; 207
2V4 142 214 ' 135 202 127 191 160 239 151 227 143. 214
2H 147 220 139 209 132 197 165 247 156 234 147 221
2% 1 151 227 ' 144 215 ; 136; 204 ' i;69 254 161; 241 ; 1:52, 229
3 i 156^ 233 • 148 222 ' 140 210 , 174; 261 1:66' 249 157' 236
ASO
fi = 2.00
LRFD
= 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-39
Table 9-3c (continued)
Block Shear
Shear Rupture
Component
per inch of thickness, kips/in.
Lav
nboHs
Fu ksi 58
•1 1
65
Bolt diameter, d, in.
'/4 1 V4 1
n Lev, in-
0.6/i^ 0.6W.,
ta t la ( ta ( tsi t ta t . ta t
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
1'/4 88.1 132 8zi 124 •77.2 116 98.7 148 92.6 139 86.5 130
1% 90.3 135 '84:8 127 79.4 119 101 152 95.1 143 89.0 133
VA B2.4 139 87 ;0 131 81.6 122 104 155 97.5 146 137
1% : 94.6 142 89.2 134 83.7 126 106 159 99.9 150 93.8 141
1% 96.8 145 91.4 137 85.9 129 108 163 .102 154 96,3 144
3 1% 99.0 148 ^93.5 140 88.1 132 111 166 157 • 98.7 148
2 '101 : 152 95.7: 144 90.3 135 113 170
M
161 401 152
rA 105 158 ioo' ' 150 94.6 142 118 177 112 168 106 159
2% 110 , 165 157 99.0 148 123 185 117 176 >111 166
2% 114 ' 171 109 • 163 103 155 128 192 122 183 116 174
3 :1t9,- 178 113;, 170 108 161 133 199 127 190 181
1V4 51.1 76,7 47:8 • 71.8 44.6 66.9 57.3 85.9 53.6 80,4 •:,so.o 75,0
1H .53.3 79.9 50:0' 75.0 46.8 70,1 59.7 89,6 .sse.i 84,1 52.4 78,6
VA 55.5 83.2 52.2 78,3 48.9 73.4 62.2 93,2 '58.5 87.8 .>54.8; 82,3
IVa 57.6 86.5 ,541.4 81.6 76,7 64.6' 96.9 ^60,9 91,4 57.3 85,9
1V4 59.8 89.7 ;56.6 84.8 53.3 79.9 67.0 101 63.4 95,1 • 517 89.6
2 1'/e 62.0 93.0 ^58.7 88.1 55.5 83,2 69.5 104 ,'65.8 98.7 62.2 93.2
2 ' 64.2 96.2 60.9 91.4 57.6 86,5 71.9 108 68.3 102 ;^4.6 96.9
2y4 68.5 103 65.3 97.9 62.0 93.0 76.8 115 73.1 110 ;:69.5 104
2% 72.9 109 69.6 104 . 66.3 99.5 81.7 122 78.0 117 74.3 112
2% 77.2 116 73.9 111 70.7 106 86.5 130 fc.9 124 79.2 119
3 81.6 122 78.3 117 75.0 113 91.4 137 87.8 132 84.1 126
ASD
n = 2.oo
LRFD
(|) = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-40 DESIGN OF CONNECTING ELEMENTS
Fy = 50 ksi
Table 9-4
Beam Bearing
Con^tahts
Shape
RilCl <t)/?2 ft/a HtlO. 't>'?4
Shape kips kips kips/in. kips/in. kips kips kips^n. kips/fn. Shape
ASD LRFD • ASD LRFD ASD LRFD ASD LRFD
W44X335 220 330 34.3 51.5 335 502 10.1 15.2
x290 170 255 -28.8 43.3 ::244 365 6.79 10.2
x262 144 216 -'2a2. 39.3 200 299 ,5,68;: 8,53
x230 119 178 ' 237 • 35,5 159 239 4.94 7.41
W40x593 658 987 '59.7,'. 89,5 1550 •29.8 44,8
x503 , -S06 758 '51.3 77.0 1150 22.7 34,1
x431 : 3 iS5 593 , 44,7 , 67,0 574 • 861 17.8 26.8
x397 : .344 ; 515 : .40.7 61,0 481 722 •14.5 21.8
x372 312 ^ 468 38.7 58.0 431 646 13.5 20.3
x362 i -298 ^ 447 37.3 56.0 405 607 -12.4 • 18,7
x324 ; m 374 ' i33:3 , 50.0 324- : 486 9.93 14.9
x297 • 329 31.0 46.5 277 416 13.3
x277 191 286 .27.7 41.5 229' " 343 l59 9.88
x249 1,63 244 ; 25.0 37,5 ; 186>-: 280 : .,5.45 .8.17
x215 i 130 195 : i2i.7 : 32.5 139.. 209 4.17 6.26
x199 : 122 183 ; r '21.7 32.5 ;i3i<:: 196 : »j4.79 7.19
W40X392 uisit 657 • .47.3 . 71.0 970 29.6
x331 • ;;337 ^ 505 40,7 61.0 ^ 474 710 1:5.1 22.6
x327 h 325 - 488 >39.3 59.0 : 45r:= 676 13.7 20.5
. x294 275 412 35.3 53.0 ' 365;c 548 16.6
x278 ^ .257 ] 385 '34.3 51.5 339, . 508 .10.9 16.3
x264 .233 349 :32.0 48.0 298'.: 447 9.24 13,9
x235 286;. 27.7. 41.5 > 229'; 343 ;,:;6.59 : 9.88
x211 163 244 ;25.0 37.5 186 , 280 ' 5.45 8,17
x183 ; 129! 193 21.7 32,5 138 207 4.24 6.36
x167 120 : 180 21.7 32,5 128- 192 7.49
; x149 106 158 •21.0 • 31.5 110 165 ; ^ 5.70 • 8.55
W36x652 -737 1110 65.7 98.5 1250 1880 V 38.0 56.9
x529 518 777 53.7 80.5 839 1260 26.0 39,1
x487 454 681 50.0 75,0 724 1090 23.2 34.7
x441 384 576 45.3 68.0 597 895 19.1 28,7
x395 320 480 40.7 61.0 481 722 15.5 23,3
x361 276 414 37.3 56.0 405 607 13.3 19,9
x330 238 357 34.0 51,0 337 506 11.0 16.5
x302 207 311 31.5 47.3 287 430 9.73 14,6
x282 186 279 29.5 44.3 251 377 8.60 12,9
x262 167 251 28.0 42.0 222 334 8.06 12.1
x247 153 230 26,7 40,0 200 300 7.47 11,2
x231 140 210 25.3 38.0 179 269 .6.90 10.3
For fli and Ri
ASO.
a = 1.50
LRFD
(t) = 1,00
For ff4, ffs, fh
ASD LRFD
a = 2.00 ) = 0.75
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-41
Table 9-4 (continued)
Beam Bearing
Constants
Fy = 50 ksj
Nom-
inal
Wt
HsICl RilQ
(fe=3V4in.)
IVAl.
Nom-
inal
Wt
HsICl RilQ x<m rf/2<*<rf x>a IVAl.
Nom-
inal
Wt
HsICl RilQ
R„fQ fl^a
IVAl.
Nom-
inal
Wt
kips Icips Idps/in. kips/in. kips kips kips kips kips kips kips kips
lb/ft ASD LRFD ASD LRFO ASD LRFD ASD LRFD ASD LRFD ASD LRFD
335 305;? 458 13,5 20.3 . 331 497 ><331 497 : 551:) = ,827 :;906: 1360
290 224 r • 336 9.05 13.6 264 396 264 396 : 434. 651 •:.754 1130
262 183 ^ 275 7.58 11.4 218 327 229 344 : 373 : 560 680 1020
230 145:. 218 6.59 9.88 ^175 263 ,:-196: 293 315: 471 . 547 822
593 951; 1430 39.8 59.7
; —; — — 1510 • 2260 1540 2310
503 701 1050 30.3 45.4 —, — ' — , life 1770 1300 1950
431 525 , 787 23.8 35.7 , ; — • — ;' — — 1400 1110 1660
397 442; 662 19.4 29.1 — — ;,:—; — 820 1230 1000 1500
372 394'^ 591 lai 217.1 ;438 657 438^ 657 750 1120 942 1410
362 371 ' 557 16.6 24.9 :419 629 629 ^ im: 1080 ^ 909 i ,1360
324 297 , 446 13.2 19.9 :356 534 .e357i 537 606; 911 .804 1210
297 254 ; , 381 11.8 17.7:: 306; 459 ;320: 480 ^ 539,:; 809 H740 1110
277 211 317 8.78 13.2: :250 : 375 281; 421 mt 707 ::659 989
249 172, . 258 7.26 : 10.9 i204 t: 307 rm] 366 407: 610 :. 591 887
215 129 193 5.56; 8.34 •153 229 201 301 : 305; 459 :507 761
199 118 . 177 6.39 ' 9.58 J147 -219 193 289 : 293 439 '503 755
392 ki- 888 26.3 ,39.5
' ' — — • 1030 1540 1180 1770
331 rn- 649 20.1 30.2 j —, — — 806 1210 996: 1490
327 413:- 620 18.2 27.3 ' —: — . ^ — i — ; 778 1170 :i;963 1440
294 335 ' 503 14.7 22.1 '390 584 v390i 584 ; 6B 5 ' 996 r:856 1280
278 31 Oi-:' : 464 14.5. 21.7 .368 552 .368 552 625 937 ;M828 1240
264 273 410 12.3 18.5 328 492 8 337 505 : 570 854 iU768 1150
235 211 317 8.78 13.2 :250 -375 281 421 ' 472 707 659 -989
211 172: 258 7.26 ^ 10.9 204 -307 244: 366 , 4df: 610 591" 887
183 127 191 5.65 8.48 152 228 '200i 299 304 455 507 761
167 il5 , 173 6.65 9.98 144 . 216 :i9i 286 ' 2d8 .: 433 502 753
149 95.2 ; 143 7.60 11.4 129 193 ;.;i74: 260 257 386 432 650
652 1150: 1720 50.6 75.9
' —• __ ,
—:
— 1690; 2540 1620 2430
529 770 1160 34.7 52.1
— — — 1210 : 1820 1280 1920
487 664 995 30.9 46.3
— — :— — 1070 1610 1180 1770
441 sat: 820 25.5 : 38.3
— — — — 915 • 1370 1060 1590
395 442,, 662 20.7 ^ 31.1 '452 678 .452' 678 772 1160 ,937, 1410
361 37T;r 557 iy.7 26.6 :397 ' 596 ".397^ 596 • 67$ 1010 ;::85i 1280
330 310' 465 14.? 22.0 '349 523 :;349 523 5®' 880 ,'769 1150
302 263; 394 13.0 19.5 309 465 309 465 ; 516 776 ' 705 1060
282 230 : 345 11.5 17.2 279 419 282 423 468 702 :t57 985
262 203 304 10.7 16.1 248 373 "258 388 425. 639 620 930
247 182 . 273 9.96 14,9 224 336 -.240- 360 : 393 590 5^7 881
231 162 243 9-19 ; 13.8 i20l' 302 222; 334 ' 362 544 •5!55 832
—Indicates that S'A-in. bearing length is insufficient for end beam reactions since fc < k.
/4 = length of bearing, in.
X- location of concentrated force witti respect to the member end, in.
N,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-42
DESIGN OF CONNECTING ELEMENTS
Fy = 50 ksi
Table 9-4 (continued)
Beam Bearing
Constants
Shape
RilQ Ik/a Riia <tlS3 R^ia
Shape kips kips kips/in. kips/m. kips kips kips/in. kipsAn. Shape
ASD LRFD ASD LRFD ASD: LRFD ASD LRFD
W36X256 198; 298 32.0 48.0 298 447 9.88 14.8
x232 168 252 29.0 43.5 245 367 : 8.17 12.3
x210 146., 219 111 41.5 212 319 .. 8;28:': 12.4
x194 128 192 ^'25.5 38.3 181 271 7J03 -10.5
x182 '117., 175 24.2 36.3 161 242 6.43 . 9.64
X170 1Q5 157 '22.7
34.0 142" ; 212 5:71',. 8.56
x160 95.9 144 21,7 32.5 127 : 191 5.40 8.11
x150 • 8i8:5 132 20.8 31.3 115 173 5:23 7.84
x135 ! TAP 116 ,..20.0
30.0 99.5 ; 149 5.55 8.32
W33X387 322 484 : 42.0 63.0 514 • rn 17^6 - 26.4
x354 278 418 ^•38.7 58.0 435 652 <15;2^ 22,7
x318 232 348 34.7 52.0 ,351 527 12j2 ; 18,3
x291 202 302 -.32.0 48.0 298 447 10:6 15,9
x263 171 257 , 29.0 43.5 J245 „ 367 8.78, 13,2
X241 151 227 27.7 41.5 215 323; 8.63 12.9
x221 133 2Q0 25.8 38,8 186 ; 279 7.75 11.6
X201 116... 173 23.8 35.8 156 234 6.81 10.2
W33X169 107 161 22.3 33.5 146 , 219 5.27 7.90
x152 93.1 140 21,2 31.8 125.: 188 5.21 7.81
x141 83J 126 ^ 20.2 30.3 111 167 5.00 7,51
XI30 75.4 113 > i19.3 . 29.0 . 98.4 : 148 4.98 7.47
x118 : 66.0 99.0 >18.3 27,5 84.5 ,127 4.94 7,41
W30X391 366 549 :. "45.3 . 68.0 597' 895 22.4 33,7
x357 31,3.: 470 41.3 ; 62,0 498 747 18.7 28,1
x326 270 405 38.0 57.0 420 630 16^1 . 24.2
x292 224. 337 ,34.0 51.0 337 506 13.0 19.4
x261 189 284 ' 31.0 , 46.5 277 416 11.1 16,7
x235 158 238 27.7 41.5 223 335 8.80 13,2
x211 136 203 25.8 38.8 189 283 8.25 12,4
x191 117 175 23.7 35,5 157 236 7.08 10.6
x173 101 151 21.8 32,8 132 198 6.24 9,36
W30X148 149 \21.7 32,5 ;137 206 5.48 8.22
x132 ^ as 127 20.5 30.8 116 174 5.55 8,32
x124 77.0 116 19:5 29.3 104 156 5.15 7,73
x116 70.6 106 18.8 28.3 94.3 141 5.11 7.67
x108 64.0 96.1 18.2 27.3 84.5 127 . 5.16 7,75
x99 57.2 85.8 .17.3 26.0 73.9 Ill 5.11, 7,66
x90 49,4 . 74.0 : 15.7 23.5 60.6; 90.9 6.25
For fli and Rz
JiSO
iJ = 1.50
LRFD
(|) = 1.00
For fls, fU. Ih,
ASD
iJ = 2.00
LRFD
(|) = 0.75
AMERICAN INSTITUTE OF STEEL CoNSTRUctIoN

DESIGN TABLES <•-43
Table 9-4 (continued)
Beam Bearing
Constants
Fy = 50 ksi
Nom-
inal
Wt.
ffs/iJ (Jiffs fle/n l|)ff6
(fc = 3V4in.)
Nom-
inal
Wt.
ffs/iJ (Jiffs fle/n l|)ff6 x<d/2 rf/2<*Srf x>d
Nom-
inal
Wt.
ffs/iJ (Jiffs fle/n l|)ff6
Rnia R„/a (t>«n n^a (|)ff„
Nom-
inal
Wt.
kips l<Ips kips/in. kips/in. kips kips . kips kips kips kips kips kips
lb/ft ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
256 273 • 410 13.2 19.8 302 454 302 454 : 500 752 : 718 . 1080
232 225 337 10.9 16,3 262 393 262 393 430 645 646 968
210 192 288 11.0 16.6 236 354 ;236 354 382^ 573 609 914
194 164 • 246 9.38 14.1 204 305 211 316 339 508 558 838
182 146 ' . 219 8.57 12.9 182 273 : 196 293 313;: 468 526 790
170 128 192 7.61 11.4 161 240 179 268 284::: 425 492 738
160 114 = 172 7.20 10.8 145' 217 .166: 250 262 394 ^468 702
150 103:/ .154 6.97 10.5 132 198 156 234 244:: 366 .449 673
135 86.3 129 7.40 11.1 , 118,: 176 .142 214 219 330 •384. 577
387 472 .708 23.5 35.2 459' 689 '!459' 689 78i': lira ,907 1360
354 399 ,: 599 20.2 30.3 404 607 '404, 607 682:' 1020 ...to 1240
318 322 484 16.3 24.4 345 517 345 i 517 577 865 732 1100
291 273 410 14.2 21.2 306 458 306 458 508- 760 06685' 1000
263 225 • 337 11:7 : 17.6 265 398 265^ 398 436 655 >600 900
241 196 ^ 294 11.5 17.3 241 362 241 362 392? 589 568 852
221 168 253 10:3 15.5 211 :. 317 '217 326 350 526 525 788
201 141 211 9.09 13.6 178 267 193 289 309:- 462 482 723
169 134': • 201 7.03 : 10:5 163:. 245 179 270 286 431 453-:; 679
152 114 171 6.95 : 10.4 142: 213 -162:- 243 255 383 .425 638
141 99.9 150 6;67 10.0 127' 191 :i149 224 : 233 350 :'403 604
130 87.4' 131 .6.64 9.96 172 ,.'138: 207 214;: 320 384 576
118 73.7 111 6.^8 : 9.87 lor: 151 .:.125 188 191: 287 325 489
391 547 ' 820 29.9 44.9 513 770 :513 770 879 1320 •'903 1350
357 457 ; 685 25.0 37.5 447 672 :.447 672 760 : 1140 SI.3 1220
326 385 577 21.5 32.2 394 590 394 590 664 995 .739 1110
292 310 465 17.3 25.9 335 503 /335 503 55^, 840 .653 979
261 254 381 14.9 22.3 290 435 :290: 435 479 719 .,588 882
235 205 307 11.7 17.6 248 373 .248: 373 406 611 520 779
211 172 258 11.0 16.5 216 323 220 329 3&6 532 '479 718
191 143 214 9.44 14.2 180 270 194. 290 3,11 465 436 654
173 119"' 179 8.32 12.5 152 ' 228 172 258 273 409 3^ 597
148 126 189 7,30 11.0 155 233 :i7oi 255 269.^ 404 399 599
132 165' ; 157 7:40 11.1 134 201 '151 227 236 354 373 559
124 93.5 140 6.87 10.3 121 181 140: 211 217; 327 353 530
116 84.1, 126 '6.81 10.2 111 166 132 198 202 304 339 509
108 74,2 .111 6.89 10.3 101 152 123 185 . 1.87 281 325 487
99 63.8 95.7 6.81 10.2 : 90.5 136 ; 113: 170 171 256 309 463
90 52.4 78.6 5.56 8.34 : 74.2 111 100 150 • 148 222 249 374
—Indicates that 3V4-in. bearing lengtti is insufficient for end beam reactions since k < k.
/s = length of bearing, in.
location of concentrated force with respect to the memljer end, in.
i
AMERICAN INSTITUTE OF STEEL CoNSTRUcTiON

9-44 DESIGN OF CONNECTING ELEMENTS
Fv = 50 ksi
Table 9-4 (continued)
iBeam Bearing
Constants
Shape
/?i/n (1.1?, fts/ii Rn/a
Shape kips kips kips/in. kips/in. kips kips kips/in. kips/in. Shape
ASO LRFO ASD LRFD ASO LRFO ASD - LRFD
W27X539 711 1070 65.7 98.5 1250 1880 48.0 r 72.0
x368 376: J 564 •46.0 69.0 615 ' 922 \ .25.2 ; : 37.8
x336 322 484 42.0 63.0 ; 514: 771 21.1 31.7
x307 278 418 38.7 58.0 : ; 435 ' 652 18.2 27.3
x281 240 - 360 35.3 53.0 i 365 : .548 15.2 22.8
x258 209 314 32.7 49.0 311 466 ::13i2' : 19.9
x235 182,. 273 30.3 45.5 , 265- 398 11-8 t 17.7
x217 158 238 •27.7 . 41.5 223 335 : 9.70 14.5
x194 133 ; 200 25.0 37.5 : 181 i 272 8.09 12.1
x178 120 179 .24.2 36.3 i 162 ^ ,243 8.32 , 12.5 .
x161 103,, 154 22.0 33.0 134: ; 201 6.97 10.5
x146 133 20.2 30.3 .
112
168 : ;5.99:: 8.98
W27X129 : 86.4 130 20.3 ^ 30.5 120: ; 181 5.40 8.10
x114 : 72;7 109 19.0 - 28.5 : 99.9 ; 150 5.27. 7.91
x102 61.4 92.1 17.2 : 25.8 81:1 122 4.39 6.58
x94 : , 54;7' 82.1 16.3 24.5 71.3 ; 107 . . 4-24 6.36
x84 47.5, 71.3 15.3 23.0 ! 60.1 90.2 4.12 6.17
W24X370 408,:, 612 50.7 76.0 !744: : .1120 33.3 50.0
x335 343r-' 514 46.0 69.0 • : 615 .922 , 27.8 ; 41.8
x306 292 438 42.C . 63.0 . ' 514 • 771 23.4 35.1
x279 250;' 376 38.7 58.0 • 435 652 20.2 30.3
x250 207 311 . 34.7 52.0 : 351 527 16.3 • 24.5
X229 175,.. 268 32.0 48.0 i 298 447 14,2 21.3
X2d7 150 225 ; 29.0 43.5 ; 245 " ' 367 11.8 17.7
xr92 132 198 • 57.0 40.5 1 212 ! 318 10.3 15.5
x176 ii5v 173 '25.0 37.5 181 272 9.03 13.5
x162 152 23.5 35.3 157 236 8;30 12.5
x146 m 129 21.7 32.5 : 132 198 7.37' 11.1
x131 73;6: 110 20.2 30.3 lil 167 6.80 . 10.2
x117 61.9 92.8 18.3 27,5 90.6 ^ 136 5.82 ' 8,73
x104 52.1 78,1 16.7 25.0 73.7 . Ill
5.00 7.49
W24X103 i 67.8 102 18.3 27,5 97.2 146 5:01 7.51
X94 • 59;i 88.8 17.2 25,8 83.3 i 125 4.64 ^ 6.96
x84 ; 49.7 74.6 15.7 23,5 68,1 102 4.04 6.06
x76 ' 43.3. 64.9 14.7 22.0 ! 58.0 86,9 3.79 5.68
x68 37.7 56.5 13.8 20.8 49.2 73,9 3:72 5.59
x62 39.1 58.6 14.3 21.5 52.2 78,2 4.11 • 6.16
x55 , 33.2, 49.9 13.2 19.8 42.5 63,7 3.74. 5.60
For /?i and /?2 For /?3, /?4, ftg, fte
ASO LRFD ASO LRFD
Il) = 1.00 ij) = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES <•-45
Table 9-4 (continued)
Beam Bearing
Constants
F. = 50 ksi
Nom-
inal
Wf.
Rs/Q <l)ff5 RelCl (jiBe
(/6 = 3V4in.)
Vnx/ilv
Nom-
inal
Wf.
Rs/Q <l)ff5 RelCl (jiBe x<m rf/2£*<rf *>rf Vnx/ilv
Nom-
inal
Wf.
Rs/Q <l)ff5 RelCl (jiBe
R„/Q
Vnx/ilv
Nom-
inal
Wf.
kips kips kips/in. kips/in. kips kips kips kips kips kips kips kips
lb/ft ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
539 1150 1720 64.0 96,0 , — , — —
1640' 2460 ;1280 1920
368 564 , 846 33.6 50.4 —
— ,
—'
— 902 1350 839 1260
336
472;v •708 28.2 42.3 459 689 ,^459 : 689 781- 1170 756 1130
307 399 599 24.3 36.5 404 607 ,404 ' 607 682, 1020 687 1030
281 335?' 503 20.3 30.4 355 : 532 ,=355 ^ 532 595, 892 621 932
258 285 428 17.7 26.5 315 473 ,315 473 524 787 568 853
235 243 : : 364 15.7 23.6 280 421 ?280 i 421 : 462. 694 522 784
217 205 i. 307 12.9 19.4 248/ 373 .248 1 373 406 611 471 707
194 166 ,249 10.8 16,2 207 311 214 1 322 i 347 522 422 632
178 147;, 220 11.1 16,6 189 284 -199; 297 31:9. 476 403 605
161 121 : : 182 9,29 13,9 157 235 175 i 261 278 415 .:3,64 546
146 101 •: 151 7,99 12,0 131 197 ;154 , 231 : 243 364 332 497
129 110. 166 7,20^ 10,8 138; 207 .152 ; 229 239: 359 337 505
114 90.4 136 7.03 10.5 117 176 S134 ; 202 207 311 J311 467
102 73.2 110 5.85 8.77 95.4, 143 1,17 176 179 268 279 419
94 63.7, 95.5 5.66 8.48 : 85.1 128 .1,08 ; 162 162 244 264 395
84 saS , 79.2 5.49 8.23 73.5 110 ;!97.2 146 145 217 246 368
370 682;;- 1020 44,4 ' 66.6 573 859 ,i573 ; 859 981: 1470 851 1280
335 564 .846 37.1 55.7 493 738 493 • 738 ; 836 1,250 759. 1140
306 472: 708 31.2 46.8 429 643 429 643 721 1080 683 1020
279 399 599 26.9 40.4 376 565 376 ; 565 626: 941 619 929
250 322 484 21.8 32.7 320 480 ,320 480 527 : 791 :547 821
229 273 410 18.9 28.4 282 424 282 ; 424 460 692 499 749
207 225 r • 337 15.7 ; 23,6 244 „ 366 -244 366 394 591 • '447 671
192 195 292 13.8 20.6 220 330 220 330 352 528 413 620
176 166 249 12.0 18.1 196 295 196 295 >311 468 378 567
162 144 215 11.1 16.6 177 267 t77 267 278' 419 353 529
146 120 179 9.83 14.7 156 234 157 235 24^ 364 to 482
131 99.9 150 9.07 13.6 133 200 139 208 213 318 296 445
117 81.1 122 7.76 11.6 110 184 :,i2i 182 183. 275 267 401
104 65.7: : 98.6 6,66 9.99 90.0 135 106 : 159 : 158 237 •241 362
103 i89.1s 134 6.68 10.0 113 170 .1:27 ' 191 195 293 270 404
94 75.7; , 114 6.19; 9,28 ,98.4 148 115 173 174 261 250 375
84 61.6. 92.4 5.39 8.08 81.2 122 101 151 150 226 227 340
76 51.9 77.9 5.05 7,57 70.3 105 : 91,1 136 134 201 210 315
68 43.4 65.0 4.97 7,45 61.3 92.1 •82.6 124 120 181 197 295
62 45.7 68.5 5.48 8,22 65.6 98.2 : 85.6 128 125 187 204 306
55 '36.? 54.9 4.98 7,47 54.7,: 81.9 76.1 114 109
f
164 ,167 252
—Indicates that 3V4-in. bearing length is insufficient for end beam reactions since /j < k.
lb = length of bearing, in.
>r= location of concentrated force with respect to the member end, In.
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-46 DESIGN OF CONNECTING ELEMENTS
Fy = 50 ksi
Table 9-4 (continued)
Beam Bearing
Constants
Rxin <t)/Ii ikia (fBz ffs/n m RtlQ.
Shape kips kips kips/in. kips/in. kips kips kips/in. kips/in.
ASO LRFD ASO LRFD ASD LRFD ASD LRFD
W21X201 162 242 30.3 45.5 267 400 14.5 . ; 21.8
x182 137;i 205 27.7 41.5 222 332 12.3 18.4
x166 116 174 25.0 : 37.5 182 274 9.96 14,9
x147 99.0 149 • 24.0 36.0 158 237 10.6 15,9
x132 83:4 125 21.7 32.5 129 193 . 8.75 13,1
x122 73^0 110 20.0 30.0 110 165 7.49: : 11,2
x111 63.3 94.9 18.3 27.5 i 91.9 138 .6,39^^ 9,58
xlOI 54.2 81.3 16.7 25.0 76.2 114 : 5.28 7.91
W21x93 . eaii 104 19.3 29.0 i 103' 154 7.02 10.5
x83 57.5 86.3 17.2 25.8 81.3 122 5.52 8.28
x73 47.0 70.5 15.2 22.8 63.6 95.4 4.34.; 6.51
k68 . 42.6 64.0 14.3 21.5 56.2 84.3 3.97 5,96
x62 37.3 56.0: 13.3 20.0 47.8 71.7 3.58 5,37
x55 31:9 • 47.8 12.5 18.8 40.0 59.9 3;51; 5,26
x48 : 27.1 ^ 40.7 11.7 17.5 32.7 49,1 3.50; 5,25
W21X57 ; 38^8 58.2 13.5 20.3 : 50.0 75,1 .,• 3.50. 5,25
x50 32.9 49.4. 12.7 19.0 41.3 61.9 3.58 5,34
x44 27.7 41.6 11.7 17.5 33.5 50.2 , 3.33 4.99
W18x311 410 616 50.7 76.0 747 1120 41.5 . 62.3
x283 350. 525 .46.7 70.0 , ! 631 946 36.2 54.3
x258 288 432 42.7 64.0 529 793 30.6 46.0
x234 243 364 MJ 58.0 ,437 656 25.3 38,0
x211 204 : 306 35.3 53.0 363 545 21.8 32.6
x192 172 258 :32.0 48.0 300 450 17.9 26.9
x175 148 221 29.7 44.5 255 382 16.0 24.0
x158 124 186 27.0 40.5 211 316 13.5 20,3
x143 105 157 24.3 36.5. 173 259 10.9 16.4
x130 89.3 134 22.3 33.5 145 217 9.38 14,1
x119 79.7 120 21.8 32.8 131 197 10.1 15,1
x106 65.9 98.8 19.7 29,5 106 159 8.44 12,7
x97 56.6 84.9 17.8 26.8 87.9 132 6.84 10,3
x86 ;46:8 70.2 t6.0 24.0 70.3 105 5.64 ^ 8,46
x76 38.3 57.4 14.2 21.3 " 55.0 82.5 . 4.48 • 6,72
W18x71 49.9 74.9 16.5 24.8 75:5 113 5.85: 8.77
x65 43.1 64,7 15.0 22,5 63.0 94.4 4.77 7,16
x60 38.0 57.1 13.8 20,8 53.7 80,5 4.08 6,12
x55 33.5 50.2 13.0 19,5 46.6 69,8 3.76 5,64
x50 28.8 43.1 • 11.8 17,8 : 38.5 57,7 3:15 " 4,73
For and Rz
ASD
<:J = i.50
LRFD
) = 1.00
For /?3, Ri, fh, fle
ASD
Q = 2.00
LRFD
) = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 9-47
Table 9-4 (continued)
Beam Bearing
Constants
Fy = 50 ksi
Nom-
inal
Wt
ffg/O i>Rs
ffe/a <t)«6
(/»=3V4in.)
Nom-
inal
Wt
ffg/O i>Rs
ffe/a <t)«6 x<dlZ x>d
Nom-
inal
Wt
ffg/O i>Rs
ffe/a <t)«6
R„ra (t>/f„ ifR„
Nom-
inal
Wt
kips l(ips l<ips/in. l(ips/in. l(ips kips Idps kips kips kips kips kips
lb/ft ASD. LRFD ASO LRFD ASD LRFD mj LRFD ASD LRFD ASD LRFD
201 245»« 367 19.4 29.0 260 390 260 390 422 632 419 628
182 203 304 16.4 24,6 227 : • 340 227 340 364 545 377 565
166 167 251 13.3 19,9 197 ::. 296 197 296 313 470 338 506
147 142 213. 14.1 21,2 177 266 177 266 276 415 318 477
132 116 174 11.7 17,5 154' 231 1^4 . 231 237 356 283 425
122 98.8 148 9.99 15,0 134 201 138 208 211 318 260 391
111 82.7 124 8.52 12,8 113 169 J 23 184 186 279 237 355
101 68.6 103 7.03: 10,6 93.4 140 108 163 163 244 214 321
93 92.5' 139 9.36 : 14,0 126 188 132 198 201 302 251 376
83 73.5' 110 7.36 11,0 99.2 149 113 170 171 256 220 331
73 57^, 86.2 5.78 8,68 77J 117 : 96.4 145 143 215 193 289
68 50.t 75,9 5,30 7.95 69.1: 104 89.1 134 132 198 181 272
62 42.8 64.2 4.77 7.16 . 59.4 89.2 80.5 121 118 177 168 252
55 35.1 52.6 4.68 7.02 51.4 77.0 72.5 109 103 154 156 234
48 27.9 41.8 4.66 6.99 ; 44.1 66.2, 65.1 97.6 88.2 132 144 216
57 45.1 67,7 4,67 : 7.00 ^'61.4 92.2 82.7 124 121 182 171 256
50 36.3 54,5 4.75 7.13 52.9 79.3 74.2 111 106 159 158 237
44 28.9 43,3 , 4.43 6.65 44.3 66.4 ::65.7 98,5 88.6 133 145 217
311 685 1030 55.4 ; 83.1 575 863 575 863 985 1480 678 1020
283 578 -867 48,3 . 72,4 502 753 ,502 753 852 1280 ' 613 920
258 485 : ' 728 40.9 61,3 427 640 427: 640 715 1070 5'SO 826
234 401 ... 602 ,33.8 50,7 369 553 369 i 553 612 917 490 734
211 333 ' 500 29.0 : 43.5 319 478 319 478 523 784 439 658
192 275 413 23.9 35,8 276 414 ;276 414 448 672 392 588
175 234 350 21.4 32,0 245 366 245 , 366 393 587 356 534
158 193 289 18.0 27,1 212 318 212 ' 318 336 504 319 479
143 158 238 14.6 21,8 184 276 :i84 276 289 433 285 427
130 133 199 12,5 18,8 162: 243 162 243 251 377 259 388
119 119 178 13,4 20,2 151 227 151 227 230 347 249 373
106 95.3. 143 11,3 16,9 130 , 195 130 195 196 293 221 331
97 79.4 119 ^.12 13,7 110 165 ?I14 172 171 . 257 199 299
86 63.4 95,0 7.52 11,3 88.6 132 . 98.8 148 146 218 :i77 265
76 49.6 ' 74,4 5.98 8.96 69.6 104 ;:84.5 127 123 184 155 232
71 68.3 102 7.80 • 11,7 94.5 142 104 156 153 , 230 183 275
65 57.1 85.7 6.36 9,54 78.5 118 91.9 138 135 203 166 248
60 48.7 73.1 5.44 8,16 67.0 100 82.9 125 121 182 151 227
55 42.0 63,0 5.01 7.52 : 58.8 88,1 75.8 114 109 164 141 212
50 34-7 52,0 4.20 6.30 48.7 73.1 67.2 101 96,0 144 128 192
i length of bearing, in,
x= location of concentrated force with respect to the member end, in.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-48 DESIGN OF CONNECTING ELEMENTS
Fy = 50 ksi
Table 9-4 (continued)
Beam Bearing
Constants
Shape
Kxia fk/a 1)«2 R3IQ. (|)«3 /?4/n
Shape kips kips kips/In. kips/in. kips kips kips/in. kips/in. Shape
ftSD LRFD LRFD ASO LRFD ASD LRFD
W18x46 30.3 45.5 '12.0 18.0 ' 40.5 : 60.7 3.08fi; 4,62
x40 ! 24.3. 36.5 .10.5 15.8 ; 30.9 46.3 : 2.40?: . 3,60
x35 : 20.7.V 31.0 mp ' 15,0 ; 25.8 ' 38.7 2.59 3,89
W16x100 167!a: 102 J 9.5 29.3 : 107 : 160 ^ ' : 8.64;:' 13.0
i:89 ^ 66.0? 84.0 '17.5 ; 26.3 : 85.7 . 129 " .:7.1i; 10.7
x77 44:.o; 66,0 15.2 22.8 64:4 96.7 .: 5.43: 8.14
x67 35.2; 52.8 19.8 : 48.8 : .73.1 : 4.11;;: 6,16
W16x57 40.1 60,2 ...1,4.3 21,5 : 57.4 86.1 , 4.90.. 7.35
x50 3^6, 48.9 12.7 19.0 44.8 • 67.2 3.86;: 5.79
k45 27.81 41.7 115 17,3. ; .36.7 55.0 3.26 4.89
x4b 2if.. 34.6 :': 10.2 15,3 ' : 28.8 , 43.2 : is4.:: 3.81
x36 : 20.5; 30.7 9.83 14.8 . ; 25.3 : 38.0 2.71::. 4.07
W16X31 ; 1913=^ 28,9 917 13.8 ! 23.0: 34.6 :: 2AS. 3.22
x26 i 15;6 23.3 'S 8.33 12.5 ; .17,7 26.5 2.08 T: 3.13
W14x730 1410: = 2110 102 154 '2870 4310 :i90 285
x665 1210 1810 94.3 142 12440 ; .3660 • 168 252
x605 io3o;w 1550 86.7 130 2060 3090 : 146 219
x550 •877 1310 .79.3 119 !1730, • 2590 126 .. 189
x500 i748"::; 1120 73.0 110 11460: : 2190 1,11 ;•:: 166
x455 . 1641:';: 962 :';fi7.3 101 1240: • 1860 97,6 146
x426 :569::; 853 62.7 94.0 1080 1620 , 84.4 .: 127
x398 507'" 761 590 88.5 : 957.: , 1.440 76.8.;; 115
x370 676 • 55.3 83.0 : 840.. : 1260 . 69.4 . 104
x342 •394;::: : 591 513 77.0 • 723 ; 1090 61.0!:, 91.6
x311 336::.-; . 504 47.0 70.5 e'be 909 52,4 • 78.6
x283 :287 431 43.0 64.5. i 508 . 762 44.9 '' 67.3
x257 245:,: 367 39.3 59,0 : 424 . 637 38.3: 57.4
x233 207 310 k7 53,5 : 350 524 32.2 48,2
x211 176 265 32.7 49,0 292 438 27.8 : 41,6
x193 ;i5i.:.:. 227 44.5 : 243 364 22.8 34,2
x176 132 . 198 41.5 • 208 313 20.7 31.1
x159 nr.; 167 :>:H8 37.3 169 : 253 16.7 25.1
x145 ^ 95;8 144 •'"227 34.0 ; 141 1 211 14.r 21.1
W14X132 : 87.6: 131 :21.5 32.3 ' 127 190 12,8 19.2
X120 • 75,7. 114 .19.7 29.5 , 106 : 159 10.9, 16.3
xlb9 : 63.9 95,8 , •'17.5 26.3 85.0 127 8.50 12.8
x99 : 55.8 83,7 24.3 , . 71.8 i 1.08 744 11.2
: x90 . 48.0 72,1 :3M:-
22.0 , : ^9.2 i 88.8 619 9,29
For and fk For /?3. ffi. /ife
ASD LRFD ASD LRFD
a = 1.50 If = 1.00 n = 2.oo (|) = 0.75
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

DESIGN TABLES 9-49
Table 9-4 (continued)
Beam Bearing
Constants
Fu = 50 ksi
Nom-
inal
Wt.
ffs/a <t>ff5 RelCl
(/i, = 3V4in.)
•t'l'liw
Nom-
inal
Wt.
ffs/a <t>ff5 RelCl x<m tl/2<x<d x>d •t'l'liw
Nom-
inal
Wt.
ffs/a <t>ff5 RelCl
R„ia
<t>/f« R„ia tfRa R„ia
•t'l'liw
Nom-
inal
Wt.
kips kips kips/in. kips/in. kips kips kips kips kips kips kips kips
lb/ft ASD , LRFD ASD LRFD ASD LRFD iASD, LRFD ASD LRFD ASD LRFD
46 36.7 55.1 4.10 6.16 : 50.5 75.7 69.3 104 99.6 150 130 ,: 195
40 28.a 42.0 3.20 4.81 38.7 58.0 .58.4 87.9 77.4 116 113 169
35 22:7: 34.1 3.46 5.19 • 34;2, 51.3 : 53.2 79.8 68.4 103 106 159
100 97.2 146 11.5 17.3 131 197 131 • 197 ; 199' 299 1§9 298
89 77Cr 117 9.48 14.2 109 164 •113: 169 169 253 176;; 265
77 58.5 87.7 7.24 10.9 82.0 123 •93.4 140 137 206 150 225
67 44.3 66.4 5.48 8.22 62.2 93.1 117 t13 170 129 193
57 52.1' . 78.1 6.53 9.80 73.3 110 , : 86.6 130 127 190 141 212
50 40.6! 60.9 5,15 7.72 57.3 86.0 73 9 111 106 160 124 186
45 33.2 49.8 4.35 6.52 47.3.. 71.0 65.2 97.9 93.0 140 111 167
40 26.1. 39.2 3.38 5.07 : 37.1 55.7 , 56.3 84.3 74.1 111 97.6 146
36 22:4 33.6 ' . 3.62 5.43 51.2 ;,;52.4 78.8 ^ 68.2 102 93.8 141
31 20,8 , 31.1 2.86 4.30 ^30.1 45.1 , .49.1 73.8 60.0, 90.1 .87.5 131
26 15.^ 23.3 . 2.78 4.17 ; 24.5 36,9 42 7 63.9 4£i.9. 73.3 70.5 106
730 2590 • 3880 253 380 ,
— —
— .— 3150 4720 1380 2060
665 2200 3290 224 335 : —: ,. — 2730 ' 4080 J22Q 1830
605 1860 2780 195 292 • — — — 2340 3520 M9Q 1630
550 1560 ; 2340 168 252 — — 2010 3010 i'962 1440
500 1320 1970 147 221 — — — 1730 • 2600 8S8 1290
455 1120 s-1670 130 i 195
— — 1500 • 2250 i768 1150
426 977 H 1470 113 . 169 — — — 1340 2010 :;703 1050
398 864 • 1300 102 ^ 154 — — — 1210 1810 ,J648 972
370 757 5 1140 92.5 139-
— —
i

1080 1620 ;'8g4 891
342 652 -i 978 81.4 122 561 841 ,S61 ; 841 955 1430 539 809
311 546 820 69.9 105 489 733 •489 ? 733 825 1240 482 723
283 458,' 687 59.8 89.7 427 641 ,427 ' 641 714 1070 431 646
257 383 . 574 51.1 76.6 373 559 •373 559 618 926 387 581
233 315^^ 473 42.9 64.3 323 484 323 484 530 794 342 514
211 263.. 394 37.0 55.5 282 424 282 424 458 689 308 462
193 219 329 30.4 45.6 248 372 , 248 372 339 599
, 276,
414
176 187r' 281 ,27.7 : 41.5 222 333 , t22 : 333 354 531 252: 378
159 152 228 22.3 33.5 192 288 1&2 • 288 303 455 224 335
145 i27r 191 18.8: 28.2 170, 255 •,.170 -255 265 399 201,.;, 302
132 114" 171 17.1 25.6 157 " 236 157 • 236 245 367 iSd 284
120 95.3 143 14.5 21.8 140 210 '•i40 : 210 215 324 171 257
109 76.9 115 11.3 17.0 114 170 121 181 185 277 150 225
99 64.6. 97.2 9.92 14.9 97.0 146 1Q8 , 163 164 246 1^38 207
90 534 80.2 12-.4 121 ,f95.8 144 144 216 123 185
—Indicates that 3V4-in. bearing length is insufficient for end beam reactions since It, < k.
4,=length of bearing, in.
x= location of concentratetl force with respect to the member end, in.

AMERICAN INSTOTTE OF STEEL CONSTRUCTION

9-50 DESIGN OF CONNECTING ELEMENTS
Fv = 50 ksi
Table 9-4 (continued)
Beam Bearing
Constants
Shape
ffl/n (|)/?i ft/n Bi/a (t)/?3 /?4/n! 4.B4
Shape kips kips kips/in. kips/in. kips kips kips/in. kIpsAn. Shape
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
W14X82 61.6 92.4 17.0 25.5 81.1 122 7.84 11.8
x74 51.8 77.6 •^•15.0 22.5 64.4 • • 96.6 5.91 8.86
x68 45.3 68.0 13.8 20:8^ : 54.6 81.9 5:i2 7.68
x61 : 38.8, 58.1 12.5 18.8 44.4 66.6 4,25., 6.37
W14X53 ; 38.5: 57.8 12.3 18.5 44.0 66,1 3.99 5,98
x48 50.6 11.3 17.0 ; 36.8 55,2 3:46 5.19
x43 28.5 42,7 .10.2 15.3 29.5 44.3 2.82 4.23
W14X38 23.6 35.5 10.3 15.5 29.8 44.7 2;96 4.45
x34 20.3 30.5 9.50 14:3 ^ 247 37.1 • 2.63 3,94
x30 17.7 26.5 „ 9.00 13.5 21:0 31.4 2.68 4,01
Wl4x26 ; i /.4 26.1 8.50 12.8 ^ 20.1 30.1 2.05 3.08
x22 . 14.1
21.1 ' 7.67 11.5 ; 15.4 23,1 1.92 2.87
W12x336 527 790 59.3 89.0 984 1480 81.9 123
x305 448' 672 81.5 1825 1240 70:8 106
x279 391 587 51.0 76.5 716 1070. 65.9 98.8
x252 333 499 46.7 70.0 598 898 -57.2 i; 85.8
x230 287 431 43.0 64.5 508 762 49.6 . f, 74,4
x210 246. 369 39.3 59.0 426 638 42.5 , 63,8
x190 206 309 35.3 53.0 : 347 520 34:3 51.5
x170 173 259 32.0 48.0 283 424 • ;29:3 , ^ 43.9
x152 145 218 29.0 43.5 231 347 24:8 37.2
x136 122 183 26.3 39.5 189 284 21.3 , 31.9
x120 i01:. i 151 23.7 35.5 ;152- 228 17.8 v: 26.7
x106 80.8 121 20.3 30.5 ; 114 171 12.8 19.3
x96 68.8 103 .18.3 27.5 93.2 140 10.5 15.8
x87 60.5 90.8 17.2 25.8 ' 80.1 120 9.75 14.6
x79 52.1 78.1 15.7 23,5 66.5 99,8 8.23 12,3
x72 45.5 68.3 14.3 21.5 55.6 83,4 6.97 10,5
x65 39.0 58.5 13.0 19,5 45.6 68.4 5.85: 8.78
W12x58 37.2 55.8 ,12.0 18,0 41.6 62,4 4.32 6.48
x53 33.9. 50.9 yi.5 17.3 , 37-0
55,5 ,, 4i26
6.40
W12X50 35.2 52.7 12.3 1,8.5 43.4 65,0 7.03
x45 • 30,,2 45.2 11.2 16,8 35.4 53,1 3;90 5.86
x40 25.1 37.6 , 9.83 14.8 27.7 41.5 3.03 4.54
W12X35 20.5 30.8 10.0 15,0 28.5 42,8 3.00 4.50
x30 , 16.0 24.1 8.67 13,0 , 21.2 31,8 2,35 ' 3.52
x26 13.0 19.6 11,5 i 16.4 24,6 2.84
For and /?2
ASD
n = i.5o
LRFD
= 1.00
For fli fl4, fb, fk
ASD LRFD
a = 2.00 ) = 0.75
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

DESIGN TABLES 9-51
Table 9-4 (continued)
Beam Bearing
Cdnstahts
Fy = 50 ksi
Nom-
inal
Wt
RslQ. (|)ff5 fle/n (j)ff6
(/i, = 3V4in.)
Vnx/a,
Nom-
inal
Wt
RslQ. (|)ff5 fle/n (j)ff6 x<m cll2<x<d x>a Vnx/a,
Nom-
inal
Wt
RslQ. (|)ff5 fle/n (j)ff6
Rja Rrja •ffln Rnin
Vnx/a,
Nom-
inal
Wt
kips i(ips kips/in. kips/in. kips kips kips kips kips kips kips kips
lb/ft ASD;. LRFD ASD LRFD ASD LilFD ASO LRFD ASD t LRFD ASD LRFD
82 73.6; ,110 1fl.5 15.7 108 161 117 175 178 268 146 219
74 58.8 88.2 7.88 11.8 84.4 127 101: 151 152 228 128 192
68 49.9 74.8 6.83 10,2 72.1 108 90.2 136 135' 204 116 174
61 40,5:; 60,7 ^5.67 8.50 : 58.9 88.3. 79.4 119 : 116 175 104 156
53 40.3; 60,5 5.32 7.98 :57.6 86.4 e:78.5 118 114 171 103 , 154
48 33 6 50.5 4.61 6,92 48.6 73.0 : i-70.4 106 ^ 96.1 144 93.8 141
43 27.0 : 40.4 3.76 5.65 39.2 58.8 92.4 : 77.3 116 83.6 125
38 27.0: 40.6 3.95 5.93 39.8 59.9 85.9 78.8 118 87,4 131
34 22.3' 33.4 . 3.50 5,25 33.7 50.5 ^ :5i.2 77.0 66.5 99.8 79,8 120
30 18.5 , 27.8 3.57 5,35 30.1 45.2 :47.0 70.4 59.4 88.9 74^5 112
26 18.2 27,3 2.74 4.10 27.1 40.6 •45.0 67.7 : 53.5 80.2 70.9 106
22 13.6 , 20.4 :2.55: 3,83 21.9 32.8 39.0 58.5 43,3 64.9 63.0 94,5
336 892' 1340 109 164 -
• —, • — ' ^ —
1250 1870 598 897
305 748 i 1120 94.4 142
• — — :.!}—: • — 1070 1610 531 797
279 646 970 87.9 132 557 836 557 836 948 1420 487 730
252 640 809 76.3 ; 114 485 727 [485 727 818 1230 431 647
230 458 687 '66.2 ; 99,2 427 641 , :42n 641 714 1070 390 584
210 3&4 576 •56.7 85.0 374 561 :'374 : 561 620 930 347 520
190 314 471 45.8 68,7 321 481 .321 481 527 790 305 : 458
170 256 383 39.0 58,5 277 415 . 277 : 415 450 674 269 403
152 2m': 313 33.1 49,6 239 359 : 239 ; 359 384 577 238 358
136 170 255 '28.4 i 42;5 , 207 , 311 207 : 311 329 494 212 318
120 136 204 23.7 ' 35,6 178 266 178 i 266 279 417 186 , 279
106 103 155 17.1 25.7 147: 220 147 220 228 341 157 236
96 84.3 126 14.0 21,0 128 192 128 192 197 295 140 210
87 72,0 108 13.0 19.5 114 171 116 175 ' 177 265 129 193
79 59.7 89.6 ,11.0 : 16.5 95,5 143 103 154 155 233 117 175
72 49.9' 74,8 9.29 13.9 80.1 120 92.0 138 137 206 106 159
65 40.9 61,4 7.81: 11.7 66.3 99.4 81.3 122 120 180 94.4 142
58 38,1- 57.2 5.76: 8.63 56.8 85,2 76.2 114 111 167 87.8 132
53 33.6 50.3 5.69 8,53 .52.1 78.0 •71.3 107 102 153 815 125
50 39:5" 59,3 6.25 9,37 ! 59.8 89.8 75.2 113 110 166 90.3 135
45 32,3 48.4 5.21 7,81 , 4^2 73.8 66.6 99.8 96.2 144 81.1 122
40 25.3: 37,9 4.04 6,05 38.4 57.6 , 57.0 85,7 75.1 113 70.2 105
35 26.0 39.1 4.00 6.00 39.0 58.6 53.0 79.6 73.5 110 75.0 113
30 19.3 28.9 3.13 4.69 29.5 44.1 "44.2 66.4 •577 86.5 64.0 95,9
26 14.8 22,3 2.53} 3.79 ! 23.0 34.6 37.^ 57.0 45.2 67.7 56.1 84.2
—Indicates that S'A-in, bearing length is insufficient for end beam reactions since fe < k.
4 = length of bearing, In.
;ir= location of concentrated force with respect to the member end, in.
i
AMERICAN INSTITUTE OF STEEL CoNSTRUctION

9-52 DESIGN OF CONNECTING ELEMENTS
Fy = 50 ksi
Table 9-4 (continued)
Beam Bearing
Constants
Shape
/?,/n <fHi Rz/Q (l>Bz
/?3/n (|)/f3 Ri/Q.
Shape kips kips kips/in. kips/in. kips kips kips/in. kips/in. Shape
ASD LRFD ASO IRFD : ASD LBFD ASD. IRFD
W12x22 15.7 23.6 '8.67 13.0 20.8 31.2 2.43 3.64
x19 12.7 19.1 7 83 11.8: 16.2 ' 24.3 2.20 . 3.29
x16 w:4 15.5 7 33 11,0 12.8 . 19.2 2.42 3.63
x14 8.75 13.1 • 667 10,0 : Ulp.2 j 15.3 2.16 3.24
W10x112 110 165 25 2 37,8 r 1177 V , 265 21.8t 32.7
xlOO 91.8 138 22 7 34,0 143,: 214 27.4
x88 75:1 113 20 2 30,3
. ;ii3:
. 169 i5.'d 22,4
x77 ^60.5. 90.8 17.7 26,5 86.7 130 11.7 17,5
x68 74.6. 15 7 23,5; ; mi 102 9.37 14.1
X60 41.3 62.0 140 21,0 ; 54-1 ; 81.1 7.72 11,6
x54 34:5 51.8 123 18,5 i 42,5 63.8 5;89 8,84
x49 30.0 45.1 . 11.3 17.0 ; 35.7 . 53.6 5.07 . 7,61
W10x45 ,327 49.0 11 7 17.5 •39.3 58.9 4.'95 7.42
x39 27.0. 40.6 105 15.8 ; 31.0' ' 46.5 4.30 6,44
x33 '22.6 33.9 9.67 -14.5 • 24.8 37.2 4.16. 6,24
WIOxSO 20.3 , 30.4 :T0.0 15.0 ; 28.3 42.4 3.64 5,46
x26 ,16.0 " 24.1 : 8 67 13.0 r2i:2 31.8 2.80 4,20
x22 13.2 19.8 loo 12.0 17.0 '25.5 2.72 ; 4,08
W10x19 14;5 21.7 ..8 33 12.5 ! 1B:9 28.4 2.80 .4,20
x17 12.6 18.9 >8 00 12,0 : 16;3 24.4 3.00 -^ 4,49
x15 10.9. 16.4 7.67 11,5 13.8 20.7 3.26 4,89
x12 8.D8 12.1 6 33 9,50 9.14 : 13.7 2,39 3,59
W8x67 63.2;: 94.8 19.0 28,5 160' .150 15,9 23,9
x58 51J- 76.5 17 0 25,5 78.9 118 13.5 20,3
x48 36.0 54,0 ^3.3 20,0 50.4 75.6 7.fl4 11,9
x40 128.6 . 42.9 IS.O 18,0 ; 38.9 58.4 7.30 10,9
x35 23.0 34.4 :ib.3 15,5 29.2 43.9 5.35 8,03
x31 19.7 29.5 9.50 14,3 24.2 .36.3 4.81 7.21
W8x28 :20.4 , 30.6 ,9.50. 14,3 , 25.0 37.5 4;46 .. 6,69
x24 16,2 24.3 8.17 12.3 18.5 27.7 3.35 5.02
W8x21 14.6 21.9 , 8.33 12.5 19.0 28.6 3.41 5,11
xl8 •12.1 18.1 I'7.67 11.5. 15.3 22.9 3.'27 4,91
W8x15 12.6 18.8 . . 8,17 12.3 16.4 24.6 4.16 6,24
x13 10.6 16.0 7.67 11.5. 13.4 20.1 4.31 6.47
xtO 7.15 10.7 .'5.67 8,50 i 7.64 ; 11.5 2.19 3.29
i.'Xv.i^'v ! ,
For and ffa
ASD
fi = 1.50
LRFD
(|) = 1.00
For ffs, /?4, ffs, fle
ASD
fi = 2.00
LRFD
M0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 9-53
Table 9-4 (continued)
Beam Bearing
Constants
Fy = 50 ksi
/6 = length of bearing, in.
location of concentrated force with respect to the member end, in.
Nom-
inal
Wt
fls/n /fe/n (jifle
(/4 = 3V4in.)
<l>vVnx
Nom-
inal
Wt
fls/n /fe/n (jifle *<rf/2 rf/2<*<(/ K>d <l>vVnx
Nom-
inal
Wt
fls/n /fe/n (jifle
n„ia Vn
/?„/n (jlffn
<l>vVnx
Nom-
inal
Wt
kips l(ips l<ips/in. l(ips/in. l(ips kips kips kips kips kips kips kips
lb/ft ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
22 18.8 28.2 3.24 4.86 29.3 44.0 43.9 65.9 57.4 86.1 64.0 95.9
19 14.4 21.7 2.93 4.39 23.9 36.0 38.1 57.5 46.7 70.0 57.3 86.0
16 10.9 16.3 3.23 4,84 21.4 32.0 34.2 51.3 41.3 62.0 52.8 79.2
14 8.51 12.8 2.88 4,32 17.9 26.8 30.4 45.6 34.4 51.7 42.8 64.3
112 160 240 29.1 43.6 192 288 192 288 302 453 172 258
100 129 194 24.4 36.5 166 249 166 249 257 387 151 226
88 102 153 20.0 29.9 141 211 141 211 216 324 131 196
77 78.4 118 15,6 23.3 118 177 118 177 179 268 112 169
68 61.6 92,4 12.5 18.7 101 151 101 151 150 226 97.8 147
60 48.8 73.2 10.3 15.4 82.3 123 86.8 130 128 192 85.7 129
54 38.5 57.8 7.86 11.8 64.0 96.2 74.5 112 109 164 74.7 112
49 32.3 48.5 6.76 10.1 54.3 81.3 66.7 100 96.7 145 68.0 102
45 35.9 53.9 6.60 9.89 57.4 86.0 70.7 106 103 155 70.7 106
39 28.2 42.2 5.73 8.59 46.8 70.1 61.1 92.0 88.1 133 62.5 93,7
33 22.1 33.2 5,55 8.33 40.1 60.3 54.0 81.0 76.6 115 56.4 84.7
30 25.7 38.6 4.86 7.29 41.5 62.3 52.8 79.2 73.1 110 63.0 94.5
26 19.3 28,9 3.74 5.60 31.5 47.1 44.2 66.4 60.2 90.5 53.6 80.3
22 15.1 22.7 3.63 5.44 26.9 40.4 39.2 58.8 51.7 77.5 49.0 73.4
19 17.0 25.5 3.74 5.60 29.2 43.7 41.6 62.3 56.0 84.0 51.0 76,5
17 14.2 21.4 4.00 5.99 27.2 40.9 38.6 57.9 51.2 76.8 48.5 72.7
15 11.6 17,4 4.35 6.52 25,7 38.6 35.8 53.8 46.7 70.2 46.0 68.9
12 7.57 11,4 3.19 4.78 17.9 26.9 28.7 43.0 33.8 50.7 37.5 56,3
67 90.7 136 21.2 31.8 125 187 125 187 188 282 103 154
58 71.1 107 18.0 27.0 106 159 106 159 157 236 89.3 134
48 45.9 68,9 10.6 15.9 79.2 119 79.2 119 115 173 68.0 102
40 34.9 52,4 9.73 14.6 66.5 99.9 67,6 101 96.2 144 59.4 89,1
35 26.3 39.5 7.14 10.7 49.5 74.3 56.5 84,8 79.5 119 50.3 75.5
31 21.6 32.4 6.41 9.61 42.4 63.6 50.6 76.0 70.3 105 45.6 68.4
28 22.6 33.9 5.95 8.93 41.9 62.9 51.3 77,1 71.7 108 45.9 68.9
24 16.7 25.1 4.47 6.70 31.2 46.9 42.8 64.3 58.8 88,0 38.9 58.3
21 17.2 25,7 4.54 6.82 32.0 47.9 41.7 62.5 56.3 34.4 41.4 62,1
18 13.5 20.2 4.36 6.55 27.7 41.5 37.0 55.5 49.1 73,6 37.4 56,2
15 14,1 21,2 5.55 8.32 32.1 48.2 39.2 58.8 51.8 77,6 39.7 59.6
13 11.1 16.7 5.75 8.63 29.8 44.7 35.5 53.4 46.1 69.4 36.8 55.1
10 6.49 9.73 2.93 4.39 16.0 24.0 25.6 38.3 29.5 44.4 26.8 40,2
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

9-54 DESIGN OF CONNECTING ELEMENTS
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-1
PART 10
DESIGN OF SIMPLE SHEAR CONNECTIONS
SCOPE 10-4
FORCE TRANSFER 10-4
COMPARING CONNECTION ALTERNATIVES 10-5
Two-Sided Connections 10-5
Seated Connections 10-5
One-Sided Connections 10-5
CONSTRUCTABILITY CONSIDERATIONS 10-5
Double Connections 10-6
Accessibility in Column Webs 10-7
Field-Welded Connections : 10-7
Riding the Fillet 10-7
DOUBLE-ANGLE CONNECTIONS 10-7
Available Strength 10-9
Recommended Angle Length and Thickness 10-9
Shop and Field Practices 10-9
DESIGN TABLE DISCUSSION (TABLES 10-1,10-2 AND 10-3) 10-9
Table 10-1. All-Bolted Double-Angle Connections 10-13
Table 10-2. Available Weld Strength of BoltedAVelded Double-Angle
Connections 10-46
Table 10-3. Available Weld Strength of All-Welded Double-Angle
Connections 10-47
SHEAR END-PLATE CONNECTIONS 10-49
Design Checks 10^9
Recommended End-Plate Dimensions and Thickness 10-49
Shop and Field Practices 10^9
DESIGN TABLE DISCUSSION (TABLE 10-4) 10-50
Table 10-4, BoltedAVelded Shear End-Plate Connections '.. 10-51
UNSTIFFENED SEATED CONNECTIONS 10-84
Design Checks 10-85
Shop and Field Practices 10-85
BoltedAVelded Unstiffened Seated Connections 10-85
X
AMERICAN iNs-nruTE OF STEEL CONSTRUGTION
I
i

10-2 DESIGN OF SIMPLE SHEAR CONNECTIONS
DESIGN TABLE DISCUSSION (TABLES 10-5 AND 10-6) 10-85
Table 10-5. All-Bolted Unstiffened Seated Connections 10-89
Table 10-6. All-Welded Unstiffened Seated Connections 10-91
STIFFENED SEATED CONNECTIONS 10-93
Design Checks 10-94
Shop and Field Practices 10-95
DESIGN TABLE DISCUSSION (TABLES 10-7 AND 10-8) ......,..]. 10-95
Table 10-7. All-Bolted Stiffened Seated Connections ... 10-97
Table 10-8. BoltedAVelded Stiffened Seated Connections 10-98
SINGLE-PLATE CONNECTIONS 10-102
, Design Checks 10-102
Conventional Configuration 10-102
Dimensional Limitations 10-102
Design Checks 10-103
Table 10-9. Design Values for Conventional Single-Plate
Shear Connections 10-103
Extended Configuration 10-103
Dimensional Limitations 10-104
Design Checks 10-104
Requirement for Stabilizer Plates 10-105
Recommended Plate Length 10-106
Shop and Field Practices 10-106
DESIGN TABLE DISCUSSION (TABLE 10-10) 10-107
Table 10-10. Single-Plate Connections 10-108
SINGLE-ANGLE CONNECTIONS 10-132
Design Checks 10-133
Recommended Angle Length and Thickness 10-133
Shop and Field Practices 10-133
DESIGN TABLE DISCUSSION (TABLES 10-11 AND 10-12) 10-134
Table 10-11. All-Bolted Single-Angle Connections ... 10-135
Table 10-12. BoltedAVelded Single-Angle Connections 10-136
TEE CONNECTIONS 10-138
Design Checks . •.... 10-138
Recommended Tee Length and Flange and Web Thicknes.se.s 10-139
Shop and Field Practices 10-139
SHEAR SPLICES 10-139
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-3 DESIGN OF SIMPLE SHEAR CONNECTIONS
SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS .10-141
Simple Shear Connections Subject to Axial Forces 10-141
Simple Shear Connections at Stiffened Column-Web Locations 10-141
Eccentric Effect of Extended Gages .10-143
Column-Web Supports 10-143
Girder-Web Supports ,..... 10-146
Alternative Treatment of Eccentric Moment 10-147
Double Connections 10-147
, Supported Beams of Different Nominal Depths ! 10-147
Supported Beams Offset laterally . 10-147
Beams Offset from Column Centerline ; 10-147
Framing to the Column Flange from the Strong Axis 10-147
, Framing to the Column Flange from the Weak Axis 10-150
Framing tothe Column Web 10-153
Connections for Raised Beams ! 10-153
Non-Rectangular Simple Shear Connections 10-157
Skewed Connections 10-159
Sloped Connections 10-162
Canted Connections 10-164
Inclines in Two or More Directions (Hip and Valley Framing) 10-166
DESIGN CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS
TO HSS COLUMNS 10-167
Double-Angle Connections to HSS 10-167
Single-Plate Connections to HSS 10-167
Unstiffened Seated Connections to HSS 10-167
Stiffened Seated Connections to HSS 10-168
Through-Plate Connections 10-168
Single-Angle Connections 10-169
DESIGN TABLE DISCUSSION (TABLES 10-13,10-14A, 10-14B, 10-14C
AND 10-15) 10-169
Table 10-13. Minimum Inside Radius for Cold-Blending 10-172
Table 10-14A. Clearances for All-Bolted Skewed Connections 10-173
Table 10-14B. Clearances for BoltedAVelded Skewed Connections 10-174
Table 10-14C. Welding Details for Skewed Single-Plate Connections 10-176
Table 10-15. Required Length and Thickness for Stiffened Seated
Connections to HSS - 10-178
PART 10 REFERENCES 10-181
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-4 DESIGN OF SIMPLE SHEAR CONNECTIONS
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of simple shear connections. For the design of partially restrained
moment connections, see Part 11. For the design of fully restrained (PR) moment
connections, see Part 12.
FORCE TRANSFER
The required strength (end reaction), or is determined by analysis as indicate^ in AISC
Specification Section B3.6a. Per AISC Specification Section J 1.2, the ends of members with
simple shear connections are normally assumed to be free to rotate under load. While simple
shear connections do actually possess some rotational restraint (see curve A in Figure 10-1),
this small amount can be neglected and the connection idealized as completely flexible. The
simple shear connections shown in this Manual are suitable to accommodate the end rotations
required per AISC Specification Section J1.2.
Support rotation is acceptably limited for most framing details involving simple shear
connections without explicit consideration. The case of a bare spandrel girder supporting
infill beams, however, may require consideration to verify that an acceptable level of support
rotational stiffness is present. Sumner (2003) showed that a nominal interconnection between
FH moment connections
End moment
PR moment connections
simple shear connections
Rotation
fig. 10-1. Illustration of typical moment rotation curve for simple shear connection.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

CONSTRUCTABILITY CONSIDERATIONS 10-^5
the top flange of the girder and the top flange of the framing beam is sufficient to limit
support rotation.
COMPARING CONNECTION ALTERNATIVES
Two-Sided Connections
Two-sided connections, such as double-angle and shear end-plate connections, offer the
following advantages:
1. suitability for use when the end reaction is large;
2. compact connections (usually, the entire connection is contained within the flanges of
the supported beam); and,
3. eccentricity perpendicular to the beam axis need not be considered for workable gages
(see Table 1-7 A).
Note that two-sided connections may require additional consideration for erectability, as
discussed in "Constructability Considerations" below.
Seated Connections
Unstiffened and stiffened seated connections offer the following advantages:
1. seats can be shop attached to the support, simplifying erection;
2. ample erection clearance is provided;
3. excellent safety during erection since double connections often can be eliminated; and;
4. the bay lenjgth of the structure is easily maintained (seated connections may be prefer-
able when maintaining bay length is a concern for repetitive bays of framing).
One-Sided Connections
One-sided connections such as single-plate, single-angle and tee connections offer the
following advantages:
1. shop attachment of connection elements to the support, simplifying shop fabrication
and erection;
2. reduced material and shop labor requirements;
3. ample erection clearance is provided; and,
4. excellent safety during erection since double connections often can be eliminated.
CONSTRUCTABILITY CONSIDERATIONS
Double Connections
A double connection occurs in field-bolted construction when beams or girders frame
opposite each other. Double connections are a safety concern when they occur in the web of
a column (see Figure 10-2) or the web of a beam that frames continuously over the top of a
column' and all field bolts take the same open holes. A positive connection must be made
'This requirement applies only at the location of the column, not at locations away from the column.

AMERICAN iNstrruTE OF STEEL CONSTRUCTION

6-10 DESIGN OF SIMPLE SHEAR CONNECTIONS
and maintained for the first member to be erected while the second member to be erected is
brought into its final position. Conditions requiring the connector to hang one beam
temporarily on a partially inserted bolt or drift pin are not allowed by OSHA.
Framing details can be configured using staggered angles or other similar details to
provide a means to make a positive connection for the first member while the second
member is brought into its final position. Alternatively, a temporary erection seat, as shown
in Figure 10-2, can be provided. The erection seat, usually an angle, is sized and attached to
the column web to support the dead weight of the memW, unless additional loading is
indicated in the contract documents. It is located to clear the bottom flange of the supported
member by approximately '/s in. to accommodate mill, fabrication and erection tolerances.
The sequence of erection is most important in determining the need for erection seats. If
the erection sequence is known, the erection seat is provided on the side needing the support.
If the erection sequence is not known, a seat can be provided on both sides of the column
web. Temporary erection seats may be reused at other locations after the connection(s) are
made, but need not be removed unless they create an interference or removal is required in
the contract documents.
See also the discussion under "Special Considerations for Simple Shear Connections."
Accessibility in Column Webs
Because of bolting and welding clearances, double-angle, shear end-plate, single-plate,
single-angle, and tee shear connections may not be suitable for connections to the webs of
W-shape and similar columns, particularly for W8 columns, unless gages are reduced. Such
connections may be impossible for W6, W5 and W4 colunms.
There is also an accessibility concern for entering and tightening the field bolts when the
connection material is shop-attached to the supporting column web and contained within the
column flanges.
Column
First beam to
be erected
Second beam to
be erected
Temporary erection seat
Fig. 10-2. Erection seat.
AMERICAN INSTITUTE OF STEEL CoNSTRucnoN

DOUBLE-ANGLE CONNECTIONS 10-7
Field-Welded Connections
In field-welded connections, temporaiy erection bolts are usually provided to support the
member until final welding is performed. A minimum of two bolts (one bolt in bracing
members) must be placed for erection safety per OSHA requirements. Additional erection
bolts may be required for loads during erection, to assist in pulling the connection angles
up tightly against the web of the supporting beam prior to welding or for other reasons.
Temporary erection bolts may be reused at other locations after final welding, but need not be
removed unless they create an interference or removal is required in the contract documents.
Riding the Fillet
The detailed dimensions of connection elements must be compatible with the 7"-dimension
of an uncoped beam and the remaining web depth of a coped beam. Note that the element
may encroach upon the fillet(s), as given in Figure 10-3.
DOUBLE-ANGLE CONNECTIONS
A double-angle connection is made with two angles, one on each side of the web of the beam
to be supported, as illustrated in Figure 10-4. These angles may be bolted or welded to the
supported beam as well as to the supporting member.
When the angles are welded to the support, adequate flexibility must be provided in the
connection. As illustrated in Figure 10-4(c), line welds are placed along the toes of the
angles with a return at the top per AISC Specification Section J2.2b. Note that welding
across the entire top of the angles must be avoided as it inhibits the flexibility and, therefore,
the necessary end rotation of the connection. The performance of the resulting connection
would not be as intended for simple shear connections.
Available Strength
The available strength of a double-angle connection is determined from the applicable limit
states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In
all cases, the available strength, <()/?„ or R„/Q., must equal or exceed the required strength,
Ru or Ra-
Encr.
in. in.
%
®/6 to Va %
%
'/jtol V,

Fig. 10-3. Fillet encroachment (riding the fillet).

AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

10-8 DESIGN OF SIMPLE SHEAR CONNECTIONS
For standard or short-slotted holes, eccentricity on the supported side of double angle
connections may be neglected for gages [distance from the face of the outstanding angle legs
to the centerline of the vertical bolt row, shown as dimension a in Figure 10-4(a)] not
exceeding 3 in., except in the case of a double vertical row of bolts through the web of the
supported beam. Eccentricity should always be considered in the design of welds for dou-
ble-angle connections.
(a) All-bolted
(b) Bolted/welded, angles welded to support beam
V
Note: weld returns on
top of angles per
Specification
Section J2.2b. '
(cj Bolted/welded, angles welded to support
Fig. 10-4. Double-angle connections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLES 10-1,10-2 AND 10-3) 10-9
Recommended Angle Length and Thickness
To provide for stability during erection, it is recommended that the minimum angle length
be one-half the T-dimension of the beam to be supported. The maximum length of the
connection angles must be compatible with the T-dimension of an uncoped beam and the
remaining web depth of a coped beam. Note that the element may encroach upon the fillet(s),
as given in Figure 10-3.
To provide for flexibility, the maximum angle thickness for use with workable gages
should be limited to ^/s in. Alternatively, the shear-connection ductility checks illustrated in
Part 9 can be used to justify other combinations of gage and angle thickness.
Shop and Field Practices
When framing to a girder web, both angles are usually shop-attached to the web of the
supported beam. When framing to a column web, both angles should be shop-attached to the
supported beam, when possible, and the associated constructability considerations should be
addressed (see the preceding discussion under "Constructability Consideratioils").
When framing to a column flange, both angles can be shop-attached to the column flange
or the supported beam. In the former case, this is a knifed connection, as illustrated in Figure
10-4(c), which requires an erection clearance, as illustrated in Figure 10-5(a), and that the
bottom flange be coped. Also, provision must be made for possible mill variation in the
depth of the columns, particularly in fairly long runs (i.e., six or more bays of framing). If
both angles are shop-attached to the beam web, the beam length can be shortened to provide
for mill overrun with shims furnished at the appropriate intervals to fill the resulting gaps or
to provide for mill underrun. If both angles are shop-attached to the column flange, the
erected beam is knifed into place and play in the open holes is normally sufficient to provide
for the necessary adjustment. Alternatively, short-slotted holes can also be used.
When special requirements preclude the use of any of the foregoing practices, one
angle could be shop-attached to the support and the other shipped loose. In this case, the
spread between the outstanding legs should equal the.decimal beam web thickness plus a
clearance that will produce an opening to the next higher Vi6-in. increment, as illustrated
in Figure 10-5(b). Alternatively, short-slotted holes in the support leg of the angle
eliminate the need to provide for variations in web thickness. Note that the practice of
shipping one angle loose is not desirable because it requires additional material handling
as well as added erection costs and complexity.
DESIGN TABLE DISCUSSION (TABLES 10-1, 10-2 AND 10-3)
Table 10-1. All-Bolted Double-Angle Connections
Table 10-1 is a design aid for all-bolted double-angle connections. Available strengths are
tabulated ftfr supported and supporting member material with Fy = 50 ksi and Fu = 65 ksi
and angle material with Fy = 36 ksi and Fu = 58 ksi. Eccentricity effects on the supported
(beam) side of the connections are neglected, as discussed previously for gages not
exceeding 3 in. All values, including slip-critical bolt available strengths, are for comparison
with the governing LRFD or ASD load combination.
Tabulated bolt and angle available strengths consider the limit states of bolt shear, bolt
bearing on the angles, shear yielding of the angles, shear rupture of the angles, and block
AMERICAN INSTITUTE OF STEEL CONSTRIJCTION

10-10 DESIGN OF SIMPLE SHEAR CONNECTIONS
shear rupture of the angles. Values are tabulated for 2 through 12 rows of '/4-in.-, ''/8-in.- and
l-in.-diameter Group A and Group B bolts (as defined in AISC Specification Section J3.1)
at 3-in. spacing. For calculation purposes, angle edge distances, Z,^ and L^A. are assumed to
belV4in. .
Tabulated beam web available strengths, per in. of web thickness; consider the limit
state of bolt bearing on the beam web. For beams coped at the top flange only, the limit
state of block shear rupture is also considered. Additionally, for beams coped at both the
top and bottom flanges, the tabulated values consider the limit states of shear yielding and
shear rupture of the beam web. Values are tabulated for beam web edge distances, L^v,
from 1V4 in. to 3 in, and for beam end distances, L^h, of 1V2 in. and 1^/4 in. For calculation
purposes, these end distances have been reduced to IV4 in. and 1V2 in., respectively, to
account for possible underrun in beam length. For coped members, the limit states of
flexural yielding and local buckling must be checked independently per Part 9. When
required, web reinforcement of coped members is treated as in Part 9.
- Provide uptoVa In. erection
clearance between angles:
should be a multiple of Vie in.
(a) Both angles sliop attached to the column flange (beam knifed into place)
Provide erection clearance so that spread
is the next larger multiple of 'As in.
greater than the beam web thIcknSss.
(b) One shop attached to the column flange, other shipped loose
Fig. 10-5. Erection clearances for double-arigle connections.
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLES 10-1,10-2 AND 10-3) 10-11
Tabulated supporting member available strengths, per in. of flange or web thickness,
consider the limit state of bolt bearing on the support. Note that resistance and safety factors
are not noted in these tables, as they vary by limit state.
Table 10-2, Available Weld Strength of Bolted/Welded
Double-Angle Connections
Table 10-2 is a design aid arranged to permit substitution of welds for bolts in connections
designed with Table 10-1. Electrode strength is assumed to be 70 ksi. Holes for erection
bolts may be placed as required in angle legs that are to be field-welded.
Welds A may be used in place of bolts through the supported-beam web legs of the double
angles or welds B may be used in place of bolts through the support legs of the double
angles. Although it is permissible to use welds A and B from Table 10-2 in combination to
obtain all-welded connections, it is recommended that such connections be selected from
Table 10-3. This table will allow increased flexibility in the selection of angle lengths and
connection strengths because Table 10-2 conforms to the bolt spacing and edge distance
requirements for the all-bolted double-angle connections of Table 10-1.
Weld available strengths are tabulated for the limit state of weld shear. Available strengths
for welds A are determined by the instantaneous center of rotation method using Table 8-8
with 9 = 0°. Available strengths for welds B are determined by the elastic method. With the
neutral axis assumed at one-sixth the depth of the angles measured downward and the tops
of the angles in compression against each other through the beam web, the available
strength, <^R„ or R„/Q,, of these welds is determined by
LRFD ASD
/ : >,
1.392Z)L
(10-la)
/
0.928Z)L
(10-lb) (10-la) (10-lb)
i
i
where
D = number of sixteenths-of-an-inch in the weld size
L - length of the connection angles, in.
e = width of the leg of the connection angle attached to the support, in.
Note that (() = 0.75 is included in the right hand side of Equation 10-la and Q = 2.00 is
included in the right hand side of Equation 10-lb.
The tabulated minimum thicknesses of the supported beam web for welds A and the
support for welds B match the shear rupture strength of these elements with the strength of
the weld metal. As derived in Part the minimum supported beam web thickness for welds
A (two lines of weld) is
6.19Z)
Fu
(9-3)
AMERICAN INSTITUTE OF STEEL CONSTRIJCTION

10-12 DESIGN OF SIMPLE SHEAR CONNECTIONS
and the minimum supporting flange or web thickness for welds B (one line of weld) is
3.09D
(9-2)
I'u
When welds B line up on opposite sides of the support, the minimum thickness is the sum
of the thicknesses required for each weld. In either case, when less than the minimum
material thickness is present, the tabulated weld available strength must be reduced by the
ratio of the thickness provided to the minimum thickness.
When Table 10-2 is used, the minimum angle thickness is the weld size plus Vie in., but
not less than the angle thickness determined from Table 10-1. The angle length, L, must be
as tabulated in Table 10-2. In general, 2L4x3'/2 will accommodate workable gages, with the
4-in. leg attached to the supporting member. The width of web legs in Case I (web legs
welded and outstanding legs bolted) may be optionally reduced from 3^2 in, to 3 in. The
width of outstanding legs in Case II (web legs bolted and outstanding legs welded) may be
optionally reduced from 4 in. to 3 in. for values of L from 5V2 through I7V2 in.
Table 10-3. Available Weld Strength of All-Welded
Double-Angle Connections
Table 10-3 is a design aid for all-welded double-angle connections. Electrode strength is
assumed to be 70 ksi. Holes for erection bolts may be placed as required in angle legs that
are to be field-welded.
Weld available strengths are tabulated for the limit state of weld shear. Available strengths
for welds A are determined by the instantaneous center of rotation method using Table 8-8
with 0 = 0°. Available strengths for welds B are determined by the elastic method as
discussed previously for bolted/welded double-angle connections.
The tabulated minimum thicknesses of the supported beam web for welds A and the
support for welds B match the shear rupture strength of these elements with the strength of
the weld metal and are determined as discussed previously for Table 10-2. When welds B
line up on opposite sides of the support, the minimum thickness is the sum of the thicknesses
required for each weld. When less than the minimum material thickness is present, the
tabulated weld available strength must be reduced by the ratio of the thickness provided to
the minimum thickness.
When Table 10-3 is used, the minimum angle thickness must be equal to the weld size
plus Vi6 in. The angle length, L, must be as tabulated in Table 10-3.2L4x3 V2 should be used
for angle lengths equal to or greater than 18 in. For angle length less than 18 in., the 4-in.
leg can be reduced to 3 in.
AMERICAN INSIRRUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-13
/y = 50 ksi
Fu = 65 ksi
/y = 36 ksi
Fu = 58 ksi
Table 10-1
All-Bolted Double-Angle
Connections
Bolts
Bolt and Angle Available Strength, kips
12 Rows
W44
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
V4
ASD LRFD
5/16
ASD LRFD
5/a
ASn LRFD
V2
ASD LRFD
STD
STD
197,
197
295
295
246
246
369
369
286
295
430
443
286
361-
430
541
Group
A
SC
Class A
STD
OVS
SSLT
152:
129
152:
228
194
228
152
12?
152
228
194
228
152
,129'
152;
228
194
228
152:
129-
152
228
194
228
SC
Class B
STD
OVS
SSLT
197
196
195
.295
294
293
246
216
M
369
323
366
25a
216
253
380
323
380
;253'
216:
253
380
323
380
STD
STD
197:
197
295
295
246
246'
369
369
295
295
443
443
361
393
541
590
Group
B
SC
Class A
STD
OVS
SSLT
190
162
190
285
242
285
190,
162:
285
242
285
190
.162
190
285
242
285
190
162
190
285
242
285
SC
Class B
STD
OVS
SSLT
19?
196^
195
295
294
293
246.
245
369
367
366
295
270
293:
443
403
440
316
270
316
475
403
475
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
Le„ in.
IV2
ASD LRFD
1?/4
ASP LRFD
IV2
ASO LRFD
IV4
ASD LRFD
IV2
ASD LRFD
IV4
ASD LRFD
Coped at Top
Flange Only
IV4
13/8
IV2
498:
501
5,03;
747
751
754
506
509
5Tli
759
763
767
468
470:
473;
702
706
709
476:
479]
481:
714
718
722
495:
m-
500:
743
746
750
503
506
508..
755
758
782
iVo
2
3
505
513i
532
758
769
514;
521
540:
770
781
810
475,
483^
502
713
724
753
483:
491!
510'
725
736
765
502;
510
529
753
764
794
5ie
518
537
766
777
806
Coped at Both
Flanges
IV4
1%
1V2
488
492
497
731
739
746
48a
492
497
731
739
746
458
463
468'
687
695
702
458:
463
468:
687
695
702
488:
492:
,497
731
739
746
488
492
497.
731
739
746
2
3
502i
513
532
753
769
502:
517
540
753
775
810
473
483'
502'
709
724
753
473:
488;
510;
709
731
765
502
510;
529
753
764
794
502
517
537
753
776
806
Uncoped 702' 1050 702 1050 ,702 1050 702: 1050 702 1050 702 1050
Support Available
Strength per
inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X=Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
, ASD
1400
LRFD
2110
• Tabulated values include V4-in. reduction in end distance, Lei,, to account for possible
underrun in beam length.
Note; Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

10-14 DESIGN OF SIMPLE SHEAR CONNECTIONS
/y = 50 ksi
Fu = 65 ksi
Fy = 36 ksi
Fa = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
Bolt and Angle Available Strength, kips
11 Rows
W44,40
Bolt
Group
Thread
Cond.
Hole
type
Angle Thickness, in.
V4
ASD LRFD
5/16
ASD LRFD
VB
ASa LRFD
Vz
ASD LRFD
STD
STO
181
181
271
271
226
226
338
338
263:
271-
394
406
263
331
394
496
Group
A :
sc
Class A
STD
OVS
SSLT
139.
119
139
209
178
209
139
119'
139'
209.
178
209.
139.
119;
139;
209
178
209
:i39.
139
209
178
,209
SC
Class 8
STD
OVS
SSLT
181-
180/;
179i
271
269
269
226
198
224
338
296
336
232
198^
232
348
296
348
232'
'198;
232
348
296
348
N
X.
STD
STD
181
181
271
271
226
226'
338
338
271
271
408
406
331
361 542
Group
B
SC.
Class A
STD
OVS
SSLT
174
148
174;
281
222
261
174
148
174
281
222
261
174
148^
174
261
222
261
174
148
174
261
222
261
SC
Class B
STD
OVS
SSLT
181
180
179;
271
269
269
226
225
224
338
337
336
271
247:
269
406
370
403
290
247
,290
435
370
435
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STO OVS SSLT
Vh 1^4 iVi 15/4 IVz 1V4
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
1V4 457; 685 .465 697 429 644 437 656 454: 680 462 693
459 . 689 :467! .701 ::43l! 647 1.440! 659 .456 684 464 696
Coped at Top
Range Only
iVz 462- 692 ;470' 704 434 651 442i 663 458 688 «467 700 Coped at Top
Range Only 1=/8 : 464! 696 472- 708 436; 654 •444 667 461 691 •469' 704
2 v:47f' 707 479 719 444 665 452^ 678 468' 702 476 714
3 491'^ 736 499 748 463i 695 471 707 488 732 496 744
1V4 446 669 446 669 419' 629 419 629 446: 669 446 669
1% 451 676 451 676 424 636 424 636 451 676 451 676
Coped at Both iVz 456 684 456 684 429 644 429 644 456 684 456 684
Flanges 461' 691 46T 691 434 651 434 651 461 691 461 ^ 691
2 .471; 707 475; 713 444 665 449 673 468 702 475 713
3 491 736 -499' 748 463: 695 AlV 707 488 732 496 744
Uncoped .R-44^ 965 • 644 965 644 965 644 965 644 965 644 965
Support Available
Strength per
Inch Thickness,
kIps/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to dirsctlon of load
N=Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
• ASp,
'izJii'-
LKHP.
1930
* Tabulated values include ,V4-in. reduction in end distance, Let,, to account for possible
underrun in beam length. >
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSIRRUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-15
/y = 50 ksi
Fu = 65 ksi
Fy = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
Bolts
Bolt and Angle Available Strength, kips
10 Rows
W44.40,36
Bolt
Graiip
Tliread
Cond.
Hole
Type
Angle Thickness, in.
Vi
ASD LRFD
5/16
ASD LRFD
V8
ASD LRFD
V2
ASD LRFD
N
X '
STD;
STD
164:
164.
246
246
205
205
308
308
239
246!
358
370
239
301
358
451
Group
SC
ClassA
STD
OVS
SSLT
127'
108'
127
190
161
190
127.
108
w
190
161
190
127
j108i
127
190
161
190
127
'108
127
190
161
190
SC
Class B
STD
OVS
SSLT
164
163
163
246
245
244
205.
180
308
269
306
211i
180:
211
316
269
316
211
180
211
316
269
316
STD
STD
164
164
246
246
205
205
308
308
246i
246
370
370
301
329
451
493
Group
B
SC
ClassA
STD
OVS
SSLT
158
135
1,58
237
202
237
158,
135.
158
237
202^
237
158
135
.158
237
202
237
158
135
158
237
202
237
SC,
Class B
STD
OVS
SSLT
164
163
163
246
245
244
205
20i(
2bl
308
306
306
246
225
244:
370
336
367
264
225
264
396
336
396
Beam Web Availaliie Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
Leh*, In.
L^m.
ASD LRFD
1V4
ASD LRFD
iVi
ASD LRFD
m
ASD LRFD
iVi
ASD LRFD
1V4
ASD LRFD
Coped at Top
Flange Only
1V4
1V2
:415j
418i
420^
623
626
630
;423;
=426,
428
635
639
642
390;
392'
395;
585
589
•592
398;
401:
403'
597
601
605
412:
^415=
.417;
618
622
626
420
423
425
630
634
638
IVB
2
3
423:
430;
449;
634
645
674
:431;
438:
457
646
657
686
'397i
.'405:
424
596
:607
636
•405'
•413i
432
608
619
419^
427:
446:
629
640
669
428
435
454
641
652
682
Coped at Both
Ranges
1V4
1V2
405'
410
414
607
614
622
405
410
414
607
614
622
380
385:
390
570
578
585
380
385
390
570
578
585
405
410
414
607
614
622
405
410
414
607
614
622
1%
2
3
419
430;
449;
629
645
674
419:
434
457:
629
651
686
395
405:
424
592
-607
636
395:
410
.432:
592.
614
439,
427
446
629
640
669
419
434
454
629
651
682
Uncoped 585 878 S85' 878 585: 878 585: 878 585 878 -585 878
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STO/
OVS/
SSLT
ASD LRFD
1760
* Tabulated values include V<i-ln. reduction in end distance, Lei,, to account for possible
underrun in beam length.
Note:Slip>cri1ical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in ttie fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-16 DESIGN OF SIMPLE SHEAR CONNECTIONS
03
/y = 50 ksi
F„ = 65ksi
fy = 36 ksi
fu = 58 ksi
Table 10-1 (continued) «
Ail-Bolted Double-Angle A '"
Connections
Bolt and Angle Available Strength, kips
9 Rows
W44,40,36,33
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
V4
ASD LRFO
5/16
ASD LRFO ASD LRFD
Va
ASO LRFD
STD
STD
148 •
148
222
222
185'
185;
278
278
215 :
222 i
322
333
215
271
322
406
Group
A
SC
ClassA
STD
OVS
SSLT
114-
97.1
114
171
145
171
114
97.1
114
171
145
171
114
,97.1
114:
171
145
171
114
97.1
114
171
145
171
SC
Class B,
STD
OVS
SSLT
148
147
147
222
221
220
185
162
183
278
242
275
19Q
162
190
285
242
285
162
190
285
242
285
STD
STD
148
148
222
222
185
185
278
278
222
222
333
333
271
296
406
Group
SC
ClassA
STD
OVS
SSLT
142
121
142
214
182
214
142
121
214
182
214
142
m
142
214
182
214
142
121
142
214
182
214
SC
Class B
STD
OVS
SSLT
148
147
147.^
222
221
220
185
184
183
278
276
275
222
202
220
333
303
330
237
202
237
356
303
356
Beam Web Available Strength per Inch Thickness, kipsAin.
Hole Type
STD OVS SSLT
Let,*, in.
iei-iin.
1V2 15/4 IV2 1'/4 IVJ 1='/4
iei-iin.
ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD ASD LRFD
1V4 374 561 :382. 573 351 527 359 539 371 556 379 568
IVa 376 564: C384' 576 353 530 362 542 373 560 381 572
Coped at Top IV2 379' 568 387: 580 356 534 •364 546 376 563- 384 576
Flange Only iVa 381 572 ,•389! 584 358 537 366 550 578 56/ 386 579
2 :388; 583 397: 595 366! 548 374 561 385 578 393 590
3 408 612 4161 624 385 578 •393; 590 405: 607 413 619
VIA 363 545 363: 545 341 512 341 512 363 545 363 545
m 368 552 368 552 346 519 346 519 368 552 368 552
Coped at Both 1V2 373 559 373 559 351 527 ,351 527 ,373 559 373 559
Flanges iVs 378 567; 378 567 356 534 534 378 567 378 567
2 388 583 392 589 366 548 371 556 385 578 392 58S
3 .408; 612 416 624 385 578 393 590 405 607 413 619
Uncoped m 790 527 790 527 790 527 790 527 790 527 790
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSir = Short-slotted holes transverse
to direction of load
N= Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD LRFD
1580
* Tabulated values include V4-in. reduction in end distance, U, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have,
been added to distribute loads in the fillers. '
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-17
/y = 50 ksi
Fu = 65 ksi
Fy = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
Ali-Bolted Doubie-Angie
Connections
Bolts
Bolt and Angle Available Strength, kips
8 Rows
W44,40,36,33,30
Bott
Group
Group
A
Group
Thread
Cond.
SC
Class A
SC
Class B
SC
Class Ai
SC
Class B
Hole
Type
Angle Thickness, in.
Vie '/a V2
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
132::
101:
86.3
101
132
131,1
131 ••
132 :
132
127
10S,
127
132i<
131
131J
198
198
152
129
152
198
197.
196
198
198
190
161
190
198
197
196
165
165
101
86:3
icir''^
165
144
163
165 ':
165 A
127
loa'
127''
165.
164
163"
247
247
152
129
152
247
215
245
247
247
190
161
190
247
246
245
191
198
101 ;
,86.3
101 S
169
144
169
198 :
198 :
127
MB:
127,;
198
180
196
286
297
152
129
152
253
215
253
297
297
190
161
190
297
269
294
191
240
101
86.3
101
169 it
144 :
169
240
264;
127
108 :
127-
211
180
211
286
361
152
129
152
253
215
253
361
396
190
161
190
316
269
316
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
W, in-
Le,, in.
IV2 IV4 IV2 IV4 1V2 1'/4
Le,, in.
ASO LRFD ASD LRFD ASD LRFD Aso: LRFD ASD LRFD Asn LRFD
1V4 ,,332 498 340 511 312: 468 ::320: 480 ,329: 494 337 506
335 502 343 514 314 472 323 484 332 498 340 510
Coped at Top Ph 337; 506 345: 518 317 475: , 325: 488 :1334: 501 342 513
Range Only iVa 340 509: ,:34S 522 319; 479 327; 491 :.337i 505 ?345': 517
2 347: 520 355; 533 327; 490 335 502 344' 516 352 528
3 366 550 375 562 346 519 354; 531 363 545 372 557
1V4 322 483 322 483 302 453 302 453 322 483 322 483
1% 327 490 327 490 307 461 307 461 327 490 327 490
Coped at Both IV2 332 497 332 497 312 468 312 468 532 497 332 497
Flanges 15/8 336 505 336 505 317; 475 317 475 336 505 336 505
2 •:347: 520 351: 527 327 490 ,332! 497 3M 516 351 527
3 366; 550 375 562 346 519 : 354 531 363; 545 372 557
Uncoped :468 702 468 702 468 702 468: 702 468 702 468 702
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSLT= Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
: ASD
936
LRFD
1400
• Tabulated values include V4-in. reduction in end distance, Lei,, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

18-10 DESIGN OF SIMPLE SHEAR CONNECTIONS
E
w
50 ksi
Table 10-1 (continued) i
%
(D
CQ
65ksi
All-Bolted Double-Angle
«
%
-in.
<D
o>
tr.
— 36 ksi Connections
Bolts
<D
o>
tr.
F, 58 ksi
<
F, ! — 58 ksi
Bolt and Angle Available strength, kips
7 Rows
Bolt
Group
Thread
P.NNI1
Hole
TVD(>
Angle Thickness, in.
W44,40,36,33,30,
Bolt
Group
Thread
P.NNI1
Hole
TVD(> 74 5/16 '/8 Vz
27,24
Bolt
Group
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
N STD 116 . 174 145:: 217 167 251 167
251
X STD 116- 174 145; 217 174 260 210
316
sc: ; :
Class A
STD 88:6 133 88.6 133: 88.6 133 88.6 133
Group
sc: ; :
Class A
OVS 75.5 113 75.5 113 75.5 113 75.5 113
A
sc: ; :
Class A
SSLT 88.6 133 88.6 133 88.6 133 88.6 133
1 I
-i
sc
STD 116 ' 174 145... 217 148 ' 221 148 221
11 A ' sc
nvs ii5;i 172 126 188 126 188 126,;- 188
3
Class B
SSLT 114 172 143 214 148 221 148 221
J
N STD 116 • 174 145: 217 174 260 210
316
= X STD 116 • 174 145 K 217 174 260 231 347
m
SC
Class/i
STD MR; 166 111 . 166 111; 166 111
166
Group
SC
Class/i
OVS 94:4 141 94.4 141 94.4 141 94.4 141
B
SC
Class/i
SSLT 111.:- 166 111 166 1.11 ^ 166 111
166
SC
Class B
STD- 116^: 174 145 217 174 , 260 185 277
SC
Class B
OVS
SSLT
11S>
114-.;
172
172
144
143"
215
214
157;
172 '
235
257
157
185
235
277
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
Hole Type
TE/,*,in.
Uin.
iVi 1'/4 Vli 1^/4 iVz 1'/4
Uin.
ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
1V4 1-291 II '436 299 449 273: 410 281 422 •288^ 432 296 444
13/8 293 . 440. :;301; 452 275: 413 :.284 425 435 298 448
Coped at Top Vh 296 444 304 456 278: 417: 286 429 :^293 439 .:301>l .451
Flange Only iVe 298 447 306 459 280: 420 :288 433 ^^295; 443 •303 455
2 306 458 314; 470 288 431 296 444 302 454 311 466
3 325 488 333 500 307! 461 315 473 322 483 330 495
1V4 280 420 280 420 263 395 263 395 280 420 280 420
13/8 285 428 285 428 268 402 268 402 '285 428 285 428
Coped at Both 1'/2 290 435 290 435 273 410 273 410 290 435: '290 435
Flanges 1=/8 295 442 295 442 278 417 278 417 295 442 I m 442
2 ;306' 458 310 464 288 431 293 439 302 454 310 464
3 32^ 488 333: .500 307 461 315; 473 322 483 330 495
Uncoped 614 410^ 614 410 614 410 614 410 614 •410 614
Support Available
Strength per
Inch Thickness,
klps/in.
Notes:
STD =
OVS =
SSLT =
• Standard holes
Oversized holes
Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/^
oVs/
SSLT
ASP LRFD
1230
' Tabulated values include V4-in. reduction in end distance, Let, to account for possible
undetrun in beam length.
Note: Slip-critical bolt values assume no more than one filter has been provided or bolts haye
been added to distribute loads in the fillers.
AMERKAN iNSTiTUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-19
Fy = 50 ksi
Fu = 65 ksi
Fy = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
Bolts
Bolt and Angle Available Strength, kips
6 Rows
W40,36,33,30,27,
24,21
Bolt
Group
Group
A
Group
Thread
Cond.
SC
Class A
SC
Class's
SC.
Class A
SC
Class B
Hole
Type
Angle Thickness, in.
1/4 Vl6 3/8 Vz
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS.
SSLT
99,5
99.5
75.9
64,7
75.9
99.5
98.6
98:2^
99.5
99.5
94.9
80.9
94:9
993
98.6
98.2
149
149
114
96.8
114
149
148
147
149
149
142
121
142
149
148
147
124
124
75.9
64',7.
.75^9
124
108
123'
124:
124
94.9
80.9
94.9
124
123
123
187
187
114
96.8
114
187
161
184
187
187
142
121
142
187
185
184
143
149
75.9
64.7
75.9
127
108
127
149
149 :
94.9
•80.9
94.9
149;
135 •
147
215
224
114
96.8
114
190
161
190
224
224
142
121
142
224
202
221
143
180
75.9
64.7
75.9
Ii27 ;
108':
127
180
94.9
80.9
94.9
158
135
158
215
271
114
96.;
114
190
161
190
271
299
142
121
142
237
202
237
Beam Web Available Strength per Inch Thickness, kips/In.
Hole Type
STD OVS SSLT
lei,*, in.
A... in
IV2 1'/4 IV2 1'/4 IV2 IV4
ASD LRFD ASD LRFD ABO LRFD ASD LRFD ASD LRFD ASO LRFD
IV4 249 374 258; 386 234 351 242 363 .246, 370 255 382
1^/8 252 378 :'260 390 236 355 245: 367 i549: 373 257 385
Coped at top iVz -:254 381 J 262 394 239 358. 247 371 ZSf 377 389
Flange Only l5/e .257. 385 265 397 241; 362 249 -374 254 381 262- 393
2 •264' 396 272 408; S249 373 257 385 261 392 269 404
3 •284: 425 292 438 268 .402 276 414 2S1: 421 289 433
IV4 239 358 239 358 224 336 224 336 239 358 239 358
iVe 244 366 244 366, 229 344 229 344 244 366 244 365
Coped at Both iVz 249 373 249 373 234 351 234 351 .249 373 249 373
Flanges
1=/8 254 380 254 380 239 358: 239! 358 '254 380 254 380
2 264 396 '268: 402 .249' 373 254! 380 261: 392 268 402
3 284. 425 292 438 268 402 276: 414 281 421 289 433
Uncoped 351f B27 351 527 351: •527 351 527 351 527 351 527
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard tioles
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N=Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD
702
LRFD
1050
* Tabulated values include V4-in. reduction in end distance, Let, to account for possible
undemin in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-20 DESIGN OF SIMPLE SHEAR CONNECTIONS
Fy = 5Q ksi
Fu - 65 ksi
Fy = 26 ksi
Fu = 58 ksi
Table 10-1 (continued) «
All-Bolted Double-Angle /4-'"
Connections
Bolt and Angle Available Strength, kips
5 Rows
W30,27,24,21,18
Bolt
Group
YMS I Group
A
Group
B
Thread
Cond.
SC
Class A
SC
Clasa.B
SC
Class A
SC
Class 8
Hole
Type
Angle Thickness, in.
V4 S/16 S/8 V2
STD
SID
g^iiiffBi-'^iriTnEgTii^
STD
ovs
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
83:3
83:3
63,3
53,9;
63.3
83:S
82.0
8a3
83.3
79.1^
67,4
79,1
83.3
82.4
8Z05
125 ,
125
94.9
80.7
94.9
125
124
123
125 :
125
119
101
119
125
124
123
104.
104.
63,3
53:9
63.3
104.
102'
104;'
104 V
79,1
67l
79.1
104.
1Q3'
102
156
156
94.9
80.7
94.9
156
134
154
156
156
119
101
119
156
155
154
119 ;
125 i
63,3
63.3
105 ;
89.9
105:
125 ;
125^
79.1
:79.1
125
112
123
179
187
94.9
80.7
94.9
158
134
158
187
187
119
101
119
187
168
184
119
150
63.3
53,9
63,3
1p5
105
150
167
79,1
67,4
79,1
132
112
132
179
225
94,9
80,7
158
134
158
225
250
119
101
119
198
168
198
Beam Web Available Strength per Inch Thickness, kips/In.
Hole Type
STD OVS SSLT
UVm.
Uia.
iVi IV4 lVz IV4 IV2 1'/4
Uia.
ASD LRFD ASD LRFD ASD LRFD lASD LRFD ASO LRFD ASD LRFD
1V4 208 312 216 324 195 293 .i,203 305 205 307 213 320
1% 210 •316 219 328 197 296 206 308 207 311 216 323
Coped at Top Vh 213 319 221 332 200 300 208 312 210 315 218 327
Flange Only m ^215! 323 223 335 202 303 210 316 .212 318 220 331
2 223 334 231 346 210 314 ^218' 327 220: 329 228 342
3 242 363 250 375 229 344 237 356 239 359 247 371
1V4 197 296 197 296 185 278 185 278 197 296 197 296
1% 202 303 202^ 303 190 285 190 285 202 303 202 303
Coped at Both Vl2 207 311 207 311 195 293 195 293 207 311 207 311
Flanges IVB 212 318 212 318 200; 300 200, 300 212 318 212 318
2 :-223;, 334 227 340 :.21Q; 314 215 322 220 329 227 340
3 f-242; 363 250 375 229 344 237 356 239; 359 247 371
Uncoped 293 439 293 439 293 439 293 439 293 439 293 439
Support Available
Strength per
Inch Thickness,
kips/in.
Notes;
STD = Standard tides
OVS = Oversized holes
SSLT = Stiort-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD
53b
LRFD
878
* Tabulated values include V4-in. reduction in end distance, Lei,, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers. .
AMERICAN INSIRRUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-21
Fj, = 50ksi
Fu = 65 ksi
/y = 36ksi
Fu = 58 ksi
Table 10-1 (continued)
AH-Bolted Double-Angle
Connections
Bolts
Bolt and Angle Available Strength, kips
4 Rows
W24,,21,18,16
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
V4
ASO LRFO
5/16
ASD LRFD ASD LfiFD
Vz
ASD LRFO
STD
STD
67:1
67.1
101
101
83.9;
83.9;
126
126
95.5
101 •
143
151
95;5
120
143
180
Group
A
SC
Class A
STD
OVS
SSLT
50$
43:1
50.6
75.9
64.5
75.9
50.6
43.1
50.6
75.9
64.5
75.9
50.6
;43.1
50.6
75.9
64.5
75.9
50.6
43.1
50.6
75.9
64.5
75.9
JXj-
sc
Class B
STD
OVS
SSLT
m
65:3
65.8
101
97.9
98.7
83.9
71.9
82.2
126
108
123
84.4
71,9
84.4
127
108
127
84,4
71,9
84.4
127
108
127
4
STD
STD
67.1
67.1
101
101
83,9
83.9-
126
126
101
101
151
151
120
134
180
201
Group
SC
Class A
STD
OVS
SSLT
63:3
53:9
63.a-
94.9
80.7
94.9
63.3
53.9,
63.3
94.9
80.7
94.9
63.3
5359
.63.3
94.9
80.7
94.9
63.3
53.9
63,3
94.9
80.7
94.9
SC
Class!
STD
OVS
SSLT
67.^
65.3
65.8,
101
97.9
98.7
83.9,
81.fi,
82.2
126
122
123
101
89.9
98.7
151
134
148
105
89.9
105
158
134
158
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
Uin.
Vh
ASO LRFD ASD LRFO ASD LRFD
1'/4
ASK LRFO
IV2
ASO LRFO
1'/4
ASD LRFD
Cop^atTop
Range Only
IV4
1%
IV2
>l67i
^69:
171
250
254
257
175;
177;
180'
262
266
269
156
158;
161;
234
238
241
164:
167i
169^
246
250
254
164;
168
245
249
253
172
174
177
257
261
265
15/8
2
3
174;
181:
201'
261
272
301
;182
189
209;
273
284
313
•163;
171
190
245
256
•285
171 i-
179;
198
257
268
•297
I'lTI;
1,78
198
256
267
296
179
186
206
268
279
309
Coped at Both
Flanges
IV4
V/z
156:
161
166:
234
241
249
156;
161
166
234
241
249
146
151:
156
219
227
234
146
151
156
219
227
234
156^
161
166
234
241
249
156
161
166
234
241
249
15/8
2
3
171
181
20r
256
272
301
17ir
185;
209:
256
278
313
161,
:;i7i;
M90
241
256
285
161 r
176:
198
241
263
297
'171
178;
198i
256
267
296
185
206
256
278
309
Uncoped 234 351 234' 351 234: 351 234 351 234 351 m 351
Support Available
Strength per
Inch Thickness,
kips/in.
Notes: , ,„
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X=Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASO. LRFD
702
* Tabulated values include 'A-in. reduction in end distance, ieo, to account for possible
underrun in beam length.
Note: Slip'critical bolt values assume no morS than one filter has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-22 DESIGN OF SIMPLE SHEAR CONNECTIONS
/y = 50 kSi
Fu = 65 ksi
/y = 36ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
3/4-in.
Bolts
Bolt and Angle Available Strength, kips
3 Rows
W18,16,14,12,ir
•LM.1oW10«1Z,15,17,
19,22,26,30
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
VA
ASO LRFD
5/16
ASD LRFO ASD, LRFD
Vz
ASD LRFD
STD
STD
50.9',
50.9
Te.'i
l&A
63.7 95.5
95.5
71.6
76.4
107
115
71.6
90.2
107
135
Group
A
SC
Class A
STD
OVS
SSLT,
38.0
32;4
38.0
57.0
48.4
57.0
38.0
32.4
S'S.t)
57.0
57.0
38.0
38.0
57.0
48.4
57.0
38:o
32.4
38.0
57.0
48.4
57.0
tU-
sc
Class B
STD
OVS
SSLT
50.9
47.9
49.6
76,4
71.8
74.4
63.3
53.9
62.0
80.7
92.9
63.3
53.9
63.3'
94.9
80.7
94.9
63.3
53.9
63.3
94.9
80.7
94.9
X
STD
STD
50:9
50.9
76.4
76.4
63.7,
63.^:
95.5
95.5
76.4
76.4
115
115
90:2
102
135
153
Group
:B
SC
Class A
STD -
OVS
SSLT
47.5
40.4
47.5
71.2
60.5
71.2
47.5
40.4
47,5'
71.2
80.5
71.2
47.5'
l40:4
47.5
71.2
60.5
71.2
47.5
40:4
47.5
71,2
60.5
71.2
SC :
Class B
STD
OVS
SSLT
50:9
47.a
76.4
71.8
74,4
63.7
59.8'
62.0
95,5
89.7
92,9
76,4
67.4
74.4
115
101
112
79.1
67.4
79.1
119
101
119
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
ieft'.in.
U, in.
IV2
ASD: LRFD
IV4
Asor LRFD
IV2
ASD LRFD
IV4
m LRFD
IV2
ASD LRFD
1'/4
ASD LRFD
Coped at Top
Flange Only
1V4
Pk
Ph
i125'
128^
130i
188
191
.195
133^
136-
138,
200
^204
207
117
119:
122
178
179
-183
i125:
128|
130'
188
191
195
m-
•125i
•127
183
187
190
130
133
135
195
199
?03
iVs
2
3
:132:
140,
159;
199
210
239
141;
;148i
167:
.211
222
251
124,
132;
151
186
197
227
332:
:140
159'
199
210
239
129
137;
1S6:
194
205
234
138
145
164
!06
217
246
Coped at Both
Flanges
IV4
1V8
IV2
115f
119
124
172
179
186
115:
119
124
.172
179
186
•107:
112
117;
161
168
176
107'
112j
.117!
,181
168
176
'115
119
124
172
179
186
115
119
124
172
179
188
iVa
2
3
129
140;
159'
194
210
239
129'
.144:
167i
194
216
251
122;
132:
,15li
183
197
227
122:
137.
159,
183
205
239
129
137'
156
194
205
234
•J29;'
144
164
194
216
246
Uncoped 176; 263 176: 203 176' • 263 176i 263 176 263 !176 263
Support Available
Sfrength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD
T.isM;
LRFD
526
* Tabulated values include Vi-in. reduction in end distance, U, to account forpossible
underrun in beam length.
Note:.SIip-criticai bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers..
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-23
^ = 50 ksi
Fu = 65 ksi
^ = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
Bolts
Bolt and Angle Available Strength, kips
2 Bows
W12,10,8
Bolt
Group
Group
• A
Group
B
Thread
Cond.
SC
Class A
SC
Class B
SC
Class A
SC
Class B
Hole
Type
Angle Thickness, in.
V4 5/16 '/a V2
STD
STD
STD
OVS
SSLT
STD :
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS:
SSLT
32,6
32.6
25.3:
21i6
25.3
32.6
30.5
32.6
32.6
32.6
31.6
27.0
31v6
32.6
30.5
32-6;
48.9
48.9
38.0
32.3
38.0
48.9
45.7
48.9
48.9
47.5
40.3
47.5
48.9
45.7
40.8:
40.8:
25.3
21.6
25.3
40.8
36.0
4bi
40.8;
40.8
31.6
27.0
31.6
40.8
3.8.1'
40.8
61.2
61.2
38.0
32.3
38.0
61,2
53.8
61.2
61,2
61,2
47.5
40,3
47,5
61,2
57.1
61.2
47.7
48.9
25.3,
>21i6
25.a
42.2
36.0'
42.2
48,9
48.9
31.6
.27.0
31.6
48.9
44.9
48.9
71,6
73,4
38,0
32,3
38,0
63,3
53.8
63,3
73.4
73.4
47,5
40.3
47.5
73.4
67,2
73.4
47.7
60.1 i
25.3:
21.6
25.3
42.2
36.0:
42.2
60.f
65:3
31.6
27.0
31.6
52,7
44,9,
52J
71,6
90,2
38.0
32,3
38.0
63,3
53,8
63,3
90,2
97,9
47,5
40,3
47,5
79.1
67.2
79,1
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
L^Vm.
/ in
1'/4 IV2 IV4 IV2 IV4
Lef, in.
ASD ASD
Lef, in.
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
1V4 83.7 126 91.4 137 78.0 117 86.1 129 80.6 121 88 8 133
I'/a 86.1 129 94.3 141 '80.4 121 88.6 133 A83.1 125 91.2 137
Coped at Top IV2 : 88.6 133 :fl6.7 145 82.9 124 91.0 137 ::NS6.5 128 936 140
Flange Only 1=/8 ::91.0 .137 :,99.1 149 '85,3 128 93.4 140 88.0 132 961 144
2 98.3 147 106 160 92.6 139 101 • 151 95,3 143 103 155
3 116 175 117 176 112 ' , 168 117 : 176 11:3 ; 170 117 176
IV4 73.1 110 73.1 110 68.3 102 68.3 102 , 73,1 110 73.1 110
78.0 117 78.6 117 i73.1 110 73.1 110 ::78,0 117 78.0 117
Coped at Both IV2 82.9 124 82.9 124 78.0 117 78.0 117 82.9 124 82 9 124
Flanges
iVa 67.8 132 87.8 132 82.9 124 82.9 124 i87.8 13^ -87 8 132
2 98.3 .147 102 ; •J 54 92.6 139 97.5 146 95.3 V 102 154
3 116 175 117 : 176 112 168 117 176 113'^ 170 117 176
Uncoped 117 176 11,7: 176 117 176 117 176 117 176 Jlil7 176
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD =
OVS =
SSLT
Standard tioles
Oversized holes
Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD
234
LRFD
351
' Tabulated values include Vi-in, reduction in end distance, ie/i, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads In the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-24 DESIGN OF SIMPLE SHEAR CONNECTIONS
Fy = 50 ksi
Fu = 65 ksi
Fy = Z6 ksi
Fu = 58 ksi
Table 10-1 (continued) -
All-Bolted Double-Angle /Q m.
Connections ^oits
Bolt and Angle Available Strength, kips
12 Rows
W44
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
'A
ASO LRFD
Vl6
ASO LRFD
Va
ASD LRFD
Vz
584
587
STD
STO
196
196
294
294
245
245
367
367
294
294
441
441
389
392
Group
A
SC
Class A
STD.
OVS
SSLT
196
180
194:
294
270
292
212
180
212
317
270
317
212
I8O;
212
317
270
317
212
180
212
317
270
317
SC
Class B
STD
OVS
SSLT
196'
191
194
294
287
292
245
?39
24S
367
359
365
294
287
292
441
431
438
353
300
353
529
450
529
STD
STD
196
196:
294
294
245
245
367
367
294
294
441
441
392
392
587
587
Group
SC
Class A
STD
OVS
SSLT
196
191
194:
294
287
292
245
22Y
243
367
339
365
266
227
266
399
339
399
266
227
266
399
339
399
SC
Class B
STD
OVS
SSLT
196
191^
194
294
287
292
245
239
243
367
359
365
294
287
292i
441
431
438
392
378
389
587
565
583
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STO OVS SSLT
Uin.
1Vj IV4 IVJ 1'/4 IV2 IV4
Uin.
ASO LRFD ASO LRFD ASO LRFD Aso: LRFD ASD LRFD ASD LRFD
IV4 468i 702 476 714 438 657 446 669 465 697 473 710
1% 470; 706 479 718 440 661 449 673 467 701 476 713
Coped at Top IV2 473 709 481 722 443 664 451 : :676 470^ 705 478 717
Flange Only P/e 475- 713 .:483! 725 445: 668 •453. 680 .472, 708 -480 721
2 483^ 724 491: 736 453: 679 461 691 480- 719 488 732
3 502 753 510: 765 472 708 480 720 499 749 507 761
IV4 458: 687 458^ 687 429 644 429 644 458 687 458 687
1% 463 695 463 695 434 651 434 651 463 695 463 695
Coped at Both IV2 468 702 468 702 439 658 439 658 468 702 468 702
Flanges P/e 473: 709 473: 709 444 665
444: 665 472 708 473 709
2 483: 724 488; 731 .453: 679 458: 687 480 719 488 731
3 :502: 753 510 765 -472. 708 480: 720 499 749 507 761
Uncoped 819. 1230 819 1230 819: 1230 819 1230 819 1230 819 1230
Support Available
Strength per
Inch Thickness,
Notes:
STD =
OVS =
SSLT =
Standard holes
Oversized holes
Short-slotted holes transverse
N = Threads included
X = Threads excluded
SC = Slip critical
to direction of load
Hole
Type
STD/.
OVS/
SSLT
ASO
itrfi&sd
1640
LRFD
2460
* Tabulated values include V4-in. reduction in end distance, Lei,, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.:
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-25
^ = 50 ksi
Fu = 65 ksi
Fy = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
7/8-i„
Bolts
Bolt and Angle Available Strength, kips
11 Rows
W44,40
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
V4
ASD LRFD
«/l6
ASD LRFD
S/8
ASD LRFD
Vz
ASD LRFD
STD
STD
18D 269
269
225
225
337
337
269
269
404
404
357
359;
535
539
Group
A
sc,
Class A
STD
OVS
SSLT
180
165'
178
269
247,
267
194
165
194
291
247
291
194
165
194
291
247
291
194
165
194
291
247
291
SC
Class f
STD
OVS
SSLT
180
175.
178
269
263
267
225
219
23S'
337
328
334
269;
263
267i
404
394
401
323'
275:
323
485
412
485
STD
STD
180^
180
269
269
225
225H
337
337
269
269:
404
404
359
359
539
539
Group
B
SC
Class A
STD
OVS
SSLT
180
175:
178i
269
263
267
225
208
M
337
311
334
244;
208
244:
365
311
365
244
208
244
365
311
365
SC
Class B
STD
OVS
SSLT
180:
175
178'
269
263
267
225
219
223
337
328
334
269
263;
267
404
394
401
359
346
357
539
518
535
Beam Web Available Strength per Inch Thickness, kips/ih.
Hole Type
STD OVS SSLT
Uin.
iVz IV4 iVz IV4 iVi 1'/4
Uin.
ASD LRFD ASD LRFD ASP LRFD ASD LRFD ASD LRFD ASD LRFD
1V4 •429; 644 437; 656 401; 602 (410; 614 426 639 434 651
1'/a 431; 647 440 659 14041 606 618 '428 643 437 655
Coped at Top IV2 H34: 651 ;442i 663 406: 609 414 622 431 646 n439f 658
Flange Only 15/B '436: 654 • 444; 667 •'409: 613 :4i7i. 625 .^433; 650 .441;'- 662
2 444 665 '•452 678 -416 624 1424; 636 441; 661 449 673
3 463 695 :471 707 436: 653 ;!:444 665 460: 690 468 702
IV4 419 629 419' 629 392; 589 392; 589 ;419 629 419 629
1% "424 636 424; 636 397 596 397 596 424 636 424 636
Coped at Both IV2 429 644 -429 644 402 ,603 = 402 603 429. 644 ;429 644
Flanges
15/8 ;434; 651 ;434 651 .407 611 407i 611 .433 650 '434" 651
2 444; 665 449 673 416 624 422. 633 441 661 449 673
3 463 695 471 707 -•436^ 653 ;;444' , 665 460; 690 468 702
Uncoped :75T 1130 751 1130 751 1130 751 1130 751 1130 751 1130
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD.
1S00
LRFD
2250
' Tatjulated values include '/4-in. reduction in end distance, Lah, to account for possible ,
underrun in beam length.
Me: Slip-critical bolt values assume no more than one filler tias been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-26 DESIGN OF SIMPLE SHEAR CONNECTIONS
Fy = 50ksi
fo = 65 ksi
/y = 36ksi
Fu - 58 ksi
Table lO-l (continued)
All-Bolted Double-Angle
Connections
7/8-rn.
Bolts
Bolt and Angle Available Strength, kips
10 Rows
W44;40,36
Bolt
Group
Tliread
Cbnd.
Hole
Type
Angle Thickness, in.
V4
ASD LRFD
5/16
ASD LRFO
Ve
ASD LRFD
Va
ASD LRFD
STD
STO
163
163
245
245
204
204'
306
306
245^
245i
368
368
325
327
487
490
Group
A
SC
Class A
STO .
OVS
SSLT
163:
150
162d
245
225
243
176
150
264
225
264
176
150
176
264
225
264
;176
150;
M
264
225
264
SC
Class B
STD
OVS
SSLT
163:
159,
162c
245
238
243
204;
198
M
306
298
304
245:
238:
243:
368
357
365
294
•250:
441
375
441
STD
STD
163
163
245
245
204
204
306
306
245:
245
368
368
327
327 490
Group
B
SC
Class A
STD
OVS
SSLT
163
159
162,
245
238
243
204
189
203
306
282
304
221
:r89
22f
332
282
332
221
189
221
332
282
332
SC
Class B
STD
OVS
SSLT
163:
159
162
245
238
243
204
1-98
203
306
298
304
245
238^
243;
368
357
365
327
315
324
490
471
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD DVS SSLT
ieoMn.
1V2 1'/4 IV2 IV4 IV2 IV4
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
P/i 390: .585 398' 597 365 .547 373: 559 387: 580 395 593
Ms ;392: , 589 401: 601 367; 551 563 =•389 584 398 596
Coped at Top V/2 395i 592 .403^ •<605 :370; 555 ;378 567 ;>392: 588 MOO' 600
Flange Only 1V8 397! 596 '405^ 608 •372' .558 380 570 :!:394! 591 604
2 405 607 413 619 :379' 569 .388: 581 402' 602 410 615
3 . 424 636 432: 648 399 598 .407 611 421 632 429 644
1V4 380: 570 380 . 570 356 534 :356! 534 •380 570 380 570
1V8 385: 578 385: 578 361 541 .361 541 ,•385 578 385 578
Coped at Both Vk 390 585 390 585 366 548 366 548 , 390^ 585 390 585
Flanges
IVa 395: 592 395: 592 371 556 371. ,556 ."394: 591 592
2 405 . 607 41 o; 614 379 ,569 385^ 578 402^ 602 410 614
3 '424: 636 432 648 •i399 598 :-407i 611 421' 632 429 644
Uncoped :683 1020 683 1020 ;'683i 1020 683 1020 683 1020. >s683 1020
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD
im
LRFD
2050
* Tabulated values include ,V4-in. reduction in end distance, ie/,, to account for possible
underrun in beam length. : ;
Note: Slip-critical bolt values assume no:more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES XO-27
^^SOksi
fu = 65 ksi
/y = 36ksi
Fu = 58 ksi
9 Rows
W44,40,3e,33
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
7/8-,".
Bolts
Bolt and Angle Available Strength, kips
Bolt
Group
Group
A
Group
Thread
Cond.
SC
Class A
SC
Class B
SC
Class A
SC
Class [
Hole
Type
STD.
STD
STD
OVS
SSLT
STD
dvs
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
Angle Thickness, in,
V4
ASO LRFD
147
147
147-
135.
146
147'
142.
146/
147
147
147
142
146.
147
142
146
221
221
221
202
219
221
214
219
221
221
221
214
219
221
214
219
Vie
ASD LRFD
1841
184;
159
135
159
184
178'
18^^
184'i
184;
184
170
184,
178
182
276
276
238
202
238
276
267
273
276
276
276
254
273
276
267
273
3/8
ASD; LRFD
221;
221
159
135;
159:
221,
214i
219!
221
221
199;
470-
f|99!
221
214;
219
331
331
238
202
238
331
321
328
331
331
299
254
299
331
321
328
Vz
AStJ ' LRi^D
292
294
159
,135;
264
mi
264
294
294'
199
170
199
294
283
292
438
442
238
202
238
397
337
397
442
442
299
254
299
442
424
438
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
Support Available
Strength per
Indh Thickness,
kips/in.
Hole
Type
STD/
OVS/
SSLT
.ASD
1230
LRFD
1840
STD OVS SSLT
Vh 1'/4 IV2 IV4 IVJ IV4
ASO LRFD ASD; LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRf-D
1V4 351;., 527 359, 539 ^328; 492 336 .505 • 348; 522 356 534
1% ;:;353; ,530 362; ;S42 496 339 508 ..3S0, 526 359 538
Coped at Top iVz ;35® .. .534 ; 364 ;546 333 500 341 512 353 529, ?i3eiw 541
Flange Only ;1V8 358 537 366 550 S336;: 503 344 .516 MB 533 ,•363:: 545
2 366: 548 374; 561 ;.343i 514 351=: 527 363^ 544 37'1 556
3 385: 578 393' ;590 362 .544 371' 556 382: 573 390 585
1V4 ::34r .512 v341; 512 319 479 319: 479 512 341 512
iVs 346; 519 346 519 324 486 324 486 346 519 346 519
Coped at Both iVz 351: 527 351 527 329 494 329 494 ,351 • 527 351 527
Flanges m .356 534 356 534 ,•334 501 .334';. .501 5:355; 533 356 534
2 366; .548 371 556 343 514 349;' 523 363' 544 371 556
3 m 578 ;;393- 590 362 544 ;371i 556 382' 573 390 585
Uncoped 614 921 614' 921 614 921 614! 921 614 921 ;:ei4 921
Notes:
STD = Standard holes
OVS = Oversized tioles
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
* Tabulated values include 'A-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has tieen provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTRRTRRE OF STEEL CONSTRUCTION

10-28 DESIGN OF SIMPLE SHEAR CONNECTIONS
Fy = 50 ksi
Fu = 65ksi
/y = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
7/8-in.
Bolts
Bolt and Angle Available Strength, kips
8 Rows
V(44,40,36,33,30
Bolt
Group
Group
A
Group
Thread
Cond.
SC
Class A
SC
Class B
SC
Class A
SC
Class B
Hole
Type
Angle Thickness, in.
'A =/l6 Vz
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
13Ti
1311
131
120
130
131
126'
130>
131 i
1311
131
126;
130
131
126
130
197
197
197
180
194
197
189
194
197
197
197
189
194
197
189
194
164^
164
141
1,20
141
164
158
162
164
164-
164
151
162
164.
158
M
246
248
212
180
212
248
237
243
248
248
246
228
243
246
237
243
197
197:
141
i.120^
;14i;
197^
189
194:
197i
197^
177:
151:
177:
197
194;
295
295
212
180
212
295
284
292
295
295
286
226
288
295
284
292
260
262
141
i20
141
235
,200
235
262
262
177
151
177
^262
252
259
389
393
212
180
212
353
300
353
393
393
266
226
266
393
377
389
Beam Web Available Strength per Inch Thickness, kips/In.
Hole Type
STD OVS SSLT
Leh*, in.
Lev, in-
IV2 IV4 m IV4 IV2 13/4
Lev, in-
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
IV4 312 468 320: 480 - 292 : 438 300s 450 309 463 317 476
iVe 314 ;472 323 484 -294; 441 302': 453 311 467 320 479
Coped attop
Range Only
IV2 317 475 325. 488 S297' 445 305' 457 314 471 322. 483
Coped attop
Range Only m '319 • 479 327: 491 .299; 449 307- 461 316 474 324 487
2 327' 490 335i 502 306 459 314 472 324: 485 332 498
3 346 519 354, 531 :326 489 334: 501 343 515 351 527
1V4 302 453 302 453 283 424 283 424 •302: 453 302 453
iVe 307 461 307 461 288 431 288 431 307 461 307 461
Coped at Both iVz 312 468 312 468 293 439 293 439 312 468 ;3t2 488
Flanges
16/6 317 475 317 475 297 446 297 446 6; 474 317 475
2 3ST 490 332i 497 306: 459 312 468 324: 485 332 497
3 346: 519 354: 531 :32& 489 334; 501 343: 515 351 527
Uncoped 546: 819 546 819 546: 819 '546 819 546 819 546 819
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD
109Q
LBFD
1640
• Tabulated values include Vi-in. reduction in end distance, Lei,, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-29
Fy = 50 ksi
Fu = 65 ksi
Fy = 36 ksi
fu = 58 ksi
Table 10-1 (continued)
Ali-Bolted Double-Angle
Connections
78*
Bolts
Bolt and Angle Available Strength, kips
7 Rows
Bolt
Group
Thread
Cond,
Hole
Type
Angle Thickness, in.
W44,40,36,33,30,
Bolt
Group
Thread
Cond,
Hole
Type
Vie 3/8 V2
27,24
Bolt
Group
Thread
Cond,
Hole
Type
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
N STD 115 172 144 215 172 258 227 341
X STD 115 172 144 215 172 258 230 344
V •BriBS
SC
Class A
STD 115 172 123 185 123 185 123 185
'1 I' Group
SC
Class A
OVS 105 157 105 157 105 157 105 157
s A
SC
Class A
SSLT 113 170 123 185 123 185 ,123- 185
1
.SC
STD 115 172 144 215 172 258 206 308
.SC
OVS 110 165 137 208 165 247 175. 262
.1
Class B
SSLT 113 170 142 213 170 255 206 308
t
•m
N STD 115 172 144 215 172 258 230 344
344 X' . STD 115 172 144 215 172 258 230
344
344
5
SC
Class A
STD 115 172 144 215 155 233 155 233
i Group
SC
Class A
OVS 110 165 132 198 132 198 132 198
i
B
SC
Class A
SSLT 113 170 142 213 155 233 155 233
J
SC
Class B
STD 115 172 144, 215 172 258 230 344
SC
Class B
OVS 110 165 137 206 165 247 220 329
SC
Class B
SSLT 113 ; 170 142 213 170 255 227 340
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
iw, in.
IV2 13/4 IVJ 13/4 IV2 IV4
iw, in.
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
1V4 273 410 281! 422 255 383 263 395 270: 405 278 417
iVs 275 413 .284 425 258 386 266 399 272: 409 281 421
Coped at Top iVz 278 417 .:286 429 260 .390 268 402 275 412 283. 424
Flange Only 1=/6 280; . .420 288; 433 262 394 271 406 277, 416 285 428
2 288 431 296: 444 270 405 278 417 285 427 293 439
3 307 461 315 473 289 434 297 446 304 456 312 468
1V4 263 395 263 395 246 369 246 369 263 395 263 395
1^6 268 402 268 402 251 377 251 377 268 402 268 402
Coped at Both IV2 273 410 273 410 256 384 256 384 273 410 273 410
Flanges
1=/8 278 417 278, 417 261 391 261 391 277 416 •278 417
2 288 431 293 439 270 405 275. 413 285 427 293 439
3 307 461 315 473 289 434 297 446 304 456 312 468
Uncoped 478 717 478 717 478 717 478 717 478 717 478 717
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD
956
LRFD
1430
* Tabulated values include V4-in. reduction in end distance, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-30
DESIGN OF SIMPLE SHEAR CONNECTIONS
E
re
0)
ca
/y = 50ksi
Fu = 65 ksi
Table 10-1 (continued) _
All-Bolted Double-Angle /S '"-
Connections
0)
O)
5
/y = 36 ksi
fu = 58 ksi
Table 10-1 (continued) _
All-Bolted Double-Angle /S '"-
Connections
0)
O)
5
/y = 36 ksi
fu = 58 ksi
Bolt and Angle Available strength, kips
6 Rows
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
W40,36,33,30,27,
24,21
Bolt
Group
Thread
Cond.
Hole
Type
V4 =/l6 V2 W40,36,33,30,27,
24,21
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
Group
A
N
X
STD
STD
98.6;
9851
148.
148
123.;
123 <
185
185
148 ,
148
222
222
195
197
292
296
Group
A
SC
Class A
STD
OVS
SSLT
98.6:
90511
973
148
135
146
106
90.1
106
159
135
159
106;
90.1
106!
159
135
159
106
90.1
106
159
135
159
E
Group
A
SC
Class B
STD
OVS
SSLT
98:6
mS'
148
140
146
123:
117'
122
185
175
182
148'
140 :
146
222
210
219
1.76:;
150
176
264
225
264
s|
Group
A
SC
Class B
STD
OVS
SSLT
98:6
mS'
148
140
146
123:
117'
122
185
175
182
148'
140 :
146
222
210
219
1.76:;
150
176
264
225
264
s|
Group
B
N
X
STD
STD
986
98.6
148
148
123
123
185
185
148 ^
148 ;
222
222
197
197
296
296
s|
-
Group
B
N
X
STD
STD
986
98.6
148
148
123
123
185
185
148 ^
148 ;
222
222
197
197
296
296
s|
-
Group
B
SC
Class A
STD
OVS
SSLT
98.6'
933;
97.3^
148
140
146
123 -
113
122
185
169
182
133 i
113 i
133:
199
169
199
133
113
133
199
169
199
Group
B
SC
Class A
STD
OVS
SSLT
98.6'
933;
97.3^
148
140
146
123 -
113
122
185
169
182
133 i
113 i
133:
199
169
199
133
113
133
199
169
199
Group
B
SC
Class B
STD
OVS
SSLT
98:6
93:5.
97.3
148
140
146
123 ..
117
122 •
185
175
182
T48 ,
140 '
146 :
222
210
219
197
187
195
296
281
292
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
Hole Type
UMn.
1V2 1'/4 IV2 13/4 1V2 1'/4
ASD LRFD ASO LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD
Coped at Top
Flange Only
1V4
- m
1V2
•234
236.
.23a
351
355
358
;242
245
247.
363
367
371
.219;
221
223
328
332
335
227
'229
232
340
344
347
.•231
:236
346
350
354
239
242
:244;
359
362
366
Coped at Top
Flange Only 1%
2
3
249
•268
362
373
402
249
257
276
374
385
414
226;.
233'
253,
339
350
379
•"234
241:
261-
351
362
391
238
246
265
357
368
398
246
254
273
370
381
410
Coped at Both
Flanges
1V4
1%
1V2
224
229
234
336
344
351
224
229
234
336
344
351
210
215
219'
314
322
329
210
215
219
314
322
329
224
529
'234
336
344
351
224
229
234
336
344
351
Coped at Both
Flanges l5/a
2
3
239
249
'268:
358
373
402
239,
.254!
'276:
358
380
414
224.
;i233
253
336
350
379
224
239
261
336
358
391
238:
246'
2e5'
357
368
398
-•239
254
273
358
380
410
Uncoped 410 614 410 614 •410 614 410 614 410 614 :r410 614
Support Available
Strengtti per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes N = Threads included
OVS = Oversized holes X - Threads excluded
SSLT = Short-slotted holes transverse SC = Slip critical
to direction of load
Hole
Type
LRFD
• Tabulated values include V^-in. reduction in end distance^ Let,, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to disfribute loads in the fillers.
STD/
OVS/
SSLT
819 • 1230
• Tabulated values include V^-in. reduction in end distance^ Let,, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to disfribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-31
/y = 50ksi
Fu = 65 ksi
/y = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
78*
Bolts
Bolt and Angle Available Strength, kips
5 Rows
W30,27,24,21,18
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
V4
ASD LRFO
Vl6
ASD LRFD ASD LRFD
V2
ASD' LRFD
STD
STD
82.4
82.4
124
124
103
103
155
155
124
124
185
185
162
165
243
247
Group
A
SC
Class A
STD
CVS
SSLT
82.4;
75V1
81.1:
124
112
122
88.1
75.1
88:i
132
112
132
88.1
,75.1
,88.1
132
112
132
88.1
75.1
88.1
132
112
132
SC
Class B
STD
CVS
SSLT
82.4
77.2
81.1,
124
116
122
103
96.5
101 •
155
145
152
124
116
122
185
174
182
147 i
,125
147
220
187
220
STD
STD
82.4
82.4
124
124
103
103
155
155
124
124
185
185
165
165
247
247
Group
B
SC
ClassA
STD
CVS
SSLT
82.4
77.2
81.1,,
124
116
122
103
94:4
101
155
141
152
111 :
94.4
111
166
141
166
111
'94.4
111
166
141
166
SC
Class B
STD
CVS
SSLT
82.4
77.2
81.1
124
116
122
103 .
96.5
101
155
145
152
124
116
122
185
174
182
165
154
162
247
232
243
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
LehVm-
Le^in.
Vh
ASD LRFD
13/4
ASD LRFD
IV2
ASD LRFD
1'/4
ASD LRFD
IV2
ASD LRFD
1'/4
ASD LRFD
Coped at Top
Flange Only
IV4
iVs
IV2
195
.197;
200:
293
296
300
203
206:
208
305^
308
312
182
184
187
273
277
280
190
193
195
285
289
293
192
194
197
288
292
295
200
203
205!,
300
304
307
1=/8
2
3
202
210
229
303
314
344
210
218
237
316
327
356
169
197
216
284
295
324
197
205
224'
296
307
336
199
207:
226
299
310
339
m
215
234
311
322
351
Coped at Both
IV4
Wi
IV2
185
190
195:
278
285
293
165
190
195
278
285
293
173
178
183
260
267
274
173
178
183
260
267
274
•185
190
195
278
285
293
185
190
195.
278
285
293
1=/8
2
3
200
210
229
300
314
344
,20a
215
237
300
322
356
188:
197
216
282
295
324
188
202
224
282
303
336
199
207
226
299
310
339
200
215
234
300
322
351
Uncoped 341: 512 341 512 341 512 341 512 341 512 ;'341 512
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized tioles
SSLT = Stiort-slotted holes transverse
to direction of toad
N = Threads Included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD
683
LRFD
1020
* Tabulated values include V4-in. reduction in end distance, Letj, to account for possible
underrun in beam length.
Note:'Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-32 DESIGN OF SIMPLE SHEAR CONNECTIONS
E
(0
<i)
GO
jO)
O)
c
<
^ = 50 ksi
Fu = 65 ksi
/y = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
7/8-,„.
Bolts
Bolt and Angle Available Strength, kips
4 Rows
W24,21,18,ie
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thicl(ness, in.
V4
ASD LRFD
Vl6
ASD LRFD
'/5
ASD LRFD
Vz
ASD LRFD
STD
STD
65.3
65.3
97.9
97.9
81.6
81.6
122
122
97.9
97.9
147
147
130
131
195
196
Group
A
SC
Class A
STD
OVS
SSLT
65.3
60.1
64.9
97.9
89.9.
97.3
70.5
60.1
70.5
106
89.9
106
70.5
60.1
70.5
106
89.9
106
70.5
60.1
70.5
106
89.9
106
SC
Class B
STD
OVS
SSLT
65.3
60.9
64.9
97.9
91.4
97.3
81.6
76.1
81,1
122
114
122
97.9
91.4
97.3
147
137
146
118
100
118
176
150
176
STD
STD
65.3
65.3
97.9
97.9
81.6
81.6
122
122
97.9
97.9
147
147
131
131
196
196
Group
SC
Class A
STD
OVS
SSLT
65.3
60.9
64.9
97.9
91.4
97.3
81.6
75.5
81.1
122
113
122
88.6
75.5
88.6
133
113
133
75.5
88.6
133
113
133
SC
Class B
STD
OVS
SSLT
65.3
60.9
64.9
97.9
91.4
97.3
81.6
76.1
81.1
122
114
122
97.9
91.4
97.3
147
137
146
131
122
130
196
183
195
Beam Web Available Strength per Inch Thickness, kips/in.
IHole Type
STD OVS SSLT
Lev, in.
ASD LRFD
1^4
ASD LRFD
IV2
ASD LRFD ASD LRFD
IV2
ASD LRFD
1'/4
ASD LRFD
Coped at Top
Flange Only
tV4
13/8
1V2
156
158
161
234,
238
241
164
167
169
246
250
254
145
148
150
218
222
225
154
156
158
230
234:
238
153
155
158
229
233
237
161
164
166
242
245
249
15/8
2
3
163
171
190
245
256
285
171
179
198
257
268
297
153
160
180
229
240
269
161
168
188
241
252
282
160
168
187
240
251
281
168
176
195
253
264
Coped at Both
Flanges
IV4
13/8
IV2
146
151
156
219
227
234
146
151
156
219
227
234
137
141
146
205
212
219
137
141
146
205
212
219
146
151
156
219
227
234
146
151
156
219
227
234
iVs
2
3
161
171
190
241
256
285
161
176
198
241
263
297
151
160
180
227
240
269
151
166
188
227
249
282
160
168
187
240
251
281
161
176
195
241
263
293
Uncoped 273 410 273 410 273 410 273 410 273 410 273 410
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
. N = Threads included
X=Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD
546
LRFD
819
" Tabulated values include V4-in. reduction in end distance, U, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-33
^ = 50 ksi
Fu - 65 ksi
Fy = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
78
Bolts
Bolt and Angle Available Strength, kips
3 Rows
W18,16,14,12,ir
•Ltd. to W10x12,15,17,
19,22,26,30
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
V4
ASD LRFD
5/16
ASD LRFD ASD LRFD
Vz
ASD LRFD
SID
STD
47.9
47.9
71.8
71.8
59.8
59.8
89,7
89,7
71.8
71.8
108
108
95.7
95.7
144
144
Group
A
SC
Class A
STD
OVS
SSLT
47.9
44.6
47.9
71.8
66.9
71.8
52.9
45.1
52.9
79.3
67.4
79,3
52.9
45.1
52.9
79.3
67.4
79.3
52.9
45.1
52.9
79.3
67.4
79.3
SC
Classf
M
STD
OVS
SSLT
47.9
44.6
47.9
71.8
66.9
71,8
59.8
55.7
59.8
89.7
83.6
89.7
71.8
66.9
71.8
108
100
108
88.1
75.1
88.1
132
112
132
STD
STD
47.9
47.9
71.8
71,8
59.8
59.8
89,7
89,7
71.8
71.8
108
108
95.7
95.7
144
144
Group
B
SC
Class A
STD
OVS
SSLT
47.9
44.6
47.9
71.8
66.9
71.8
59.8
55.7
59.8
89.7
83.6
89.7
66.4
56:6
66.4,
99.7
84.7
99,7
66.4
56.6
66.4
99.7
84.7
99.7
SC
STD
OVS
SSLT
47.9
44.6
47,9
71.8
66.9
71.8
59.8
55.7
59.8
89.7
83.6
89.7
71.8
66.9
71.8
108
100
108
95.7
89.2
95.7
144
134
144
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
Lm, in.
IV2 1'/4 IV2 IV4 IVz IV4
Lm, in.
ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
1V4 117 176 125: 188 109 163 117 176 m 171 122 183
iVs 119 179 128 191 111 167 119 179 116' 175 125 187
Coped at Top . Viz 122 183 130 195 114 171 122 • 183 119 178 .127 190
Flange Only 15/8 124 186 132 199 116 ' 174 124.' 186 121 182 T29 194
2 132 197 T40- 210 124 185 132 197 129 193 137 205
3 151 227 159 239 143 215 151 227 148 222 156 234
1V4 107 161 107 161 99.9 150 99.9 150 ,107 161 107 161
IVs 112 168 112 168 105 157 105 157 112 168 112 168
Coped at Both viz 117 176 117 176 110 165 110 165 117 176 117: 176
Flanges iVs 122 183 122 183 115 172 115 172 121 182 tgg-i 183
2 132 197 137 205 124 185 129 194 129 193 137 205
3 151 227 159 239 143 215 151; 227 148 222 156 234
Uncoped 205 307 205 307 205 307 205 307 205 307 205 307
Support Available Notes:
Strength per
Inch Thickness,
kips/in.
STD = Standard holes
OVS = Overeized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/,
OVS/
SSLT
ASD
409
LRFD
614
' Tabulated values include V4-in. reduction in end distance, Ui,, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CoNSTRuCTioN

10-34 DESIGN OF SIMPLE SHEAR CONNECTIONS
/y = 50 ksi
Fu - 65 ksi
/y = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Boited Double-Angle
Connections
78
,-in.
Bolts
Bolt and Angle Available Strength, kips
2 Rows
W12,10,8
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
V4
ASD LRFD
Vl6
ASD LRFD
3/6
ASD LRFD
V2
ASD LRFD
STD
STD
30.5 45.7
45.7
38.1
38.1.
57.1
57.1
45.7
45.7
68.5
68.5
60.9
60.9
91.4
91.4
Group
A
SC
Class A
STD
CVS
SSLT
3o;s
28.3
30.5
45.7
42.4
45.7
35,3,
30.0'
35:^'
52.9
45.0
52.9
35.3
30.0
35.3
52.9
45.0
52.9
35.3
30;0
35.3
52.9
45.0
52.9
SC
Class B
STD
CVS
SSLT
30:5
30.5
45.7
42.4
45.7
38.,1. 57.1
53.0
57.1
45.7
42.4
45.7
68.5
63.6
68.5
58.8;
58.8
88.1
74.9
88,1
STD
STD
30.5
30.5:
45.7
45.7
38.1!
38.1:
57.1.
57.1
45.7:
45.7
68.5
68.5
60.9
60.9
91.4
91.4
Group
B
SC
Class A
STD
OVS
SSLT
30.5
28.3:
45.7
42.4
45.7
38.1
35.3
38:1
57.1
53.0
57.1
44.3
37.8
44.3
66.4
56.5
44.3
37.8
44.3
66.4
56.5
66.4
SC '
Class B
STD
OVS
SSLT
30;5
28:3
30.5
45.7
42,4
45,7
38.1
35:3'
M'
57.1
53.0
57.1
45.7
42.4
45.7
68.5
63.6
68.5
60:9
56.6
60.9
91.4
84.8
91,4
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
in.
IV2 IV4 IV2 1'/4 IV2 1^/4
in.
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
IV4 78.0 117 :86.i 129 H72.3 108 180.4 121 75.0 112 83.1 125
iVa : 80.4 121 88.6 133 74.8 112 .;82.9 124 :;77.4 116 85.5 128
Coped at Top IV2 -82.9 124 91.0 137 116 85.3 128 m.8 120 s;;88.8: 132
Flange Only iVa .85.3 128 93.4 140 79.6 119 132 :=v82.3 123 :90;4 136
2 92.6 139 .101: 151 86.9 130 95.1 143 89.6 134 97.7 147
3 112 : 168 120: 180 106 ! 160 115 172 109 164 117 176
IV4 68.3; 102 :68.3 102 ; 63.4 95.1 63:4 95.1 68.3 102 68.3 102
iVs 73.1 110 73.1 110 68.3 102 ; 68.3 102 73.1 110 73.1 110
Coped at Both IV2 78.0 117 78.0 117 73.1 110 73.1 110 78.0 117 .78-.0 117
Flanges 1=/8 82.9 124 82.9 124- 78.0 117 ::78.0 117 :\82.3 123 124
2 . 92.6 139 .. 97.5 146 86.9 130 32.6 139 89.6 134 97.5 146
3 'l:i2 i 168 120 ; ISO ;T06:i 160 1:15, j 172 109 ; 164 117 176
Uncoped 137; 205 137: 205 T37 205 137: 205 137 205 137 205
Support Available
Strength per
Inch Thickness,
klps/ln.
Woies:
STD =
OVS =
SSLT =
Standard holes
Oversized holes
Short-slotted holes transverse
to direction of load
N = Threads included
X =5 Threads excluded
SC = Slip critical
Hole
Type
STD/
OVS/
SSLT
ASD
273
LRFD
410
* Tabulated values include Vi-in, reduction in end distance, ie/j, to account for possilite
underrun in beam length.
Note: Slip-critical bolt values assume no more, than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

DESIGN TABLES 10-35
^ = 50ksi
f« = 65ksi
Fy = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
AII-Bolted Double-Angle
Connections
l-ln.
Bolts
Bo(t and Angle Available Strength, kips
12 Rows
W44
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
V4
ASO LRFD
5/16
ASD LRFD
Vs
ASD LRFD
Vz
ASD LRFD
STD
STO
191
191
287
287
239
239
359
359
287
287
431
431
383
383
574
574
Group
A
SC
Class A
STD
OVS
SSLT
191
172
191
287
258
287
239
215
239
359
322
359
277
236
277
415
353
415
277;
236-
277;
415
353
415
SC
Class B
STD
OVS
SSLT
191-
172
191:
287
258
287
239
215
235
359
322
359
287
258.
287
431
387
431
383
344,
383.
574
515
574
STD
STD
191
191
287
287
239
239
359
359
287
287^
431
431
383
383
574
574
Group
B
SC
Class A
STD
OVS
SSLT
191
172
191
287
258
287
239
215
239
359
322
359
287
258
287
431
387
431
347
296
347
521
443
521
SC
Class B.
STD
OVS
SSLT
191.
172^
191;
287
258
287
239
215
239
359
322
359
287
258
287
431
387
431
383
344
383
574
515
574
Beam Web Available Strength per inch Thickness, kips/in.
Hole Type
STD OVS SSLT
LehVm.
Ley, in.
IV2
ASD LRFD
13/4
ASD LRFD
IV2
ASD LRFD
1^/4
ASO LRFD
IV2
ASO LRFD
1'/4
ASO LRFD
Coped at Top
Flange Only
IV4
1%
1'/2
438
.440
443;
657
661
664
446
449:
451;
669
673
676
393
; 395
398^
589
593
597
401
403
406
601
605
609
.434
436;
439
651
654
658
442
444
663
667
670
iVa
2
3
445
4S3
472;
668
679
708
.453
461
480
680
691
720
•400
407
427
.600
611
640
!408:
416
435
612
623
653
441
449
468
662
673
702
449^
457
476
674
685
714
Coped at Both
Flanges
IV4
1%
IV2
429
434
439
644
651
658
429;
434;
439
644
651
385;
390
395
578
585
592
385
390
395
578
585
592
429
434
439
644
651
658
429
434 651
658
15/a
2
3
444
453'
472
665
679
708
444
458'
480
665
687
720
400,
407
427,
600
611
640
400
414
435
600
622
653
441
449
468
662
673
702
444
457
476
685
714
Uncoped 909 1360 909 1360 829 1240 1240 909 1360 909 1360
Support Available
Strength per
Inch Thickness,
WpsTm.
Notes:
STD = Standard tides
OVS = Oversized tides
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
SSLT
OVS
ASD
1820
1660
LRFD
2730
2490
* Tabulated values include V4-in, reduction in end distance, Lei,, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-36 DESIGN OF SIMPLE SHEAR CONNECTIONS
^ = 50 ksi
Fu = 65 ksi
^ = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
1-in.
Bolts
Bolt and Angle Available Strength, kips
11 Rows
W44,40
Bolt
Group
Ttiread
Cond.
Hole
Type
Angle Thickness, in.
V4
ASD UtFO
S/16
ASD LRFD ASD LRFD
V2
ASD LRFD
STD
STO
175
175
263
263
219
219
328
328
263
263
394
394
350
350
525
525
Group
A
SC
Class A
STD
OVS
SSLT
175
157
175
263
236
263
219
196
219
328
295
328
254
216
254
380
323
380
254
216
254
380
323
380
SC
Cfass B
STD
OVS
SSLT
175
157
175
263
236
263
219
196
219
328
295
328
263
236
263
394
354
394
350
314
350
525
471
525
STD
STD
175
175
263
263
219
219
328
328
263
263
394
394
350
350
525
525
Group
SC,
Class A
STD^
OVS
SSLT
175
157
175
263
236
263
219
196
219
328
295
328
263
236
263
394
354
394
318
271
318
477
406
477
SC
Class B
STD
OVS
SSLT
175
157
175
263
236
263
219
196
219
328
295
328
263
236
263
394
354
394
350
314
350
525
471
525
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
Cei,*, in.
ley, in.
IV2 1»/4 IV2 1'/4 IVj IV4
ley, in.
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
1V4 401 602 410 614 360 540 368 552 397 596 405 608
m 404 606 412; 618 362 : 544 371 556 400 600 408 612
Coped at Top V/2 406 609 414' 622 365: 547 373 559 402 603 410 615
Flange Only P/e 409 613 417' 625 367: 551 375, 563 •405 607 413 619
2 416 624 424 636 375 562 383: 574 412 618 420 630
3 436 653 444 665 394 591 402 603 431 647 440 659
1V4 392 589 392 589 352 528 352 528 392 589 392 589
IVb 397 596 397 596 357 536 357 536 397 596 397 596
Coped at Both iVz 402 603 402 603 362 543 362 543 402 603 402 603
Flanges 15/8 407 611 407 611 367 550 367 550 405 607 407 611
2 416 624 422 633 375 562 381 572 412 618 420 630
3 436 653 444 665 394 591 402 603 431 647 440 659
Uncoped 834 1250 834 1250 761 1140 761 1140 834 1250 834 1250
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STO = Standard holes
DVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hale
Type
STO/
SSLT
OVS
ASD
,1670
1S20
LRFD
2500
2Z80
* Tabulated values include V4-in. reduction in end distance, ted, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-37
/y = 50 ksi
Fu = 65 ksi
/y = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
1-m.
Bolts
Bolt and Angle Available Strength, kips
10 Rows
W44,40,36
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
V4
ASO LRFD
5/16
ASD LRFD
3/8
ASD LRFD
V2
ASD LRFD
SID
STD
159
159
238
238
198
198
298
298
238
238:
357
357
318
318
476
476
Group
A
SC
Class A
STD
OVS
SSLT
159
142
159
238
214
238
198
178
198
298
267
298
231:
196
231
346
294
346
231
196
231
346
294
346
SC
Class B
STD
OVS
SSLT
159
142
159
238
214
238
198
178
198
298
267
298
238
214
238
357
321
357
318
285
318
476
427
476
STD
STD
159:
159
238
238
198
198
298
298
238
238
357
357
318
318
476
476
Group
B
SC
Class A
STD
OVS
SSLT
159,
142
159
238
214
238
198
178
198
267
298
238
214;
238
357
321
357
289
247
289
434
369
434
SC
Class B
STD
OVS
SSLT
159
142
159
238
214
238
198
178
196
298
267
298
238
214
238
357
321
357
318
285
318
476
427
476
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
Lev, in.
Viz
ASD LRFa
IV4
ASD LRFD
PI2
ASD LRFD
1»/4
ASD LRFD
IV2
ASD LRFD
13/4
ASD LRFD
Coped at Top
Flange Only
IV4
m
PI2
365
367
370
547
551
555
373
375
378
559
563
557
327
329
332
491
494
498
335
338
340
503
506
510
'361
363
366
541
545
548
369
371
374;
553
557
561
iVe
2
3
372
379
399'
558
569
598
380
388
407
570
581
611
334
342
361
502
512
542
342
350
369
514
525
554
368,
375
395
552
563
592
376;
384
403
564
575
605
Coped at Both
Flanges
1V4
1%
Vh
356
361
366
534
541
548
356
361
366
534
541
548
319
324
329
479
486
494
319
324
329
479
486
494
356
361
366
534
541
548
356
361
366
534
541
548
iVe
2
3
371
379
399
556
569
598
371
385
407
556
578
611
334
342
361
501
512
542
334
349
369
501
523
554
368
375
395
552
563
592
371;
384
403
556
575
605
Uncoped 758 1140 758 1140 692 1040 692 1040 758 1140 758 1140
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
SSLT
OVS
ASP
1520:
1380
LRFD
227B
208B
* Tabulated values include Vi-ln. reduction in end distance, Lei,, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-38 DESIGN OF SIMPLE SHEAR CONNECTIONS
FysSOksi
Fu = 65 ksi
Fy = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
Aii-Bolted Double-Angle
Connections
"l-in.
Bolts
Bolt and Angle Available Strength, kips
9 Rows
W44,40,36,33
Bolt
Group
Group
A
Group
Thread
Cond.
SC
Class A
SC
Class!
SC
Class A
SC
Class B
Hole
Type
Angle Thickness, In.
V4 '/8 Vz
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
142
142
142
128
142
142
128
142
i42n
142
142
128;
142
142
128
142.
214
214
214
192
214
214
192
214
214
214
214
192
214
214
192
214
178
178
178
160
ITS'
178
160
178
178
178
178
160
178
178
1,60
iVr
267"
267
267
240
267
267
240
267,
267
267
267
240
267
267
240
267
214
214
207
177.
207
214
192
214
214
214
214
'192'
214-
214
192'
214:
321
321
311
265
311
321
288
321
321
321
321
288
321
321
288
321
285
285
,207
.177
207
285
,256
285
285
285
260
222
260
285
256
285
427
427
311
265
311
427
.383
427
427
427
391
332
391
427
383
427
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
Hole Type
IV2 IV4 iVz 1% iVa IV4
ASD LRFD ASD LRFD LRFD ASD LRFD ASD LRFD ASD LRFD
Coped at Top
Flange Only
1V4
IVB
iVz
328
331'
333
492
496
500
336
339'
341.
505
508
512
294
297
299,
441
445 :
449
302
305^
::307
453
457.
461
•324^
327
::'329
486
490
494
332
335
>337,
498
502
506 Coped at Top
Flange Only IVB
2
3
336;
343
362
503
514
544
344
351
371
516
527
556
301
309
328:
452
463
492
310;
,31?
336:
464
475
505
..332:
339
358
497
508
537
340-^
347
366
509
520
550
Coped at Both
Flanges
1'/4
1'/8
IV2
319
324
329
479
486
494
319
324
329
479
486
494
286
291
296
430
437
444
286
29r
296
430
437
444
. 319
324'
329
479
486
494
319
324
329
479
486
494 Coped at Both
Flanges 1%
2
3
334
343
362
501
514
544
334:
349
371:
501
523
556
301,
309
328
452
463
492
..301:
316
336
452
473
505
332,
339!
358'
497
508
537
334
347
366
501
520
550
Uncoped 683 1020 683 1020 624 936 624 936 683 1020 = 683 1020
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes N = Threads included
OVS = Oversized holes X=Threads excluded
SSLT = Short-slotted holes transverse SC = Slip critical
to direction of load
Hole
Type
. ASD LBFD
* Tabulated values include 'A-in. reduction in end distance, Ut,, to account for possible
underrun in beam length. . ,,
: Note: Slip-critical bolt values assume no more than one filler has been provided .or bolts have
been added to distribute loads in the fillers.
STD/
SSLT
:«1370 'V 2050
* Tabulated values include 'A-in. reduction in end distance, Ut,, to account for possible
underrun in beam length. . ,,
: Note: Slip-critical bolt values assume no more than one filler has been provided .or bolts have
been added to distribute loads in the fillers.
OVS 1250 1870
* Tabulated values include 'A-in. reduction in end distance, Ut,, to account for possible
underrun in beam length. . ,,
: Note: Slip-critical bolt values assume no more than one filler has been provided .or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-39
Fy e 50 ksi
Fu S 65 ksi
/y s 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Boited Double-Angle
Connections
l-in.
Bolts
Bolt and Angle Available Strength, kips
8 Rows
W44,4q,36,33,30
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, In.
V4
ASO LRFD
Vie
ASD LRFD ASO: LRFD
V2
ASO LRFD
STD
STD
126:
126?
189
189
158;
158?
237
237
189
189
284
284
252
252
378
378
Group
A
SC
Class A
STD.
OVS
SSLT
126
iia
i26'
189
170
189
158.
141
158
237
212
237
184
,157
184
277
235
277
184
157
1-84
277
235
277
sp
Class B
STD
OVS
SSLT
126
126;
189
170
189
158
141
158
237
212
237
189
170
189
284
254
284
252;
226,
252
378
339
378
STD
STD
12&
126
189
189
158:
158:
237
237
189
189
284
284
252
252
378
378
Group
B
SC
Class A
STD
OVS
SSLT
126'
11-3
126
189
170
189
158.
1.41'
158'
237
212
237
189,
170;
189
284
254
231
197
231.
347
295
347
SC
Class B
STD
OVS
SSLT
126
11,3
126
189
170
189-
158
141
M
237
212
237
189
170'
189;
284
254
284
252
226
252
378
339
378
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
Lev, in.
IV2
ASD LRFD
IV4
ASD LRFD
IV2
ASD LRFD
1'/4
ASO LRFD
IV2
ASD LRFD
1'/4
ASO LRFD
Coped at Top
Flange Only
1'/4
1%
IV2
292
294'
,297'
438
441
445:
;300
•302;
450
453
457
,261
;264:
:266:
392
395
399
269
:272;
:m
404
411
288
•290,
431
435
439
296
298
301:!
444
447
•451
1%
2
3
•299:
306
^326:
449
459
489
307
314
334.
461
472
501
:269
276;
;295
403
414
443
277
284
303
415
426
.455
295
302
322
442
453
483
303
310
.330
455
466
495
Coped at Both
Flanges
IV4
1'/8
Vh
283
288
293
424
431
439
283
288
293
424
431
439
254
258
263
380
395
254
258
263
380
388
395
283
288
•293.
424
431
439
283
288
293
424
431
439
1%
2
3
297;
306i
:326
446
459
489
297;
312;
334,
446
468
501
268;
276;
29&
402
414
443
268,
283
303.
402
424
455
295
302
322,
442
453
483
m-
310
330
446
466
495
Uncoped 607; 910 607: 910 556; 834 556 607 910 607 910
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STO = Standard holes
OVS = Oversized ttoles
SSLT = Short-slotted holes transverse
to direction of load
N=Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STO/
SSLT
OVS
ASO
1210
1110
LRFD
1820
1670
* Tabulated values include Vj-in. reduction in end distance, Uh, to account for possible
undenun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or holts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-0 DESIGN OF SIMPLE SHEAR CONNECTIONS
/y = 50 ksi
Fu = 65 ksi
/y = 36 ksi
Fu = 58 ksi
Table 10-1 (continued)
Ali-Bolted Double-Angle
Connections
Bolts
Bolt and Angle Available Strength, kips
7 Rows
W44,40,36,33,30,
27,24
Bolt
Group
Group
A
Group
Thread
Cond.
SC
Class A
SC
Class B
SC
Class A
SC
Class B
Hole
Type
Angle Thickness, in.
V4 5/16 3/8 Vz
STD
STD
STD
OVS
SSIT
STD
OVS
SSLT
STD
STD
STD .
OVS
SSLT
STD
OVS
SSLT
ilu
110
110
98.4
110
110
98.4
110
110
110-
110
98.4
110
110
98.4
110
Ibb
165
165
148
165
165
148
165
165
165
165
148
165
165
148
165
Ij/
137
137
123
137
137
123
137
137
137
137
123
137
137
123
137
<;ob
206
206
185
206
206
185
206
206
206
206
185
206
206
185
206
Ibo
165
161
138
161
165
148
165;
165
165
165
148
185
165
148
165
247
242
206
242
247
221
247
247
247
247
221
247
247
221
247
220
161
138
161
220
197
220
220
220
202
173
202
220
197
220
330
330
242
206
242
330
295
330
330
330
304
258
304
330
295
330
Beam Web Available Strength per Inch Thickness, kfps/in.
Hole Type
STD OVS SSLT
UVm.
Urn.
IV2 1'/4 IV2 IV4 iVj 1V4
Urn.
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LflFD
.1V4 255 383 263 395 228 342 236 355 251 377 259 389
1'/a 258 386 266 399 231 346 239 358 .254 380 262 392
Coped at Top
Hange Only
IVz 260 390 268 402 233^ 350 241 362 .256 384 ,264 396
Coped at Top
Hange Only I'/s 262 394 271 406 236 353 244 366 258 388 : 267 • 400
2 270 405 278 417 243 364 251 377 266 399 274 411
3 289 434 297 446 262 394 271 406 285 428 293 440
1V4 246 369 246 369 221 331 221 331 246 369 246 369
251 377 251 377 225 338 225 338 251 377 251 377
Coped at Both Vh 256 384 256 384 230 346 230 346 256 384 256 384
Flanges iVe 261 391 261 391 235 353 235 353 258 388 261 391
2 270 405 275 413 243 364 250 375 266 399 274 411
3 289 434 297 446 262 394 271 406 285 428 293 440
Uncoped 531 797 531 797 488 731 488 731 531 797 531 797
Support Available
Sfrength per
Inch Thickness,
kips/in.
Notes;
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
SSLT
OVS
ASD
1060
975
LRFD
1590
1460
* Tabulated values Include V4-in. reduction in end distance, U, to account for possible
underrun In beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-41
Fy = 50 ksi
fu = 65ksi
= 36 ksi
Fu - 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
tin.
Bolts
Bolt and Angle Available Strength, kips
6 Rows
W40,36,33,30,27,
24,21
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
V4
ASD LRFD
Vt6
ASD LRFD
'/8
ASD LRFD
Vz
ASD LRFD
SID
STD
93.5
93.5
140
140
117
117
175
175
140:
140
210
210
187
187
281
281
Group
A
SC
Class A
STD
OVS
SSLT
93,5
83.7
93.5
140
126
140
117
105
117
175
157
175
138:
118
138
207
176
207
138
118
138:
207
176
207
SC
Class B
STD
OVS
SSLT
93.5
83.7
93.5
140
126
140
117
105.
1'17
175
157
175
140
126
140
210
188
210
187:
187
281
251
281
STD
STD
93.5
93.5
140
140
117
117
175
175
140
140
210
210
187
187
281
281
Group
SC
Class A
STD,
OVS
SSLT
93:5
83.7
93,5
140
126
140
117
105
117
175
157
175
140
126
140
210
188
210
174
148
174
260
221
260
SC
Class B
STD
OVS
SSLT
93.5
83.7
93,5
140
126
140
105
117
175
157
175
140
126
140
210
188
210
187
167
187
281
251
281
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
Leh*. in.
Lev, in.
IV2 13/4 IV2 ; IV4 IV2 IV4
Lev, in.
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
IV4 219 328 227 340 195 293 204 305 215: 322 223 334
1'/8 221 332 229 344 198 297 206 309 •217: 325 225 338
Coped at Top IV2 223 335 232 347 200 300 208' 313 219 325 341
Flange Only IVB :226 339 234 351 203 304 211 316 222 333 230: 345
2 233 350 241 362 210 315 218 327 229 344 237 356
3 253 379 261 391 230 344 238 356 249 373 257 385
IV4 210 314 210 314 188 282 188 282 210 314 210 314
1'/8 215 322 215 322 193 289 193 289 215 322 215 322
Coped at Both IV2 219- .329 219 329 197 296 197 296 219 329 219 329
Flanges I'/B 224 336 224 336 202 303 202 303 222 333 .224 336
2 233 350 239 358 210 315 217 325 229 344 237 356
3 253. 379 261 391 230 344 238 356 249 373 257 385
Uncoped 456 684 456 684 419 629 419 629 456 684 456 684
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized tioles
SSLT=Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
SSLT
OVS
ASD
912
839
LRFD
1370
1260
* Tabulated values include Vi-in. reduction in end distance, ic/,, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-42 DESIGN OF SIMPLE SHEAR CONNECTIONS
/y s 50 ksi
Fu = 65 ksi
/y = 36 ksi
Fu = 58 ksi
5 Rows
W30,27,24,21,18
-tr.
i-U-
Table 10-1 (continued)
AllrBolted Double-Angle
Connections
"I-in.
Bolts
Bolt and Angle Available Strength, kips
Bolt
Group
Group
A
Group
B
Thread
Cond.
SC
Class A
SC
Class B
N
X
SC
Class A
SC
Class .8
Hole
Type
Angle Thicltness, in.
1/4 «/l6 3/8 V2
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
77.2
77.2
77.2
69.1
77.2.
77.2
69.1
77.2
77;2
77,2
77,2
69,3;
77,2
77i2
69;1
77^2
116
116
116
104
116
116
104
116
116
116
116
104
116
116
104
116
96.5.
96.5
96.5
86.3
96.5
96.5
86.3
965
96.5.
96.5
86.3'
96,3
96,5:
86.3
96.6
145
145
145
129
145
145
129
145
145
145
145
129
145:
145
129
145
116
116
115 :
,98.2
115
116
104:
116
116
116
116 i
m
1:161
116
104
116
174
174
173
147
173
174
155
174
174
174
174
155
174
174
155
174
154
154
115
98.2
115
154
138
154
154
154
145
123
145
154
138
154
232
232
173
147
173
232
207
232
232
232
217
184
217
232
207
232
Beam Web Available Strength per Inch Thickness, kips/in.
Hole Type
STD OVS SSLT
UMn.
ley, in.
IVJ 1V4 IVJ 1V4 IV2 1^/4
ley, in.
ASD LRFD ASD LRFD ASD LBFD ASD LRFD ASD LRFD ASD LRFD
1V4 182 273 190 • 285 163 244 m 256 ;i78: 267 186 279
P/8 184 277^ 193; 289 165i 247 :T73, 260 aiSOi 271 189 283
Coped at Top V/2 187: 280 195 • 293 167; 251 ,176 263 '18a 274 286
Flange Only 15/s 189 284 197: 296 170 255 •178: 267 :il85 278 193^ 290
2 197 295 205' 307 177 266 •185 278 193 289 201 301
3 216 324 224: 336 197 295 205 , 307 212 318 220 330
1V4 173 260 173 260 155 232 155 232 173 260 173 260
1% 178 267 178: 267 .160 239 160: 239 :»178' 267 178 267
Coped at Both
Flanges
1V2 183 274 183 274 165: 247 165 .247 183 274 183 274
Coped at Both
Flanges IVa 188 • 282 188 282 169 254 169 •254 .185 278 282
2 197 295 202 303 177: 266 ;l84i 276 193; 289 201 301
3 21 324 224:; 336 197' 295 .205: 307 212: 318 220 330
Uncoped 380 570 380' 570 351 527 351 527 380 570 '380 570
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes
OVS = Oversized hoiss
SSLT = Short-slotted holes transverse
to direction of load
Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
SSLT
OVS
,ASD
;..761 -
7(R
LRFD
1140
1050
* Tabulated values include V4-in. reduction in end distance, Le/i, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-43
Fy = 50 ksi
F,/ = 65ksi
Fy = ZS ksi
Fu = 58 ksi
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
Bolts
Bolt and Angle Available Strength, kips
4 Rows
W24,21,18,16
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, In.
V4
ASD LRFD
5/16
ASD LRFD ASD LRFD
V2
ASD LRFD
STD
STD
60.9
60.9
76.1
76.V
114
114
91.4
91.4
137
137
122
122
183
183
Group
,A
SC
Class A
STD
OVS
SSLT
60®
54;4
60.9:
76.1
68.0
76;1
114
102
114
91.4
78.6
91.4
137
118
137
92.2
78.6
92.2
138
118
138
SC
Class B
STD
OVS
SSLT
60(9
54.4'
60.9
76.1
68.0
76.1
114
102
114
91.4
81.6
91.4
137
122
137
122
122
183
163
183
STD
STD
60:9
60r9
76.1
76.1
114
114
91.4
91.4
137
137
122
122
183
183
Group
B
SO
Class A
STD
OVS
SSLT
60:9
54.4
60.9:
76.1
68(0
7^:r
114
102
114
91.4
81..6:
91.4
137
122
137
116
8.6
116
174
148
174
SC
Class B
STD
OVS
SSLT
60:9
54!4^
60v9;
76.1,
es.d
114
102
114
91.4
81.6
91.4
137
122
137
122
109
122
183
163
183
Beam Web Available Strength per Inch Thickness, kips/In.
Hole TVpe
STD OVS SSLT
Leh*,in.
Ui,, in.
Vh
ASa LRFD
1^/4
ASD LRFD
fVz
ASD LRFD
1^/4
ASD LRFD
IV2
ASD LRFD
IV4
ASD LRFD
Coped at Top
Flange Only
IV4
IV2
145;
148,
150^
218
222
225
154
156
158
230
234
238
'130;
132;
m:
194
198
202
138,
;T40'
143'
207
210
214
;;.!44;
-146
212
216
219
150
152
154
224
228
232
1V8
2
3
160
.180;
229
240
269
161
168
.188;
241
252
282
;137;
164,
205
216
246
145;
'152-
;172
218
229
258
rl49'
156
176
223
234
263
157.
164
184
235
275
Coped at Both
Flanges
IV4
1^/8
IV2
137:
141
146:
205
212
219
137.
141
146;
205
212
219
122
127;
;132!
183
190
197
122;
127'
;132;
183
190
197
137;
141
146'
205
212
219
137
141
146
205
212
219
1^/8
2
3
,1511
160'
'180
227
240
269
;151;
,166;
227
249
282
137;
144
164
205
216
246
;i37:
151
172
205
227
258
149
1;S6:
176;
223
234
263
151
164
184
227
246
275
Uncoped 305 457 305^ 457 283 424 283 424 305 457 ^305 457
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD =
OVS =
SSLT =
Standard holes
Oversized holes
Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
Hole
Type
STD/
SSLT
OVS
ASD
566
LRFD
914
848
* Tatiulated values include V4-in. reduction in end distance, Let,, to account for possible
undermn in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-44 DESIGN OF SIMPLE SHEAR CONNECTIONS
E
ra
<D
03
^ = 50 ksi
Fu = 65 ksi
Table 10^1 (continued)
All-Botted Doubfe-Angle 1'"
Connections
©
"to
5
Fy = 36 ksi
Fu = 58 ksi
Table 10^1 (continued)
All-Botted Doubfe-Angle 1'"
Connections
©
"to
5
Fy = 36 ksi
Fu = 58 ksi
Bolt and Angle Available Strength, kips
3 Rows
Bolt
Group
Thread
Cond.
Hole
Type
Angle Thickness, in.
W18,16,14,12,10^
•l.td.tiiW(0lc(2,15,1?,
19,22,26,30
Bolt
Group
Thread
Cond.
Hole
Type
V4 5/16 V2
W18,16,14,12,10^
•l.td.tiiW(0lc(2,15,1?,
19,22,26,30
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
Group
A
N
X
STD
STD
44.6
44.6
66.9
66.9
55.7
55.7
83,6
83.6
66,9
66.9
100
100
89.2
89.2
134
134
f fries /
3
mai-
Group
A
sc
Class A
STD
OVS
SSLT
44.6
39.7
44,6
66.9
59.5
66.9
55.7
49.6
55.^
83.6
74.4
83.6
66.9
58:9
66.9
100
88.2
100
69.2
58.9
69.2
104
88.2
104
f fries /
3
mai-
Group
A
SC
Class B
STD
OVS
SSLT
44.6
39:7
44.6
66.9
59,5
66,9
55.7
49.6
557
83.6
74.4
83.6
66.9
59.5'
66.9
100
89.3
100
89.2
79.4
89.2
134
119
134
Hat:
/
3
mai-
Group
A
SC
Class B
STD
OVS
SSLT
44.6
39:7
44.6
66.9
59,5
66,9
55.7
49.6
557
83.6
74.4
83.6
66.9
59.5'
66.9
100
89.3
100
89.2
79.4
89.2
134
119
134
sP
U-
/
3
mai-
Group
A
SC
Class B
STD
OVS
SSLT
44.6
39:7
44.6
66.9
59,5
66,9
55.7
49.6
557
83.6
74.4
83.6
66.9
59.5'
66.9
100
89.3
100
89.2
79.4
89.2
134
119
134
sP
•-1.
/
3
mai-
Group
B
N
X
STD
STD
44.6,
44.6'
66,9
66,9
55.7
55.7
83.6
83.6
66.9
66.9
100
100
89.2
89.2
134
134
sP
/
3
mai-
Group
B
N
X
STD
STD
44.6,
44.6'
66,9
66,9
55.7
55.7
83.6
83.6
66.9
66.9
100
100
89.2
89.2
134
134
sP
/
3
mai-
Group
B
SC
Class A
STD
OVS
SSLT
44.6
39.7
44.6
66.9
59.5
66.9
55.7
49.6
55.7
83.6
74.4
83.6
66.9
59,5
66.9
100
89.3
100
86.8
74.0
86.8
130
111
130
Group
B
SC
Class A
STD
OVS
SSLT
44.6
39.7
44.6
66.9
59.5
66.9
55.7
49.6
55.7
83.6
74.4
83.6
66.9
59,5
66.9
100
89.3
100
86.8
74.0
86.8
130
111
130
Group
B
SC
Class B
std:
OVS
SSLT •
44.6
39.7
44,6
66.9
59.5
66,9
55.7
49.8
55.7'
83.6
74.4
83.6
66.9
59.5
66.9
100
89.3
100
89.2
79.4
89.2
134
119
134
Beam Web Available Strength per Inch Thickness, kips/In.
Hole Type
STD OVS SSLT
Hole Type
ler, in.
IV2 1^4 IV2 1'/4 IV2 1^/4
ler, in.
ASO LRFD ASD LRFD ASD LRFO ASD LRFD ASD LRFO ASD LRFD
Coped at Top
Flange Only
1V4
13/8
IVz
109
111
114:
163
167
171
117
119
122
176
179
183
96,7
99,1
102 '
145
149
152
105 '
1.07
110
157
161
165
105
107
110
157
161
165
113
115
118-1
169
173
177 Coped at Top
Flange Only 1=/8
2
3
116
124:
143 :
174
185
.215
124:
132
151
186
197
227
104
111
131
156
167
196
112
119
139
168
179
208
112
119
139
168
179
208
120
128
147
180
191
221
Coped at Both
Flanges
1V4
1%
1V2
99.9
105
110
150
157
165
99.9:
105
110/
150
157
165
89,0
93,8
98.7
133
141
148
89.0
93,8
98,7
133
141
148
99.9
105
110
150
157
165
99.9
105
110
150
157
165 Coped at Both
Flanges IVa
2
3
115
124
1.43
172
185
215
115 :
129
151
172
194
227
104
111
131
155
167
196
104
118
139 :
155
177
208
112
119
139
168
179
208
115
126
147
172
191
221
Uncoped 229 344 229 344 215 322 215 322 229 344 229 344
Support Available
Strength per
Inch Thickness,
kips/in.
Notes:
STD = Standard holes H = Threads included
OVS = Oversized holes X = Threads excluded
SSLT= Short-slotted holes transverse SC = Slip critical
to direction of load
Hole
Type
ASi) , LRFD * Tabulated values include 'A-in, reduction in end distance, £e/,; to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
STD/
SSLT
458 687
* Tabulated values include 'A-in, reduction in end distance, £e/,; to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
OVS 429 644
* Tabulated values include 'A-in, reduction in end distance, £e/,; to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-45
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-46 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-2
Available Weld Strength of Bolted/Welded
Double-Angle Connections
Lsaghclrslm
-:, yXlxwsUsin
Welds A (70 ksi) Welds B (70 ksi)
n
Minimum ^Rn Minimum
n L, in. Weld
in
kips kips
Web
Thickness
W6lu
Size,in.
kips kips
Support
Ttiickness
ASD LRFD
1 tilUTVIIvSv;
in. ASD LRFD in.
12 .. 35V2 393 589 0.476 3/8 366: .: 550 0.286
314 , 471', 0.381 5/16 305 ' . 458 D.238
• 3/16 236 353 0.286 V4 • 244 . 366 0.190
11 : ' 32V2 • • 5/16 • 365 ' 548 0.476 3/9 331 ! 496 0.286
V4- 292 438-' 0.381 5/16 276'--" 414 0,238
.3/16 219 , 329 :. 0.286 V4 .221 i 331 0.190
10 291/2 ' -5/16 337 505 0.476 3/8 295 443 0.286
; 269 : 404 0.381 5/16 • 246 369 0.238

- 202 303 0.286 V4 197 295 0.190
9 26V2 5/16 • 309 463 0.476 ^ 3/3 389 0.286
Vi 247 371 0.381 • 5/16 216 324 . 0.238
3/16 185, ' 278 0.286 Vi "173 259 ' 0.190
8 23V2 5/16 281 422 0.476 3/8 ,223:' 335 0.286
, Vi 225 337 0.381 . 5/16 186 279 • 0.238
3/16 169 253 . 0.286 1/4 "r149 , 223 0.190
7 ; 20V2 , 5/16 253 379 0.476 3/« 187. 280 0.286
•,V4 i.202 303 : 0.381 • 5/16 - J56' 234 0,238
.3/16 152- 227. 0.286 1/4 ,^125 187 0.190
6 171/2 ..5/16 222 334 0.476 3/e r150 ' 226 0.286
. V4 178 i 267 0.381 5/16 •125 • 188 0.238
.3/16 ,133 200. 0.286 V4 too ' 150 0.190
5 14V2 .5/16 191 287 0.476 3/8 'J15 172 0.286
V4 f153 229 0.381 5/18 95.5 143 0.238
3/16 115 172 0.286. V4 '76,4 115 0.190
4 ; 11V2 5/16 158 237 0.476 3/8 - 79.9 120 0.286
VV4 127 190 0.381 5/16 ' '66.6 • 99.9 0.238
3/16 ' 95.0 142 0.286 >. V4 •' ^53.3 79.9 0.190
3 8V2 5/16 122 184 0.476 3/8 48.1 72.2 . 0.286
1/4 98.0 147 0.381 5/16 40.1 60.2^ 0.238
3/16 73.5 110 0.286 V4 .32.1 48.1 0.190
2 5V2 5/16 83.7. 125 0.476 3/8 21.9 32.8 0.286
Vl 66:9'" 100 0.381
5/16 • " 18.2 27.3 0.238
3/ie • •m.z-t- 75.3 0.286 . • 1/4 « 14« 2r.9 0.190
ASO^. LRFD Beam
Cl^ 2.00 If =0.75 fysSOksi (5,=65 ksi
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-47
Table 10-3
Available Weld Strength of All-Welded
Double-Angle Connections
i.iii.
36
34
32
30
28
26
24
22
20
18
16
4ititorL>ieirllt^}^
ShhrKIShml
WeidsA(70ksi)
Weld
Size,in.
ASD
=/l6
1/4
3/16
5/16
V4
3/16
5/16
V4
3/16
Vl6
V4
3/16
Vl6
V4
3/16
5/16
V4
3/16
5/16
V4
3/16
5/16
V4
3/16
5/16
1/4
3/16
5/16
1/4
3/16
5/16
1/4
3/16
n=2.oo
fl„/Q
kips
ASD
397
238
379
303
227
360
288
216
341
273
20S.
323 •:
258
194
304
243'
183
286
229
171
267
214
160
248
198
149
227
182
136
20t
16i
12.
LRFD
H) =0.75
•dps
LRFD
596
477
357
568
455
341
541
432
324
512
410
307
484
387
291
457
365
274
429
343
257
401
321
240
372
297
223
341
273
205
310
248
186
Minimum
Web
Tiiiclcness, in.
0,476
0,381
0,286
0,476
0,381
0.286
0.476
0,381
0.286 '
0,476
0,381
0,286
0,476
0,381
0,286
0,476 .
0,381
0.286
0.476
0,381
0,286
0,476
0.381
0,286
0.476
0.381
0.286
0.476
0.381
0.286
0.476
0.381
0.286
Welds B (70 ksi)
Weid
Size, in.
5/16
1/4
%
5/16
1/4
3/8
5/16
1/4
3/8
5/16
1/4
5/16
1/4
3/8
5/16
1/4
3/8
5/16
1/4
3/8
5/16
1/4
3/8
5/16
1/4
3/8
5/16
1/4
3/8
5/16
1/4
Bn/n
ASD
i372
.310.
248
349
291
232
.325
271
217
301
.'25^
'201
.277
'231
185
253
211
169
:229
191
153
205
171
137
181
151
121
157
130
104
148
123
9^5
kips
LRFD
558
465
372
523
436
349
487
406
326
452
377
301
416
347
277
380
317
253
344
286
229
308
256
205
271
226
181
235
196
157
222
185
148
IMinimum
Web
Thickness, in.
0.286
0.238
0.190
0.286
0.238
0.190
0.286
0.238
0.190
0,286
0.238
0.190
0.286
0.238
0,190
0.286
0.238
0.190
0.286
0.238
0.190
0.286
0.238
0.190
0.286
0.238
0.190
0.286
0.238
0,190
0,286
0,238
0,190
Beam
/ysSOksi /i,=65ksi
<1
{
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-48 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-3 (continued)
Available Weld Strength of All-Welded
Doubie-Angle Connections
WeldBy
4hfyrL>18in.M-
Welds A (70 ksi) Welds 6 (70 ksl)
Minimum
Weld
Size in
R„/n (|)B„
Minimum
L, in. Weld
kips kips Web
Weld
Size in
kips kips Web
ASD . LRFD
thickness, in.
ASD LRFD
Thickness, in.
14i 5/16 186 279 0.476 3/8 123 185 0,286
V4 149 223 0.381 5/16 103 154 0,238
3/16 111 167 0.286 1/4 . 82.3 123 0,190
12 Vl6 • 164 246 0.476 3/8 99.3 149 0,286
V4 131 : 197 0.381 5/16 82.8 124 0,238
3/16 98.5 148 0.286 1/4 66.2 99.3 0.190
10 Vl6 141 .••211 0,476 3/8 75.7 - 113 0,286
V4 112 169 0.381 5/16 63.1 , 94.6 • 0,238
84.3 127 0,286 1/4 50.4 n 75.7 0,190
9 Vie 129 193 0.476 3/8 : „ 64.2 ,. 96.3 • 0,286
V4 103 154 0,381 5/16 s 53.5 80.2 0,238
3/16 77.2 : 116 0,286 1/4 42.8 64.2 0.190
8 5/16 116 174 0,476 3/8 , 53.0 79.5 0,286
1/4 9^9 139 :0.381 5/16 44.2 • 66.3 0,238
3/16 69,7 105 0,286 1/4 35.4 53.0 0,190
7 5/16 103 155 0,476 3/8 42.4 ; ' 63.6 0.286
V4 82.6 124 0,381 5/16 if 35.3 53,0 0.238
• 3/16 - 62.0 92.9 0,286 1/4 28.3 42,4 0,190
6 5/16 90.4 136 0,476 3/8 32.5 48,7 0.286
1/4 : . 72.3 108 0,381 . 5/16 : 27.0 ; 40,6 0.238
3/16 54.2 81.3 0,286 1/4 21.6 32.5 0.190
5 5/16 77.1 116 0.476 3/8 - 23.4 35,1 0.286
1/4 61.7 92.6 0.381 5/16 19.5 29,2 0.238
3/16 : 46.3 69.4 0.286 1/4 15,6 23,4 0.190
4 5/16 64.2 96.3 0.476 3/8 • 15.5 23.2 0.286
1/4 / 51.4 77.0 0.381 5/16 : ? 12.9 19,3 0.238
3/16 38.5 57.8 0.286 1/4 r 10.3 15.5 0,190
ASD
£J = 2.00
LRFD
(|)=0.75
Beam
fy=50ksi
fi,=65ksi
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

SHEAR END-PLATE CONNECTIONS 1(M9
SHEAR END-PLATE CONNECTIONS
A shear end-plate connection is made with a plate length less than the supported beam depth,
as illustrated in Figure 10-6. The end plate is always shop-welded to the beam web with
fillet welds on each side and usually field-bolted to the supporting member. Welds
connecting the end plate to the beam web should not be returned across the thickness of the
beam web at the top or bottom of the end plate because of the danger of creating a notch in
the beam web.
If the end plate is field-welded to the support, adequate flexibiUty must be provided in the
connection. Line welds are placed along the vertical edges of the plate with a return at the
top per AISC Specification Section J2.2b. Note that welding across the entire top of the plate
must be avoided as it would inhibit the flexibility and, therefore, the necessary end rotatioii
of the connection. The performance of the resulting connection would not be as intended for
simple shear connections.
Design Checks
The available strength of a shear end-plat6 connection is determined from the applicable
limit states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9).
Note that the limit state of shear rupture of the beam web must be checked along the length
dif weld connecting the end plate to the beam web. In all cases, the available strength,
or Rn/£i, must equal or exceed the required strength, Ru or Ra.
Recommended End-Plate Dimensions and Thickness
To provide for stability during erection, it is recommended that the, minimum end-plate
length be one-half the T-dimension of the beam to be supported. The maxirnurn length of
the end plate must be compatible with the clear distance between the flanges 9f an uncoped
beam and the remaining clear distance of a coped beam.
To provide for flexibility, the combination of plate thickness and gage should be
consistent with the recommendations given previously for a double-angle connection of
similar thickness and gage.
Shop and Field Practices
When firaming to a column web, the associated constructability considerations should be
addressed (see the preceding discussion under "Constructability Considerations").
Fig. 10-6. Shear end-plate connections.

AMERICAN iNstrruTE OF STEEL CoNSTRucfioN

lfr-50 DESIGN OF SIMPLE SHEAR CONNECTIONS
When framing to a column flange, provision must be made for possible mil variation in
the depth of the columns, particularly in fairly long runs (i.e., six or more bays of framing).
The beam length can be shortened to provide for mill overrun with shims furnished at the
appropriate intervals to fill the resulting gaps or to provide for mill underrun. Shear end-plate
connections require close control in cutting the beam to the proper length and in squaring the
beam ends such that both end plates are parallel, particularly when beams are cambered.
DESIGN TABLE DISCUSSION (TABLE 10-4)
Table 10-4. Bolted/Welded Shear End-Plate Connections
Table 10-4 is a design aid for shear end-plate connections bolted to the supporting member
and welded to the supported beam. Available strengths are tabulated for supported and
supporting member material with = 50 ksi and Fu - 65 ksi, and end-plate material with
Fy=36 ksi and Fu~58 ksi. Electrode strength is assumed to be 70 ksi. All values, including
slip-critical bolt available strengths, are for comparison with the governing LRFD or ASD
load combination.
Tabulated boh and end-plate available strengths consider the limit states of bolt shear,
bolt bemng on the end plate, shear yielding of the end plate, shear rupture of the end plate,
and block shear rupture of the end plate. Values are included for 2 through 12 rows of
V4-in., ''/s-in. and l-in.-diameter Group A and Group B bolts at 3-in. spacing. End-plate
edge distances. LOT and L,.;,, are assumed to be IV4 in. ,
Tabulated weld available strengths consider the limit state of weld shear assuming an
effective weld length'equal to the end-plate length minus twice the weld size. The tabulated
minimurn beam wfeb thifckness matches the shear rupture strength of the web material to the
strength of the weld metal. As derived in Part 9, the minimum supported beam web
thickness for two lines of weld is
(9-3)
fu
where D is the number of sixteenths-of-an-inch in the weld size. When less than the
minimum material thickness is present, the tabulated weld available strength must be
reduced by the ratio oif the thickness provided to the minimum thickness.
Tabulated supporting member available strengths, per in. of flange or web thickness,
consider the limit state of bolt bearing.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-51
Table 10-4
W44
Bolted/Welded
Shear End-Plate
^-in. Bolts
12 Rows
Connections
L = 35V2 in.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 Vl6 3/8
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD
N STD ; 197 295 : 246' 369 56 430
X STD : 197 295 i 246. 369 295 443
STD 152 228 ' 152 228 152 228
Group A
' SC Class A OVS 129 194 ; 129 194 •ifi- 129 . 194
Group A
SSLT 152 228 152;. 228 152 228
STD 197 295 ; 246; 369 253 380
SC Class B OVS 196 294 216' 323 •j?' 216 323
SSLT 195 293 ; ,244: 366 253 380
N STD i 191 295 : 246^ 369 295 443
X STD ' 1,97 295 ; 2461 369 295 443
STD ; 190 285 ^ 1,90 285 i?0 285
Group B
SC Class A OVS 162 242 1623 242- •>'• 162 . 242
Group B
SSLT 1 190 285 : 19W 285 1&0 285
STD i 197' , 295 , 246: 369 295 443
SC Class B OVS 196 294 ; 245' 367 if: 270 403
SSLT 195 293 i 244:. 366 293 440
Weld and Beam Web Available Strength, kips
support Available
70-ksiWeld
Size, in.
Minimum Beam Web
Thinlriiff«« in
fl„/n 1/Hn Strength per Inch
70-ksiWeld
Size, in.
Minimum Beam Web
Thinlriiff«« in
kips kips
Thickness, kip/in.
70-ksiWeld
Size, in.
ASD LRFD ASD LRFD
3/16 0.286 • 196 293
V4 0.381
0.476
; 260
324
390
486
1400 2110
3/8 0.571 387 581
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to-direction of load
N: =Threads included End-Plate Beam STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to-direction of load
X:
sc=
= Threads excluded
= Slip critical />=36ksi
F„ = 58ksi
/> = 50ksi
F„ = 65ksi
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the filiers.
AMERICAN INSTITUTE OF STEEL ConSTRUCTIoN

lfr-52 DESIGN OF SIMPLE SHEAR CONNECTIONS
3/4-in. Bolts
11 Rows
L=: 32Vain.
Table 10-4 (continued)
Bolted/Weided
Shear End-Plate
Connections
W44, 40
Bon and End-Plate Available Strength, kips
Boit
Group
Thf«ad
Cond.
Hole
Type
End-Plate Thickness, in.
Boit
Group
Thf«ad
Cond.
Hole
Type
1/4 1 6/16 Vs
Boit
Group
Thf«ad
Cond.
Hole
Type
fiSD LRFD ASD LRFD ASD LRFD
N STD ^ 181 271 : 226" 338 263 394
X STD ; 181 271 • 22B 338 271 406
STD i 139 209 : 139 209 139 209
Group A
SC Class A OVS 119 178 119 178 • 178
Group A
SSLT 139 209 ; 139 209 •li39 209
STD 181, 271 226 338 232 348
SC Class B OVS 180 269 198 296 198 296
SSLT i 179 269 224- 336 232 348
N STD
; 181
271 : 226 338 271 406
X STD i 181 271 226 338 271 406
STD
r 174
261 174 261 174 261
Group B
SC Class A OVS 148 222 148 222 '.'148 . .. 222
Group B
SSLT 174 261 174 261 174 261
STD 181 271 ; 226 338 271 406
SC Class B OVS ^ ISO 269 • 225; 337 247 370
SSLT . 179 269 224 336 2p9 403
, Weld and Beam Web Available Strength, i(ips Support Available
TO-ksiWeld
Size, in.
Minimum Beam Web
ThSinLnnec in
«„/n Sb^ength per Inch
TO-ksiWeld
Size, in.
Minimum Beam Web
ThSinLnnec in
kips kips
Thickness, kip/in.
TO-ksiWeld
Size, in. l iiiwniiwo^, III.
ASD LRFD ASD LRFD
3/16 0.286 ; 179 268
V4
5/16
0.381
0.476
: 238
: 296
356
444
1290 1930
3/8 0.571 354 530
STD = Standard holes N =Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
X
SC
=Tt)reads excluded
= Slip critical f, = 36ksi
f„ = 58ksi
f,= 50ksi
f„ = 65l(Si
Note: Slip-critical tiolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-53
W44, 40,
36
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
^/4-in. Bolts
10 Rows
L = 29 Vain.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
V4
ASD LRFD
=/l6
ASD LRFD
Vt,
m LRFD
STD
STD
164
164
246
246
205
205
308
308
239
246
358
370
Group A
SC Class A
STD
OVS
SSLT
127
108
127
190
161
190
127
108^
127
190
161
190
127
108
127
190
161
190
SC Class B
STD
OVS
SSLT
164
163
163
246
245
244
205.
180
308
269
306
211
180
316
269
316
STD
STD
t64
i:64
246
246
205
205;
308
308
246
246
370
370
Group B
SC Class A
STD
OVS
SSLT
158
135
158
237
202
237
158;
135
155:
237
202
237
158
135
158
237
202
237
SC Class B
STD
OVS
SSLT
164
163
163
246
245
244
205;
204
204"
308
306
306
246
2?5
370
336
367
Weld and Beam Web Available Strength, kips
70-ksi Weld
Size,in.
Minimum Beam Web
Thickness, in.
fln/CJ
kips
ASD
kips
Support Available
Strength per Inch
Thickness, kip/in.
LBFD ASD LRFD
'/16
V4
5/16
V,
0.286
0,381
0.476
0.571
162
215
268
320
243
323
402
480
1170 1760
STD = Standard holes
OVS = Oversized holes
SSLT = Short-sloned holes transverse
to direction of load
N = Threads included
X=Threads excluded
SC = Slip critical
End-Plate Beam
fv=36ksi fV = 50ksi
fi = 65ksi
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-54 DESIGN OF SIMPLE SHEAR CONNECTIONS
^/4-in. Bolts
9 Rows
L = 26V2in.
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40.
36,33
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 Vie 3/8
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRI^D ASO LRFD ASD LRFD
N STD : 148'. 222 185 278 215 322
X STD • 148. 222 185 278 222 333
STD : 114 > 171 114 171 11.4 171
Group A
SC Class A OVS 97.1 145 97.1 145 • 97.1 : 145
Group A
SSLT 114 171 114 171 114 171
STD ^ 148 222 185 • 278 190 285
SC Class B OVS 147, 221 , 162 242 K;162 242
SSW 147 220 183 275 190 285
N STD : 14S = 222 185 278 222 333
X STD ! 148 222 185 278 222 333
STD ; 142 214 142 214 142 214
Group B
SC Class A OVS : 121'. 182 121 . 182 182
Group B
SSLT 142 i 214 142- 214 142 214
STD 148 222 185 278 222 333
-SC Class B OVS 147 221 184 . 276 •^202 303
SSLT i 147 220 183' 275 220 330
Weld and Beam Web Available Strength, kips
Support Available
70-ksi Weld
Size,in.
Minimum Beam Web
Thif^trnaec in
B„/£i Strength per Inch
70-ksi Weld
Size,in.
Minimum Beam Web
Thif^trnaec in
kips kips
Thickness, kip/in.
70-ksi Weld
Size,in.
; ASD LRFD ASD LRFD
V16 0.286 ; 145 218
V4
V16
0.381
0.476
193
240
290
360
1050 1580
3/8 0.571 ; 287 430
STD = Standafd holes N = Threads included End-Plate Beam
OVS = Oversized hoies
SSLT = Short-slotted holes transverse
to direction of load
X
SC
=Threads excluded
= Slip critical /i.= 36ksi fysSOkSi
F„ = 65ksi
Note; Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-55
W44. 40,
36, 33,
30
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
^/4-in. Bolts
8 Rows
L = 231/2 in.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
V4
ASO LBFD
V16
ASD LRFD
3/8
ASD LRFD
STD
STD
132 f
132'
198 165
165
247
247
ISi
19S
286
297
Group A
SC Class A
STD
OVS
SSLT
101
86.3
101
152
129
152
101
863
101
152
129
152
101
IQil
152
129
152
SC Class 8
STD
OVS
SSLT
132
131
131
198,
197:
196
165
144-
163
247
215
245
16&
•3144
169
253
215
253
STD
STD
132s;
132 r
198
198
165.
165
247
247 19k
297
297
Group B
SC Class A
STD
OVS
SSLT
127»
108!
127^
190
161
190
127
108
127-
190
161
190
WV
127
190
161
190
SO Class B
STD
OVS
SSLT
132:
131 •
131t-
198
197
196
165.--.
164
163
247
246, .
245
19^
19b
297
269
294
Weld and Beam Web Available Strength, kips
70-ksi Weld
Size,in.
Minimum Beam Web
Thickness, in.
R„/n
kips
ASP
kips
Support Available
Strength per Inch
Thickness, kip/in.
LRFD ASD LRFD
3/16
1/4
5/16
Ve
0.286
0.381
0.476
0.571
129
171
212
253
193
256
318
380
936 1400
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
End-Plate Beam
fi, = S8ksi
F,= 50 ksi
fil s 65 ksl
Note; Slip-critical bolt values assume, no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-56 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-4 (continued)
Bolts Bolted/Welded
7 Rows Shear End-Plate 30.27,
L = 20V2 in. Connections
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 V16 3/8
Bolt
Group
Thread
Cond.
Hole
Type
ASDj LRFD > ASD LRFD ^D LRFD
Group A
N
X
STD
STD
116-
116
174:
174.
: 145-
: 145;;
217
217
167
174
251
260
Group A
SC Class A
STO
OVS
SSLT
88.6
: 75.5
: 88.6
133
113
133
^ 88.6
; 75.5
88.6
133
113
133
88.6
i i; 75.5 ,
8b.6
133
113
133
Group A
SC Class B
STD
OVS
SSLT
116
115
114
174
172
^ 172
145.
126-
143
217
188
214
148
SI 26
148
221
188
221
Group B
N
X
STD
STD
116;
, 116
174
174
145
< 145
217
217
174
174
260
260
Group B
SC Class A
STD
OVS
SSLT
! Ill
94.4
: 111-
166
141
166
. in
94.4
111
166
.141 .
166
11T
H 94.4
111
166
141
166
Group B
SC Class B
STD
OVS
SSLT
116
; 115
. 114
174
^ 172
172
: 145
144
143 -
217
215
214
174
^>157
172
260
235
257
Weld and Beam Web Available Strength, kips Support Available
Strength per Inch
Thickness, kip/in. 70-ksi Weld
Size, in.
Minimum Beam Web
Thickness, in.
B„/fl i|>fl«
Support Available
Strength per Inch
Thickness, kip/in. 70-ksi Weld
Size, in.
Minimum Beam Web
Thickness, in.
kips kips
Support Available
Strength per Inch
Thickness, kip/in. 70-ksi Weld
Size, in.
Minimum Beam Web
Thickness, in.
ASD LRFD ASD LRFD
3/16
1/4
V16
3/8
0.286
0.381
0.476
0.571
112
; 148
! 184
: 220
168
223
277
330
819 1230
STD = Standard) holes N = Threads included
OVS = Oversized holes X=Threads excluded
SSLT = Short-slotted holes transverse SC = Slip critical
to direction of load
End-Plate Beam STD = Standard) holes N = Threads included
OVS = Oversized holes X=Threads excluded
SSLT = Short-slotted holes transverse SC = Slip critical
to direction of load
/j, = 36ksi
f„ = 58ksi
F,= 50ksi
F„ = 65ksi
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTRRUTE OP STEEL CONSTRUCTION

DESIGN TABLES 10-57
W44, 40,
36. 33.
Table 10-4 (continued)
Bolted/Welded ^4-in. Bolts
30, 27,
24, 21
Shear End-Plate
Connections
L
6 Rows
, = 17V2in.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 J 3/8
Bolt
Group
Thread
Cond.
Hole
Type
i ASD LRFD ASD LRFD ASD LRFD
N STO ; 99.5 149 124: 187 143 215
X STD : 99.5 149 ; 124 187 149 224
STD •75.9 114 ; 75.9 114 75.9 114
Group A
SC Class A OVS 64v7 : 96.8 64.7 96.8 •S 64.7 , 96.8
Group A
SSLT i 75.9 : 114 i 75.9 114 7S.9 • • 114
STO 99.5' 149 : 124^? 187 127 190
SC Class B OVS 98.6, 148 108-: 161 : 108 161
SSLT : 98.2 147 : 123 184 127 190
N STO 99.5 149 124 187 149 224
X STD 99.S 149 ' 124:" 187 i49 224
STD ; 94.9 142 34.9 142 94.9 142
Group B
SC Class A OVS i 80.9 121 : 8® 121 as 4 ).9 , 121
Group B
SSLT 1 94.9 142 i 94.9 142 9' ».9 " 142
STD : 99.Sr 149 i IMS 187 149 224
SC Class B OVS : 98.6 148 i 123 • 185 . 135 202
SSLT i 98.2 147 ! 123 184 147 221
Weld and Beam Web Available Strength, kips
Support Available
70-ksi Weld
Size,in.
Minimum Beam Web
Thirl^nAce in
Rn/Ci Strength per Inch
70-ksi Weld
Size,in.
Minimum Beam Web
Thirl^nAce in
kips kips
Thickness, kip/in.
70-ksi Weld
Size,in.
ASD LRFD ASD LRFD
Vl6 0.286 95.4 143
V4
=/l6
0.381
0.476
126 •
S 157
189
235 .
702 1050
0.571 1 187 280
STD = Standard holes N^ = Threads included End-Plate Beam
OVS = Oversize holes
SSLT = Short-slotted holes transveise
to direction of load
X.:
SC^
=Threads excluded
= Slip critical fys36kSi
/i = 58ksi
fysSOksi
/v = 6Sksi
Note: Slip-critical bolt values assume no more tlian one filler has been provided or bolts have been added to distribute loads
in the fillers.

AMERKAN INSOTUTE OF STEEL CONSTRUCTION

lfr-58 DESIGN OF SIMPLE SHEAR CONNECTIONS
3/4-ln. Bolts
Table 10-4 (continued)
Bolted/Welded
W30, 27,
5 Rows Shedr End-Plate 18
L = 14V2in.
Connections
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 Vl6 %
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD
N STD i 83.3 125 ; 104'-' 156 119 179
X STD , 83.3 125 i iO?-: 156 125 187
STD ^ 63.3 94.9 ; 63.3 94.9 63.3 94.9
Group A
SC Class A OVS 53.9 80.7 ; 53;9 80.7 53.9 80.7
Group A
SSLT 63.3: 94.9 63.3 94.9 63.3 94.9
STD . 83.3 125 104- 156 105 158
SC Class B OVS : 82.4 124 i 89.9 134 : : 89.9 134
SSLT : 82.0 123 i 102^.' 154 105 158
N STD 83.3: 125 ^ 104 156 125 187
X STD ; 83.3 125 104- 156 125 187
STD 79.1 119 ; 79.1 119 7S ).l 119
Group B
SC Class A OVS ; 67.4 101 , 67=4 101 67.4 101
Group B
SSLT ' 79.1 1-19 i 79.1 119 79.1 119
STD : 83.3> • 125 ^ 104.' 156 125 187
SC Class B OVS i 82.4; 124 • 103:- 155 ::iiz 168
SSLT 82.0 123 • 1 T02 154 123 184
Weld and Beam Web Available Strength, kips
Support Available
70-ksi Weld
Size,in.
Minimum Beam Web
Thinlrnocc in
R„/Q «fR„ Strength per Inch
70-ksi Weld
Size,in.
Minimum Beam Web
Thinlrnocc in
kips kips
Thickness, kip/in.
70-ksi Weld
Size,in.
ASD LRFD ASD LRFD
3/16 0,286 ^ 78.7 118
V4 0.381 104 156
585 878
0.476 ; 129 193
585 878
3/8 0.571 153 230
STD = Standard holes N =Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Shoil-slotted holes transverse
to direction of load
X
SC^
= Ttireads excluded
= Slip critical F, = 36ksi
F„ = 58l(Si
jysSOksi
F„ = 65ksi
Note: Slip-critical bolt values assume no more tfian one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-59
Table 10-4 (continued)
3/4-:
W24,21 Boited/Welded
3/4-: n. Bolts
18, 16 Shear End-Plate 4 Rows
Gonnections
I . = 1lV2in.
Bolt and End-PIMe Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
Vie
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ; ASD LRFD fi&O LRFD
N STD 1 6?.1 101 ; 83.9 126 95.5 143
X STD 1 67^1 : 101 ' 83.9 126 101 151
STD 50.6 75.9 50.6 75.9 50.6 75.9
Group A
SC Glass A OVS ! 43.1 64,5 • 43.1 64.5 64,5
Group A
SSLT ; 50.6 75.9 50.6 75.9 5D.6 " 75.9
sro i 67,1 101 , 83.9 126 84:4 127
SC Class B OVS i 65'3 97.9 ' 71.9 108 . •9 108
SSLT i 65^8 98.7 82.2- 123 84,4 127
N STD j ,67.1 - 101 . 83.9 126 io;i 151
X STD 101 83:9 126 101 151
STD 63;3 94.9 • 63;3 94.9 63.3 94,9
Group B
SC Class A OVS 53.9 80.7 53.9 80.7 53.9 80.7
Group B
SSLT ^ 63.3 ^ 94.9 , 63.3 - 94.9 63.3 94.9
STD ; 67.1 101 . 83.-9 126 101 151
SC Class B OVS ; 6513 97.9 8i.e 122 89.9 134
SSLT ; .6518 98.7 82.2 123 98.7 148
. Weld and Beam Web Available Strength, kips
Support Available
70-ksi Weld
Size, in.
Minimum Beam Web
Thii*lmo«c in
R„/a Strength per Inch
70-ksi Weld
Size, in.
Minimum Beam Web
Thii*lmo«c in
kips kips
Thickness, kip/in.
70-ksi Weld
Size, in.
ASO LRFD ASD LRFD
3/16 0.286 : 61.9 92.9
V4 0.381 81.7 123
468 702
5/16 0.476 : 101 151
468 702
% 0.571 ! 120 180
STD = Standard holes N = Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slotted hi^es transverse
to direction of load
SC^
= Threads excluded
= Slip critical Fy=36ksi Fr = 50ksi
F„ = 65ksi
Note; Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

LFr-60 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-4 (continued)
Bolts Bolted/Welded W18, 16,
3 Rows Shear End^Plate
14, 12,
10*
L = 8V2in.
Connections
Bolt and End-Plate Available Strength, kips
Bolt
Group
thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
thread
Cond.
Hole
Type
V4 , S/16
Bolt
Group
thread
Cond.
Hole
Type
ASO LRFD i ASO LRFO ^0 LfiFO
N STD : 50.9: 76.4 ; 63.7 95.5 71.6 107
X STD : 50.9 76.4 1 63.7 95.5 76.4 115
STD ! 38.0 57.0 38.0 57.0 38.0 57.0
Group A
SC Class A OVS i 32.4 48.4 : 32.4 48.4 48.4
Group A
SSLT : 38.0 57.0 38X). 57.0 38.0 57.0
STD ; 50.9 76.4 i 63.3 94.9 63.3 94.9
SC Class B OVS i 47.9 71.8 53.S 80.7. 80.7
SSLT i 49.6 74.4 i 62;Q:' 92.9 6i3 94.9
N STD : 50.9 76.4 1 63:7 95.5 76.4 115
X STD ^ 50.9. 76.4 1 63.7 95.5 76.4 115
STD 47.5 71.2 47=5 71.2 47.5 71,2
Group B
SC Class A OVS
SSLT
' 40.4
; 47.5
60.5
71.2
1 40:4 ;
^ 47;S:
60.5,
71.2
"e40.4 ,
4^5
60.5
71.2
STD ' 50.9 76.4 ; 63:7 95.5 76.4 115
SO Class B OVS 47.9 71.8 , 59.8 89,7 0" 67.4 101
SSLT 49.6 74.4 ^ 62.0 92.9 74.4 112
Weld and Beam Web Available Strength, kips
Support Available
70-ksiWeld
Size, in.
Minimum Beam Web
Thi/^bnocc in
t>n» Strength per Inch
70-ksiWeld
Size, in.
Minimum Beam Web
Thi/^bnocc in
kips kips
Thickness, kip/in.
70-ksiWeld
Size, in.

ASD LRFD ASO LRFD
0.286 45.2 67.9
V4 0.381
0.476
: 59.4
73.1
89.1
110
351 526
3/8 0.571 ; ,88.3 129
STD = Standard holes N. = Threads Included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
SC^
= Threads excluded
= Slip critical Fy = 36ksi
f„=58ksi
f
f
;, = 50ksi
i,s65i(si
•Limited to W10x12,15,17,19,22,26,30
Note: Slip-criticai Iralt vaiues assume no more ttian one filler has been provided or bolts have been added to distribute loads
in the filters.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-61
W12,10,
8
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
^/4-m. Bolts
2 Rows
L = 5V2 in.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
V4
ASD LRFD
V16
ASD LRFD
Vb
ASD LRFD
STD
STD
32.6
32.6
48.9
48.9
40.8
40.8
61.2
61.2
47.7
48.9
71.6
73.4
Group A
SC Class A
STD
OVS
SSLT
25.3
21.6
25.3
38.0
32.3
38.0
25:3:
21.6
25.3
38.0
32.3
38.0
25.3
21.6
2^3
38.0
32.3
38.0
SC Class B
STD
OVS
SSLT
32.6
30.5
32.6
48.9
45.7
48.9
403
36.0
40.8
61.2
53.8
61.2
42.2
36.0
42.2
63.3
53.8
63.3
STD
STD
32.6
32.6
48.9
48.9
40.8
40.8
61.2
61.2
48.9
48.9
73.4
73.4
Group B
SC Class A
STD
OVS
SSLT
31.6
27.0
31.6
47.5
40.3
47.5
31.6
27.0
31.6
47.5
40.3
47.5
31.6
27.0
31.6
47,5
40.3
47.5
SC Class B
STD
OVS
SSLT
32.6
30.5
32;6
48.9
45.7
48,9
40.8
38-1
40.8
61.2
57.1
61.2
48.9
44.9
4^9
73.4
67,2
73,4
Weld and Beam Web Available Strength, kips
70-ksi Weld
Size,in.
Minimum Beam Web
Thickness, in.
fln/fl
kips
ASD
kips
support Available
Strength per Inch
Thickness, kip/in.
LRFD ASD LRFD
3/16
V4
V16
0.286
0.381
0.476
0.571
28.5
37.1
45.2
52.9
42.8
55.7
67.9
79.4
234 351
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip critical
End-Plate Beam
fy = 36ksi
ft = 58ksi
/V=50ksl
f„ = 65ksi
Note: Slip-criacal bolt values assume nb more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-62 DESIGN OF SIMPLE SHEAR CONNECTIONS
7/o-r„.
Table 10-4 (continued)
7/o-r„. Bolts Bolted/Welded
W44
12 Rdws Shear End-Plate
W44
L = 351/2 in.
Connections
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V« V16
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD
N STD 196 294 : 245 367 294 441
X STD 196 ' 294 : 245. 367 294 441
STD 196 294 : 212 317 212 317
Group A
SC Class A OVS 180 270 tBo:- •270 270
Group A
SSLT 194 292 ! 212 317 -212 317
STD i 196 294 ; 245 367 294 441
SC Class B OVS 191 287 : 239 359 287 431
SSLT ! 194 292 i 243 365 292 438
N STD 196 294 : 24S:; : 367 294 441
X STD 196 294: ; '245', 367 294 441
STD ; 196 294
i 245
m 266 399
Group B
SC Class A OVS 191 287 ' 2m 339 227 339
Group B
SSLT ! 194 292 ' 243 365 266 399
STD : 196 294 : 245 367 294 441
SC Class B OVS ; 191 287 ! 239 359 ' 287 431
SSLT ' 194 292 ! 243 365 292 438
Weld and Beam Web Available StrengHi, kips ^uiiport Available
70-ksiWeld
Size, in.
Minimum Beam Web
TK>«l#nn0<« in
Rn/O. Strength per Inch
70-ksiWeld
Size, in.
Minimum Beam Web
TK>«l#nn0<« in
kips kipis
Thickness, ikip/in. 70-ksiWeld
Size, in.
ASD LRFD ASD LRFD
3/16 0.286 : 196 293
1/4
=/l6
0.381
0.476
1 2i)
1 '324
390
486
1640 2460
Vs 0.571 1 ;387 581
STD = Standard holes N =Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slotted tmles transverse
to direction of load
X
SC
=Threads excluded
= Slip critical fya36ksi
f„=58ksi F„ = 65ksi
Note; Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
In ttie fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-63
W44, 40
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
^3-in. Bolts
11 Rows
L = 32V2 in.
Bolt and End-Plate Availabfe Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
V4
ASD LRFD
Vie
ASO LRFD ASD LRFD
STD
STD
180
180:
269
269
225;
225
337
337
269
269
404
404
Group A
SC Class A
STD
OVS
SSLT
180
165
m
269
247
267
194
165
194^
291
247
291
194
165
194
291
247
291
SC Class B
STD
OVS
SSLT
180
175
178
269
263
267
225
219
223'
337
328
334
269
/ • 263
267
404
394
401
STD
STD
fflO
1.80;^
Groups
SC Class A
STD
OVS
SSLT
180
175
178:
269
269
225r
225
337
337
269
269
404
404
269
263
267
225;
20s
.223:'
337
311
334
244
208
244
365
311
365
SC Class 8
STD
OVS
SSLT
180.
175
178
269
263
267
225
219
223;,
337
328
334
269
263
267
404
394
401
Weld and Beam Web Available Strength, kips
70-ksi Weld
Size,in.
Minimum Beam Web
Thickness, In.
B„/n
kips
ASD
kips
Support Available
Strength per Inch
Thickness, kip/in.
LRFD ASD LRFD
V4
5/16
Ve
0.286
0.381
0,476
0.571
179
238
296
354
268
356
444
530
1500 2250
STD = Standard holes . .
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N =T1ireads included
X = Threads excluded
SC = Slip critical
End-Plate Beam
F,=36ksi
f„ = 58ksi
/yr^SOksi
f„ = 65ksi
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-64 DESIGN OF SIMPLE SHEAR CONNECTIONS
y3-in. Bolts
10 Rows
L = 29V2 in.
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44,
40, 36
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
'/4 Vl6
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD
N STD : 163 ; 245 204 ^ 306 245 368
X STD : 163 245 i 204 306 245 368
STD ; 163 • 245 i 176 264 176 264
Group A
SC Class A OVS ; 150 225 ISO 225 150 225
Group A
SSLT 162 243 1 176 264 176 264
STD 163 245 204 306 245 368
SC Class B OVS TS9 238 198 298 238 357
SSLT 1i62 243 203 . 304 243 365
N STD i 163 245 : 204, 306 245 368
X STD 163 245 ; 204 306 245 368
STD 163 245 ; 204 306 221 332
Group B
SO Class A OVS 159 238 189 282 189 282
Group B
SSLT ; 162 243 203 304 221 332
STD : 163 245 204: 306 245 368
SC Class B OVS 159 238 198- 298 238 357
SSLT ; 162 243 203 304 243 365
Weld and Beam Web Available Strength, kips Support Available
70-ksi Weld
Size,in.
Strength per Inch
70-ksi Weld
Size,in.
wmimum oeam iraeo
ThinL-fiMi^f* in
kips kips
Thickness, kip/in. 70-ksi Weld
Size,in. 1 iif>
ASD LRFD ASD LRFD
3/16 0.286 162 243
1/4
=/l6
0.381
0.476
215
268
323
402
1370 2050
% 0.571 320 480
STD = Standard holes N =Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
X
SC
= Threads excluded
= Slip critical /y=36ksi
Fu = 58 ksi
Fj,s5aksi
F„ = 65ksi
Mote: Slip-critical twit values assume no more than one tiller tias l)een provided or twits toe been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-65
W44,40,
36, 33
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
^3-in. Bolts
9 Rows
L = 26V2m.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
Ehd-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
Vi 5/16
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD
N STD 147 221 ; 184. 276 221 331
X STD ! 147 221 : 184 276 221 331
STD 147 221 : 159 238 159 238
Group A
SC Class A OVS : 135 202 135 202 135, , 202
Group A
SSLT 14B 219 ^ 159. 238 159 238
STD : 147 221 i i:84i 276 221 331
SC Class B OVS 142 214 ^ 178 267 i;', 214 321
SSLT 146 21 ff 182. 273 219 328
N STD 147 221 ; 184' 276 221 331
X STD 147 221 ; 184 276 221 331
STD ; 147 221 184^ 276 199 299
Group B
SC Class A OVS 142 214 170 254 . 170 , 254
Group B
SSLT 146 219 : i;82 273 199 299
STD : 147 221 ; 184 276 221 331
SO Class B OVS f42 214 : 1.78 267 . / - 2M 321
SSLT 146 219 ; T8K' 273 219 328
Weld and Beam Web Available Strength, kips
Support Available
70-k$i Weld
Size, in.
lUinimum Beam Web
Th!f>knace in
R„/a Strength per Inch
70-k$i Weld
Size, in.
lUinimum Beam Web
Th!f>knace in
kips kips
Thickness, kip/in.
70-k$i Weld
Size, in. I
ASD LRFD ASD LRFD
3/16 0.286 145 218
V4
6/16
0.381
0.476
193
240
290
360
1230 1840
% 0.571 287 430
STD = Standard holes N = Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
X
SC^
=Threads excluded
= Slip critical Fy=36ksi
f„ = 58ksi
fy = 50ksi
f„ = 65l(si
Note; Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-66 DESIGN OF SIMPLE SHEAR CONNECTIONS
7/8-,..
Table 10-4 (continued)
7/8-,.. Bolts Bolted/Welded
W44, 40,
8 Rows Shear End-Plate
JO,
30
L = 23V2in.
Connections
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
5/16 Vs
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD : ASD LRFD ASD LRFD
N STD 131 ; 197 164 246 197 295
X STD 131 197 164' 246 lb 295
STD 131 197 141 212 141 212
Group A
SC Class A OVS i 120. ^ 180 120 180 180
Group A
SSLT ; 130 194 141- 212 141 212
STD 131 197 164 246 197 295
SC Class B OVS i 126 189 ; .iss- 237 . 189 284
SSLT 130 194 162 243 104 292
N STD i 131 197 164 246 ip? 295
X STD ' 131 197 164 246 197 295
STD 131 197 164 246 177 266
Group B
SC Class A OVS : 1>26: 189 151 226 151 226
Group B
SSLT 130 194 . 162- 243 177 266
STD ' 131 197 164 246 1W 295
SC Class B OVS 126 189 158 237 22189 284
SSLT 130 194 162 243 292
Weld and Beam Web Available Strength, kips
Support Available
70-ksi Weld
Size, in.
iVIinimum Beam Web
Thiplrni^cc in
R„/a Strength per Inch
70-ksi Weld
Size, in.
iVIinimum Beam Web
Thiplrni^cc in
kips kips
Thickness, kip/in.
70-ksi Weld
Size, in.
ASD LRFD ASD LRFD
0.286 ' 129 193
V4
=/l6
0,381
0.476
1 l^l
i 212
256
318
1090 1640
3/a 0.571 ! 253 380
STD = Standard holes N =Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slotted holes transverse
, to direction ot load
X
SC
=Threads excluded
= Slip critical fy=36ksi
f„=58ksi
Fy = 50ksi
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-67
W44,40
36, 33,
Table 10-4 (continued)
Bolted/Welded ^3-in. Bolts
30, 27, Shear End-Plate 7 Rows
24
Connections
L = 20 Vain.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond,
Hole
Type
End-Mate Thickness, in.
Bolt
Group
Thread
Cond,
Hole
Type
Vi 6/16
Bolt
Group
Thread
Cond,
Hole
Type
ASD LRFD ASD LRFD ASO LRFD
N STD 115 172 ; 144: 215 172 258
X STD : 115 172 144' 215 172 258
STD • 115 172 - 123' 185 123 185
Group A
SC Class A OVS 105 157 i 1:05 157 ,; 105 157
Group A
SSLT : 113 170 i mv 185 123 185
STD ~Tii 172 i t44 215 172 258
SC Class B OVS ; 110 165 ; 137, 206 165 247
SSLT ' 113 170 • 142 213 170 255
N STD : 115 172 : 144 215 172 258
X STD : 115 172 144^ : 215 172 258
STD : 115 172 144 215 155 233
Group 8
SC Class A OVS : 110 165 : 132 198 ^k , 198
Group 8
SSLT ; 113 170 : 142 213 155 233
STD ; 115 172 i 144 215 172 258
SC Class B OVS • 110 165 ; 137 206 165 247
SSLT ' 113, 170 ' 14a 213 ^ 170 255
Weld and Beam Web Available Strength, kips
Support Available
70-ksi Weld
Size,in.
Minimum Beam Web
ThinkriACfi in
a„/a 41 Ro Strength per Inch
70-ksi Weld
Size,in.
Minimum Beam Web
ThinkriACfi in
kips kips
Thickness, kip/in.
70-ksi Weld
Size,in.
ASD LRFD ASO LRFD
3/16 0,?.86 112 168
V4
5/M
3/8
0,381
0,476
0,571
; 148
: 184
220
223
277
330
956 1430
STD = Standard holes N: =Threads included End-Plate Beam
OVS = Oversized holes
SSLT =.Short-slotte() holes transverse
to direction of load
X:
SC.
= Threads excluded
= Slip critical Fy=36ksi .
F„ = 58ksi
f, = 50ksi
f'ucesksi
Note; Slip-critical bolt values assume no more than one filter has
in the fillers.
been provided or bolts have been added 1 to distribute loads
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-68
DESIGN OF SIMPLE SHEAR CONNECTIONS
•7,
Table 10-4 (continued)
W40, 36,
33, 30,
7/o.i„. Bolts Bolted/Welded
W40, 36,
33, 30,
6 Rows Shear End-Plate
27, 24,
21
L = 17V2in.
Connections
27, 24,
21
Bolt and End-Plate Available Strength, kips
Bolt
Group
Tliread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Tliread
Cond.
Hole
Type
V4 =/t6
Bolt
Group
Tliread
Cond.
Hole
Type
ASD LBFD ASD LRFD m LBFD
N STD 98.6 148 123' 185 148 222
X STD 98.6 148 : 123 185 148 222
STD 98.6 148 106 • 159 106 159
Group A
SC Class A OVS ; 90:1 135 90.1 135 :: 90.1 135
Group A
SSLT 97.3 146 106. : 159 106 159
STD 98.6 148 123 185 148 222
SC Class B OVS 93:5 140 • 1T7- 175 :.;i4b 210
SSLT 97.3 146 122 182 146- 219
N STD ' 98.6 148 123 185 148 222
X STD 98.6 148 123 185 148 222
STD 98.6 148 ; 123. 185 133- 199
Group B
SC Class A OVS 93.5 140 11:3 i 169 ;MI3 169
Group B
SSLT : 97.3 146 122 182 13b 199
STD ; 98.6 148 123 c 185 148 222
SC Class B OVS i 93iS 140 : 117') 175 •140 210
SSLT 97.3 ' 146 i 122 182 146 219
Weld and Beam Web Available Strenstb, Kips Support Available
70-ksi Weld
Size, in.
fl„/n Strength per Inch
70-ksi Weld
Size, in.
Minimum ueam weo
in
kips kips
Thickness, kip/in. 70-ksi Weld
Size, in.
ASD LBFD ASD LBFD
3/16 0.286 95.4 143
Vie
0.381
0.476
126
157
189
235
819 1230
3/8 0.571 187 280
STD = Standard holes N =Threads included End-Plate Beam
OVS =s Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
X
SC
= Threads excluded
= Slip critical /V = 36ksi /ysSOksi
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-69
W30, 27,
24,21,
18
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
^3-in. Bolts
5 Rows
L = 14V2in.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Tliread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Tliread
Cond.
Hole
Type
V4 =/l6 3/8
Bolt
Group
Tliread
Cond.
Hole
Type
ASD LRFD AISD LRFD ASD LRFD
N STD 82.4 124 ; 103 155 124 185
X STD ^ 82.4 124 103 155 124 185
STD 82,4 124 88.d 132 8f i.1 132
Group A
SC Class A OVS : 75.1 112 75.1 112 75.1 112
Group A
SSLT : 81.1 122 88.1 132 8i i.1 132
STD : 82.4 124 103; 155 124 185
SC Class B OVS 77.2 116 96.5 145 174
SSLT 81.1 122 101:?-" 152 122 182
N STD 82.4 124 103:! 155. 124 185
X STD 82;4 124 103 155 124 185
STD 82;4 124 ; 103/ 155 ii:i 166
Group B
SC Class A OVS 77l2 116 94.4 141 •" 94.4 , 141
Group B
SSLT • 81.1 122 : 101 152 111 166
STD 82:4 124 103 155 124 185
SC Class B OVS 77:2 116 96.5 145 174
SSLT 81.1 122 101 152 122 182
Weld and Beam Web Available Strengtli, kips Support Available
70-ksiWeld
Size, in.
IMinimum Beam Web
Thi/tLnaec in
Bn/n (tifl„ Strength per Inch
70-ksiWeld
Size, in.
IMinimum Beam Web
Thi/tLnaec in
kips kips
Thickness, kip/in.
70-ksiWeld
Size, in. Ml.
ASD LRFD ASD LRFD
0.286 78.7 118
V4
5/16
3/8
0.381
0.476
0.571
104
193
153
156
193
230
683 1020
STD = Standard holes N^ = Threads included End-Plate Beam
OVS = Oversized boles
SaT = Short-slotted holes transverse
to direction of load
X
SC^
= Threads excluded
= Slip critical /> = 36ksi
/i, = 58ksi
fy = 50kSt
F„=65ksl
Note: Slip'Criticai bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CoNsxatJcnoN

lfr-70 DESIGN OF SIMPLE SHEAR CONNECTIONS
7/8-tn.
Table 10-4 (continued)
7/8-tn.
Bolts BQlted/Welded W24,21.
4 Rows Shear End-Plate
18,16
L = 11 Vain.
Gonnections
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 Vl6 '
Bolt
Group
Thread
Cond.
Hole
Type
' ASD LRFD ASD LRFD ASD LRFD
N STD 65.3 97.9 81.6 122 97.9 147
X STD 65.3 97.9 81:6 122 • 97.9 147
STD : 65.3 97.9 70.5 106 70.5 106
Group A
SC Class A OVS 60.1 89.9 • 60.1! 89.9 60.1 89.9
Group A
SSLT 64.9 97.3 70.5 106 70.5 106
STD 65.3 : 97.9 : 81.6 122 97.9 147
SC Class B OVS : 60.9 91.4 76.1 114 91.4 137
SSLT : 64,9 97;3 81 .'1 122 9^3 146
N STD i 65.3 97.9 81.6 122 97.9 147
X STD 65.3 ^ 97.9 81 ,e 122 ?t.9 147
STD 65.3 97.9 81.6 122 88.6 133
Group B
SC Class A OVS 60.9 ^ 91.4 75.5 113 ^ ;337t5 113
Group B
SSLT 64.9 97.3 8t.1 122 8g.6 133
STD 65.3 97.9 81.6 122 97 .9 147
SC Class B OVS : 60.9 ; 91.4 i 76;^ 114 S.; 91.4 137
SSLT 64.9 97;3 81.1 122 9h3 146
Weld and Beam Web Available Strength, kips
Support Available
70-ksl Weld
Size, in.
Minimum Beam Web
Thir^npce in
R„/a iS,R„ Strength per Inch
70-ksl Weld
Size, in.
Minimum Beam Web
Thir^npce in
kips kips
' Thickness, kip/in.
70-ksl Weld
Size, in.
ASD LRFD ASD LRFD
Vie 0.286 61.9 92.9
V4 0.381 81.7 123
546 819
=/l6 0.476 101 151
546 819
0.571 120 180
STD = Standard holes N = Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction ot load
X
SC
=Threads excluded
= Slip critical f,= 36ksi
F„ = 5Sksi
f, = 80ksi
Note; Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-71
Table 10^4 (continued) 7
W18,16
> Bolted/Welded 'g-in. Bolts
14, 12,
10* Shear End-Plate 3 Rows
Connections
L = 8V2 in.
Bolt and End-Plate Available Strength, kips
Bolt
Groiip
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Groiip
Thread
Cond.
Hole
Type
1/4 5/16 3/8
Bolt
Groiip
Thread
Cond.
Hole
Type
^ ASD LRFD , ASD LRFD ASd LRFD
N STD f 47.9 , 71.8 j 59.8 89.7 . 71.8 108
X STD ' 47.9 71.8 : 59.8 89.7 71.8 108
STD ; 47:9 71.8 i 52.9 79.3 52.9 79.3
Group A
SC Class A OVS ^ 44;6 66.9 • 45.1- 67.4 .•"•45.1 67.4
Group A
SSLT ! 47<:9 71.8 52.9' 79.3 52.9 79.3
STD • 47.9 71.8 59.S 89.7 71 .8 108
SC Class B OVS • 44.6 66.9 : 55.7 83.6 , 66.9 100
SSLT ' 47.9 71.8 59.B' 89.7 71.8 108
N STO ; 47:9 71.8 ! 59.8 89.7 Til.8 108
X STD 47.9 71.8 ; 59.8 89.7 71.8 108
STD 1 47v9 71.8 ! 59.8 89.7 66.4 99.7
Group B
SC Class A OVS 44.6 66.9 ; 83.6 .0 56.6 84.7
Group B
SSLT ' 47.9 71.8 ; 59:8, 89.7 . 66.4 99.7
STD 47.9 71.8 i 59.8 89,7 71 .8 108
SO Class B OVS 44:6 66.9 i 55;? 83.6 - 66.9 100
SSLT 47,9 71.8 ! 59i. 89.7 73 .8 108
, Weld and Beam Web Available Strength, kips
Support Available
70-ksiWeW
Size,in.
Minimum Beam Web
Thinlrnfkcc in
flfl/a Strength per Inch
70-ksiWeW
Size,in.
Minimum Beam Web
Thinlrnfkcc in
kips kips
Thickness, kip/in.
70-ksiWeW
Size,in.
; ASD LRFD ASD IBfD
3/16 0,286 45.2 67.9
V4
s/ie
0.381
0.476
i 59.4
• 7^-1
89.1
110
409
i
614
y<s 0.571 ' 86.3 129
STD = Standard holes (J: = Threads included End-Plate Beam
OVS = Oversized holes
SStT = Short-slotted holes transverse
to direction of load
X:
SC.
=Threads excluded
= Slip critical /ys36ksi
f„ = 58ksi
fy = 50ksi
f„ = 65ksi
*UmitedtoW10x12,15,17,19,22,26,30
Note: Slip-critical bolt values assume no more tlian one filler has been provided or bolts have been added to distribute loads
in the fillers.

AMERICAN INSTITUTE OF STEEL CoNSTRiierioN

lfr-72 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-4 (continued)
y3-in. Bolts Bolted/Welded vvi2,10,
2 Rows Shear End-Plate 8
1. = 5 Vain. Connections
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
1/4 5/16
Bolt
Group
Thread
Cond.
Hole
Type
ASO LRFD ASD LRFD ASD LBFO
Group A
N
X
STD
STD
30.5
30.5
45.7
: 45.7
38.1
! 38.1-
57,1
57.1
45,7
45.7
68,5
68.5
Group A
SC Class A
STD
OVS
SSLT
30.6
28.3
30.5
45.7
42.4
45.7
• 3313
30.0
35.3
52,9
45.0
52,9
35.3
30.0
ska
52,9
45,0
52.9
Group A
SC Class B
STD
OVS
SSLT^
30.5
28.3
30.5
45.7
42.4
45.7
38:1
35.3
^ 384, :
57.1
53.0
57.1
45.7
• 42.4
45.7
68.5
63.6
68.5
Group B
N
X
STD
STD
30.5
30.5
45.7
45.7
, 38:1
^ 38.t
57.1
57.1
45.7
45.7 :
68,5
68.5
Group B
SC Class A
STD
OVS
SSLT
30.5
28.3
30.5
45.7
42.4
45,7
38,1
35:3
38.1
57,1
53.0
57.1
44.3
>'3X8
44.3
66.4
56.5
66,4
Group B
SC Class B
STD
OVS
SSLT
: 30.5
28:3
30.5
45.7
42,4
45,7
38;1
35.3
38.r
57.1
53.0
57.1
45.7
, - 4^4
45.7 :
68.5
63.6
68.5
Weld and Beam Web Available Strength, kips Support Available
Strength per Inch
Thickness, kip/in. 70-ksi Weld
Size,in.
Minimum Beam Web
Thickness, in.
R„/Q
Support Available
Strength per Inch
Thickness, kip/in. 70-ksi Weld
Size,in.
Minimum Beam Web
Thickness, in.
kips kips
Support Available
Strength per Inch
Thickness, kip/in. 70-ksi Weld
Size,in.
Minimum Beam Web
Thickness, in.
ASO LRFD ASO LRFD
3/16
'A
=/l6
0.286
0,381
0.476
0.571
28.5
37.1
45.2
52.9
42.8
55,7
67.9
79,4
273 409
STD = Standard holes N = Threads included
OVS = Oversized holes X = Threads excluded
SSLT = Short-slotted holes transverse SC = Slip critical
. to direction of load
End-Plate Beam STD = Standard holes N = Threads included
OVS = Oversized holes X = Threads excluded
SSLT = Short-slotted holes transverse SC = Slip critical
. to direction of load
/> = 36ksi
F„ = 58ksi
Fy=50ksi
ftf=65ksi
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers:
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

UcalOlN lABLBS 10-73
Table 10-4 (continued)
W44
Bolted/Welded "j -in. Bolts
W44
Shear End-Plate 12 Rows
Connections
L = 351/2 in.
Bdit and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 , S/16 '/8
Bolt
Group
Thread
Cond.
Hole
Type
ASO LRFO : ASD LRFD ASD LRFD
N STD : 191 287 239 359 287 431
X STO 191 287 239 359 287 431
STD 191 287 : 239 i 359 m 415
Group A
SC Class A OVS 172 258 : 215 322 236 353
Group A
SSLT : 191, 287 I 239, 359 2:77 • 415
STD 191 287 ' 239 359 287 431
SC Class B OVS • 172 258 215 322 258 387
ssur : 191 287 289 359 287 431
N STD 191 287 239» 359 ; 287 431
X STD 191 287 239 359 28T 431
STD 191: 287 i 239' 359 2S7 431
Group B
SC Class A OVS 172 258 2r5 322 -:C 258 ^ 387
Group B
SSLT i 191; 287 • 239" 359 287 431
STD 191 287 i 239 359 287 431
SC Class B OVS 172 258 i 215 322 258 387
SSLT 191 287 2S9 359 287 431
Weld and Beam Web Available Strength, kips
Support Available
70-ksi Weld
Size,In.
Minimum Beam Web
ThioLnACe in
Strength per Inch
70-ksi Weld
Size,In.
Minimum Beam Web
ThioLnACe in
kips kips
Thickness, kip^n.
70-ksi Weld
Size,In.
ASD LRFD ASO LRFD
>/4
0.286
0.381
196
260
293
390
SSLT ,
2730
SSLT

3/8
0.476
0.571
; 324
387
486
581
1660 OVS • 2490 OVS
STD = Standard holes N = Threads included^ End-Plate Beam
OVS = Oversized holes
SSLT=Short-slotted holes transverse
to direction of load
X
SC
= Threads excluded
= Slip critical
F„ = 58ka
F, = 50ksi
F„=65ksi
Note: Slip-critica( bolt values assume no more tfian one filler has been provided or bolts have been added to distribute loads
in the filters.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

l»-74 DESIGN OF SIMPLE SHEAR CONNIIU LLUMS
Table 10-4 (continued)
"f -in. Bolts Boited/Welded
11 Rows Shear End-Plate
L = 32V2 in.
Connectionis
Bolt and End-Plate Available Strength, kips
Bolt
Group
fliread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
fliread
Cond.
Hole
Type
V4 Via Vs ,
Bolt
Group
fliread
Cond.
Hole
Type
: ASD LRFD ASD LRFD ASD LRFD
N STD 175 263 219 328 263 394
X STD : 175 263 219 32B; 263 394
STD : 175 263 2T9; 328 254 380
Group A
SC Class A OVS 157 236 ; 196 295
• 216
^^ 323
Group A
SSLT i 175 263 ; 328 254 380
STD 175 263 219 328 263 394
SC Class B OVS 157 236
' '96
295. 2^36 354
SSLT 175 263 ' 219 328 263 394
N STD 175 263 ^ 219 , 328 263 394
X STD 175 263 = 219 328 263 394
STD i 175 263 ; 219 328 263, 394
Group B
SC Class A OVS ' 157 236 : 196 295 - 2^6 354
Group B
SSLT ' 17S 263 i 219 328 263 394
STD : 175 263 : 219 328 283 394
SC Class B OVS ; 157 236 1.96 295 236 354
SSLT 175 263 : 219 328 263 39^1
Weld and Beam Web Available Strength, kips Support Available
70-ksiWeld
Size,In.
Strength per Inch
70-ksiWeld
Size,In.
minimum oeam weo
ThirlrHci«c in
kips kips
Thickness, kip/in.
70-ksiWeld
Size,In.
ASO LRFD ASD LRFD
Vie
V4
0.286
0.381
179
238
268
356
iR7n STO/
SSLT ;
2500
SSLT
V16
Vs
0,476
0.571
; 296
; 354
444
530
1520 OVS 2280 OVS
STD = Standard holes N = Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slottsd holes transverse
to direction of load
X
SC
= Threads excluded
= Slip critical
F„=S8ksi
fj,= 50ksi
f„ = 65ksi
Note; Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-75
W44, 40,
36
Table 10-4 (continued)
Bolted/Welded
Shear End^Plate
Connections
-f -in. Bolts
10 Rows
Z. = 29V2in.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
TVpe
End-Plate Thickness, in.
V4
ASdi LRFD
Vie
ASD LRFD
Vs
ASD LRFD
STD
STD
159
159-
238
238
Group A
SC Class A
STD
OVS
SSLT
1S9-
142
1S9
238
214
238
SC Class B
STD
OVS
SSLT
159
142
159
238
214
238
298
298
238'
238
357
357
78
298
267
298
231
196
231
346
294
346
78
298
267
298
2:38
? 214
238
357
321
357
STD
STD
159
159
238
238
298'
298
238
238
357
357
Group B
SC Class A
STD
OVS
SSLT
159
142
159
238
214
238
f08
78
981
298
267
298
238
214
238
357
321
357
SC Class B
STD
OVS
SSLT
159
142
159
238
214
238
78
298
267
298
238
214
238
357
321
357
Weld and Beam Web Available Strength, kips
70-kstWeld
Size,in.
Minimum Beam Web
Thickness, in.
ffn/O
kips
ASD
(tiBn
kips
Support Available
Strength per Inch
Thickness, Idp/in.
LRFD ASti LRFD
Vl6
=/ie
3/8
0.286
0.381
0.476
0.571
162
215
268
320
243
323
402
1520
STD/
SSLT
2270
STD/
SSLT
1380 OW' 2080 OVS
STD = Standard holes
OVS = Oversized holes
SSLT - Short-slottBd holes transverse
to direction of load
N = Threads included
X = Threads excluded
SC = Slip aitical
End-Plate Beam
f, = 36ksi
f„ = 53ksi
/ysSOksi
F„s65k5i
Note: Slip-critical bolt values assume no niore than on? filler has been pravided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-76 DESIGN OF SIMPLE SHEAR CONNECTIONS
"I-in. Bolts
9 Rows
L= 26V2in.
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Gonnections
W44, 40,
36,33
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Gond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Gond.
Hole
Type
Vt 5/16
Bolt
Group
Thread
Gond.
Hole
Type
ASD LRFD ASO LRFD ASO LRFD
N STD ; 142 214 178. 267 214 321
X STD 142 214 178; 267 214 321
STD 142 21:4 138 267 207 311
Group A
SC Class A OVS
SSLT
128
142
192
214
160
: 178
240
. 267
: 177
207
265
311
STD 142 214 178: 267 214 321
SC Class B OVS 128 192 T60- 240 r; 192 288
SSLT 142 214 178 214 321
N STD 142 214 : 178 1<S1 214 321
X STD 142 214 : 178: 267 214 321
STD 142 214 1® 267 m 321
Group B
SC Class A OVS
SSLT
128
142
192
214
: 160
178:
240
267
192
214 '
288
321
STD 142 214 178 267 214 321
SC Class B DVS ; 128 192 : 160 240 192 288
SSLT i t42 214 : -178 267 214 321
Weld and Beam Web Available Strength, kips
Support Available
70-ksiWeld
Size, in.
Minimum Beam Web
Thinlrnpci: in
R„/a 1>»r Strength per Inch
70-ksiWeld
Size, in.
Minimum Beam Web
Thinlrnpci: in
kips kips
Thickness, kip/in.
70-ksiWeld
Size, in.
ASD LRFD ASO LRFD
Vl6
V4
0.286
0.381
145
193
218
290
1370
SSLT
5/16
%
0.476
0.571
240
287
360
430
1250 OVS : 1870 OVS
STD = Standard holes w. = Threads included End-Plate Beam
OVS = Oversized holes
SSLT= Short-slotted holes transverse
to direction of load
X:
SC =
=Threads excluded
= Slip critical f,= 36ksi
f„ = 58ksi
/y = 5aksi
fii=65ksl
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been.added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

UESIUN lABLBS 10-77
Table 10-4 (continued)
W44.40, Bolted/Welded i-in.Boits
Shear End-Plate ^Rows
Connections
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 5/16 Va
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD
Group A
N
X
STD
STO
126
126
: 189
189.
158
im
237
237
1,89
189
284
284
Group A
SC Class A
STD
OVS
SSLT
126
113
126
189
170
189
158
; 141
158
237
212
237
184
157
184
277
235
277
Group A
SC Class B
STD
OVS
SSLT
126
113
; 126
189
170
189
1581
1;41
158
237
•;212
237
189
' 170
189
284
254
284
Group B
N
X
STD
STD
126
126
189
189
158
158;
237
237
189
189
284
284
Group B
SC Class A
STD
OVS
SSLT
; 126
^ 113
126
189
170
189
: 158
141
158
237
212
. 237
189
. 1i70
189
284
254
284
Group B
SC Class B
STD
OVS
SSLT
126
113
126
189
170
189
1.58
: 141:
: 158
237
212
237
189
170
189
284
254
284
Weld and Beam Web Available Strength, kips Support Available
Strength per Inch
Thickness, kip/in.
71)-ksiWeld
Size, in.
Minimum Beam Web
Thickness, in.
B„/a <,R„
Support Available
Strength per Inch
Thickness, kip/in.
71)-ksiWeld
Size, in.
Minimum Beam Web
Thickness, in.
kips kips
Support Available
Strength per Inch
Thickness, kip/in.
71)-ksiWeld
Size, in.
Minimum Beam Web
Thickness, in.
ASD LRFD ASD LRFD
V4
=/l6
0.286
0.381
0.476
0.571
129
171
212
253
193
256
318
380
1210
• SSLT
1870
SSLT
V4
=/l6
0.286
0.381
0.476
0.571
129
171
212
253
193
256
318
380
1110 OVS 1670 OVS
STD = Standard holes N = Threads included
OVS = Oversized holes X=Threads excluded
SSLT = Short-slotted holes transverse SC = Slip critical
to direction of load
End-Plate Beam STD = Standard holes N = Threads included
OVS = Oversized holes X=Threads excluded
SSLT = Short-slotted holes transverse SC = Slip critical
to direction of load
f,= 36 ksi /ysSOksi
Note: Slip-ctfticai bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONS'TRUCTION

lfr-78 DESIGN OF SIMPLE SHEAR CONNECTIONS
•j -in. Bolts
7 Rows
L = 2OV2 in.
Table 10-4 (continued)
Bolted/Weided
Shear End-Plate
Connections
W44,40,
36,33,
30,27,
24
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 , V16 Va
Bolt
Group
Thread
Cond.
Hole
Type
ASP LRFD ASO LRFD ASD LRFD
N STD : 110 165 ; 137; 206 165 247
X STD 1=10; 165 206 165 247
STD ; 110^; : 165 ^ m 206 161 242
Group A
SC Class A OVS ; 98.4 148 • 12J 185 .
>•' 138 5
206
Group A
SSLT ^ 110 165 137- 206 161 242
STD : HQ! 165 137 206 1B5 247
SC Class B OVS : 98.4 148 ^ li23: 185 148 221
SSLT 110 165 • 137; 206 165 247
N STD ! 110- 165 ; 137 206 1:65 247
X STD : 110^ 165 : 137; 206 165 247
STD : 110 165 = 137 206 les 247
Group B
SC Class A OVS 98,4 148 ; 123 185- , i 148 , 221
Group B
SSLT • 110 165 • TSTf? ; 206 165 " 247
STD : 110 165 : 13B : 206 165 247
SC Class B OVS 98.4 148 123 185 • 221
SSLT : 110; 165 137 206 165 247
Weld and Beam Web Available Strength, kips
Support Available
70-ksi Weld
Size, in.
Minimum Beam Web
ThirLnAee in
R„/0. Strength per Inch
70-ksi Weld
Size, in.
Minimum Beam Web
ThirLnAee in
kips kips
Thickness, kip/in.
70-ksi Weld
Size, in. 1 Ill,
ASD LRFD ASD LRFD
'/16
1/4
0.286
0.381
112
• 148
168
223
infin 1060 1590
SSLT
5/16
Vi
0.476
0.571
184
220
277
330
975 OVS ; 1460 OVS
STD = Standard holes N = Threads included End-Plate Beam
OVS = Oversized holes
SSLT Short-slotted holes transverse
to direction of load
X
SC
= Threads excluded
= Slip critical /v=36ksi
fi, = 5Sksi
fysSOksl
fi, = 6Sksi
Note: Slip-critical bolt values assume no more than one filter has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

Table 10-4 (continued)
^sf,'^,' Bolted/Welded 1 -in. Bolts
27,24, Shear End-Plate srows
^^ Connections ^ = i7V2in.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 5/16 3/8
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD
Group A
N
X
STO
STD
: 93.5
; 93.5
140
, 140
: 117!
117
175
175
i;4o
140
210
210
Group A
SC Class A
STD
OVS
SSLT
^ 93.5
83.7
93.5
140
126
140
; 117
105
117
175
157
175
138
n 118
138
207
176
207
Group A
SC Class B
STD
OVS
SSLT
; 93.5
83.7
93.5
140
126
140
m-
105-
1,17
175
157
175
140
. 126
1'40
210
188
210
Group B
N
X
STD
STD
; 93.5
93,5
140
. 140
: If?
117
175
175
140
140
210
210
Group B
SC Class A
STD
OVS
SSLT
: 93.5
i 83.7
1 93,5
140
126
140
! IW
105
i Am
175
157
175
140
; 126 ,
140
210
188
210
Group B
SC Class B
STD
OVS
SSLT
93.5
83.7
93,5
126
140
\ w
; 105s
: 117
175
157
175
1^40
a.. 1|26
140
210
188
210
Weld and Beam Web Available Strength, kips
Support Available
Strength per Inch
Thickness, kip/in.
70-ksiWeld
Size, in.
Minimum Beam Web
Thickness, in.
Support Available
Strength per Inch
Thickness, kip/in.
70-ksiWeld
Size, in.
Minimum Beam Web
Thickness, in.
kips kips
Support Available
Strength per Inch
Thickness, kip/in.
70-ksiWeld
Size, in.
Minimum Beam Web
Thickness, in.
ASD LRFD ASD LRFD
3/16
V4
5/16

0.286
0.381
0.476
0.571
95.4
^ 126
157
187
143
189
235
280
912
SSLT
1370
SSLT
3/16
V4
5/16

0.286
0.381
0.476
0.571
95.4
^ 126
157
187
143
189
235
280
839 OVS 1260 OVS
STD = Standart holes N= Threads included
OVS = Oversized holes X = Threads excluded
SSLT = Short-slotted holes transverse SC = Slip critical
to direction of load
End-Plate Beam STD = Standart holes N= Threads included
OVS = Oversized holes X = Threads excluded
SSLT = Short-slotted holes transverse SC = Slip critical
to direction of load
= 36 kst
F„ = S8ksi
F^sSOksl
F„ = 6Sksi
Note: Slip-ctitical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillere.
AMERICAN INSTITUTE OF STEELSCONSTKU^JTION

10-80 DBSION UL- SLMFLK XHKAK CUININTLUNUJNS
-in. Bolts
5 Rows
L = 14V2in.
Table 10-4 (continued)
Boited/Welded
Shear End-Plate
Connections
W30, 27,
24. 21,
18
Bolt and End-Plate Available Strength, kips
Bolt
Group
Titread
Cond.
Hole
Type
End-Piate Tiiicloiess, in.
V4
ASD LRFD
5/16
ASD LRFD ASO LRFD
STD
STO
77.2
TIZ
116
116
96.5
9K5
145
145
116
116
174
174
Group A
SC Class A
STD
OVS
SSLT
77.2
69.1
77.2
116
104
116
9615
86.3
96;5
145
129
145
115
> 98.2
115
173
147
173
SC Class B
STD
OVS
SSLT
77.2
69.1
77.2
116
104
116
9^:5
86;3
9&5
145
129
145
116
•104
116
174
155
174
STD
STD
77.2
77:2
116
116
9&5
96.5
145
145
116
116
174
174
Group B
SC Class A
STD
OVS
SSLT
77.2
69,1
77>2
116
104
116
96.5
86:3
96.5
145
129:
145
116
104
116
174
155
174
SC Class B
STO
OVS
SSLT
77.2
69.1
77.2
116
104
116
96.5
86;3
96.5
145
129
145
116
.104
116
174
155
174
Weld and Beam Web Available Strengtlit kips
70-ksi Weld
Size, in.
Minimum Beam Web
Ttiickness, in.
/t„/o
ASO
kips
Support Available
Strength per Inch
Thickness, kip/in.
LRFD ASD LRFD
3/16
V4
5/16
0.286
0.381
0.476
0.571
78.7
104
129
153
118
156
193
230
761
STO/
SSLT
1140
STD/
SSLT
702 OVS 1050 OVS
STD = Standard holes
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
N = Threads Included
X=Threads excluded
SC = Slip critical
End-Plate Seam
/i, = 5Bksi
;y=50ksi
F„ = 65l(si
Note: Slip-critical bolt values assume no more than one filter has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-81
W24, 21,
18,16
Table 10-4 (continued)
Bolted/Weided
Shear End-Plate
Gonnections
-|-in. Bolts
4 Rows
L = 11 Vain.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 5/«
Bolt
Group
Thread
Cond.
Hole
Type
ASD; LRFD ASD LRFD ASO LRFD
N STD 60.9 91.4 76.1 114 91.4 137
X STD ' 60.9 91.4 76:1 114 91.4 137
STD 60.9 : 91.4 76.1 114 91.4 137
Group A
SC Class A OVS 54.4 81.6 68.0 102 78.6 118
Group A
SSI.T 60.9 91.4 ^ 76.1: 114 91.4 137
STD 60.9 91.4 76:1 114 91.4 137
SC Class B OVS 54j4 81.6 68:0 102 81.6 122
SSI.T 60.9 91.4 76.1 114 91.4 137
N STD ; 60:9 91.4 76.1 114 91.4 137
X STD : 60.9 91.4 76i1 . 114 91.4 "l37
STD 60.9 91.4 76;1 114 91.4 137
Group B
SC Class A OVS ^ 54.4 81.6 68.0 102 • "81.6 . 122
Group B
SSLT i 60.9 91,4 76;1: : 114 91.4 137
STD : 60.9 91.4 76:1 114 91.4 137
SC Class B OVS ; 54.4 81.6 68:0 102 , 81.6 122
SSLT 60.9 91.4 : 76.1 114 91.4 137
Weld and Beam Web Available Strength, kips Support Available
70-k5i Weld
Size,in.
Minimum Beam Web
Thi^lrnpcc in
«„/o Strength per Inch
70-k5i Weld
Size,in.
Minimum Beam Web
Thi^lrnpcc in
kips kips
Thickness, kip/in.
70-k5i Weld
Size,in.
ASO LRFD ASD LRFD
1/4
0.286
0.381
61.9
81.7
92.9
123
RnQ STD/
SSLT
914
^^^ SSLT
%
0.476
0.571
101
120
151
180
566 OVS 848 OVS
STO = Standard holes N =Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
X
SC
=Threads excluded
= Slip critical /y=36ksi
F„ = 58ksi
Fy = SOksi
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillere.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-82 DESIGN OF SIMPLE SHEAR CONNECTIONS
•[ -in. Bolts
3 Rows
L = 8V2in.
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W18,16,
14,12,
10*
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 5/16 %
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD
N STD 44.6 66.9 i 5S:T 83.6 66.9 100
X STD ; 44.6 , 66.9 : 5S.7 83.6 66 .9 100
STD : 44.6 : 66.9 ' 55.7 83.6 66.9 100
Group A
SC Class A OVS 39.7 59.5 49:6 74.4 H58.9 , 88.2
Group A
SSLT ^ 44.6 ; 66.9 55.7 83.6 iB6.9 100
STD 44.6 66.9 55;7 83.6 66.9 100
SC Class B OVS 39.7 59.5 49,6 74,4 " : 5^5 89.3
SSLT ; 44.6 66.9 i 55.7 83.6 66.9 100
N STD i 44.6 66.9 55;7 83.6 66.9 100
X STD 44.6 66;9 ; 55:7: 83.6 66.9 100
STD 44.6 : 66.9 m 83.6 66.9 100
Group B
SCCiassA OVS 39.7 59.5 i 49:6 74.4 .89.3
Group B
SSLT ; 44i6 ; 66.9 i ssm 83.6 66.9 100
STD 44.6 66.9 ; 5517 83.6 66.9 100
SC Class B OVS : 39.7 59.5 49.'6 74,4 »59.5 89.3
SSLT : 44.6 66.9 ' 55:y 83.6 66.9 100
Weld and Beam Web Available Strength, kips
Support Available
70-ksi Weld
Size,in.
Minimum Beam Web
in
R„/a (|)fl„ Strength per Inch
70-ksi Weld
Size,in.
Minimum Beam Web
in
kips kips
Thickness, kip/in.
70-ksi Weld
Size,in.
ASD LRFD ASD LRFD
Vl
0.286
0.381
: 45.2
• 59.4
67.9
89.1 - Z SSLT
5/16
3/8
0.476
0.571
73.1
; 86.3
110
129
429 OVS 644 OVS
STD = Standard holes N =Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
X
SC^
= Tiireads excluded
= Slip critical f), = 36ksi
F„ = 58kSi Fa = 65ksi
•Limited to W10x12,15,17,19,22i 26,30
Note: Slip-critical bolt values assume no more than one tiller lias been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-83
W12,10,
8
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
-in. Bolts
2 Rows
L = 5V2ln.
Bolt and End-Plate Available Strength, kips
Bolt
Group
Thread
Cond.
Hole
Type
End-Plate Thickness, in.
Bolt
Group
Thread
Cond.
Hole
Type
V4 5/16 '/8
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFi) ASD LRFD ASD LRFD
N STD 28.3 42.4 .35.3 53.0 42.4 63.6
X STD 28.3 42.4 35.3 53.0 ' 42.4' . 63.6
STD 28.3 42.4 35.3 53,0 42.4 63.6
Group A
SC Class A OVS 25.0 37.5 31.3 46.9 37.5 56.3
Group A
SSLT 28.3 42.4 35.3 53.0 42.4 63.6
STD 28.3 42.4 35.3 ,,53.0 42.4 63.6
SC Class B OVS 25.0 37.5 31,3 46.9 37.5 56.3
SSLT 28.3 42.4 ^ 35.3 53.0 42.4 63.6
N STD . 28.3 42.4 35.3 53.0 i42 .4 63.6
X STD 28.3v 42.4 35.3 53.0 63.6
STD 28.3 42.4 • 35.3 53.0 42.4 63.6
Group B
SC Class A OVS 25.0 37.5 31.3 46.9 • 37i6 56.3
Group B
SSLT 28.3 42.4 1 35.3 53.0 42.4 63.6
STD 28.3 42.4 35.3 53.0 42.4 63.6
SC Class B OVS 25.0 37.5 31.3 46.9 37.5 56.3
SSLT 28.3 42.4 35.3 53.0 42.4 63.6
Weld and Beam Web Available Strength, kips
Support Available
70-ksiWeld
Size,in.
Minimum Beam Web
Tht<^lm0c<i in
(|)fl„ Strength per inch
70-ksiWeld
Size,in.
Minimum Beam Web
Tht<^lm0c<i in
kips kips
Thickness, kip/in.
70-ksiWeld
Size,in.
ASD LRFD ASD LRFD
3/16
V4
0.286
0.381
28.5
,37.1
42.8
55.7 - S
461
SSLT
s/w
Va
0.476
0.571
45.2
52.9
67.9
79.4
293 OVS 439 OVS
STD = Standard holes N = Threads included End-Plate Beam
OVS = Oversized holes
SSLT = Short-slotted holes transverse
to direction of load
X
SC^
= Threads excluded
= Slip critical F,= 36ksl
F„ = 58ksi
f>=:50ksi
FusSSksi
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AMERICAN INSTTTUTE OF STEEL CONSTRUISTIO

10-84 DESIGN OF SIMPLE SHEAR CONNECTIONS
UNSTIFFENED SEATED CONNECTIONS
An unstiffened seated connection is made with a seat angle and a top angle, as illustrated in
Figure 10-7. These angles may be bolted or welded to the supported beam as well as to the
supporting member.
While the seat angle is assumed to carry the entire end reaction of the supported beam,
the top angle must be placed as shown or in the optional side location for satisfactory
performance and stability (Roeder and Dailey, 1989). The top angle and its connections
are not usuailly sized for any calculated strength requirement. A V4-in.-thick angle with a
4-in, vertical leg dimension will generally be adequate. It may be bolted with two bolts
through each leg or welded with minimum size welds to either the supported or the
supporting members.
When the top angle is welded to the support and/or the supported beam, adequate
flexibility must be provided in the connection. As illustrated in Figure 10-7(b), line welds
are placed along the toe of each angle leg. Note that welding along the sides of the vertical
angle leg must be avoided as it would inhibit the flexibility and, therefore, the necessary end
rotation of the connection. The performance of such a connection would not be as intended
for unstiffened seated coimections;-
Top angle
(a) All-bolted
Angle thickness
Top angle
X'min Ihk.
Optional location,
Length of return
2 X weld size
(b) All-welded
Fig. 10-7. Unstiffened seated connections.
AMERICAN INSTITUTE OF STEEL CQNSTRUCTIQN

DESIGN TABLE DISCUSSION (TABLES 10-5 AND 10-6) 10-85
Design Checks
The availMe strength of an uiistiffened seated connection is determined from the applicable
limit states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9).
Additionally, the strength of the supported beam web must be checked for the limit states of
web local yielding and web local crippling. In all cases, the available strength, ^Rn or
must equal or exceed the required strength, Ru or Ra- The available strength for web local
yielding and web local crippling, (j>iJ„ or RJii, is determined per AISC Specification
Sections J10.2 and J10.3, respectively, which is simplified using the constants in Table 9-4.
For further information, see Carter et al. (1997).
Shop and Field Practices
Unstiffened seated connections may be made to the webs and flanges of supporting
columns. If adequate clearance exists, unstiffened seated connections may also be made to
the webs of supporting girders.
To provide for overrun in beam length, the nominal setback for the beam end is V2 in.
To provide for underrun in beam length, this setback is assumed to be ^k in, for calculation
purposes.
The seat angle is preferably shop-attached to the support. Since the bottom flange
typically establishes the plane of reference for seated connections, mill variation in beam
depth may result in variation in the elevation of the top flange. Such variation is usually of
no consequence with concrete slab and metal deck floors, but may be a concern when a
grating or steel-plate floor is used. Unless special care is required, the usual mill tolerances
for member depth of V8 in. to V4 in. are ignored. However, when the top angle is shop-
attached to the supported beam and field bolted to the support, mill variation in beam depth
must be considered. Slotted holes, as illustrated in Figure 10-8(a), will accommodate both
overrun and underrun in the beam depth and are the preferred method for economy and
convenience to both the fabricator and erector. Alternatively, the angle could be shipped
loose with clearance provided, as shown in Figure 10-8(b). AVhen the top angle is to be field-
welded to the support, no provision for mill variation in the beam depth is necessary.
When the top angle is shop-attached to the support, an appropriate erection clearance is
provided, as illustrated in Figure 10-8(c).
Bolted/Weided Unstiffened Seated Connections
Tables 10-5 and 10-6 may be used in combination to design unstiffened seated connections
that are welded to the supporting member and bolted to the supported beam, or bolted to the
supporting member and welded to the supported beam.
DESIGN TABLE DISCUSSION (TABLES 10-5 AND 10-6)
Table 10-5. All-Bolted Unstiffened Seated Connections
Table 10-5 is a design aid for all-bolted unstiffened seats. Seat available strengths are
tabulated, assuming a 4-in. outstanding leg, for angle material with Fy = 36 ksi and = 58
ksi and beam material with Fy - 50 ksi and fa = 65 ksi. All yalues are for comparison
with the governing LRFD or ASD load combination.
Tabulated seat available strengths consider the limit states of shear yielding and flexural
yielding of the outstanding angle leg. The required bearing length, lb,req< is determined by
AMERICAN INSTITUTE OF STEEL CoNstRUCTIOn
I
(
(I

10-86 DESIGN OF SIMPLE SHEAR CONNECTIONS
the designer as the larger value of lb required for the hmit states of local yielding and
crippling of the beam web. As noted in AISC Specification Section J 10.2, j^q must not be
less than kdes- A nominal beam setback of V2 in. is assumed in these tables. However, this
setback is increased to Va in. for calculation purposes in determining the tabulated values to
account for the possibility of underrun in beam length. .
Bolt available strengths are tabulated for the seat types illustrated in Figure 10-7(a) with
Vvin.-, ''/s-in.- and 1-in.-diameter Group A and Group B bolts. Vertical spacing of bolts and
gages in seat angles may be arranged to suit conditions, provided the edge distance and
spacing requirements in AISC Specification Section J3 are met. Where thick angles are used,
larger entering and tightening clearances may be required in the outstanding angle leg. The
suitability of angle sizes and thicknesses for the seat types illustrated in Figure I0-7(a) is
also listed in Table 10-5.
Vertical slots in angle
shop-attached to beam
(a) Vertical slots
Loose angle
Column or
girder web
Angle shop-attached
to column flange
Column H^nge
(b) Loose angle with
clearance as shown
(a) Shop-attached to column flange
with clearance as shown
Fig. 10-8. Providing for variation in beam depth with seated connections.
AMERICAN INSTRRUTE OP STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLES 10.5AND 10-6) 10-87
Table 10-6. All-Welded Unstlffened Seated Connections
Table 10-6 is a design aid for all-welded uhstiflFened seats (exception: the beam is bolted to
the seat). Seat available strengths are tabulated, assuming either a SVa-in. or 4-in, outstanding
leg (as indicated in the table), for angle material with Fy~36 ksi and F„ = 58 ksi and beam
material with = 50 ksi and Fu = 65 ksi. Electrode strength is assumed to be 70 ksi.
Tabulated seat available strengths consider the limit states of shear yielding and flexural
yielding of the outetanding angle leg. The required bearing length, l/,^ req, is to be determined
by the designer as the larger value of I), required for the limit states of local yielding and
crippling of the beam web. As noted in AISC Specification Section J10.2, //,, ^^ must not be
less than kdes- A nominal beam setback of Va in. is assumed in these tables. However, this
setback is increased to ^U in. for calculation purposes in determining the tabulated values to
account for the possibility of undemin in beam length.
Tabulated weld available strengths are determined using the elastic method. The minimum
and maximum angle thickness for each case is also tabulated. While these tabular values are
based upon 70-ksi electrodes, they may be used for other electrodes, provided the tabular
values are adjusted for the electrodes used (e.g., for 60-ksi electrodes, the tabular values are
to be multiplied by 60/70 = 0.866, etc.) and the welds and base metal meet the required
strength level provisions of AISC Specification Table J2.5. Should combinations of material
thickness and weld size selected from Table 10-6 exceed the limits in AISC Specification
Section 12.2, the weld size or material thickness should be increased as required. Table 8-4 is
not applicable to the design of these welds in this type of connection.
As can be seen from the following, reduction of the tabulated weld strength is not normally
required when unstiffened seats line up on opposite sides of the supporting web. From
Salmon et al. (2009), the available strength, or i?„/Q, of the welds to the support is
LRFD ASD
(!)/?„ = 2
f ^
1392DL
(10-2a)
0.928Z>Z,
(10-2b) (!)/?„ = 2
[~2Q.25e^
0 L' J
(10-2a)
f, 20.25e^
(10-2b)
I
I
c
where
D = number of sixteenths-of-an-inch in the weld size
L = vertical leg dimension of the seat angle, in.
e - eccentricity of the beam end reaction with respect to the weld lines, in.
The term in the denominator that accounts for the eccentricity, e, increases the weld size far
beyond what is required for shear alone, but with seats on both sides of the supporting
member web, the forces due to eccentricity react against each other and have no effect on the
web. Furthermore, as illustrated in Figure 10-9, there are actually two shear planes per weld;
one at each weld toe and heel for a total of four shear planes. Thus, for an 8-in.-long L7x4xl
seat angle supporting a LRFD required strength of 70 kips or an equivalent ASD required
strength of 46.7 kips, the minimum support thickness is detemiined as follows:
AMERKAN INSTITUTE OF STEEL CoNSTRucnoN

lfr-88 DESIGN OF SIMPLE SHEAR CONNECTIONS
LRFD
70 kips
0.75(0.6)(65 ksi)(7 in.)(4 planes)
= 0.0855 in
ASP
2.0(46.7 kips)
0.6(65 ksi)(7 in.)(4 planes)
= 0.0855 in.
For the identical connection on both sides of the support, the minimum support thickness is
less than ^/i& in. Thus, the supporting web thickness is generally not a concern.
Q)
(D
fa) Plan view
(b) Elevation
Fig. 10-9. Shear planes in column web for unstiffened seated connections.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-89
Angle
Fy = 36 ksi
Table 10-5
All-Bolted Unstiffened
Seated Connections
Outstanding Angle leg Length Strength, kips
Angle Length, in.
Min.
Required
R
Min.
Bearing
1 onnth
Annlo
Bearing
1 onnth
Angle Thickness, in.
Hligic
Leg
lb, re»i in-
3/8 Vz 5/8 '/4 1
Hligic
Leg
lb, re»i in-
ASD LRFD ASDi LRFD ASD LRFD ASD^ LRFD ASD LRFD in.
V2 18.2 27.3
3/16 '16.2 24.3 43.2 64.8
5/8 14.6 21.9 ;43.1 64.8
"/16 13.2 19.9 37.0 55.5
3/4 ^ 12.1 18.2 32.3 48.6
11.2 16.8 28.7 43.2
Vs 10.4 15.6 25.9 38.9
15/16 9.70 14.6 23.5 35.3 i 54.0 81.0
1 9.09 13.7 i21.6 32.4 50.5 75.9
1V16 8.56 12.9 19.9 29.9 44.9 67.5
1V8 8.08 12.2 18.5 27.8 40.4. 60.8
13/16 7.66, 11.5 :17.2, 25.9 36.7'v 55.2
1V4 7.28 10.9 •16.2W 24.3 ^ 33.7' 50.6 ' 64»; 97.2
15/16 , 6.93 10.4 15.2 22.9 ; 31.1; 46.7 ' 64;7;; ; 97.2 3V2
13/8 6.61 9.94 :i4;4 21.6 , 2k9 43.4 58.2 87.5
1'/16 6.33 9.51 13,6 20.5 : 26,95 40.5 52.9 79.5
IV2 6.06 9.11 12.9 19.4 , 25.3f 38.0 : 48:5 72.9
15/8 , 5.60 8.41 11.8; • 17.7 22.S' 33.8 : 41:6 62.5
13/4 5.20 7.81 '10.8;; 16.2 20.2 ' 30.4 36.4 54.7
1^/8 : 4.85 7.29 :io:o;" 15.0 . 18,4 27,6 ^ 32A: 48.6 L88.« 130
2 4.55 6.83 : 934; 13.9 16.8: , 25.3 ! 29:i^ 43.7 i" 86:2; 130
2V8 4.28 6.43 8:62 13.0 15.5 23.4 ; 26;5 39.8 ; ms 111
2V4 ; 4.0,4 6.08 ; 8.08. 12,2 14.4: 21.7 ; 24;3; 36.5 1 64:? 97.2
23/8 : 3.83 5.76 ; 7;6> ,11.4 : 13.6; 20.3 : itm 33.6 1 57.5 86.4
2V2 : 3.64 5.47 7ii:g: 10.8 12.6 19.0 20:8;: 31.2 ! 51,i7 77.8
2^/8 = 3.46 5.21 ; 6.81 10.2 : 11.9 17.9 19;4. 29.2 ; 47.0 70.7
23/4 3.31 4.97 6,47- 9.72 1f.2, 16.9 i m- 27.3 ! 43.1- 64.8
2^/8 , 3.16 4.75 6.16 9.26 : 10.6; 16.0 17.1 25.7 39.8 59.8
3 , ; 3.03 : 4.56 smi 8.84 : 10.1; : 15.2 16.2 24.3 i 37,0 55.5
4
3V8 2.91 4.37 5.6s 8.45 • 9.62 14.5 1S.3 23.0 • ks; 51.8
3V4 2.80 4.21 . S.39: 8.10 i 9.19 13.8 t4:6 21.9 i 32.3 48.6
Bolt Available Strength, kips
Bolt
Dia.,
in.
'/8
Bolt
Group
Group
A
Group
B
Group
A
Group
Group
A
Group
B
ASD
fl = 2,00
Thread
Cond.
LRFD
t> = 0-75
Connection Type from Figure 10-7(a)
ASO LRFD
23.9
30.1
30.1
37.1
32.5
40.9
40.9
50.5
.42.4,
$3 4,
53.4
65.9
35.8
45.1
45.1
55.7
48.7
61.3
61.3
75.7
63.6
80.1
80.1
98.9
B
ASD LRFD
47,7;
60.1'
60.1
74.3
64.9
81.7
81.7
101
84.8
107
lor
132
71.6
90.2
111
97.4
123
123
151
127
160
160
198
ASD LRFD
^ 71!6
80,2
90S
111
97.4
123 ,
123-
151:.
107
135
135
167
146
,184
184
227
Available Angles
Connection
Type
A,D
B,E
C'.F'
Angle
Size
4x3
4X3V2
4x4
6x4
7x4
8x4
8x4
f,
in.
3/8-V2
3/8-V2
3/8-3/4
3/8-3/4
3/8-3/4
1/2-1
V2-1
"Not suitable for use with
l-in.-diameter bolts.
For tabulated values above ttie heavy line, shear yielding of the angle leg controls the
available strength.
I
i
(

AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

lfr-90 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-5 (continued)
All-Bolted Unstiffened
Seated Connections
Angle
Fy = 36 ksl
Outstanding Angle Leg Length Strength, kips
Required
Bearing
Length
/»> reqt i"-
Angle Length, in.
8
Angle Thickness, in.
ASD LRFD
V2
ASDx LRFD
'/a
ASD;, LRFD
V4
LRFD
1
ASD LRFD
Min.
Angle
Leg
in.
1/2
3/16
5/8
"/«
3/4
"/16
«/l6
1
lVl6
1V8
1^/16
1V4
15/16
l'/8
1'/16
IV2
15/8
13/4
1?/6
2
2V8
2V4
23/8
ZV2
2^/8
23/4
2^/8
3
31/8
3V4
,24.3
i21.6
'19,4
17,6
16,2
14.9
13,9
:12.9
h2,1
:ii,4
10,8
10,2
9,70
' 9,24
8,82
; 8,44
; 8,08
: 7,46
^ 6,93
^ 6,4P
' 5,71;
^ 5,39
^ 5,1V
4:85
: 4,62.
4,4,1
36,5
32.4
29.2
26.5
24.3
22.4
20,8
19,4
18,2
17.2
16,2
15.3
14.6
13,9
13.3
12.7
12,2
11.2
10.4
9.72
9,11
8,58
8,10
7,67
7,29
6,94
6,63
57,6
57,5
49,3
43.1
38.3
34,5
31.4
28.7
26.5
24.6
23,0
20S •
19.2 '
18,2
17:2
15s7:>
14,4 •
13:3.,:
12i3r
11,5i:;
iO;i:s
9i58
9,0a
aeg:
4:22
. 4,04
188;
! 3,73.
6,34
6,08
5,83
5,61
8,21!
7,84;
7,50
El 9
86,4
74.1
64,8
57.6
51.8
47.1
43.2
39.9
37.0
34.6
32.4
30.5
28,8
27.3
25,9
23.6
21.6
19.9
18.5
17.3
16.2
15.2
14.4
13.6
13.0
72.0

11,8
11,3
10,8
67.4
59.9
53,9,'
49.0
44,9;
41
38,5';
35,91
33.7';
29.91
26,9-
24.5:
22.5
20.7
19,2:
18.0
16.8
15,9:
15.01
"uIF
13,5;
12.8
12.2
108
•w
90
81,0
73,6
67,5
62,3
57,9
54,0
; 50,6
, 45,0
40,5
36,8
33.8
31.2
28.9
27,0
25.3
; 23,8
: 22,5
21,3
20,3
19.3
18.4
86.4
leT"
77,6'
70.5
64.7
55.4
48.5
43,1,
38.8
35^3
32.3
29.8
27.7
25.9
24;3,
22.8
21^-
20.4
1:9,4'
130
130
117
106
97.2
83.3
72,9
64.8
58.3
53,0
48.6
44.9
41.7
38,9
36,5
-m-
32.4
30,7
29,2
3V2
115
98.5
86,2
76.6
69.0
62 7
57.9
53.1
49.3
46.0
43,T
173
IW
130
115
104
94.3
86.4
iM
74.1
69.1
64,8
Bolt Available Strength, kips Available Angles
Bolt
Dia.,
in.
Bolt
Group
Connection Type from Figure 10-7(a)
Connection
Type
Angle
Size
t,
in.
Bolt
Dia.,
in.
Bolt
Group
Thread
Cond.
D E F
Connection
Type
Angle
Size
t,
in.
Bolt
Dia.,
in.
Bolt
Group
Thread
Cond.
ASD LRFD : ASD LRFD Asa. LRFD
Connection
Type
Angle
Size
t,
in.
3/4
Group
A
N
X
35,8
45,1
53,7
67,6
7116
; 90,2
107
135
;1Q7...
ii35;;:;
161
203 A,D
4x3
4x3 V2
4x4
3/8-V2
3/8-V2
3/8-3/4
3/4
Group
B
N
X
45,1
55,7^
67,6
83.5
' 90.2
111
135
167 :167
203
251
A,D
4x3
4x3 V2
4x4
3/8-V2
3/8-V2
3/8-3/4
3/4
Group
B
N
X
45,1
55,7^
67,6
83.5
' 90.2
111
135
167 :167
203
251
B,E
6x4
7x4
8x4
3/8-3/4
3/8-3/4
V2-I
Vs
Group
A
N
X
'48,7
61.3
73.0
92.0
; 97,4
123 i'
146
184
146-'
184
219
276
B,E
6x4
7x4
8x4
3/8-3/4
3/8-3/4
V2-I
Vs
Group
B
N
X
:,ei.3 92.0
114
123 ;
.151;t;
184
227
;184 :
227
276
341
C« F"
8x4 V2-I
Vs
Group
B
N
X 75.7 :
92.0
114
123 ;
.151;t;
184
227
;184 :
227
276
341
"Not suitable for use with
1-in:-diameter bolts.
1
Group
A
N
X
,63,6
80,1
95.4
120
;127
160,
191
240

"Not suitable for use with
1-in:-diameter bolts.
1
Group
B
N
X
'80,1
98,9
120
148
^160 -i '
il98 -
240
297 —'
; —•
"Not suitable for use with
1-in:-diameter bolts.
ASD
£2 = 2.00
LRFD
<|) = 0.75
For tabulated values above the heavy line, shear yielding of the angle leg"controls the
available strength.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLES 10-91
Angle
Fy = 36ksi
Table 10-6
All-Welded Unstiffened
Seated Connections
Outstanding Angle Leg Length Strength, kips
Required
Angle Length, in.
Win. Required
B
Win.
Bearing
Annlp
Bearing
Angle Thickness, in.
Hliyic
Ug
Va V2 5/8 3/4 1
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD in.
Vz :13.2 27,3
9/16 16.2 24,3
5/8 i 14.6 21,9 43,1 64.8
'f/16 M3.2 19.9 :37.0 55.5
3/4 M2.1 18,2 32.3 ,48.6
"/16 • 11.2 : 16,8 287 U3.2
'/8 •10.4 15,6 25.9 38.9 J
'5/16 : 970 .14.6 23.5 , 35.3 540 81,0 K
1 ; 9.09 13.7 21,6 32.4 50 5 75,9
iVie ; 8.56 12.9 .19.9 29,9 449 67,5
1V6 8.08 12,2 .13.5 27,8 40 4 60,3

13/16 • 7.66 11,5 i17.2 25,9 367- 55,2 • '1
IV4 : 7.28 10.9 16.2 24,3 33 7 50,6
1^/16 6.93 10,4 152 22,9 311 46,7 647 972 3V2
1^/8 ^ 6.61 ^ 9,94 144 21,6 28 9 43,4 582 87.5
1'/16 : 6.33 9,51 13.6-. 20,5 ,26-9 40,5 52 9 79.5
iVs : 6,06 9,11 12.9 19,4 ! 25.3 ,; 38,0 ! 48.5, 72.9
IV8 5.60 8.41 illiR; 17.7 ; 22:5', ' 33,8 416 62.5
1^/4 : 5,20 7.81 ; 10;8:i 16,2 20,2 30,4 3&4 54.7
1^/8 ^ 4.85 . 7.29 9,95: 15,0 ;18;4-; 27,6 323 ' 48.6
2 4,55; 6.83 9.24 13,9 ; 25,3 , 29) 43.7 862 130
2V8 •IS" 6,43 8.62 13,0 :i5:5T 23,4 26 5, 39.8 73.9 111
2V4 ' 4.04 6,08 8.08; 12,2 ' 14:4 217 24,3 36.5 64.7 97.2
2^/8 : 3.83 5,76 . 7;6i;; 11,4 i13;5:; : 20,3 224 33.6 ' 57.5 86.4
2V2 3.64 5.47 ' 7.19; 10,8 12:6 i 19,0 1 20 a 31.2 SI .7 778
2^/6 3.46 5,21 ; 6.81 10,2 hl:9; 17,9 18 4 29.2 47.0 70.7
2^/4 3.31 4,97 , 6.4K 9,72 ! n!2;r 16.9 >82 27.3 431 64.8
2^/6 i 3.!t6 4,75 ; am 9,26 :10,6 ; 16,0 ' 171 -25.7 ; 39.8 59.8
. 3 : 3.03 4,56 ' asa; 8,84 iiO;r> 15,2 16.2 24.3 37.0 55.5
4
3V6 i 2.91 4,37 i 562 8,45 ; 9:62 14,5 153 23.0 34.5 51.8
3V4 ^ 2.80 4,21 ; 5.39 8,10 , 9:i;9- 13.8 146 21.9 323 48.6
Weld (70 ksi) Available Strength, kips
70-ksi Weld Size, in.
Design
V4
3/6
V2
3/16
5/6
"/16
Seat Angle Size (long leg vertical)
4x3V2
ASD LRFD
11.5 17.2
14.3 i 21.5
17.2 25.8
20.1 30.1
5 X 3V2
ASO
17.2
21.5
25.8
30.1
34.4
38.7
43:0.
47.3
LRFD
25.8
32.2
38.7
45.2
51.6
58.1
64.5
71.0
Available Angle Thickness, in.
Minimum
Maximum
ASD
fi = 2.00
LRFD
1) = 0.75
V2
3/a
'/4
For tabulated values above the heavy line, shear yielding of tJie angle leg controls the
available strength.
— Indicates weld size exceeds that permitted for maximum angle thickness of V2 in.
I
I
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

lfr-92
DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-6 (continued)
All-Welded Unstiffened
Seated Connections
Angle
Fy = 36 ksi
Outstanding Angle Leg Length Strength, kips
Angle length, in.
Min.
Required
8
Min.
Bering
Angle Thickness, in.
AriQle
Leg
k, ret, in-
3/8 Vt =/8 'U 1
k, ret, in-
ASD LRFD ASDiJ LRFD ASD LRFD ; ASD LRFD ASD LRFD in.
Vz 24,3 36.5
9/16 21.6 32.4
5/8 ;ig.4 29.2 57.5 86.4
'Vl6 17.6 26.5 49.3 74.1
3/4 16.2 24.3 43.1 64.8
' ; i-.
14.9 22.4 38.3 57.6
7/8 ; 13,9 20.8 34.5 61.8 I
12.9 19.4 31.4 47.1 72:0 108
1 : 12.1 18.2 ; 28.7 43,2 : 67:4 n 101
lVl6 11.4 17.2 26.5 39,9 59:9 90.0
iVe 10.8 16.2 24.6 37.0 ' 53.9 81.0
13/16 10.2 15.3 23.0 34.6 49.0 73.6
1V4 ' 9.70 14.6 21.6 32.4 44.9 67.5
15/16 ,9.24 ,13.9 20.3-.' • 30.5 41.5 : 62.3 ^ 86;2:! 130 3V2
13/6 , 8.S2 13.3 192 28.8 38;5 •• 57.9 77.6: 117
1'/16 8.44 12.7 18.2 27.3 319::: 54.0 70:5 106
IV2 8.08 12,2 17.2 25.9 33.7;- 50.6 : 64:7 97.2
15/8 7.46 11.2 15.7K : 23.6 ' 29i9: .-45.0 ; 55:4- 83.3
13/4 : 6.93 10.4 :14i4 , 21.6 j 26.9'; 40.5 ; 48:5:: 72.9
l'/8 : 6.47 9.72 13.3 19.9 24.5: 36.8 i 43m 64.8
2 £06 9.11 : 12.3: 18.5 22:5 33.8 ^ 3^ 58.3 115 173
2V8 5.71 8.58 11.5: ^ 17.3 20.7i 31.2 ! 35:3 53.0 i 98.5 148
2V4 5,39 8.10 10,8 16,2 : 19;2 ' --28.9 32.3 48.6 i 86:2 130
23/8 : 5.11 7.67 iOjf;': 15.2 ; 18.0 27.0 298 44.9 76.6 115
2V2 : 4,85 7.29 i g:i58: 14.4 16.8 i 25.3 : 27:7 41.7 : 69.0 104
25/8 4.62 6.94 9.08 13.6 15.9; 23.8 25.9 38.9 ' 62.7 94.3
23/4 • 4:41- 6.63 862 13.0 15.0 22.5 24.3 36.5 57.5 86.4
2^/8 4.22 6.34 8.21: 12.3 • 14i2l: 21.3 ' 22.8: 34.3 : 53.1 79.8
3 4.04 6.08 • 7:.84 11.8 : 13.5: 20.3 ; 21.6' 32.4 ' 49.3 74.1
4
3Vs : 3.88 5.83 ; 7.50 11.3 : 12;8 19.3 20.4 30.7 46.0 69.1
3V4 3.73 5.61 7,19 10.8 12:2- 18,4 19.4; 29.2 43.1 64.8
Weld (70 ksi) Available Strength, kips
70-ksi Weld Size, in.
Seat Angle Size (long leg vetlical)
6x4 7x4 8x4
Design ASD LRFD ASO LRFD ASD LfiFO
V4
=/l6
3/8
V2
9/16
5/8
1Vl6
21B
27^:
32.7.
38.2
43.6
49.1
54i5
32.7
40.9
49.1
57.2
65.4
73.6
81.8
90.0
28.5
35.6
42.7
49.8 '
57.0
64.1
71.2
78.3
42.7
53,4
64.1
74.7
85.4
96.1
107
117
i 35.6
! 44.5
i 53.4
; 62.3
; 71.2
^ 80.1
' 89.0
97.9
53.4
66.7
80.1
93.4
107
120
'133
147
Available Angle Thickness, in.
Minimum 3/8 V2
Maximum 3/4
ASD
£1 = 2.00
LRFD
<|) = 0.75
For tabulated values above the heavy line, shear yielding of the angle leg controls the
available strength.
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

STIFFENED SEATED CONNECTIONS 10-93
STIFFENED SEATED CONNECTIONS
A stiffened seated connection is made with a seat plate and stiffening element (e.g., a plate,
structural tee, or pair of angles) and a top angle, as illustrated in Figure 10-10. The top aiigle
may be bolted or welded to the supported beam as well as to the supporting member and the
stiffening element may be bolted or welded to the support. The supported beam is bolted to
the seat plate.
(a) All-bolted
(b) Bolted/welded
Fig. 10-10. Stijfened seated connections.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
I
I
I
I

lfr-94 DESIGN OF SIMPLE SHEAR CONNECTIONS
The stiffening element is assumed to carry the entire end reaction of the supported beam
applied at a distance equal to 0.8W, where TV is the dimension of the stiffening element
parallel to the beam web. The top angle must be placed as shown or in the optional side
location for satisfactory performance and stability (Roeder and Dailey, 1989). The.top angle
and its connections are not usually sized for any calculated strength requirenient. A '/4-in.-
thick angle with a 4-in. vertical leg dimension will generally be adequate. It may be fastened
with two bolts through each leg or welded with minimum size welds to either the supported
or the supporting members.
When the top angle is welded to the support and/or the supported beam, adequate
flexibility must be provided in the connection. As illustrated in Figure 10-10(b), line welds
are placed along the toe of each angle leg. Note that welding along the sides of the vertical
angle leg must be avoided as it would inhibit the flexibility and, therefore, the necessary end
rotation of the connection. The performance of such a connection would not be as intended
for simple shear connections.
Design Checks
The available strength of a stiffened seated connection is determined from the applicable
limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see
Part 9). Additionally, the strength of the supported beam web must be checked for the
limit states of web local yielding and web local crippling. In all cases, the available
strength, (|)ii„ or R„/£l, must equal or exceed the required strength, Ru or Ra- The available
strength for web local yielding and web local crippling, (^R^ or R„/£l, is determined per
AISC Specification Sections J10.2 and J10.3, respectively, whichis simplified using the
constants in Table 9-4.
When stiffened seated connections, such as the one shown in Figure lO-lO(b), are made
to one side of a supporting column web, the column web may also need to be investigated
for resistance to punching shear. In lieu of a more detailed analysis, Sputo and Ellifritt
(1991) showed that punching shear will not be critical if the design parameters following
and those summarized graphically in Figure 10-10(b) are met.
1. This simplified approach is applicable to the following column sections:
W14x43to 730 W12x40to336 WlOx33toll2
W8x24 to 67 W6x20 and 25 W5xl6 and 19
2. The supported beam must be bolted to the seat plate with high-strength bolts to
account for the prying action caused by rotation of the connection. Welding the beam
to the seat plate is not recommended because welds may lack the required strength and
ductility. The centerline of the bolts should be located no more than the greater of WI2
or 2^/8 in. from the column web face.
3. For seated connections where W = 8 in. or 9 in. and 3V2 in. < 5 < W/2, or where
7 in. and 3 in. < 5 < WI2 for a Wl4x43 column, refer to Sputo and Ellifritt (1991).
4. The top angle may be bolted or welded, but must have a minimum V4-in. thickness.
5. The seat plate should not be welded to the beam flange.
See also Ellifritt and Sputo (1999).
AMERICAN INSTITUTE OF STEEL CONSTRUcrTON

DESIGN TABLE DISCUSSION (TABLES 10-5 AND 10-6) 10-95
Shop and Field Practices
The comments for unstiffened seated connections are equally applicable to stiffened seated
connections.
DESIGN TABLE DISCUSSION (TABLES 10-7 AND 10-8)
Table 10-7. All-Bolted Stiffened Seated Connections
Table 10-7 is a design aid for all-bolted stiffened seats. Stiffener available strengths are
tabulated for stiffener material with Fy = 36 ksi and = 58 ksi and with Fy = 50 ksi and
F„ = 65ksi.
Tabulated values consider the limit state of bearing on the stiffening material. The
designer must independently check the available strength of the beam web based upon the
limit states of web local yielding and web local crippling. A nominal beam setback of '/J in.
is assumed in these tables. However, this setback is increased to in. for calculation
purposes in determining the tabulated values to account for the possibility of underrun in
beam length.
Bolt available strengths are tabulated for two vertical rows of from three to seven 'A-in.-,
'/s-in.- and l-in.-diameter Group A and Group B high-strength bolts based upon the limit
state of bolt shear. Vertical spacing of bolts and gages in seat angles may be arranged to suit
conditions, provided the edge distance and spacing requirements in AISC Specification
Section J3 are met.
Table 10-8. Bolted/Welded Stiffened Seated Connections
Table 10-8 is a design aid for stiffened seated connections welded to the support and bolted
to the supported beam. Electrode strength is assumed to be 70 ksi.
Weld available strengths are tabulated using the elastic method. While these tabular
values are based upon 70-ksi electrodes, they may be used for other electrodes, provided the
tabular values are adjusted for the electrodes used (e.g., for 60-ksi electrodes, the tabular
values are multiplied by 60/70 = 0.866, etc.) and the weld and base metal meet the required
strength provisions of AISC Specification Table J2.5.
The thickness of the horizontal seat plate or tee flange should not be less than Vs in. If the
seat and stiffener are built up from separate plates, the stiffener should be finished to bear
under the seat. The welds connecting the two plates should have a strength equal to or
greater than the horizontal welds to the support under the seat plate.
The designer must independently check the beam web for web local yielding and web
local crippling. The nominal beam setback of V2 in. should be assumed to be ^h in. for
calculation purposes to account for possible underrun in beam length.
The stiffener thickness is conservatively determined as follows. The minimum stiffener
plate thickness, t, for supported beams with unstiffened webs is the supported beam web
thickness, t„, multiplied by the ratio of Fy of the beam material to Fy of the stiffener material
(e.g., Fj,_beam = 50 ksi, Fj,,stiffener = 36 ksi, t = tw 'x 50/36 minimum). Additionally,
the minimum stiffener plate thickness, t, should be at least 2w for stiffener material with
I
i
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

!
10-96 DESIGN OF SIMPLE SHEAR CONNECTIONS !
Fy = 36 ksi or 1.5w for stiffener material with Fy = 50 ksi, where w is the weld size for
70-ksi electrodes.
For 70-ksi electrodes, the minimum column web thickness is
. (9-2)
tu
where
D = weld size in sixt^nths of an inch
Fu = specified minimum tensile strength of the connecting element, ksi
When welds line up on opposite sides of the support, the minimum thickness is the sum
of the thicknesses required for each weld. In either case, when less than the minimum
material thickness is present, the weld available strength must be reduced by the ratio of the
thickness provided to the minimum thickness. As With unstiffened seated connections, the
contribution of eccentricity to the required shear yielding strength is negligible. Should
combinations of material thickness and weld size selected from Table 10-8 exceed the limits
of AISC Specification Section J2.2, the weld size or material thickness must be increased.
AMERICAN iNSTrroTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-97
Table 10-7
All-Bolted Stiffened
Seated Connections
CtWanor Hil atari al
Outstanding Angle Leg Available Strength, kips'
onncfier matcnat
fy=:36kSi /ysBOksi
Stiffener
Outstanding
Ug, W, In."
3V2 4 5 3V2 4 5
Stiffener
Outstanding
Ug, W, In." ASO LRFO ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD
'5/16 55.7 83.5 65.8 98,7 .;86:t 129 77.3 116 91.4 137 120 179
ThicKness
3/8 66.8 100 79.0 118 103 155 : 92.8 139 110 165 143 215
of Stiffener
Outstanding
V2 89.1 134 105 158 138 207 >124 186 146 219 191 287
legs, In. 5/8 1 11 i 167 132' 197 172- 258 155 232 183 274 239 359
3/4 134 200 158- 237 207 310 '186 278 219 329 287 430
Use minimum %-in.-tiiicl< seat plate wide enough to extend beyond outstanding legs of stiffener.
' See AISC Spec/ffrafton Section J7,
' Beam bearing.length assumedin. less for calculation purposes.
Bolt Available Strength, kips
Bolt
Group
Thread
Conri.
Number of Bolts in One Vertical Row
Bolt Diameter, in.
Bolt
Group
Thread
Conri.
3 4 5 6 7
Bolt
Group
ASO LRFD ASD LRFO ASO LRFO ASO LRFD ASO LRFD
Group N 71.6 107 95.5 143 119 179 143 215 167 251
3/4
A X 90.2 135 120 180 225 180 271 210 316
3/4
Group N 90.2 135 ,120 180 150 225 180 271 210 316
B X 1lV 167 149 223 186 278 334 260 390
Group N 97.4 146 :130 195 162 243 195 292 227 341
Vs
A X 123 184 163 245 204 307 245 368 286 429
Vs
Group N 123 184 163 245 '204 307 '•245 368 286 429
B X 151 227 ::202 303 252 379 303 454 353 530
Group N 127 191 ;i70 254 212 318 254 382 297 445
1
A X 160 240,, I214 320 267 400 320 480 374 560
1
Group N 160 240 214 320 267 400 320 480 374 560
B X 198 297 264 396 330 495 396 593 462 692
ASO LRFD
a=2.00 <t) = 0.75
A 2.00
(])/?„ = 0.75 (l.8fy-(|pt)
AMERICAN INSTTTUTE OF STEEL ConSTRuIStIo

10-98 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-8
Bolted/Welded Stiffened
Seated Connections
Weld Available Strength, kips
Width of Seat, in.
I, in. 70-l(SiWeld Size, in. 70-l(siWeld Size, in.
V4 5/16 % =/l6 %
ASO. LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
6 :22;7- 34.0 28.4 42.5 34.0. 51.1 ; 39;7 59.6 23.5 . 35.2 /28;2 42.2
7 .29.9; 44.9 37.4 56.1 , 5.44.9 67.3 : 52.4 78.6 31:2f :.46.9 56.2
8 56.7 47.2 70.8 56.7 85.0 ! 66:1,
99.2 39.8 59.8 47i8 71.7
9 69.2 , .57.7 86.5 ,69,2 104 J 80.^; 121 49.1] . 73.7 59:0 88.5
10 •.Ei4.9 82.3 68.6 103 82.3 123
: :
144 v-mo;: 88.5 106
11 63.9 95.8 79.8 120 95.8 144 112 168 . 69;4'' 104 125
12 73.1 110 91.4 137 110 165 m 192 •80.2' 120 144
13 82.5 124 103 155 124 186 144 i ' 217 91.3 137 110 164
14 92.1 138 173 138 207 "161 242
•ino
154 123 185
15 102 152 127: 191 152 229 178 267 114 171 137 206
16 111 167 3939' 209 ' 250 195 •- 292 126 189 151 227
17 121 181 , 151 ' 227 •181 272 : 212 318 138 ! 207 165 248
18 131 ; 196 •163; 245 -196: 294 229 343, 150 i 225 180 270
19 140 211: 263 311 J:> 316 , 246:! 369 162 t 243 194 291
20 150 225 1,88 • 281 .225 r 338 . 263 394 174 : 261 209 313
21 16D 240 200: 300 240 • 359 . 280'' 419 186 : 279 223 335
22 169 254 212 318 , i254 - ' 381 296 445 198 i 297 238 357
23 1-79" 269 :224 336 J.269., 403 313 470 2 '1P ^^ 315 252 ' 378
24 189 : 283 •236: 354 •283;i 425 330 , 495 222 ; 334 267 400
25 198 297 . 372 . 446 '347 520 235 ; 352, 281 422
26 208 312 260 • 390 468 364 ; 546 247 ' 370 296 , 444
27 217 326 , 272: 408 :!326 •• 489 380' 571 259 388 310 466
Limitations for Connections to Column Webs
B = 2Va in. max B = 2®/ain. max
W12x40, W14x43
for i, > 9 in.
limit weld < V4 in.
None
Notes:
1. Values shown assume 70-ksi electrodes. For 60-ksi electrodes, multiply tabular values by 0.857, or enter table with 1.17 times
the required strength, Flu or /?» For BO-ksi electrodes, multiply tabular values by 1,14, or enter tai)le with 0.875 times the
required strength.
2. Tabulated values are valid for stiffeners with minimum thickness of
fm/n ~
V' y, slrffener
but not less than 2 w for stiffeners with F,=36 ksi nor 1.5 w for stiffeners with F, = 50 ksi. In the above, is the thickness
of the unstiffened supported beam web and iv is the nominal weld size.
3. Tabulated values may be limited by shear yielding of, or bearing on, the stiffener; refer to AISC
Specification Sections J4.2 and J7, respectively
i LRFD
A = 2.00
([1 = 0.75
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLE 10-10) 10-99
Table 10-8 (continued)
Bolted/Welded Stiffened
Seated Connections
Weld Available Strength, kips
WiAiiofSeat, M^in.
5 6
70-k£i Weld Size, in. 70-ksi Weld Size, in.
'/16 1/2 =/l6 3/8 '/16 Va
ASD LRFO ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
6 32.8 49.3 37;5 56.3 -19.9 29.9 23,9 35.9 , 27,9 41.9 31-.9 47.8
7 43.7 65.6 50,0 75.0 26.7 40.1 32.0 48.1 37.4 56.1 42.7 64.1
8 55.8 83.7 63.8 95.6 34.3 51.4 41.1 61.7 .48.0 72.0 54.B 82.2
9 688 103 78.6 118 42.5 . 63.8 51,1 76.6 59.6 89.3 68.1 102
10 62;6 124 94.4 142 51.4 77.2 61.7 92.6 72.0 108 B2.3 123
11 97.2 146 111 167 , 60.9 91.3 73.1 110 •85.3 128. • 97.4 146
12 112 168 128 192 70.8 106 85.0 127 99,2 149 113 170
13 128 192 •146 219 81.2 122 97.4' 146 114 170 ,130 195
14 144 216 'l64. 246 . 91.9 138 110' 165 T29 193 •147 220
15 160 240 183 274 103 154 '123. 185 144 216 165- 247
16 176 255 ,202- 302 114 171 137' 205 160 240 183- • 274
17 193 290 22t 331 126 188 15t-- 226 17et, 264 201 301
18 210 315 240 360 137- 206 ,165 • 247 192 - 288 219 329
19 ,227 340 259 • 388 149:- 223 179.- 268 208 313 238 i 357
20 .244 365 278 417 161 i 241 193 289 225 337 257 386
21 260 , 391 298 .446 173 , 259 207 311 242 362 276 414
22 277 416 317,' 476 185 277 222 " 332 258 : 388 295-. ,443
23 294 , 442 336 . 505 197, 295 236 - 354 275 413 -315.- 472
24 311 467 356 534 .209 313 250" 376 292- 438 334 • 501
25 328. 492 375 - 563 221 331 265 397 309'. 464 '353-' 530
26 345 518 395, 592 233 349 280 419 326 •• 489 373.' , 559
27 362 543 414'J 621 245 368 294 441 343- ' 515 392 - 588
Limitations for Connections to Column Webs
B =2^8 in. max 0=3 in. max
None None
Notes:
1. Values shown assume 70-ksi electrodes. For 60-ksi electrodes, multiply tabular values by 0.857, or enter table with 1.17 times
the required strength, /?„ or R,. for 80-ksi electrodes, multiply tabular values by 1.14, or enter table with 0.875 times the
required strength.
2. Tabulated values are valid for stiffeners with minimum thickness of
Fy.,
but not less than Ztrfor stiffeners with Fy= 36 ksl nor I.Swfor stiffeners with BOksi. In the above, f^ Is the thickness
of the unstiffened supported beam web and wis the nominal weld size. :
3. Tabulated values may be limited by shear yielding of, or bearing on, tfie stitfener; refer to AISC
Specification Sections J4.2 and J7, respectively.
ASD LRFD
a = 2.00 (]) = 0.75
AMERICAN INSTITUTE OF STEEL ConstruCTioN

LFR-100 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-8 (continued)
Bolted/Welded Stiffened
Seated Connections
Weid Available Strength, kips
Width of Seat, If, in.
8
t,in. 70-ksi Weld Size, in. 70-ksi Weld Size, in.
% Vl6 Va S/16 VIS
ASD LRFD ASD LRI=D ASD LRFD ASD LRI=D ASD LRI=D ASD LRFD
11 54.0 81.0 L64.S 97,2 75.6 113 • SM 130 • 48.4 72.5 58.0 87,1
12 . 63.1 94,7 : 75>7 114 68.4 133 'lapv 151 56,7 85,1 ' 68.1 102
13 72.7 109 87.2 131 153 116 174 65.6 98.3 78.7 118
14 ; 82.6 124 i asz 149 :116-:: 174 198 74,8 112 89.8 135
15 93.0 139 .112:: 167 130^ 195 223 84.5 127 101 152
16 104 155 124 186 f145^ 217 js&a 249 : 94.4 142 113 170
17 114- 172 i137?: 206 160 240 183' 275 •105j, 157 126 189
18 (126-' 188 ;i51: 226 'l761 264 ;201(; 301 ;ii5:- 173 138 208
19 •137 205 = 164%. 246 192; 287 •2-19: 329 |126:.: 189 i151:/ 227
20 ,148 223 :17&" 267 208. 312 :237or 356 ;137V 206 165 247
21 160 240 il92::' 288 336 •256:i! 384 ;14a:;< 222 178 267
22 172 258 309 ;240 ;; 361 412 '!I6D.:: 240 192 287
23 •184 i 275 220 330 257 385 294 440 257 205 308
24 195 293 :234:^ 352 ;274.^^ 410 •3l3:>i 469 183 274 i219W 329
25 207 311 j249:;^: 373 290 = 435 !332!;: 498 195;::: 292 233 350
26 219 329 t263 -395 307 461 :351 ' 526 206 309 248 371
27 231, 347 '278:-: 417 324 486 :3705- 555 218 327 262 393
28 244 i 365 i292: 438 511 584 345 276 414
29 .256 • 383 460 358 537 i409::is 613 242 363 291 436
30 .268- 402 321 482 375 562 j42&v 643 254 381 305 457
31 '280- 420 i336 504 392- 588 U48f-: 672 266 399 319 479
32 292 438 :350 : 526 409 613 U67?-. 701 278 417 334 501
Limitations tor Connections to Column Webs
BaSVain. max B=3V2in.max
W14X43, limit S< 3 in.
See item 3 in preceding discussion "Design Cliecl<s"
See item 3 in preceding
discussion "Design Checks"
Notes:
1. Values shown assume 70-ksi electrodes. For 60-ksi electrodes, multiply tabular values by 0.857, or enter table with 1.17 times
the required strength, Pa or Rg. for 80-ksi electrodes, multiply tabular values by 1.14, or enter table with 0.875 times the
required strength.
2. Tabulated values are valid for stifleners with minimum thickness of
^mrj -
but not less than 2iyfor stiffeners with Fy= 36 ksi nor 1 .Siyfor stiffeners with Fy= 50 ksi. In the above, tj, is the thickness
of the unstiffened supported beam web and iv is the nominal weld size.
3. Tabulated values may be limited by shear yielding of, or beating on, the stiffener; refer to AISC
Specification Sections J4.2 and J7, respectively
ASD LRFD
n=2.oo ([, = 0.75
AMERICAN INSTITUTE OF STEEL CoNSTRUctIoN

DESIGN TABLE DISCUSSION (TABLE 10-10) 10-101
Table 10-8 (continued)
Bolted/Welded Stiffened
Seated Connections
Weld Available Strength, kips
L,m.
Width Of Seat, tv; in.
L,m.
8 9
L,m. 70-ksi Weld Size, in. 70-ksi Weld Size, in. L,m.
Va =/8 S/16 Va 5/8
L,m.
ASD LRFD ASD LRFD Asq LRFD ASD LRFD ASp
LRFD ASD LRFD
11 . 77.4, 116 96.7 145 43.7 65.6 52.5 78.7 69.9, 105 131
12 90.8 136 113 170 51.4 77.1 ,61.7 92.5 82.2 123
ipa,"^'
154
13 105 157 lisi 197 59.6 89.3 71.5' 107 95.3 143 '119' ' 179
14 120 180 150 224 68.2 102 81.8 123 109 " 164 '136:: 204
15 135' 203 169 253 77.2 116 92^6 139 ; 123';-'' 185 ''154': 232
16 , 151 :
227 189 . , 283 86.5 130 tQ4,, 156 208 260
17 168 251 209 314 96.2 144 115' 173 .154 231 192 • 289
18 1^4 277 231 346 106; 159 127 191 170 : 255 212 319
19 M 303 252 378 117 175 140 2T0 T86 „ '280 23^ 350
20 219 329 274 411 127 ^ 191 'r'5 2 • 229 203 305 254 381
21 237 356 297 445 138 207 165 - 248 220 331 276 413
22 256 383 319 479 149 223 178 268 238 357 297 446
23 274- 411 342 514 160 240 192 288 256 i 384 320 480
24 292 439 366 548 171: 257 205 ^ 308 274 411 342 513
25 311 467 389 584 183 274 219 329 292 438 365 548
26 330 495 413 619 194 291 233 349 Si tf ; 466 388 582
27 349 524 436 655 206 308 247 370 ?29 494 411 617
28 368' 552 '460" 690 217 326 261 : 391 348 522 435 652
29 387 581 484 . 726 229 344 275 412 367 550 458' 687
30 407- 610 508 762 241 362 289 434 386 • 578 482 723
31 426 639 532 799 253 379 304 455 405 607 506 759
32 445 668 557 835 265 397 318 : 477 424 636 530 795
Um'rtations (or Connections to Column Webs
BaSVain. max B=3V2in. max
See item 3 in preceding
discussion "Design Ctiecks"
See item 3 in preceeding discussion "Design Ctiecl<s"
Notes:
1, Values shown assume 70-l(si electrodes. For 60-ksi electrodes, multiply tabular values by 0,857, or enter table witti 1.17 times
the required strength, flaor R,. For 80-ksi electrodes, multiply tabular values by 1.14, or enter table with 0,875 times the
required strength.
2. Tabulated values are valid tor stiffeners with minimum thickness of
but not less than 2wfor stiffeners with />= 36 ksi nor 1.5 w for stiffeners with 50 ksi. In the above, fi^is the thickness
of the unstiffened supported beam web and w is the nominal weld size.
3, Tabulated values may be limited by shear yielding of, or bearing on, the stiffener; refer to AISC
Specification Sections J4.2 and J7, respectively.
ASD LRFD
0 = 2.00 $ = 0.75
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-102 DESIGN OF SIMPLE SHEAR CXJNNECTIONS
SINGLE-PLATE CONNECTIONS
A single-plate connection is made with a plate, as illustrated in Figure 10-11. The plate must
be welded to the support on both sides of the plate and bolted to the supported member.
Design Checks ,
The available strength of a single-plate connection is determined from the applicable limit
states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In
all cases, the available strength, (|)i?„ or RJO., must equal or exceed the required strength, R„
or Ra, respectively.
Single-plate shear connections that satisfy the corresponding dimensional limitations can
be desigiied using the simplified design procedure for the "conventional" corifiguration.
Other single-plate shear connections can be designed using the procedure for the'"extended"
configuration, which is applicable to any configuration of single-plate shear connections,
regardless of connection geometry.
Both the conventional and extended configurations permit the use of Group A or Group
B bolts. The procedure is valid for bolts that are snug-tightened, pretensioned or slip-critical.
In both the conventional and extended configuration, the design recommendations are
equally applicable to plate and beam web material with Fy = 36 ksi or 50 ksi. In both cases,
the weld between the single plate and the support should be sized as which will
develop the strength of either a 36-ksi or 50-lcsi plate.
Conventional Configuration
The following method may be used when the dimensional and other limitations upon which
it is based are satisfied. See Muir and Thornton (2011).
Dimensional Limitations
1. Only a single vertical row of bolts is permitted. The number of bolts in the connection,
must be between 2 and 12.
2. The distance firom the bolt line to the weld line, a, must be equal to or less than SVa in.
-V
a U
Fig. 10-11. Single-plate connection.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SINGLE-PLATE CONNECTIONS 10-103
Table 10-9
Design Values for Conventional
Single-Plate Shear Connections
R Hole Type Maximum tp or tm in.
2to5
SSLT an None
2to5
STD a/2 rf/2 + Vi6
6 to 12
SSLT a/2 d/2 + Vi6
6 to 12
, STO a d/2 - Vi6
3. Standard holes (ST6) or short-slotted holes transverse to the direction of the supported
member reaction (SSLT) are permitted to be used as noted in Table 10-9.
4. The vertical edge distance, Lev, must satisfy AISC Specification Table J3.4 require-
ments. The horizontal edge distance, L^h, should be greater than or equal to 2d, where
d is the bolt diameter.
5. Either the plate thickness, tp, or the beam web thickness, tw, must satisfy the maximum
thickness requirement given in Table 10-9.
Design Checks
1, The bolts and plate must be checked for required shear with an eccentricity equal to e,
as given in Table 10-9.
2. Plate buckling will not control for the conventional configuration.
Extended Configuration
The following method can be used when the dimensional and other limitations of the
conventional method are not satisfied. This procedure can be used to determine the strength
of single-plate shear connections with multiple vertical rows or in the extended configuration,
as shown in Figure 10-12.
I
I
<
(
(i
K.
Stabilizer plates,
— if required
t
Fig. 10-12. Single-plate cofinection—Extended Configuration.
AMERICAN INSTITUTE OF STBEL CONSTRUCTION

LFR-104 DESIGN OF SIMPLE SHEAR CONNECTIONS
Dimensional Limitations
1. The number of boltsis not limited.
2. The distaiice from the weld line to the bolt line closest to the support, a, is not limited.
3. The use of holes must satisfy AISC Specification Section J3.2 requirements.
4. The horizontal and vertical edge distances, Left and L^, must satisfy AISC Specification
Table J3.4 requirements.
Design Checl<s
1. Determine the bolt group required for bolt shear and bolt bearing with eccentricity e,
where e is defined as the distance from the support to the centroid of the bolt group.
Exception: Alternative considerations of the design eccentricity are acceptable when
justified by rational analysis. For example, see Sherman and Ghoitianpoor (2002).
2. Determine the maximum plate thickness permitted such that the plate moment strength
does not exceed the moment strength of the bolt group in shear, as follows:,
. 6Mmax
trmx= -J- (10-3)
Fyd^
where
= (10-4)
Fv
0.90
: shear strength of an individual bolt from AISC Specification Table J3.2, ksi,
divided by a factor of 0.90 to remove the 10% reduction for uneven force
distribution in end-loaded bolt groups (Kulak, 2002). The joint in question
is not end-loaded.
Ah = area of an individual bolt, in.^
C = coefficient from Part 7 for the moment-only case (instantaneous center of
rotation at the centroid of the bolt group)
Fy = specified minimum yield stress of plate, ksi
d - depth of plate, in.
The foregoing check is made at the nominal strength level, since the check is to ensure
ductility, not strength.
Exceptions:
a. For a single vertical row of bolts only, the foregoing criterion need not be satisfied if
either the beam web or the plate satisfies t < dhU + Vie and both satisfy Leh ^ 2db.
b. For a double vertical row of bolts only, the foregoing criterion need not be satisfied
if both the beam web and the plate satisfy t<dh/2+ Vi6 and Lgh 2:2db.
3. Check the plate for the limit states of shear yielding, shear rupture, and block shear
rupture.
4. Check the plate for the limit states of shear yielding, shear buckling, and yielding due
to flexure as follows:
2
+
Mr
.Mcj
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
<1.0 (10-5)

SINGLE-PLATE CONNECTIONS 10-105
where
Ag - gross cross-sectional area of the shear plate, in.^
Mc = ^bMn (LRFD) or MJClb (ASD), kip-in.
M„~ FyZpi, kip-in.
Mr = M„ (LRFD) or Ma (ASD)
= VVe, kip-in.
V,; = (l)vV„ (LRFD) or V„/£2v, (ASD), kips
Vn = kips
V, = V„ (LRFD) or Va (ASD), kips
Zpi - plastic section modulus of the shear plate, in.'
e = distance from support to centroid of bolt group, in.
=0.90
Qb = 1.67
Qv = L50
5. Check the plate for the limit state of buckling using the double-coped beam procedure
given in Part 9.
6. Ensure that the supported beam is braced at points of support.
The design procedure for extended single-plate shear connections permits the column to be
designed for an axial force without eccentricity. In some cases, economy may be gained by
considering alternative design procedures that allow the transfer of some moment into the
column. A percentage of the column's weak-axis flexural strength, such as 5%, may be used
as a mechanism to reduce the required eccentricity on the boh group, provided that this
moment is also considered in the design of the column. Larger percentages of the column's
weak-axis flexural strength may be justified at the roof level.
Short-slotted holes can be used with the extended configuration with the bolts designed
as bearing. Any slip of the bolts is a serviceability issue and does not affect the connection
strength (Muir and Hewitt, 2009).
Requirement for Stabilizer Plates
Lateral displacement of beams with extended single-plate connections is resisted by the tor-
sional strength of the plate and beam in the connection region. Thornton and Fortney (2011)
show that stabilizing plates are not required when the required shear strength, /?„ or Ra,
respectively, is equal to or less than the available strength to resist lateral displacement, (])/?„
or R„/Q, where
7?„=1,5007C% (10-6)
a
(1) = 0.90 Q=L67
where
a = distance from the support to the first line of bolts, in.
, L = depth of plate, in.
tp = thickness of plate, in.
'^en the required shear strength exceeds the available strength to resist lateral displace-
ment, stabilizer plates are required. These plates can be of nominal size and are connected
N
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
I

10-106 DESIGN OF SIMPLE SHEAR CONNECTIONS
to the single plate and column flanges with minimum size fillet welds as shown in Figure
10-12. They need not be connected to the column web.
The torsional strength of single-plate shear connections is the sum of two components: the
lateral shear strength of the single plate and the lateral bending strength of the beam in the
connection region. The first component always is present. The second component occurs as
bending of the beam flange in contact with the slab, and should only be considered when a
slab is present. Thornton and Fortney (2011) provide the^um of these components as follows:
LRFD ASD
r "12
M,„< ^ (10-7a)
Ltp Z
^ 21^{t„+tp)bf
{ifbFyb)Lstl
(10-7b)
^ Ltp ^ 2
FybLsti
where
Fvo - specified minimum yield stress of the plate, ksi
'yp-
Mtu--
Ru
tw + to
M,a=Ra
. 2
t„ + t„
(LRFD)
(ASD)
(10-8a)
(10-8b)
Ls
Ra
Ru
bf
tw
Sib
•v
= span length of beam, in.
= required strength (ASD), kips
= required strength (LRFD), kips
: width of beam flange, in.
= thickness of beam web, in.
= 0.90
= 1.00
= 1.67
= 1.50
Recommended Plate Length
To provide for stability during erection, it is recommended that the minimum plate length
be one-half the T-dimension of the beam to be supported. The maximum length of the plate
must be compatible with the T-dimension of an uncoped beam and the remaining web depth,
exclusive of fillets, of a coped beam. Note that the plate may encroach upon the fillet(s) as
.given in Figure 10-3.
Shop and Field Practices
Conventional and extended single-plate connections may be made to the webs of supporting
girders and to the flanges of supporting columns. Extended single-plate connections are
suitable for connections to the webs of supporting columns when the bolt line is located a
sufficient distance beyond the column flanges.
AMERICAN INSTRRuTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLE 10-10) 10-107
With the plate shop-attached to the support, side erection of the beam is permitted. Play
in the open holes usually compensates for mill variation in column flange supports and other
field adjustments.
DESIGN TABLE DISCUSSION (TABLE 10-10)
Table 10-10. Single-Plate Connections
Table 10-10 is a design aid for single-plate connections welded to the support and bolted to
the supported beam. Available strengths are tabulated in Table 10- 10a for plate material with
Fy = 36 ksi and Table lO-lOb for plate material with Fy - 50 ksi.
Tabulated bolt and plate available strengths consider the limit states of bolt shear, bolt
bearing on the plate, shear yielding of the plate, shear rupture of the plate, block shear
rupture of the plate, and weld shear. Values are tabulated for two through twelve rows of
V4-in.-, "'/s-in.-, 1-in.- and iVs-in.-diameter Group A and Group B bolts at 3-in. spacing. For
calculation purposes, plate edge distance, i^v, is in accordance with AISC Specification
Section J3.10 and Table J3.4. End distance, Leh, is provided as 2 times the diameter of the
bolt, to match tested connections. Weld sizes are tabulated equal to
While the tabiilar values are based on a = 3 in., they may conservatively be used when
the distance frotii the support to the bolt line, a, is between 2V2 in. and 3 in. The tabulated
values are valid for laterally supported beams in steel and composite construction, all types
of loading, snug-tightened or pretensioned bolts, and for supported and supporting members
of all grades of steel.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

LFR-108 DESIGN OF SIMPLE SHEAR CONNECTIONS
diameter
bolts
Table 10-1 Oa
Single-Plate Connections
Bolt, Weld and Singie-Plate
Available Strengths, kips
Plate
Fy = 36 ksi
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
V4
ASO LRFO
Vt6
ASD LRFO
'/e
ASO LRFO
'/16
ASO LRFO
Vz
ASP LRFD
9/16
^ LRFD
Group
A
12
(i = 35V2)
Group
B
STD
SSLT
100
99.5
.150
149
125
124
188
187 138 208 138 208
STD
SSLT
,100
99.5
150
149
188
187 149 224 174 261
STD
SSLT
100
99.5
150
149
188
187 149 224 174 261
STD
SSLT
100
99.5
150
149
188
187 149 224 m 261
Group
A
11
(1 = 321/2)
Group
B
STD
SSLT
92,1
91.4
138
137
173
171 126 190 126 190
STD
SSLT
92.1
91.4
138
137
173
171 137 206 159 239
STD
SSLT
92.1
91.4
138
137
173
171 137 206 159 239
STD
SSLT
92.1
91.4
138
137
173
171 137 206 160 240
Group
A
10
(t = 29Vz)
Group
B
STD
SSLT
84.0
83.3
126
125
157
156 115 173 115 173
STD
SSLT
84.0
83.3
126
125
157
156 125 187 145 217
STD
SSLT
84.0
83.3
126
125
157
156 125 187 145 217
STD
SSLT
84.0
83.3
126
125
157
156 125 187 146 219
Group
A
9
(I = 26V2)
Group
B
STD
SSLT
75.9
75.2
114
113
94.8
94.0
142
141 103 155 103 155
STD
SSLT
75.9
75.2
114
113
94.8
94.0
142
141 113 169 130 194
STD
SSLT
75.9
75,2
114
113
94.8
94.0
142
141 113 169 130 194
STD
SSLT
75.9
75.2
114
113
94.8
94.0
142
141 113 169 132 197
Weld Size 3/16 V4 V4 Vl6
STD = Standard holes
SSLT = Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9,
N= Threads included
X = Threads excluded
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-109
Table lO-lOa (continued) ^
Plate Single-Plate Connections /4-'n-
Fy = 36 ksi bqh^ yygljj and Single-Plate diameter
Available Strengths, kips
n
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
n
Bolt
Group
Thread
Cond.
Hole
Type
5/16 Ve V16 Vz 9/16 n
Bolt
Group
Thread
Cond.
Hole
Type
ASd LRFD ASD LRFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD
8
(1 = 23V2)
Group
A
N
STD
SSLT
67.B
67.1
102
101
84.7
83.9
127
126 90.i8 137 90.8 137 _ _

8
(1 = 23V2)
Group
A
X
STD
SSLT
67.8
67.1
102
101
84.7
83i9
127
126 101 151 114 172
I
— —

8
(1 = 23V2)
Group
B
N
STD
SSLT
67.8
67.1
102
101
84.7
83.i9
127
126 101 151 114 172


8
(1 = 23V2)
Group
B
X
STD
SSLT
67.8
67.1
102
101
84.7
83.9
127
126 101 151 117 176
_ _
7
(1 = 20V2)
Group
A
N
STD
SSLT
59.7
59.0
89.5
88,5
72:1
73.7
108
111 78.7 118 78.7 118
7
(1 = 20V2)
Group
A
X
STD
SSLT
59.7
59.0
89.5
88.5.
74.6
73.7
112
111 88.5 133 99.2 149
_
7
(1 = 20V2)
Group
B
N
STO
SSLT
59.7
59.0'
89.5
88.5
74.6
73.7
112
111 88.5 133 99.2 149
— —

7
(1 = 20V2)
Group
B
X
STD
SSLT
59.7
59.0
89.5
88.5
.74.6
73.7
112
111 88.5 133 103 155
— —

6
(ialT*/?)
Group
A
N
STD
SSLT
51.6
50.9
77.4
76.3
59.3
63.6
89.1
95.4 66.5 100 66.5 100

— —
6
(ialT*/?)
Group
A
X
STD
SSLT
51.6
50.9
77.4
76.3
64.5
63.6
96.7,
95.4 76.3 115 83.8 126
—"••
— — —
6
(ialT*/?)
Group
B
N
STO
SSLT
51.6
50.9
77.4
76.3
6C5
63.6
96.7
95.4 76.3 115 83.8 126
•—

6
(ialT*/?)
Group
B
X
STD
SSLT
S1.6
50.9
77.4
76,3
64.5
63.'6
96.7
95.4, 76.3 115 89.1 134
~
— — —
5
(I = 14V2)
Group
A
N
STD
SSLT
43.5
42.8
65.2
64,2
54.1
53.5
81.3
80.2
54.1
54.1
81.3
81.3
54.1
54.1
81.3
81.3 54.1 81.3 54.1 81,3
5
(I = 14V2)
Group
A
X
STD
SSLT
43.5
42.8
65.2
64.2
54.3
53.5
81,5
80,2
65.2
64.2
97,8
96.3
68.1
68.1
102
102 68.1 102 68.1 102 5
(I = 14V2)
Group
B
N
STD
SSLT
43.5
42.8
65.2
64.2
54.3
53.5
81,5
80.2
65.2
64.2
97.8
96.3
68.1
68.1
102
102 68.1 102 68.1 102
5
(I = 14V2)
Group
B
X
STD
SSLT
43.5
42.8
65.2
64.2
54.3
53.5
81,5
80.2
65.2
64.2
97.8
96,3
76.1
74.9
114
112 84.5 126 84.5 126
Weld Size '/16 V4 'A V16 5/16 %
STO = Standard holes N = Threads included
SSLT = Short-slotted holes transverse to direction of load X = Threads excluded
—- Indicates that the plate thickness is greater than the maximum given in Table 10-9.
I
AMERICAN INSTITUTE OF STEEL GONSTRUCTION

LFR-110 DESIGN OF SIMPLE SHEAR CONNECTIONS
^ Table 10-10a (continued)
/4-'" - Single-Plate Connections Plate
^ b"lf Bolt, Weld and Single-Plate 'v = ksi
Available Strengths, kips
n
%)lt
Group
Thread
Cond.
Hole
Type
Plate Thickness, In.
n
%)lt
Group
Thread
Cond.
Hole
Type
V4 Vl6 ?/l6 V2 9/tt n
%)lt
Group
Thread
Cond.
Hole
Type
m LRFD ASP LRFO ASp LRFO ASO LRFD ASO LRFO ASO LRFD
4
(i = 1lV2)
Group
A
N
STD
SSLT
34,8
34,7
52.2
52.0
415
415
62.5
62.5
41:.5
41.5
62,5
62.5
41.5
41,5
62,5
62,5 4.1:.5. 62.5 41.5 62.5
4
(i = 1lV2)
Group
A
X
STD
SSLT
34.8
34,7
52.2
52.0
43.5
43J
65.3
65.1,
52.2
sa.o
78,3
78.1
52.4
52.4
78,5
78,5 52.4 78.5 52.4 78.5 4
(i = 1lV2)
Croup
B
N
STD
SSLT
34,8
,34.7
52.2
52.0
43.5.
,43.4
65.3
65.1
S2.Z
52;0
78.3
78.1
52.4
5^4
78,5
78.5 78.5 52,4 78.5
4
(i = 1lV2)
Croup
B
X
STD
SSLT
34.;8
34.7.
52.2
52.0
43.5
43.4
65.3
65.1
52.2
-52.0
78.3
78.1
60.9
60.7
91.4
91.1 64.9 97.0 64,9 97.0
3
(/. = 8V2)
Group
A
N
STD
SSLT
25.6
25.6
,•^8.3
38.3
28.8
28.8,
43.4
43.4
,28.8 43.4
43:4
28,8
28.8
43.4
43.4 28:8 43.4 28,8 43,4
3
(/. = 8V2)
Group
A
X
STD
SSLT
25;6;
25.fe
38.3
38.3
31 .'9
31.9:
47.9
47.9
36.3
36.3
54.5
54.5
36.3
36.3
54.5
54.5 36.3 54.5 36,3 54,5 3
(/. = 8V2)
Group
B
N
STD
SSLT
25.6
25.:6
38.3
38.3
3t..9:
31.9
47,9
47.9
36.3
36.3
54.5
54.5
36.3
36.3
54.5
54.5 364 54,5 36,3 54.5
3
(/. = 8V2)
Group
B
X
STD
SSLT
25.6
25.6
38.3
38,3
31.9
31.9
47.9
47,9
,38.p
38.^
57.5
57.5
44,7
41.7
67.1
67,1 45,1 67,3 45,1 67,3
2
(i = 5V2)
Group
A
N
STD
SSLT
16.3
16.®
24.5
24.5
.36.15
1,6.5
24.6
24.8
16.p
.,16.5
24.8
24.8
16.5
li6.5
24.8
24.8 1.6.5 24,8 16,5 24.8
2
(i = 5V2)
Group
A
X
STD
SSLT 16.3
24.5
24.5
20.4
20.4
30.6
30.6
20.j5
20.8
31.2
31.2
20.8
20.8
31,2
31.2 20.8 31.2 20,8 31.2 2
(i = 5V2)
Group
B
N
STD
SSLT
16;3
16.3
24.5
24.5
.20.4
20.,4
30.6
30.6
-20.i3
20."^
31.2
31.2
20,8
2fl.8
31.2
31.2 20;8; 31.2 20,8 31.2
2
(i = 5V2)
Group
B
X
STD
SSLT
16.3
16.3,
24.5
24.5 20.4
30.6
30.6
.24.S
;24.5
36.7
36.7
2^5,8
25,8
38.5
38.5 25.8 38.5 25,8 38,5
Weld Size V4 Vre Vr6 Vs
STO = Standard holes N = TTireads included
SSLT = Short»slottedholestransvBrsetodirectlonofload • X = Threads excluded
— Indicates that the plate thickness Is greater than the maximum given In Table 10-9.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-111
Table 10-10a (continued)
Plate Single-Plate Connections
Fy - 36 ksi BQit^ yygijj Single-Plate
Available Strengths, kips
7/8-in-
diameter
bolts
12
(i = 36)
11
(i = 33)
to
(i = 30)
9
(/. = 27)
Bolt
Group
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Thread
Cond.
Hole
TVpe
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
Weld Size
Plate Thickness, in.
V4
ASD LRFD
102
,102
102
m
,102
102
M2
102
94,1
93.4
94.1
93.4
-93.4
94.1
93.4
86.jQ
85.3
86,0
85,3
86,0
85.3
86.0
85.^
77.2
77.9
77.2
77.2
77.9
77.2
153
152
117
116
117
116
5/16
5/16
ASD LRFD
128
m
128
127
118
117
318
117
108
107
W
m
107
97.4
96.5
.97.4
96.5
97.4
96.5
97.4
96.5
176
175.
176
175
176
175
146
145
146
145
'/4
3/8
LRFO
153
i5i
153
152
153
152
153
152
m
1:40
dsi
140
141
140
141
140
129
128
128
129
.128
129
128
m
116
117
116
1:17
116
117
116
230
228
230
228
230
226
212
210
212
210
212
210
212
210
194
192
194
192
194
192
175
174
175
174
175
174
175
174
V4
ASO LRFD
178
178
178
178
164
164
164
164
149
t49
149
l!49
135
135
135
135
267
267
267
267
245
245
245
245
224
224
224
224
203
203
203
203
=/l6
'/2
ASD LRFO
188
203
203
203
m,
187
187
187
156
171
171
171
140
154
154
282
305
305
305
258
280
280
280
234
256
256
256
210
232
232
154 232
5/16
'/<6
ASD LRFD i
I
STD = Standard holes N = Threads included
SSLT = Stiort^slotted holes transverse to direction of load X = Threads excluded
— Indicates that the plate thickness Is greater than the maximum given in Table 10-9.
AMERICAN INSTMITE OF STEEL CONSTRUCTION

LFR-112 DESIGN OF SIMPLE SHEAR CONNECTIONS
_ Table 10-10a (continued)
78 '" " Single-Plate Connections wate
diameter Bolt, Weld and Single-Plate 'v = 36ksi
Available Strengths, kips
Bolt
Group
Thread
Cond.
Hole
Type
j Plate Thickness, in.
N
Bolt
Group
Thread
Cond.
Hole
Type
VA 5/16 5/8 Vis Vz
1 'In 1
Bolt
Group
Thread
Cond.
Hole
Type
N
STD 69.6 104 87.0 131 •104 157
H D B H B B
Group
N
SSLT 69.1 104 86.4 130 104 156 121 181 124; 185 —;
A
STD 69.6 104 B7.0 131 104 157 ~ — ~ —
8 SSLT 69.1 104 86.4 130 :i04 156 121 181 138 207 —
(i = 24) STD 69.6 104 87.0 131 104 157
—.
— (ii- —
Group SSLT 69.1 104 86.4 130 J04 156 121 181 138 207 --
B
V
STD 69.6 104 87.0 131 .104 157
—ii _
A
SSLT 69.1 104 86.4 130 164 156 121 181 138 207 — • —
N
STD 60.9 91.4 76.1 114 91.4 137 — — __
— —
Group
N
SSLT 60.9 91,4 76.1- 114 91.4 137 107 160 107;, 161 —- —
A
y
STD 60.9 91.4 76.1 114 91.4 137 — —
•—
-— — —
7
A
sstr 60.9 91.4 76,1 114 91.4 137 107 160 122 183 —: —
(1 = 21)
N
STD 60,9 91.4 76.1 114 91.4 137
1- j
— — —
Group
N
SSLT 60.9 91.4 76.1 114 91.4 137 107 'l60 122 183 — _
B
*
STD 60.9 91.4 76.1 114 91,4 137 — ~ —
A
SSLT 60.9 91.41 76.11 114 91v4 137 107 160 122 183 —
N
STD 52.2 78.3 65.3 97.9 78.3 117 — —

— — —
Group
N
SSLT 52,2 78.31 65.3 i 97.9 78.3 117 90.5 136 90:5 136 — —
A
Y
STD 52.2 78.3 65.3 97.9 78.3 117 T- — — — — —
6
A
SSLT 52.2 78.3 65.3 97.9 78.3 117 91.4 137 104 157
1
(1 = 18)
N
STD ;:52.2 78.3 65.3 97.9 78.3 117 — — —
Group
N
SSLT 52.2 78.3 65.3 97.9 78.3 117 91.4 137 104 157 __

B
Y
STD 52.2 78.3 65.3; 97.9 I78.3 117 ~ —
— !
— —
A
SSLT 52.2 78.3 65.3 97,9 '78.3 117 9l4 137 104 157 — —
N
STD 43.5 65.3 54.4 81,6 65.3 97,9 73.6 110 73.6 110 — —
Group
N
SSLT 43.5 65.3 54.4 81,6 65,3 97,9 73.6 110 73.6 110 73.6 110
A
Y
STD 43.5 65.3 54.4 81,6 65.3 97.9 76.1 114 87.0 131 _

5
A
SSLT 43.5 65.3 54.4 81,6 65.3 97.9 76.1 114 87.0 131 92.7 139
(i = 15)
N
STD 43.5 65,3 54.4 81.6 ,65.3 97.9 7^6.1 114 87.0 131 —
Group
N
SSLT 43.5 65.3 .54.4 81,6 65.3 97.9 76.1 114 87.0 131 |92.7 139
B
Y
STD 43.5 65,3 54.4 81,6 65.3 97.9 76.1 114 87.0 131 _

A
SSLT 43.5 65,3 54.4 81.6 65,3 97,9 76.1 114 187.0 131 97.9 147
Weld Size V4 1/4 5/16 S/16 Ve
STD = Standard holes N= Threads included
SSLT = Short-slotted holes transverse to direction of load X = breads excluded
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLE 10-10) 10-113
Plate
Fy = 36 ksi
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Vs-in-
diameter
bolts
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
a
Bolt
Group
Thread
Cond.
Hole
Type
V4 5/16 '/6 Vz 9/16
Bolt
Group
Thread
Cond.
Hole
Type
m LRFO ASD LRFD ASD LRFO ASD LRFD ASD LRFD LRFD
N
STD 34.8 52.2 43.5 65.3 52.2 78.3 5j5.5 84.8 56.5 84.8 — —
Group
N
SSIT 34.8 52.2 43,5 65.3 52.2 78.3 56.5 84.8 56.5, 84.8 56.5 84.8
A
STD 34.8 52.2 43.5 65,3 52.2 78.3 60.9 91.4 69.6 104 _

4 • SSLT 34.8 52.2 43.5 65.3 52.2 78.3 60.9: 91.4 69.6 104 71.2 107
(1 = 12)
N
STO 34,B 52,2 43.5 65.3 52.2 78.3 60.9 91,4 69.6 104 • —
Group
N
SSLT 34.8 52.2 43.5 65.3 52.2 78.3 60.9 91,4 69.6 104 71.2 107
B
STD 34.8 52.2 43.5 65,3 52.2 78.3 60.9 91,4 69.6 104 _

SSLT 34.8 52.2 43.5 65,3 '52.2 78.3 60.9 91,4 69.6 104 78.3 117
N
STD 26.l1 39.2 32.6 4R.9 39.2 58,7 39.2 58,9 39.2 58,9 — —
Group
N
SSLT 26.1 39.2 32.6, 48.9 39.2 58,7. 39.2 58,9 39.2 58,9 39.2 58.9
A
STD 26.1 39,2, 32.6 48.9, 39.2 58,7 45.7 68.5 49.4 74,4 __
3 SSLT 26.1 39,2 32.6 48,9 39.2 58,7 45,7 68,5 49.4 74,4. 49.4 74.4
(1 = 9)
N
STD 26.1 39,2 32.6 48,9 39.2 58,7 45.7 68,5 49.4 74,4 —
Group
N
SSLT 26.1 39,2 32,6 48,9 39.2 58,7 45.7 68.5 49.4; 74,4 49.4 74.4
B
V
STD 26.1 39,2: 32.6 48,9 39.2 58,7 45.7 68,5 52.2; 78,3 — —
A
SSLT 26.1 39,2 32.6 48,9 39.2 58,7 45.7 68,5 52.2 78,3 58.7 88.1
N
STD 17.4 26,1 21.8 32.6 22.4 33,7 22.4 33,7 22.4 33,7 — ~
Group
N
SSLT 17.4 26,1 21.8 32.6 22.4 33,7 22.4 33.7 22.4 33.7 22.4 33.7
A
Y
STD 17.4 26,1 21,8 32.6 26.1 39,2 28.3 42,5 28.3 42.5 — —
2
A
SSLT 17.4 26,1 ai.b 32.6 26.1 39,2 28.3 42.5 28.3 42.5 28.3 42.5
(1 = 6)
N
STD T7.4 26.1 21.|a 32.6 26.1 39,2 28.3 42.5 28.3 42.5 —
Group
N
SSLT 17.4 26,1 21.6 32.6 26.,1 39.2 28.3 42.5 28s3, 42.5 28.3 42,5
B
Y
STD 17.4 26,1 21.8: 32.6 26.1 39,2 30.5 45.7 34.8 52.2 — —
A
SSLT 17.4 26,1 21.8 32.6 26.1 39,2 30.5 45.7 34.8 52.2 34.9 52.5
Weld Size 3/16 V4 V4 5/16 %
STD = Standard holes 1
SSLT = Short-slotted holes transverse to direction of load :
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N = Threads included
)( = Threads excluded
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

LFR-114 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-10a
1-in- Single-Plate Gonnections Plate
diameter
bolts
Bolt, Weld and Single-Plate
Available Strengths, kips
Fy = 36 ksi
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
tt
Bolt
Group
Thread
Cond.
Hole
Type
V4 S/16 Vte V2 9/16
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD
N
STD 100 150 125 188. 150 225 175 263 — — — —
Group'
N
SSLT 100 150 125 188 150 225 175 263 200 300 225 338
A STD 100- 150 125 188 150 225 175 263 —' — — _
12 SSLT 100 150 125 188- •150 225 175 263 200 300 225= 338
(L = 36^2)
N
STD 100 150 125 188 ,150 225 175 263 — — —
Group
N
SSLT 100 150 125 188 isg 225 i75 263 2oa 300 225 338
B
STD •100 150: 125 188 150 225 1:75 263
—«
— — —
SSLT liOO 150 125 188 150 225 175 263 200 300 225 338
N
STD 91.9 138: 115 172^ 138 207 161 .241 — — — —
Group
N
SSLT 91.9 138 115 172! 138 207 161 184 • 276 207 310
A ,
y'
STD 91.9 138 115 172 138 207 161 241 — -- — —
11
A
SSLT 91.9 138 115 172 138 207 161 241 184 276 207 310
(i = 33V2)
N
STD 9T.9 138 115 172 138 207 161 241 — — —
' 1
Group
N
SSLT 91.9 138 115 172 138 207. 161 241 184 276 207 310
B
Y
STD 91.9 138 115 172 138 207 161 241 —' — — —
A
SSLT 91.9 138 115- 172 138 207 161 241 184 276 207 310
N
STD 83.7 126 105 157 126 188 147 220 — — — —
Group
N
SSLT 83.7 126 105 157 126 188 147 220 167 251 188 283
A
Y
STD 83.7 126 105 157: 126 188 147 220 —A
— — —
10
A
SSLT 83.7 126 105 157 126 188 147 220 167 251 188- 283
(i = 30V2)
N '
STD 83.7 126' 105 157 126 188 147 220 — — —
Group
N '
SSLT 83,7 126 105 157 126 188 147 220 167 251 188 283
B
Y
STD 83.7 126 105' 157 126 188 147 220 — — —
A
SSLT 83.7 126 105 157 126 188 147 220 167 251 188 283
N
STD 75.6 113 94.5 142 113 170 132 198 — — — —
Group
N
SSLT 75.6 113 94.5 142 113 170 132 198 151 227 170 255
A
Y
STD 75.6 113 94.5 142 113 170 132 198 — — —
9
A
SSLT 75.6 113 94.5 142 113 170 132 198 151 227 170 255
(1 = 271/2)
N
STD 75.6 113 94.'5 142 113 170 132 198 — — — —
Group
N
SSLT 75.6 113 94.5 142 1IR 170 132 198 151 227 170 255
6
Y
STD 75.6 113 94.5 142 113 170 132 198 •— — — —
A
SSLT 75.6 113 94.5 142 113 170 132 198 151 227 170 255
Weld Size 3/16 1/4 V4 5/16 5/16 %
STD = Standard holes.
SSLT = Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N = Threads included
X = Threads excluded
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-115
Table 10-1 Oa (continued)
Plate Single-Plate Connections
Fy = 36 ksi y^gij, and Single-Plate
Available Strengths, kips
l-in..
diameter
bolts
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
n
Bolt
Group
Thread
Cond.
Hole
Type
V4 »/l6 3/8 V2 9/16
Bolt
Group
Thread
Cond.
Hole
Type
ASp LRFD ASP LRFD ASp LRFD ASD LRFD ASD LRFD ASD LRFD
N
STD 67.4 101 84.3 126, .301 152 118 177 — — — —
Group
N
SSLT 67.4 101 84.3 126 101 152 177 135 202 352 228
A
STD 67.4 101 84.3 126 101 152 Tfs' 177
'-x
— _
8 SSLT 67.4 101. 84.3 126 301 152 118 177 135,^ 202 152 228
(/. = 24V2)
N:
STD 67.4 101 84.3 126 .101 152 118 177 — —• —-
Group
N:
SSLT 67.4 101 • .84,b 126 DOI 152 LIS 177 135 202 152.; 228
B
STD 67.:4 101 :84.3 126 IIOI 152 318 177 TT38
— —
SSLT 67.4 101 84.3 126 ,101 152 318 177 mi 202 152 228
N
STD 59.3 88.9 74.1 111 88,'9 133 104 156 — -- — —
Group
N
SSLT 59.3 88.9 74.1 111 88.9 133 104 156 11,9 178 133 200
A
y
STD 59.3 88.9 74.1 111 88.9 133 104 156 — — — —
7
A
SSLT 59.3 88.9 74.1 111 88.9 133 104 156 139 178 133 200
(L = 2Vl2)
N
STD 59.3 88,9 74.1 111 88.9 133 104 156 — — _

Group
N
SSLT 59.3 88.9 74.1 111 88.9 133 104 156 119 178 133 200
B
X
STD 59.3 88.9 74.1 111 88.9 133 104 156 — — — • —
SSLT 59.3 88.9 74.1 111 88,9 133 104 156 119 178 133 200
N
STD 51.1 76.7 63.9 95,8 76.7 115 89.4 134 — —
Group
N
SSLT 51.3 76.7 63.9 95.8 76.7 115 89.4 134 102 153 lis 173
A
y
STD 51.1 76.7 63.& 95.8 76,7 115 89,4 134 — — — ~
6
A
SSLT 51.1 76.7 63.9 95.8 76.7 115 89,4 134 102 153 115 173
(i = I8V2)
N
STD 51.1 76.7 63.9 95.8 76.7 115 89.4 134 — — •—- —
Group
N
SSLT 51.1 76.7 63.9 95,8 76.7 115 89.4 134 102 153
11:5
173
B
y
STD 51.1 76.7 63.9 95,8 76.7 115 89.4 134 — —


A
SSLT 51.1 76.7 63.9 95.8 76.7 115 89.4 134 102 153 115 173
Group
N 43.0 64,4 53.7 80.5 64.4 96.7 75.2 113 85.9 129 96,3 144
5 A X STD/ 43.0 64.4 53.7 80,5 64.4 96,7 75.2 113 85.9 129 96.7 145
(i=15V2)
Group N SSLT 43.0 64.4 53.7 80.5 64.4 96,7 75.2 113 85.9 129 96.7 145
B X 43.0 64.4 53.7 80,5 64.4 96,7 75,2 113 85.9 129 96.7 145
Group N 34.8 52,2 43.5 65.3 52.2 78,3 60.9 91,4 69.6 104 74.0 111
4 A X STD/ 34.8 52,2 43.5 65.3 52.2 78,3 60.9 91.4 69.6 104 78.3 117
(i = 12V2)
Group N SSLT 34.8 52.2 43.5 65.3 52.2 78,3 60.9 91,4 69.6 104 78.3 117
B X 34.8 52.2 43.5 65,3 52,2 78.3 60.9 91.4 69.6 104 78.3 117
Weld Size V16 V4 5/16 3/8
STD = standard holes
SSLT = Short-slotted holes transverse to direction of load
STD/SSLT = Standard holes or short-slotted holes transverse to direction of load
— Indicates that the plate thickness Is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N = Threads included
X = Threads excluded
AMERICAN INSTiTuTe OF STEEL GONSTRUCTION

10-116 DESIGN OF SIMPLE SHEAR CONNECTIONS
1
-in--
diameter
bolts
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate
Fy = 36 ksi
Bolt
Group
Thread
Cond.
Note
Type
Plate Thickness, In.
1/4
ftSO LRFO
S/16
m LRFD ASD LRFO
Via
ASD LRFD
Vz
ASD LRFD
Vl6
ASD LRFD
3
a=9Vj)
Group
A
Group
B
STD/
SSLT
26.6
26.'6
40.0
40.0
33.3
33.3
50.0
50.0
40.p
40.0
59.9
59.9
46.6
46.6
69.9
69.9
51.4
SSiS
77.0
79.9
51.4
59.9
77.0
89.9
26.6
26;p
40.0
40.0
33.3
33,3
50.0
50,0
40,p
40.b
59,9
59.9
46.6
46.6
69.9
69.9
53.3"
53,3
79.9
79.9
59.9
59.f
89.9
89.9
2
(i = 6V2)
Group
A
Group
B
STD/
SSLT
18.5
18.5
27.7
27.7
23,1
23;1
34.7
34,7
27,7
27.7
41.6
41.6
29.4
32.4
44,0
48,5
29.4
3P,
44.0
55.4
2i4
37;0
44.0
55,4
163
18.5
27.7
27,7
23,1
23,1
34.7
34,7
27,7
Z7.7
41.6
41.6
32.4
32.4
48,5
48.5
37.6
37.0
55.4
55.5
37,0
41.6
55,4
62.4
Weld Size '/16 '/4 'A 5/16 V>6 VB
STD = Standard ho(es
SSLT = Short-slotted holes transverse to direction of toad
STD/SSLT = Standard holes or short-slotted holes transverse to direction of load
Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N=rereads included
X=Threads excluded
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLE 10-10) 10-117
Table 10-1 Oa (continued)
Plate Single-Plate Connections 1 '/8-i-
Fy = 36 ksl
Bolt, Weld and Single-Plate
Available Strengths, kips
diameter
bolts
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, In.
a
Bolt
Group
Thread
Cond.
Hole
Type
5/M V2 9/16 5/8
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFO ASD IRFD ASD LRFO ASD LRFD ASD LRFD ASD LRFD
N
STD 120 179 144 215 167 251 191 287 — — :— —
Group
N
SSLT i1:20 179 «4 215 167 251 191 287 215: 323 239 359
A
STD 120 179 144 215 167 251 191 287 — — — —
12 SSLT 120 179 144 215 167 251 191 287 215 323 239 359
(1 = 37)
N
STD '120 179 144 215 167 251 191 287 _
— —
Group
N
SSLT -120 179 144 215
167 251 191 287 215 323 239 359
B
STD 120 179 144 215 rl®7 251 191 287
_:
— — —
SSLT 120 179 144 215 167 251 191 287 215 323 239 359
N
STD 110 165 132 198, 154 231 176 264 — — — —
Group
N
SSLT 110 165 132 198 154 231 176 264 198j 297 220 330
A
STD 110 165 132 198 154 231 176 264
li
— — —
11 SSLT 110 165 132 198 154 231 176 264 198 297 220 330
(1 = 34)
N
STD 110 165 132,: 198 154 231 176 264 — — -sS-- —
Group
N
SSLT 110 165 132 198' ,154 231 176 264 198 297 220 330
B
Y
STD lib 165 132 198 154 231 176 264 —' — — _
A
SSLT 110 165 132 198 •154 231 176 264 198 297 220 330
N
STD 101 151 121 181 141 211 161 241 _
— —
Group
N
SSLT 101 151 121 181 141 211 161 241 181- 272 201 302
A
Y
STD IJOI 151 121 181, m 211 161 241 — — —
10
A
SSLT 101 15t 121 181 1:4!I 211 161 241 181 272 201 302
(1 = 31)
N
STD 101 151 121 181 1'41 211 161 241 — — —
Group
N
SSLT T01 151 121 181 141 211 161 241 181 272 201 302
B
Y
STD 101 151 121 181 141 211 161 241 —•• — — —
A
SSLT 101 151 121: 181 141 211 161 241 181 272 201 302
N
STD 91.1 137 109 164 128 191 146 219 — — —
Group
N
SSLT 911 137 109 164 128 191 146 219 164 246 182 273
A
Y
STD 911 137 109 164 128 191 146 219 — —
9
A
SSLT 91.1 137 109 164 128 191 146 219 164 246 182 273
(1 = 28)
M
STD 911 137 109 164 1i28 191 146 219 Tv- — —
Group
n
SSLT 911 137 109 164 128 191 146 219 164 246 182 273
B
Y
STD 91.1 137 109 164 128 191 146 219 —,:, — —
A
SSLT 911 137 109 164 128 191 146 219 164 246 182 273
Weld Size V4 V4 5/16 Vie Vl6
STD - Standard holes N = Threads included
SSLT = Short-slotted holes transverse to direction of load X = Threads excluded
~ Indicates that the plate thickness is greater limn the maximum given in Table 10-9.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

LFR-118 DESIGN OF SIMPLE SHEAR CONNECTIONS
. Table 10-10a (continued)
1 /8"«" " Single-Plate Connections Piate
^'^"If Bolt, Weld and Single-Plate = ^
Available Strengths, kips
Bolt
Group
Thread
Cond.
Hole
Type
Piate Thickness, in.
n
Bolt
Group
Thread
Cond.
Hole
Type
5/16 3/8 Vn Va Va
Bolt
Group
Thread
Cond.
Hole
Type
ASP IfiFD ASO LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
N
STD 61.6 122 :97.9 147 114 171 131 196 — — — ~
Group
N
SSLT .8-1 j6 122 ;97.9 147 114 171 131 196 147- 220 163 245
A
X
STD 81.6 122 97.9 147 114 171 131 196 — — __
8
X
SSLT B1.6 122 '97.9:: 147 114 171 •isi 196 147 220 163 245
(i = 25)
N
STD 122 97.9 147 114 171 131 196 __
— —
Group
N
SSLT fiie 122 ma 147. 114 171 131 196 147,1 220 163 245
B
X
STD 122 97.9 147 114 171 131 196 — _

X
SSLT 81.6 122 97.9 147 114 171 131 196 147 220 163 245
N
STD 108 .B6,5 130 101 151 115 173 _
— —
Group
N
SSLT 108 86:5 130 101 151 115 173 13Q; 195 144 216
A
V
STD 72.0 108 86.5 130 101 151 115 173 — — —
7
A
SSLT 72J0: 108 86.5 130 101 151. 115 173 130 195 144 216
(i = 22)
N
STD 72.0 108 86i5 130 tO;1 151 115 173 — — i— —
Group
N
SSLT 72.0 108 :86.S 130: :T0i 151 115 173 195 144 216
B
V
STD wa 108 86i5 130 101 151 115 173 — — — —
A
SSLT 72.0 108 130: 101 151 115 173 130 195 144 216
N
STD •62,5 93.8 75,0' 113 87.5 131 100 150 — — — —
Group
ii
SSLT £2i5 93.8 75.0 113 '87.5 131 100 150 113 169 125 188
A
X
STD €25; 93.8 75,0 113 •87.5 131 100 150 — — —
6
X
SSLT 93.8 75.0 113 87i5 131 ioo 150 113 169 125 188
(i = 19)
N
STD 62i 93.8 75.0 113 S7.5 131 100 150 — — :—• —
Group
N
SSLT 93.8 75.0- 113 87.5 131 100 150 11:3 169 125 188
B
V
STD 62,5 93.8 :75;0 113. i87;5 131 100 150 — — —
A
SSLT 62.5 93.8: 75.0 113 B7.5 131 100 150 113 169 125 188
Group N 53.0 79.5 •63.6 95.4 74.2 111 84.8 127 95.4 143 106 159
5
A
X STD/ 53.0 79.5 63.6 95,4 74.2 111 84.8 127 95.4 143 106 159
(i = 16) Group N SSLT 53.0 79.5 63,6 95.4 74.2 111 m& 127 95.4 143 106 159
B
X BSiO 79.5 63.6 95.4 n2 111 84.8 127 95.4 143 106 159
Group N 33^5 65.3 52:2 78.3 6o.g 91.4 69.6 104 78.3 117 87.0 131
4
A
X STD/ 43.5 65.3 52:2 78.3 60.9 91.4 69.6 104 7.&.3, 117 87,0 131
(i = 13) Group N SSLT .43.5 65.3 52.2 78.3 60.9 91.4 69.6 104 78.3 117 87.0 131
B
X 43.'5 65.3 52.2 78.3 60:9 91.4 69.6 104 78.3 117 87.0 131
Weld Size V4 V4 5/16 =/l6 % '/16
STD = Standard holes
SSLT = Short-slotted holes transverse to direction of load
STD/SSLT = Standard holes or short-slotted holes transverse to direction of load
-— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
Ns= Threads included
X = Threads excluded
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-119
Plate
Fy = 36ksi
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
1/8
-in.-
diameter
bolts
3
(i = 10)
2
(i = 7)
Bolt
Group
Group
A
Group
B
Group
A
Group
B
Thread
Cond.
Hole
Type
STO/
SSLT
STO/
SSLT
Weld Size
Plate Thickness, in.
5/16
Aso;
34.0
34:0
34;0
24:5
24;5
24,5
24.5
LRFO
51.0
51.0
51.0
51.0
36,7
36.7
36.7
36.7
1/4
asp
.40.8
40.8
29.4
29.4
29M
29i4
LRFD
61.2
61.2
61.2
61.2
44.0
44.0
44.0
44.0
1/4
ASO
47.6
47.6
47.6
47.6
34.3
:34;3
.34^3
3|tJ3
LRFD
71.4
71.4
71.4
71.4
51.4
51.4
51.4
51.4
5/16
'/I
ASD
54.4
54.4
54.4
54.4
^7.1
39.2
39.2
S9.2
LRFD
81,6
81.6
81.6
81.6
55.8
58.7
58.7
58.7
5/16
9/16
ASO
61.2
m
61.2
61.2
37.1
m
44.0
44.0
LRFD
91.8
91.8
91.8
91.8
55.8
66.1
66.1
66.1
s/8
ASD
64.9
68.0
68.0
37.1
46.8
46.8
48.9
LRFD
97.6
102
102
102
55.8
70.2
70,2
73,4
VK
SID = Standard holes
SSLT = Short-slotted holes transverse to direction of load
STD/SSLT = Standard holes or short-slotted holes transverse to direction of load
Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength Is independent of hole type.
N= Threads Included
X = Threads excluded
i
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

LFR-120 DESIGN OF SIMPLE SHEAR CONNECTIONS
diameter
bolts
Table 10-1 Ob
Single-Plate Connections Plate
Bolt, Weld and Single-Plate 'v = 50 ksi
Available Strengtiis, kips
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
V4
JASD LRFD
5/16
ASD LfiFD
Ve
ASD LRFD
'/16
ASO LfiFD
V2
AS0 LRFD
9/16
ASO LRFD
Group
A
STD
SSLT
122
122
183
183
134
138
202
208 138 208 138 208
12
(1 = 351/2)
STD
SSLT
122
122
183
183
152
152
229
229 174 262 174 262
Group
B
STD
SSLT
122
122
183
183
229
229 174 262 174 262
STD
SSLT
122
122
183
183
152
152
229
229 183 274 213 320
Group
A
STD
SSLT
112
112
167
167
183
190 126 190 126 190
11
(I = 32V2)
STD
SSLT
112
112
167
167
139
139
209
209 159 239 159 239
Group
B
STD
SSLT
167
167
139
139
209
209 159 239 159 239
STD
SSLT
112
112
209
209 167 251 195 293
Group
A
STD
SSLT 115 173 115 173
10
(/. = 29V2)
STD
SSLT
126
126 145 217 145 217
Group
B
STD
SSLT
152
152
126
126
190
190 145 217 145 217
STD
SSLT
152
152 152 228 177 266
(1 = 26V2)
Group
A
Group
B
STD
SSLT
90,8
90.8
136
136
97.2
103
146
155 103 155 103 155
STD
SSLT
90.8
90.S 130 194 130 194
STD
SSLT
STD
SSLT
90.8
90.8
136
136
113
113 130 194 130 194
90.8
90.8
136
136
113
113
170
170 136 204 159 238
Weld Size Vie V4 V4 V16 %
STD = Standard holes
SSLT = Short-slotted holes transverse to direction of load
- Indicates ttiat the plate thickness Is greater than the maximum given in Table 10-9.
N = Threads included
X=Threads excluded
AMERICAN INSTITUTE OF STEEL CoNSTRucTIOn

DESIGN TABLE DISCUSSION (TABLE 10-10) 10-121
Table 10-1 Ob (continued) ^
Plate Single-Plate Connections /4-'n -
Fy = 50 ksi Boit^ y^gU, and Single-Plate diameter
Available Strengths, kips
n
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
n
Bolt
Group
Thread
Cond.
Hole
Type
V4 Vie Va '/16 1/2 Vie n
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ASD LRFD ASO LRFD ASD LRFD ASt) LRFD
S
(i = 23V2)
Group
A
N
STD
SSLT
80,;4
80:4
121
121,
84.7
90.8
127
137 90.6 137 90.8 137 _
S
(i = 23V2)
Group
A
X
STD
SSLT
80.4
80.4
121
121
;101
'1.01
151
151 114 172 114 172


S
(i = 23V2)
Group
B
N
STD
SSLT
80.4
80.4
121
121
101
.1:01
151
151 114 172 114 172 I I
S
(i = 23V2)
Group
B
X
STD
SSLT
80.4
80.4
121
121
101
101
151
151, 121 181 141 211 I

I
7
(i = 20V2)
Group
A
N
STD
SSLT
70.1
70.:1
105
105
72.1
78.7
108
118 78,7 ,118 78,7 118 •I. I I I
7
(i = 20V2)
Group
A
X
STD
SSLT
70.1
70:i
105
105
87.6
87,6
131
131 99.2 149 99,2 149 I I I
7
(i = 20V2)
Group
B
N
STD
SSLT
70,1
70.1
105
105
87.6
87,6
131
131 99.2 149 99,2 149 I

7
(i = 20V2)
Group
B
X
STD
SSLT
70jl
70,1
105
105
87.6:

131
131 .;105 158 123 184 z
•—
I

6
(1 = 17V2)
Group
A
N
STD
SSLT
59,3
59,7
89.1
89,6
59.3
66,5
89.1
100 66i5 100 66.5 100
6
(1 = 17V2)
Group
A
X
STD
SSLT
59.7
59,7
89.6
89.6
74.6
74,6
112
112
•••fi
83.8 126 83.8 126
—i- — — —
6
(1 = 17V2)
Group
B
N
STD
SSLT
59,7
59.7
89.6
89.6
74,6
74.6
112
112 83^ 126 83,8 126

I I
6
(1 = 17V2)
Group
B
X
STD
SSLT
59.7
59.7
89.6
89.6
74.6
74.6
112
112 :89.6 134 104 155
'—' — —•
I
5
(i=14V2)
Group
A
N
STD
SSLT
49.4
49.4
74.0
74.0
54.1
54.1
81.3
81.3
54,1
54.1
81.3
81.3
54.1
54,1
81.3
81.3 54.1 81,3 54.1 81.3
5
(i=14V2)
Group
A
X
STD
SSLT
49.4
49.4
74.0
74.0
61.7
61.7
92,5
92.5
68.1
68.1
102
102
68.1
68,1
102
102 68.1 102 68,1 102 5
(i=14V2)
Group
B
N
STD
SSLT
49.4
49.4
74.0
74.0
61.7
61.7
92.5
92.5
68.1
68.1
102
102
68,1
68,1
102
102 68.1 102 68.1 102
5
(i=14V2)
Group
B
X
STD
SSLT
49.4
49.4
74.0
74.0
61.7
61,7
92.5
92.5
74.0
74,0
111
111
84.5
84,5
126
126 84.5 126 84.5 126
Weld Size 3/16 V4 V4 5/16 Vie
STD = Standard holes N = Threads included
SSLT = Short-slotted holes transverse to direction of load X=Threads excluded
Indicates that the plate thickness is greater than the maximum given in Table 10-9.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

LFR-122 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table tO-IGb (continued)
in.-Single-Plate Connections Plate
diameter
bolts
Bolt, Weld and Single-Plate
Fy = 50 ksi diameter
bolts
Available Strengths, kips
Bolt
Group
thread
Cond.
Hole
Type
Plate Thickness, in.
n
Bolt
Group
thread
Cond.
Hole
Type
V4 5/16 Vn Vi »/l6
Bolt
Group
thread
Cond.
Hole
Type
ASD LFIFO ASD LRFO JASO LRFO Aso LRFO ASO LRFO ASO LRFO
N
STD 39.0 58.5 4W 62.5 '41.^ 62:5 41.5 62,5 — — — _
Group
N
SSLT 39,0 58.5 Mi5 62.5: 62.5 41.5 62.5 41;5. 62.5 41.5 62.5
A STD 39.0 58.5 48,« 73.1 52;4 78.5 52.4 78.5 —•• — — —
4 SSLT 39.0 58.5 i48;8 73.1 52.4 78.5 5:2.4 78.5 52.4 78.5 52.4 78.5
(i=1lV2)
N
STD 39.0 58.5 48.8 73.1! 52:4 78.5 52.4 78.5 — — —
Group
N
SSLT 39.0 58.5 48.8 73.1 52.4 78.5 52.4 78.5 5244, 78.5 52,4 78.5
B
STD 39.0 58,5 4'8.8 73.1 S8J5 87.8 64.9 97.0 — — — —
SSLT •39:0 58.5 ;48.8 73.-1 87.8 64.9 97.0 64.9 97.0 64,9 97.0
STD 43.0 28.8 43.4 28,8 43.4 28.8 .43,4 — — — —
Group SSLT 28.i6 43.0 28-8 43.4 :28;8 43.4 28.8 43,4 28.8; 43.4 28.8 43.4
A
Y
STD 28,6 43,0 35:8 53.7 36.3 54.5 36,3 54.5 — _

3
A
SSLT 28.6 43,0 35.8 53,7 36;3 54.5 36,3 54.5 36.3 54.5 36.3 54.5
(i = 8V2)
N
STD 28.6 43,0 35.8 53.7 36:3 54.5 36.3 54.5 — — —
Group
N
SSLT 28.6 43.0 35.8 53.7 36.3 54.5 36.3 54,5 36.3 54.5 36.3 54.5
B
y
STD -28.6 43.0 35.;8 53.7 43.0 64.4 45.1 67.3 — — — ~
K
SSLT 28,6 43.0 35,8 53.7 .43,0 64,4 4'5.1 67.3 .45.1 67.3 45.1 67,3
N
STD 16,5 24,8 165 24,8 16.5 24.8 1;6.5 24.8 — — — —
Group
N
SSLT 16,5 24.8 16,5 24.8 16.5 24.8 1j6.5 24.8 16,5 24;8 16.5 24,8
A
y
STD 18.3 27.4 20,8 31.2 20.8 31.2 ?0.8 31.2 —• — —
2
K
SSLT 18.3 27.4 20.8 31,2 •20.« 31.2 20,8 31,2 20.8 31.2 20.8 31.2
(iaSVz)
N
STD •18.3 27.4 20.8 31,2 .20a 31.2 20.8 31.2 — — —
Group
N
SSLT 18.3 27.4 20^8 31.2 20.8 31.2 20.8 31.2 2o,a 31.2 20.8 31.2
B
y
STD 18.3 27.4 22.9 34.3 25.8 38.5 25.8 38.5 — — — —
K
SSLT 18.3 27.4 22.9 34.3 25,B 38.5 25.8 38.5 25.8 38.5 25.8 38.5
Weld Size V16 1/4 VA 5/16 =/l6 %
STD = Standard holes N = Threads included
SSLT = Short-slotted holes transverse to direction of load X=Threads excluded
— Indicates that the plate thickness Is greater than the maximum given In Table 10-9. /
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLE 10-10) 10-123
Table 10-1 Ob (continued) _
Plate Single-Plate Connections 78 '" "
Fy = 50 ksi BQit^ y^gij, Single-Plate diameter
Available Strengths, kips
12
(i = 36)
10
(i = 30)
9
(t = 27)
11
(1 = 33)
Bolt
Group
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
Thread
Cond.
Hole
Type
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
Plate Thickness, in.
V4
ASD LBFD
117.
:T17
,117
117-
107:
107
?1B7
il07
107
97:5
97:5
97.5
37.5
97,5
,97.5
87.8
87.8
STD
SSLT
STD
SSLT
STD
saT
Weld Size
87.j8
87^
87.8
87.8
87,8
87.8
176
176
176
176
176
176
176
176
146
146
146
146
132
132
132
132
132
132
132
132
3/16
ASD LRFD
146
146
146
146
146
146
134
134
134
134
134
134
122
122
•122
122
122
122
110
110
310
110
110
110
219
219
219
219
219
219
165
165
1/4
ASD LRFD
176
176
'176
-176
146
146
146
146
132
132
132
132
263
263
263
263
263
263
263
263
219
219
219
219
219
219
V4
Vk
ASD LRFD
188
205
205
205
172
188
188
188
156
171
171
171
140
154
154
154
282
307
307
307
258
282
282
282
234
256
256
256
210
230
230
230
Vl6
Va
ASD LRR)
1,88;
234
234:
234
172
215
215
215
156
195
195
195
140:
176
176
282
351
351
351
258
322
322
322
234
293
293
293
210
263
263
176 263
=/l6
9/16
ASD LRFD
3/8
STD = Standard holes
SSLT = Short-slotted holes transverse to direction of load
Indicates that the plate thickness Is greater than the maximum given in Table 10-9.
N= Threads included
X = Threads excluded
i
i
i
i
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

LFR-124 DESIGN OF SIMPLE SHEAR CONNECTIONS
%
Table 10-1 Ob (continued)
%
in.-Single^Plate Connections Plate
diameter
bolts
Bolt, Weld and Single-Plate
Available Strengths, kips
'V = 50ksi
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
n
Bolt
Group
Thread
Cond.
Hole
Type
V4 5/16 Va w 1/2 Vie
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFO ASD LRFD ASD LRFO ASD LRFD ASD LRFO
N
STD 78:0 117 97.5 146 115 173
Group
N
SSLT 78.0 117 mk 146 .117 176 124 185 124 185 —
A
STD 78.0 117 97.5 146 117 176 __
— — __

8 SSLT 78.0 117 97.5 146 iir 176 137 205 156 234 —•
(i = 24)
N
STD 78,0 117 97.5 146 117 176 — — — — --
Group
N
SSLT 78.0 117 97.5 146 .1.17 176 137 205 156 234 -—
B
STD 78.0 117 97.5 146 117 176 — — — ,
SSLT 78.0 117 S7.5 146 H7 176 137 205 156 234 —
N
STD 68.3 102. 85.3 128 98.2 147
Group
N
SSLT 68.3 102 85.3 128 102 154 107 161 107 161 —
A
STD 68.3 102 85.3 128 t02 154
7 SSLT 68.3 102 85.3 128 102 154 119 179 135 203
(i = 21)
N
STD 68.3 102 85.3 128 102 154 — — —
Group
N
SSLT 68,3 102 85:3 128 102 154 119 179 135 203 — —
B
V
STD 68.3 102 85.3 128 102 154 — — —

A
SSLT 68.3 102 85.3. .128 102 154 119 179 137 205 —
N
STD 58v5 87,8 73,1 110 80.7 121
Group
N
SSLT i58.5; 87.8 73.1 110 87.8 132 90.5 136 90.5, 136 —
A
X
STO 58.5 87.8 '73.1 110 87,8 132 — — — _
6
X
SSLT 58.5 87.8 73.1 110 87.8 132 102 154 114 172
(£s=t8)
N
STD 58,5 87.8 73.1 110 87.8 132 — — — —
Group
N
SSLT 58.5 87.8 73.1 110 87,8 132 102 154 114 172 —
B
Y
STD :58.5 87.8 73.1 110 87.8 132
A
SSLT S8.5 87.8 73:1 110 87.8 132 102 154 117 176 — —
N
STD 48.8 73.1 60.9 91.4 73.1 110 73.6 110 73.6 110 — —
Group
N
SSLT 48.8 73.1 60.9 91.4 73.1 110 73.6 110 73.6 110 73.6 110
A
X
STD M.8 73.1 60.9 91.4 73.1 110 85.3 128 92.7 139 __

5
X
SSLT 48.8 73,1 60.9 91.4 73.1 110 85.3 128 92.7 139 92.7 139
(i = 15)
N
STD 48.8 73.1- 6D.9 91.4 73.1 110 85.3 128 92.7 139 —
Group
N
SSLT 48.8 73.1 60.9 91,4 73.1 110 85.3 128 92,7 139 92.7 139
6
Y
STD 48.8 73.1 60.9 91,4 73.1 110 85.3 128 97.5 146 — —
A
SSLT 48.8 73.1 60.9 91.4 73.1 110 85.3 128 97.5 146 110 165
Weld Size 3/16 V4 Vie Vs
STD = Standard Holes
SSLT = Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N= Threads Included
X=Threads excluded
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLE 10-10) 10-125
Plate
Fy = 50 ksi
Table 10-1 Ob (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
7/8-in..
diameter
bolts
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
n
Bolt
Group
Thread
Cond.
Hole
Type
V4 5/16 Vie V2 '/16
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASO LRFD ASO LRFO ASD LBFO ASD LRFD ASD LRFO
N
STD 39.0 58.5 48:8 73,1 •56,5 84.8 56.5 84.8 56.5 84.8 — —
Group
N
SSLT 39.0 58.5 48,8 73,1 56:5 84.8 56.5 84.8 56.5' 84.8 56.5 84.8
A
STD 39.0 58.5 48,8 73,1 58.5 87,8 68.3 102 71.2 107
„ _
4 SSLT 39:0 58.5 48,8 73,1 58;5 87,8 68.3 102 71.2: 107 71.2 107
(i = 12)
N
STD 39.0 58.S 48.8 73,1 58:5 87.8 68.3 102 71.2 107 —
Group
N
SSLT 39.0 58.5 48:8 73,1 58.5 87.8 68.3 102 71.2 107 71.2 107
B
STD 39.0 58.5 48,8 73,1 58:5 87.8 68.3 102 78.0 117 ~ —
SSLT 39,0 58.5 48,8 73.1 58:5 87.8 68.3 102 78.0 117 87.8 132
N
STD 29.3 43.9 36,6 54.8 39.2 58.9 39.2 58.9 39.2 58.9 ~

Group
N
SSLT 29.3 43.9 36,6 54.8 39,2 58.9 39.2 58.9 39.2 58.9 39.2 58.9
A
Y
STD 29,3 43.9 36,6 54.8 43:9 65.8 49.4 74.4 49.4 74.4 __

3
A
SSLT 29,3 43.9 36,6 54,8 43.9 65.8 49.4 74.4 49.4 74.4 49.4 74.4
(i = 9)
N
STD 29.3 43.9 36,6 54.8 43.9 65.8 49.4 74.4 49.4 74.4 —
Group
N
SSLT 29:3 43.9 36,6 54.8 43.9 65.8 49.4 74.4 49.4 74.4 49.4 74.4
B
Y
STD 29.3 43.9 36.6 54:8 43.9 65.8 51.2 76,8 58.5 87.8 — —
A
SSLT 29,3 43.9 36:6 54.8 43.9 65.8 51.2 76.8 58.5 87.8 61.0 91.8
N
STD 19,5 29.3 22,4 33.7 22.4 33.7 22.4 33.7 22.4 33.7 —
Group
N
SSLT 19.5 29.3 22,4 33.7 22.4 33.7 22.4 33.7 22.4 33.7 22.4 33.7
A
Y
STD 1:9:5 29.3 24,4 36.6 28.3 42,5 28.3 42.5 28.3 42,5 — —
2
A
SSLT 19.5 29,3 24.4 36.6 28.3 42.5 28.3 42.5 28.3 42,5 28:3 42.5
(i = 6)
N
STD 19.5 29,3 24:4 36.6 28:3 42.5 28.3 42.5 28.3 42.5 —
Group
N
SSLT 19.5 29,3 24.4 36.6 28.3 42.5 28.3 42.5 28.3 42.5 28.3 42.5
B
Y
STD 19.5 29,3 24.4 36.6 29.3 43.9 34.1 51.2 34.9 52.5 — —
A
SSLT 19.5 29,3 24.4 36.6 29.3 43.9 34.1 51.2 34.9 52.5 34.9 52,5
Weid Size '/16 V4 1/4 5/16 S/18
STD = Standard holes
SSLT = Short-slotted holes transverse to direction of load
~ Indicates that the plate thickness is greater than the maximum given in Table 10-9,
N = Threads Included
X = Threads excluded
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

LFR-126 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-1 Ob (continued)
Single-Plate Connections Plate
diameter
bolts
Bolt, Weld and Single-Plate
Fy = 50 ksi diameter
bolts
Available Strengths, kips
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
n
Bolt
Group
Thread
Cond.
Hole
Type
V4 =/l6 3/8 V16 Va 9/16
Bolt
Group
Thread
Cond.
Hole
Type
?ASiD LRFO ASO LRFD ASD LRFO ASD LRFD ASD LRFD ASD LRFO
N
STD arft 168 140, 210 168 252 196 294 — — — —
Group
N
SSLT mz
168 :i40 210 168 252 196 294 224/ 336 246 370
A
STD 112 168 il40 210 168 252 196 294 — — — ~
12 SSLT 6112 168 •140 210 168 252 196 294 224 336 252 378
(i = 36Vz)
H
STD 168 140 210 ,1:68 252 196 294 — — ~
Group
H
SSLT 112 168 .140 210 •168 252 196 294 22A .336 252 378
B
STD 112 168 !140 210 168 252 196 294
-i-
— — ~
SSLT ni2 168 140 210 168 252 196 294 224 336 252 378
u
STD i1,03 154 .129 193 154 232 180 270 — — — —
Group
u
SSLT a03: 154 '129 193 ,154 232 180 270 206 309 225 338
A
STD im 154 129 193 154 232 180 270 —'•- — — —
11 SSLT m
154 129 193 i154 232 180 270 206 309 232 348
(i = 33V2)
N
STD 103 154 129 193 154 232 180 270 — — —
Group
N
SSLT 103 154 129 193 154 232 180 270 206; 309 232 348
B
V
STD •.M3 154 129 193 154 232 180 270 — — —
A
SSLT 103 154 '129 193 '154 232 180 270 206 309 232 343
N
STD :93i8 141 117 176 141 211 164 246 — — — —
Group
N
SSLT 93.8 141 117 176 141 211 164 246 188 282 205 307
A
Y
STD 93.8 141
1^7 176 141 211 164 246

— — —
10,
A
SSLT a3:8 141 117 176 -141 211 164 246 188 282 211 317
(i = 30V2)
N
STD '93.8 141 117 176 141 211 164 246 — —
^

Group
N
SSLT S3.8 141 117 176 141 211 164 246 188 282 211 317
B
V
STD m.8 141 117 176 .141 211 164 246 —" — — —
A
SSLT 93:8 141 117. 176 141 211 164 246 188 282 211 317
STD 84j7 127 106 159 127 191 148 222 — — — —
Group SSLT 84,7 127 106 159 127 191 148 222 169 254 183 275
A
y
STD 84.7 127 106 159 127 191 148 222 — — — —
9
A
SSLT 84.7 127 106 159 127 191 148 222 169 254 191 286
(L = 27V2)
N
STD 84:7 127 106 159 127 191 148 222 — — — —
Group
N
SSLT 84;7 127 106 159 127 191 148 222 169 254 191 286
B
STD 84,7 127 106 159 127 191 148 222 — — —• —
SSLT 84:7 127 106 159 127 191 148 222 169 254 191 286
Weld Size 3/16 V4 V4 V16 Vw 3/8
STD = Standard holes N =.Threads included
SSLT = Short-slotted holes transverse to direction of load X = Threads excluded
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLE 10-10) 10-127
Plate
Fy - 50 ksi
Table 10-1 Ob (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
1
-in.-
diameter
bolts
Bolt
Group
Thread
Cond.
Hole
TVpe
Plate Thickness, in.
n
Bolt
Group
Thread
Cond.
Hole
TVpe
V4 V16 5/8 Vk V2 V16
Bolt
Group
Thread
Cond.
Hole
TVpe
ASD LRFO ASD LRFO iASO LRFD ASO LRFD ASD LRFD ASD LRFD
N
STD m'lG. 113 94.5 142 113 170 132 198 — — —
Group
N
SSLT 75,6 113 94i5 142 •113 170 132 198 15f 227 162 243
A
Y
STD 113 94.5 142 ill 3 170 132 198 — -- -r-
8
SSLT 113 ,93j5 142 ;113 170 132 198 151 227 170 255
(i = 24V2)
N
STD 75.6 113 94.5 142 1,13 170 132 198

__
— —
Group
N
SSLT 75.6 113 94.5 142 113 170 132 198 151 227 17a 255
B
STD 75.6 113 94,5 142 313 -170 132 198 — —
SSLT 75]6 113' 94,5 142 170 132 198 151 227 170 255
N
STD 66U 99.6 83,0 125 99,6 149 116 174 _
— — —
Group
N
SSLT 66.4 99.6 83i0 125 99,6 149 116 174 133 199 140 210
A
Y
STD 66,4 99.6 83.0 125 99:6 149 116 174 — — — —
7
A
SSLT 66i4 99.6 83;0 125 99.6 149 116 174 133 199' 149 224
(i = 2lV2)
M
STD 66.4 99.6 83;0 125 99.6 149 116 174 _
~ — —
Group SSLT 66i4 99.6 83:0 125 99.6 149 116 174 133 199 149 224
B
y
STD 66:4 99.6 83,0 125 99.6 149 116 174 — — — —
A
SSLT 66:4 99.6 83.0 125 99^6 149 116 174 133 199 149 224
N
STD 57i3 85.9 71.6 107 85,9 129 100 150 — — —- —
Group
N
SSLT 57i3 85.9 71,6 107 85:9 129 100 150 115 172 118 178
A
X
STD 57:3 85.9 71.6 107 85.9 129 100 150 — — — —
6
SSLT 57.3 85.9 71,6 107 85.9 129 100 150 115 172 129 193
(i = 18V2)
N
STD 57.3 85.9 71.6 107 85,9 129 100 150 ~ — _

Group
N
SSLT Sl'.Z 85.9 71:6 107 85:9 129 100 150 115 172 129 193
B
Y
STD 57;3 85.9 71,6 107 85.9 129 100 150 — — — —
A
SSLT 57.3 85.9 71,6 107 85:9 129 100 150 115 172 129 193
Group N 48.1 72.2 60.2 90.3 72.2 108 84.2 126 96.3 144 96,3 144
5 A X STD/ 48:i 72.2 60:2 90.3 72.2 108 84.2 126 96.3 144 108 162
(i = 15V2)
Group N SSLT 48,1 72.2 60:2 90.3 72:2 108 84.2 126 96.3 144 108 162
B
X 48;1 72.2 60:2 90.3 72,2 108 84.2 126 96,3 144 108 162
Group N 39;o 58.5 48,8 73.1 58:5 87,8 68.3 102 74.0 111 74.0 111
4 A X STD/ 39.0 58.5 48!8 73.1 58.5 87.8 68.3 102 78.0 117 87,8 132
(L = ^2V^)
Group N SSLT 39.0 58.5 48:8 73.1 SES.5 87-S 68.3 102 78.0 117 87,8 132
B X 39^0 58.5 48,8 73.1 58,5 87.8 68.3 102 78.0 117 87,8 132
Weld Size V16 V4 1/4 V16 5/16 3/8
STO = standard holes
SSLT = Short-slotted holes transverse to direction of load
STO/SSLT = Standard holes or short-slotted holes transverse to direction of load
Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N = Threads included
X = Threads excluded
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

LFR-128 DESIGN OF SIMPLE SHEAR CONNECTIONS
1
-in.-
diameter
bolts
Table 10-1 Ob (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate
Fy = 50 ksi
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
V4
iSSD LRFO
5/16
ASO LRFD ASO LRFD ASD LRFO
V2
ASO LRFD
'/t6
ASO LRFD
3
(i = 9V2)
Group
A
Group
B
STD/
SSLT
29.9
29.9
44.8
44.8
37i3
37.3
56.0
56.0
44;8
44;8
67.2
67.2
51.4
52,3
77.0
78.4
51.4
59.7
77.0
89.6
51.4
64.7
77.0
96,9
29,9
29;9
44,8
44.8
37i3
37,3
56,0
56,0
44)8
44,8
67,2
67,2
52,3
52,3
78,4
78,4
59.7
59.7 89.6
64,7
67.2
96,9
101
2
(1 = 6V2)
Group
A
Group
B
STD/
SSLT
20,7
20,7
31,1
31.1
25:9
25.9
38.8
38,8
29:4
31^1
44,0
46,6
29,4
36.3
44,0
54.4
29.4 44.0
55.4
29,4
37.0
44,0
55,4
20.7
20.7
31.1
31,1
25,9
25:9
38,8
38,8
31,1
31:1
46.6
46.6
36,3
36,3
54,4
54,4
37,0
41,4
55.4
62,2
37.0
45.7
55,4
68,6
Weld Size 3/16 V4 V4 V16 «/l6 '/a
STD = Standard holes
SSLT = Short-slotted holes transverse to direction of load
STD/SSLT = Standard holes or short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is Independent of hole type.
N = Threads included
X=Threads excluded
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLE 10-10) 10-129
Table 10-10b (continued)
Plate Single-Plate Connections 1 '/S-
Fy = 50 ksi
Bolt, Weld and Single-Plate
Available Strengths, kips
diameter
bolts
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
n
Bolt
Group
Thread
Cond.
Hole
Type
5/16 Ve Vn Vz 9/16 Ve
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFO ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
STD -134 201 161 241 188 282 215 322 — — I — _
Group SSLT .134 201 161 241 188 282 215 322 241 362 268 402
A
STD 134 201 161 241 1:88 282 215 322 — — — —
12 SSLT 134 201 161 241 188 282 215 322 241 362 268 402
(1 = 37)
N
STO 134 201 161 241 188 282 215 322 _
— — —
Group
N
SSLT 134 201 161 241 188 282 215 322 241 362 268 402
B
V
STD 134 201 161 241 188 282 215 322 — — — —
SSLT 134 201 161 241 188 282 215 322 241 362 268 402
N
STD 123 185 .148 222 173 259 197 296 — — — —
Group
N
SSLT :123 185 148 222 173 259 197 296 222 333 247 370
A
STD 123 185 148 222 .173 259 197 296 — — — —
11 SSLT 123 185 148 222 173 259 197 296 222 333- 247 370
(1 = 34)
N
STD 123 185 148 222 173 259 197 296

~ —
Group
N
SSLT 123 185 148 222 173 259 197 296 222: 333 247 370
B
V
STD 123. 185 148 222 173; 259 197 296 — — —
A
SSLT ;123 185 148 222 173 259 197 296 222 333 247 370
N
STD 113 169 135 203 158 237 180 271 — — — —
Group
N
SSLT 113 169 :R35 203 158 237 180 271 203 304 225 338
A
V
STD 113 169 135 203 158 237 180 271 — — —
10
A
SSLT RI3 169 135 203 158 237 180 271 203 304 225 338
(i = 31)
N.
STD 113 169 135. 203 158 237 180 271 _
— — —
Group
N.
SSLT -T13 169 135 203 158 237 180 271 203 304 225 338
B
y
STD 113 169 135 203 158 237 180 271 — • — —" —
A
SSLT 113 169 135 203 J 58 237 180 271 203 304 225 338
N
STD 102 153 122 184 143 214 163 245 — — — —
Group
N
SSLT 102 153 122 184 143 214 163 245 184 276 204 306
A
V
STD 102 153 122 184 143 214 163 245 — — — —
9
A
SSLT 102 153 122 184 143 214 163 245 184 276 204 306
(1 = 28)
N
STD 102 153 1.22 184 143 214 163 245 — .• — — —
Group
N
SSLT 102 153 122 184 143 214 163 245 184 276 204 306
B
y
STD 102 153 122 184 143 214 163 245 — — —• —
A
SSLT 102 153 122 184 143 214 163 245 184 276 204 306
Weld Size V4 V4 VL6 VL6 Vn
STO = Standard holes N = Threads Included
SSLT = Short-slotted holes transverse to direction of load X = Threads excluded
— Indicates ttiat the plate thickness is greater than the maximum given in Table 10-9
Tabulated values are grouped when available strength is independent of hole type.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

LFR-130 DESIGN OF SIMPLE SHEAR CONNECTIONS
- Table 10-1 Ob (continued)
iVs Single-Plate Connections piate
diameter and Single-Plate =
Available Strengths, kips
Bolt
Group
Thread
Cond.
Hole
Type
Plate Thickness, in.
n
Bolt
Group
Thread
Cond.
Hole
Type
5/16 VB '/w V2 9/16 5/8
Bolt
Group
Thread
Cond.
Hole
Type
ASD LRFD ASD LRFD ,ASP LRFD ASD LRFD ASD LRFD ASD LRFD
N
STD .9,1,4 137 :i1D 1,65 128 192 146 219 — — — —
Group
N
SSLT 91.4 137^ 110 .165 128 192 146 219 165 247 183 274
A
STD 137 110 165 128 192 146 219 — — — —
8 SSLT ai.4 137 ;110 165 128 192 146 219 165 247 183 274
a=25)
N
STD ,91.4 137 110 165 128 192 146 219 — — —
Group
N
SSLT .91,4 137 110 165 128 192 146 219 165 247 183 274
B
STD 137 110 165 ,128 192 146 219
—,
— — ~
SSLT ®i:4 137 ,11b 165, 128 i192 146 219 165 247 183 274
N
STD 80l7 121 145 113 170 129 194 _
— — —
Group
N
SSLT 80.7 121 96.9 145 113 170 129 194 145 218 161 242
A
Y
STD 80.7 121 96,9 145 113 170 129 194 — _

7
A
SSLT aOi? 121 '96:9 145 <113 170 129 194 145 218 161 242
(i = 22)
N
STD ao:? 121 96.9 145 170 129 194 — — _
Group
N
SSLT !80.7 121 96.9 145 .113 ,170 129 194 ,145, 218 161 242
B
y
STD •80:7 121 96.9 145 ;113 170 129 194 — — — —
A
SSLT 80.7 121 :96.9 145 113 170 129 '194 145 218 161 242
N
STD 7,0(1 105. :84;1 126 ! 98,1 147 112 168 — — — —
Group
N
SSLT 70iV 105 '84;i 126 98.1 147 112 168 126j 189 140 210
A
Y
STD Mil 105 ,84.1 126 98.1 147 112 168 —' — — —
6
A
SSLT ;70.1 105 84;1 126 98.1 147 112 168 126 189 140 210
(i = 19)
N
STD 70n 105 ;84.1 126 S8.1 147 112 168 — — —
Group
N
SSLT 70:1 105 ,84.1 126 98il 147 112 168 126 189 140 210
B
STD ;70;i 105; 841 126 .98,1 147 112 168 — — —
A
SSLT 70'1 105 84:1 126 98.1 147 112 168 126 189 140 210
Group N 59.4 89.1 71.3 107 83:2 125 95.1 143 107 160 119 178
5
A
X STD/ 59.4 89.1 71.3, 107 83.2 125 95.1 143 107. 160 119 178
(I = 16) Group N SSLT 59.4 89.1, 71.3 107 83.2 125 95.1 143 107 160 119 178
B
X S9i4 89.1 ,71:3 107 83.2 125 95.1 143 107 160 119 178
Group N :48;8 73.1 ,58.5 87.8 68.3 102 78.0 117 87.8 132 93:5 141
4
A
X STD/ ;4Si8 73.1 58,5 87,8 68,3 102 78.0 117 87.8 132 97.5 146
(i = 13) Group N SSLT 48:8 73.1 58.5 87.8 68.3 102 78.0 117 87.8 132 97.5 146
B
X 48:8 73.1 58,5 87.8 68.3 102 78.0 117 87.8 132 97.5 146
Weld Size V4 '/4 5/16 5/16 ^^6
STD = Standard holes
SSLT = Short-slotted holes transverse to direction of load
STD/SSLT = Standard holes or short-slotted holes transverse to direction of load,
— Indicates that the plate thickness Is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is Independent of hole type.
N = Threads
X = Threads
included
excluded
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-13i
Table 10-10b (continued)
Plate Single-Plate Connections
Fy = 50ksi Bolt, Weld and Single-Plate
Available Strengths, kips
iVs-i"-
diameter
bolts
3
(i = 10)
2
(i = 7)
Bolt
Group
Group
A
Group
B
Group
A
Group
B
Thread
Cond.
Hole
Type
STO/
SSLT
STD/
SSLT
Weld Size
Plate Thickness, In.
V16
ASO
38i1
38.1
38.1
38.1
27.4
27:4
27.4
27.4
LRFD
57.1
57.1
57.1
57.1
41.1
41.1
41.1
41.1
V4
'/B
ASD
45.7
45.7
45.7
45.7
32.9
32.9
32.9
32.9
LRFD
68.6,
68.6
68.6
aae
49^4
49.4
49.4
49.4
V4
'/I6
ASD
53.3
53.3
53.3
53.3
37.1
38.4
38.4.
38.4
LRFD
80,0
80.0
80.0
80.0
55.8
57.6
57.6
57.6
5/16
ASD
60.9
60.9
60.9
60.9
37.1
43.9
43.9
43.9
LRFD
91.4
91.4
91.4
91.4
55.8
65.8
65.8
65.8
5/16
ASD
64.9
68.6
68.6
68.6
37,1
46.8
46.8
49.4
LRFD
97.6
103
103
103
55.8
70.2
70.2
74,0
5/8
ASO
76.2
76.2
76.2
37,1
46.8
46.8
54.8
LRFD
97.6
114
114
114
55.8
70.2
i
i
70.2
82.3
I
Vt6
STD = Standard holes
SSLT = Short-slotted holes transverse to direction of load
STD/SSLT = Standard holes or short-slotted Jioles transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped wtten available strength is independent of hole type.
N = Threads included
X = Threads excluded
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-132 DESIGN OF SIMPLE SHEAR CXJNNECTIONS
SINGLE-ANGLE CONNECTIONS
A single-angle connection is made with an angle on one side of the web of the beam to be
supported, as illustrated in Figure 10-13. This angle is preferably shop-bolted or welded to
the supporting member and field-bolted to the supported beam.
When the angle is welded to the support, adequate flexibility must be provided in the
connection. As illustrated in Fi'gure 10-13(c), the weld is placed along the toe and across the
bottom of the angle with a return at the top per AISC Specification Section J2.2b. Note that
welding across the entire top of the angle must be avoided as it would inhibit the flexibiUty
and, therefore, the necessary end rotation of the connection. The performance of the
resulting connection would not be as intended for simple shear connections.
(a) All-bolted
(b) Bolted/welded, angle welded to supported beam
Note: weld return on
top of angle per
Specification
SecHon J2.2b.
(c) Bolted/welded, angle welded to support
Fig. 10-13. Single-angle connections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SINGLE-ANGLE CONNECTIONS 10-133
Design Checks
The available strength of a single-angle connection is determined from the applicable
limit states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9).
In all cases, the available strength, or R„/il, must equal or exceed the required
strength, i?„ or Ra-
As illustrated in Figure 10-14, the effect of eccentricity must be considered in the angle
leg attached to the supporting member. Additionally, eccentricity must be considered if the
eccentricity exceeds 3 in. (to the face of the supporting member) or if a double vertical row
of bolts through the web of the supported member is used. Eccentricity must be considered
in the design of welds for single-angle connections. Holes in the angle leg to the supporting
member must be standard holes. Holes in the angle leg to the supported member can be
standard holes or horizontal short slots.
Recommended Angle Length and Thickness
To provide for stability during erection, it is recommended that the minimum angle length
be one-half the T-dimension of the supported beam. The maximum length of the connection
angle must be compatible with the T-dimension of an uncoped beam and the remaining web
depth of a coped beam. Note that the angle may encroach upon the fillet(s) as given in
Figure 10-3.
A minimum angle thickness of '/s-in. for '/4-in.- and ^/s-in.-diameter bolts, and V2-in. for
1-in.-diameter bolts should be used. A 4x3 angle is normally selected for a single angle
welded to the support with the 3-in. leg being the welded leg.
Shop and Field Practices
Single-angle connections may be readily made to the webs of supporting girders and to the
flanges of supporting columns. When framing to a column flange, provision must be made
for possible mill variation in the depth of the column. Since the angle is usually shop-
attached to the column flange, play in the open holes or horizontal slots in the outstanding
angle leg may be used to provide the necessary adjustment to compensate for the mill
variation. Attaching the angle to the column flange offers the advantage of side erection of
the beam. The same is true for a girder web or truss support. Additionally, proper bay
dimensions may be maintained without the need for shims. This advantage is lost when the
angle is shop-attached to the supported beam web.
- Face of supporting member
E E
Supported member
-g,
E indicates that eccentricity must
be considered in this ieg.
Gages g,, g^and are wort<abie gages
as shown in Table 1-7A.
Fig. 10-14. Eccentricity in angles.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

LFR-134 DESIGN OF SIMPLE SHEAR CONNECTIONS
DESIGN TABLE DISCUSSION (TABLES 10-11 AND 10-12)
Table 10-11. All-Bolted Single-Angle Connections
Table 10-11 is a design aid for all-bolted single-angle connections. The tabulated eccentrically
loaded bolt group coefficients, C, are used to determine the available strength, (|)/?„ or R„IQ.,
where ,
Rn=Crn (10-9)
<|> = 0.75 i2 = 2.0
where
C = coefficient from Table 10-11
= the nominal strength of one bolt in shear or bearing, kips
Table 10-12. Bolted/Welded Single-Angle Cohnections
Table 10-12 is a design aid for bolted/welded single-angle connections. Electrode strength
is assumed to be 70 ksi and Group A bolts are used. In the rare case where a single-angle
connection must be field-welded, erection bolts may be placed in the field-welded leg.
Weld available strengths are determined by the instantaneous center of rotation method
using Table 8-10 with G = 0°. The tabulated values assume a half-web thickness of 'A in.
and may be used conservatively for lesser half-web thicknesses. For half-web thicknesses
greater than 'A in., the tabulated values should be reduced proportionally by an amount up
to 8% at a half-web thickness of '/2 in. The tabulated minimum supporting flange or web
thickness is the thickness that matches the strength of the support material to the strength of
the weld material. In a manner similar to that illustrated previously for Table 10-2, the
minimum material thickness (for one line of weld) is:
W = ^ ^ (9-2)
• Fu
where D is the number of sixteenths in the weld size. When welds line up on opposite sides
of the support, the minimum thickness is the sum of the thicknesses requir^ for each weld.
In either case, when less than the minimum material thickness is present, the tabulated weld
available strength should be multiplied by tlie ratio of the thickness provided to the
minimum thickness.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-135
Table 10-11
All-Bolted Single-Angle Connections
- Supporting member
of supported boarn-
Th
CASE I CASE II
Note: standard holes in support leg of angle
Eccentrically Loaded Bolt Group Coefficients, C
Number of Bolts In
One Vertical Row, n
Case I Case II
12
11
10
11.4
10.4
9.37
8.34
7,31
6.27
5.22
4.15
3.07
1.99
1.03
21,5
19,4
17.3
15.2
13.0
10,9
8,70
6,63
4.70
2.94
1.61
0.518
(frfln^qw or R„ia==C(r„ia)
where
C - coefficient from Table above
(])/•„ = design strength of one bolt in shear or bearing, l<ips/bolt
/•„/a = allowable strength of one bolt in shear or bearing, kips/bolt
Ndtes:
For eccentricities less than or equal to those shown above, tabulated values may be used.
For greater eccentricities,' coefficient C should be recalculated from Part 7.
Connection may be bearing-type or slip-critical.
N
AMERICAN INSTiTuTe OF STEEL GONSTRUCTION

LFR-136 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-12
Bolted/Welded
Single-Angle Connections
nMts
Number
of Bolts
in One
Vertical
Row
Bolt and Angle Strength, kips
Group A Bolts
'/4 in.
ASO LRFB
Vain.
ASO LBFD
Angle
Size
{F,= 36 ksi)
Angle
Ungth,
in.
Weld (70 ksf)
Size,
iv, in.
Available
Strength, kips
ASO LRFD
Minimum
Supporting
Member
with Angles
Both Sides
of Web, in.
12
11
10
143 215 144 216 35V2
5/16
V4
3/16
179:
143-
107
268
214
161
0.475
0.380
0.285
131 197 132 198 32V2
5/16
1/4
3/16
165
132
98.8
247
198
148
0.475
0.380
0.285
119 179 120 180 29V2
X
5/16
V4
Vl6
151
121
90.4
226
181
136
0.475
0.380
0.285
107 161 108 162 26V2
5/16
V4
3/16
137
110
8Z2
205
164
123
0.475
0.380
0.285
95.5 143 95.6 143 23V2
5/16
V4
3/16
123
98.5
73.9
185
148
111
0.475
0.380
0.285
83.5 125 83.4 125 2OV2
5/16
V4
3/16
109
^ SI A
65.6
164
131 .
8.4
0.475
0.380
0.285
Notes:
Gage in angle leg attached to beam web as well as leg width may be decreased. 3-in. welded leg may not be Increased or
decreased.
Tabulated weld available strengths are based on a V4-in. half web for the supported member. Smaller half webs will result In
these values being conservative. For half webs over V4 In., weld values must be reduced proportionally by an amount up to 8%
for a Vz-ln. half web or recalculated.
When the beam web thickness of the supporting member is less than the minimum and single-angle connections are bacl< to
back, either stagger the angles, or multiply the weld design strength by the ratio of the actual web thickness to ttie tabulated
minimum thickness to determine the reduced weld design strength.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLE 10-10) 10-137
Table 10-12 (continued)
Bolted/Welded
Single-Angle Connections
ITS:
3
n
n/iote
Number
of Bolts
in One
Vertical
Weld (70 ksi)
Minimum
Number
of Bolts
in One
Vertical
Bolt and Angle Sbength, kips
Group A Bolts
Angle
Size
(F,= 36 ksi)
Angle
Length,
in.
Size,
w,in.
Available
Strength, kips
Supporting
Member
with Angles
Both Sides Row '/4 in. Vsin.
Angle
Size
(F,= 36 ksi)
Angle
Length,
in.
Size,
w,in.
Supporting
Member
with Angles
Both Sides
ASD LRFD LRFD ASD LRFD-
of Web, in.
6/16 94.3 141 0.475
6 71.6 107 71.3 107 17V2 1/4
3/16
" 75,5
saie
113
84.9
0.380
0.285
5/16 79.1 119 0.475
5 59,7 89.5 59.1 88.7 14V2 V4
3/16
63.3
47.4
94.9
71.2
0.380
0.285
5/16 62.9 94.4 0.475
4 47.6- 71.4 S7.0 70.4
X
3
111/2 .1/4
.3/16
^50.3^;
37.8
75.5
56.6
0.380
0.285
5/16
J 45.7^.;;
68.5 0.475
3 35.5 53.2 : ^34.8 52.2 8V2 1/4
3/16
36.6
27;4
54.8
41.1
0.380
0.285
5/16 28.2 42.2 0.475
2 23.3 35.0 22.7 34.0 5V2 V4
3/16
22.5
16.9
33.8
25.3
0.380
0.285
Notes:
Gage in angle leg attached to beam web as well as leg width may be decreased. 3-in. welded If
decreased.
ig may not be increased or
Tabulated weld available strengths are based on a V4-in. half web for the supported member. Smaller half webs will result in
these values being conservative. l=or half webs over 'A in., weld values must be reduced ptDportionally by an amount up to 8%
for a V2-in. half web or recalculated.
When the beam web thicitness of the supporting member is less than the minimum and single-angle connections are bacl< to
bacl(, either stagger the angles, or multiply the weld design strength by the ratio of the actual web thickness to the tabulated
minimum thicl<ne5s to determine the reduced weld design strength.
I
I
(
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-138 DESIGN OF SIMPLE SHEAR CXJNNECTIONS
TEE CONNECTIONS
A tee connection is made with a structural tee, as illusorated in Figure 10-15. The tee is
preferably shop-bolted or welded to the supporting member and field-bolted to the
supported beam.
When the tee is welded to the support, adequate flexibility must be provided in the
connection. As illustrated in Figure I0-15(b), line welds are placed along the toes of the tee
flange with a return at the top per AISC Specification Section J2.2b. Note that welding
across the eiitire top of the tee must be avoided as it would inhibit the flexibility and,
therefore, the necessary end rotation of the connection. The performance of the resulting
connection would not be as intended for simple shear connections.
Design Checks
The available strength of a tee connection is determined from the applicable limit states for
bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases, the
available strength, (|)/?„ or R„IQ., must equal or exceed the required strength, Ru or Ra-
Eccentricity must be considered when determining the available strength of tee
connections. For a flexible suppoirt, the bolts or welds attaching the tee flange to the support
must be designed for the shear, or Ra- Also, the bolts through the tee stem must be
designed for the shear and the eccentric moment, i?„a or RaO., where a is the distance from:
the face of the support to the centroid of the bolt group through the tee stem.
For a rigid support, the bolts or welds attaching the tee flange to the support must be
designed for the shear and the eccentric moment; the bolts through the tee stem must be
designed for the shear.
i}-
(a) All-bolted
Note: weld returns on top
of tee per AISC
Specification Section
JZ2b.
(b) Bolted/welded
Fig. 10-15. Tee connections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SHEAR SPLICES 10-139
Recommended Tee Length and Flange and Web
Thicknesses
To provide for stability during erection, it is recommended that the mimimum tee length be
one-half the T-dimension of the beam to be supported. The maximum length of the tee must
be compatible with the T-dimension of an uncoped beam and the remaining web depth,
exclusive of fillets, of a coped beam. Note that the tee may encroach upon the fillet(s) as
given in Figure 10-3.
To provide for flexibility, the tee selected should meet the ductility checks illustrated in
Part 9. The flange thickness of tees used in simple shear connections should be held to a
minimum to permit the flexure necessary to accommodate the end rotation of the beam,
unless the tee stem connection is proportioned to meet the geometric requirements for
single-plate connections.
Shop and Field Practices
When framing to a column flange, provision must be made for possible mill variation in the
depth of the columns. If the tee is shop-attached to the column flange, play in the open holes
usually furnishes the necessary adjustment to compensate for the mill variation. This
approach offers the advantage of side erection of the beam. Alternatively, if the tee is shop-
attached to the supported beam web, the beam length could be shortened to provide for mill
oveiTun and shims could be furnished at the appropriate intervals to fill the resulting gaps
or to provide for mill underrun.
When a single vertical row of bolts is used in a tee stem, a 4-in. or 5-in. stem is required
to accommodate the end distance of the supported beam and possible overrun/underrun in
beam length. A double vertical row of bolts will require a 7-in. or 8-in. tee stem. There is no
maximum limit on Leh for the tee stem.
SHEAR SPLICES
Shear splices are usually made with a single plate, as shown in Figure 10-16(a), or two plates,
as shown in Figures 10-16(b) and 10-16(c). Although the rotational flexibility required at a
shear splice is usually much less than that required at the end of a simple-span beam, when
a highly flexible splice is desired, the splice utilizing four framing angles, shown in Figure
10-17, is especially useful. These shear splices may be bolted and/or welded.
The available strength of a shear splice is determined from the applicable limit states for
the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases,
the available strength, ())/?„ or RJO., must equal or exceed the required strength, or Ra-
Eccentricity must be considered in the design of shear splices, with the exception of all-
bolted shear splices utilizing four framing angles, as illustiated in Figure 10-17. When the
splice is symmetrical, as shown for the bolted spUce in Figure 10-16(a), each side of the
splice is equally restrained regardless of the relative flexibility of the spliced members.
Accordingly, as illustrated in Figure 10-18, the eccentricity of tlie shear to the center of
gravity of either bolt group is equal to half the distance between the centroids of the bolt
groups. Therefore, each bolt group can be designed for tlie shear, Ru or Ra, and one-half the
eccentric moment, R^e or Rae (Kulak and Green, 1990). This approach is also applicable to
symmetrical welded splices.
When the splice is not symmetrical, as shown in Figures 10-16(b) and 10-16(c), one side
of tlie splice will possess a higher degree of rigidity. For the splice shown in Figure 10-16(b),

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

10-140 DESIGN OF SIMPLE SHEAR CONNECTIONS
the right side is more rigid because the stiffness of the weld group exceeds the stiffness of the
bolt group, even if the bolts are pretensioned or slip-critical. Also, for the splice shown in
Figure 10-16(c), the right side is more rigid since there are two vertical rows of bolts while
the left side has only one. In these cases, it is conservative to design the side with the higher
rigidity for the shear, Ru or Ra, and the full eccentric moment. Rue or Rae. Hie side with the
lower rigidity can then be designed for the shear only. This approach is applicable regardless
of the relative flexibility of the spliced members.
8703/
mtylffialesaiMh
sidBSOfbemmb
Fig. 10-16. Plate-type shear splices.
Plan
C
V. - 4 angles
Elevation
Fig. 10-17. Angle-type shear splice.
AMERICAN INSTrruTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-141
Some splices, such as those that occur at expansion joints, require special attention and
are beyond the scope of this Manual.
SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR
CONNECTIONS
Simple Shear Connections Subject to Axial Forces
When simple shear connections are subjected to axial load in addition to the shear, the
important limit states are outstanding angle leg bending and prying action. These tend to
require that the angle, plate or flange thickness increase or the gage decrease, or both, and
these requirements may compromise the connection's ability to remain flexible enough to
acconmiodate the simple beam end rotation. The shear connection rotational ductility checks
derived in Part 9 can be used to ensure that adequate ductility exists.
Simple Shear Connections at Stiffened Column-Web
Locations
Stiffeners are obstacles to direct connections to the column web. Figure 10-19(a) illustrates
a seat angle welded to the toes of the column flanges; Figure 10-19(d) shows a vertical plate
extended beyond the column flanges. Figures 10-19(b) and 10-19(c) offer two additional
options for framing at locations of diagonal stiffeners; these should be examined carefully
as they may create erection problems. Additionally, the deep cope of Figure 10-19(c) may
significantly reduce the available strength of the beam at the end connection. Alternatively,
the bottom transverse stiffener could be extended to serve as a seat plate with a bearmg
stiffener provided to distribute the beam reaction.
i
i
M =
Rue
2
R,e
R.orR^
e
e/2,e/2
I
R^orR^
Fig. 10-18. Eccentricity in a symmetrical shear splice.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

10-142 DESIGN OF SIMPLE SHEAR CXJNNECTIONS
Vertical-^
stiffener
• Erection /-rr-
bolts ' ^
/
—^
/
%i
J v
—^
/
,/]. i, f
r
—^
/
,/]. i, f
—^
/ . r
V-
Seat angle
SECTION A-A
/
•Vi
• Stabilizing
Plate
• Stiffener
i as req'd
r
Vertical L
stiffener
(typ.)
(a)
• Toe of column
flange
Bevel-cut
beam web
Bearing
stiffener
(b)
(c) ' (d)
Fig. 10-19. Simple shear connections at stiffened column-web locations.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-143
Eccentric Effect of Extended Gages
Consider a simple shear connection to the web of a colvrnm that requires transverse stiffeners
for two concurrent beam-to-column-flange moment connections. If it were not possible to
eliminate the stiffeners by selection of a heavier column section, the field connection would
have to be located clear of the column flanges, as shown in Figure 10-20, to provide for
access and erectability.
The extension of the connection beyond normal gage lines results in an eccentric
moment. While this eccentric moment is usually neglected in a connection framing to a
column flange, the resistance of the column to weak-axis bending is typically only 20% to
50% of that in the strong axis. Thus the eccentric moment should be considered in this
column-web connection, especiMly if the eccentricity, e, is large. Similarly, eccentricities
larger than normal gages may also be a concern in connections to girder webs.
Column-Web Supports
There are two components contributing to the total eccentric moment: (1) the eccentricity of
the beam end reaction. Re; and (2) Mpr, the partial restraint of the connection. To determine
what eccentric moment must be considered in the design, first assume that the column is
part of a braced frame for weak-axis bending, is pinned-ended with AT = 1, and will be
concentrically loaded, as illustrated in Figure 10-21. The beam is loaded before the
column and will deflect under load as shown in Figure 10-22. Because of the partial
restraint of the connection, a couple, Mpr, develops between the beam and column and
adds to the eccentric couple, Re. Thus, Mcon = Re + Mp,-.
As the loading of the column begins, the assembly will deflect further in the same
direction under load, as indicated in Figure 10-23, until the column load reaches some
magnimde, Psbr, when the rotation of the column will equal the simply supported beam end
rotation. At this load, the rotation of the column negates Mp,- since it also relieves the partial
restraint effect of the connection, and Mcon - Re. As the column load is increased above Pgbr,
the column rotation exceeds the simply supported beam end rotation and a moment Mpr
results such that Mcon = Re - Mpr-
i
I
I
i
Stiffener
Welded I
Column
Fig. 10-20. Eccentric ejfect of extended gages.
AMERICAN INSMM'E OF STEEL CONSTRUCTION

LFR-144 DESIGN OF SIMPLE SHEAR CONNECTIONS
e,
/////.///^
r
62
Fig. 10-21. Column subject to dual eccentric moments.
M^-Re +
Detail A
Beam and column utiloaded
Beam loaded only
Fig. 10-22. Illustration of beam, coluim and Connection behavior
under loading of beam only.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-145
Note that the partial restraint of the connection now actually stabilizes the column and
reduces its effective length factor, K, below the originally assumed value of 1. Thus, since Mpr
must be greater than zero, it must also be true that Re> Mcon- It is therefore conservative to
design the connection for the shear, J?, and the eccentric moment,
The welds connecting the plate to the supporting column web should be designed to resist
the full shear, R, only; the top and bottom plate-to-stiffener welds have minimal strength
normal to their length, Me not assumed to carry any calculated force, and may be of
minimum size in accordance with AISC .Sjpec(7?ca;w« Section J2.
If simple shear connections frame to both sides of the column web, as illustrated in Figure
10-21, each connection should be designed for its respective shear, Ri and /?2> and the
eccentric moment - 'Rieil may be apportioned between the two simple shear
connections as the designer sees fit. The total eccentric moment may be assumed to act on
the larger connection, the moment may be divided proportionally among the connections
according to the polar moments of inertia of the bolt groups (relative stiffness), or the
moment may be divided proportionally between the connections according to the section
moduli of the bolt groups (relative moment strength). If provision is made for ductility and
stability, it follows from the lower bound theorem of limit states analysis that the distribution
which yields the greatest strength is closest to the true strength. Note that the possibility
exists that one of the beams may be devoid of live load at the same time that the opposite
beam is fully loaded. This condition must be considered by the designer when apportioning
the moment.
P>Ps,r
Detail B
Beam and column unloaded
Beam loaded only
Beam and column loaded
i
Fig. 10-23. Illustration of beam, column and connection behavior
under loading of beam and column.
AMERICAN INSTITUTE OF STEEL CONSTRifcNON

10-146 DESIGN OF SIMPLE SHEAR CXJNNECTIONS
Girder-Web Supports
The girder-web support of Figure 10-24 usually provides only minimal torsional stiffness or
strength. When larger-than-normal gages are used, the end rotation of the supported beam
will usually be accommodated through rotation of the girder support. It follows that the bolt
group should be designed to resist both the shear, R, and the eccentric moment. Re. The
beam end reaction will then be carried through to the center of the supporting girder web.
The welds connecting the plate to the supporting girder web should be designed to resist
the shear, i?, only; the top and bottom plate-to-girder-flange welds have minimal strength
normal to their length, are not assumed to carry any calculated force, and may be of
minimum size in accordance with AISC Specification Section J2.
Similarly, for the girder illustrated in Figure 10^25 supporting two eccentric reactions,
each connection should be designed for its respective shear, Ri and R2, and the eccentric
moment, \ R2e2- Rie\ \, may be apportioned between the two simple shear connections as
the designer sees fit.
Fig. 10-24. Eccentric moment on girder-web support.
R,
7777Z777V "YTTTTTV
R,
Fig. 10-25. Girder-web support subject to dual eccentric moments.
AMERICAN iNs-rrruTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-147
Alternative Treatment of Eccentric Moment
In the foregoing treatment of eccentric moments with column- and girder-web supports, it
is possible to design the support (instead of the connection) for the eccentric moment, Re^
Additionally, when metal deck is used with puddle welds or self-tapping screws, the metal
deck tends to reduce relative movement between the two members and thus will tend to
carry all or some of the eccentric moment. In these cases, the connection may be designed
for the shear, R, only or the shear and a reduced eccentric moment.
Double Connections
When beams frame opposite each other and are welded to the web of the supporting girder
or column, there are usually no dimensional constraints imposed on one connection by the
presence of the other connection unless erection bolts are common to each connection.
When the connections are bolted to the web of the supporting column or girder, however,
the close proximity of the connections requires that some or all fasteners be common to
both connections. This is known as a double connection. See also the discussion under
"Constructability Considerations" in an earlier section in this Part.
Supported Beams of Different Nominal Depths
When beams of different nominal depths frame into a double connection, care must be taken
to avoid interference from the bottom flange of the shallower beam with the entering and
tightening clearances for the bolts of the connection for the deeper beam. Access to the bolts
that will support the deeper beam may be provided by coping or blocking the bottom flange
of the shallower beam. Alternatively, stagger may be used to favorably position the bolts
around the bottom flange of the shallower beam.
Supported Beams Offset Laterally
Frequently, beams do not frame exactly opposite each other, but are offset slightly, as
illustrated in Figure 10-26. Several connection configurations are possible, depending on the
offset dimension.
If the offset were equal to the gage on the support, the connection could be designed with
all bolts on the same gage lines, as shown in Figure 10-26(b), and the angles arranged, as
shown in Figure 10-26(d). If the offset were less than the gage on the support, staggering
the bolts, as shown in Figure 10-26(c), would reduce the required gage and the angles could
be arranged, as shown in Figure 10-26(c). In any case, each boh transmits an equal share of
its beam reaction(s) to the supporting member, with the bolts that are loaded in double shear
ultimately carrying twice as much force as those loaded in single shear. Once the geometry
of the connection has been determined, the distribution of the forces is patterned after that
in the design of a typical connection. For normal gages, eccentricity may be ignored in this
type of connection.
Beams Offset From Column Centeiilne
Framing to the Column Flange from the Strong Axis
As illustrated in Figure 10-27, beam-to-column-flange connections offset from the column
centerline may be supported on a typical welded seat, stiffened or unstiffened, provided the
welds for the seat can be spaced approximately equal on either side of the beam centerline.
X
AMERICAN INSTITUTE OF STEEL CONSTRifcNON
i
i
i
I
i

10-148 DESIGN OF SIMPLE SHEAR CXJNNECTIONS
Two such seats offset from the Wl2x65 column centerline by 2'/4 in. and 3'/2 in. are shown
in Figures 10-27(a) and 10-27(b), respectively. While not shown, top angles should be used
with this connection.
Since the entire seat fits within the flange width of the column, the connection of Figure
10-27(a) is readily selected from the design aids presented previously. However, the larger
1
W16x45 ^
esi^
1 W16x4S
esx
E E
_J
PARTPLAN
(Beam flush top)
(a)
SECTION E-E
(b)
j-
g Beam B
g Beam A
1
Dl
1
T
1
Dl
1
T
-liT®^
-
T
t
SECTION E-E
ic)
£ BeamB
Q Beam A
d
pel

cm
-I -
® F F
SECTION F-F SECTION F-F
Bolts on same gage Bolts staggered
(d) (e)
Fig. 10-26. Ojfset beams connected to girder.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-149
Col.
W12x6S
W14x48
P4
30' 1
CQ O
7 W14X48
ELM
B.C i
2%
to
m
j
NOTEA
(a) (b)
NOTEA
End return is omitted because
theAWS Cade does not permit
weld returns to be carried
around the corner formed by
the column flange toe and
seat angle heel.
NOTEB
Beam and top angle not shown for clarity.
Fig. 10-27. Offset beams connected to column flanges.
AMERICAN INSTITUTE OF STEEL CoNSTRucnoN

10-150 DESIGN OF SIMPLE SHEAR CONNECTIONS
beam offsets in Figures 10-27(b) and 10-27(c) require that one of the welds be made along
the edge of the column flange against the back side of the seat angle. Note that the end return
is omitted because weld returns should not be carried around such a comer.
For the beam offset of 5'/2 in. shown in Figure 10-27(c), the seat angle overhangs the edge
of the beam and the horizontal distance between the vertical welds is reduced to 3V2 in.; the
center of gravity of the weld group is located 1'A in. to the, left of the beam centerline. The
force on each weld may be determined by statics. In this case, the larger force is in the right-
hand weld and may be determined by summing moments about the lefthand weld. Once the
larger force has been determined, each weld should be designed to share the force in the more
highly loaded weld.
Framing to the Column Flange from the Weak Axis
Spandrel beams X and Y in the partial plan shown in Figure 10-28 are offset 4V8 in. from
the centerline of column CI, permitting the beam web to be connected directly to the
column flange. At column B2, spandrel beam X is offset 5 in. and requires a '/s-in. filler
between the beam web and the column flange. Beams X and Y are both plain-punched
beams, with flange cuts on one side, as noted in Figure 10-28(a), Section F-F,
In establishing gages, the requirements of other connections to the column at adjacent
locations must be considered. While the workable flange gage is 3V2 in. for the W8x28
columns supporting the spandrel beams, for beams Z, the combination of a 4-in. column
gage and iVa-in. stagger of fasteners is used to provide entering and tightening clearance
for the field bolts and sufficient edge distance on the column flange, as illustrated in Figure
10-28(b). The 4-in. column gage also permits a iVz-in. edge distance at the ends of the
spandrel beams, which will accommodate the normal length tolerance of ± V4 in. as specified
in "Standard Mill Practice" in Part 1.
The spandrel beams are shown with the notation "Cut and Grind Flush FS" in Sections
E-E and F-F. This cut permits the beam web to lie flush against the column flange. The
uncut flange on the near side of the spandrel beam contributes to the stiffness of the
connection. The 2'/2x''/8-in. filler is required between the spandrel beam web and the flange
of column B2 because of the '/g-in. offset. Accordingly, the filler provisions of AISC
Specification Section J5 must be satisfied.
In the part plan in Figure 10-29(a), the Wl6x40 beam is offset 6'/4 in. from the
centerline of column Dl. This prevents the web of the Wi6x40 from being placed flush
against the side of the column flange. A plate and filler are used to connect the beam to the
column flange, as shown in Figure 10-29(b). Such a connection is eccentric and one group
of fasteners must be designed for the eccentricity. Lack of space on the inner flange face
of the column requires development of the moment induced by the eccentricity in the beam
web fasteners.
To minimize the number of field fasteners, the plate in this case is shop-bolted to the
beam and field-bolted to the column. A careful check must be made to ensure that the beam
can be erected without interference from fittings on the column web. Some fabricators
would elect to shop-attach the plate to the column to eliminate possible interference and
permit use of plain-punched beams. Additionally, if the column were a heavy section, the
fabricator may elect to shop-we Id the plate to the column to avoid drilling the thick flanges.
The welding of this plate to the column creates a much stiffer connection and the design
should be modified to recognize the increased rigidity.
AMERICAN INSTrrUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-151
mge g
© Wmo
®
©
W8x28
sS
W14x30
F E
(N)
L U • L_J
o. ®
PARTPLAN
Beams nush top
i
PART COLUMN DETAILS
C1andB2
VA
ri
-VT
it
CE), 11
W14x30 14
Cutandgrind
flush FS
top&bott
4 Col. gage
-rV
1i 2X2x98

^ W14x30
@T
Cut and grind flush FS
top&bott
4 Col gage
Oj
II
Col C1
SECTF-F
Col.B2
SECTE-E
(a)
2% ^2L3Xx3xy4xr-1
(b)
-4%
W18x50
.VA
Fig. 10-28. Offset beams connected to column.
<
AMERICAN INSTTTUTE OF Sraa. CONSTOUCTON

10-152 DESIGN OF SIMPLE SHEAR CONNECTIONS
Q)
.W14x68 —

W16x40 55"
PARTPLAN
(a)
1l%x10%x1'-0
fi%x3xV-0
Tack weld to ship
%6xr slots in 1
'is 0 holes in
column & Slier
(b)
Fig. 10-29. Offset beam connected to column.
AMERICAN iNSTrruTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-153
If the centerline of the W16 were offset 6Vi6 in. from line 1, it would be possible to
cope or cut the flanges flush top and bottom and frame the web directly to the column flange
with details similar to those shown in Figure 10-29. This type of framing also provides a
connection with more rigidity than normally contemplated in simple construction. A coped
connection of this type would create a bending moment at the root of the cope that might
require reinforcement of the beam web.
One method frequently adopted to avoid moment transfer to the column because of beam
connection rigidity is to use slotted holes and a bearing connection to provide some
flexibility. The slotted holes would be provided in the connection plate only and would be
in the field connection only. These slotted connections also would acconmiodate fabrication
and erection tolerances.
The type of connection detailed in Figure 10-29 is similar to a coped beam and should be
checked for buckling, as illustrated in Part 9. The following differences are apparent and
should be recognized in the analysis:
1. The effective length of equivalent "cope" is longer by the amount of end distance
to the first bolt gage line.
2. There is an inherent eccentricity due to the beam web and plate thickness. The
ordinary web and plate thicknesses normally will not require an analysis for this
condition, since the inelastic rotation allowed by the AISC Specification will
relieve this secondary moment effect. Two plates may sometimes be required to
counter this eccentricity when dimensions are significant.
3. The connection plate can be made of sufficient thickness as required for bending
or buckling stresses with a minimum thickness of ^h in.
Framing to the Column Web
If the offset of the beam from the centerline of the column web is small enough that the
connection may still be centered on or under the supported beam, no special considerations
need be made. However, when the offset of the beam is too large to permit the centering of
the connection under the beam, as in Figure 10-30, it may be necessary to consider the effect
of eccentricity in the fastener group.
The offset of the beam in Figure 10-30 requires that the top and bottom flanges be blocked
to provide erection clearance at the column flange. Since only half of each flange, then,
remains in which to punch holes, a 6-in. outstanding leg is used for both the seat and top
angles of these connections; this permits the use of two field bolts to each of the seat and
top angles, which are required by OSHA.
Connections for Raised Beams
When raised beams are connected to column flanges or webs, there is usually no special
consideration required. However, when the support is a girder, the differing tops of steel
may preclude the use of typical connections. Figure 10-31 shows several typical details
commonly used for such cases in bolted construction. Figure 10-32 shows several typical
details commonly used in welded construction.
In Figure 10-31(a), since the top of the Wl2x35 is located somewhat less than 12 in.
above the top of the W18 supporting beam, a double-angle connection is used. This
AMERICAN INSTITUTE OF STEEL CoNSTRifcnoN
i
1
i
i
{

LFR-154 DESIGN OF SIMPLE SHEAR CONNECTIONS
connection would be designed for tlie beam reaction and the shop bolts would be governed
by double shear or bearing, just as if they were located in a vertical position. However, the
field bolts are not required to carry any calculated force under gravity loading.
The maximum permissible distance, m, depends on the beam reaction, since the web
remaining after the bottom cope must provide sufficient area to resist the vertical shear as
well as the bending moment which would be critical at the end of the cope. The beam can
be reinforced by extending the angles beyond the cope and adding additional shop bolts for
development. The angle size and/or thickness can be increased to gain shear area or section
modulus, if required. The effect of any eccentricity would be a matter of judgment, but could
be neglected for small dimensions.
When this connection is used for flexure or for dynamic or cyclical loading, the web is
subjected to high stress concentrations at the end of the cope, and it is good practice to
extend the angles, as shown in Figure 10-31(a), to add at least two additional web fasteners.
%"<!) Bolts
Open holes
Fig. 10-30. dffset beam connected to column web.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-155
Figure 10-31(b) covers the case where the bottom flange of the W12x35 is located a few
inches above the top of the W18. The beam bears directly upon fillers and is connected to
the W18 by four field bolts which are not required to transmit a calculated gravity load. If
the distance m exceeds the thickest plate which can be punched, two or more plates may be
used. Even though the fillers in this case need only be 6V2-in. square, the amount of material
required increases rapidly as m increases. If w exceeds 2 or 3 in., another type of detail may
be more economical.
W12x35
ef
3'A
3% ,
^ WIS imxG'Axsyz
(build-up)
2L-3'Ax3y3X%
(a) (b)
-2~PcC15x33.9x6'A
W12x35 ,
29I6
W12x35
(c) (d)
1PcW1Zx35x9
2L 6x4x%x9
1% -J
(e)
Fig. 10-31. Bolted,mised-beatn connections.
AMBWCAN INSTRRUTE OF STEEL CONSTRUCTION

10-156 DESIGN OF SIMPLE SHEAR CONNECTIONS
The detail shown in Figure 10-31(c) is used frequently when m is up to 6 or 7 in. The load
on the shop bolts in this case is no greater than that in Figure 10-31(a). However, to provide
more lateral stiffness, the fittings are cut from a 15-in. channel and are detailed to overlap
the beam web sufficiently to permit four shop bolts on two.gage lines.
A stool or pedestal, cut from a rolled shape, can be used with or without fillers to provide
for the necessary m distance, as in Figure 10-31(d). A pair of connection angles and a tee
will also serve a similar purpose, as shown in Figure 10-31(e). To provide adequate strength
to carry the beam end reaction and to provide lateral stiffness, the web thickness of the
pedestal in each of these cases should be at least as thick as the member being supported.
In Figure 10-32(a), welded framing angles are substituted for the bolted angles of Figure
10-31(a). In Figure 10-32(b), a single horizontal plate is shown replacing the pair of framing
angles; this results in a savings in material and the amount of shop-welding. In this case,
particular care must be taken in cutting the beam web and positioning the plate at right
angles to the beam web. For this reason, if only a few connections of this type are to be
made, some fabricators prefer to use the angles, as in Figure 10-32(a). If sufficient
duplication were available to warrant making a simple jig to position the plate during
welding, the solution of Figure 10-32(b) may be economical.
Figure 10-32(c) shows a tee centered on the beam web and welded to the bottom flange
of the beam. The tee stem thickness should not be less than the beam web thickness. The
welded solutions shown in Figures 10-32(d) and 10-32(e) are capable of providing good
lateral stiffness. The latter two types also permit end rotation as the beam deflects under
load. However, if the m distance exceeds 3 or 4 in., it is advisable to shop-weld a triangular
bracket plate at one end of the beam, as indicated by the dashed lines, to prevent the beam
from deflecting along its longitudinal axis.
Other equally satisfactory details may be devised to meet the needs of connections for
raised beams. They will vary depending on the size of the supported beam and the distance
m. When using this type of connection where the load is transmitted through bearing, the
provisions of AISC Specification Sections J10.2 and J10.3 must be satisfied for both the
supported and supporting members. For the detail of Figure 10-32(b), since the rolled fillet
has been removed by the cut, the value of k would be taken as the thickness of the plate plus
the fillet weld size.
AISC Specification Appendix 6 requires stability and restraint against rotation about the
beam's longitudinal axis. This provision is most easily accomplished with a floor on top of
the supported beam. In the absence of a floor, the top flange may be supported by a strut or
bracket attached to the supporting member. When the beam is encased in a wall, this
stability may also be provided with wall anchors.
This discussion has considered that the field bolts which attach the beam to the pedestal
or support beam are subject to no calculated load. It is important, however, to recognize that
when the beam deflects about its neutral axis, a tensile force can be exerted on the outside
bolts. The intensity of this tensile force is a function of the dimension d, indicated in Figure
10-31, the span length of the supported member, and the beam stiffness. If these forces are
large, high-strength bolts should be used and the connection analyzed for the effects of
prying action.
Raised-beam connections such as these are used frequently as equipment or machinery
supports where it is important to maintain a true and level surface or elevation. When this
tolerance becomes important, the dimension d should be noted "keep" to advise the
fabricator of this importance, as shown in Figure 10-31(b). Since the supporting beam is
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION
I

SPECIAL CONSIDERATIONS FOR SIMPUE SHEAR CONNECTIONS 10-157
subject to certain camber/deflection tolerances, it also may be appropriate to furnish shim
packs between the connection and the supporting member.
Non-Rectangular Simple Shear Connections
It is often necessary to design connections for beams that do not frame into a support
orthogonally. Such a beam may be inclined with respect to the supporting member in
W12x3S
3K
4%
Cape
2L-3'Ax3x%x8
(a)
W12)(35
3ii
• I Cope
« %x714x8
(b)
i
i
W12x35
/
3H
3H
Pc-W12x35x7
(c)
II
H
W12x3S
w
ii
2
314
%
-Smenerii
C15x33.9x7y,
(d)
W12x3S
M
K
3%
(e)
Stiffener It
Pc-S18xS4.7x7y2
Fig. 10-32. Welded mised-beam connections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i

10-158 DESIGN OF SIMPLE SHEAR CXJNNECTIONS
various directions. Depending upon the relative angular position which a beam assumes,
the connection may be classified among three categories: skewed, sloped or canted. These
conditions are illustrated in Figure 10-33 for beam-to-girder web connections; the same
descriptions apply to beam-to-column-flange and web connections. Addition^ly, beams
may be oriented in a combination of any or all of these conditions. For any condition of
skewed, sloped or canted framing, the single-plate connection is generally the simplest and
most economical of those illustrated in this text.
y-W.P.
K.
PLAN
90'
W.P.
(a) Skewed beam (b) Sloped beam
90°
PLAN
90'
(c) Canted beam (d) Skewed and sloped beam
Fig. 10-33. Non-rectangular connections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-159
Skewed Connections
A beam is said to be skewed when its flanges lie in a plane perpendicular to the plane of the
face of the supporting member, but its web inclined to the face of the supporting member.
The angle of skew A appears in Figure 10-33(a) and represents the horizontal bevel to which
the fittings must be bent or set, or the direction of gage lines on a seated connection.
When the skew angle is less than 5" (l-in^l2 slope); a pair of double angles can be bent
inward or outward to make the connection, as shown in Figure 10-34. While bent angle
sections are usually drawn as bending in a straight line from the heel, rolled angles will tend
to bend about the root of the fillet (dimension k in Manual Part 1). This produces a
significant jog in the leg alignment, which is magnified by the amount of bend. Above this
angle of skew, it becomes impractical to bend rolled angles.
For skews approximately greater than 5° (l-iri-12 slope), a pair of bent plates, shown in
Figure 10-35, may be a more practical solution. Bent plates are not subject to the
deformation problem described for bent angles, but the radius and direction of the bend must
be considered to avoid cracking during the cold-bending operation.
Bent plates exhibit better ductility when bent perpendicular to the rolling direction and
are, therefore, less likely to crack. WheneveJ possible, bent connection plates should be
billed with the width dimension parallel to the-bend line. The length of the plate is measured
i
i
i
-t Support, - € Support
€ Skewed
Beam
Uptol
€ Skewed
Beam
i
{
(a) All-bolted (b) Bolted/welded
Fig. 10-34. Skewed beam connections with bent double angles.
Over 1 to 8
Fig. 10-35. Skewed beam connections with double bent plates.
AMERICAN INSTITUTE OF STEEL EONSTRUCRION

10-160 DESIGN OF SIMPLE SHEAR CONNECTIONS
on its mid-thickness, without regard to the radius of the bend. While this will provide a plate
that is slightly longer than necessary, this will be corrected when the bend is laid out to the
proper radius prior to fabrication.
Before bending, special attention should be given to the condition of plate edges transverse
to the bend lines. Flame-cut edges of hardenable steels should be machined or softened by
heat treatment; Nicks should be ground out and sharp comers should be rounded.
The strength of bent angles and bent plate connections may be calculated in the same
manner as for square framed beams, making due allowances for eccentricity. The load is
assumed to be applied at the point where the skewed beam center line intersects the face of
the supporting member.
As the angle of skew increases, entering and tightening clearances on the acutely angled
side of the connection will require a larger gage on the support. If the gage were to become
objectionable, a single bent plate, illustrated in Figure 10-36, may provide a better solution.
Note that the single-bent plate may be of the conventional type, or a more compact
connection may be developed by "wrapping" the single bent plate, as illustrated in Figure
10-36(c).
In all-bolted construction, both the shop and field bolts should be designed for shear and
the eccentric moment. A C-shaped weld is preferable to avoid turning the beam during shop
fabrication. Single bent plates should be checked for flexural strength.
Skewed single-plate and skewed end-plate connections, shown in Figures 10-37 and
10-38, provide a simple, direct connection with a minimum of fittings and multiple punching
requirements. When fillet-welded, these connections may be used for skews up to 30° (or a
slope of 6Vi6-in-12) provided the root opening formed does not exceed Vi6 in. For skew
angles greater than 30°, see AWS Dl.l/Dl.lM, Section 2.3.5.2 (AWS, 2010).
(a) All-bolted (b) Bolted/welded
conventional
(c) Configurations
Fig. 10-36. Skewed-beam connections with single-bent plates.
AMERICAN iNsnruTE OF STEEL CoNSTRUcnoN

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-161
The maximum beam-web thickness which may be supported is a function of the maximum
root opening and the angle of skew. If the thickness of the beam web were such that a larger
root opening were encountered, the skewed single plate or the web connecting to the skewed
end plate may be beveled, as shown in Figures 10-37(b) and 10-38(b). Since no root opening
occurs with the bevel, there is no limitation on the thickness of the beam web. However,
beveling, especially of the beam web, requires careful fuiishing and is an expensive procedure
which may outweigh its advantages.
The design of skewed end-plate connections is similar to that discussed previously in
"Shear End-Plate Conrlections" in this Part. However, when the gage of the bolts is not
centered on the beam web, this eccentric loading should. be considered. The design of
skewed single-plate connections is similar to that discussed previously in "Single-Plate
Connections" in this Part.
When skewed, stiffened seated connections are used, the stiffening element should be
located so as to cross the skewed beam centerline well out on the seat. This can be
accomplished by shifting the stiffener to the left or right of center to support beams which
skew to the left or to the right, respectively. Alternatively, it may be possible to skew the
stiffening element.
i
i
Up to 6
(a) Square edge (preferred) (b) Beveled edge (alternative)
Fig. 10-37. Skewed single-plate connections.
(a) Square edge (preferred) (b) Beveled edge (alternative)
Fig. 10-38. Skewed shear end-plate connections.
AMERICAN INSTTRUTE OF STEEL CoNSTRUcnoN

10-62 DESIGN OF SIMPLE SHEAR CONNECTIONS
Sloped Connections
Abeam is said to be sloped if the plane of its web is perpendicular to the plane of the face of
the supporting member, but its flmges are not perpendicular to this face. The angle of slope
B is shown in Figure 10-33(b) and represents vertical angle to which the fittings must be
set to the web of the sloped beam, or the amount that seat and top angles must be bent.
The design of sloped connections usually can be adapted directly from the rectangular
connections covered earlier in this part, with consideration of the geometry of the
connection to estabhsh the location of fittings and fasteners. Note that sloped beams often
require copes to clear supporting girders, as illustrated in Figure 10-39.
Figure 10-40 shows a sloped beam with double-angle connections, welded to the beam
and bolted to the support. The design of this connection is essentially similar to that for
rectangular double-angle connections. Alternatively, shear end-plate, tee, single-angle,
single-plate, or seated connections could be used. Selection of a p^icular connection type
may be influenced by fabrication economy, erectability, and/or by the types of connections
used elsewhere in the structure.
Sloped seated beam connections may utilize either bent angles or plates, depending on
the angle of slope. Dimensioning and entering and clearance requirements for sloped seated
connections are generally similar to those for skewed connections. The bent seat and top
plate shown in Figure 10-41 may be used for smaller bevels.
When the single of slope is small, it is ecoiiomical to place transverse holes in the beam
web on lines perpendicular to the beam flange; this requires only one stroke of a multiple
Fig. 10-39. Sloped all-bolted double-angle connection.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-63
punch per line. Since non-standard hole arrangements, then, usually occur in the connecting
materials (which are single-punched), this requires that sufficient dimensions be provided
for the connecting material to contain fasteners with adequate edges and gages, and at the
same time fit the angle to the web without encroaching on the flange fillets of the beam. For
the end connection of the beam, this was accomplished by using a 6-in, angle leg; a 4-in. or
even a 5-in. leg woiild not have furnished sufficient edge distance at the extreme fastener.
As the angle of slope increases, however, bolts for the end connections cannot conveniently
be lined up to permit simultaneous punching of all holes in a transverse row. In this case,
the fabricator may choose to disregard beam gage lines and arrange the hole-punching so
that ordinary square-framed connection material can be used throughout, as shown in
Figure 10-42. i
2L4x3x%x8y2(a)
G0L=2%:S<Acc
Fig. 10-40. Sloped bolted/welded double-angle connection.
(
Fig. 10-41. Sloped seated connections.
AMERICAN INSTITUTE OF STEEL CONSTRCICTION

10-164 DESIGN OF SIMPLE SHEAR CONNECTIONS
Canted Connections
A beam perpendicular to the face of a supporting member, but rotated so that its flanges are
tilted with respect to those of the support, is said to be canted. The angle of cant C is shown
in Figure 10-33(c).
The design of canted connections usually can be adapted directly from the rectangular
connections covered earlier in this part. In Figure 10-43, a double-angle connection is used.
Alternatively, shear end-plate, seated, single-angle, single-plate, and tee connections may
also be used.
For channel B2 in Figure 10-44, which is supported by a sloping member B1 (not shown),
to match the hole pattern iii supporting member Bl, the holes in the connecting materials
ZL 4x3HiiKxm (f)
QOL~ 2%~HolesSy,O.C.
Fig. 10-42. Sloped beam with rectangular connections.
El.+47'-6
S'A Cope Cope SVi
1-010x15.3x11'- 10%
b'^c'
1L-4x3x%x7(b'>)NS 1L-(b'-)NS
1L~4X3XV4X7(C'^FS 1L-(c<-)FS
11'-1P/a
Fig. 10-43. Canted double-angle connections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-165
must be canted. As shown in Figure 10-44, the top flange of the channel and the connection
angles, d^ and d^, are cut to clear the flanges of beam Bl. In this detail, with a 3-in-12 angle
of cant, 4-in. legs were wide enough to contain the pattern of hole-punching.
Since the multiple punching or drilling of column flanges requires strict adherence to
column gage lines, punching is generally skewed in the fittings. When, for some reason, this
is not possible, as in Figure 10-45, skewed reference lines are shown on the column to aid
in matching connections.
When canted connecting materials are assembled on the beam, particular care must be
used in determining the direction of skew for punching the connection angles. An error
reversing this skew may permit matching of holes in both members, but the beam will be
canted opposite to the intended direction.
3H Cope Cope 3'A
1-C10x15.3x1f- m
1L-4x3'Ax%x7(d'^)FS
2%
1L-(c'-)NS
1L-(di-)F$
2%
-'/IS 11'-11%
1CHmEL-B2
Fig. 10-44. Canted connections to a sloping support.
i
i
i
B. + IOO'-O
m
1L-3%x:3yiX%x9(ajNS
1L-5x3yzx'/4x9(b)FS
i Column
Fig. 10-45. Canted connection to column flange.
AMERICAN INSTITUTE OF STEEL CONSTRCICTION

10-166 DESIGN OF SIMPLE SHEAR CONNECTIONS
Note the connection angles in'Figure 10-45 are shown shop-welded to the beam. This was
done to provide tightening clearance for ^/4-in. high-strength field bolts in the opposite leg.
Had the shop fasteners been bolts, it would have been necessary to stagger the field and shop
fasteners and provide longer angles for the increased spacing.
Canted seated beamsi shown in Figure 10-46, present few problems other than those in
ordinary square-end seated beams. Sufficient width and length of angle leg must be
provided to contain the gage line punching or drilling in the column face, as well as the off-
center location of the holes matching the punching in the beam flange. The elevation of the
top flange centerline and the bevel of the beam flange may be given for reference on the
beam detail, although the bevel shown will not affect the fabrication.
Inclines in Two or More Directions (Hip and Valley Framing)
When a beam inclines in two or more directions with respect to the axis of its supporting
member, it can be classified as a combination of those inclination directions. For example,
the beam of Figure 10-33(d) is both skewed and sloped. Angle A shows the skew and angle
B shows the slope. Note that, since the inclined beam is foreshortened in the elevation, the
Fig. 10-46. Canted seated connections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10-167
true angle B appears only in the auxiliary projection, Section X-X. The development of
these details is quite complicated and graphical solutions to this compound angle work can
be found in any textbook on descriptive geometry. Accurate dimensions may then be
determined with basic trigonometry.
DESIGN CONSIDERATIONS FOR SIMPLE SHEAR
CONNECTIONS TO HSS COLUMNS
Many of the familiar simple shear connections that are used to connect to wide-flange
columns can be used with HSS columns, These include double and single angles,
unstiffened and stiffened seats, single plates, and tee connections. One additional connection
that is unique for HSS columns is the through-plate; note that this alternative is seldom
required structurally and presents a significant economic penalty when a single plate
connection would otherwise suffice. Variations in attachments are more limited with HSS
columns since the connecting element will typically be shop-welded to the HSS and bolted
to the supported beam. Except for seated connections, the bolting will be to the web of a
wide-flange or other open profile section. Coping is not required except for bottom-flange
copes that facilitate knifed erection with double-angle connections.
I
Double-Angle Connections to HSS
Table 10-1 is a design aid for double-angle connections. The table shows the compatible
sizes of W-shapes for the various connection configurations. Based on maximum beam web
thickness, maximum weld size, maximum HSS comer radius and 4-in. outstanding angle
legs, double-angle connections may be used with any HSS having a width greater than or
equal to 12 in. If 3-in. outstanding angle legs are used for connections with six bolts or less,
HSS with widths of 10 in. are acceptable for obtaining welds on the flat of the side. For
smaller web thicknesses, welds and corner radii, it may be possible to fit the connection on
widths of 10 in. if the outstanding angle legs are 4 in. and on widths of 8 in. for outstanding
angle legs of 3 in. However, these dimensions must be verified for a particular case. See the
tabulated workable flat dimensions for HSS in Part 1.
Single-Plate Connections to HSS
As long as the HSS wall is not classified as a slender element, the local distortion caused by
the single-plate connection will be insignificant in reducing the column strength of the HSS
(Sherman, 1996). Therefore, single-plate connections may be used with HSS when b/t <
l.AOiE/Fyf-^ or 35.1 for Fy = 46 ksi. Single-plate connections may also be used with round
HSS as long as they are nonslender under axial load {D/t < O.UE/Fy). {
Unstiffened Seated Connections to HSS
In order to properly attach seat angles to the flat of the HSS, the workable flat must be large
enough to accommodate both the width of the seat angle and the welds. Seat widths are
usually 6 in. or 8 in., but other widths may also be used. See the tabulated workable flat
dimensions for HSS in Part 1.
Table 10-6 may be used for unstiffened seated connections to HSS. The minimum HSS
thicknesses ae established based on the weld strength. If the HSS thickness is less than the
minimum value, the weld strength must be reduced proportionally.
AMERICAN INSTITUTE OF STEEL CONSTRCICTION

10-168 DESIGN OF SIMPLE SHEAR CONNECTIONS
Stiffened Seated Connections to HSS
Tables 10-8 and 10-14 are design aids for stiffened seated connections. Table 10-8 is appli-
cable to all member types, and Table 10-14 presents specific liniits for HSS, based on the
yield-line mechanism limit state for HSS. Some values for small connection lengths, L, and
large HSS widths, B, have been reduced to meet the limit state for a line load with a width
of 0.4L across the HSS, per AISC Specification Section KI.
The design procedure for stiffened seated connections to W-shape column webs (Sputo
and Ellifritt, 1991) includes a yield line limit state based on an analysis by Abolitz and
Warner (1965). This has been applied to the HSS WEJI which is also supported on two edges.
However, since the HSS side supports are the same thickness rather than much heavier as in
the case Of W-shape flanges, the equation (Abolitz and Warner, 1965) for rotationally free
edge supports has been used instead of fixed edge supports.
The strength of the connection is obtained by multiplying the tabulated value for a par-
ticular HSS width and stiffener length by the square of the HSS thickness and dividing by
the width of the seat. For combinations of B and L that are not listed in Table 10-14, the HSS
does not have Sufficient flat width to accommodate a weld to the seat that is 0.2L on each
side of the stiffener. Because the required width also depends on the stiffener thickness and
the HSS comer radius, the HSS width must be checked even when the values are tabulated.
See the tabulated workable flat dimensions for HSS in Part 1.
The minimum HSS thicknesses associated with the weld strengths of Table 10-8 are given
in Table 10-14. If the HSS thickness is less than the minimum tabulated value, the weld
strength must be reduced proportionally.
Through-Plate Connections
In the through-plate coiinection shown in Figure 10-47, the front and rear faces of the HSS
are slotted so that the plate can be passed completely through the HSS and welded to both
faces. Through-plate connections should be used,when the HSS wall is classified as a
slender element (M > 1.40{E/Fyf -^ or 35.1 for Fy = 46 ksi for rectangular HSS; D/t >
O.llE/Fy for round HSS and Pipe) or does not satisfy the punching shear limit state. A
single-plate connection is more economical and should be used if the HSS is neither slender
nor inadequate for the punching shear rupture limit state.
Through-plate connections have the same limit states as single-plate connections and
Table 10-10 may be used to determine the size and number of bolts and the plate thickness.
The welds, however, are subject to direct shear and may not have to be as large as those
for single-plate connections. For equilibrium of the forces in Figure 10-47, the shear in
the welds on the front face should not exceed the strength of the pair of welds. The HSS
wall strength can be matched to the weld shear strength to determine the minimum
thickness, as illustrated in Part 9. If the thickness of the HSS is less than the minimum, the
weld strength must be reduced proportionally. Conservatively, the welds on the rear face
may be the same size.
When a connection is made on both sides of the HSS with an extended through-plate, the
portion of the plate inside the HSS is subject to a uniform bending moment. For long
connections, this portion of the plate may buckle in a lateral-torsional mode prior to
yielding, unless // is very small. Using a Aicker plate to prevent lateral-torsional buckhng
would restrict the rotational flexibility of the connection. Therefore, it must be recognized
that the plate may buckle and that the moment will be shared with the HSS wall in a
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLES 10-13,10-14A, 10-14B, 10-14C AND 10-15) 10-169
Complex manner. However, if the HSS would be satisfactory for a single-plate connection,
the lateral-torsional buckling limit state is not a critical concern involving loss of strength.
Single-Angle Connections
For fillet welding on the flat of the HSS side, while keeping the center of the beam web in
line with the center of the HSS, single-angle connections must be compatible with one-half
the workable flat dimension provided in Part 1. Generally, the following HSS widths and
thicknesses will work:
b = S in. and t < V4 in.
i) = 9 in. and (<in.
>> 10 in. and any nominal thickness
Alternatively, single angles can be welded to narrow HSS with a flare-bevel weld.
DESIGN TABLE DISCUSSION (TABLES 10-13,10-14A,
10-14B, 1G-14C AND 10-15)
Table 10-13. Minimum Inside Radius for Cold-Bending
Table 10-13 is a design aid providing generally accepted minimum inside-bending radius
for a given plate thickness, t, for various grades of steel. Values are for bend lines trans-
verse to the direction of final rolling (Brockenbrough, 1998). When bend lines are parallel
Fulcrum for
calculating
H
Fig. 10-47. Shear forces in a through-plate connection.

AMERICAN INSTITUTE OF STEEL CoNSTRUchoN

10-170 DESIGN OF SIMPLE SHEAR CONNECTIONS
to the direction of final rolling, the tabular values should be increased by 50%. When bend
lines are longer than 36 in., all radii may have to be increased if problems in bending are
encountered.
Table 10-14A. Clearances for Ail-Bolted Skewed
Connections
Table 10-14A is a design aid providing clearance dimensions for skewed bent double-angle
connections and double and single-bent plate all-bolted connections, and specifies beam set-
backs and gages. Since these dimensions are based on the maximum material thicknesses
and fastener sizes indicated, it is suggested that in cases where many dupUcate connections
with less than maximum material or fasteners are required, savings can be realized if these
dimensions are developed from specific bevels, beam sizes and fitting thicknesses.
Table 10-14B. Clearances for Bolted/Welded Skewed
Connections
Table 10-14B is a design aid providing clearance dimensions, beaim setbacks and gages for
skewed bent double-angle connections and double and single-bent plate bolted/welded con-
nections. Table 10-13B also specifies the dimension A which is added to the fillet weld size,
Si to compensate for the root opening for skewed end-plate connections. This table is based
conservatively on a gap of Vs in. For beam webs beveled to the appropriate skew, values of
Wj. for the entire table are valid and A = 0.
Table 10-14C. Welding Details for Skewed Single Plate
Shear Connections
Table 10-14C is a design aid providing weld information for skewed single-plate shear con-
nections. Additionally, this table provides clearances and dimensions for groove-welded
single-plate connections without backing bars for skews greater than 30°; refer to AWS
Dl.l/Dl .IM for prequalified welds for both types of joints.
Table 10-15. Required Length and Thickness for Stiffened
Seated Connections to HSS
Table 10-15 is a design aid for stiffened seated connections to HSS. Specific limits are based
on the yield-line mechanism limit state of the HSS wall. Some values for small connection
lengths, L, and large HSS widths, B, have been reduced to meet the limit state for a line load
with a width of 0.4L across the HSS, per AISC Specification Section K1.
The design procedure for stiffened seated connections to W-shape column webs (Sputo
and Ellifritt, 1991) includes a yield limit state based on an analysis by Abolitz and Warner
(1965). This has been applied to the HSS wall which is also supported on two edges.
However, since the HSS side supports are the same thickness rather than much heavier, as
in the case of W-shape column flanges compared to the column web, the equation for rota-
tionally free edge supports has been used instead of fixed edge supports (Abolitz and
Warner, 1965).
The strength of the connection is obtained by multiplying the tabulated value for a par-
ticular HSS width and stiffener length by the square of the HSS thickness and dividing by
the width of the seat. For combiriatidns of B and L that are not listed in Table 10-15, the HSS
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION (TABLES 10-13,10-14A, 10-14B, 10-14CAND 10-15) 10-171
does not have sufficient flat width to accommodate a weld to the seat that is 0.2L on each
side of the stiffener. Since the required width also depends on the stlffener thickness and the
HSS comer radius, the HSS width must be checked even when the values are tabulated. See
the tabulated workable flat dimensions for HSS in Part 1.
Table 10-8 is applicable to all member types for stiffened seated connections. The mini-
mum HSS thicknesses associated with the weld strengths of Table 10-8 are given in Table;
10-15. If the HSS thickness is less than the minimum tabulated value, the weld strength
must be reduced proportionally.
AMERICAN INSTITUTE OF STEEL CONSTROCTION

10-172 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-13 ^^
Minimunn Inside Radius
J Aiin 1 Inside radius as a
for Coid-Bending function of piate
thickness
ASTM Designation'
Tliickness, t in.
ASTM Designation'
UptoVi Over'/4 to 1 Overt to2 Over 2
A36,A572-42 Vkt iVzt iVzf 2t
A242,A529-50,A529-55,
A572-50, A588, A992
V/zt iVzf 2f ZVzt
A572-55, A852 Vkt 1V2f ZVzt 3f
A572-60, A572-65 Vkt lV2t 3/ 3V2f
A514 l3/4f 2V4f 4V2f SVs/
' Values are for bend lines perpendicular to direction of final rolling. If bend lines are parallel to final rolling direction, multiply val-
ues by 1.5.
2 The grade designation follows tlie dash; where no grade is shown, all grades and/or classes are included.
AMERICAN INSTITOTB OF STEEL CONSTRUCTION

DESIGN TABLES 10-173
Table 10-14A
Clearances for All-Bolted
Skewed Connections
Values given are for webs up to \ in. thick, angles up to % in. thiols, and bent plates up to V2 in.
thick. Bolts are either '/a-in. diameter or 1 in. diameter, as noted. Values will be conservative for
material thinner than the maximums listed, or for woik with smaller bolts, and may be reduced to
suit conditions by calculation or layout. For thicker material or larger bolts, check enteririg, driving,
and tightening clearances and increase D and bolt gages as necessary. All dimensions are in
inches. Enter bolts as shown.
2% 2%
'i 0== 1 inch
Bentangtes
D = 1 inch
Values of H for Various
Fastener Combinations
Field Bolts Vs 1
Shop Bolts Vs 1
Uptol 4* 41/4*
>
Over 1 to 2 4Ve 4%
Over 2 to 3 4% 4V4
'For back-to-back connections, stagger shop and field
bolts or increase the ZH-in. field bolt dimension to 3V4.
Values of H, Hi, Hz and O for Various Bolt Combinations
Field Fastener % 1
D,
Shop Fastener 1
D, Dimension H Hi H2 H Hi Hz D,
Over 3 to 4 33/4 3V4 2V2 4V4 3V4 23/4 1V4
2
Over 4 to 5 33/4 3V2 2V4 4h 3V2 2V2 1V4
CD
Over 5 to 6 4 3V4 2V4 4% 33/4 2V4 1V2
CD
Over 6 to 7 4V2 4 2V4 5 4 2V4 1V2
Over 7 to 8 43/4 41/4 2V4 5V4 4V4 2;V4 1V2
FieU
Field bofts~1tn. dia. max.
Shop bolls— I in. dia. max: •
12
12
12
12
Under 12 to 11
Under 11. to 10
Under 10 to 9
Under 9 to 8
Under 8 to 7
Under 7 to 6
Under 6 to 5
Under 5 to 4
B
Over 8 to 9
Over 9 to 10
Over 10 to 11
Over 11 to 12
12
12
12
12
12
12
12
12
Shop Bolts
IV2
1%
13/4
IVB
2V8
2V4
2V2
2V4
3y4
3V4
41/2
55/8
H
3
3Ve
3V4
33/8
35/8
33/4
4
4V4
4V4
5V4
6
7Ve
AMERICAN iNstrruTE OF STEEL CONWPCHON

10-174 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-14B
Clearances for Bolted/Welded
Skewed Connections
Values given are for webs up to in. thick, angles up to % in. thick, and bent plates Up to Vj in.
thick, with bolts 1 in. diameter maximum. Values will be conservative for thinner material and for
work with smaller bolts, and may be reduced to suit conditions by calculation or layout. For
thicker material or larger bolts, check entering and tightening clearances and increase beam set-
back D and bolt gages as necessary. Enter bolts as shown. All dimensions are in inches.
II
Angles-4x3
D=1 in.
Bent angles
12
H
Recommended range
of skews
R=1<At
Mh radius of
cddbendfor
A 36 steel up to
Hin.thkk.For
other bends see
Table 10-13
Bevel D Hi Hi
Over 3 to 4 c + % 3I/4 2V4
Over 4 to 5 C+11/16 31/2 21/2
Over 5 to 6 C+3/4 33/4 21/4
Over 6 to 7 C+13/16 4 21/4
Over 7 to 8 C+Vs 41/4 2V4
Determine value of
D by calculation or
layout .
Recommended
range of skews
AMERICAN INSTITOTB OF STEEL CONSTRUCTION

DESIGN TABLES 10-175
Table 10-14B (continued)
Clearances for Bolted/Welcled
Skewed Connections
Values given are for material and bolt sizes noted below. See 'Shear End-Plate Connections" in
Part 10 for proportioning these connections. S indicates weld size required for strength, or a size
suitable to the thickness of material. When the beam web is cut square, only that portion of the
table above the heavy lines Is applicable. Dimension A is added to the weld size to compensate
for the root opening caused by the skew. When the beam web is beveled to the required skew,
values of Hi for the entire table are valid, and A = 0. In either case, where weld strength is
critical, increase the weld size to obtain the required throat dimension. Enter bolts as shown. All
dimensions are in inches.
H, 1'/<
Hi
Bevel-
12
4 -te
V
Square ends
Berg.
Beveledenis
Hi
t-% f = V16 f= '/8 f= Vj t=% f = 3/4
Bevel Hi A Hi A Hi A Hi A Hi A Hi A Hi A
Up to 16/8 13/4 0 13/4 0 V16 1% 1/16 13/4 'Ae. V8 1^8 h
Over iVfi to 21/8 13/4 0 13/4 V16 1% V16 V16 1^8 1/8 2 Vs 2 Vs
Over 21/8 to 31/4 17/8 V16 1^/8 1/8 2 1/8 2 Vs 2 ^ 21/8 0 21/8 0
Over 31/4 to 4% 21/8 1/8 21/8 Vg 2V8 1/8 21/8 0 2V4 0 21/4 0 23/8 0
Over 4% to 5% 21/4 1/8 2V4 1/8 23/8 0 2% 0 23/8 0 : 21/2 0 2V2 0
Over 55/8 to 6i5/i6 21/2 Vs 2V2 0 21/2 0 21/2 0 2% 0 2% 0 23/4 0
Bolts; Ve-in. diameter maximum
End Plate thickness: Vs-in. maximum
Supporting web thickness: %-ir\. maximum
Use of fillet welds is limited to connections With bevels of e^Vts in 12 and less.
For greater bevels consider use of double or single bent plates.
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

10-176 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-14C
Weld Details for Skewed
Single-Plate Connections
Vis- and Ve-in, Plate Thickness*
For e < 17° from Perpendicular l=or 17°< e < 30° from Perpendicular
y2
>3%
< 7
12
For 30°< e < 45° from Perpendicular For e = 45° from Perpendicular
>7
<12
12
•Satisfies single-plate weld requirements for these tfiicknesses.
AMERICAN iNs-nruTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-177
Table 10-14C (continued)
Weld Details for Skewed
Single-Plate Qonnections
Vz-in. Plate Thickness*
For e < 17° from Perpendicular For \T< e < 22° from Perpendicular
%
'3%
12
For 22°< e < 45° from Perpendicular For e = 45° from Perpendicular
>4%
<12
12
V2
/
12
12
_K / BTC-P4
V2(%) \ ^ Modified
•Satisfies singie-plate weld requirements for ttiese thlcl(nesses.
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

10-178 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-15
Required Length and Thickness for
Stiffened Seated Connections to HSS
HSS Wall Strength Factor, R„lir/(' or kips/in.
HSS Width, B, in.
i,in. S 5.5 6 7 8 9
ASO LRFO ASD LRFD ASD LRFO ASD LRFO ASD LRFD ASO LRFD
6 558 839 545 819 536 805 526 791 525 789 528 793
7 687 10.30 664 997 646 971 625 940 615 925 612 920
8 798 1200 771 1160 735 1100 714 1070 704 1080
9 911 1370 856 1290 823 1240 1210
10 1070 1600 990 1490 942 1420 912 1370
11 1140 1710 1070 1610 1030 1550
12 1M0 1960 , 121.0.: 1820 1740
13 1370 2060 1290 ; 1940
14 1540 2310 i^b 2170
IS 1720 2580 1600 2410
16 1,700 2660
17 1960 2940
Required HSS Thickness
Weld Size, in. IWin. HSS Thickness, in.
V4 0.224
5/w 0.280
% 0.336
Vk 0.392
V2 0.448
5/6 0.560
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 10-179
Table 10-15 (continued)
Required Length and Thickness for
Stiffened Seated Connections to HSS
HSS Wall Strength Factor, R„Wlt' or kips/in.
L,ia.
HSS Width, B, in.
L,ia.
10 12 14 16 18 20
L,ia. ASD LRFD ASO LRFD 'ASD LRFD ASD LRFD ASD LRFD vASD LRFD
6 . :534 802 . 552 830 561 843 ..491: 737 437: 656 393 590
7 -.614 922 .:"625 940 •S,.644: 968 667-. 1000 594 892 535 803
8 .'700. 1050 . j 704 1060 1080 ..•7^6 1110 759 1140 v699 1050
9 :a793 1190 787 1180 . 794: 1190 k: 809 1220 .: V 828 1240 851 1280
10 893 : 1340 876 1320 ' ; 876 1320 • 885 1330 : '9Q1 1350 ^ 920 1380
11 loop 1500 .9711 1460 962 1450 .'965' 1450 ;!':976 1470 993 1490
12 51120 1680 1070 16i0 1050. 1580 1050 1580 :i!1060 1590 '1070 1600
13 1240 : : 1870 '1180 1770 ;1150' 1730 M140 1710 1140 1710 1150 1720
14 . 1:370 : 2070 1290 1940 ::12S0'. 1880 = 1230.. .1850 . :r2ap 1840 1230 1840
15 1520 2280 2120 •1360 2040 1330 1990 .:r310:. 1980 1310 1970
16 •1670 2510 1540 2320 M47o: 2210 .1430:^ 2150 i 14lb 2120 f400 2100
17 1830 2760 ,Ui;680 2520 ^1590 2390 1540^ 2310 .^1510 2260 1490 2240
18 2010 3020 1820 2740 .'1710. 2570 > ':i650 2470 161:0. 2420 1590 2380
19 2190 " 3300 >=1:970 2970 •1840 2770 2650 : 2580 1680 2530
20 . 2390 3600 2130 3210 M980; 2980 ff880 2830 : 11820 2740 1790 2680
21 -^300. 3460 5120 3190 =02010 3020 ;1940. 2910 1890 2840
22 ;2480: 3730 •;22S0 3420 >2140 3220 2080 3090 2000 3010
23 2670 4020 iZ440. 3660 .'2280 3430 -.2180 3280 . >.12120 3180
24 : :2870 4310 ;26qo' 3910 ^ J 2430: 3650 231I0' 3480 2230 3360
25 13080 4630 ; 2780 4170 3880 ';:245P 3680 2360 3540
26 4450 4110 :!2590 3890 2480 3730
27 • '3150 4730 i29()0 4360 ••:2730 4110 2610 3930
28 i>^350 5030 .30^0 4620 ' 2880 4330 2750 4130
29 3560 5340 32S0 4890 '3040 4570 ^^890 4340
30 3770 5660 3440 5160 .32qo 4810 3040 4560
31 3630 5450 3370 5070 3190 4790
32 ••':3830: 5750 :i354b 5330 3340 5020
Required HSS Thickness
Weld Size, in. iViin. HSS Thickness, in.
V4
3/8
V2
5/8
0.224
0.280
0.336
0.392
0.448
0.560
AMERICAN INSTTTUTE OF STEEL CONSTRUCTION

10-180 DESIGN OF SIMPLE SHEAR CONNECTIONS
Table 10-15 (continued)
Required Length and Thickness for
Stiffened Seated Connections to HSS
HSS Wall Strength Factor. or R^WIt\ kips/in.
I, in.
HSS Width. B, in.
I, in.
22 24 26 28 30 32
I, in. ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD ASD LRFD
6 357, 536 • 328 492. 302 454 i;; 281: 421 262 393 246 369
7 , 486 730 446 669 412 618 :) 382 574 357 535 •334 502
8 : 635 . 953 582 874 . . 537 807 499 749 466 699 ,,437 656
9 >804 1210 , 737 1110 f 680 1020 632 948 590 885 553 830
10 ;;943 1420 910 1370 840 1260 5 780 1170 728 1090 682 1020
11 1010 1520 1030 1560 1020 1530 944 1420 ,:'881 1320 826 1240
12 1080 1630 1-100 1660' V1130 1690 , ,1120 1690 1050 1570 ,983 1470
13 1160 1740 1180 1770 1200 1800 ::1220 1830 1230 1850 1,15,0 1730
14 ;1240 1860 M250 1880 : 1270 19T0 1290 1940 1310 1970 ,1330 2010
15 ^ 1320: 1980 ; 1330 2000 J1340 2020 1360: 2040 ::i138'0 2070 1400 2110
16 1400 2100 1410 2120 1420 2130 1430 2160 ; 1450 2180 ,1470 2210
17 1490 2230 1490 2240 1500: 2250 :.1510 2270 1530 2290 1540 2320
18 •1580 2370 1570 2370 1580 2370 1590 2390 ::1600 2410 1620 2430
19 1670 2510 .W60 2500 ; 1660 2500 1670 2510 :,1680 2520 1690 2540
20 1760 2650 ,1:750 2630 •r!l750 2630 :i.1750 2630. 1760 2640 1770 2660
21 1860 2800 1850 2770 -1840 2760 1840 2760 1840 2770 1850 2780
22 1960 2950 1940 2920 1930 2900 1920: 2890 1920 2890 1930 2900
23 207,0. 3110 ^ 2040 3070 •2020 3040 ,2010 3030 2010 3020 2010 3030
24 2180 3280 2140 3220 .2120 3190 ;:2110 3170 2100 3160 21 do 3150
25 2290 3450 2250 3380 2220 3340 2200 3310, 2190 3290 2190 3290
26 ,2410 3620 2360 3540 ,2320 3490 2300 3450 2280 3430 2280 3420
27 : 2530 3800 2470 3710 2430 3650 2400 3600 2380 3570 2370 3560
28 2650 3990 2590 3890, 2540 3810 2500 3760 2480 3720 2460 3700
29 2780 4180 2700 4060 2650 3980 2610 3920 2580 3870 2560 3840
30 2920 4380 2830 4250 2760 4150 2710 4080 2680 4030 2650 3990
31 - 3050 4590 2950 4440 2880 4330 2820 4250 2780 4180 2760 4140
32 • 3190 4800 ,3080 4630 3000 4510 2940 4420 2890 4350 2860 4300
Required HSS Thickness
Weld Size, in. Min. HSS Thickness, in.
V4
5/16
3/8
Vk
1/2
%
0.224
0.280
0.336
0.392
0.448
0.560
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

PART 10 REFERENCES 10-181
PART 10 REFERENCES
Abolitz, A.L. and Warner, M.E. (1965), "Bending Under Seated Connections," Engineering
Journal, AISC, January, pp. 1-5.
Astaneh, A., Call, S.M. and McMullin, K.M. (1989), "Design of Single-Plate Shear
Connections," Engineering Journal, AISC, Vol. 26, No. 1, 1st Quarter, pp. 21-32,
Chicago, IL.
AWS (2010), Structural Welding Code—Steel, AWS Dl.l/Dl.lM, American Welding
Society, Miami, FL.
Brockenbrough, R.L. (1998), Fabrication Guidelines for Cold Bending, R.L. Brockenbrough
and Associates, Pittsburgh, PA.
Carter, C.J., Thornton, W.A. and Murray, T.M. (1997), "Discussion—The Behavior and
Load-Carrying Capacity of Unstiffened Seated Beam Connections," Engineering
Journal, AISC, Vol. 34, No. 4, 4th Quarter, pp. 151-156.
Roeder, C.W. and Dailey, R.H. (1989), "The Results of Experiments on Seated Beam
Connections," Engineering Journal, AISC, Vol. 26, No. 3, 3rd Quarter, pp. 90-95.
Ellifritt, D.S. and Sputo, T. (1999), "Design Criteria for Stiffened Seated Connections to
Column Webs," Engineering Journal, AISC, Vol. 36, No. 4, 4th Quarter, pp. 160-167.
Kulak, G.L. (2002), High Strength Bolts—A Primer For Structural Engineers, Design Guide
17, AISC, Chicago, IL.
Kulak, G.L. and Green, D.L. (1990), "Design of Connectors in Web-Flange Beam or Girder
Splices," Engineering Journal, AISC, Vol. 27, No. 2, 2nd Quarter, pp. 41-48.
Muir, L.S. and Hewitt, C.M. (2009), "Design of Unstiffened Extended Single-Plate Shear
Connections," Engineering Journal, AISC, Vol. 46, No. 2, 2nd Quarter, pp. 67-79.
Muir, L.S. and Thornton, W.A. (2011), "The Development of a New Design Procedure
for Conventional Single-Plate Shear Connections," Engineering Journal, AISC, Vol. 48,
No. 2, 2nd Quarter, pp. 141-152.
Salmon, C.G., Johnson, I.E. and Malhas, F. A. (2009), Steel Structures: Design and Behavior,
5th Ed., Prentice Hall, Upper Saddle River, NJ.
Sputo, T. and Ellifritt, D.S. (1991), "Proposed Design Criteria for Stiffened Seated
Connections to Column Webs," Proceedings of the 1991 National Steel Construction
Conference, AISC, pp. 8.1-8.26, Chicago, IL.
Sherman, D.R. (1996), "Designing With Structural Tubing," Engineering Journal, AISC,
Vol. 33, No. 3, 3rd Quarter, pp. 101-109.
Sherman, D.R. and Ghorbanpoor, A. (2002), "Design of Extended Shear Tabs," Final Report
to the American Institute of Steel Construction, AISC, Chicago, IL.
Sumner, E.A. (2003), "North Carolina State Research Report on Single Plate Shear
Connections," Report to the American Institute of Steel Construction, AISC, Chicago, IL.
Thornton, W.A. and Fortney, P (2011), "On the Need for Stiffeners for and the Effect of
Lap Eccentricity on Extended Shear Tabs," Engineering Journal, AISC, Vol. 48, No. 2,
2nd Quarter.
AMERKAN INSTRRUTE OF STEEL CONSTRUCTION

10-182 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

13-11
PARTH
DESIGN OF PARTIALLY RESTRAINED MOMENT
CONNECTIONS
SCOPE ....11-2
LOAD DETERMINATION 11-2
Strength 11-2
Stability 11-3
FLANGE-ANGLE PR MOMENT CONNECTIONS 11-3
FLANGE-PLATED PR MOMENT CONNECTIONS 11-5
PART 11 REFERENCES 11-6
I
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

11-2 DESIGN OF PARTIALLY RESTRAINED MOMENT CONNECTIONS
SCOPE
The specification requirements and other design considerations summarized 'n this Part
apply to the design of partially restrained moment connections. For the desi{ i of simple
shear connections, see Part 10. For the design of fully restrained moment connections, see
Part 12.
LOAD DETERMINATION
The behavior of partially restrained (PR) moment connections is intermediate in degree
between the flexibility of simple shear connections and the full rigidity of fully restrained
(PR) moment connections. AISC Specification Section B3.6b(b), Partially Restrained (PR)
Moment Connections, defines PR connections as ones that transfer moment but for which
the rotation between connected members is not negligible. When used, the analytical model
of the PR connection must include the force-deformation characteristics of the specific con-
nection. For further information on the use of PR moment connections, see Geschwindner
(1991), Nethercot and Chen (1988), Gerstle and Ackroyd (1989), Deierlein et al. (1990),
Goverdhan (1983), and Kishi and Chen (1986).
As an alternative, flexible moment connections (FMC) may be used as a simplified
approach to PR moment connection design (Geschwindner and Disque, 2005), particularly
for preliminary design. Using FMC, any end restraint that the connection may provide to the
girder is assumed zero for gravity load because of the uncertainty of that restraint after
repeated loading. The beam and its web connections are thus designed as simple, consider-
ing only the gravity loads. For lateral loads, the connection is assumed to behave as an FR
moment connection for analysis and the full lateral load is carried by the assigned lateral
frames. The resulting flexible moment connections are then designed as "fully restrained"
for the calculated required strength due to lateral loads only.
Strength
With PR moment connections, the full strength of the connection is accompanied by some
definite amount of rotation between the connected members. The AISC Specification
requires that the structural engineer have a reliable moment-rotation, M-9, curve before a
-V
R
P,

d ]M
/
M
"'WSP'
9i
A
B
M.
- Points of inflection
7
(a) (b) (c)
Fig. 11-1. Partially restrained moment connection behavior.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FLANGE-ANGLE PR MOMENT CONNECTIONS 11-3
design can proceed. These M-Q curves are generally taken directly from the results of mul-
tiple connection tests as found in compilations such as those presented by Goverdhan (1983)
and Kishi and Chen (1986) or from normalized curves developed from these tests. For infor-
mation on PR composite connection see AISC Design Guide 8, Partially Restrained
Composite Connections (Leon et al., 1996).
Although the M-Q curves are generally quite nonlinear in nature, as the-connections
undergo alternating cycles of loading and unloading, the connection "shakes down" so that
its behavior may be modeled essentially as a linear relationship. This "Shakedown" process
is fully described in Rex and Goverdhan (2002) and Geschwindner andDisque (2005). Both
the nonlinear behavior and the shakedown behavior of the connection must be included in
the determination of the connection strength and stiffness for design.
PR moment connections deliver concentrated forces to the flanges of columns that must
be accounted for in the design of the column and column panel-zone per AISC Specification
Section JIO. Either the column size can be selected with adequate flange and web thick-
nesses to eliminate the need for column stiffening, or transverse stiffeners and/or web
doubler plates can be provided. For further information, refe;r to AISC Design Guide 13,
Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications
(Carter, 1999).
Stability
Stability and second-order effects for frames tha:t include PR moment connection's are eval-
uated by the same methods as provided in the AISC Specification for frames with simple pin
connections and FR moment connections. These are the direct analysis method of Chapter
C and the effective length and the first-order analysis methods of Appendix 7. Although the
analysis and design of frames with PR moment connections may be more complex than
frames with simple or FR moment connections, there may be situations where using the
exact behavior of the connection will be advantageous to the desigiier.
For additional information on designing PR moment frames for stability, see the work of
Chen and Lui (1991) and Chen et al. (1996).
FLANGE-ANGLE PR MOMENT CONNECTIONS
Flange-angle PR moment connections are made with top and bottom angles and a simple
shear connection.
The available strength of a flange-angle PR moment connection is determined from the
applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements
(see Part 9). In all cases, the available strength, or i?„/0, must equal or exceed the
required strength, or Ra-
The tensile force is carried to the angle by the flange bolts, with the angle assumed to
deform as illustrated in Figure 11-1. A point of inflection is assumed between the bolt gage
line and the face of the connection angle, for use in calculating the local bending moment
and the corresponding required angle thickness. The effect of prying action must also be
considered.
The strength of this type of connection is often limited by the available angle thickness
and the maximum number of fasteners that can be placed on a single gage line of the verti-
cal leg of the connection angle at the tension flange. Figure 11-2 illustrates the column
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
i
I
1
I
I

1328-12 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
flange deformation and shows that only the-fasteners closest to the column web are fully
effective in transferring forces.

—^
4
L
p
-V
-V
-tCT rnp
(a) ' (b) —
Fig. 11-2. Illustration of deformations in partially restrained moment connections.
Do not weld along
M
Ifstlffeners are required they need not exceed
one-half the column depth when beam is on
, one flange only.
Fig. 11-3. Flange-plated partially restrained moment connections.
AMEWGAN INSTITUTE OF STEEL CONSTRUCTION

FLANGE-PLATED PR MOMENT CONNECTIONS 11-5
FLANGE-PLATED PR MOMENT CONNECTIONS
Originally proposed by Blodgett (1966), and illustrated in Figure 11-3, a flange-plated PR
moment connection consists of a simple shear connection and top and bottom flange plates
that connect the flanges of the supported beam to the supporting column. These flange plates
are welded to the supporting column and may be bolted or welded to the flanges of the sup-
ported beam. An unwelded length of I'/z times the flange-plate width, b^, is normally
assumed to permit the elongation of the plate necessary for PR moment connection behav-
ior. Other flange-plated details are illustrated in Figures ll-4a and ll-4b.
The available strength of a flange plated PR moment connection is determined from the
applicable limit states for the bolts (see Part 7), welds (see Part 8) and connecting elements
(see Part 9). In all cases, the available strength (|)/J„ or RJO-, must equal or exceed the
required strength, R^ or Ra.
The shop and field practices for flange-plated FR moment connections (see Part 12) are
equally applicable to flange-plated PR moment connections. i
S(E)I
(a) (b)
Fig. 11-4. Typical flange-plated partially restrained moment connections.

AMERICAN INSTCTUTE OF STEEL CONSTRUCTION
(
(

12-1330 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
PART 11 REFERENCES
Blodgett, O.W, (1966), Design of Welded Structures, James R Lincoln Arc Welding
Foundation, Cleveland, OH.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and
App/icarioni, Design Guide 13, AISC, Chicago, IL.
Chen, W.F., Goto, Y. and Liew, J.Y.R. (1996), "Stability Design of Semi-Rigid Frames,"
John Wiley and Sons Inc., New York, NY.
Chen, W.F. and Lui, E.M. (1991), "Stability Design of Steel Frames," CRC Press, Boca
Raton, FL.
Deierlein, G.G, Hsieh, S.H. and Shen, YJ. (1990), "Computer-Aided Design of Steel Structures
with Flexible Connections," Proceedings of the 1990 National Steel Construction
Conference, AISC, pp. 9.1-9.21, Chicago, IL.
Gerstle, K.H. and Ackroyd, M.H. (1989), "Behavior and Design of Flexibly Connected
Building Frames," Proceedings of the 1989 National Steel Construction Conference,
AISC, pp. 1.1-1.28, Chicago, IL.
Geschwindner, L.F. (1991), "A Simplified Look at Partially Restrained Connections,"
Engineering Journal, AISC, Vol. 28, No. 2, 2nd Quarter, pp. 73-78, Chicago, IL.
Geshwindner, L.F. and Disque, R.O. (2005), "Flexible Moment Connections for Unbraced
Frames—A Return to Simplicity," Engineering Journal, AISC, Vol. 42, No. 2, 2nd
Quarter, Chicago, XL.
Goverdhan, A.V. (1983), "A Collection of Experimental Moment Rotation Curves and
Evaluation of Prediction Equations for Semi-Rigid Connections," Master of Science
Thesis, Vanderbilt University, Nashville, TN.
Kishi, N. and Chen, W.F. (1986), "Database of Steel Beam-to-Column Connections," CE-
STR-86-26, Purdue University, School of Engineering, West Lafayette, IN.
Leon, R.T., Hoffman, J J. and Staeger, T. (1996), Partially Restrained Composite Connections,
Design Guide 8, AISC, Chicago, IL.
Nethercot, D.A. and Chen, W.F. (1988), "Effects of Connections on Columns," Journal
of Constructional Steel Research, Elsevier Applied Science Publishers, pp. 201-239,
Essex, England.
Rex, C.O. and Goverdhan, A.V. (2002), "Design and Behavior of a Real PR Building,"
Connections in Steel Structures IV: Behavior Strength and Design, Proceedings of the
Fourth Workshop on Connections in Steel Structures, AISC, October 22-24, 2000,
pp. 94-105, Chicago, IL.
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

12^1
PART 12
DESIGN OF FULLY RESTRAINED
MOMENT CONNECTIONS
SCOPE ....12-2
FR MOMENT CONNECTIONS 12-2
Load Determination 12-2
Design Checks ; • 12-3
Temporary Support During Erection .' 12-3
Welding Considerations for Fully Restrained Moment Connections 12-4
FR CONNECTIONS WITH WIDE-FLANGE COLUMNS 12-4
Flange-Plated FR Moment Connections — 12-4
Directly Welded FR Moment Connections 12-7
Extended End-Plate FR Moment Connections 12-8
Shop and Field Practices 12-9
Design Assumptions 12-9
Design Procedures ' . • 12-10
FR MOMENT SPLICES 12-10
Location of Moment Splices 12-10
Force Transfer in Moment Splices 12-10
Flange-Plated FR Moment Splices 12-11
Directly Welded Flange FR Moment Splices .12-13
Extended End-Plate FR Moment Splices 12-13
SPECIAL CONSIDERATIONS 12-14
FR Moment Connections to Column Webs 12-14
Recommended Details 12-14
Ductility Considerations 12-14
FR Moment Connections Across Girder Supports 12-20
Top Flange Connection 12-20
Bottom Flange Connection 12-21
Web Connection 12-21
FR CONNECTIONS WITH HSS 12-21
HSS Through-Plate Flange-Plated FR Moment Connections 12-21
HSS Cut-out Plate Flange-Plated FR Moment Connections 12-22
Design Considerations for HSS Directly Welded FR Moment Connections 12-23
HSS Columns Above and Below Continuous Beams 12-24
HSS Welded Tee Flange Connections 12-25
HSS Diaphragm Plate Connections 12-26
Suggested Details for HSS to Wide-Flange Moment Connections 12-27
PART 12 REFERENCES 12-29
N,
AMERICAN INSTITUTB OF STEEL CONSTRUCTION
I
(

12-2 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of fully restrained (FR) moment connections. For the design of simple
shear connections, see Part 10. For the design of partially restrained moment connections,
see Part 11.
FR MOMENT CONNECTIONS
Load Determination
As defined in AISC Specification Section B3.6b, FR moment connections possess sufficient
rigidity to maintain the angles between connected members at the strength limit states, as
illustrated in Figure 12-1. While connections considered to be fully restrained seldom actu-
ally provide for zero rotation between members, the srnall amount of rotation present is
usually neglected and the connection is idealized as one exhibiting zero end rotation.
End connections in FR construction are designed to carry the required forces and
moments, except that some inelastic but self-limiting deformation of a part of the connection
FR moment connections
End moment
PR moment connections
Simple shear connections
Simple Beam
Rotation
Rotation
Fig. 12-1. FR moment connection behavior.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

M MOMENT CONNECTIONS 12-3
is permitted. Huang et al. (1973) showed that the moment can be resolved into an effective
tension-compression couple acting as axial forces at the beam flanges. The flange force, /"„/
ox Paf, is determined as:
LRFD ASD
(12-la)
"m
(12-lb)
"m
where
Mu or Ma = required beam end moment, kip-in.
dm - moment arm between the flange forces, in. (varies for all FR connections
and for stiffener design)
Shear is transferred through the beam-web shear connection. Since, by definition, the
angle between the beam and column in an FR moment connection remains unchanged under
loading, eccentricity can be neglected entirely in the shear connection. Additionally, it is
permissible to use bolts in bearing in either standard or slotted holes perpendicular to the
line of force. Axial forces, if present, are normally assumed to be distributed uniformly
across the beam flange cross-sectional area. However, if the beam-web connection has
sufficient stiffness, it can also be assumed to participate in the transfer of beam axial force.
Moment connections deliver concentrated forces to the flanges of columns that must be
accounted for in the design of the column and column panel-zone per AISC Specification
Section JIO. Either the column size can be selected with adequate flange and web thickness
to eliminate the need for column stiffening, or transverse stiffeners and/or web doubler
plates can be provided. For further information, refer to AISC Design Guide 13, Stiffening
of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications (Carter,
1999).
Design Checks
The available strength of an FR moment connection is determined from the applicable limit
states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). The
effect of eccentricity in the shear connection can be neglected. Additionally, the strength of
the supporting column (and thus the need for stiffening) must be checked. In all cases, the
available strength, (()/?„ or Rn/Si, must equal or exceed the required strength, Ru or Rg.
Temporary Support During Erection
Bolted construction provides a ready means to erect and temporarily connect members by
use of the bolt holes. In contrast, FR moment connections in welded construction must be
given special attention so that all pieces affecting the alignment of the welded joint may be
erected, fitted and supported until the necessary welds are made. Temporary support can be
provided in welded construction by furnishing holes for erection bolts, temporary seats,
special lugs or by other means.
N.,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
I
(

12-4 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
The effects of temporary erection aids on the finished structure should be considered
particularly on members subjected to tension loading or fatigue. They should be permitted
to remain in place whenever possible since they seldom are reusable and the cost to remove
them can be significant. If left in place, erection aids should be located so as not to cause a
stress concentration. If, however, erection aids are to be removed, care should be taken so
that the base metal is not damaged.
Temporary supports should be sufficient to carry any loads imposed by the erection
process, such as the dead weight of the member, additional construction equipment, or
material storage. Additionally, they must be flexible enough to allow plumbing of the
structure, p2uticularly in tier buildings.
Welding Considerations for Fujly Restrained Moment
Connections
Field welding should be arranged for welding in the flat or horizontal position and
preference should be given to , fillet welds over groove welds, whenever possible.
Additionally, the joint detail and welding procedure should be constructed to minimize
distortion and the possibility of lamellar tearing.
The typical complete-joint-penetratioi) groove weld in a directly welded flange
connection for a rolled beam can be expected to shrink about '/i6 in. in the length dimension
of the beam when it cools and contracts. Thicker welds, such as for welded plate-girder
flanges, will shrink even more—up to, Vs in. or Hi6 in. This amount of shrinkage can cause
erection problems in locating and plumbing the columns along lines of continuous beams.
A method of calculating weld shrinkage can be found in Lincoln Electric Company (1973),
Unnecessarily thick stiffeners with complete-joint-penetration groove welds should be
avoided since the accompanying weld shrinkage may contribute to lamellar tearing and
distortion.
Weld shrinkage can best be controlled by fabricating the beam longer than required by
the amount of the anticipated weld shrinkage. Alternatively, the weld-joint root opening.can
be increased. For further information, refer to AWS D1.1.
FR CONNECTIONS WITH WIDE-FLANGE COLUMNS
Flange-Plated FR Moment Connections
As illustrated in Figure 12-2, a flange-plated FR moment connection consists of a shear
connection and top and bottom flange plates that connect the flanges of the supported beam
to the supporting column. These flange plates are welded to the supporting column and may
be bolted or welded to the flanges of the supported beam.
In a column-flange connection, the flange plates are usually located with respect to the
column web centerline. Because of the column-flange mill tolerance on out-of-squareness
with the web, it is desirable to shop-fit long flange plates from the theoretical column-web
centerline to assure good field fit-up with the beam. Misalignment on short connections, as
illustrated in Figure 12-3, can be accommodated by providing oversized holes in the plates.
Since mill tolerances in both the beam and the column may cause significant shop and/or
field assembly problems, it may be desirable to ship the flange plates loose for field
attachment to the column.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FR CONNECTIONS WITH WIDE-FLANGE COLUMNS 12-5
n
Shim top or bottom as required
1
• Chedi column for stiffener and doublet requirements
(a) Column flange support, bolted flange plates
J Shim top or bottom as required i
i
• Ched< column for stiffener and doubter requirements
(b) Column web support, bolted flange plates
Fig. 12-2. Flange-plated FR moment connections.
N
AMERICAN INSTITUTE OF STEEL CONSTROCTION

12-6 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
5 tJ /—1
Shim top or bottom as required
Check column for stiffener and doubler requirements
(c) Column flange support, welded flange plates
Fig. 12-2. (continued) Flange-plated FR moment connections.
Actual centerline
Column subject to
mm tolerance
Theoretical centerline
Fig. 12-3. Effect of mill tolerances on flange-plated connections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FR CONNECTIONS WITH WIDE-FLANGE COLUMNS 12-7
Directly Welded Flange FR Moment Connections
As illustrated in Figure 12-4, a directly welded flange FR moment connection consists
of a shear connection and complete-joint-penetration (CJP) groove welds, which directly
connect the top and bottom flanges of the supported beam to the supporting column. Note,
in Figure 12-4b, the stiffener extends beyond the toe of the column flange to eliminate the
effects of triaxial stresses.
1 f
J I
_ ^ ^
-Kfioth flanges typ.
L
Check column for stiffener and doubler requirements
(a) Column flange support
1
I
i
I
KBoth flanges typ.
^ Check column for stiffener and doubler requirements
(h) Column web support
Fig. 12-4. Directly welded flange FR moment connections.
AMERICAN INSTITUTE OF STEEL CONSTROCTION

12-8 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
Extended End-Plate FR Moment Connections
As illustrated in Figure 12-5, an extended end-plate moment connection consists of a plate
of length greater than the beam depth, perpendicular to the longitudinal axis of the supported
beam. The end-plate is always welded to the web and flanges of the supported beam and
bolted to the supporting member. The principal advantage of extended end-plate moment
connections is that all welding is done in the shop. Thus, the erection process is relatively
fast and economical.
Figure 12-6 illustrates three commonly used extended end-plate connections. The
connections are classified by the number of bolts at the tension flange and by the presence
of end-plate to beam flange stiffeners. The four-bolt unstiffened and stiffened extended
end-plate connections of Figure 12-6a and 12-6b are generally limited by bolt strength. The
hi
^Both flanges typ.
Check column for stiffener and doubler requirements
Fig. 12-5. Extended end-plate FR moment connection.
(a) (b) (c)
Fig. 12-6. Configurations of extended end-plate FR moment connections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FR CONNECTIONS WITH WIDE-FLANGE COLUMNS 12-1339
connection is compatible for use with nearly one-half of the available beam sections.
Alternatively, the eight-bolt stiffened extended end-plate connection shown in Figure
12-6c is generally compatible with approximately 90% of the available beam sections.
Complete discussion of the design procedures, along with design examples, are found in
AISC Design Guide 4, Extended End-Plate Moment Connections—Seismic and Wind
Applications (Murray and Sumner, 2003). Design procedures and example calculations for
nine other end-plate connections, which are commonly used in the metal building industry,
are found in AISC Design Guide 16, Flush and Extended Multiple^Row Moment End-Plate
Connections (Murray and Shoemaker, 2002). Recommended shop and field erection
practices, basic design assumptions, and "a brief overview of the design procedures follow.
Shop and Field Practices
End-plate moment connections require extra care in shop fabrication and field erection. The
fit-up of extended end-plate connections is sensitive to the column flange conditions and
may be affected by column flange-to-web squareness, beam camber, or squareness of the
beam end. The beam is frequently fabricated short to accommodate the column ovenun
tolerances with shims furnished to fill any gaps which might result.
As reported by Meng and Murray (1997), use of weld access holes can result in beam
flange cracking. If CJP welds are used, the weld cannot be inspected over the web; however,
because this location is a relative "soft" spot in the connection, it is of iio concern.
Design Assumptions
A summary of the assumptions made in the design guide procedures follows:
1. Group A or Group B high-strength bolts of diameter not greater than 1V2 in. must be
used.
" 2. The specified minimum yield stress of the end-plate material must be 50 ksi or less.
3. When the procediu-es in AISC Design Guide 16 are used, only static loading i§
perniitted (wind, snow, temperature and seismic loads as defined in the Scope located
at the front of this Manual are considered static loads).
4. The recommended minimum distance from the face of the beam flange to the nearest
bolt centerline (the vertical bolt pitch) is the bolt diameter, di,, plus V2 in. if the bolt
diameter is not greater than 1 in., and plus in. for larger diameter bolts. However,
many fabricators prefer to use a standard pitch dimension of 2 in, or 2'/2 in. for all
bolt diameters.
5. All of the shear force at a connection is assumed to be resisted by the compression
side bolts. End-plate connections need not be designed as slip-critical connections
and it is noted that shear is rarely a major concern in the design of moment end-plate
connections.
6. The end-plate width effective in resisting the applied moment must be taken as not
greater than the beam flange width, bf, plus 1 in.
7. The gage of the tension bolts (horizontal distance between vertical bolt lines) must
not exceed the beam tension flange width.
8. When CJP welds are used, weld access holes should not be used, and the weld
between beam flange-to-web fillets should be treated as a partial-joint-penetration
(PJP) weld.
AMERICAN INSTITUTE OF STEEL CONSTROCTION
I
i
i

12-10 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
9. For nonseismic connections, when the required moment is less than the available
flexural strength of the beam, the end-plate connection can be designed for the
required moment but it is recommended that the connection be designed for not less
than 60% of the available flexural strength of the beam.
10. Beam web-to-end-plate welds in the vicinity of the tension bolts should be designed
to develop the yield stress of the beam web unless the required moment is less than
60% of the available'flexural strength of the beam. J ,
, 11. Only the web-to-end-plate weld between the mid-depth of the beam and the inside
face of the beam compression flange or the weld between the inner row of tension
bolts plus 2db and the inside face of the beam compression flange, whichever is
smaller, is considered effective in resisting the beam end shear.
Design Procedures
The design procedure in AISC Design Guide 4 and AISC Design Guide 16 differ from
those in previous AISC design methods. The new procedures are based on yield-line
analysis for determining end-plate thickness and modified tee-hanger analysis to determine
required bolt strength. The procedures in AISC Design Guide 4 are for pretensioned bolts
and "thick plates," and resuk in connections with the smallest possible bolt diameter. For
these connections, prying forces are zero. The procedures in AISC Design Guide 16 allow
for both "thick plate" and."thin plate" designs. A thin plate design results in the smallest
possible end-plate thickness and the maximum bolt prying force. In addition, connections
can be designed using either pretensioned or snug-tight bolts.
Column side design procedures are included in AISC Design Guide 4. Both Design
Guides have complete examples for the various end-plate configiirations.
FR MOMENT SPUCES
Beams and girders sometimes are spliced in locations where both shear and moment must
be transferred across the splice. Per AISC Specification Section J6, the nominal strength of
the smaller section being spliced must be developed in groove-welded butt splices. Other
types of beam or girder splices must develop the strength required by the actual forces at the
point of the splice.
Location of Moment Splices
A careful analysis is particularly important in continuous structures where a splice may be
located at or near the point of inflection. Since this inflection point can and does migrate
under service loading, actual forces and moments may differ significantly from those
assumed. Furthermore, since loading application and frequency can change in the lifetime
of the structure, it is prudent for the designer to specify same minimum strength requirement
at the splice. Hart and Milek (1965) propose that splices in fixed-ended beams be located at
the one-sixth point of the span and be adequate to resist a moment equal to one-sixth of the
flexural strength of the member, as a minimum.
Force Transfer in Moment Splices
Force transfer in moment splices can be assumed to occur in a manner similar to that
developed for FR moment connections. That is, the required shear, Ru or Ra, is primarily
transferred through the beam-web connection and the moment can be fesolved into an
AMERICAN INSTITUTE OF STEEL GONSTRUCOON

FR MOMENT SPLICES 12-11
effective tension-compression couple where the required force at each flange, P„/or Paf, is
determined by:
LRFD ASD
= ^ (12-2a)
dm
= ^ (12-2b)
dm
where
Mu or Ma = required moment in the beam at the splice, kip-in.
dm = moment arm, in. (varies based upon actual connection geometry)
Axial forces, if present, are normally assumed to be distributed uniformly across the
beam flange cross-sectional area. However, if the beam-web connection has sufficient
stiffness, it can also be assumed to participate in the transfer of beam axial force.
Flange-Plated FR Moment Splices
Moment splices can be designed as shown in Figure 12-7, to utiUze flange plates and a web
connection. The flange plates and web connection may be bolted or welded.
The splice and spliced beams should be checked in a manner sithilar to that described
previously under "Flange-Plated FR Moment Connections," except that the web'connection
should be designed as illustrated previously for shear splices in Part 10 without
consideration of eccentricity.
Figure 12-7 illustrates two types of splices, bolted and welded. Figure 12-7a illustrates
the detail of a bolted flange-plated moment splice. For this case, the flange plates are
normally made approximately the same width as the beam flange as shown in Figure 12-7a.
Alternatively, Figure 12-7b illustrates the detail of a welded splice. As shown in Figure
12-7b, the top plate is narrower and the bottom plate is wider than, the beam flange.
I
i
Optional y
location of —
additional plates
(a) Bolted (b) Welded
Fig. 12-7. Flange-plated moment splice.
(
MIERICAN INSTITUTE OF STEEL CONSTRUCTION

12-12 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
permitting the deposition of weld metal in the downhand or horizontal position without
inverting the beam. While this is a benefit in shop fabrication (the beam does not have to be
turned over), it is of extreme importance in the field where the weld can be made in the
horizontal instead of the overhead position, since the beam cannot,be turned over. This detail
also provides tolerance for field alignment, since the joint gap can be opened or closed.
When splices are field-welded, some means for temporary support must be provided as
discussed previously in "Temporaiy Support During Erection."
If the beam or girder flange is thick and the flange forces are large, it may be desirable
to place additional plates on the insides of the flanges. In a bolted splice (Figure 12-7a),
the bolts are then loaded in double shear and a more compact joint may result. Note that
these additional plates must have sufficient area to develop their share of the double-shear
bolt load.
In a welded splice (Figure 12-7b), these additional plates must have sufficient area to
match the strength of the welds tliat connect them. Additionally, these plates mUst be set
away frorn the beam web a distance sufficient to permit deposition of weld metal as shown
in Figure 12-8a. This distance is a function of the beam depth and flange width, as well as
the welding equipment to be used. A distance of 2 to 2V2 in. or more may be required for
this access. One alternative is to bevel tlie bottom edge of the plate to clear the beam fillet
and place the plate tight to the beam web with a fillet weld as illustrated in Figure 12-8a.
The effects, of this bevel on the area of the plate must be considered in determining the
required plate width and thickness. Another alternative would be to use unbeveled inclined
plates as shown in Figure 12-8b.
Provide adequate
clearance for
welding ^
iJ
Alternatively, bevel the
plate and use a fillet
weld to the beam web
(a)
Splice
plates
(b)
Fig. 12-8. Welding clearances for flange-plated moment splices.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FR MOMENT SPLICES 12-13
Directly Welded Flange FR Moment Splices
Moment splices can be designed, as shown in Figure 12-9, to utilize a complete-joint-
penetration groove weld connecting the flanges of the members being spliced. The web
connection may then be bolted or welded. The splice'and spliced beams should be checked
in a manner similar to that described previously under "Directly Welded Flange FR Moment
Connectiohs," except that the web connection should be designed as illustrated previously
for shear splices in Part 10. •
Although rare in occurrence, some spliced members must be level on top. Where the
depths of these spliced members differ, consideration should be given to the' use of a flange
plate of uniform thickness for the full length of the shallower member. This avoids the
fabrication problems created by an invert^ transition.
Frequently, the spliced shapes are different sizes, but of the same shape depth grouping.
Because rolled shapes from the same shape depth grouping have the same dimension
between the flanges, aligning the inside flange surfaces avoids a more difficult offset
transition. Eccentricity resulting from differing flange thicknesses is usually ignored in the
design. The web plates normally are aligned to their center Unes.
The groove- (butt-) welded splice preparation shown in Figure 12-9 may be used for
either shop or field welding. Alternatively, for shop welding where the beam may be turned
over, the joint preparation of the bottom flange could be inverted.
Sloped transitions as shown in Figure 12-10 are only required for splices subject to
seismic and dynamic loads. In splices subjected to dynamic or fatigue loading, the backing
bar should be removed and the weld should be ground fliish when it is normal to the applied
stress (AISC, 1977). The access holes should be free of notches and should provide a
smooth transition at the juncture of the web and flange.
Extended End-Plate FR Moment Splices
Moment spUces can be designed as shown in Figure 12-11 where the tension force is in the
bottom flange, to utilize four-bolt unstiffened extended end-plates connecting the members
being spliced. If the end-plate and the bolts are designed properly, it is possible to load this
type of connection to reach the full plastic moment capacity of the beam, (j)iMp or Mp IQ.h.
The sphce and spliced beams should be checked in a manner similar to that described
previously under "Extended End-Plate FR Moment Connections."
The comments for "Extended End-Plate Connections" are equally applicable to extended
end-plate moment splices.
I
I
4
Fig. 12-9. Directly welded flange moment splice.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

12-14 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
SPECIAL CONSIDERATIONS
FR Moment Connections to Column Webs
It is frequently required that FR moment connections be made to column webs. While the
mechanics of analysis and design do not differ from FR moment connections to column
flanges, the details of the connection design as well as the ductility considerations required
are significantly different.
Recommended Details
When an FR moment connection is made to a column web, it is noniial practice to stop the
beam short and locate all bolts outside of the column flanges as illustrated in Figure 12'2b.
This simplifies the erection of the beam and permits the use of an impact wrench to tighten
all bolts. It is also preferable to locate welds outside the column flanges to provide adequate
clearance.
Ductility Considerations
Driscoll and Beedle (1982) discuss the testing and failure of two FR moment connections to
column webs: a directly welded flange connection and a bolted flange-plated connection,
shown respectively in Figures 12-12a and 12-I2b. Although the connections in these tests
were proportioned to be "critical," they were expected to provide inelastic rotations at full
plastic load. Failure Occurred unexpectedly, however, on the first cycle of loading; brittle
fracture occurred in the tension connection plate at the load Corresponding to the plastic
moment before significant inelastic rotation had occurred.
2.5
Fig. 12-10. Transitions at tension flange for directly welded flange moment splices,
: for seismic and dynamic loaded splices.
AMERICAN iNSTrruTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS 12-15
Examination and testing after the unexpected failure revealed that the welds were of
proper size and quality and that the plate had normal strength and ductility. The following
is quoted, with minor editorial changes relative to figure numbers, directly from Driscoll
and Beedle (1982).
Calculations indicate that the failures occurred due to high strain concentrations.
These concentrations are: (1) at the junction of the connection plate and the
column flange tip and (2) at the edge of the butt weld joining the beam flange and
the connection plate.
Figure 4 (Figure 12-13 here) illustrates the distribution of longitudinal stress
across the width of the connection plate and the concentration of stress in the
plate at the column flange tips. It also illustrates the uniform longitudinal stress
-pp—s^Both flanges typ.

t
Fig. 12-11. Extended end-plate moment splice.
(a) Directly welded flange
FR connection
(b) Bolted flange-plated
FR connection
Fig. 12-12. Test specimens used by Driscoll and Beedle (1982).
AMERICAN INSTITUTE OF STEEL CONSTR"UCTION

16-12 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
distribution in the connection plate at some distance away from the connection.
The stress distribution shown represents schematically the values measured
during the load tests and those obtained from finite element analysis. (Oo is a
nominal stress in the elastic range.) The results of the analyses are valid up to the
loading that causes the combined stress to equal the yield point. Furthermore, the
analyses indicate that localized yielding could begin when the applied uniform
stress is less than one-third of the yield point. Another contribution of the non-
uniformity is the fact that there is no back-up stiffener. This means that the welds
to the web near its center are not fully effective.
The longitudinal stresses in the moment connection plate introduce strains in the
transverse and the through-thickness directions (the Poisson effect). Because of
the attachment of the connection plate to the column flanges, restraint is
introduced; this causes tensile stresses in the transverse and the through-thickness
directions. Thus, referring to Figure 12-13, tri-axial tensile stresses are present
along Section A-A and they are at their maximum values at the intersections of
Sections A-A and C-C. In such a situation, and when the magnitudes of the stresses
are sufficiently high, materials that are otherwise ductile may fail by premature
brittle fracture.
The results of nine simulated weak-axis FR moment connection tests performed by
Driscoll et al. (1983) are summarized in Figure 12-14. In these tests, the beam flange was
simulated by a plate measuring either 1 in. x 10 in. or iVs in. x 9 in. The fracture strength
exceeds the yield strength in every case, and sufficient ductility is provided in all cases
except for that of Specimen D. Also, if the rolling direction in the first five specimens (A,
(a) Longitudinal stress distribution
on Section A-/1
{b) Longitudinal stress distribution
on Section B-B
(c) Shear stress distribution
on Section C-C
Fig. 12-13. Stress distributions in test specimens used by Driscoll and Beedle (1982).
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS 12-17
B, C, D and E) were parallel to the loading direction, which would more closely
approximate an actual beam flange, the ductility ratios for these would be higher. The
connections with extended connection plates (i.e., projection of 3 in.), with extensions either
rectangular or tapered, appeared equally suitable for the static loads of the tests.
Based on the tests, DriscoU et. al. (1983) report that those specimens with extended
connection plates have better toughness and ductility and are preferred in design for seismic
loads, even though the other connection types (except D) may be deemed adequate to meet
the requirements of many design situations.
In accordance with the preceding discussion, the following suggestions are made regarding
the design of this type of connection:
1. For directly welded (butt) flange-to-plate connections, the connection plate should be
thicker than the beam flange. This greater area accounts for shear lag and also provides
for misalignment tolerances.
AWS Dl.l, Section 5.22.3 restricts the misalignment of abutting paits such as this
to 10% of the thickness, with Vs-in. maximum for a part restrained against bending due
to eccentricity of alignment. Considering the various tolerances in mill rolling (± Vs in.
for W-shapes), fabrication and erection, it is prudent design to call for the connection
plate thickness to be increased to accommodate these tolerances and avoid the subse-
quent problems encountered at erection. An increase of-Vs in. to '/4 in. generally is
used.
Frequently, this connection plate also serves as the stiffener for a strong axis FR or
PR moment connection. The welds that attach the plate/stiffener to the column flange
may then be subjected to combined tensile and shearing, or compression and shearing
forces. Vector analysis is commonly used to determine weld size and stress.
It is good practice to use fillet welds whenever possible. Welds should not be made
in the column fc-area.
2. The connection plate should extend at least in. beyond the column flange to avoid
intersecting welds and to provide for strain elongation of the plate. The extension
should also provide adequate room for runout bars when required.
3. Tapering an extended connection plate is only necessary when the connection plate is
not welded to the column web (Specimen E, Figure 12-14). Tapering is not necessary
if the flange force is always compressive (e.g., at the bottom flange of a cantilevered
beam).
4. To provide for increased ductility under seismic loading, a tapered connection plate
should extend 3 in. Alternatively, a backup stiffener and an untapered connection plate
with 3-in. extension could be used.
Normal and acceptable quality of workmanship for connections involving gravity and
wind loading in building construction would tolerate the following:
1. Runoff bars and backing bars may be left for beams with flange thicknesses greater
than 2 in. (subject to tensile sti'ess only) where they are welded to columns or used as
tension members in a truss.
2. Welds need not be ground, except as required for nondestructive testing.
3. Connection plates that are made thicker or wider for control of tolerances, tensile stress
and shear lag need not be ground or cut to a transition thickness or width to match the
beam flange to which they connect.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
I
I
«

12-18 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
4. Connection plate edges may be sheared, or plasma- or gas-cut.
5. Intersections and transitions may be made without fillets or radii.
6. Flame-cut edges may have reasonable roughness and notches within AWS tolerances.
If a structure is subjected to loads other than gravity and wind loads, such as seismic,
dynamic or fatigue loading, more stringent control of the quality of fabrication and erection
with regard to stress risers, notches, transition geometty, welding and testing may be
necessary; refer to the AISC Seismic Provisions.
Specimen Sketch Fracture Load Fracture Load
No. W14X257(typical) (laps) YieldLoad Ratio
Rolling direction
^cai
/ 730 1.38 6.3
824 1.55 5.3
I 756 1.43 5.43
1 1
L (a)
1 ^
I
1" 570 1.11 1.71
Fig. 12-14. Results of weak-axis FR moment connection ductility , tests performed by
Driscoll et aL (1983).
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

SPECIAL CONSIDERATIONS 12-19
Specimen Sketch Fracture Load Fracture Load Ductility
No. W14x257(typical) (kips) Yield Load Ratio
A2
1 •
(
1%"
1
S ^
802
762
1.51
1.40
6.81
17.7
B2
—h-
«
1" 795 1.46 16.5
cr
E2
IV IV
814 1.49 16.4"
m
C2 1" 1%"^; 813 1.49 29.6
Notes: (a) dimension is estimated—no dimension given.
(b) Ductility ratio estimated. Actual value not known
due to malfunction in deflection gauge.
Fig. 12-14. (continued)
AMERICAN INSTITUTE OF STEEL CoNSTRuCtIOn

12-20 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
FR Moment Connections Across Girder Supports
Frequently, beam-to-girder-web connections must be made continuous across a girder-web
support, as with continuous beams and with cantilevered beams at wall, roof-canopy or
building lines. While the same principles of force transfer discussed previously for FR
moment connections may be applied, the designer must carefully investigate the relative
stiffness of the assembled members being subjected to moment or torsion and provide the
fabricator and erector with reliable camber ordinates.
Additionally, the design should still provide some means for final field adjustment to
accommodate the accumulated tolerances of mill production, fabrication and erection; it
is very desirable that the details of field connections provide for some adjustment during
erection. Figure 12-15 illustrates several details that have been used in this type of
connection and the designer may select the desirable components of one or more of the
sketches to suit a particular application. Therefore, these components are discussed here as
a top flange, bottom flange and web connection.
Top Flange Connection
As shown in Figure 12-15a, the top flange connection may be directly welded to the top
flange of the supporting girder. Figures 12-15b and 12-15c illustrate an independent splice
plate that ties the two beams together by use of a longitudinal fillet weld or bolts. This tie
plate does not require attachment to the girder flange, although it is sometimes so connected
to control noise if the connection is subjected to vibration.
ri
. (C)
Fig. 12-15. FR moment connections across girder-web supports.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FR CONNECTIONS WITH HSS 12-21
Bottom Flange Connection
When the bottom flanges deliver a compressive force only, the flange forces are frequently
developed by directly welding these flanges to the girder web as illustrated in Figure 12-15a.
Figure 12-15b illustrates the use of an angle or channel below the beam flange to provide
for a horizontal fillet weld. The angle or channel should be wider than the beam flange to
allow for downhand welding. Figure 12-15c is similar, but uses bolts instead of welds to
develop the flange force.
Web Connection
While a single-plate connection is shown in Figure 12-15a and unstiffened seated
conne:ctions are shown in Figures 12-15b and 12-l5c, any of the shear connections in Part 10
may be used. Note that the effect of eccentricity in the shear connection may be neglected.
FR CONNECTIONS WITH HSS
HSS Through-Plate Flange-Plated FR Moment Connections
If the required moment ti-ansfer to the column is larger than can be provided by the bolted
base plate or cap plate, or if the HSS width is larger than that of the wide flange beam, a
through-plate moment connection can be used as illustrated in Figure 12-16. It should be
noted that through-plate connections are more difficult to erect than the continuous beam
connected framing.
When moment connections are made using through-plates such as is shown in Figure
12-16, the fabricator must allow adequate clearance between the through-plates and the
structural section W-shape so as to allow for the combined effects of mill, fabrication
and erection tolerances. The permissible mill tolerances for W~shape variations in depth
and squareness are shown in Table 1-22. Shimming in tlie field during erection with
conventional shims or finger shims is the most commonly used method to fill the gap
between the W-shape and the through-plate.
Specific design considerations for through-plate moment connections are as follows:
1. In Figures 12-16a and 12-16b, the column moment transfer into the joint is limited by
the fillet weld of the HSS to the through-plates. If necessary, a partial-joint-penetration
(PJP) groove weld can be used to improve the connection strength or a complete-joint-
penetration (CJP) groove weld with backing bars can be used.
2. In Figure 12-16 an end plate (base plate) is employed to create a splice in the column.
Bolt tension with prying on the base plate will determine its thickness and thus limit
the moment tliat can be transferred to the upper HSS.
3. The cap plate, which is also a flange splice plate, should be at least the same thickness
as the base plate so that moment transfer between the HSS columns need not rely on
load transfer through the beam flanges. The cap plate may need to be thicker than the
HSS base plate due to the combined effect of plate bending from the bolted base plate
and plate tension or compression from the wide flange moment transfer.
4. The welding of the HSS to the cap and through-plate must be examined for both
the HSS normal forces and the shear produced from the moment transfer from the
W-shape.
AMERICAN INSTITUTE OF STEEL CoNSTiiucTioN
i
(

22-12 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
HSS Cut-out Plate Fiange-Plated FR Moment Connections
An alternative to interrupting the HSS for the cover or through-plate is to use a wider plate
with a cut-out to slip around the HSS as illustrated in Figure 12'17. A shear plate can be
placed on the front and rear of the HSS faces to provide simple connections for
perpendicular beams. The cut-out plate can easily be extended on the near and far sides so
that a moment splice is created about both horizontal axes through the joint. The
perpendicular framing should ideally be of the same depth for this detail to work well or, in
the case of the simple connections, the perpeudiculai' beams could be shallower than the
space between die horizontal plates. The cut-out plates are shown as shop-welded; however,
they could be field-welded.
For cut-out plate connections, the erection of die beams is more difficult than for
continuous beam connections, The beams must be slipped between the two plates and
HSS
cap plate
through
plate
shear plate
(a) Between column splices
I
base plate
shear plate
HSS
through plate •
shim (as required)
W-Shape
shim (as required)
through plate
shim (as required)
shim (as required)
HSS
' (b) At column splice '
Fig. 12-16. Through-plate moment connection.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FR CONNECTIONS WITH HSS 12-23
against the single plate connection with shimming being required, unless the upper plate is
field-welded in place.
Design Considerations for HSS Directly Welded FR Moment
Connections
It may be possible to accomplish the moment transfer to the HSS without having to use a
WT splice plate, end-plates, or diaphragm plates. Significant moment transfer can be
achieved by attaching the W-shape directly to the face of the HSS either by welding or by
bolting. These connections are capable of developing the available flexural strength of the
HSS. The available flexural strength of the W-shape, however, is seldom achieved because
of the flexibility of the HSS wall.
Alternate location
\of splice in plate
Possible to field
weld to eliminate
upper shimming; —y
if so, eliminate
underside weld
As an alternative, cut
silhouette of HSS
out of a single plate
continuous HSS
ingle plate connection
plate with
cut-out for
HSS
4
Fig. 12-17. Exterior plate moment connection.

AMERICAN INSTITUTE OF STEEL CONSTiiUCTION

24-12 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
The flexural strength for the welded W-shape is based on the strength of the respective
flanges in tension and compression acting against the face of the HSS. This flange force can
be considered to be the same as that of a plate with the dimensions of the flange.
Several limit states exist for the plate length (flange width) oriented perpendicular to the
length of the HSS (Packer and Henderson, 1997; Packer et ai., 2010).
HSS Columns Above and Below Continuous Beams
Field connection to the flanges of the beam and of continuous beams can be used at joints
where there is an HSS above and below a continuous beam. This situation is illustrated in
Figures 12-18 and 12-19. If the column load is not high, stiffener plates may be used to
transfer the axial load across the beam as shown in Figure 12-18a. If the axial load is higher,
it may be necessary to use a split HSS instead of plate stiffeners, as shown in Figure 12-18b.
The width of the W-shape must be at least as wide as the HSS and should preferably be
(a) (b)
Fig. 12-18. HSS columns spliced to continuous beams.
— W-Shape
(not shown for clarity)
W-Shape
cap plate HSS cap plate
W-Shape
HSS
(a) (b)
Fig. 12-19. Roof beam continuous over HSS column.
AMERICAN INSTRRUTB OF ST£EL CONSTRUCTION

FR CONNECTIONS WITH HSS 12-25
wider than the HSS for this detail to be used as shown. It may be necessary to use a
rectangular HSS column in order to fit the HSS base plate on the beam flange. The moment
transfer to the HSS is limited by the strength of the four bolts, the W-shape flange thickness,
and the base and cap plate thicknesses.. . : < . ,
HSS Welded Tee Flange Connections
If the primary moment transfer is from a wide flange to an HSS, rather than through the
HSS to another wide flange, a number of other connection concepts will work well. One
of these is to use structural tee sections to transfer the force from the flanges of the wide
flange to the walls of the HSS as is illustrated in Figure 12-20. The tees should be long
enough so that a flare bevel-groove (or single J-groove) weld with weld reinforcement
can be used to connect the tee to the HSS. An alternative to using the tees to transfer the
-HSS column
r - j
1 /
i
\l
/
/
k ^
17
- W-shape
WT-splice plate
shim
(as required)
shim
(as required)
tee stiffener
I
i
Note: A shear plate could be used in lieu of the vertical tee stiffener
Fig. 12-20. Tee splice plates to HSS column.
AMERICAN INSTITUTE OF STEEL CONSTiiUCTION

12-26 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
beam sheM would be to use a single plate connection, if a deep enough plate can be fitted
between the flanges of the tees.
HSS Diaphragm Plate Connections
If the moment delivered by the W-shape to the HSS cannot be transmitted by other means,
then use of diaphragm plates that transfer the flange loads to the sides of the HSS is
appropriate. This is illustrated in Figure 12-21. For this moment connection the limit states
are those indicated for the cut-out plate connection plus a check of the weld transferring
shear from the flange plate to the HSS wall.
top diaphragm plate
shear
plate
W'Shape
HSS column
shear plate
shim (as required)
bottom diaphragm plate
Note: A stiffened seat could also be used in lieu of the shear plate.
Fig. 12-21. Diaphragm plate splice to exterior HSS column.
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

FR CONNECTIONS WITH HSS 12-27
Suggested Details for HSS to Wide-Flange Moment
Connections
The details shown in Figures 12-22 and 12-23 are suggested details only and are not intended
to prohibit the use of other connection details.
Through-Plate Diaphragm Interior Plate Diaphragm i
i
Cladding
HSS Column Reinforcement
Fig. 12-22. Suggested detail.
AMERICAN INSTITUTE OF STEEL CONSTiiUCTION

12-28 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
ynS'iTyp.
weld both sides p-o'
If required
issisi
1 IIJ 1
/
/
Note: Shear connections not shown for clarity.
Fig. 12-23. Suggested detail.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

PART 12 REFERENCES 12-29
PART 12 REFERENCES
AISC (1977), Bridge Fatigue Guide Design and Details, American Institute of Steel
Construction, Chicago, IL.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and
Seismic Applications, Design Guide 13, AISC, Chicago, IL.
Driscoll, G.C., Pourbohloul, A. and Wang, X. (1983), "Fracture of Moment Connections-
Tests on Simulated Beam-to-Column Web Moment Connection Details," Fritz
Engineering Laboratory Report No. 469.7, Lehigh University, Bethlehem, PA.
Driscoll, G.C. and Beedle, L.S. (1982), "Suggestions for Avoiding Beam-to-Column Web
Connection Failures," Engineering Journal, AISC, Vol. 19, No. 1,1st Quarter, pp. 16-19,
Chicago, IL.
Hart, W.H. and Milek, W.A. (1965), "Splices in Plastically Designed Continuous
Structures," Engineering Journal, AISC, Vol. 2, No. 2, April, pp. 33-37, Chicago, IL.
Huang, J.S., Chen, W.F and Beedle, L.S. (1973), "Behavior and Design of Steel Beam-to-
Column Moment Connections," Bulletin 188, October, Welding Research Council, New
York, NY.
Lincoln Electric Company (1973), The Procedure Handbook of Arc Welding, Lincoln
Electric Company, Cleveland, OH.
Murray, T.M. and Sumner, E.A. (2003), Extended End-Plate Moment Connections—
Seismic and Wind Applications, 2nd Ed., Design Guide 4, AISC, Chicago, IL.
Murray, T.M. and Shoemaker, W.L. (2002), Flush and Extended Multiple-Row Moment
End-Plate Connections, Design Guide 16, AISC and MBMA, Chicago, IL.
Meng, R.L. and Murray, T.M. (1997), "Seismic Performance of Bolted End-Plate Moment
Connection," Proceedings, AISC National Steel Construction Conference, Chicago, IL,
May 7-9, pages 30-1 to 30-14.
Packer, J.A. and Henderson, J.E. (1997), Hollow Structural Section Connections and
Trusses—A Design Guide, 2nd Ed., Canadian Institute of Steel Construction, Alliston,
Ontario, Canada.
Packer, J., Sherman, D. and Leece, M. (2010), Hollow Structural Section Connections,
Design Guide 24, AISC, Chicago, IL.
i
i
t
(

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

12-30
DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

13-1
PART 13
DESIGN OF BRACING CONNECTIONS
AND TRUSS CONNECTIONS
SCOPE ;..............:........ 13-2
BRACING CONNECTIONS 13-2
Diagonal Bracing Members ..... 13-2
Force Transfer in Diagonal Bracing Connections 13-3
The Uniform Force Method :. 13-3
Required Strength 13-3
Special Case 1, Modified Worlcing Point Location 13-5
Special Case 2, Minimizing Shear in the Beam-to-Column Connection 13-7
Special Case 3, No Gusset-to-CoIumn Web Connection 13-7
Analysis of Existing Diagonal Bracing Connections ,... 13-10
Available Strength 13-11
TRUSS CONNECTIONS 13-11
Members in Trusses 13-11
Minimum Connection Strength 13-12
Panel-Point Connections 13-13
Design Checks 13-14
Shop and Field Practices 13-14
Support Connections 13-14
Design Checks 13-15
Shop and Field Practices 13-16
Truss Chord Splices 13-17
Design Considerations for HSS-to-HSS Truss Connections 13-17
PART 13 REFERENCES 13-18
I
I

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

13-2 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of concentric bracing connections and truss connections.
BRACING CONNECTIONS
Diagonal Bracing Members
Diagonal bracing members can be rods, single angles, channels, double angles, tees, W-shapes
or HSS as required by the loads. Slender diagonal bracing members are relatively flexible
and, thus, vibration and sag may be considerations. In slender tension-only bracing com-
posed of light angles, these problems can be minimized with "draw" or pretension created
by shortening the fabricated length of the diagonal brace from the theoretical length, L,
between member working points. In general, the following deductions will be sufficient to
accomplish the required draw: no deduction for L < 10 ft; deduct Vi6 in. for 10 ft < L < 20 ft;
deduct Vs in. for 20 ft < L < 35 ft; and, deduct in. for L > 35 ft. This approach is not appli-
cable to heavier diagonal bracing members, since it is difficult to stretch these members;
vibration and sag are not usually design considerations in heavier diagonal bracing members.
In any diagonal bracing member, however, it is permissible to deduct an additional V32 in.
when necessary to avoid dimensioning to thirty-seconds of an inch.
When double-angle diagonal bracing members are separated, as at "sandwiched" end
connections to gussets, intermittent connections should be provided if the unsupported
length of the diagonal brace exceeds the limits specified in the User Note in AISC
Specification Section D4 for tension members. For compression members, the provisions of
AISC Specification Section E6 must be satisfied. Either bolted or welded stitch-fillers may
be provided as stipulated in AISC Specification E6. Many fabricators prefer ring or rectan-
gular bolted stitch-fillers when the angles require other punching, as at the end connections.
In welded construction, a stitch-filler with protruding ends, as shown in Figure 13-l(a), is
preferred because it is easy to fit and weld. The short stitch-filler shown in Figure 13-l(b)
is used if a smooth appearance is desired.
When a full-length filler is provided, as in corrosive environments, the maximum spac-
ing of stitch bolts should be as specified in AISC Specification Section J3.5. Alternatively,
the edges of the filler may be seal welded.
a) Protruding b) Short
Fig. 13-1. Welded stitch-fillers.
AMERICAN INSMUTE OF STEEL CONSTRUCTION

BRACING CONNECTIONS 13-3
Force Transfer in Diagonal Bracing Connections
There has been some discussion as to which of several available a,nalysis methods provides
the best means for the safe and economical design and analysis of diagonal bracing con-
nections. To better understand the technical issues, starting in 1981, AISC sponsored
extensive computer studies of this connection by Richard (1986). Associated with Richard's
work, full-scale tests were performed by Bjorhovde and Chakrabarti (1985), Gross and
Cheok (1988), and Gross (1990). Also, AISC and ASCE formed a task group to recommend
a design method for this connection. In 1990, this task group recommended three methods
for further study; refer to Appendix A of Thornton (1991).
Using the results of the aforementioned full scale tests, Thornton (1991) showed that
these three methods yield safe designs, and that of the three methods, the Uniform Force
Method [see model 3 of Thornton (1991)] best predicts both the available strength and crit-
ical limit state of the connection. Furthermore, Thornton (1992) showed that the Uniform
Force Method yields the most economical design through comparison of actual designs by
the different methods and through consideration of the efficiency of force transmission. For
the above reasons, and also because it is the most versatile method, the Uniform Force
Method has been adopted for use in this manual.
Tiie Uniform Force Method
The essence of the Uniform Force Method is to select the geometry of the connection so that
moments do not exist on the three connection interfaces; i.e., gusset-to-beam, gusset-to-colunin,
and beam-to-column. In the absence of moment, these connections may then be designed
for shear and/or tension only, hence the origin of the name Uniform Force Method.
Required Strength
With the control points (c.p.) as illustrated in Figure 13-2 and the working point (w.p.) cho-
sen at the intersection of the centerlines of the beam, column and diagonal brace as shown
in Figure 13-2(a), four geometric parameters ey, ec, a and (3 can be identified, where
ei, = one-half the depth of the beam, in.
ec = one-half the depth of the column, in. Note that, for a column web support, ec ~ 0.
a = distance from the face of the column flange or web to the centroid of the gusset-to-
beam connection, in.
p = distance from the face of the beam flange to the centroid of the gusset-to-column
connection, in.
For the force distribution shown in the free-body diagrams of Figures 13-2(b), 13-2(c) and
13-2(d) to remain free of moments on the connection interfaces, the following expression
must be satisfied:
a - (3 tane = efc tane - ec (13-1)
Since the variables on the right of the equal sign (eh, e^ and G) are all defined by the mem-
bers being connected and the geometry of the structure, the designer may select values of a
and P for which the equation is true, thereby locating the centroids of the gusset-to-beam
and gusset-to-column connections.
X
AMERICAN INSTITUTE OF STEBL CONSTRUCTION
t
i
i

13-4 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
t R.
(a) Diagonal bracing connection
and external forces
Beam i
H =H, +H,
(b) Gusset free-body diagram
w.p.~
R,

^^Beamt
Colt
R. -K
{c) Column free-body diagram (d) Beam free-body diagram
Rh = ^ufc or Rab, required end reaction of the beam
Rc = Kuc or Rac, required column axial load above the connection
Ah = Aub or Aab, required transverse force from adjacent bay
H = horizontal component of the required axial force
fib = Huh or Hah, required shear force on the gusset-to-beam connection
He ~ Hue or Hac, required axial force on the gusset-to-column connection
Vb ~ Vuh or Vnb, required axial force on the gusset-to-beam connection
Vc = Vuc or Vac, required shear force on the gusset-to-column connection
P = Pu or Pa, required axial force
V = vertical component of the required axial force
Fig. 13-2. Force transfer by the Uniform Force Method, work point (w.p.)
and control paints (c.p.) as indicated.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

BRACING CONNECTIONS 13-5
Once a and P have been determined, the required axial and shear forces for which these
connections must be designed can be determined from the following equations:
(13-2)
(13-3)
Vb^^P (13-4)
Hb-=jP (13-5)
where
r = V(a + ec)2+(P + efe)2 (13-6)
The gusset-to-beam connection must be designed for the required shear force, Hb, and the
required axial force, V;,, the gusset-to-column connection must be designed for the required
shear force, V^, and the required axial force, He, and the beam-to-column connection must
be designed for the required shear
Rb-Vb
and the required axial force
Ab±{H-Hb)
Note that while the axial force, P^ or Pa, is shown as a tensile force, it may also be a com-
pressive force; were this the case, the signs of the resulting gusset forces would change.
Special Case 1, Modified Working Point Location
As illustrated in Figure 13-3(a), the working point in Special Case 1 of the Uniform Force
Method is chosen at the comer of the gusset; this may be done to simplify layout or for a
column web connection. With this assumption, the terms in the gusset force equations
involving e<, and e^ drop out and the interface forces, as shown in Figures 13-3(b), 13-3(c)
and 13-3(d), are:
Vc = ^cose = V (13-7)
= 0 (13-8)
Hfc = Psine = H (13-9)
Hc = 0 (13-10)
The gusset-to-beam connection must be designed for the required shear force, Hb, and the
gusset-to-column connection must be designed for the required shear force, Vc. Note, how-
ever, that the change in working point requires that the beam be designed for the required
moment. Mi,, where
Mb==Hbeb (13-11)
AMERICAN INSTITUTE OF STEEL CoteTRUcnoN

13-6 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
Beam £
(a) Diagonal bracing connection
=1/
ib) Gusset free-body diagram
Colt
Beamt. •t
L
R. - V
(c) Column free-body diagram (d) Beam free-body diagram
Rb = Ruh or Rab, required end reaction of the beam
Rc = Rue or Rac, required column axial load above the connection
Ah =Auh or Aah, required transverse force from adjacent bay
H = horizontal component of the required axial force
Hb = Hub or Hab, required shear force on the gussiet-to-beam connection
Vc = Vuc or Vac, required shear force on the gusset-to-column connection
P = or/"a, required axial force ;
V = vertical component of the required axial force
Fig. 13-3. Force transfer, Uniform Force Method special case 1.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

BRACING CONNECTIONS 13-7
and the column must be designed for the required moment, Mc. For an intermediate floor,
this is determined as:
Mc^^ . (13-12)
An example demonstrating this eccentric special case is presented in AISC (1984). This
eccentric case was endorsed by the AISC/ASCE task group (Thornton, 1991) as a reduction
of the three recommended methods when the work point is located at the gusset corner. While
calculations are somewhat simplified, it should be noted that resolution of the required force,
P, into the shears, V^ and H/,, may not result in the most economical connection.
Special Case 2, Minimizing Shear in the
Beam-to-Column Connection
If the brace force, as illustrated in Figure 13-4(a), were compressive instead of tensile and
the required beam reaction, Rh, were high, the addition of the extra shear force, V^, into the
beam might exceed the available strength of the beam and require doublet plates or a
haunched connection. Alternatively, the vertical force in the gusset-to-beam connection, Vf),
can be limited in a manner which is somewhat analogous to using the gusset itself as a haunch.
As illustrated in Figure 13-4(b), assume that Vf, is reduced by an arbitrary amount, AVi,.
By statics, the vertical force at the gusset-to-column interface will be increased to Vc -t- AVi,,
and a moment Mb will result on the gusset-to-beam connection, where
Mi, = (AV<,)a (13-13)
If AVi is taken equal to 14, none of the vertical component of the brace force is transmitted
to the beam; the resulting procedure is that presented by AISC (1984) for concentric grav-
ity axes, extended to connections to column flanges. This method was also recommended
by the AISC/ASCE task group (Thornton, 1991).
Design by this method may be uneconomical. It is veiy punishing to the gusset and beam
because of the moment, Mh, induced on the gusset-to-beam connection. This moment will
require a larger connection and a thicker gusset. Additionally, the limit state of local web
yielding may limit the strength of the beam. This special case interrupts the natural flow
of forces assumed in the Uniform Force Method and thus is best used when the beam-to-
column interface is already highly loaded, independently of the brace, by a high shear, R/,,
in the beam-to-column connection.
Special Case 3, No Gusset-to-Column Web Connection
When the connection is to a column web and the brace is shallow (as for large 8) or the beam
is deep, it may be more economical to eliminate the gusset-to-column connection entirely
and connect the gusset to the beam only. The Uniform Force Method can be applied to this
situation by setting p and Cc equal to zero as illustrated in Figure 13-5. Since there is to be
no gusset-to-column connection, Vc and He also equal zero. Thus, Vb = Vand H/, = H.
If a = a = tanG, there is no moment on the gusset-to-beam interface and the gusset-to-
beam connection can be designed for the required shear force, H),, and the required axial
force, Kfc. If (X Tt a = efc tanG, the gusset-to-beam interface must be designed for the moment,
Mh, in addition to Hi, and where
Mb = Vb{a-E) (13-14)
AMERICAN INSTITUTE OF STEEL CoteTRUcrioN
(

13-8 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
A
j|v—
Be ; a
iy
Co/A
HJ
~r
(a) Diagonal bracing connection
K y
-Beam t
H +H,
V=(V, -AVJ
(b) Gusset free'body diagram
M,
H
" Beamt
Colt
(c) Column free-body diagram (d) Beam free-body diagram
Rb = Rub or Rua, required end reaction of the beam
Rc = Ruc or Rac, required column axial load above the connection
A-b = Aub or Aab, required transverse force from adjacent bay
H = horizontal component of the required axial force
Hb = Hub or Hab, required shear force on the gusset-to-beam connection
He - Hue 01 Hoc, required axial force on the gusset-to-column connection
Vb = ^ub or Vab, required axial force on the gusset-to~beam connection
Vc =Vuc or Vac, required shear force on the gusset-to-column connection
P = Pu or Pa, required axial force
V = vertical component of the required axial force
Fig. 13-4. Force transfer, Uniform Force Method special case 2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

BRACING CONNECTIONS 13-9
k
1 ^^ CoA/m/i
CoU
I -1/
, fa) Diagonal bracing connection
K
(b) Gusset free-body diagram
Beamt.
-K
I /?, - V
(c) Column free-body diagram
Col.t
(d) Beam free-body diagram
Rb = Rub or Rua, required end reaction of the beam
Rc = Rue or Rac, required column axial load above the connection
Ab -Aub oiAab, required transverse force from adjacent bay
H = horizontal component of the required axial force
Hb = Hub Hab, required shear force on the gusset-to-beam connection
Vb = Vub or Vab, required axial force on the gusset-to-beam connection
\iP or Pa, required axial force
V = vertical component of the required axial force
Fig. 13-5. Force transfer, Uniform Force Method special case 3.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

13-10 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
The beam-to-column connection must be designed for the required shear force, Ri, + Vf,.
Note that, since the connection is to a column web, e^ is zero and hence He is also zero.
For a connection to a column flange, if the gusset-to-column-flange connection is eUminated,
the beam-to-column connection must be a moment connection designed for the moment, Vec,
in addition to the shear, V. Thus, uniform forces on all interfaces are no longer possible.
Analysis of Existing Diagonal Bracing Connections
A combination of a and p which provides for no moments on the three interfaces can usu-
ally be achieved when a connection is being designed. However, when analyzing an existing
connection or when other constraints exist on gusset dimensions, the values of a and P may
not satisfy the basic relationship
a - p tanS = ej, tan0 - e^, (13-1)
When this happens, uniform interface forces will not satisfy equilibrium and moments will
exist on one or both gusset edges or at the beam-to-column interface.
To illustrate this point, consider an existing design where the actual centroids of the gusset-
to-beam and gusset-to-column connections are at a and p, respectively. If the connection at
one edge of the gusset is more rigid tlian the other, it is logical to assume that the more rigid
edge takes all of the moment necessary for equilibrium. For instance, the gusset of Figure
13-2 is shown welded to the beam and bolted with double angles to the column. For this
configuration, the gusset-to-beam connection will be much more rigid than the gusset-to-
column connection.
Take a and p as the ideal centroids of the gusset-to-beam and gusset-to-column connec-
tions, respectively. Setting P = P, the a required for no moment on the gusset-to-beam
connection may be calculated as
a = A: + Ptan0 (13-15)
where
5 K=ehtanQ--ec (13-16)
If a 5, a moment, Mb, will exist on the gusset-to-beam connection where
M/,= V<,(a-a) (13-17)
Conversely, suppose the gusset-to-column connection were judged to be more rigid. Setting
a = a, the P required for no moment on the gusset-to-column connection may be calculated
as
• 03-18)
If P P, a moment, M^, will exist on the gusset-to-column connection where
Mc = Wc(p-P) (13-19)
If both connections were equally rigid and no obvious allocation of moment could be made,
the moment could be distributed based on minimized fccentricities a - a and P - P by min-
imizing the objective function, where
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

TRUSS CONNECTIONS lJ-11
a~a
a
P
(13-20)
In the preceding equation, X, is a Lagrange multiplier.
The values of a and P that minimize ^ are
Z'tan0 + A:
a
a = -
IP
and
where
D
K'-KtanO
D
„ a
tane + —
PJ
D=tan'e +
(13-21)
(13-22)
(13-23)
(13-24)
Available Strength
The available strength of a diagonal bracing connection is determined from the applicable
limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9).
In all cases, the available strength, (|)i?„ or RJQ, must equal or exceed the required strength,
Ru or Ra. Note that when the gusset is directly welded to the beam or column, the connec-
tion should be designed for the larger of the peak stress and 1.25 times the average stress,
but the weld size need not be larger than that required to develop the strength of the gusset.
This 25% increase is recommended to provide ductility to allow adequate force redistribu-
tion in the weld group (Hewitt and Thornton, 2004).
TRUSS CONNECTIONS
Members in Trusses
For light loads, trusses are commonly composed of tees for the top and bottom chords with
single-angle or double-angle web members. In welded construction, the single-angle and
double-angle web members may, in many cases, be welded to the stem of the tee, thus, elim-
inating the need for gussets. When single-angle web members are used, all web members
should be placed on the same side of the chord; staggering the web members causes a torque
on the chord, as illustrated in Figure 13-6. Also see "Design Considerations for HSS-to-HSS
Truss Connections" at the end of Part 13.
i
i
i
AMERICAN INSTITUTE OF STEEL CoNSTttucrioN

13-12 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
Double-angle truss members are usually designed to act as a unit. When unequal-leg
angles are used, long legs are normally assembled back-to-back. A simple notation for the
angle assembly is LLBB (long legs back-to-back) and SLBB (short legs back-to-back).
Alternatively, the notation might be graphical in nature as JL and —II For large loads,
W-shapes may be used with the web vertical and gussets welded to the flange for the truss
connections .'Web members may be single angles or double angles, although W-shapes are
sometimes Used for both chord and web members as shown in Figure 13-7. Heavy shapes
in trusses must meet the design and fabrication restrictions and special requirements in
AISC Specification Sections A3.1c and A3.Id. With member orientation as shown for the
field-welded truss joint in Figure 13-7(a), connections usually are made by groove welding
flanges to flanges and fillet welding webs directly or indirectly by the use of gussets. Fit-up
of joints in this type of construction are very sensitive to dimensional variations in the rolled
shapes; fabricators sometimes prefer to use built-up shapes in these cases.
The web connection plate in Figure 13-7(a) is a typical detail. While the diagonal mem-
ber could theoretically be cut so that the diagonal web would be extended into the web
of the chord for a direct connection, such a detail is difficult to fabricate. Additionally,
welding access becomes very limited; note the obvious difficulty of welding the gusset or
diagonal directly to the chord web. As illustrated, this weld is usually omitted.
When stiffeners and doubler plates are required for concentrated flange forces, the
designer should consider selecting a heavier section to eliminate the need for stiffening.
Although this will increase the material cost of the member, the heavier section will likely
provide a more economical solution due to the reduction in labor cost associated with the
elimination of stiffening (Ricker, 1992; Thornton, 1992).
Minimum Connection Strength
In the absence of defined design loads, a minimum required strength of 10 kips for LRFD
or 6 kips for ASD should be considered, as noted in AISC Specification Commentary
C T
e
izzrzzr:
Fig. 13-6. Staggered web members result in a torque on the truss chord.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

TRUSS CONNECTIONS
Section Jl.l. For smaller elements, a required strength more appropriate to the size and
use of the part should be used. Additionally, when trusses are shop-assembled or field-
assembled on the ground for subsequent erection, consideration should be given to loads
induced during handling, shipping and erection.
Panel-Point Connections
A panel-point connection connects diagonal and/or vertical web members to the chord mem-
ber of a truss. These web members deliver axial forces, tensile or compressive, to the truss
chord. In bolted construction, a gusset is usually required because of bolt spacing and edge
distance requirements. In welded construction, it is sometimes possible to eliminate the need
for a gusset.
(a) Shop and field welding
^PJP
Note: Check vertical and chord for reinforcing requirements
(b) Shop welding
Fig. 13-7. Truss panel-point connections for W-shape truss members.
AMERICAN INSTITUTE OF STEEL CoNSTRUcnoN

13-14 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
Design Checks
The available strength of a panel-point connection is determined from the applicable
limit states for the bolts (see Part 7), welds (see Part 8), and connectiiig elements (see
Part 9). In all cases, the available strength, ^Rn or R„/Q, must exceed the required
strength, or Ra-
in the panei-point connection of Figure 13-8, the neutral axes of the Vertical and diago-
nal truss members intersect on the neutral axis of the truss chord. As a result, the forces in
all members of the truss are axial. It is common practice, however, to modify working lines
slightly from the gravity axes to establish repetitive panels and avoid fractional dimensions
less than '/s in. or to accommodate a larger panel-point connection or a connection for bot-
tom-chord lateral bracing, a purlin, or a sway-frame. This eccentricity and the resulting
moment should be considered in the design of the truss chord.
In contrast, for the design of the truss web members, AISC Specification Section J1.7
permits that the center of gravity of the end connection of a statically loaded truss member
need not coincide with the gravity axis of the connected member. This is because tests have
shown that there is no appreciable difference in the available strength between balanced
and unbalanced connections subjected to static loading. Accordingly, the truss web mem-
bers and their end connections may be designed for the axial load, neglecting the effect of
this minor eccentricity.
Shop and Field Practices
In bolted construction, it is convenient to use standard gage lines of the angles as truss work-
ing lines; where wider angles with two gage lines are used, the gage line nearest the heel of
the angle is the one which is substituted for the gravity axis.
To provide for stiffness in the finished truss, the web members of the truss are extended
to near the edge of the fillet of the tee (fc-distance). If welded, the required welds are then
applied along the heel and toe of each angle, beginning at their ends rather than at the edge
of the tee stem.
Support Connections
A truss support connection connects the ends of trusses to supporting members.
WT8X38.5
Fig. 13-8. Truss panel-point connection.
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

TRUSS CONNECTIONS 13-15
Design Checks
The available strength of a support connection is determined from the applicable limit
states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9).
Additionally, truss support connections produce tensile or compressive single concentrated
forces at the beam end; the limit states of the available flange strength in local bending and
the limit states of the available web strength in local yielding, crippling, and compression
buckling may have to be checked. In all cases, the available strength, (|)/?„ or must
exceed the required strength,or
At the end of a truss supported by a column, all member axes may not intersect at a com-
mon point. When this is the case, an eccentricity results. Typically, it is the neutral axis of
the column that does not meet at the working point.
If trusses with similar reactions line up on opposite sides of the column, consideration of
eccentricity would not be required since any moment would be transferred through the col-
umn and into the other truss. However, if there is little or no load on the opposite side of the
column, the resulting eccentricity must be considered.
In Figure 13-9, the truss chord and diagonal intersect at a common working point on the
face of the column flange. In this detail, there is no eccentricity in the gusset, gusset-to-
column connection, truss chord, or diagonal. However, the column must be designed for the
moment due to the eccentricity of the truss reaction from the neutral axis of the column.
For the truss support connection illustrated in Figure 13-10, this eccentricity results in a
moment. Assuming the connection between the members is adequate, joint rotation is resis-
ted by the combined flexural strength of the column, the truss top chord, and the truss
diagonal. However, the distribution of moment between these members will be proportional
to the stiffness of the members. Thus, when the stiffness of the column is much greater than
the stiffness of the other elements of the truss support connection, it is good practice to
design the column and gusset-to-column connection for the full eccentricity. i
i
(
Fig. 13-9. Truss support connection, working point (w.p.) on column face.

AMERICAN INSTFTUTE OF STEEL CoNstRucxioN

13-16 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
Due to its importance, the truss support connection is frequently shown in detail on the
design drawing.
Shop and Field Practices
When a truss is erected in place and loaded, truss members in tension will lengthen and truss
members in compression will shorten. At the support connection, this may cause the tension
chord of a "square-ended" truss to encroach on its connection to the supporting columri. When
the connection is shop-attached to the truss, erection clearance must be provided with shims
to fill out whatever space remains after the truss is erected and loaded. In field erected con-
nections, however, provision must be made for the necessary adjustment in the connection.
When the tension chord delivers no calculated force to the connection, adjustment can
usually be provided with slotted holes. For short spans with relatively light loads, the
comparatively small deflections can be absorbed by the normal hole clearances provided
for bolted construction. Slightly greater misalignment can be corrected in the field by
reaming the holes. If appreciable deflection is expected, the connection may be welded.
Alternatively, bolt holes may be field-drilled, but this is an expensive operation which
should be avoided if at all possible.
An approximation of the elongation. A, can be determined as
A =
AE
(13-25)
1-WT8X3S.S
(ucy)
Fig. 13-10. Truss-support connection, working point (w.p.) at column centerline.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

TRUSS CONNECTIONS 13-17
where
A = elongation in inches
P - axial force due to service loads, kips
A = gross area of the truss chord, in.^
I = length, in.^
The total change in length of the truss chord is SA/, the sum of the changes in the lengths of
the individual panel segments of the truss chord. The misalignment at each support connec-
tion of the tension chord is one-half the total elongation.
Truss Chord Splices
Truss chord splices are expensive to fabricate and should be avoided whenever possible. In
general, chord splices in ordinary building trusses are confined to cases where:
1. the finished truss is too large to be shipped in one piece;
2. the truss chord exceeds the available material length;
3. the reduction in tnember size of the chord justifies the added cost of a splice; or
4. a sharp change in direction occurs in the working line of the chord and bending does
not provide a satisfactory alternative.
Splices at truss chord ends that are finished to bear should be designed in accordance with
kl^C Specification StaionU A.
Design Considerations for HSS-to-HSS Truss Connections
HSS metriber sizes are often critical in connection design. Connection design should be per-
formed during main member selection as the connection limit states may force an increase
in the member wall thickness over the main member design thickness. At initial design,
Packer, et al. (2010b) recommends that chords should have thick walls rather than thin
walls; web members should have thin walls rather than thick walls; web ihembers should be
wide relative to the chord members, but still able to sit on the "flat" face of the chord sec-
tion if possible; and gap connections (for K and N situations) are preferred to overlap
connections because the members are easier to prepare, fit and weld.
The connection types covered in Chapter K of the AISC Specification and in AISC
Design Guide 24, Hollow Structural Section Connections (Packer et al., 2010a), are only
some of the potential configurations of HSS-to-HSS connections. For reinforced connec-
tions and connections not covered in these publications, refer to CIDECT Design Guide 3,
Design Guide for Rectangular Hollow Section (RHS) Joints under Predominantly Static
Loading (Packer et al., 2010b).
I
X,
AMERICAN INSTITUTE OF STEEL CoNSTRUcnoN

13-18 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
PART 13 REFERENCES
AISC (1984), Engineering for Steel Construction, pp. 7.55-7.62, AISC, Chicago, IL.
Bjorhovde, R. and Chakrabarti, S.K. (1985), "Tests of Full-Size Gusset Plate Connections,"
Journal of Structural Engineering, Vol. 111, No. 3, pp. 667-684, ASCE, New York, NY.
Gross, J.L. and Check, G. Experimental Study ofGusseted Connections for Laterally
Braced Steel Buildings, National Institute of Standards and Technology Report NISTIR
88-3849, NIST, Gaithersburg, MD.
Gross, J.L. (1990), "Experimental Study of Gusseted Connections," Engineering Journal,
Vol. 27, No. 3, 3rd Quarter, pp. 89-97, AISC, Chicago, IL.
Hewitt, C.M. and Thornton, W.A. (2004), "Rationale Behind and Proper Application of the
Ductility Factor for Bracing Connections Subjected to Shear and Transverse Loading,"
Engweermg yowmaZ, Vol. 41, No. 1,1st Quarter, pp. 3-6, AISC, Chicago, IL.
Packer, J., Sherman, D. and Leece, M. (2010a), Hollow Structural Section Connections,
Design Guide 24, AISC, Chicago, IL.
Packer, J.A., Wardenier, J., Zhao, X.-L., van der Vegte, GJ. and Y. Kurobane (2010b),
Design Guide for Rectangular Hollow Section (RHS) Joints Under Predominantly Static
Loading, Design Guide 3, CIDECT, 2nd Ed., LSS Verlag, K51n, Germany.
Richard, R.M. (1986), "Analysis of Large Bracing Connection Designs for Heavy
Construction," National Steel Construction Conference Proceedings, pp. 31.1-31.24,
AISC, Chicago, IL.
Ricker, D.T. (1992), "Value Engineering and Steel Economy," Modern Steel Construction,
Vol. 32, No. 2 February, AISC, Chicago, IL.
Thornton, W.A. (1991), "On the Analysis and Design of Bracing Connections," National
Steel Construction Conference Proceedings, pp. 26A~26.3'3, AISC, Chicago, IL.
Thornton, W.A. (1992), "Designing for Cost Efficient Fabrication and Construction,"
Constructional Steel Design—An International Guide, Chapter 7, pp. 845-854, Elsevier,
London, UK.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

14-1
PART 14
DESIGN OF BEAM BEARING PLATES,
COLUMN BASE PLATES, ANCHOR RODS AND
COLUMN SPLICES
SCOPE ; 14-3
BEAM BEARING PLATES ! 14-3
Force Transfer 14-3
Recommended Bearing Plate Dimensions and Thickness 14-3
Available Strength 14-4
COLUMN BASE PLATES FOR AXIAL COMPRESSION 14-4
Force Transfer 14-4
Recommended Base Plate Dimensions and Thickness 14-5
Available Strength ... 14-6
Finishing Requirements 14-6
Holes for Anchor Rods and Grouting 14-6
Grouting and Leveling 14-6
COLUMN BASE PLATES FOR AXIAL TENSION, SHEAR OR MOMENT 14-8
ANCHOR RODS 14-9
Minimum Edge Distance and Embedment Length 14-10
Washer Requirements 14-10
Hooked Anchor Rods 14-10
Headed or Threaded and Nutted Anchor Rods 14-10
Anchor Rod Nut Installation 14-10
COLUMN SPLICES 14-12
Fit-Up of Column Splices 14-12
Lifting Devices 14-12
Column Alignment and Stability During Erection 14-14
Force Transfer in Column Splices 14-14
Flange-Plated Column Splices 14-16
Directly Welded Flange Column Splices 14-17
Butt-Plated Column Splices 14-18
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

14-2 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
DESIGN CONSIDERATIONS FOR HSS CAP PLATES 14-18
Flexural Strength of the Cap Plate 14-18
Compression Yielding and Crippling of the HSS Wall 14-19
PART 14 REFERENCES ......: 14-20
DESIGN TABLES 14-21
Table 14-1. Finish Allowances 14-21
Table 14-2. Recommended Maximum Sizes for Anchor-Rod Holes in
Base Plates 14-21
Table 14-3. Typical Column Splices 14-22
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

BEAM BEARING PLATES 14-3
SCOPE
The specification requirements and other design considerations summarized in this Part apply
to the design of beam bearing plates, column base plates, anchor rods and column splices. For
complete coverage of column base plate connections, see AISC Design Guide 1, Base Plate
and Anchor Rod Design (Fisher andKloihev,2006).
BEAM BEARING PLATES
A beam bearing plate is made with a plate as illustrated in Figure 14-1.
Force Transfer
The required strength (beam end reaction), or Ra, is distributed from the beam bottom
flange to the bearing plate over an area equal to 4 x 2k, where k is the bearing length (length
of contact between the beam bottom flange and the bearing plate), in. The bearing plate is
then assumed to distribute the beam end reaction to the concrete or masonry as a uniform
bearing pressure by cantilevered bending of the plate. The bearing plate cantilever dimen-
sion is taken as
B
(14-1)
where B is the bearing plate width, in.
In the rare case where a bearing plate is not required, the beam end reaction, or is
assumed to be uniformly distributed from the beam bottom flange to the concrete or
masonry as a uniform bearing pressure by cantilevered bending of the beam flanges. The
beam-flange cantilever dimension is calculated as for a bearing plate, but using the beam
flange width, bf, in place of B.
Recommended Bearing Plate Dimensions and Thickness
The length of bearing, k, may be established by available wall thickness, clearance require-
ments, or by the minimum requirements based on local web yielding or web crippling. The
Brace or stiffen as required.
, See discussion in Part 2.
n k\k
'TTTh.
Anchor as required
Fig. 14-1. Beam bearing plate variables.
AMERICAN INSTITUTE OF STEEL CoNSTRbcTioN

14-1382 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES...
selected dimensions of the bearing plate, B and k, should preferably be in full inches
Bearing plate thickness should be specified in multiples of Vs in. up to 1 'A-in. thickness and
in multiples of 'A in. thereafter. ,
Available Strength
The available strength of a beam bearing plate is determined from the applicable limit states
for connecting elements (see Part 9). In all cases, the available strength, '^R-n Qr ^„/Q, must
exceed the required strength, Ru or Rg- The stability of the beam end must also be addressed
as discussed in "Stability Bracing" in Part 2. '
COLUMN BASE PLATES FOR AXIAL COMPRESSION
A column base plate is made with a plate and a minimum of four anchor rods as illustrated
in Figure 14-2. The base plate is often attached to the bottom of the column in the shop.
Large heavy columns can be difficult to handle and set plumb with the base plate attached
in the shop. When the column is over a certain weight, it may be better to detail the base
plate loose for setting and leveling before the column is set. The weight where loose base
plates should be considered varies by field practice but it should be considered where the
assembly weighs more than 4 tons.
Force Transfer
In Figure 14-3, the required strength (column axial force), P^ or Pa, is distributed from the
column end to the column base plate in direct bearing. The column base plate is then assumed
to distribute the column axial force to the concrete or masonry as a uniform bearing pressure
by cantilevered bending of the plate. The critical base plate cantilever dimension, /, is deter-
mined as the larger of m, k and where
Base plate
Finished
concrete
Anchor rods
Elevation
Plan
Fig. 14-2. Typical column base for axial compressive loads.
AMERICAN INSTTTUTE OP STBEL CONSTRUCTION

COLUMN BASE PLATES FOR AXIAL COMPRESSION 14-5
N-Q.95d
2
B-OMf
4
(14-2)
(14-3)
(14-4)
(14-5)
LRFD ASD
X =
^ ' 4dbf ^ Pu
(14-6a)
^ 4dbf ^
QcPa
(14-6b) X =
ifcPp
(14-6a)
Pp
(14-6b)
Note that, because both the term in parentheses and the ratio of the required strength, P,,
or Pa, to the available strength, ifcPp or P^/Dc, are always less than or equal tp 1, the value
of X will always be less than or equal to 1. Note also that X can always be taiken conserva-
tively as 1. For further information, see Thornton (1990a), Thornton (1990b), and AISC
Design Guide 1, Base Plate and Anchor Rod Design (Fisher and Kloiber, 2006).
Recommended Base Plate Dimensions and Thickness
The selected dimensions of the base plate, B and N, should preferably be in full inches. Base
plate thickness should be specified in multiples of Vs in. up to 1 'A-in. thickness and in mul-
tiples of V4 in. thereafter.
n OMbf n
B
m
0.95d N
i
{
Fig. 14-3. Column base plate design variables.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

14-1384 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
Available Strength
The available strength of an axially loaded column base plate is determined from the appli-
cable limit states for connecting elements (see Part 9). From Thornton (1990a), the
minimum base plate thickness can be calculated as
LRFD ASD
2Pu
0.9FyBN
(14-7a)
FyBN
(14-7b)
The length, I, the critical base plate cantilever dimension, is determined as the larger of
m, n and Xn'.
In all cases, the available strength, ^Rn or RJO., must exceed the required strength, R^
or Ra-
Finishing Requirements
Base plate finishing requirements are given in AISC Specification Section M2.8. When fin-
ishing is required, the plate material must be ordered thicker than the specified base plate
thickness to allow for the material removed in finishing. Finishing allowances are given in
Table 14-1 per ASTM A6 flatness tolerances for steel base plates with F„ equal to or less
than 60 ksi based upon the width, thickness, and whether one or both sides are to be fin-
ished, Finishing allowances for steel base plates with F„ greater than 60 ksi should be
increased by 50%.
The criteria for fit-up of column splices given in AISC Specification Section M4.4 are
also applicable to column base plates.
Holes for Anchor Rods and Grouting
Recommended maximum anchor rod hole sizes are given in Table 14-2. These hole sizes
will accommodate reasonable misalignments in the setting of the anchor rods and allow bet-
ter adjustment of the column base to the correct centerlines. It is normally unnecessary to
deduct the area of holes when determining the required base plate area. An adequate washer
should be provided for each anchor rod.
When base plates with large areas are used, at least one grout hole should be provided
near the center of the base plate through which grout may be placed. This will provide for
a more even distribution of the grout and also prevent air pockets. Note that a grout hole
may not be required when the grout is dry-packed. Grout holes do not require the same accu-
racy for size and location as anchor rod holes.
Holes in base plates for anchor rods and grouting often must be flame-cut, because drill
sizes and punching capabilities may be limited to smaller diameters. Flame-cut holes may
have a slight taper and should be inspected to assure proper clearances for anchor rods.
Grouting and Leveling
High-strength, non-shrink grout is placed between the column base plate and the supporting
foundation. When base plates are shipped attached to the column, three methods of column
support are:
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

COLUMN BASE PLATES FOR AXIAL COMPRESSION 14-7
1. The use of leveling nuts and, in some cases, washers on the anchor rods beneath the
base plate, as illustrated in Figure 14-4.
2. The use of shim stacks between the base plate and the supporting foundation.
3. The use of a steel leveling plate (normally '/4 in. thick), set to elevation and grouted
prior to the setting of the column. The leveling plate should meet the flatness tolerances
specified in ASTM A6. It may be larger than the base plate to accommodate anchor rod
placement tolerances^nd can be used as a setting template for the anchor rods.
For further information on grouting and leveling of column base plates, see AISC
Design Guide 10^ Erection Bracing of Low-Rise Structural Steel Frames (Fisher and West,
1997).
When base plates are shipped loose, the base plates are usually grouted after the base
plate has been aligned and leveled with one of the preceding methods. For heavy loose base
plates, three-point leveling bolts, illustrated in Figure 14-5, are commonly used. These
threaded attachments may consist of a nut or an angle and nut welded to the base plate.
Leveling bolts must be of sufficient length to compensate for the space provided for grout-
ing. Rounding the point of the leveling bolt will prevent it from "walking" or moving
laterally as it is turned. Additionally, a small steel pad under the point reduces friction and
prevents damage to the concrete.
Heavy loose base plates should be provided with some means of handling at the erection
site. Lifting holes can be provided in the vertical legs of shop-attached connection angles.
Lifting lugs can also be used and can remain in place after erection, unless they" create an
interference or removal is required in the contract documents.
Leveling bolts or nuts should not be used to support the column during erection. If grout-
ing is delayed until after steel erection, the base plate must be shimmed to properly distribute
loads to the foundation without overstressing either the base plate or the concrete. This dif-
ficulty of supporting columns wWle leveling and grouting their bases makes it advisable that
footings be finished to near the proper elevation (Ricker, 1989). The top of the rough foot-
ing should be set approximately 1 to 2 in. below the bottom of the base plate to provide for
adjustment. Alternatively, an angle frame as illustrated in Figure 14-6 could be constructed
to the proper elevation and filled with grout prior to erection.
i
n r
4
IJ u
4
Column
Anchor rod
Nuts washer
Leveling nut & washer
Fig. 14-4. Leveling nuts and washers.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

14-8 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES.,.
COLUMN BASE PLATES FOR AXIAL TENSION,
SHEAR OR MOMENT
For anchor rod diameters not greater than 1'A in., angles bolted or welded to the column as
shown in Figure 14-7(a) are generally adequate to transfer uplift forces resulting from axial
loads and moments. When greater resistance is required, stiffeners may be used with hori-
zontal plates or angles as illustrated in Figure 14-7(b). These stiffeners are not usually
considered to be part of the column area iri bearing on the base plate. The angles preferably
should be set back from the column end about Vs in. Stiffeners preferably should be set back
aboiit 1 in. from the base plate to eliminate a pocket that might prevent drainage and, thus,
protect the column and column base plate from corrosion.
Fig. 14-5. Three-point leveling.
Angle frame
Wedges
Anchor rod
Column
Nut & washer
Base plate
(ship loose)
Fig. 14-6. Angle-frame leveling.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

ANCHOR RODS 14-9
For further information, see AISC Design Guide i,Base Plate and Anchor Rod Design
(Fisher and Kloiber, 2006).
ANCHOR RODS
Cast-in-place anchor rods, illustrated in Figure 14-8, are generally made from unheaded rod
material or headed bolt material. Drilled-in (post-set) anchors can be used for corrective
work or in new work as determined by the owner's designated representative for design and
as permitted in the applicable building code. The design of post-set anchors is governed by
manufacturers' specifications; see also ACI 349 Appendix B (ACI, 2006). Post-set anchors
that rely upon torque or tension to develop anchorage by wedging action should not be used
-V
t
(a) (b)
Fig. 14-7. Typical column bases for uplift.
C
±±1
(a) Hooked (b) Headed (c) Threaded with nut
Fig. 14-8. Cast-in-piace anchor rods.
X
AMERICAN INSTITUTE OF STEEL CONSTRbCTION

14-10 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
unless the stability of the column during erection is provided by means other than the post-
set anchors.
Minimum Edge Distance and Embedment Length
In general, minimum edge distances, embedment lengths, and the design of anchorages
into concrete are covered by ACI 318 (ACI, 2008). These provisions include methods to
account for edge distance and group action, as does ACI 349. AISC Design Guides 1, 7
and 10 provide additional material on the design of anchor rods in concrete (Fisher and
Kloiber, 2006; Fisher, 2004; Fisher and West, 1997).
In addition to providing the recommended minimum embedment length, anchor rods
must extend a distance above the foundation that is sufficient to permit adequate thread
engagement of the nut. Adequate thread engagement for anchor rods is identical to the con-
dition described in the RCSC Specification as adequate for steel-to-steel structural joints
using high-strength bolts: having the end of the (anchor rod) flush with or outside the face
of the nut.
Washer Requirements
Because base plates typically have holes larger than oversized holes to allow for tolerances
on the location of the anchor rod, washers are usually furnished from ASTM A36 steel plate.
They may be round, square or rectangular, and generally have holes that are '/i6 in. larger
than the anchor rod diameter. The thickness must be suitable for the forces to be transferred.
Minimum washer sizes are given in Table 14-2.
Hooked Anchor Rods
Hooked anchor rods should be used only for axially loaded members subject to compression
only to locate and prevent the displacement or overturning of columns due to erection loads
or accidental collisions during erection. Additionally, high-strength steels are not recom-
mended for use in hooked rods since bending with heat may materially affect their strength.
Headed or Threaded and Nutted Anchor Rods
When ancho)- rods are required for a calculated tensile force, T, a more positive anchorage
is formed when headed anchor rods, illustrated in Figure 14-8(b), are used. With adequate
embedment and edge distance, the limit state is either a tensile failure of the anchor rod or
the pull-out of a cone of concrete radiating outward from the head (Marsh and Burdette,
1985a, 1985b) as illustrated in Figure 14-9. Marsh and Burdette (1985a, 1985b) showed that
the head of the anchor rod usually provides sufficient anchorage and the use of an additional
washer or plate does not add significantly to the anchorage. The nut and threading shown in
Figure 14-8(c) is acceptable in lieu of a bolt head. The nut should be welded to the rod to
prevent the rod from turning out when the top nut is tightened.
Anchor Rod Nut Installation
The majority of anchorage applications in buildings do not require special anchor rod nut
installation procedures or pretension in the anchor rod. The anchor rod nuts should be "drawn
down tight" as columns and bases are erected, per ANSI/ASSE A10.13 Section 9.6 (ASSE,
2001). This condition can be achieved by following the same practices as recommended for
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

ANCHOR RODS ' 14-11
snug-tightened installation in steel-to-steel bolted joints in the RCSC Specification. Snug-
tight is the condition that exists when all plies in a connection have been pulled into firm
contact by the bolts in the joint and all the bolts in the joint have been tightened sufficiently
to prevent the removal of the nuts without the use of a wrench.
When, in the judgment of the owner's designated representative for design, the perform-
ance of the structure will be compromised by excessive elongation of the anchor rods under
tensile loads, pretension may be required. Some examples of applications that may require
pretension include structures that cantilever ixom concrete foundations, moment-resisting
column bases with significant tensile forces in the anchor rods, or where load reversal might
result in the progressive loosening of the nuts on the anchor rods.
When pretensioning of anchor rods is specified, care must be taken in the design of the
column base and the embedment of the anchor rod. The shaft of the anchor rod must be free
of bond to the encasing concrete so that the rod is free to elongate as it is pretensioned. Also,
loss of pretension due to creep in the concrete must be taken into account. Although the
design of pretensioned anchorage devices is beyond the scope of this Manual, it should be
noted that pretension should not be specified for anchorage devices that have not been prop-
erly designed and configured to be pretensioned.
Failure
Plane
Fig. 14-9. Concrete cone subject to pull-out.
N,
AMERICAN INSTITUTE OF STEEL CoNSTRbcrioN

14-12 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES...
COLUMN SPLICES
When the height of a building exceeds the available length of column sections, or when it
is economically advantageous to change the column size at a given floor level, it becomes
necessaty to splice two columns together. Column splices at the final exterior and interior
perimeter and at interior openings must be located a minimum of 48 in. above the finished
floor to accommodate the attachment of safety cables, except when constructability does not
allow. For simplicity and uniformity, other column splices should be located at the same
height. Note that column splices placed significantly higher than this are impractical in
terms of field assembly.
Fit-Up of Column Splices
From AISC Specification Section M2.6, the ends of columns in a column splice which
depend upon contact bearing for the transfer of axial forces must be finished to a common
plane by milling, sawing, or other suitable means. In theory, if this were done and the pieces
were erected truly plumb, there would be full-contact bearing across the entire surface; this
is true in most cases. However, AISC Specification Section M4.4 recognizes that a perfect
fit on the entire available surface will not exist in all cases.
A Vi6-in. gap is permissible with no requirements for repair or shimming. During erec-
tion, at the time of tightening the bolts or depositing the welds, columns will usually be
subjected to loads which are significantly less than the design loads. Full-scale tests (Popov
and Stephen, 1977) which progressed to column failure have demonstrated that subsequent
loading to the design loads does not result in distress in the bolts or welds of the splice.
If the gap exceeds Vi6 in. but is equal to or less than V4 in., and if an engineering investi-
gation shows that sufficient contact area does not exist, nontapered steel shims are required.
Mild steel shims are acceptable regardless of the steel grade of the column or bearing mate-
rial. If required, these shims must be contained, usually with a tack weld, so that they cannot
be worked out of the joint.
There is no provision in the AISC Specification for gaps larger than '/4 in. When such a gap
exists, an engineering evaluation should be made of this condition based upon the type of
loading transferred by the column splice. Tightly driven tapered shims may be required or the
required strength may be developed through flange and web splice plates. Alternatively, the
gap may be ground or gouged to a suitable profile and filled with weld metal.
Lifting Devices
As illustrated in Figure 14-10, lifting devices ai-e typically used to facilitate the handling and
erection of columns. When flange-plated or web-plated column splices are used for W-shape
columns, it is convenient to place lifting holes in these flange plates as illustrated in Figure
14-10(a). When butt-plated column splices are used, additional temporary plates with lift-
ing holes may be required as illustrated in Figure 14-10(b). W-shape column splices which
do not utilize web-plated or butt-plated column splices (i.e., groove-welded column splices)
may be provided with a lifting hole in the column web as illustrated in Figure 14-10(c).
"Wliile a hole in the column web reduces the cross-sectional area of the column, this reduc-
tion will seldom be critical since the column is sized for the loads at the floor below and the
splice is located above the floor. Alternatively, auxiliary plates with lifting holes may be
connected to the column so that they do not interfere with the welding. Typical column
splices for tubes and box-columns are illustrated in Figure 14-10(d). Holes in lifting devices
AMERICAN INSTTTUTE OP STBEL CONSTRUCTION

COLUMN SPLICES 14-13
may be drilled, reamed or flame^cut with a mechanically guided torch. In the latter case, the
bearing surface of the hole in the direction of the lift must be smooth.
The lifting device and its attachment to the column must be of sufficient strength to
support the weight of the column as it is brought from the horizontal position (as deliv-
ered) to the vertical position (as erected); the lifting device and its attachment to the
column must be adequate for the tensile forces, shear forces and moments induced during
handling and erection.
A suitable shackle and pin are connected to the lifting device while the column is on
the ground. The steel erector usually establishes the size and type of shackle and pin to be
used in erection and this information must be transmitted to the fabricator prior to detail-
ing. Except for excessively heavy lifting pieces, it is customary to select a single pin and
pinhole diameter to accommodate the majority of structural steel members, whether they
are columns or other heavy structural steel members. The pin is attached to the lifting
-Hitch plates
and pin-by
erector
Pin holes
(a) W-shape columns, flange-plated
column splices with lifting holes
Shacide and pin
by erector
T.J,
(c) W-shape columns, no splice plates,
lifting hole in column web
-RAJIEB-
(b) W-shape and box-shaped columns
butt-plated column splices with
auxiliary lifting plates
(d) Tubular and box-shape columns,
auxiliary lifting plates
I
Fig. 14-10. Lifting devices for columns.
AMERICAN INSTITUTE OF STEEL CoNsxRUdrioN

14-14 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
hook and a lanyard trails to the ground or floor level. After the column Is erected and con-
nected, the pin is removed from the device by means of the lanyard, eliminating the need
for an ironworker to climb the column. The shackle pin, as assembled with the column,
must be free and clear, so that it may be withdrawn laterally after the column has been
landed and stabilized.
The safety of the structure, equipment and personnel is of utmost importance during the
erection period. It is recommended that all welds that are used on the lifting devices and sta-
bility devices be inspected very carefully, both in the shop and later in the field, for any
damage that may have occurred in handling and shipping. Groove welds frequently are
inspected with ultrasonic methods (UT) and fillet welds are inspected with magnetic parti-
cle (MT) or liquid dye penetrant (PT) methods.
Column Alignment and Stability During Erection
Column splices should provide for safety and stability during erection when the columns
might be subjected to wind, construction, and/or accidental loading prior to the placing of
the floor system. The nominal flange-plated, web-plated, and butt-plated column splices
developed here consider this type of loading.
In other splices, column alignment and stability during erection are achieved by the addi-
tion of temporary lugs for field bolting as illustrated in Figure 14-11. The material thickness,
weld size, and bolt diameter required are a function of the loading. A conservative resisting
moment arm is normally taken as the distance from the compressive toe or flange face to the
gage line of the temporary lug. The overturning moment should be checked about both axes
of the column. The recommended minimum plate or angle thickness is V2 in.; the recom-
mended minimum weld size is Vie in.; additionally, high-strength bolts are normally used as
stability devices.
Temporary lugs are not normally used as lifting devices. Unless required to be removed
in the contract documents, these temporary lugs may remain.
Column alignment is provided with centerpunch marks that are useful in centering the
columns in two directions.
Force Transfer in Column Splices
As illustrated in Figure 14-12, for the W-shapes most frequently used as columns, the dis-
tance between the inner faces of the flanges is constant throughout any given nominal depth
group; as the nominal weight per foot increases for each nominal depth, the flange and web
thicknesses increase. From AISC Specification Section J7, the available bearing strength,
or R„/Q, of the contact area of a finished surface is detemiined with
Rn=-l.8FyApb (14-8)
(^ = 0.75 0 = 2.00
where
Api, - projected bearing area, in.^
Fy - specified mimimum yield stress of the column, ksi
This bearing strength is much greater than the axial strength of the column and will sel-
dom prove critical in the member design. For column splices ti'ansferring only axial forces,
complete axial force transfer may be achieved through bearing on finished surfaces; bolts or
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

COLUMN SPLICES 14-15
welds are required by AISC Specification Section J 1.4 to be sufficient to hold all parts
securely in place.
In addition to axial forces, from AISC Specification Section J1.4, column splices must be
proportioned to achieve the required strength in tension, due to the combination of dead load
and lateral loads. Note that it is not permissible to use forces due to live load to offset the
tensile forces from wind or seismic loads..Additional column splice requirements are pro-
vided in the AISC Seismic Provisions. . '
Note A
Mote detail drawing to
require center pund}
marks on center lines
of all faces of upper
and lower shafts.
See Note A

fc

- Alt arrangement L AIL arrangement ^ Typical an-angement- ^ AIL arrangement
showing optional for heavy cols,
slots
alignment plates on
outside of WcoL fig.
using iug angles
Alignment plates between W column
flanges. Check clearances for erection
of column web framing in lower shaft.
Alignment piates
on box column
i
i
Fig. 14-11. Column stability and alignment devices.
AMERICAN INSTITUTE OF STEEL CoNSTRbcTioN

14-16 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES.,.
For dead and wind loads, if the required strength due to the effect of the dead load is
greater than the required strength due to the wind load, the splice is not subjected to tension
and a nominal splice may be selected from those in Table 14-3. When the required strength
due to dead load is less than the required strength due to the wind load, the splice will be
subjected to tension and the nominal splices from Table 14-3 are acceptable if the available
tensile strength of the splice is greater than or equal to the required^ strength. Otherwise, a
splice must be designed with sufficient area and attachment.
When sheai" from lateral loads is divided among several columns, the force on any single
column is relatively small and can usually be resisted by friction on the contact bearing sur-
faces and/or by the flange plates, web plates or butt plates. If the required shear strength
exceeds the available shear strength of the column splice selected from Table 14-3, a col-
umn splice must be designed with sufficient area and attachment.
The column splices shown in Table 14-3 meet the OSHA requirement for 300 lb located
18 in. from the column face.
Flange-Plated Column Splices
Table 14-3 gives typical flange-plated column splice details for W-shape columns. These
details are not splice requirements, but rather, typical column splices in accordance with
AISC Specification provisions and typical erection requirements. Other splice designs may
also be developed. It is assumed in all cases that the lower shaft will be the heavier, although
not necessarily the deeper, section.
Full-contact bearing is always achieved when lighter sections are centered over heavier
sections of the same nominal depth group. If the upper column is not centered on the lower
column, or if columns of different nominal depths must bear on each other, some areas of
the upper column will not be in contact with the lower column. These areas are hatched in
Figure 14-13.
When additional bearing area is not required, unfinished fillers may be used. These fillers
are intended for "pack-out" of thickness and are usually set back 'A in, or more from the fin-
ished column end. Since no force is transferred by these fillers, only nominal attachment to
the column is required.
When additional bearing area is required, fillers finished to bear on the larger column
may be provided. Such fillers are proportioned to carry bearing loads at the bearing strength
calculated from AISC Specification Section J7 and must be connected to the column to
transfer this calculated force.
In Table 14-3, Cases I and II are for all-bolted flange-plated column splices for W-shape
columns. Bolts in column splices are usually the same size and type as for other bolts on the
Column Size d-2t,{m.)
W8x24-€7 7.13
W10x33-112 8.86
W12x40-336 10.9
W14x43-808 12.6
Fig. 14-12. Distance between flanges for typical W-shape columns.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

COLUMN SPLICES 14-17
column. Bolt spacing, end distance and edge distances resulting from the plate sizes shown
permit the use of ^/4-in.- and ^/s-in.-diameter bolts in the splice details shown. Larger diam-
eter bolts may require an increase in edge or end distances. Refer to AISC Specification
Chapter J. The use of high-strength bolts in bearing-type connections is assumed in all field
and shop splices. However, when slotted or oversized holes are utilized, or in splices
employing undeveloped fillers over 'A in. thick, slip-critical connections may be required;
refer to AISC Specification Section J5.2. For ease of erection, field clearances for lap splices
fastened by bolts range from Vs in. to in. under each plate.
Cases IV and V are for all-welded flange-plated column splices for W-shape columns.
Splice welds are assumed to be made with E70XX electrodes and are proportioned as
required by the AISC Specification provisions. The GMAW and FCAW equivalents to
E70XX electrodes may be substituted if desired. Field clearance for welded splices are lim-
ited to '/i6 in. to control the expense of btiilding up welds to close openings. Note that the
fillet weld lengths, Y, as compared to the lengths L/2, provide 2-in. unwelded distance below
and above the column shaft finish line. This provides a degree of flexibility in the splice
plates to assist the erector.
Cases VI and VII apply to combination bolted and welded column splices. Since the
available strength of the welds will, in most cases, exceed the strength of the bolts, the weld
and splice lengths shown may be reduced, if desired, to balance the strength of the fasten-
ers to the upper or lower column, provided tliat the available strength of the splice is still
greater than the required strength of the splice, including erection loading. •
Directly Welded Flange Column Splices
Table 14-3 also includes typical directly welded flange column splice details for W-shape
and HSS or box-shaped columns. These details are not splice requirements, but rather, typ-
ical column splices in accordance with AISC Specification provisions and typical erection
requirements. Other splice designs may also be developed. It is assumed in a:il cases that the
lower shaft will be the heavier, although not necessarily the deeper, section.
Case VIII applies to W-shape columns spliced with either partial-joint-penetration or
complete-joint-penetration groove welds. Case X applies to HSS or box-shaped columns
spliced with partial-joint-penetration or complete-joint-penetration groove welds.
Fig. 14-13. Columns not centered or of different nominal depth.
X,
AMERICAN INSTITUTE OF STEBU CONSTRUCTION

14-18 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES...
Butt-Plated Column Splices
Table 14-3 further includes typical butt-plated column splice details for W-shape and HSS
or box-shaped columns. These details are not splice requirements, but rather, present typi-
cal column splices in accordance with AISC Specification provisions and typical erection
requirements. Other splice designs may also be developed. It is assumed in all cases that the
lower shaft will be the heavier, although not necessarily the deeper, section.
Butt plates are used frequently on welded splices where the upper and lower columns are
of different nominal depths, but may not be economical for bolted sphces since fillers can-
not be eliminated. Topical butt plates are 1V2 in. thick for a W8 over WiO splice, and 2 in.
thick for other W-shape combinations such as WIO over W12 and W12 over W14, Butt
plates which are subjected to substantial bending stresses, such as required on boxed
columns, will require a more careful review and analysis. One common method is to assume
forces are transferred through the butt plate on a 45° angle and check the thickness obtained
for shear and bearing strength. Finishing requirements for butt plates are specified in AISC
Specification Stclion'M2&.
Case III is a combination flange-plated and butt-plated column splice for W-shape columns.
Case IX applies to welded butt-plated column splices for W-shape columns. Case XI applies
to welded butt-plated column splices for HSS or box-shaped columns. Case XII applies to
welded butt-plated column splices between W-shape and HSS or box-shaped columns.
DESIGN CONSIDERATIONS FOR HSS CAP PLATES
The simplest form of attachment to an HSS is to connect the framing member to the top of
an HSS. The cap plate serves as a bearing device to transfer the reactions from the framing
member into the HSS. The cap plate may also be used to transfer moment into the HSS col-
umn. The moment transfer is through a force couple that consists of both compressive and
tensile reactions delivered to the cap plate.
Flexurai Strength of the Cap Plate
The available strength of the cap plate, in terms of reaction resistance, is determined as (t)i?rt
ori?„/Qwith
I 2 2
(t) = 0.90 Q=1.67
where
B = HSS width, in.
Fyc = specified minimum yield stress of the cap plate, ksi
H = HSS depth, in.
a = distance from the HSS centroid to the end of the attached member, in.
Ihr = required bearing length for the attached member, in.
ti = cap plate thickness, in.
AMERICAN INSTTTUTE OP STBEL CONSTRUCTION

DESIGN CONSIDERATIONS FOR HSS CAP PLATCS 14-19
This equation applies only if the cap plate is subjected to cantilever bending, as shown in
Figure 14-14. This occurs when the beam or joist reaction point is outside of the HSS face.
If a stiffener is used in the beam and is positioned over the HSS wall, then the equation does
not apply, since the cap plate is not subjected to bending. Also if the denominator of the
equation results in a negative number, bending of the cap plate can be disregarded.
Compression Yielding and Crippling of the HSS Wall
The available strength of the HSS wall due to compression yielding and compression crip-
pling is determined in accordance with AISC Specification Section Kl.
Fig. 14-14. Cap plate subject to cantilever bending.
AMERKAN INSTITUTE OF STEEL CONSTRUC:WON

14-20 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
PART 14 REFERENCES
ACI (2006) , Code Requirements for Nuclear Safety Related Concrete Structures, ACI 349-
06, American Concrete Institute, Farmington Hills, MI.
ACI (2008)i Building Code Requirements for Structural Concrete, ACI 318-08 and ACI
318M-08, American Concrete Institute, Farmington Hills, ML
ASSE (2001), Safety Requirements for Steel Erection, ANSI/ASSE 10.13-01, American
Society of Safety Engineers, Des Plaines, IL.
Fisher, J.M. (2004), Industrial Buildings—Roofs to Anchor Rods, Design Guide 7, 2nd Ed.,
AISC, Chicago, IL.
Fisher, J.M. and Kloiber, L.A. (2006), Base Plate and Anchor Rod Design, 2nd Ed., Design
Guide 1, AISC, Chicago, IL.
Fisher, J.M, and West, M.A. (1997), Erection Bracing of Low-Rise Structural Steel Frames,
Design Guide 10, AISC, Chicago, IL.
Marsh, M.L. and Burdette, E.G. (1985a), "Anchorage of Steel Building Components to
Concrete," Engineering Journal, Vol. 15, No. 4, 4th Quarter, pp. 33-39, AISC, Chicago,
IL.
Marsh, M.L. and Burdette, E.G. (1985b), "Multiple Bolt Anchorages: Method for Determin-
ing the Effective Projected Area of Overlapping Stress Cones," Engineering Journal, Vol.
15, No. 4,4th Quarter, pp. 29-32, AISC, Chicago, IL.
Popov, E.P. and Stephen, R.M. (1977), "Capacity of Columns with Splice Imperfections,"
Engineering Journal, Vol. 14, No. 1, 1st Quarter, pp. 16-23, AISC Chicago, IL.
Ricker, D.T. (1989), "Some Practical Aspects of Column Base Selection," Engineering
Journal, Vol. 26, No. 3, 3rd Quarter, AISC, Chicago, IL.
Thornton, W.A. (1990a), "Design of Small Base Plates for Wide-Flange Columns,"
Engineering Journal, Vol. 27, No. 3, 3rd Quarter, pp. 108-110, AISC, Chicago, IL.
Thornton, W.A. (1990b), "Design of Small Base Plates for Wide-Flange Columns—A
Concatenation of Methods," Engineering Journal, Vol. 27, No. 4, 4th Quarter, pp.
173-174, AISC, Chicago, IL.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 14-21
Table 14-1
Finish Allowances
Add to Finish Add to Finish
Size Thickness, in. One Side, in. Two Sides, in.
Maximum dimension iViorless V16 Vs
24 in. or less over 1V4 to 2, incl. Va Vt
Maximum dimension I'Aor less Vs V4
over 24 in. over 1V4 to 2, incl. 3/16 3/8
56 in. wide or less over 2 to 7V2, incl. V4 %
over rVjto 10, incl. V2 5/8
over 10 to 15, incl. % Vs
Over 56 in. wide over 2 to 6, incl. V4 %
to 72 in. wide over 6 to 10, incl. V2 =/8
over 10 to 15, incl. % '/8
Note: These allowances apply for material with Fu < 60 ksi.
Table 14-2
Recommended Maximum Sizes for
Anchor-Rod Holes in Base Plates
Anchor Rod IVIax. Hole Min. Min. Anchor Rod Hole Min. Min.
Diameter, Diameter, Washer Washer Diameter, Diameter, Washer Washer
in. in. Size,in. Thickness in. in. Size,in. Thickness
3/4 15/16 2 V4 1V2 25/16 3V2 V2
Vs 13/16 2V2 V16 13/-, 23/4 4 %
1 1"/16 3 3/8 2 31/4 5 3/4
1V-, 2VI6 3 V2 2V2 33/4 5V2 %
Notes; 1. Circular or square washers meeting the washer size are acceptible.
2. Clearance must be considered when choosing an appropriate anchor rod hole location, noting effects such as the
position of the rod in the hole with respect to the column, weld size and other interferences.
3. When base plates are less than 1 'A in. thick, punching of holes may be an economical option. In this case, Vi-in.
anchor rods and 1 Vi6-in.-diameter punched holes may be used with ASTM F844 (USS Standard) washers in place
of fabricated plate washers.
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTISN

14-22 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
Table 14-3
Typical Column Splices
Case I:
All-bolted flange-plated column splices between columns with
depth du and d; nominally the same. .
Gage Flange Plates
Column ffuor Column ffuor
Size GI Type Width Thk. Length
W14x455 to 730 13V2 1 16 % 1' 6V2
257 to 426 11V2 1 14 VS 1' 6V2
145 to 233 11V2 1 14 V2 1' 6V2
90 to 132 11V2 2 14 VE 1' OV2
43 to 82 5V2 2 8 1'0V2
W12x120to336 5V2 2 8 1'0V2
40 to 106 5V2 2 8 % V OV2
W10x33to112 5V2 2 8 % 1'0V2
W8x31 to 67 5V2 2 8 1'0V2
24&28 31/2 2 6 V 0V2
Gages shown may be modified if necessary to accommodate fittings
elsewhere on the column.
Case I-A:
dl = (du + '4 in.)
to {du + Vs in.)
FJange plates; Select gu for upper column; select gi and
flange plate dimensions for lower columns (see table
above).
Fillers: None.
Shims: Furnish sufficient strip shims 2'/2x'/8 to provide
0 to'/i6-in. clearance each side.
Case I-B:
to {du + '/« in.)
Flange plates: Same as Case I-A,
Fillers (shop bolted under flange plates): Select thickness
as Vg-in. for di = and
{du + '/s in.) or as V4-in. for
di = {du - Vg in.) and dt = {du - in.)
Select width to match flange plate and length as 0' 9
for Type 1 or 0' 6 for Type 2.
Shims: Same as Case I-A,
Casel-C:
di - {du + V4 in.)
and over.
Flange plates: Same as Case I-A.
Fillers (shop bolted to upper column): Select thickness as
(dt - du) / 2 minus % in. or Vk in., whichever results in
Vs-in. multiples of filler thickness. Select width to match
flange plate, but not greater than upper column flange
width. Select lengfe as V 0 for Type 1 or 0' 9 for Type 2.
Shims: Same as Case I-A.
For lifting devices, see Figure 14-10.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 14-23
Table 14-3 (continued)
Typical Column Splices
Case I:
All-bolted flange-plated column splices between columns with
depth do and di nominally the same.
Lifting hole
(optional)
CASE 1-A
v;
Erection
clearance 71
Lifting hole
(optional)
QASEJ=B
-Flange
plate
1%
Strip-2 '/2 9
(Type 1)
strip-2 Vi x%x 6
(Type 2)
Detail of
strip shims
-Filler
i
- Lifting hole -
(optional)
Filler
Flange
Lifting hole
(optional) —
>-1%
Type 1
Filler
— FiangQ
plate
"
ziiz^ ^
3
AMERICAN INSTITUTE OF STEEL CONSTRUCTISN

14-24 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
Table 14-3 (continued)
Typical Column Splices
Case II:
All-bolted flange-plated column splices between columns with
depth du nominally 2 in. less than depth di.
Fillers on upper column developed
for bearing on lower column.
Flange plates: Same as Case I-A.
Fillers (shop bolted to upper column): Select thickness as
[di -da]/2 minus '/s-in. or -Vi6-in., whichever results in
'/g-in. multiples of filler thickness. Select bolts through
fillers (including bolts through flange plates) on each side
to develop bearing strength of the filler. Select width to
match flange plate, but not greater than upper column flange
width unless required for bearing strength. Select length
as required to accommodate required number of bolts.
Shims: Same as Case I-A.
Table 14-3 (continued)
Typical Column Splices
Case 111:
All-bolted flange-plated and butt-plated column splices between
columns with depth du nominally 2 in. less than depth di.
Fillers on upper column developed
for bearing on lower column.
Gage Flange Plates
QuOT wolumn QuOT
Size
Si Type Width Thk. Length
W14x455 to 730 T3V2 1 16 V4 1' 8V2
257 to 426 11V2 1 14 Vs
145 to 233 11V2 1 > 14 V2 1'8V2
90to132 111/2 2 14 Vs 1' 2V2
43 to 82 5V2 2 8 Vs 1'2V2
W12x120 to 336 51/2 2 8 Vs 1' 2V2
40 to 106 5V2 2 8 Vs 1' 2V2
W10x33to 112 5V2 2 8 Vs R 2V2
W8x31 to 67 5V2 2 8 1' 2
24&28 Y/2 2 8 Va R 2
Gages shown may be modified if necessary to accommodate
fittings elsewliere on the column.
Flange plates: Select for upper column, select gi and
flange plate dimensions for lower column (see table
above).
Fillers (shop bolted to upper column): Same as Case I-C.
Shims: Same as Case I-A.
Butt plate: Select thickne-^s as 1'/2-in. for W8 upper
column or two inches for others. Select width the same
as upper column and length as di - '4 in.
For lifting devices, see Figure 14-10.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 14-25
Table 14-3 (continued)
Typical Column Splices
Case 11 and III:
All-bolted flange-plated column splices between columns with
depth du nominally 2 in. less than depth di.
-Erection-
Clearance
- Lifting Me —
(optional)
-Fiiler
Flange-
plate
9,
Type 1
CASE II
r-1%
Lifting hole -
(optional)
Type 2
Flange
plate
i
CASE III

AMERICAN INSTITUTE OF STEEL CONSTRbCTION

14-26 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
Table 14-3 (continued)
Typical Column Splices
Case iV:
All-welded flange-plated column splices between columns with
depths du and dt nominally the same.
Flange Plate Welds
Minimum Space
Length Size
Length
for Welding
Column Size
Width Thk. L A
X Y N
W14x455 & over 14 Ve 1--6 Vj. 5 7 "/16
311 to 426 12 % 1'-4 Vs 4 6 "/16
211 to 283 12 V2 1'-4 Ve 4 6 Vie
90 to 193 12 Va VA 4 6 Vs Vj
61 to 82 8 r-4 3 6 Vs V2
43 to 53 6 Vie 1'-2 V4 2 5 Vie 'A,
W12x120 to 336 8 V2 1'-4
,, % 3 6 "/16 V16
53 to 106 8 Vs r-4 3 6 Va Vz
40 to 50 6 Vl6 1'-2 V4 2 5 Vie
W10x49to112 8 Va 1'-4 3 6 % V2
33 to 45 6 1'-2 V4 2 5 V16
W8x31 to 67 6 Ve 1'-2 2 5 Va Va
24&28 5 Vl6 I'-O V4 2 4 V16 V16
Case IV-A: Flange plates: Select flange-plate width and length and
weld lengths for upper (lighter) column; select flange-
plate thickness and weld size for lower (heavier) column.
Fillers: None.
CaseXV-B:
tOi/„
Flange plates: Same as Case IV-A, except use weld size
/I -I- r on lower column.
Fillers (undeveloped on lower column, shop welded under
flange plates): Select thickness ias{di- du) / 2 + '/is in.
Select width to match flange plate and length as
Z,/2-2in.
Case IV-C:
di = (d„ + '/4 in.)
to (du + '/2 in.)
Flange plates: Same as Case IV-A, except use weld size
A +1 on upper column.
Fillers (undeveloped on upper column, shipped loose):
Select thickness tas(di- du) /2~Vu in. Select width
to match flange plate and length as i / 2 - 2 in.
For lifting devices, see Figure 14-10.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 14-27
Table 14-3 (continued)
Typical Column Splices
Case IV:
All-bolted flange-plated column splices between columns with
depth du nominally 2 in. less than depth di.
"Tyr
CASEIV-A ACTT
^--Erection---,
\ clearance i

Flange plate-
-Uftinghole~
(optional)
Filler under-
spllca plate
f.
7
A+tl^Y'
-VT-
width
Erection •
clearance
Flange plate -
- Uftlng hole -
(optional)
Loose tiller-
(field)
I
I
C&BEJ\l=C
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

14-28 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
Table 14-3 (continued)
Typical Column Splices
Case IV:
Al!-welded flange-plated column splices between columns with
depths du and di nominally the same.
Case IV-D:
di = (du + % in.)
and over
Filler width less than upper column
flange width.
Flange plates: Same as Case IV-A, except see Note 1.
Fillers (developed on upper column, shop welded to
upper column): Select thickness t as {di - du)/2 ~ '/le in.
Select weld size B from AISC Specification; <Vi6-in.
preferred. Select weld length Ls such that
Lli3^A(X+Y)/B>IL/2 + \ in.). Select filler
width greater than flange plate width + 2N but less than
upper column flange width - 2M. Select filler length as
LB, Subject to Note 2.
CaselV-E:
di~{d„ + V% in.)
and over
Filter width greater than upper
column flange width. Use this case
only when Af or A'in Case IV-D are
inadequate for welds B and A.
Flange plates: Same as Case IV-A, except see Note 1.
Fillers (developed on upper column, shop welded to
upper column): Select thickness t as {di - du)/2- VK, in.
Select weld size B from AISC Specification; sVis-in.
preferred. Select weld length LB such that
LB > Y)/S>(L/2 + L in.). Select filler
width as the larger of the flange plate width + 2N and the
upper column flange width + 2M, rounded to the next
higher Vi-in. increment. Select filler length as LB subject
to Note 2.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGNTABLES 14-29
Table 14-3 (continued)
Typical Golumn Splices
Case IV:
All-welded flange-plated column splices between columns with
depths du and di nominally the same.
Width-fill
Width-m
Widlh-spi
Flange—'
plate
CASE IV J
APTT plate
QMEMzE
Weid
A
E70XX
Minimum Fiil Thickness for
Balanced Weld and Plate Shear
Weid
A
E70XX
f
'y
Weid
A
E70XX 36 50
V4 0.26 0.19
0.32 0.23
% 0.38 0.28
0.45 0.33
V2 0.51 0.37
Note 1:
Where welds fasten flange plates to
developed fillers, or developed fillers
to column flanges (Cases IV-E and
V-B), use the table to the right to
check minimum fill thickness for
balanced fill and weld shear strength.
Assume that an E70XX weld with
A = 4, and >'= 6 is to be used
at ftiU sti-ength on an A36 fill '/4~in,
thick. Since this table shows that the minimum fill thickness to develop tliis '/2-in. weld is 0.51 in.,
the '/4-in. fill will be overstressed. A balanced condition is obtained by multiplying the lengtli
y) by the ratio of the minimum to the actual thickness of fill, thus:
0.5!
4
(4 + 6) X
0,25
= 20.4
use (JC+ y) = 20'/2-ui.
Placing this additional increment of (X + )0 can be done by making weld lengths X continuous across
the end of the splice plate and by increasing ¥ (and therefore the plate Length) if required.
Note 2:
If fill length, based on LB, is excessive, place weld of size B across one or both ends of fill and
reduce LB accordingly, but not to less than {L /2 + 1). Omit return welds in Cases IV-E and V-B.
AMERICAN INSTITUTE OF STEEL CONSTRUCTTION

14-30 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
Table 14-3 (continued)
Typical Column Splices
Case V:
All-welded flange-plated column splices between columns with
depth du nominally 2 in. less than depth du
Case V-A:
Fillers on upper column developed
for beaiing on lower column. Filler
width less than upper column flange
width.
Flange plates: Same as Case I V-A, except see Note 1.
Fillers (shop welded to upper column): Select thickness as
{DI - DT,) / 2 - '/i6 in. Select weld size .8 from AISC
Specification; <Vi6 in. preferred. Select weld length LB
to develop bearing strengtli of the filler but not less than
(X / 2 + 1 '/2 in.). Select filler width greater than the
flange plate width + 2N but less than the upper column
flange width - 2M. See Case IV for Mand N.
Case V-B:
Same as Case V-A except filler width
is greater than upper column flange
width. Use this case only when M or
N in Case V-A are inadequate for
weld A, or when additional
filler bearing area is required.
Flange plates: Same as Case IV-A, except see Note 1.
Fillers (shop welded to upper column): Select thickness as
(rf/ -DU)/2 - VI6 in. Select weld size B from AISC
Specification; ^/U in. preferred. Select weld length LB
to develop bearing strength of the filler but not less than
(T/2+ 1^2 in.). Select filler width as the larger of the
flange plate width + 2N and the upper column flange
width + 2M, rounded to the next higher % in. increment.
Filler length as LB, subject to Note 3.
Note 3:
If fill length, based on LB, is excessive, place weld of size B across end of fill and reduce LB by
one-half of such additional weld length, but not to less than (X /2 + 1V2). Omit return welds in
Case V-B.
AMERICAN INSTITUTE OF STEEL CoNSTRUcTIOn

DESIGNTABLES 14-31
Table 14-3 (continued)
Typical Column Splices
Case V:
All-welded flange-plated column splices between columns with
depth du nominally 2 in. less than depth d/.
a
ic:
"O
- Erection--h
claarance /
M-
- Lifting hole -
(optional)
CASEV-A
^Width-fill,
Width-spl.
N
/ ^
7"
WL^
o,
V
-Filler
-Flange'
plate
Erection-
clearance
- Lifting hole -
(optional)
Width-fill
Width-spl.
-Filler
-Flange
plate
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTTION

14-32 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES...
Table 14-3 (continued)
Typical Column Splices
Case VI:
Combination bolted and welded column splices between columns
with depths (/„ and d/ nominally the same.
Flange Plate Bolts Welds
Length No. Length
of Gage Size of Gage Size
Column Size
Width Thk.
Lu U
Rows
S
A
X Y
W14x455 & over 14 Va 9V4 9 3 IIV2 V2 5 1
311 to 426 12 9V4 8 3 9V2 h 4 6
211 to 283 12 V2 9V4 8 3 9V2 % 4 6
90 to 193 12 6V4 8 2 9V2 4 6
61 to 82 6 Vs 6V4 8 2 5V, 3 6
43 to 53 6 5/16 6V4 7 2 3V2 % 2 ; 5
W12x1201o336 8 V2 6V4 8 2 5V2 % 3 6
53 to 106 8 Va 6V4 8 2 5h V16 3 6
40 to 50 6 6V4 7 2 3V2 V4 2 5
W10x49 to 112 .8 6V4 8 2 5V2 V,a 3 6
33 to 45 6 6V4 7 2 3V2 V4 2 5
W8x31 to 67 • 6 Ve 6V4 7 2 3V2 2 5
24 & 28 5 6V4 6 2 3V2 V4 2 4
Gages shown may be modified if necessary to accommodate fittings elsewhere on the columns.
Case VI-A:
d]={d„ + % in.)
to (du + Vg in.)
Flange plates: Select flange plate width, bolts, gage and
length Lu for upper column; select flange plate thickness,
weld size A, weld lengths X and Y, and length ii for
lower column. Total flange plate length is Lu + Ll (see
table above).
Fillers: None.
Shims: Furnish sufficient strip shims 2'/2x'/g to obtain 0 to
Vi6-tn. clearaiKe on each side.
CaseVI-B:
di = (du - V4 in.)
to (du + H in.)
Flange plates: Same as Case VI-A, except use weld size
A +1 on lower column.
Fillers (shop welded to lower column under flange plate):
Select thickness t as Vj-in. for d! = and
di = (du + Vg in.) or as Vjs-in. for di = (du - Vg in.) and
di = {du - Vi in.). Select width to match flange plate and
length as li - 2 in.
Shims: Same as Case VI-A.
Case VI-C:
di = {du + % in.)
and over
Flange plates: Same as Case VI-A.
Fillers (shop welded to upper column): Select thickness t
as (di ~ du)/2 minus '/g'ii- or V[6-in,, whichever results
in '/g-in. multiples of fill thickness. Select weld size B as
minimum size from. AISC Specification Section J2.
Select weld length as Lv ~ V4 in. Select filler width as
flange plate width and filler length as Lv ~ '/4-in.
Shims: Same as Case VI-A,
AMERICAN INSTTRUTE OF STEEL CONSTRUCTION

DESIGN TABLES 14-33
Table 14-3 (continued)
Typical Column Splices
Case VI:
Combination bolted and welded column splices between columns
with depths (/„ and di nominally the same.
—AT-
- Erection-
cleamnae
d,
Flange
plate
Lifting hole
(optional)
QASE vt-A
WT
J
Lifting Ma
(optional)
Widtii
- Flange
plate
s;
-1%
-Filler under flange plate
MtPTT i
4
CASEVhQ
AMERICAN INSTITUTE OF STEEL CONSTRUCTIBN

14-34 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
Table 14-3 (continued)
Typical Column Splices
Case VII:
Combination bolted and welded flange-plated column splices between
columns with depth du nominally 2 in. less than depth di.
Fillers developed for bearing.
CaseVII-A:
Fiiiers of width less than upper
column flange width.
Flange plates: Same as Case VI-A.
Fiiiers (shop welded to upper column): Select fdler
thickness f as (rf; - d„) / 2 minus Vg-in. or Vi6-in.,
whichever results in Vg-in. multiples of filler tliickness.
Select weld size B from AISC Specification; <Vi6-in.
preferred. Select weld length LB to develop bearing
strength of filler. Select filler width not less than flange
plate width but not greater than upper column flange
width -2A-/ (see Case IV), Select filler length as LB,
subject to Note 4.
Case Vll-B:
Filler of width greater than upper
column flange width. Use Case .
Vll-B only when fillers must be
widened to provide additional
bearing area.
Flange plates: Same as Case VI-A.
Fillers (shop weided to upper columns): Same as Case
VII-A except select filler width as upper column flange
width + 2M(see Case IV) rounded to the next larger
Vj-in. increment.
Note 4:
If fill length based on LB is excessive, place weld of size B across end of fill and reduce LB by
one-half of such additional weld length, but not less than LV. Omit return welds. Case VIl-B.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 14-35
Table 14-3 (continued)
Typical Column Splices
Case VII:
Combination bolted and welded flange-plated column splices between
columns with depth du nominally 2 in. less than depth d/.
Fillers developed for bearing.
Width-fillsr
Lifting hole
(optional)
CASEVJhA
-Flange Plate
Width
flange plate
-Erection
clearance
M-
Width-filler
f
V
fm
Lifting hole
(optional)
CASEMhB
. Width,
-M
-Flange Plate
i
i
~ hVY
-WT
flange plate
AMERICAN INSTN-UTE OF STEEL CONSTRUCTION

14-36 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
Table 14-3 (continued)
Typical Column Splices
Case VIII:
Directly welded flange column splices between columns
with depths du and di nominally the same.
These types of Alices exhibit versatility. The flanges may be partiaJ-joint-penetration vveided as in
Cases VIIIA and VIIIB, or complete-joint-penetration welded as in Cases VIIIC, VlllD, and VIIIE
The webs may be spliced using the chanflel(s) as shown in Cases VIIIA, VHIB, VIHC, and VIUD,
or complete-joint-penetration welded as shown in Case VIIIE. The use of a channel or channels
at the web splice provides a higher degree of restraint during the erection phase than does a plate
or plates. The use of partial-joint-penetration flange welds provide greater stability during the
erection phase than do complete-joint-penetration welds.
The adequacy of any splice arrangement must be confirmed by the user. This is especially tme in
regions where high winds are prevalent or when the concentrated weight of the fabricated column
is significantly off its centerline.When using partial-joint-penetration flange welds, a land width of
'/4-in. or greater should be used. The weld size.s are based on the thickness of the thinner column
flange, regardless of whether it is the ufiper or lower column.
When column flange thicknesses are less than '/2-m. it may be more efficient to use flange splice
plates as shown in previous cases.
See the table below for minimum effective weld sizes for partial-penetration groove welds.
Partial Penetration Groove Width
'Thickness of
Column Material Minimum Effective
Tu Weld Size E
''Over V2 to 3/4, incl. V4
Over 3/4 to IV2, incl. 5/16
Over 1V2 to 2 V4, Incl. 3/8
Over 2V4 to 6, incl. V2
Over 6
^Thickness of thinner part joined.
"For less tlian V2, use splice plates.
Back gouge
or use back-
up bars
J ^
—^

land
(a) Partial-joint-penetration
groove welds
(b) Complete-joint-penetration
groove welds
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 14-37
Table 14-3 (continued)
Typical Column Splices
Case VIII:
Directly welded flange column splices between columns
with depths du and di nominally the same.
For W8 &
W10 columns
For others
^ ^
PJP>
i
++-
'%6dia. holes in column
'^/ledia. holes in channel
with %dia. A325 bolts
2 washers each
lifting hole optional
1-C6x10.5 for we column
^1-C7x12.25 for W10 column ,
1-C9x15 for W12 column & over
Shim as required
(NOTE: Use 2 channels for
columns over 30'-0" long or
oyer 100 lb per foot)
CASE VIIIA
All-bolted web splice, partial-joint-penetration flange welds
du
For W8 &
W10 columns
For others i 2 .2 i
PJP>
Note; User to verify
weld accessibility
of channel to lower
column shaft, or
consider the use
of a bolted-bolted
connection.
It
4
1/
Returny^^^g^
CASEMLB
dia. holes in column
^^/iedia. holes in channel
with %dia. A325 bolts
2 washers each
lifting hole optional
1-06x10.5 for we column
-•1-07x12.25 for W10 column
1-09x15 for W12 column &'over
Shim as required
(NOTE: Use 2 channels for
columns over 30'-0" long or
over 100 lb per foot)
i
i
Combination bolted and welded web splice, partial-joint-penetration flange welds
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

14-38 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
Table 14-3 (continued)
Typical Column Splices
CaseVIII:
Directly welded flange column splices between columns
with depths c/„ and di nominally the same.
CASE VIII C
All-bolted wab splice, complete-joint-penetratmn flange W0lcls
Note: User to verify
weld accessibility
of channel to lower
column shaft, or
consider the use
of a bolted-bolted
connection.
'®/)6d/a. holes in column
'^/red/a. holes in channel
with %dia. A325 bolts
2 washers each
lifting hole optional
•2-06x10.5 for W8 column
2-07x12.25 for WW column
2-09x15 for W12 column <S over
Shim as required
Returnyg^^,
CASE VIIID
Combination bolted and welded web splice, partial-joint-penetration flange welds
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 14-39
Table 14-3 (continued)
Typical Column Splices
Case VIU:
Directly welded flange column splices between columns
with depths du and di nominally the same.
For W8 &
W10 columns
£or_others
1'/2 iVz
'Full pen.y-
*Weld column flanges
first, remove channels,
then weld column web.
u:
u;
*Fullpen^

•4
<oH
trt
! i I
d,
'3/jsrf/a. holes in column
'^^/ledia. holes in channel
with%dia. A325 bolts
2 washers each
^ lifting hole optional
N,
2-06x10.5 for W8 column ;
2-07x12.25 for W10 column
2-09x15 for \N12 column & over
Shim as required
CASBMLE
w&b splice, completa-joint-penetration flange and web welds
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

14-40 DESIGN OF BEAM BEARrNG PLATES, COLUMN BASE PLATES...
Table 14-3 (continued)
Typicdl Column Splices
Case IX:
Butt-plated column splices between columns with
depth du nominally 2 in. less than depth d/.
Butt plate: Select a butt plate thickness of 1 V'2-in. for W8 over WlO columns and 2 in. for all other
combinations. Select butt plate width and length not less than w; and d/ assuming the lower is the
larger column shaft.
Weld: Select weld to upper column based on the thicker of tji, and tp. Select weld to lower column
based on the,thicker of t^ and tp. The edge preparation required by the groove weld is usually
perfonned on the column shafts. However, special cases such as when the butt plate must
be field welded to the lower column require special consideration.
Erection: clip angles, such as those shown in the sketch below, help to locate and stabilize the upper
column during the erection phase.
AMERICAN INSTRRUXE OF STEEL, GoNSTRUcrtoN

DESIGN TABLES 14-41
Table 14-3 (continued)
Typical Column Splices
Case IX:
Butt-plated column splices between columns with
depth du nominally 2 in. less than depth di.
du
.Ci
iLi
/Erection
*tfu lugs
X'
L, , Lt—Sj
1 r"
j
-.•tf,
.; to
W,
CASES
i
i
N,
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

14-42 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
Table 14-3 (continued)
Typical Column Splices
Cases X, XI, XII
Special column splices.
Case X: Directly welded splice
between tubular and/or box-shaped
columns.
Welds may be either partial-joint- or complete-joint-
penetration. The strength of partial-joint-penetration welds
is a function of the column wall thickness and appropriate
guidelines for minimum land width and effective weld size
must be observed. This type of splice usually requires
lifting and alignment devices. For lifting devices see
Figure 14-10. For alignment devices see Figure 14-11.
Case XI: Butt-plated splices between
tubular and/or box-shaped columns.
The butt-plate thickness is selected based on the AISC
Specification. Welds may be either partial- or complete-
penetration-groove welds, or, if adequate space is
provided, fillet welds may be used. Weld strength is
based on the thickness of connected material. See
comments under Case X above regarding lifting and
alignment devices.
CaseXII:
Butt-plated column splices between
W-shape columns and tubular or
box-shaped columns.
See comments under Case XI above.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 14-43
Table 14-3 (continued)
Typical Column Splices
Cases X, XI, XII
Special column splices.
,Ci
Hi
I t, I
-r- , I
f/
CASEX
S(B)
(B)
iii-g
ii:
^ t,
S(E)
(E)
CASEM
S(E) • •
(B)
S(EJ
(E)-
cz
.sil
-s I
uii-g
i h
CASEM
i
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

14-44 DESIGN OF BEAM BEAJ^G PLATES, COLUMN BASE PLATES... 1
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

LS-1
PART 15
DESIGN OF HANGER CONNECTIONS, BRACKET
PLATES, AND CRANE-RAIL CONNECTIONS
SCOPE 15-2
HANGER CONNECTIONS 15-2
BRACKET PLATES 15-3
CRANE-RAIL CONNECTIONS 15-6
Bolted Splices 15-6
Table 15-1. Crane Rail Splices 15-7
Welded Splices 15-7
Hook Bolt Fastenings 15-8
Rail Clip Fastenings 15-8
Rail Clamp Fastenings 15-8
Patented Rail Clip Fastenings 15-9
DESIGN TABLE DISCUSSION 15-9
PART 15 REFERENCES 15-11
DESIGN TABLES 15-12
Table 15-2. Preliminary Hanger Connection Selection Table 15-12
Table 15-3. Net Plastic Section Modulus, Z„« 15-14
Table 15-4. Dimensions and Weights of Clevises 15-16
Table 15-5. Clevis Numbers Compatible with Various Rods and Pins 15-17
Table 15-6. Dimensions and Weights of Turnbuckles 15-18
Table 15-7. Dimensions and Weights of Sleeve Nuts 15-19
Table 15-8. Dimensions and Weights of Recessed-Pin Nuts 15-20
Table 15-9. Dimensions and Weights of Clevis and Cotter Pins 15-21
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

15-2 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND...
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of hanger connections, bracket plates, and crane-rail connections. For
the design of similar connections for HSS and pipe, see the AISC Specification Chapter K.
HANGER CONNECTIONS
Hanger connections, illustrated in Figure 15-1, are usually made with a plate, tee, angle, or
pair of angles. The available strength of a hanger connection is determined from the appli-
cable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements
(see Part 9). In all cases, the available strength, (|)/?„ or /?„/Q, must exceed the required
strength, Ru or Ra.
(a) Tee hanger
(b) Plate hanger
Fig. 15-1. Typical hanger connections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

BRACKET PLATES 15-3
BRACKET PLATES
A bracket plate, illustrated in Figure 15-2, acts as a cantilevered beam. The available
strength of a bracket plate is determined from the applicable limit states for the bolts (see
Part 7), welds (see Part 8), and connecting elements (see Part 9). Additionally the following
checks must be considered: flexural yielding at Sections a-a in Figure 15-2; flexural rupture
through Sections a-a in Figure 15-2; and shear yielding, local yielding and local buckling
through Sections b-b in Figure 15-2 (Muir and Thornton, 2004). The following procedures
are for a single bracket plate with the applied load Pr, where Pr is the required strength using
LRFD load combinations, Pu, or the required strength using ASD load combinations. Pa- In
all cases, the available strength must equal or exceed the required strength. The seat plate of
Figure 15-2 should be attached to the column and to the bracket plate(s) to prevent sidesway.
The required flexural strength at Sections a-a in Figure 15-2 is
LRFD ASD
Mu = Pue (15-la) Ma = Pae (15-lb)
where
e = distance shown in Figure 15-2, in.
i
(a) bolted' (b) welded
N,- = P-co&Q
I/, = /'.sine
Mr = Pre - Nr {f 12)
Fig. 15-2. Bracket-plate connections.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

15-4 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND...
For flexural yielding, the available strength, (|)M„ or MJQ,, of the bracket plate is
Mn = FyZ (15-2)
(|) = 0.90 Q=1.67
where
Z = gross plastic section modulus of the bracket plate at Sections a-a in Figure 15-2, in,'
For flexural rupture, the available strength, or M„/Q,, of the bracket plate is
M„ = F^Z„et (15-3)
(|) = 0.75 Q = 2.00
where
Znet = net plastic section modulus of the bracket plate at Sections a-a in Figure 15-2, in.'
See Table 15-3 for the determination of Z^, for standard holes. General equations
for determination of Znet follow (Mohr and Murray, 2008).
For an odd number of bolt rows
Zn„=^t{s-d'h)(n^s + d'h) (15-4)
For an even number of bolt rows
(15-5)
4
where
dlt = hole diameter + '/i6, in.
n = number of bolt rows
5 = vertical bolt row spacing, in.
In both cases, the vertical edge distances are assumed to be sH with plate depth of a = ns.
The required shear strength at Sections b-b in Figure 15-2 is
LRFD ASD
V„ = P„sin0 (15-6a) Va = P„sine (15-6b)
For shear yielding, the available strength, (|)V„ or V„/f2, of the bracket plate is
Vn = 0.(>Fytb' (15-7)
<1)=1.00 n=1.50
where
b' - a sinO, in.
a = depth of bracket plate, in.
t = thickness of bracket plate, in.
0 = angle shown in Figure 15-2, degrees
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

BRACKET PLATES
The required normal and flexural strength at Sections b-b in Figure 15-2 is
15-5
LRFD ASD
M„ = P„e-Af„f^l (15-8a)
V 2 Y
Nu = PuCosG (15-9a)
Ma = Pae-Na[~\ (15-8b)
V ^ /
Na = PaCOsQ (15-9b)
For interaction of normal and flexural strengths, the following interaction equation must
be satisfied:
Nr Mc
(15-10)
The nominal normal strength of the bracket plate for the limit states of local yielding and
local buckling is
Nn = Fcrtb',kips (15-11)
and the nominal flexural strength of the bracket plate for the limit states of local yielding
and local buckling is '
M„ = kip-in. (15-12)
Mc-
For design by LRFD
Mr=Mu
Nc^i^Nn
Nr^Nu
=0.90
For design by ASD
-Mn
Q.
Mr =
Nr=Na
Q =1.67
For the limit state of local yielding of the bracket plate,
Fcr^Fy
For the limit state of local buckling of the bracket plate,
Fcr^QFy
i
(15-13)
(15-14)
AMERICAN INSTITUTE OF. STEEL CONSTRUCTION

15-6 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND... DE
When A. < 0.70, the limit state of local buckling need not be considered (that is, g = 1)-
When 0.70 < < 1.41
When 1.41
<2= 1.34-0.486^ (15-15)
G = ^ (15-16)
where
5J475 + 1
(15-17)
a'= = length of free edge, in. (15-18)
cose
CRANE-RAtL CONNECTIONS
Bolted Splices
It is desirable to use properly installed and maintained bolted splice bars in crane-rail con-
nections rather than welded splice bars, which are frequently subject to failure in service.
Standard rail drilling and joint-bar punching, as furnished by manufacturers of light stan-
dard rails for track work, include round holes in rail ends and slotted holes in joint bars to
receive standard oval-neck track bolts. Holes in rails are oversized and punching in joint
bars is spaced to allow Vi6-in. to Vs-in. clearance between rail ends (see manufacturers' cat-
alogs for spacing and dimensions of holes and slots). Although this construction is
satisfactory for track and light crane service, its use in general crane service may lead to high
maintenance and joint failure. Welded splices are therefore preferable.
For best service in bolted splices, it is recommended that tight joints be required for all
rails for crane service. This will require rail ends to be finished, and the special rail drilling
and joint-bar punching tabulated in Table 15-1 and shown in Figure 15-3. Special rail
drilling is accepted by some mills, or rails may be ordered blank for shop drilling. End
finishing of standard rails can be done at the mill. However, light rails often must be end-
finished in the shop or ground at the site prior to erection. In the crane rail range from 104
to 175 lb per yard, rails and joint bars are manufactured to obtain a tight fit and no further
special end finishing, drilling or punching is required. Because of cumulative tolerance vari-
ations in holes, bolt diameters and rail ends, a slight gap may sometimes occur. It may
sometimes be necessary to ream holes through joined bar and rail to permit entry of bolts.
Joint bars for crane service are provided in various sections to match the rails. Joint bars
for light and standard rails can be purchased blank for special shop punching to obtain tight
joints. See manufacturer data for dimensions, material specifications, and the identification
necessary to match the crane-rail section.
Joint-bar bolts, as distinguished from oval-neck track bolts, have straight shanks to the
head and are manufactured to ASTM A449 specifications. Nuts are manufactured to ASTM
A563 Grade B specifications. Alternatively, ASTM A325 bolts and compatible ASTM A563
nuts can be used. Bolt assembly includes an alloy steel spring washer, furnished to American
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

CRANE-RAIL CONNECTIONS X5-7
Table 15-1
Crane Rail Splices
Rail Joint Bar Bolt Washer Wt.2Bats
Bolts, Nuts,
Washers
wt.
per
Yard
Drilling Punctiing
L G Dia. Grip / H
In-
side
Dia.
Thick-
ness
and
Width
Wt.2Bats
Bolts, Nuts,
Washers
wt.
per
Yard
a
Hole
Dia. A B C
Hole
Dia. 0 B C L G Dia. Grip / H
In-
side
Dia.
Thick-
ness
and
Width
Wt.2Bats
Bolts, Nuts,
Washers
wt.
per
Yard
a
Hole
Dia. A B C
Hole
Dia. 0 B C L G Dia. Grip / H
In-
side
Dia.
Thick-
ness
and
Width
With
Rg.
W/0
Ftg.
lb in. in. in. in. in. in. in. in. in. in. in. In. in. in. in. in. in. lb lb
40 1"/128 2V2 5 _ 13/,
415/16- 5 _
20 2 3/16 3/4 115/16 31/2 21/2 13/16 '/16X3/8 20.0 16.5
60 11«/128 "/ie* 2V2 5
-
13/16- 4'5/l6* 5 24 211/16 3/4 2"/32 4 211/16 13/16 '/I6 X 3/8 36.5 29.6
85 2"/64 15/16* 2V2 5 _ 15/16* 415/16* 5 _ 24 311/32 '/8 35/32 43/4 33/16 15/16 '/le X 3/6 56.6 45.3
104 2^/16 1V16 4 5 6 iVie' 715/16 5 6 34 31/2 1 3V2 51/4 31/2 iVw '/l6x1/2 73.5 55.4
135 215/32 1'/|6 4 5 6 1^/16 715/16 5 6 34 IVB 35/8 5I/2 311/16 13/16 '/l6x1/2 _
75.3
171 2% 1'/16 4 5 6 13/16 715/16 5 6 34 _
II/8 4'/16 61/4 41/le 13/16 '/I6 X 1/2 90.8
175 221/32 13/16 4 5 6 13/16 715/16 5 6 34 II/8 41/8 61/4 315/16 13/16 '/16 X 1/2 - 87.7
'Special rail drilling and joint bar punching.
Ftg. = fitting
Railway Engineering and Maintenance of Way Association (AREMA) specifications. After
installation, bolts should be retightened within 30 days and every tlnee months thereafter.
Welded Splices
When welded splices are specified, consult the manufacturer for recommended rail-end
preparation, welding procedure, and method of ordering. Although the joint continuity made
possible by this method of splicing is desirable, the careful control required in all stages of
the welding operation may be difficult to meet during crane-rail installation. Rails should
not be attached to structural supports by welding. Rails with holes for joint bar bolts should
not be used in making welded splices.
1 H 1
• 1
1 H 1
— a — — c —
Rail End
A
' c —I— s -1— D —f— a H— c -
1_
Joint Bar i
40, 60, 85,104 105, 135, 171, 175
Fig. 15-3. Special rail drilling and joint-bar punching.
AMERICAN INSTITUTE OF STEEL CoNSTRUcftoN

15-8 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND...
Hook Bolt Fastenings
Hook bolts (Figure 15-4) are used primarily with light rails when attached to beams that are
too narrow for clamps. Rail adjustment to tVz in. is inherent in the threaded shank. Hook
bolts are paired alternately 3 to 4 in. apart, spaced at about 24 in. on center. The special rail
drilling required must be done in the fabricator's shop. Hook bolts are not recommended for
use with heavy-duty cycle cranes [Crane Manufacturers Association of America (CMAA)
Classes, D, E, and F]. It is generally recommended that hook bolts should not be used in run-
way systems that are longer than 500 ft because the bolts do not allow for longitudinal
movement of the rail.
Rail Clip Fastenings
Rail clips are forged or cast devices that are Shaped to match specific rail profiles. They are
usually bolted to the runway girder flange with one bolt or are sometimes welded. Rail clips
have been used satisfactorily with all classes of cranes. However, one drawback is that when
a single bolt is used, the clip can rotate in response to rail longitudinal movement. This clip
rotation can cause cam action that might force the rail out of alignment. Because of this lim-
itation, rail clips should only be used in crane systems subject to infrequent use, and for
runways less than 500 ft in length.
Rail Clamp Fastenings
Rail clamps are a common method of attachment for heavy-duty cycle cranes. Rail clamps
are detailed to provide two types: tight and floating (see Figure 15-5). Each clamp con-
sists of two plates: an upper clamp plate and a lower filler plate. Dimensions shown are
suggested. See manufacturers' catalogs for recommended gages, bolt sizes and detail
dimensions not shown.
The lower plate is flat and nominally matches the height of the toe of the rail flange.
The upper plate covers the lower plate and extends over the top of the lower rail flange.
In the tight clamp, the upper plate is detailed to fit tightly to the lower tail flange top, thus
"clamping" it tightly in place when the fasteners are tightened. In the past, the tight clamp
had been illustrated with the filler plates fitted tightly against the rail flange toe. This tight
fit-up was rarely achieved in practice and is not considered to be necessary to achieve a
tight type clamp. In the floating type clamp, the pieces are detailed to provide a clearance
both alongside the rail flange toe and below the upper plate. The floating type does not,
in reality, clamp the rail but merely holds the rail within the limits of the clamp clearances.
Fig. 15-4. Hook bolts.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLE DISCUSSION 15-9
High-Strength bolts are recommended for both clamp types. Both types should be spaced
3 ft or less apart.
Patented Rail Clip Fastenings
Each manufacturer's literature presents in detail the desirable aspects of the various designs.
In general, patented rail clips are easy to install due to their range of adjustment and provide
both limitation of lateral movement and allowance for longitudinal movement. Patented
rail clips should be considered as a viable alternative to conventional hook bolts, clips or
clamps. Because of their desirable characteristics, patented rail clips can be used without
restriction except as limited by the specific manufacturer's recommendations. Installations
using patented rail clips sometimes incorporate pads beneath the rail. When this is done, the
lateral float of the rail should be limited as in the case of the tight rail clamps.
DESIGN TABLE DISCUSSION
Table 15-2. Preliminary Hanger Connection Selection Table
Values are given for the available tensile strength per in. of fitting length in bending of a tee
fitting flange or angle leg with = 58 ksi and = 65 ksi. The bending strength is calcu-
lated in terms of which provides good correlation with available test data (Thornton,
1992; Swanson, 2002). Table 15-2 can be used to select a trial fitting once the number and
size of bolts required is known. The number of bolts required must be selected such that the
available tensile strength of one bolt, (j)r„ or r„/Q, exceeds the required tensile force per bolt,
rut or Tat-
4
Tight clamp Floating clamp
Fig. 15-5. Rail clamps.

AMERICAN INSTITUTE OF STEEL CoNSTRUc?rioN

15-10 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND... DE
In this table, it is assumed that equal moments exist at the face of the tee stem or angle
leg and at the bolt line. The available flexural strength of the tee flange, or MJQh, is
determined with
M„ = Mp = F,Z (15-19)
<1)^ = 0.90 12;,= 1.67
In the above equation, the plastic section modulus, Z, per unit length of the angle or tee
flange is
Z = (15-20)
where f is the thickness of the angle or tee flange, in. Thus, for a unit length of the angle or
tee flange the available flexural strength, <t)i,M„ or M„/Qfc, is determined with
= ^ (15-21)
<t)fc = 0.90 Qi=1.67
The tensile force on the fitting per bolt row, 2r„, or 2rat, must be less than the appropriate
(LRFD or ASD) value shown in Table 15-2 times the tributary length per pair of bolts, p
(length perpendicular to the elevation shown in Table 15-2).
Table 15-3. Net Plastic Section Modulus, Znet
Values of the net plastic section modulus Z„ci are given jn Table 15-3 for standard holes
and numbers of fasteners spaced 3 in. on center, the usual spacing for these connections.
The values are determined using Equations 15-4 and 15-5.
Forged Steel Structural Hardware
Table 15-4. Dimensions and Weights of Clevises
Dimensions, weights and available strengths of clevises are listed in Table 15-4.
Table 15-5. Clevis Numbers Compatible with Various
Rods and Pins
Compatibility of clevises with various rods and pins is given in Table 15-5.
Table 15-6. Dimensions and Weights of Tumbuckles
Dimensions, weights and available strengths of tumbuckles are listed in Table 15-6.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

PART 15 REFERENCES 15-11
PART 15 REFERENCES
Mohr, B.A. and Murray, T.M. (2008), "Bending Strength of Steel Bracket and Splice
Plates," Engineering Journal, AISC, Vol. 45, No. 2, 2nd Quarter, pp. 97-106.
Muir, L.S. and Thornton, W.A. (2004), "A Direct Method for Obtaining the Plate Buckling
Coefficient for Double Coped Beams," Engineering Journal, AISC, Vol. 41, No. 3, 3rd
Quarter, pp. 1,33-134.
Swanson, J.A. (2002), "Ultimate Strength Prying Models for Bolted T-Stub Connections,"
Engineering Journal, Vol. 39, No. 3, 3rd Quarter, pp. 136-147, AlSC, Chicago, IL.
Thornton, W.A. (1992), "Strength and Serviceability of Hanger Connections," Engineering
Journal, AISC, Vol. 29, No. 4,4th Quarter,pp. 145-149, Chicago, IL. See also ERRATA,
Engineering Journal, Vol. 33, No. 1,1st Quarter, 1996, pp. 39,40.
AMERICAN INSTRRUTE OF STEEL CONSTRUCTION

15-12 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND...
Fu = 58 ksi
Table 15-2a
Preliminary Hanger
Connection Selection Table
Available tensile strength, kips per Unear in.,
limited by bending of the flange

I 1 i-
1
b. in.
tin. 1 1V4 1V2 1% 2
ASD LRFO ASD LRFO ASO LRFO ASD LRFD ASD LRFD
5/16 3,39 5.10 2.71 4.08 2.26 3.40 1.94 2.91 1.70 2.55
3/a 4.88 7.34 3.91 5.87 3.26 4.89 2.79 4.19 2.44 3.67
Vw 6,65 9.99 5,32 7.99 4.43 6.66 3.80 5.71 3.32 5.00
Vi 8.68 13.1 6.95 10.4 5.79 8.70 4.96 7.46 4.34 6.53
11.0 16.5 8.79 13.2 7.33 11.0 6.28 9.44 5.49 8.26
5/8 13.6 20.4 10.9 16.3 9.04 13.6 7.75 11.7 6.78 10.2
lVt6 16.4 24.7 ; 13.1
19.7 10.9 16.4 9.38 14.1 8.21 12.3
3/4 19.5 29.4 15.6 23.5 13.0 19.6 11.2 16.8 9.77 14.7
22.9 34.5 18.3 27.6 15.3 23.0 13.1 19.7 11.5 17.2
26.6 40.0 21.3 32.0 17.7 26.6 15.2 22.8 13.3 20.0
15/16 30.5 45.9 24.4 36.7 20.3 30.6 17.4 26.2 15.3 22.9
1 34.7 52.2 .27.8 41.8 23.2 34.8 19.8 29.8 17.4 26.1
1V16 39.2 58.9 31.4 47.1 26.1 39.3 22.4 33.7 19.6 29.5
iVs 44.0 66.1 35.2 52.9 29.3 44.0 25.1 37.8 22.0 33.0
13/16 49.0 73.6 39.2 58.9 32.6 49.1 28.0 42.1 24.5 36.8
1V4 54.3 81.6 43.4 65.3 36.2 54.4 31.0 46.6 27.1 40.8
2V4 2% 2% 3 3V4
5/16 1.51 2.27 1.36 2.04 1.23 1.85 1.13 1.70 1.04 1.57
3/a 2.17 3.26 1.95 2.94 1.78 2.67 1.63 2.45 1.50 2.26
7/16 2.95 4.44 2.65 4.00 2.42 3.63 2.22 3.33 2.05 3.07
1/2 3.86 5.80 3.47 5.22 3.16 4.75 2.89 4.35 2.67 4.02
«/l6 4.88 7.34 4.40 6.61 4.00 6.01 3.66 5.51 3.38 5.08
5/6 6.03 9.06 5.43 8.16 4.93 7.41 4.52 6.80 4.17 6.27
"/16 7.30 11.0 6.57 9.87 5.97 8.97 5.47 8.22 5.05 7.59
3/4 8.68 13.1 7.81 11.7 7.10 10.7 6.51 9.79 6.01 9.03
»/l6 10.2 15.3 9.17 13.8 8.34 12.5 7.64 11.5 7.05 10.6
11.8 17.8 10.6 16.0 9.67 14.5 8.86 13.3 8.18 12.3
15/16 13.6 20.4 12.2 18.4 11,1 16.7 10.2 15.3 9.39 14.1
1 15.4 23.2 13.9 20.9 12.6 19.0 11.6 17.4 10,7 16.1
1V16 17.4 26.2 15.7 23.6 14.3 21.4 13.1 19.6 12.1 18.1
1V8 19.5 29.4 17.6 26.4 16.0 24.0 «.7 ^ 22.0 13.5 20.3
13/16 21.8 32.7 19;6 29.4 17.8 26.8 16.3 24.5 15.1 22.6
1V4 24.1 36.3 21.7 32.6 19.7 29.7 18.1 27.2 16.7 25.1
AMERICAN INSTHXITE OF STEEL CONSTRUCTION

DESIGN TABLES 15-13
Fu = 65 ksi
Table 15-2b
Preliminary Hanger
Connection Selection Table
Available tensile strength, kips per linear in.,
limited by bending of the flange
i-
2r„
^in. 1
1V4 J 1% 2
ASD LRFD ASD LRFD nso LRFD
! ASD
LRFD ASD LRFD
3.80 ' 5.71 3.04 4.57 2.53 3.81 ; 2.17 3.26 1,90 2.86
% : 5.47 < 8.23 4.38 6.58 3:65 5.48 3.13 4.70 2.h 4.11
7,45 11.2 5.96 8.96 ; 4.97 7.46 6,40 zM 5.60
V2 14,6 7.78 11.7 •6A9 9.75 5.56 8,36 4.87 7.31
3/16 il2.3 18.5 9.85 14.8 8,21 12.3 7:04 10,6 6.16 9.25
5/8 15.2 22,9 12.2 18.3 10.1 15.2 ^ 8.69: 13,1 7.60 ri.4
"/16 ,18.4 27.7 ,1:4.7 22.1 12.3 18.4 10.5 15,8 9.20 13.8
3/4 -.21.9 32,9 ,17.5 26.3 14.6 21.9 12:5:: 18,8 10.9 ^ 1,6.5
•.:25.7 38,6 20.6 30.9 17.1 25.7 ict 22,1 12.8 .19.3
% 29.8 44.8 23.8 35,8 19,9 29.9 : 17.0 25,6 14.9 22.4
15/16 v34.2 51,4 27.4 ^ 41.1 22.8 34.3 29,4 17.i .25.7
1 38.9 58,5 31.1 ; • 46.8 25.9 39.0 22.2 33,4 19.5 29.3
1V16 43.9 66,0 35:2 52.8 29 3 44.0 : 25.1 37,7 22.0 33.0
iVs 49.3 74.0 39;4 59.2 32.8 49.4 28.1- 42,3 24.6 37.0
1^/16 54.9 82,5 43.9 66.0 3B:6 55.0 31.4 • 47,1 27.4 41.2
1V4 :60.8 91,4 48.7: 73.1 40,5 60,9 34.8 52,2 30.4 45.7
2V4
3 3V4
5/16 1.69 2.54 1;52 2.29 1.38 2,08 1.27 1,90 1.17 1.76
3/8 ••2.43 3.66 2.19 3.29 1.99 2,99 1.82 2,74 1.68 2.53
'/16 3.31 4.98 2.98 4.48 2.71 4,07 2.48 3,73 2.29 3.45
Vz 4.32 6.60 3.89 5,85 3.54 5.32 3.24 4.88 2.99 4.50
9/16 5.47 8.23 4.93 7,40 4.48 6,73 4.11 6.17 3.79 5.70
5/8 6.76 10.2 6.08 9.14 5.53 8,31 5.07 7,62 4.68 7.03
"/16 8.18 12,3 7.36 11.1 6.69 10,1 ' 6.13 9,22 5.66 8.51
3/4 9.73 14,6 8.76 13.2 7.96 12,0 7.30 11.0 6.74 10.1
"/16 11.4 17,2 10.3 15.4 9.34 14,0 8.56 12.9 7.91 11.9
Ve 13.2 19.9 11.9 17.9 10.8 16,3 9.93 14.9 9.17 13.8
"/16 15.2 22.9 13.7 20.6 - 12.4 18,7 : 11.4 17.1 10.5 15.8
1 17.3 26,0 15.6/ 23.4 14.2 21,3 '13.0 19,5 12.6 18.0
1V16 19.5 29,4 17.6 26.4 16.0 24,0 14.6 22,0 13.5 20.3
IVs '21^9 32.9 19.7 29.6 17.9 26,9 24,7 22.8
13/16 24.4 36.7 22.0 33,0 20.0 • 30.0 18.3 27,5 : lieig 25.4
IV4 27.0 , 40.6 24.3 36,6 22.1 33.2 20 3 30,5 18.7'; 28.1
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

15-14 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND... DE
Table 15-3
Net Plastic Section Modulus, Zneu
(Standard Holes)
Net plastic section modulus
taken along this line
# Bolts in
One
Vertical
Row, n
Braclcet
Plate
Depth, d,
in.
Nominal Bolt Diameter, d, in.
# Bolts in
One
Vertical
Row, n
Braclcet
Plate
Depth, d,
in.
% %
# Bolts in
One
Vertical
Row, n
Braclcet
Plate
Depth, d,
in.
Bracket Plate Ttiickness, t, in.
# Bolts in
One
Vertical
Row, n
Braclcet
Plate
Depth, d,
in.
V4
3/
la % % % % %
2 6 1.59 2.39 3.19 3,98 4.78 2.25 3.00 3.75
3 9 3.70 5.55 7.40^ 9.26 11.1 5.25 7.00 8.75
4 12 6.38 9.56 12.8 ^ 15.9 19.1 9.00 12.0 15.0
5 15 10.1 15.1 20.2 25.2 30.2 14.3 19.0 23.8
6 18 14.3 21.5 28.7 35.9 43.0 20.3 27.0 33.8
7 21 19.6 29.5 39.3 49.1 : 58.9 27.8 37.0 46.3
8 24 25.5 38.3 51.0 63.8 76.5 36.0 48.0 60.0
9 27 32.4 48.6 64.8 81.0 97.2 45.8 61.0 76.3
10 30 39.8 59.8 79.7 99.6 ,120 56.3 75.0 93.8
12 36 57:4 86.1 115 143 172 81,0 108 135
14 42 78.1 117 156 195 234 "110 147 184
16 48 102 153 204 255 306 144 192 240
18 54 129 194 258 323 387 182 243 304
20 60 159 239 319 398 478 225 300 375
22 66 193 289 386 482 579 272 363 454
24 72 230 344 459 574 689 324 •432 540
26 78 269 404 539 673 808 380 507 634
28 84 312 469 625 781 937 441 588 735
30 90 359 538 717 896 1080 506 675 844
32 96 408 612 816 1020 1220 576 768 960
34 102 461 691 921 1150 1380 650 867 1080
36 108 516 775 1030 1290 1550 729 972 1220
Notes:
The area redgdipn per hole is assumed to be d^ + VK in.
Bolts spaced 3 In. vertically with 1 Vj-in. edge distance at top and bottom.
Interpolate for mtermediate plate thicknesses.
Values are based on Equations 15-4 aii^ 15-5.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

•SIGN TABLES 15-15
The area reduction per hole is assumed to be cfc + Vi6 In.
Bolts spaced 3 in. vertically witti 1 Vj-in. edge distance at top and bottom.
Interpolate for intermediate plate thicknesses.
Values are based on Equations 15-4 and 15-5.
Table 15-3 (continued)
Net Plastic Section Modulus, Zneu in-^
(Standard Holes)
Net plastic section modulus
taken along this line
# Bolts in
One
Vertical
Row, n
Bracket
Plate
Depth, d,
in.
Nominal Bdt Diameter, rf, in.
# Bolts in
One
Vertical
Row, n
Bracket
Plate
Depth, d,
in.
1
# Bolts in
One
Vertical
Row, n
Bracket
Plate
Depth, d,
in.
Bracl<et Plate Thickness, t, in.
# Bolts in
One
Vertical
Row, n
Bracket
Plate
Depth, d,
in. % VB Va % % Va 1
2 6 4.50 5.25 2.81 3.52 4.22 4.92 5.63
3 9 10.5 12.3 6.59 8.24 9.89 11.5 13.2
4 12 18.0 21.0 11.3 14.1 16.9 19.7 22.5
5 15 28.5 33.3 17.8 22.3 26.8 31.2 35.7
6 18 40.5 47.3 25.3 31.6 38.0 44.3 50.6
7 21 55.5 64.8 34.7 43.4 52.1 60.8 69.4
8 24 72.0 84.0 45.0 56.3 67.5 78.8 90.0
9 27 91:5 107 57.2 71.5 85.8 100 114
10 30 113 131 70.3 87.9 105 123 141
12 36 162 189 101 127 152 177 203
14 42 221 257 138 172 207 241 276
16 48 288 336 180 225 270 315 360
18 54 365 425 228 285 342 399 456
20 60 450 525 281 352 422 492 563
22 66 545 635 340 425 510 596 681
24 72 648 756 405 506 608 709 810
26 78 761 887 475 594 713 832 951
28 84 882 1030 551 689 827 965 1100
30 90 1010 1180 633 791 949 1110 1270
32 96 1150 1340 720 900 1080 1260 1440
34 102 1300 1520 813 1020 1220 1420 1630
36 108 1460 1700 911 1140 1370 1590 1820
4
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

15-16 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND... DE
Table 15-4
Dimensions and Weights
of Clevises
I
t - c
9
Thread: UNC Class 2B
Grip
t
Grip ~ plate tMckness * ii in.
Clevis
Dimensions, in. Weiglit,
lb
Available
Strength, kips*
NuniDer
IVIax.O IVIax. p b n a w t
Weiglit,
lb
ASD LRFD
2 5/8 % iVie 5/8 39/16 IV16 V16 (+V32, -0) 1 5.83 8.75
2V2 % iVa 2V2 1 4 IV4 Vie (+V32, -0) 2.5 • 12.5 18.8
3 1% 13/4 3 IV4 5VI6 IV2 V2 (+V16, -V32) 4 25.0: 37.5
3V2 IV2 2 3V2 IV2 6 1% 1/2 (+V16, -Vie) 6 : 30.0 ; 45.0
4 13/4 2V4 4 1'/4 515/16 2 V2 (+Vie,-Vie) 9 35.0 52.5
5 2V8 2V2 5 2V4 7 2V2 % (+%2, -0) 16 : 6Z5 93.8
6 2V2 3 6 2% 8 3 3/4 (+3/32, -0) 26 90.0 • 135
7 3 3% 7 3 9 3V2 % (+V8, -V16) 36 114 171
8 4 4V4 8 4 lOVs 4 lV2(+V8,-Vl6) 90 225 338
Notes:
Weights and dimensions of clevises are typical; products of all suppliers are essentially similar. User shall verify wrlth the
manufacturer that product meets available strength specifications above.
* Tabulated available strengths are based on iji = 0.50, n = 3.00. Strength at service load corresponds to a 3:1 safety factor
using maximum pin diameter.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 15-17
Dia. of
Table 15-5
Clevis Numbers Compatibie with
Various Rods and Pins
Diameter of Pin, in.
Tap, in.
V2 % '/4 'k 1 IV4 IV2 IV4 2 2V4 2V2 2% 3 3V4 3V2 3'/4 4 4V4
% 2 2 2
% 2 2 2
% 2 2 2 2V2 2V2 2V2 2V2
% 2V2 2V2 2V2 2V2 2V2
'/a 2V2 2V2 2V2 2V2 3
1 3 3 3 3
iVa 3 3 3 3 3V2
IV4 3 3 3 3 3V2
iVa 3 3 3V2 aVz 4.
IV2 3V2 3V2 4 4 5
iVa 4 4 4 5 5 5
IV4 4 5 5 5 5
1'/8 5 5 5 5 ' 5
2 5 5 5 5 5 6 6
2V8 5 5 6 6 6 6
2V4 6 6 6 6 6 7 7
2V8 6 6 6 6 7 7 7 7
2V2 6 6 6 7 7 7 7 7
2^8 7 7 7 7 7 8
2V4 7 7 7 7 8 8,
2'/8 7 8 8 8 8 8 8 8
3 7 8 8 8 8 8 8 8
SVa 8 8 8 8 8 8 8
3V4 8 8 8 8 8 8 8
8 8 8 , 8 8 8 8
3V2 8 8 8 8 8 8
aVa 8 8 8 8 8
3V4 8 8 8 8 8
3'/8 8 8 8
.4 8 8
Notes:
Tabular values assume that the net area of the clevis through the pin hole is greater than or equal to 125% of the net area of the
rod, and is applicable to round rods without upset ends. For other net area ratios, the required clevis size may be calculated by
referring to the dimensions tabulated in Tables'i 5-4 and 7-17.
i
AMERICAN iNSTrruTE OF STEEL CONSTRUCTION

15-18 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND...
Table 15-6
Dimensions and Weights of Turnbuckles
n a n
01' BP
Threads: UNO and 4UHI Class 2B
Dimensions, in. Weight(ib)forLengttia,in. Available
Diameter D,
Strengtt),kips
in.
OA OR
ASD LRFD
a n e
0 10 OA OR
ASD LRFD
a n c e 9
a 10
ifS/
VB 6 9/16 7V8 9/16 11/32 0.42 :2.oo 3.00
Vz 6 25/32 iVw IV16 15/16 0.65 0,90 1.20 3.67 5,50
5/8 6 15/16 Vk "/ie 11/2 0.98 1.35 1.58 2.43 ;5.83 8,75
% 6 IV16 SVe 15/16 123/32 1.45 1.84 2.35 3.06 4.25 8.67 13,0
Vs 6 IV16 8% IV32 1% 1.85 3.02 4.20 5.43 >12.0 18,0
1 6 IV16 8% IV32 21/32 2.60 4.02 , 4.40 6.85 10.0 15.5 23.3
IVa 6 1^/16 9V8 1"/32 2%2 4.06 4.70 6.10 19.3 29.0
1V4 6 13/16 9V8 19/16 2"/32 4,00 6.49 7.13 11.3 13.1 25.3 38,0
I'/e 6 1"/ie 9VB 111/16 2% 6.15 29.0 43,5
IV2 6 9% 12^32 31/32 6.15 9.70 9.13 16.8 19.4 35.0 52.5
15/8 6. .2V2 11 131/32 3%2 9.80 10,9 61,3
13/4 6 2V2 11 2V8 3S/16 9.80 15.3 16.0 19.5 47.2 70,8
1'/8 6 2"/I6 115/8 2% 4 14.0 15.3 62.0 93.0
2 6 2"/I6 115/8 2% 4 14.0 15.3 27.5 62.0 93:0
2V4 6 3VI6 125/8 211/16 45/8 19.6 30.9 43.5 80.0 120
2V2 6 3% 13V2 3 5 23.3 30.9 42.4 100 150
2V4 6 43/le 14% 31/4 55/8 31.5 54.0 iss 188
3 6 4VI6 145/8 35/8 evs 39.5 161 242
31/4 6 5''/I6 16% 3% 6^4 60.5 79.5 203 305
3V2 6 5VI6 16% 3% 6% 60.5 70.0 79.5 203 305
33/4 6 6 18 45/8 81/2 95.0 280 420
4 6 6 18 45/8 81/2 95.0 280 420
41/4 9 6% 22V2 51/4 9% 152 390 585
4V2 9 6% 22V2 51/4 93/4 152 390 585
4'/4 9 63/4 22V2 51/4 93/4 152 390 585
5 9 7V2 24 6 10 200 491 737
Notes:
Weights and dimensions of turnbuckles are typical; products of all suppliers are essentially similar. Users sliali verify with
the manufacturer that product meets strength specifications above.
'Tabulated available strengths are based on ct) = 0.50, Q = 3.00. . -
AMERICAN INSTHXITE OF STEEL CONSTRUCTION

DESIGN TABLES 15-19
Table 15-7
Dimensions and Weights of Sleeve Nuts
. n ._ _ n
X
%
Inspection boh (options!}
ThreamUNCandAmaassSB
Screw
Dia., 0, in.
Dimensions, in. Weight,
ib
Screw
Dia., 0, in.
Short Dia. Long Dia. Length I Nutn Clear c
Weight,
ib
1V16 25/32 4 _ _ 0.27
Vn 25/32 . % . 4 0.34
Vz % 1 4 0.43
«/l6 IV16 5 ,0.64
IV16 , 1%2 5 '0.93
3/4 IV4 . IV16 5 1.12
Vt 1'/ie 15/8 7 IV16 1 1.75
1 1=/8 1"/l9 7 IV16 IVB 2.46
iVs 1"/16 2V16 71/2 15/8 IV4 3.10
1V4 2 .2V4 7V2 15/8 m 4.04
13/9 23/16 2V2 8 1^8 Vk 4.97
Vh 2% 2IV16 8 .1% 15/8 6.16
1=/8 .2^16 2^^/16 8V2 2VI6 13/4 7.36
13/4 2% 3Va 8V2 2VI6 1% 8.87
Vk 215/16 35/16 9 25/16 2 10.4
2 aVe 3V2 9 25/16 2VB 12.2
2V4 3Vz 315/16 9V2 2V2 7?k • 16.?
ZVi 3^8 4% 10 23/4 2% 21.1
2% 41/4 4"/i(i IOV2 2'=/I6 2% 26.7
3 45/8 5V4 11 33/16 3VB 33.2
3V4 5 55/8 11V2 33/8 40.6
ZVi 5% 6 12 35/8 35/8 49.1
3V4 53/4 6% I2V2 3"/I6 3% 58.6
4 evs 6% 13 4VI6 41/8 69.2
4V4 . evz TVa 13V2 43/4 4% 75,0
4V2 678 7'VI6 14 5 4% 90.0
43/4 71/4 8% 141/2 5V4 5 98.0
5 75/8 8^8 15 5V2 51/4 110
5V4 8 9V4 15V2
53/4
5V2 122
5V2 8% 93/4 16 6 5% 142
53/4 8% IOVB I6V2 6V4 6 157
6 91/8 10% 17 &h 6V4 176
Notes:
Weights and dimensions of sleeve nuts are typical; products of all suppliers are essentially similar. User shall verify wltti
the manufacturer that strengths of sleeve nut are greater than the corresponding connecting rod when the same
material is used.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

15-20 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND... DE
Table 15-8
Dimensions and Weights of
Recessed-Pin Nuts
Ok
Tc
CEEH3
Grip
s /
Thread: 6 UN Class 2ASB
Pin Dimensions, in. Nut Dimensions, in.
Pin Dia. Thread Diameter Recess Weight,
d.in.
Thick- Short Long Rough
lb
D r c ness f Dia. Dia. Dia. s
2,21/4 IV2 1 Ve % 3 3% 2% 1/4 1
2V2,Z3/4 2 iVs Vs 1 3% 4V8 3V8 V4 2
3,3V4,3Vz 2V2 1V4 VB iVs 4% 5 3'/8 3/8 3
33/4,4 3 13/8 1V4 4% 5% 4% 3/8 4
4V4,4V2,4V4 3V2 IV2 V4 1% 53/4 6% 5V4 V2 5
5, 5V4 4 1% Vt 1V2 6V4 7V4 : 5% V2 6
5Vz, 53/4,6 4V2 1% Vi 1% 7 8V8 6V2 % 8
6V4, 6V2 5
3/j
1% 76/e 8% 7 % 10
6V4,7 5V2 2
3/j
1% 8Ve 9% 71/2 % 12
iVijVz 5V2 2
3/j
l'/8 8% 10 8 % . 14
73/4,8,8V4 6 2V4
3/j
2V8 9% lO'/e 8% % 19
8V2,83/4,9 6 2V4
3/8
2V8 IOV4 11% 9% 3/4 24
91/4,9Vz 6 2% % 2V4 11 V4 13 10% 3/4 32
93/4,10 6 2%
3/j
2V4 IIV4 13 106/8 3/4 32
Grip
"
"^flo/F'
d_
Notes:
Although nuts may be used on all sizes of pins as
shown above, a detail similar to that shown at the left
is preferable for pin diameters over 10 in. In this detail,
the pin is held in place by a recessed cap at each end
and secured by a bolt passing completely through the
caps and pin. Suitable provisions must be made for
attaching pilots and driving nuts.
Typical Pin Cap Detail for Pins
over Win. India.
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

DESIGN TABLES 15-21
Table 15-9
Dimensions and Weights of Clevis and
Cotter Pins
HORIZOHTAL OR VERTICAL PIN
n
11
i 1
U
1
HORIZOtfTALPIN
r , GWP-f r r
-4
r
I=Length ofph In.
Pin Diameter
in.
Pins with Heads Cotter
Pin Diameter
in.
Head Diameter A,
In.
Weight of One,
lb
Length c,
in.
Diameter p,
in.
Weight per 100,
lb
1V4 IV2 0.19 + 0.35/ 2 'A 2.64
IV2 1% 0.26 + 0.50/ 2V2 1/4 3.10
IV4 2 0.33 + 0.68/ 2% 1/4 .3.50
2 2% 0.47 + 0.89/ 3 % 9.00
21/4 2% 0.58 + 1.13/ Vk % 9.40
2V2 2% 0.70 + 1.39/ 33/4 Ve 10.9
2VA aVs 0.82 + 1.68/ 4 % 11.4
3 sv? 1.02 + 2.00/ 5 V2 28.5
3V4 33/4 1.17 + 2.35/ 5 V2 28.5
3V2 4 1.34 + 2.73/ 6 V2 33.8
3% 4V4 1.51 +3.13/ 6 V2 33.8
4
AMERICAN INSTITUTE OF STEEL CoNSTRUCTioN

15-22 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND... DE
AMERICAN INSTITUTE OF STEEL CONSTRUCTION

16-1
PART 16
SPECIFICATIONS AND CODES
SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS,
JUNE 22, 2010 16.1~i
Preface 16.1-iii
Table of Contents 16.1-v
Symbols 16.1-xxvii
Glossary 16.1-xliii
Specification 16.1-1
Commentary 16.1-241
SPECIFICATION FOR STRUCTURAL JOINTS USING
HIGH-STRENGTH BOLTS, DECEMBER 31, 2009 16.2-i
Preface .16.2-iii
Table of Contents 16.2-v
Symbols 16.2-vii
Glossary 16.2-ix
Specification and Commentary 16.2-1
References 16.2-80
CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS
AND BRIDGES, APRIL 14, 2010 16.3-i
Preface 16.3-iii
Table of Contents 16.3-v
Glossary 16.3-vii
Specification and Commentary 16.3-1
i
AMERICAN INSTITUTE OF STEEL CONSTRUCTTON

Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Specification
for Structural Steel Buildings
June 22, 2010
Supersedes the
Specification for Structural Steel Buildings
dated March 9, 2005
and all previous versions of this specification
Approved by the AISC Committee on Specifications
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
One East Wacker Drive, Suite 700
Chicago, Illinois 60601-1802
ANSI/AISC 360-10
An American National Standard
AISC_PART 16_Spec.1_A:14th Ed. 2/24/11 3:34 PM Page i

Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC © 2010
by
American Institute of Steel Construction
All rights reserved. This book or any part thereof
must not be reproduced in any form without the
written permission of the publisher.
The AISC logo is a registered trademark of AISC.
The information presented in this publication has been prepared in accordance with recog-
nized engineering principles and is for general information only. While it is believed to be
accurate, this information should not be used or relied upon for any specific application
without competent professional examination and verification of its accuracy, suitability and
applicability by a licensed professional engineer, designer or architect. The publication of
the material contained herein is not intended as a representation or warranty on the part of
the American Institute of Steel Construction or of any other person named herein, that this
information is suitable for any general or particular use or of freedom from infringement of
any patent or patents. Anyone making use of this information assumes all liability arising
from such use.
Caution must be exercised when relying upon other specifications and codes developed by
other bodies and incorporated by reference herein since such material may be modified or
amended from time to time subsequent to the printing of this edition. The Institute bears no
responsibility for such material other than to refer to it and incorporate it by reference at the
time of the initial publication of this edition.
Printed in the United States of America
Second Printing: February 2012
AISC_PART 16_Spec.1_A_14th Ed._ 10/05/12 11:15 AM Page ii

16.1–iii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PREFACE
(This Preface is not part of ANSI/AISC 360-10, Specification for Structural Steel Buildings ,
but is included for informational purposes only.)
This Specification is based upon past successful usage, advances in the state of knowledge,
and changes in design practice. The 2010 American Institute of Steel Construction’s
Specification for Structural Steel Buildingsprovides an integrated treatment of allowable
stress design (ASD) and load and resistance factor design (LRFD), and replaces earlier
Specifications. As indicated in Chapter B of the Specification, designs can be made accord-
ing to either ASD or LRFD provisions.
This Specification has been developed as a consensus document to provide a uniform
practice in the design of steel-framed buildings and other structures. The intention is to pro-
vide design criteria for routine use and not to provide specific criteria for infrequently
encountered problems, which occur in the full range of structural design.
This Specification is the result of the consensus deliberations of a committee of structural
engineers with wide experience and high professional standing, representing a wide geo-
graphical distribution throughout the United States. The committee includes approximately
equal numbers of engineers in private practice and code agencies, engineers involved in
research and teaching, and engineers employed by steel fabricating and producing compa-
nies. The contributions and assistance of more than 50 additional professional volunteers
working in ten task committees are also hereby acknowledged.
The Symbols, Glossary and Appendices to this Specification are an integral part of the
Specification. A non-mandatory Commentary has been prepared to provide background for
the Specification provisions and the user is encouraged to consult it. Additionally, non-
mandatory User Notes are interspersed throughout the Specification to provide concise and
practical guidance in the application of the provisions.
The reader is cautioned that professional judgment must be exercised when data or rec-
ommendations in the Specification are applied, as described more fully in the disclaimer
notice preceding this Preface.
This Specification was approved by the Committee on Specifications:
James M. Fisher, Chairman Louis F. Geschwindner
Edward E. Garvin, Vice Chairman Lawrence G. Griffis
Hansraj G. Ashar John L. Gross
William F. Baker Jerome F. Hajjar
John M. Barsom Patrick M. Hassett
William D. Bast Tony C. Hazel
Reidar Bjorhovde Mark V. Holland
Roger L. Brockenbrough Ronald J. Janowiak
Gregory G. Deierlein Richard C. Kaehler
Bruce R. Ellingwood Lawrence A. Kloiber
Michael D. Engelhardt Lawrence F. Kruth
Shu-Jin Fang Jay W. Larson
Steven J. Fenves Roberto T. Leon
John W. Fisher James O. Malley
Theodore V. Galambos Sanjeev R. Malushte
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page iii

16.1–iv PREFACE
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
David L. McKenzie Robert E. Shaw, Jr.
Duane K. Miller Donald R. Sherman
Larry S. Muir W. Lee Shoemaker
Thomas M. Murray William A. Thornton
R. Shankar Nair Raymond H. R. Tide
Jack E. Petersen Chia-Ming Uang
Douglas A. Rees-Evans Donald W. White
Thomas A. Sabol Cynthia J. Duncan, Secretary
The Committee gratefully acknowledges the following task committee members and staff
for their contribution to this document:
Allen Adams Brent Leu
Farid Alfawakhiri J. Walter Lewis
Susan Burmeister William Lindley
Bruce M. Butler Stanley Lindsey
Charles J. Carter LeRoy Lutz
Helen Chen Bonnie Manley
Bernard Cvijanovic Peter Marshall
Robert Disque Margaret Matthew
Carol Drucker Curtis L. Mayes
W. Samuel Easterling William McGuire
Duane Ellifritt Saul Mednick
Marshall T. Ferrell James Milke
Christopher M. Foley Heath Mitchell
Steven Freed Patrick Newman
Fernando Frias Jeffrey Packer
Nancy Gavlin Frederick Palmer
Amanuel Gebremeskel Dhiren Panda
Rodney D. Gibble Teoman Pekoz
Subhash Goel Clarkson Pinkham
Arvind Goverdhan Thomas Poulos
Kurt Gustafson Christopher Raebel
Tom Harrington Thomas D. Reed
Todd Helwig Clinton Rex
Richard Henige Benjamin Schafer
Stephen Herlache Thomas Schlafly
Steve Herth Monica Stockmann
Keith Hjelmstad James Swanson
Nestor Iwankiw Steven J. Thomas
William P. Jacobs, V Emile Troup
Matthew Johann Brian Uy
Daniel Kaufman Amit H. Varma
Keith Landwehr Sriramulu Vinnakota
Barbara Lane Ralph Vosters
Michael Lederle Robert Weber
Roberto Leon Michael A. West
Andres Lepage Ronald D. Ziemian
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page iv

16.1–v
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE OF CONTENTS
SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii
GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xliii
SPECIFICATION
A. GENERAL PROVISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1. Seismic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Nuclear Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
A2. Referenced Specifications, Codes and Standards . . . . . . . . . . . . . . . . . . . . . . . 2
A3. Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1. Structural Steel Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1a. ASTM Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1b. Unidentified Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1c. Rolled Heavy Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1d. Built-Up Heavy Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2. Steel Castings and Forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3. Bolts, Washers and Nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4. Anchor Rods and Threaded Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5. Consumables for Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6. Headed Stud Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
A4. Structural Design Drawings and Specifications . . . . . . . . . . . . . . . . . . . . . . . . 9
B. DESIGN REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B2. Loads and Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B3. Design Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1. Required Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2. Limit States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3. Design for Strength Using Load and Resistance Factor Design
(LRFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4. Design for Strength Using Allowable Strength Design (ASD) . . . . . . . . 11
5. Design for Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6. Design of Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6a. Simple Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6b. Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7. Moment Redistribution in Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8. Diaphragms and Collectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9. Design for Serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10. Design for Ponding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
11. Design for Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
12. Design for Fire Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page v

16.1–vi TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
13. Design for Corrosion Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
14. Anchorage to Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
B4. Member Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1. Classification of Sections for Local Buckling . . . . . . . . . . . . . . . . . . . . . 14
1a. Unstiffened Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1b. Stiffened Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2. Design Wall Thickness for HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Gross and Net Area Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3a. Gross Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3b. Net Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
B5. Fabrication and Erection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B6. Quality Control and Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B7. Evaluation of Existing Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
C. DESIGN FOR STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
C1. General Stability Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1. Direct Analysis Method of Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2. Alternative Methods of Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
C2. Calculation of Required Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1. General Analysis Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2. Consideration of Initial Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2a. Direct Modeling of Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2b. Use of Notional Loads to Represent Imperfections . . . . . . . . . . . . . . . . . 22
3. Adjustments to Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
C3. Calculation of Available Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
D. DESIGN OF MEMBERS FOR TENSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D1. Slenderness Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D2. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D3. Effective Net Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
D4. Built-Up Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
D5. Pin-Connected Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
D6. Eyebars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
E. DESIGN OF MEMBERS FOR COMPRESSION . . . . . . . . . . . . . . . . . . . . . . . . 31
E1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
E2. Effective Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
E3. Flexural Buckling of Members without Slender Elements . . . . . . . . . . . . . . . 33
E4. Torsional and Flexural-Torsional Buckling of Members Without
Slender Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
E5. Single Angle Compression Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page vi

TABLE OF CONTENTS 16.1–vii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
E6. Built-Up Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
E7. Members with Slender Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1. Slender Unstiffened Elements, Q
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2. Slender Stiffened Elements, Q
a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
F. DESIGN OF MEMBERS FOR FLEXURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
F1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
F2. Doubly Symmetric Compact I-Shaped Members and Channels Bent
About Their Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
F3. Doubly Symmetric I-Shaped Members With Compact Webs and
Noncompact or Slender Flanges Bent About Their Major Axis . . . . . . . . . . . 49
1. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2. Compression Flange Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
F4. Other I-Shaped Members With Compact or Noncompact Webs Bent
About Their Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1. Compression Flange Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3. Compression Flange Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4. Tension Flange Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
F5. Doubly Symmetric and Singly Symmetric I-Shaped Members With
Slender Webs Bent About Their Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1. Compression Flange Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3. Compression Flange Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4. Tension Flange Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
F6. I-Shaped Members and Channels Bent About Their Minor Axis . . . . . . . . . . 55
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2. Flange Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
F7. Square and Rectangular HSS and Box-Shaped Members . . . . . . . . . . . . . . . . 56
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2. Flange Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3. Web Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
F8. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2. Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
F9. Tees and Double Angles Loaded in the Plane of Symmetry . . . . . . . . . . . . . . 58
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3. Flange Local Buckling of Tees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4. Local Buckling of Tee Stems in Flexural Compression . . . . . . . . . . . . . 59
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page vii

16.1–viii TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F10. Single Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3. Leg Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
F11. Rectangular Bars and Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
F12. Unsymmetrical Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3. Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
F13. Proportions of Beams and Girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
1. Strength Reductions for Members With Holes in the
Tension Flange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2. Proportioning Limits for I-Shaped Members . . . . . . . . . . . . . . . . . . . . . . 64
3. Cover Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4. Built-Up Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5. Unbraced Length for Moment Redistribution . . . . . . . . . . . . . . . . . . . . . 66
G. DESIGN OF MEMBERS FOR SHEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
G1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
G2. Members With Unstiffened or Stiffened Webs . . . . . . . . . . . . . . . . . . . . . . . . 67
1. Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2. Transverse Stiffeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
G3. Tension Field Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1. Limits on the Use of Tension Field Action . . . . . . . . . . . . . . . . . . . . . . . 70
2. Shear Strength With Tension Field Action . . . . . . . . . . . . . . . . . . . . . . . 70
3. Transverse Stiffeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
G4. Single Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
G5. Rectangular HSS and Box-Shaped Members . . . . . . . . . . . . . . . . . . . . . . . . . .71
G6. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
G7. Weak Axis Shear in Doubly Symmetric and Singly
Symmetric Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
G8. Beams and Girders with Web Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
H. DESIGN OF MEMBERS FOR COMBINED FORCES
AND TORSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
H1. Doubly and Singly Symmetric Members Subject to Flexure
and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1. Doubly and Singly Symmetric Members Subject to Flexure
and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2. Doubly and Singly Symmetric Members Subject to Flexure
and Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3. Doubly Symmetric Rolled Compact Members Subject to
Single Axis Flexure and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page viii

TABLE OF CONTENTS 16.1–ix
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
H2. Unsymmetric and Other Members Subject to Flexure
and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
H3. Members Subject to Torsion and Combined Torsion, Flexure,
Shear and/or Axial force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
1. Round and Rectangular HSS Subject to Torsion . . . . . . . . . . . . . . . . . . . 77
2. HSS Subject to Combined Torsion, Shear, Flexure
and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3. Non-HSS Members Subject to Torsion and Combined Stress . . . . . . . . 79
H4. Rupture of Flanges With Holes Subject to Tension . . . . . . . . . . . . . . . . . . . . . 79
I. DESIGN OF COMPOSITE MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
I1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1. Concrete and Steel Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2. Nominal Strength of Composite Sections . . . . . . . . . . . . . . . . . . . . . . . . 82
2a. Plastic Stress Distribution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2b. Strain Compatibility Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3. Material Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4. Classification of Filled Composite Sections for Local Buckling . . . . . . 83
I2. Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1. Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1a. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1b. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1c. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1d. Load Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1e. Detailing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2. Filled Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2a. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2b. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2c. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2d. Load Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
I3. Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1a. Effective Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1b. Strength During Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2. Composite Beams With Steel Headed Stud or Steel
Channel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2a. Positive Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2b. Negative Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2c. Composite Beams With Formed Steel Deck . . . . . . . . . . . . . . . . . . . . . . 90
2d. Load Transfer Between Steel Beam and Concrete Slab . . . . . . . . . . . . . 90
3. Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4. Filled Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4a. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4b. Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page ix

16.1–x TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I4. Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
1. Filled and Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . 93
2. Composite Beams With Formed Steel Deck . . . . . . . . . . . . . . . . . . . . . . 93
I5. Combined Flexure and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
I6. Load Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2. Force Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2a. External Force Applied to Steel Section . . . . . . . . . . . . . . . . . . . . . . . . . 94
2b. External Force Applied to Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2c. External Force Applied Concurrently to Steel and Concrete . . . . . . . . . 94
3. Force Transfer Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3a. Direct Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3b. Shear Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3c. Direct Bond Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4. Detailing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4a. Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4b. Filled Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
I7. Composite Diaphragms and Collector Beams . . . . . . . . . . . . . . . . . . . . . . . . . 96
I8. Steel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2. Steel Anchors in Composite Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2a. Strength of Steel Headed Stud Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2b. Strength of Steel Channel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2c. Required Number of Steel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2d. Detailing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3. Steel Anchors in Composite Components . . . . . . . . . . . . . . . . . . . . . . . .100
3a. Shear Strength of Steel Headed Stud Anchors in
Composite Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3b. Tensile Strength of Steel Headed Stud Anchors in
Composite Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3c. Strength of Steel Headed Stud Anchors for Interaction of Shear
and Tension in Composite Components . . . . . . . . . . . . . . . . . . . . . . . . 102
3d. Shear Strength of Steel Channel Anchors in
Composite Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3e. Detailing Requirements in Composite Components . . . . . . . . . . . . . . . 104
I9. Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
J. DESIGN OF CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
J1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1. Design Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2. Simple Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3. Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4. Compression Members With Bearing Joints . . . . . . . . . . . . . . . . . . . . . 106
5. Splices in Heavy Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page x

TABLE OF CONTENTS 16.1–xi
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6. Weld Access Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7. Placement of Welds and Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8. Bolts in Combination With Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9. High-Strength Bolts in Combination With Rivets . . . . . . . . . . . . . . . . . 108
10. Limitations on Bolted and Welded Connections . . . . . . . . . . . . . . . . . . 108
J2. Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1. Groove Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2. Fillet Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3. Plug and Slot Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4. Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5. Combination of Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6. Filler Metal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7. Mixed Weld Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
J3. Bolts and Threaded Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1. High-Strength Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2. Size and Use of Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3. Minimum Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4. Minimum Edge Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5. Maximum Spacing and Edge Distance . . . . . . . . . . . . . . . . . . . . . . . . . 122
6. Tensile and Shear Strength of Bolts and Threaded Parts . . . . . . . . . . . . 125
7. Combined Tension and Shear in Bearing-Type Connections . . . . . . . . 125
8. High-Strength Bolts in Slip-Critical Connections . . . . . . . . . . . . . . . . . 126
9. Combined Tension and Shear in Slip-Critical Connections . . . . . . . . . 127
10. Bearing Strength at Bolt Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11. Special Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
12. Tension Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
J4. Affected Elements of Members and Connecting Elements . . . . . . . . . . . . . . 128
1. Strength of Elements in Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2. Strength of Elements in Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
3. Block Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
4. Strength of Elements in Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5. Strength of Elements in Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
J5. Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
1. Fillers in Welded Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
1a. Thin Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
1b. Thick Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
2. Fillers in Bolted Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xi

16.1–xii TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
J6. Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
J7. Bearing Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
J8. Column Bases and Bearing on Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
J9. Anchor Rods and Embedments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
J10. Flanges and Webs with Concentrated Forces . . . . . . . . . . . . . . . . . . . . . . . . 133
1. Flange Local Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2. Web Local Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3. Web Local Crippling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4. Web Sidesway Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5. Web Compression Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6. Web Panel Zone Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7. Unframed Ends of Beams and Girders . . . . . . . . . . . . . . . . . . . . . . . . . 138
8. Additional Stiffener Requirements for Concentrated Forces . . . . . . . . 138
9. Additional Doubler Plate Requirements for Concentrated Forces . . . . 138
K. DESIGN OF HSS AND BOX MEMBER CONNECTIONS . . . . . . . . . . . . . . . 140
K1. Concentrated Forces on HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
1. Definitions of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
K2. HSS-to-HSS Truss Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
1. Definitions of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
2. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
K3. HSS-to-HSS Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
1. Definitions of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
2. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
K4. Welds of Plates and Branches to Rectangular HSS . . . . . . . . . . . . . . . . . . . . 154
L. DESIGN FOR SERVICEABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
L1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
L2. Camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
L3. Deflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
L4. Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
L5. Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
L6. Wind-Induced Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
L7. Expansion and Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
L8. Connection Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
M. FABRICATION AND ERECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
M1. Shop and Erection Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
M2. Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
1. Cambering, Curving and Straightening . . . . . . . . . . . . . . . . . . . . . . . . . 165
2. Thermal Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xii

TABLE OF CONTENTS 16.1–xiii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Planing of Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4. Welded Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5. Bolted Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6. Compression Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7. Dimensional Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8. Finish of Column Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9. Holes for Anchor Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10. Drain Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11. Requirements for Galvanized Members . . . . . . . . . . . . . . . . . . . . . . . . 168
M3. Shop Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
2. Inaccessible Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3. Contact Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4. Finished Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5. Surfaces Adjacent to Field Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
M4. Erection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
1. Column Base Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
2. Stability and Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3. Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4. Fit of Column Compression Joints and Base Plates . . . . . . . . . . . . . . . 169
5. Field Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6. Field Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
N. QUALITY CONTROL AND QUALITY ASSURANCE . . . . . . . . . . . . . . . . . . 170
N1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
N2. Fabricator and Erector Quality Control Program . . . . . . . . . . . . . . . . . . . . . 171
N3. Fabricator and Erector Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
1. Submittals for Steel Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
2. Available Documents for Steel Construction . . . . . . . . . . . . . . . . . . . . . 171
N4. Inspection and Nondestructive Testing Personnel . . . . . . . . . . . . . . . . . . . . . 172
1. Quality Control Inspector Qualifications . . . . . . . . . . . . . . . . . . . . . . . . 172
2. Quality Assurance Inspector Qualifications . . . . . . . . . . . . . . . . . . . . . . 173
3. NDT Personnel Qualifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
N5. Minimum Requirements for Inspection of Structural Steel Buildings . . . . . 173
1. Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2. Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3. Coordinated Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4. Inspection of Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5. Nondestructive Testing of Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . 177
5a. Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5b. CJP Groove Weld NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5c. Access Hole NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5d. Welded Joints Subjected to Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5e. Reduction of Rate of Ultrasonic Testing . . . . . . . . . . . . . . . . . . . . . . . . 178
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xiii

16.1–xiv TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5f. Increase in Rate of Ultrasonic Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5g. Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6. Inspection of High-Strength Bolting . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7. Other Inspection Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
N6. Minimum Requirements for Inspection of Composite Construction . . . . . . 181
N7. Approved Fabricators and Erectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
N8. Nonconforming Material and Workmanship . . . . . . . . . . . . . . . . . . . . . . . . . 182
APPENDIX 1. DESIGN BY INELASTIC ANALYSIS . . . . . . . . . . . . . . . . . . . . . . 183
1.1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
1.2. Ductility Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
1. Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
2. Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
3. Unbraced Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4. Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
1.3. Analysis Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
1. Material Properties and Yield Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 186
2. Geometric Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
3. Residual Stress and Partial Yielding Effects . . . . . . . . . . . . . . . . . . . . . 187
APPENDIX 2. DESIGN FOR PONDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
2.1. Simplified Design for Ponding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
2.2. Improved Design for Ponding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
APPENDIX 3. DESIGN FOR FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
3.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
3.2. Calculation of Maximum Stresses and Stress Ranges . . . . . . . . . . . . . . . . . . 193
3.3. Plain Material and Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
3.4. Bolts and Threaded Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
3.5. Special Fabrication and Erection Requirements . . . . . . . . . . . . . . . . . . . . . . 197
APPENDIX 4. STRUCTURAL DESIGN FOR FIRE CONDITIONS . . . . . . . . . 214
4.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.1.1. Performance Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.1.2. Design by Engineering Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.1.3. Design by Qualification Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.1.4. Load Combinations and Required Strength . . . . . . . . . . . . . . . . . . 215
4.2. Structural Design for Fire Conditions by Analysis . . . . . . . . . . . . . . . . . . . . 215
4.2.1. Design-Basis Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.2.1.1. Localized Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.2.1.2. Post-Flashover Compartment Fires . . . . . . . . . . . . . . . . . . . . . . . . 216
4.2.1.3. Exterior Fires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.2.1.4. Active Fire Protection Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.2.2. Temperatures in Structural Systems under Fire Conditions . . . . . 216
4.2.3. Material Strengths at Elevated Temperatures . . . . . . . . . . . . . . . . 216AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xiv

TABLE OF CONTENTS 16.1–xv
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.2.3.1. Thermal Elongation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.2.3.2. Mechanical Properties at Elevated Temperatures . . . . . . . . . . . . . 217
4.2.4. Structural Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.2.4.1. General Structural Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.2.4.2. Strength Requirements and Deformation Limits . . . . . . . . . . . . . . 218
4.2.4.3. Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.2.4.3a. Advanced Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.2.4.3b. Simple Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.2.4.4. Design Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.3. Design by Qualification Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.3.1. Qualification Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.3.2. Restrained Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
4.3.3. Unrestrained Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
APPENDIX 5. EVALUATION OF EXISTING STRUCTURES . . . . . . . . . . . . . . 223
5.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.2. Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
1. Determination of Required Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
2. Tensile Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
3. Chemical Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4. Base Metal Notch Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5. Weld Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6. Bolts and Rivets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5.3. Evaluation by Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
1. Dimensional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
2. Strength Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
3. Serviceability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.4. Evaluation by Load Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
1. Determination of Load Rating by Testing . . . . . . . . . . . . . . . . . . . . . . . 225
2. Serviceability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
5.5. Evaluation Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
APPENDIX 6. STABILITY BRACING FOR COLUMNS AND BEAMS . . . . . . 227
6.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.2. Column Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
1. Relative Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
2. Nodal Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.3. Beam Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
1. Lateral Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
1a. Relative Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
1b. Nodal Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
2. Torsional Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
2a. Nodal Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
2b. Continuous Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xv

16.1–xvi TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6.4 Beam-Column Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
APPENDIX 7. ALTERNATIVE METHODS OF DESIGN
FOR STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.1. General Stability Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.2. Effective Length Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
1. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
2. Required Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
3. Available Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.3 First-Order Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
1. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
2. Required Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
3. Available Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
APPENDIX 8. APPROXIMATE SECOND-ORDER ANALYSIS . . . . . . . . . . . . . 237
8.1. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.2. Calculation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
1. Multiplier B
1for P-δEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
2. Multiplier B
2for P-ΔEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
COMMENTARY
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
COMMENTARY SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
COMMENTARY GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
A. GENERAL PROVISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
A1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
A2. Referenced Specifications, Codes and Standards . . . . . . . . . . . . . . . . . . . . . 247
A3. Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
1. Structural Steel Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
1a. ASTM Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
1c. Rolled Heavy Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
2. Steel Castings and Forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
3. Bolts, Washers and Nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4. Anchor Rods and Threaded Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
5. Consumables for Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
A4. Structural Design Drawings and Specifications . . . . . . . . . . . . . . . . . . . . . . 252
B. DESIGN REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
B1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
B2. Loads and Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
B3. Design Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
1. Required Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
2. Limit States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xvi

TABLE OF CONTENTS 16.1–xvii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Design for Strength Using Load and Resistance Factor Design
(LRFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
4. Design for Strength Using Allowable Strength Design (ASD) . . . . . . . 260
5. Design for Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
6. Design of Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
7. Moment Redistribution in Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8. Diaphragms and Collectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
10. Design for Ponding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
12. Design for Fire Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
13. Design for Corrosion Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
B4. Member Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
1. Classifications of Sections for Local Buckling . . . . . . . . . . . . . . . . . . . 268
2. Design Wall Thickness for HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3. Gross and Net Area Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3a. Gross Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3b. Net Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
C. DESIGN FOR STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
C1. General Stability Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
C2. Calculation of Required Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
1. General Analysis Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
2. Consideration of Initial Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . 279
3. Adjustments to Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
C3. Calculation of Available Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
D. DESIGN OF MEMBERS FOR TENSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
D1. Slenderness Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
D2. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
D3. Effective Net Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
D4. Built-Up Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
D5. Pin-Connected Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
1. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
D6. Eyebars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288
1. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288
E. DESIGN OF MEMBERS FOR COMPRESSION . . . . . . . . . . . . . . . . . . . . . . . 290
E1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
E2. Effective Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
E3. Flexural Buckling of Members Without Slender Elements . . . . . . . . . . . . . . 292
E4. Torsional and Flexural-Torsional Buckling of Members
Without Slender Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
E5. Single Angle Compression Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
E6. Built-Up Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xvii

16.1–xviii TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
E7. Members with Slender Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
1. Slender Unstiffened Elements, Q
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
2. Slender Stiffened Elements, Q
a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
F. DESIGN OF MEMBERS FOR FLEXURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
F1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
F2. Doubly Symmetric Compact I-Shaped Members and Channels
Bent About Their Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
F3. Doubly Symmetric I-Shaped Members With Compact Webs and
Noncompact or Slender Flanges Bent About Their Major Axis . . . . . . . . . . 310
F4. Other I-Shaped Members with Compact or Noncompact Webs Bent
About Their Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
F5. Doubly Symmetric and Singly Symmetric I-Shaped Members
with Slender Webs Bent About Their Major Axis . . . . . . . . . . . . . . . . . . . . . 312
F6. I-Shaped Members and Channels Bent About Their Minor Axis . . . . . . . . . 312
F7. Square and Rectangular HSS and Box-Shaped Members . . . . . . . . . . . . . . . 312
F8. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
F9. Tees and Double Angles Loaded in the Plane of Symmetry . . . . . . . . . . . . . 314
F10. Single Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
3. Leg Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
F11. Rectangular Bars and Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
F12. Unsymmetrical Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
F13. Proportions of Beams and Girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
1. Strength Reductions for Members With Holes in the
Tension Flange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
2. Proportioning Limits for I-Shaped Members . . . . . . . . . . . . . . . . . . . . . 323
3. Cover Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
5. Unbraced Length for Moment Redistribution . . . . . . . . . . . . . . . . . . . . 324
G. DESIGN OF MEMBERS FOR SHEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
G1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
G2. Members With Unstiffened or Stiffened Webs . . . . . . . . . . . . . . . . . . . . . . . 325
1. Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
2. Transverse Stiffeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
G3. Tension Field Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
1. Limits on the Use of Tension Field Action . . . . . . . . . . . . . . . . . . . . . . 327
2. Shear Strength With Tension Field Action . . . . . . . . . . . . . . . . . . . . . . 328
3. Transverse Stiffeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
G4. Single Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
G5. Rectangular HSS and Box-Shaped Members . . . . . . . . . . . . . . . . . . . . . . . . 329
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xviii

TABLE OF CONTENTS 16.1–xix
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
G6. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
G7. Weak Axis Shear in Doubly and Singly Symmetric Shapes . . . . . . . . . . . . . 330
G8. Beams and Girders with Web Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
H. DESIGN OF MEMBERS FOR COMBINED FORCES AND TORSION . . . . 331
H1. Doubly and Singly Symmetric Members Subject to Flexure
and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
1. Doubly and Singly Symmetric Members Subject to Flexure
and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
2. Doubly and Singly Symmetric Members in Flexure and Tension . . . . . 335
3. Doubly Symmetric Rolled Compact Members Subject to
Single Axis Flexure and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 335
H2. Unsymmetric and Other Members Subject to Flexure
and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
H3. Members Subject to Torsion and Combined Torsion, Flexure, Shear
and/or Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
1. Round and Rectangular HSS Subject to Torsion . . . . . . . . . . . . . . . . . . 341
2. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force . . 342
3. Non-HSS Members Subject to Torsion and Combined Stress . . . . . . . 343
H4. Rupture of Flanges With Holes Subject to Tension . . . . . . . . . . . . . . . . . . . . 343
I. DESIGN OF COMPOSITE MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
I1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
1. Concrete and Steel Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2. Nominal Strength of Composite Sections . . . . . . . . . . . . . . . . . . . . . . . 346
2a. Plastic Stress Distribution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
2b. Strain-Compatibility Aproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
3. Material Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
4. Classification of Filled Composite Sections for Local Buckling . . . . . 348
I2. Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
1. Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
1a. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
1b. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
1c. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
2. Filled Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
2a. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
2b. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
2c. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
I3. Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
1a. Effective Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
1b. Strength During Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
2. Composite Beams With Steel Headed Stud or
Steel Channel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xix

16.1–xx TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2a. Positive Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
2b. Negative Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
2c. Composite Beams With Formed Steel Deck . . . . . . . . . . . . . . . . . . . . . 360
2d. Load Transfer Between Steel Beam and Concrete Slab . . . . . . . . . . . . 360
3. Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
4. Filled Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
I4. Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
1. Filled and Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . 365
2. Composite Beams With Formed Steel Deck . . . . . . . . . . . . . . . . . . . . . 365
I5. Combined Flexure and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
I6. Load Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
2. Force Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
3. Force Transfer Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
3a. Direct Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
3b. Shear Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
3c. Direct Bond Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
4. Detailing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
I7. Composite Diaphragms and Collector Beams . . . . . . . . . . . . . . . . . . . . . . . . 374
I8. Steel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
2. Steel Anchors in Composite Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
2a. Strength of Steel Headed Stud Anchors . . . . . . . . . . . . . . . . . . . . . . . . . 377
2b. Strength of Steel Channel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
2d. Detailing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
3. Steel Anchors in Composite Components . . . . . . . . . . . . . . . . . . . . . . . 380
I9. Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
J. DESIGN OF CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
J1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
1. Design Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
2. Simple Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
3. Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
4. Compression Members With Bearing Joints . . . . . . . . . . . . . . . . . . . . . 384
5. Splices in Heavy Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
6. Weld Access Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
7. Placement of Welds and Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
8. Bolts in Combination With Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
9. High-Strength Bolts in Combination With Rivets . . . . . . . . . . . . . . . . . 388
10. Limitations on Bolted and Welded Connections . . . . . . . . . . . . . . . . . . 388
J2. Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
1. Groove Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
1a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xx

TABLE OF CONTENTS 16.1–xxi
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
2. Fillet Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
2a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
2b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
3. Plug and Slot Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
3a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
3b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
4. Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
5. Combination of Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
6. Filler Metal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
7. Mixed Weld Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
J3. Bolts and Threaded Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
1. High-Strength Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
2. Size and Use of Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
3. Minimum Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
4. Minimum Edge Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
5. Maximum Spacing and Edge Distance . . . . . . . . . . . . . . . . . . . . . . . . . 402
6. Tension and Shear Strength of Bolts and Threaded Parts . . . . . . . . . . . 402
7. Combined Tension and Shear in Bearing-Type Connections . . . . . . . . 404
8. High-Strength Bolts in Slip-Critical Connections . . . . . . . . . . . . . . . . . 406
9. Combined Tension and Shear in Slip-Critical Connections . . . . . . . . . 410
10. Bearing Strength at Bolt Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
12. Tension Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
J4. Affected Elements of Members and Connecting Elements . . . . . . . . . . . . . . 411
1. Strength of Elements in Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
2. Strength of Elements in Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
3. Block Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
4. Strength of Elements in Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 413
J5. Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
J7. Bearing Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
J8. Column Bases and Bearing on Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
J9. Anchor Rods and Embedments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
J10. Flanges and Webs with Concentrated Forces . . . . . . . . . . . . . . . . . . . . . . . . 415
1. Flange Local Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
2. Web Local Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
3. Web Local Crippling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
4. Web Sidesway Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
5. Web Compression Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
6. Web Panel-Zone Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
7. Unframed Ends of Beams and Girders . . . . . . . . . . . . . . . . . . . . . . . . . 421
8. Additional Stiffener Requirements for Concentrated Forces . . . . . . . . 422
9. Additional Doubler Plate Requirements for Concentrated Forces . . . . 423
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxi

16.1–xxii TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
K. DESIGN OF HSS AND BOX MEMBER CONNECTIONS . . . . . . . . . . . . . . . 425
K1. Concentrated Forces on HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
1. Definitions of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
2. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
3. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
K2. HSS-to-HSS Truss Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
1. Definitions of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
2. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
3. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
K3. HSS-to-HSS Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
K4. Welds of Plates and Branches to Rectangular HSS . . . . . . . . . . . . . . . . . . . . 437
L. DESIGN FOR SERVICEABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
L1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
L2. Camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
L3. Deflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
L4. Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
L5. Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
L6. Wind-Induced Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
L7. Expansion and Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
L8. Connection Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
M. FABRICATION AND ERECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
M1. Shop and Erection Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
M2. Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
1. Cambering, Curving and Straightening . . . . . . . . . . . . . . . . . . . . . . . . . 445
2. Thermal Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
4. Welded Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
5. Bolted Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
10. Drain Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
11. Requirements for Galvanized Members . . . . . . . . . . . . . . . . . . . . . . . . 447
M3. Shop Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
3. Contact Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
5. Surfaces Adjacent to Field Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
M4. Erection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
2. Stability and Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
4. Fit of Column Compression Joints and Base Plates . . . . . . . . . . . . . . . 448
5. Field Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
N. QUALITY CONTROL AND QUALITY ASSURANCE . . . . . . . . . . . . . . . . . . 450
N1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
N2. Fabricator and Erector Quality Control Program . . . . . . . . . . . . . . . . . . . . . 451
N3. Fabricator and Erector Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
1. Submittals for Steel Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxii

TABLE OF CONTENTS 16.1–xxiii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Available Documents for Steel Construction . . . . . . . . . . . . . . . . . . . . . 452
N4. Inspection and Nondestructive Testing Personnel . . . . . . . . . . . . . . . . . . . . . 453
1. Quality Control Inspector Qualifications . . . . . . . . . . . . . . . . . . . . . . . . 453
2. Quality Assurance Inspector Qualifications . . . . . . . . . . . . . . . . . . . . . . 453
3. NDT Personnel Qualifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
N5. Minimum Requirements for Inspection of Structural Steel Buildings . . . . . 454
1. Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
2. Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
3. Coordinated Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
4. Inspection of Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .456
5. Nondestructive Testing of Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . 460
5a. Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
5b. CJP Groove Weld NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
5c. Access Hole NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
5d. Welded Joints Subjected to Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
5e. Reduction of Rate of Ultrasonic Testing . . . . . . . . . . . . . . . . . . . . . . . . 462
5f. Increase in Rate of Ultrasonic Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 463
6. Inspection of High-Strength Bolting . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
7. Other Inspection Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
N6. Minimum Requirements for Inspection of Composite Construction . . . . . . 466
N7. Approved Fabricators and Erectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
APPENDIX 1. DESIGN BY INELASTIC ANALYSIS . . . . . . . . . . . . . . . . . . . . . . 468
1.1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
1.2. Ductility Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
1. Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
2. Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
3. Unbraced Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
4. Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
1.3. Analysis Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
1. Material Properties and Yield Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 474
2. Geometric Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
3. Residual Stresses and Partial Yielding Effects . . . . . . . . . . . . . . . . . . . 474
APPENDIX 2. DESIGN FOR PONDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
APPENDIX 3. DESIGN FOR FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
3.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
3.2. Calculation of Maximum Stresses and Stress Ranges . . . . . . . . . . . . . . 479
3.3. Plain Material and Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
3.4. Bolts and Threaded Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
3.5. Special Fabrication and Erection Requirements . . . . . . . . . . . . . . . . . . 482
APPENDIX 4. STRUCTURAL DESIGN FOR FIRE CONDITIONS . . . . . . . . . 483
4.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxiii

16.1–xxiv TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.1.1. Performance Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
4.1.2. Design by Engineering Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 483
4.1.4. Load Combinations and Required Strength . . . . . . . . . . . . . . . . . . 484
4.2. Structural Design for Fire Conditions by Analysis . . . . . . . . . . . . . . . . . . . . 485
4.2.1. Design-Basis Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
4.2.1.1. Localized Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
4.2.1.2. Post-Flashover Compartment Fires . . . . . . . . . . . . . . . . . . . . . . . . 485
4.2.1.3. Exterior Fires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
4.2.1.4. Active Fire Protection Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
4.2.2. Temperatures in Structural Systems Under Fire Conditions . . . . . 486
4.2.3. Material Strengths at Elevated Temperatures . . . . . . . . . . . . . . . . 490
4.2.4. Structural Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4.2.4.1. General Structural Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4.2.4.2. Strength Requirements and Deformation Limits . . . . . . . . . . . . . . 491
4.2.4.3. Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4.2.4.3a. Advanced Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4.2.4.3b. Simple Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
4.2.4.4. Design Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
4.3. Design by Qualification Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
4.3.1. Qualification Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
4.3.2. Restrained Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
4.3.3. Unrestrained Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
APPENDIX 5. EVALUATION OF EXISTING STRUCTURES . . . . . . . . . . . . . . 497
5.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
5.2. Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
1. Determination of Required Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
2. Tensile Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
4. Base Metal Notch Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
5. Weld Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
6. Bolts and Rivets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
5.3. Evaluation by Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
2. Strength Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
5.4. Evaluation by Load Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
1. Determination of Load Rating by Testing . . . . . . . . . . . . . . . . . . . . . . . 499
2. Serviceability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
5.5. Evaluation Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
APPENDIX 6. STABILITY BRACING FOR COLUMNS AND BEAMS . . . . . . 501
6.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
6.2. Column Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
6.3. Beam Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
1. Lateral Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
2. Torsional Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxiv

TABLE OF CONTENTS 16.1–xxv
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6.4 Beam-Column Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
APPENDIX 7. ALTERNATIVE METHODS OF DESIGN FOR STABILITY . . 509
7.2. Effective Length Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
7.3. First-Order Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
APPENDIX 8. APPROXIMATE SECOND-ORDER ANALYSIS . . . . . . . . . . . . . 520
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxv

16.1–xxvi TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxvi

16.1–xxvii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SYMBOLS
Some definitions in the list below have been simplified in the interest of brevity. In all cases,
the definitions given in the body of the Specificationgovern. Symbols without text defini-
tions, used only in one location and defined at that location are omitted in some cases. The
section or table number in the right-hand column refers to the Section where the symbol is
first used.
Symbol Definition Section
A
BM Cross-sectional area of the base metal, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . J2.4
A
b Nominal unthreaded body area of bolt or threaded part, in.
2
(mm
2
) . . . . . J3.6
A
bi Cross-sectional area of the overlapping branch, in.
2
(mm
2
) . . . . . . . . . . . K2.3
A
bj Cross-sectional area of the overlapped branch, in.
2
(mm
2
) . . . . . . . . . . . . K2.3
A
c Area of concrete, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
A
c Area of concrete slab within effective width, in.
2
(mm
2
) . . . . . . . . . . . . . I3.2d
A
e Effective net area, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2
A
e Summation of the effective areas of the cross section based on
the reduced effective width, b
e, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . E7.2
A
fc Area of compression flange, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . G3.1
A
fg Gross area of tension flange, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . F13.1
A
fn Net area of tension flange, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . F13.1
A
ft Area of tension flange, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.1
A
g Gross cross-sectional area of member, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . B3.7
A
g Gross area of composite member, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . I2.1
A
gv Gross area subject to shear, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . J4.3
A
n Net area of member, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B4.3
A
n Area of the directly connected elements, in.
2
(mm
2
) . . . . . . . . . . . . Table D3.1
A
nt Net area subject to tension, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . J4.3
A
nv Net area subject to shear, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J4.3
A
pb Projected area in bearing, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J7
A
s Cross-sectional area of steel section, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . I2.1b
A
sa Cross-sectional area of steel headed stud anchor, in.
2
(mm
2
) . . . . . . . . . . I8.2a
A
sf Area on the shear failure path, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . D5.1
A
sr Area of continuous reinforcing bars, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . I2.1
A
sr Area of adequately developed longitudinal reinforcing steel within
the effective width of the concrete slab, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . I3.2d
A
t Net area in tension, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.4
A
w Area of web, the overall depth times the web thickness, dt w,
in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G2.1
A
we Effective area of the weld, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
A
wei Effective area of weld throat of any ith weld element, in.
2
(mm
2
) . . . . . . . J2.4
A
1 Loaded area of concrete, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.3a
A
1 Area of steel concentrically bearing on a concrete support, in.
2
(mm
2
) . . . . J8
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxvii

16.1–xxviii SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
A
2 Maximum area of the portion of the supporting surface that is
geometrically similar to and concentric with the loaded area, in.
2
(mm
2
) . . . J8
B Overall width of rectangular HSS member, measured 90 ° to the
plane of the connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . Table D3.1
B Overall width of rectangular steel section along face transferring
load, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.3c
B
b Overall width of rectangular HSS branch member, measured 90 °
to the plane of the connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
B
bi Overall width of the overlapping branch, in. (mm) . . . . . . . . . . . . . . . . . . K2.3
B
bj Overall width of the overlapped branch, in. (mm) . . . . . . . . . . . . . . . . . . K2.3
B
p Width of plate, measured 90 °to the plane of the connection,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .K1.1
B
1 Multiplier to account for P-δ effects . . . . . . . . . . . . . . . . . . . . . . . . . . . App.8.2
B
2 Multiplier to account for P-Δ effects . . . . . . . . . . . . . . . . . . . . . . . . . . App.8.2
C HSS torsional constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.1
C
b Lateral-torsional buckling modification factor for nonuniform
moment diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
C
d Coefficient accounting for increased required bracing stiffness
at inflection point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.1
C
f Constant from Table A-3.1 for the fatigue category . . . . . . . . . . . . . . App. 3.3
C
m Coefficient accounting for nonuniform moment . . . . . . . . . . . . . . . App. 8.2.1
C
p Ponding flexibility coefficient for primary member in a
flat roof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
C
r Coefficient for web sidesway buckling . . . . . . . . . . . . . . . . . . . . . . . . . . J10.4
C
s Ponding flexibility coefficient for secondary member in a
flat roof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
C
v Web shear coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G2.1
C
w Warping constant, in.
6
(mm
6
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
C
2 Edge distance increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table J3.5
D Outside diameter of round HSS, in. (mm) . . . . . . . . . . . . . . . . . . . . Table B4.1
D Outside diameter of round HSS main member, in. (mm) . . . . . . . . . . . . . K2.1
D Nominal dead load, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.2
D
b Outside diameter of round HSS branch member, in. (mm) . . . . . . . . . . . . K2.1
D
u In slip-critical connections, a multiplier that reflects the ratio of
the mean installed bolt pretension to the specified minimum
bolt pretension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.8
E Modulus of elasticity of steel=29,000 ksi (200 000 MPa) . . . . . .Table B4.1
E
c Modulus of elasticity of concrete = , ksi
MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
E
c(T) Modulus of elasticity of concrete at elevated temperature,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.2.3.2
E
s Modulus of elasticity of steel=29,000 ksi (200 000 MPa) . . . . . . . . . . . I2.1b
E(T) Elastic modulus of elasticity of steel at elevated temperature,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.2.4.3
wfcc
15.′
(. ,
.
0 043
15
wfcc′
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxviii

SYMBOLS 16.1–xxix
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
EI
eff Effective stiffness of composite section, kip-in.
2
(N-mm
2
) . . . . . . . . . . . . I2.1b
F
c Available stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K1.1
F
ca Available axial stress at the point of consideration, ksi (MPa) . . . . . . . . . . H2
F
cbw, FcbzAvailable flexural stress at the point of consideration, ksi (MPa) . . . . . . . . H2
F
cr Critical stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E3
F
cry Critical stress about the y-axis of symmetry, ksi (MPa) . . . . . . . . . . . . . . . . E4
F
crz Critical torsional buckling stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . E4
F
e Elastic buckling stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E3
F
e(T) Critical elastic buckling stress with the elastic modulus E(T )
at elevated temperature, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . App. 4.2.4.3
F
ex Flexural elastic buckling stress about the major principal axis,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
F
EXX Filler metal classification strength, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . J2.4
F
ey Flexural elastic buckling stress about the major principal axis,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
F
ez Torsional elastic buckling stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . E4
F
in Nominal bond stress, 0.06 ksi (0.40 MPa) . . . . . . . . . . . . . . . . . . . . . . . . I6.3c
F
L Magnitude of flexural stress in compression flange at which flange
local buckling or lateral-torsional buckling is influenced by
yielding, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table B4.1
F
n Nominal stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.3
F
n Nominal tensile stress, F nt, or shear stress, F nv,from Table J3.2,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.6
F
nBM Nominal stress of the base metal, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . J2.4
F
nt Nominal tensile stress from Table J3.2, ksi (MPa) . . . . . . . . . . . . . . . . . . . J3.7
F′
nt Nominal tensile stress modified to include the effects of shear stress,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.7
F
nv Nominal shear stress from Table J3.2, ksi (MPa) . . . . . . . . . . . . . . . . . . . . J3.7
F
nw Nominal stress of the weld metal, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . J2.4
F
nw Nominal stress of the weld metal (Chapter J) with no increase in
strength due to directionality of load, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . K4
F
nwi Nominal stress in ith weld element, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . J2.4
F
nwix xcomponent of nominal stress, F nwi, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . J2.4
F
nwiy ycomponent of nominal stress, F nwi, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . J2.4
F
p(T) Proportional limit at elevated temperatures, ksi (MPa) . . . . . . . . . App. 4.2.3.2
F
SR Allowable stress range, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.3
F
TH Threshold allowable stress range, maximum stress range for
indefinite design life from Table A-3.1, ksi (MPa) . . . . . . . . . . . . . . . App. 3.1
F
u Specified minimum tensile strength, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . D2
F
u(T) Minimum tensile strength at elevated temperature, ksi (MPa) . . . App. 4.2.3.2
F
y Specified minimum yield stress, ksi (MPa). As used in this
Specification, “yield stress” denotes either the specified minimum
yield point (for those steels that have a yield point) or specified
yield strength (for those steels that do not have a yield point) . . . . . . . . . B3.7
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxix

16.1–xxx SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
F
yb Specified minimum yield stress of HSS branch member material,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
F
ybi Specified minimum yield stress of the overlapping branch material,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.3
F
ybj Specified minimum yield stress of the overlapped branch material,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.3
F
yf Specified minimum yield stress of the flange, ksi (MPa) . . . . . . . . . . . . . J10.1
F
yp Specified minimum yield stress of plate, ksi (MPa) . . . . . . . . . . . . . . . . K1.1
F
ysr Specified minimum yield stress of reinforcing bars, ksi (MPa) . . . . . . . I2.1b
F
yst Specified minimum yield stress of the stiffener material,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.3
F
y(T) Yield stress at elevated temperature, ksi (MPa) . . . . . . . . . . . . . . . App. 4.2.4.3
F
yw Specified minimum yield stress of the web material,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.3
G Shear modulus of elasticity of steel=11,200 ksi (77 200 MPa) . . . . . . . . . E4
G(T) Shear modulus of elasticity of steel at elevated temperature,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.2.3.2
H Flexural constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
H Story shear, in the direction of translation being considered,
produced by the lateral forces used to compute Δ
H, kips (N) . . . . . App. 8.2.2
H Overall height of rectangular HSS member, measured in the
plane of the connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . .Table D3.1
H
b Overall height of rectangular HSS branch member, measured
in the plane of the connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
H
bi Overall depth of the overlapping branch, in. (mm) . . . . . . . . . . . . . . . . . . K2.3
I Moment of inertia in the plane of bending, in.
4
(mm
4
) . . . . . . . . . . App. 8.2.1
I
c Moment of inertia of the concrete section about the elastic
neutral axis of the composite section, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . I2.1b
I
d Moment of inertia of the steel deck supported on secondary
members, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
I
p Moment of inertia of primary members, in.
4
(mm
4
) . . . . . . . . . . . . . . App. 2.1
I
s Moment of inertia of secondary members, in.
4
(mm
4
) . . . . . . . . . . . . App. 2.1
I
s Moment of inertia of steel shape about the elastic neutral axis
of the composite section, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
I
sr Moment of inertia of reinforcing bars about the elastic neutral axis
of the composite section, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
I
st Moment of inertia of transverse stiffeners about an axis in the
web center for stiffener pairs, or about the face in contact with
the web plate for single stiffeners, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . G3.3
I
st1 Minimum moment of inertia of transverse stiffeners required for
development of the web shear buckling resistance in Section G2.2,
in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.3
I
st2 Minimum moment of inertia of transverse stiffeners required for
development of the full web shear buckling plus the web
tension field resistance, V
r=Vc2, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . G3.3
I
x, Iy Moment of inertia about the principal axes, in.
4
(mm
4
) . . . . . . . . . . . . . . . . E4
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxx

SYMBOLS 16.1–xxxi
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
I
y Out-of-plane moment of inertia, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . App. 6.3.2a
I
yc Moment of inertia of the compression flange about the y-axis,
in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.2
I
z Minor principal axis moment of inertia, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . F10.2
J Torsional constant, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
K Effective length factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C3, E2
K
x Effective length factor for flexural buckling about x-axis . . . . . . . . . . . . . . E4
K
y Effective length factor for flexural buckling about y-axis . . . . . . . . . . . . . . E4
K
z Effective length factor for torsional buckling . . . . . . . . . . . . . . . . . . . . . . . . E4
K
1 Effective length factor in the plane of bending, calculated based on
the assumption of no lateral translation at the member ends, set
equal to 1.0 unless analysis justifies a smaller value . . . . . . . . . . . . App. 8.2.1
L Height of story, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 7.3.2
L Length of member, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.1
L Nominal occupancy live load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.1.4
L Laterally unbraced length of member, in. (mm) . . . . . . . . . . . . . . . . . . . . . . E2
L Length of span, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.2a
L Length of member between work points at truss chord
centerlines, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E5
L
b Length between points that are either braced against lateral
displacement of compression flange or braced against twist
of the cross section, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F2.2
L
b Distance between braces, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.2
L
b Largest laterally unbraced length along either flange at the point
of load, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.4
L
m Limiting laterally unbraced length for eligibility for moment
redistribution in beams according to Section B3.7 . . . . . . . . . . . . . . . . . F13.5
L
p Limiting laterally unbraced length for the limit state of yielding,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F2.2
L
p Length of primary members, ft (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
L
pd Limiting laterally unbraced length for plastic analysis,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 1.2.3
L
r Limiting laterally unbraced length for the limit state of inelastic
lateral-torsional buckling, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F2.2
L
s Length of secondary members, ft (m) . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
L
v Distance from maximum to zero shear force, in. (mm) . . . . . . . . . . . . . . . . G6
M
A Absolute value of moment at quarter point of the unbraced
segment, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
M
a Required flexural strength using ASD load combinations,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.4
M
B Absolute value of moment at centerline of the unbraced segment,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
M
C Absolute value of moment at three-quarter point of the unbraced
segment, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
M
cx, McyAvailable flexural strength determined in accordance with
Chapter F, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxi

16.1–xxxii SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
M
cx Available lateral-torsional strength for strong axis flexure
determined in accordance with Chapter F using C
b= 1.0,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.3
M
cx Available flexural strength about the x-axis for the limit state of
tensile rupture of the flange, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . H4
M
e Elastic lateral-torsional buckling moment, kip-in. (N-mm) . . . . . . . . . . F10.2
M
lt First-order moment using LRFD or ASD load combinations,
due to lateral translation of the structure only, kip-in. (N-mm) . . . . . . App. 8.2
M
max Absolute value of maximum moment in the unbraced segment,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
M
mid Moment at the middle of the unbraced length, kip-in. (N-mm) . . . . App. 1.2.3
M
n Nominal flexural strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . F1
M
nt First-order moment using LRFD or ASD load combinations,
with the structure restrained against lateral translation,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2
M
p Plastic bending moment, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . Table B4.1
M
p Moment corresponding to plastic stress distribution over the
composite cross section, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . I3.4b
M
r Required second-order flexural strength under LRFD or ASD
load combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2
M
r Required flexural strength using LRFD or ASD load
combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
M
rb Required bracing moment using LRFD or ASD load
combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.2
M
r-ip Required in-plane flexural strength in branch using LRFD or
ASD load combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . K3.2
M
r-op Required out-of-plane flexural strength in branch using LRFD
or ASD load combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . K3.2
M
rx,MryRequired flexural strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . H1.1
M
rx Required flexural strength at the location of the bolt holes;
positive for tension in the flange under consideration, negative
for compression, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H4
M
u Required flexural strength using LRFD load combinations,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.4
M
y Moment at yielding of the extreme fiber, kip-in. (N-mm) . . . . . . . . Table B4.1
M
y Yield moment about the axis of bending, kip-in. (N-mm) . . . . . . . . . . . . F10.1
M
yc Moment at yielding of the extreme fiber in the compression
flange, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.2
M
yt Moment at yielding of the extreme fiber in the tension flange,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.4
M
1′ Effective moment at the end of the unbraced length opposite
from M
2, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 1.2.3
M
1 Smaller moment at end of unbraced length, kip-in.
(N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F13.5, App. 1.2.3
M
2 Larger moment at end of unbraced length, kip-in.
(N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F13.5, App. 1.2.3
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxii

SYMBOLS 16.1–xxxiii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
N
i Notional load applied at level i, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . C2.2b
N
i Additional lateral load, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 7.3
O
v Overlap connection coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.2
P
c Available axial strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
P
cy Available compressive strength out of the plane of bending, kips (N) . . . H1.3
P
e Elastic critical buckling load determined in accordance with
Chapter C or Appendix 7, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
P
e storyElastic critical buckling strength for the story in the direction
of translation being considered, kips (N) . . . . . . . . . . . . . . . . . . . . . . App 8.2.2
P
ey Elastic critical buckling load for buckling about the weak axis,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.2
P
e1 Elastic critical buckling strength of the member in the plane of
bending, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2.1
P
lt First-order axial force using LRFD or ASD load combinations,
due to lateral translation of the structure only, kips (N) . . . . . . . . . . . App. 8.2
P
mf Total vertical load in columns in the story that are part of moment
frames, if any, in the direction of translation being considered,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2.2
P
n Nominal axial strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2
P
n Nominal compressive strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1
P
no Nominal compressive strength of zero length, doubly symmetric,
axially loaded composite member, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . I2
P
nt First-order axial force using LRFD and ASD load combinations,
with the structure restrained against lateral translation, kips (N) . . . . App. 8.2
P
p Nominal bearing strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J8
P
r Required second-order axial strength using LRFD or ASD load
combinations, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2
P
r Required axial compressive strength using LRFD or ASD load
combinations, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2.3
P
r Required axial strength using LRFD or ASD load combinations,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
P
r Required axial strength of the member at the location of the bolt
holes; positive in tension, negative in compression, kips (N) . . . . . . . . . . . H4
P
r Required external force applied to the composite member, kips (N) . . . . I6.2a
P
rb Required brace strength using LRFD or ASD load combinations,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.2
P
ro Required axial strength in chord at a joint, on the side of joint
with lower compression stress, kips (N) . . . . . . . . . . . . . . . . . . . . . Table K1.1
P
story Total vertical load supported by the story using LRFD or ASD
load combinations, as applicable, including loads in columns
that are not part of the lateral force resisting system, kips (N) . . . . App. 8.2.2
P
u Required axial strength in chord using LRFD load combinations,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K1.1
P
u Required axial strength in compression, kips (N) . . . . . . . . . . . . . . App. 1.2.2
P
y Axial yield strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2.3
Q Net reduction factor accounting for all slender compression elements . . . . E7
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxiii

16.1–xxxiv SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
Q
a Reduction factor for slender stiffened elements . . . . . . . . . . . . . . . . . . . . . E7.2
Q
ct Available tensile strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3c
Q
cv Available shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3c
Q
f Chord-stress interaction parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.2
Q
n Nominal strength of one steel headed stud or steel channel anchor,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3.2
Q
nt Nominal tensile strength of steel headed stud anchor, kips (N) . . . . . . . . I8.3b
Q
nv Nominal shear strength of steel headed stud anchor, kips (N) . . . . . . . . . I8.3a
Q
rt Required tensile strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3c
Q
rv Required shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3c
Q
s Reduction factor for slender unstiffened elements . . . . . . . . . . . . . . . . . . . E7.1
R Radius of joint surface, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . .Table J2.2
R Nominal load due to rainwater or snow, exclusive of the ponding
contribution, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.2
R Seismic response modification coefficient . . . . . . . . . . . . . . . . . . . . . . . .A1.1
R
a Required strength using ASD load combinations . . . . . . . . . . . . . . . . . . . B3.4
R
FIL Reduction factor for joints using a pair of transverse fillet
welds only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.3
R
g Coefficient to account for group effect . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2a
R
M Coefficient to account for influence of P-δon P-Δ . . . . . . . . . . . . .App. 8.2.2
R
n Nominal strength, specified in Chapters B through K . . . . . . . . . . . . . . . B3.3
R
n Nominal slip resistance, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.8
R
n Nominal strength of the applicable force transfer mechanism,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.3
R
nwl Total nominal strength of longitudinally loaded fillet welds,
as determined in accordance with Table J2.5, kips (N) . . . . . . . . . . . . . . . J2.4
R
nwt Total nominal strength of transversely loaded fillet welds,
as determined in accordance with Table J2.5 without the
alternate in Section J2.4(a), kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
R
nx Horizontal component of the nominal strength of a weld group,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
R
ny Vertical component of the nominal strength of a weld group,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
R
p Position effect factor for shear studs . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2a
R
pc Web plastification factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.1
R
pg Bending strength reduction factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F5.2
R
PJP Reduction factor for reinforced or nonreinforced transverse
partial-joint-penetration (PJP) groove welds . . . . . . . . . . . . . . . . . . . App. 3.3
R
pt Web plastification factor corresponding to the tension flange
yielding limit state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.4
R
u Required strength using LRFD load combinations . . . . . . . . . . . . . . . . . . B3.3
S Elastic section modulus, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F8.2
S Spacing of secondary members, ft (m) . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
S Nominal snow load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.1.4
S
c Elastic section modulus to the toe in compression relative to
the axis of bending, in.
3
(mm
3
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F10.3
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxiv

SYMBOLS 16–xxxv
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
S
e Effective section modulus about major axis, in.
3
(mm
3
) . . . . . . . . . . . . . . F7.2
S
ip Effective elastic section modulus of welds for in-plane bending
(Table K4.1), in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K4
S
min Lowest elastic section modulus relative to the axis of bending,
in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F12
S
op Effective elastic section modulus of welds for out-of-plane bending
(Table K4.1), in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K4
S
xc, Sxt Elastic section modulus referred to compression and tension
flanges, respectively, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table B4.1
S
x Elastic section modulus taken about the x-axis, in.
3
(mm
3
) . . . . . . . . . . . . F2.2
S
y Elastic section modulus taken about the y-axis. For a channel,
the minimum section modulus, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . F6.2
T Nominal forces and deformations due to the design-basis fire
defined in Appendix Section 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.1.4
T
a Required tension force using ASD load combinations, kips (N) . . . . . . . . J3.9
T
b Minimum fastener tension given in Table J3.1 or J3.1M, kips (N) . . . . . . J3.8
T
c Available torsional strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . .H3.2
T
n Nominal torsional strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . .H3.1
T
r Required torsional strength using LRFD or ASD load combinations,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .H3.2
T
u Required tension force using LRFD load combinations, kips (N) . . . . . . . J3.9
U Shear lag factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D3
U Utilization ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.2
U
bs Reduction coefficient, used in calculating block shear
rupture strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J4.3
U
p Stress index for primary members . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.2
U
s Stress index for secondary members . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.2
V′ Nominal shear force between the steel beam and the concrete
slab transferred by steel anchors, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . I3.2d
V
c Available shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.2
V
c1 Smaller of the available shear strengths in the adjacent web
panels with V
nas defined in Section G2.1, kips (N) . . . . . . . . . . . . . . . . . G3.3
V
c2 Smaller of the available shear strengths in the adjacent web panels
with V
nas defined in Section G3.2, kips (N) . . . . . . . . . . . . . . . . . . . . . . G3.3
V
n Nominal shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G1
V
r Larger of the required shear strengths in the adjacent web panels
using LRFD or ASD load combinations, kips (N) . . . . . . . . . . . . . . . . . . G3.3
V
r Required shear strength using LRFD or ASD load combinations,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.2
V′
r Required longitudinal shear force to be transferred to the steel
or concrete, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.2
Y
i Gravity load applied at level ifrom the LRFD load
combination or ASD load combination, as applicable,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2.2b, App. 7.3.2
Z Plastic section modulus about the axis of bending,
in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F7.1
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxv

16.1–xxxvi SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
Z
b Plastic section modulus of branch about the axis of bending,
in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K3.1
Z
x Plastic section modulus about the x-axis, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . F2.1
Z
y Plastic section modulus about the y-axis, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . F6.1
a Clear distance between transverse stiffeners, in. (mm) . . . . . . . . . . . . . .F13.2
a Distance between connectors, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . E6.1
a Shortest distance from edge of pin hole to edge of member
measured parallel to the direction of force, in. (mm) . . . . . . . . . . . . . . . . D5.1
a Half the length of the nonwelded root face in the direction
of the thickness of the tension-loaded plate, in. (mm) . . . . . . . . . . . . . App. 3.3
a′ Weld length along both edges of the cover plate termination
to the beam or girder, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F13.3
a
w Ratio of two times the web area in compression due to application
of major axis bending moment alone to the area of the compression
flange components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.2
b Full width of leg in compression, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . F10.3
b For flanges of I-shaped members, half the full-flange width, b
f;
for flanges of channels, the full nominal dimension of the
flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F6.2
b Full width of longest leg, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.1
b Width of unstiffened compression element; width of stiffened
compression element, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B4.1
b Width of the leg resisting the shear force, in. (mm) . . . . . . . . . . . . . . . . . . . G4
b
cf Width of column flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.6
b
e Reduced effective width, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.2
b
e Effective edge distance for calculation of tensile rupture strength
of pin-connected member, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D5.1
b
eoi Effective width of the branch face welded to the chord, in. (mm) . . . . . . K2.3
b
eov Effective width of the branch face welded to the overlapped brace,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.3
b
f Width of flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B4.1
b
fc Width of compression flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.2
b
ft Width of tension flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.1
b
l Length of longer leg of angle, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . E5
b
s Length of shorter leg of angle, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . E5
b
s Stiffener width for one-sided stiffeners, in. (mm) . . . . . . . . . . . . . . App. 6.3.2
d Nominal fastener diameter, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.3
d Nominal bolt diameter, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.10
d Full nominal depth of the section, in. (mm) . . . . . . . . . . . . . . . . . . B4.1, J10.3
d Depth of rectangular bar, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F11.2
d Diameter, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J7
d Diameter of pin, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D5.1
d
b Depth of beam, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.6
d
b Nominal diameter (body or shank diameter), in. (mm) . . . . . . . . . . . . App. 3.4
d
c Depth of column, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.6
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxvi

SYMBOLS 16–xxxvii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
e Eccentricity in a truss connection, positive being away from
the branches, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
e
mid-ht Distance from the edge of steel headed stud anchor shank to
the steel deck web, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2a
f
c′ Specified compressive strength of concrete, ksi (MPa) . . . . . . . . . . . . . . I1.2b
f
c′(T) Compressive strength of concrete at elevated temperature, ksi (MPa) . . . I1.2b
f
o Stress due to D +R(D=nominal dead load, R=nominal load
due to rainwater or snow exclusive of the ponding contribution),
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.2
f
ra Required axial stress at the point of consideration using LRFD
or ASD load combinations, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H2
f
rbw, frbzRequired flexural stress at the point of consideration using LRFD
or ASD load combinations, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H2
f
rv Required shear stress using LRFD or ASD load combinations,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.7
g Transverse center-to-center spacing (gage) between fastener gage
lines, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B4.3
g Gap between toes of branch members in a gapped K-connection,
neglecting the welds, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
h Width of stiffened compression element, in. (mm) . . . . . . . . . . . . . . . . . . B4.1
h Height of shear element, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G2.1b
h Clear distance between flanges less the fillet or corner radius for
rolled shapes; distance between adjacent lines of fasteners or the
clear distance between flanges when welds are used for built-up
shapes, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.4
h
c Twice the distance from the center of gravity to the following:
the inside face of the compression flange less the fillet or corner
radius, for rolled shapes; the nearest line of fasteners at the
compression flange or the inside faces of the compression flange
when welds are used, for built-up sections, in. (mm) . . . . . . . . . . . . . . . . B4.1
h
o Distance between the flange centroids, in. (mm) . . . . . . . . . . . . . . . . . . . . F2.2
h
p Twice the distance from the plastic neutral axis to the nearest line
of fasteners at the compression flange or the inside face of the
compression flange when welds are used, in. (mm) . . . . . . . . . . . . . . . . . B4.1
h
r Nominal height of rib, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2a
k Distance from outer face of flange to the web toe of fillet, in. (mm) . . . J10.2
k
c Coefficient for slender unstiffened elements . . . . . . . . . . . . . . . . . . Table B4.1
k
sc Slip-critical combined tension and shear coefficient . . . . . . . . . . . . . . . . . J3.9
k
v Web plate shear buckling coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . G2.1
l Actual length of end-loaded weld, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . J2.2
l Length of connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table D3.1
l
b Length of bearing, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J7
l
c Clear distance, in the direction of the force, between the edge
of the hole and the edge of the adjacent hole or edge of the
material, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.10
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxvii

16.1–xxxviii SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
l
ca Length of channel anchor, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2b
l
e Total effective weld length of groove and fillet welds to
rectangular HSS for weld strength calculations, in. (mm) . . . . . . . . . . . . . . K4
l
ov Overlap length measured along the connecting face of the chord
beneath the two branches, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
l
p Projected length of the overlapping branch on the chord, in. (mm) . . . . . K2.1
n Number of nodal braced points within the span . . . . . . . . . . . . . . . . . App. 6.3
n Threads per inch (per mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.4
n
b Number of bolts carrying the applied tension . . . . . . . . . . . . . . . . . . . . . . . J3.9
n
s Number of slip planes required to permit the connection to slip . . . . . . . . J3.8
n
SR Number of stress range fluctuations in design life . . . . . . . . . . . . . . . App. 3.3
p Pitch, in. per thread (mm per thread) . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.4
p
i Ratio of element ideformation to its deformation at maximum
stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
r Radius of gyration, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E2
r
cr Distance from instantaneous center of rotation to weld element
with minimum Δ
u/riratio, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
r
i Minimum radius of gyration of individual component, in. (mm) . . . . . . . E6.1
r
i Distance from instantaneous center of rotation to ith weld element,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
r
o
— Polar radius of gyration about the shear center, in. (mm) . . . . . . . . . . . . . . . E4
r
t Radius of gyration of the flange components in flexural compression
plus one-third of the web area in compression due to application
of major axis bending moment alone, in. (mm) . . . . . . . . . . . . . . . . . . . . . F4.2
r
ts Effective radius of gyration, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . F2.2
r
x Radius of gyration about the x-axis, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . E4
r
x Radius of gyration about the geometric axis parallel to the
connected leg, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E5
r
y Radius of gyration about y-axis, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . E4
r
z Radius of gyration about the minor principal axis, in. (mm) . . . . . . . . . . . . E5
s Longitudinal center-to-center spacing (pitch) of any two
consecutive holes, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B4.3
t Thickness of element, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.1
t Thickness of wall, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.2
t Thickness of angle leg, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F10.2
t Width of rectangular bar parallel to axis of bending, in. (mm) . . . . . . . . F11.2
t Thickness of connected material, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . J3.10
t Thickness of plate, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D5.1
t Total thickness of fillers, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J5.2
t Design wall thickness of HSS member, in. (mm) . . . . . . . . . . . . . . B4.1, K1.1
t
b Design wall thickness of HSS branch member, in. (mm) . . . . . . . . . . . . . K2.1
t
bi Thickness of overlapping branch, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . K2.3
t
bj Thickness of overlapped branch, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . K2.3
t
cf Thickness of column flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.6
t
f Thickness of flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F6.2
t
f Thickness of loaded flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.1
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxviii

SYMBOLS 16–xxxix
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
t
f Thickness of flange of channel anchor, in. (mm) . . . . . . . . . . . . . . . . . . . I8.2b
t
fc Thickness of compression flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . F4.2
t
p Thickness of plate, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K1.1
t
p Thickness of tension loaded plate, in. (mm) . . . . . . . . . . . . . . . . . . . . App. 3.3
t
st Thickness of web stiffener, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.2a
t
w Thickness of web, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table B4.1
t
w Smallest effective weld throat thickness around the perimeter
of branch or plate, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K4
t
w Thickness of channel anchor web, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . I8.2b
w Width of cover plate, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F13.3
w Size of weld leg, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.2
w Subscript relating symbol to major principal axis bending . . . . . . . . . . . . . H2
w Width of plate, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table D3.1
w Leg size of the reinforcing or contouring fillet, if any, in the
direction of the thickness of the tension-loaded plate, in. (mm) . . . . . App. 3.3
w
c Weight of concrete per unit volume (90 ≤w c≤155 lbs/ft
3
or 1500 ≤ w c≤2500 kg/m
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1
w
r Average width of concrete rib or haunch, in. (mm) . . . . . . . . . . . . . . . . . . I3.2
x Subscript relating symbol to strong axis bending . . . . . . . . . . . . . . . . . . . .H1.1
x
i x component ofr i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
x
o, yo Coordinates of the shear center with respect to the centroid,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
x

Eccentricity of connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . Table D3.1
y Subscript relating symbol to weak axis bending . . . . . . . . . . . . . . . . . . . . H1.1
y
i y component ofr i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J2.4
z Subscript relating symbol to minor principal axis bending . . . . . . . . . . . . . H2
α ASD/LRFD force level adjustment factor . . . . . . . . . . . . . . . . . . . . . . . . . C2.3
β Reduction factor given by Equation J2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . J2.2
β Width ratio; the ratio of branch diameter to chord diameter
for round HSS; the ratio of overall branch width to chord
width for rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
β
T Overall brace system stiffness, kip-in./rad (N-mm/rad) . . . . . . . . App. 6.3.2a
β
br Required brace stiffness, kips/in. (N/mm) . . . . . . . . . . . . . . . . . . . . .App. 6.2.1
β
eff Effective width ratio; the sum of the perimeters of the
two branch members in a K-connection divided by
eight times the chord width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
β
eop Effective outside punching parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.3
β
sec Web distortional stiffness, including the effect of web transverse
stiffeners, if any, kip-in./rad (N-mm/rad) . . . . . . . . . . . . . . . . . . . . App. 6.3.2a
β
Tb Required torsional stiffness for nodal bracing, kip-in./rad
(N-mm/rad) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.2a
β
w Section property for unequal leg angles, positive for short legs
in compression and negative for long legs in compression . . . . . . . . . . . F10.2
Δ First-order interstory drift due to the LRFD or ASD load
combinations, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 7.3.2
Δ
H First-order interstory drift due to lateral forces, in. (mm) . . . . . . . . App. 8.2.2
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxix

16.1–xl SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
Δ
i Deformation of weld elements at intermediate stress levels,
linearly proportioned to the critical deformation based on
distance from the instantaneous center of rotation, r
i, in. (mm) . . . . . . . . . J2.4
Δ
mi Deformation of weld element at maximum stress, in. (mm) . . . . . . . . . . . J2.4
Δ
ui Deformation of weld element at ultimate stress (rupture),
usually in element furthest from instantaneous center of
rotation, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
ε
cu(T) Maximum concrete strain at elevated temperature, % . . . . . . . . . . App. 4.2.3.2
γ Chord slenderness ratio; the ratio of one-half the diameter
to the wall thickness for round HSS; the ratio of one-half
the width to wall thickness for rectangular HSS . . . . . . . . . . . . . . . . . . . K2.1
ζ Gap ratio; the ratio of the gap between the branches of a
gapped K-connection to the width of the chord for
rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
η Load length parameter, applicable only to rectangular HSS;
the ratio of the length of contact of the branch with the
chord in the plane of the connection to the chord width . . . . . . . . . . . . . K2.1
λ Slenderness parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F3.2
λ
p Limiting slenderness parameter for compact element . . . . . . . . . . . . . . . . . B4
λ
pd Limiting slenderness parameter for plastic design . . . . . . . . . . . . . . . App. 1.2
λ
pf Limiting slenderness parameter for compact flange . . . . . . . . . . . . . . . . . F3.2
λ
pw Limiting slenderness parameter for compact web . . . . . . . . . . . . . . . . . . . . . F4
λ
r Limiting slenderness parameter for noncompact element . . . . . . . . . . . . . . B4
λ
rf Limiting slenderness parameter for noncompact flange . . . . . . . . . . . . . . F3.2
λ
rw Limiting slenderness parameter for noncompact web . . . . . . . . . . . . . . . . F4.2
μ Mean slip coefficient for Class A or B surfaces, as applicable,
or as established by tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.8
φ Resistance factor, specified in Chapters B through K . . . . . . . . . . . . . . . . B3.3
φ
B Resistance factor for bearing on concrete . . . . . . . . . . . . . . . . . . . . . . . . . I6.3a
φ
b Resistance factor for flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
φ
c Resistance factor for compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3.7
φ
c Resistance factor for axially loaded composite columns . . . . . . . . . . . . . I2.1b
φ
sf Resistance factor for shear on the failure path . . . . . . . . . . . . . . . . . . . . . D5.1
φ
T Resistance factor for torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.1
φ
t Resistance factor for tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2
φ
t Resistance factor for steel headed stud anchor in tension . . . . . . . . . . . . . I8.3b
φ
v Resistance factor for shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G1
φ
v Resistance factor for steel headed stud anchor in shear . . . . . . . . . . . . . . I8.3a
Ω Safety factor, specified in Chapters B through K . . . . . . . . . . . . . . . . . . . B3.4
Ω
B Safety factor for bearing on concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.1
Ω
b Safety factor for flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
Ω
c Safety factor for compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3.7
Ω
c Safety factor for axially loaded composite columns . . . . . . . . . . . . . . . . . I2.1b
Ω
sf Safety factor for shear on the failure path . . . . . . . . . . . . . . . . . . . . . . . . D5.1
Ω
T Safety factor for torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.1
Ω
t Safety factor for tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xl

SYMBOLS 16–xli
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
Ω
t Safety factor for steel headed stud anchor in tension . . . . . . . . . . . . . . . . I8.3b
Ω
v Safety factor for shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G1
Ω
v Safety factor for steel headed stud anchor in shear . . . . . . . . . . . . . . . . . I8.3a
ρ
sr Minimum reinforcement ratio for longitudinal reinforcing . . . . . . . . . . . . I2.1
ρ
st The larger of F yw/Fystand 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.3
θ Angle of loading measured from the weld longitudinal axis, degrees . . . . J2.4
θ Acute angle between the branch and chord, degrees . . . . . . . . . . . . . . . . . K2.1
θ
i Αngle of loading measured from the longitudinal axis of ith weld
element, degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
τ
b Stiffness reduction parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2.3
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xli

16.1–xlii SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlii

16.1–xliii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
GLOSSARY
Terms defined in this Glossary are italicized in the Glossary and where they first appear
within a section or long paragraph throughout the Specification.
Notes:
(1) Terms designated with † are common AISI-AISC terms that are coordinated between the
two standards development organizations.
(2) Terms designated with * are usually qualified by the type of load effect; for example,
nominal tensile strength, available compressive strength, and design flexural strength.
(3) Terms designated with ** are usually qualified by the type of component; for example,
web local bucklingand flangelocal bending.
Active fire protection. Building materials and systems that are activated by a fire to mitigate
adverse effects or to notify people to take some action to mitigate adverse effects.
Allowable strength*†. Nominal strengthdivided by the safety factor, R
n/Ω.
Allowable stress*. Allowable strength divided by the appropriate section property, such as
section modulus or cross-section area.
Applicable building code†. Building code under which the structure is designed.
ASD (allowable strength design)†.Method of proportioning structural componentssuch
that the allowable strengthequals or exceeds therequired strengthof the component
under the action of the ASD load combinations.
ASD load combination†. Load combination in the applicable building codeintended for
allowable strength design (allowable stressdesign).
Authority having jurisdiction (AHJ).Organization, political subdivision, office or individual
charged with the responsibility of administering and enforcing the provisions of the appli-
cable building code.
Available strength*†. Design strengthor allowable strength,as appropriate.
Available stress*. Design stress or allowable stress, as appropriate.
Average rib width. In a formed steel deck, average width of the rib of a corrugation.
Batten plate.Plate rigidly connected to two parallel components of a built-up columnor
beamdesigned to transmit shear between the components.
Beam. Nominally horizontal structural member that has the primary function of resisting
bending moments.
Beam-column. Structural member that resists both axial force and bending moment.
Bearing†. In a connection, limit state of shear forces transmitted by the mechanical fastener
to the connection elements.
Bearing (local compressive yielding)†. Limit state oflocal compressive yielding due to the
action of a member bearing against another member or surface.
Bearing-type connection.Bolted connectionwhere shear forces are transmitted by the bolt
bearing against the connection elements.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xliii

16.1–xliv GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Block shear rupture†. In a connection, limit state of tension rupture along one path and shear
yielding or shear rupture along another path.
Braced frame†. Essentially vertical truss system that provides resistance to lateral forces and
provides stability for the structural system.
Bracing.Member or system that provides stiffness and strength to limit the out-of-plane
movement of another member at a brace point.
Branch member.In an HSS connection, member that terminates at a chord memberor main
member.
Buckling†. Limit state of sudden change in the geometry of a structure or any of its elements
under a critical loading condition.
Buckling strength. Strength for instability limit states .
Built-up member, cross section, section, shape. Member, cross section, section or shape
fabricated from structural steel elements that are welded or bolted together.
Camber. Curvature fabricated into a beamor truss so as to compensate for deflection induced
by loads.
Charpy V-notch impact test. Standard dynamic test measuring notch toughness of a
specimen.
Chord member.In an HSS connection, primary member that extends through a truss
connection.
Cladding. Exterior covering of structure.
Cold-formed steel structural member†. Shape manufactured by press-braking blanks sheared
from sheets, cut lengths of coils or plates, or by roll forming cold- or hot-rolled coils or
sheets; both forming operations being performed at ambient room temperature, that is,
without manifest addition of heat such as would be required for hot forming.
Collector. Also known as drag strut; member that serves to transfer loads between floor
diaphragms and the members of the lateral force resisting system.
Column. Nominally vertical structural member that has the primary function of resisting
axial compressive force.
Column base.Assemblage of structural shapes, plates, connectors, bolts and rods at the base
of a column used to transmit forces between the steel superstructure and the foundation.
Compact section. Section capable of developing a fully plastic stress distribution and pos-
sessing a rotation capacity of approximately three before the onset of local buckling.
Compartmentation. Enclosure of a building space with elements that have a specific fire
endurance.
Complete-joint-penetration (CJP) groove weld. Groove weldin which weld metal extends
through thejointthickness, except as permitted for HSS connections.
Composite.Condition in which steel and concrete elements and members work as a unit in
the distribution of internal forces.
Composite beam.Structural steel beam in contact with and acting compositely with a rein-
forced concrete slab.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xliv

GLOSSARY 16.1–xlv
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Composite component. Member, connecting element or assemblage in which steel and con-
crete elements work as a unit in the distribution of internal forces, with the exception of
the special case of composite beamswhere steel anchorsare embedded in a solid concrete
slab or in a slab cast on formed steel deck.
Concrete breakout surface.The surface delineating a volume of concrete surrounding a steel
headed stud anchor that separates from the remaining concrete.
Concrete crushing. Limit state of compressive failure in concrete having reached the ulti-
mate strain.
Concrete haunch. In a composite floor system constructed using a formed steel deck, the
section of solid concrete that results from stopping the deck on each side of the girder.
Concrete-encased beam. Beamtotally encased in concrete cast integrally with the slab.
Connection†. Combination of structural elements and jointsused to transmit forces between
two or more members.
Construction documents. Design drawings, specifications, shop drawings and erection
drawings.
Cope. Cutout made in a structural member to remove a flange and conform to the shape of
an intersecting member.
Cover plate. Plate welded or bolted to the flange of a member to increase cross-sectional
area, section modulus or moment of inertia.
Cross connection. HSS connectionin which forces in branch members or connecting ele-
ments transverse to the main memberare primarily equilibrated by forces in other branch
members or connecting elements on the opposite side of the main member.
Design-basis fire. Set of conditions that define the development of a fireand the spread of
combustion products throughout a building or portion thereof.
Design drawings.Graphic and pictorial documents showing the design, location and dimen-
sions of the work. These documents generally include plans, elevations, sections, details,
schedules, diagrams and notes.
Design load†. Applied load determined in accordance with either LRFD load combinations
or ASD load combinations, whichever is applicable.
Design strength*†. Resistance factor multiplied by the nominal strength, φR
n.
Design wall thickness. HSSwall thickness assumed in the determination of section properties.
Diagonal stiffener. Web stiffener at column panel zone oriented diagonally to the flanges,
on one or both sides of the web.
Diaphragm†. Roof, floor or other membrane or bracing system that transfers in-plane forces
to the lateral force resisting system.
Diaphragm plate.Plate possessing in-plane shear stiffness and strength, used to transfer
forces to the supporting elements.
Direct analysis method.Design method for stability that captures the effects of residual
stresses and initial out-of-plumbness of frames by reducing stiffness and applying
notional loadsin a second-order analysis.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlv

16.1–xlvi GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Direct bond interaction. In a composite section, mechanism by which force is transferred
between steel and concrete by bond stress.
Distortional failure. Limit state of an HSS truss connection based on distortion of a rectan-
gular HSS chord memberinto a rhomboidal shape.
Distortional stiffness. Out-of-plane flexural stiffness of web.
Double curvature. Deformed shape of a beam with one or more inflection points within the span.
Double-concentrated forces. Two equal and opposite forces applied normal to the same
flange, forming a couple.
Doubler.Plate added to, and parallel with, a beamor columnweb to increase strength at
locations of concentrated forces.
Drift. Lateral deflection of structure.
Effective length. Length of an otherwise identical columnwith the same strength when
analyzed with pinned end conditions.
Effective length factor, K. Ratio between the effective lengthand the unbraced length of the
member.
Effective net area. Net area modified to account for the effect of shear lag.
Effective section modulus. Section modulus reduced to account for buckling of slender
compression elements.
Effective width. Reduced width of a plate or slab with an assumed uniform stress distribu-
tion which produces the same effect on the behavior of a structural member as the actual
plate or slab width with its nonuniform stress distribution.
Elastic analysis. Structural analysisbased on the assumption that the structure returns to its
original geometry on removal of the load.
Elevated temperatures. Heating conditions experienced by building elements or structures
as a result of fire which are in excess of the anticipated ambient conditions.
Encased composite member.Composite member consisting of a structural concrete member
and one or more embedded steel shapes.
End panel. Web panel with an adjacent panel on one side only.
End return. Length of fillet weldthat continues around a corner in the same plane.
Engineer of record.Licensed professional responsible for sealing the design drawings and
specifications.
Expansion rocker.Support with curved surface on which a member bears that can tilt to
accommodate expansion.
Expansion roller.Round steel bar on which a member bears that can roll to accommodate
expansion.
Eyebar. Pin-connected tension member of uniform thickness, with forged or thermally cut
head of greater width than the body, proportioned to provide approximately equal
strength in the head and body.
Factored load†. Product of a load factor and the nominal load.
Fastener. Generic term for bolts, rivets or other connecting devices.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlvi

GLOSSARY 16.1–xlvii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fatigue†. Limit state of crack initiation and growth resulting from repeated application of
live loads.
Faying surface.Contact surface of connection elements transmitting a shear force.
Filled composite member. Composite memberconsisting of a shell of HSS filled with struc-
tural concrete.
Filler. Plate used to build up the thickness of one component.
Filler metal. Metal or alloy added in making a welded joint.
Fillet weld.Weld of generally triangular cross section made between intersecting surfaces
of elements.
Fillet weld reinforcement. Fillet weldsadded to groove welds.
Finished surface.Surfaces fabricated with a roughness height value measured in accordance
with ANSI/ASME B46.1 that is equal to or less than 500.
Fire. Destructive burning, as manifested by any or all of the following: light, flame, heat
or smoke.
Fire barrier. Element of construction formed of fire-resisting materials and tested in accor-
dance with an approved standard fire resistancetest, to demonstrate compliance with the
applicable building code.
Fire resistance. Property of assemblies that prevents or retards the passage of excessive heat,
hot gases or flames under conditions of use and enables them to continue to perform a
stipulated function.
First-order analysis. Structural analysisin which equilibrium conditions are formulated on
the undeformed structure; second-order effects are neglected.
Fitted bearing stiffener. Stiffenerused at a support or concentrated loadthat fits tightly
against one or both flanges of a beam so as to transmit load through bearing.
Flare bevel groove weld. Weld in a groove formed by a member with a curved surface in
contact with a planar member.
Flare V-groove weld. Weld in a groove formed by two members with curved surfaces.
Flashover. Transition to a state of total surface involvement in a fire of combustible mate-
rials within an enclosure.
Flat width. Nominal width of rectangular HSS minus twice the outside corner radius. In the
absence of knowledge of the corner radius, the flat width may be taken as the total sec-
tion width minus three times the thickness.
Flexural buckling†. Bucklingmode in which a compression member deflects laterally with-
out twist or change in cross-sectional shape.
Flexural-torsional buckling†. Buckling mode in which a compression member bends and
twists simultaneously without change in cross-sectional shape.
Force. Resultant of distribution of stress over a prescribed area.
Formed section.See cold-formed steel structural member.
Formed steel deck. In compositeconstruction, steel cold formed into a decking profile used
as a permanent concrete form.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlvii

16.1–xlviii GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fully restrained moment connection. Connectioncapable of transferring moment with neg-
ligible rotation between connected members.
Gage.Transverse center-to-center spacing of fasteners.
Gapped connection. HSStruss connectionwith a gap or space on the chordface between
intersecting branch members.
Geometric axis. Axis parallel to web, flange or angle leg.
Girder. See Beam.
Girder filler. In a composite floor system constructed using a formed steel deck, narrow
piece of sheet steelused as a fill between the edge of a deck sheet and the flange of
a girder.
Gouge.Relatively smooth surface groove or cavity resulting from plastic deformation or
removal of material.
Gravity load. Loadacting in the downward direction, such as dead and live loads.
Grip (of bolt).Thickness of material through which a bolt passes.
Groove weld. Weld in a groove between connectionelements. See also AWS D1.1/D1.1M.
Gusset plate. Plate element connecting truss members or a strut or brace to a beamor
column.
Heat flux. Radiant energy per unit surface area.
Heat release rate. Rate at which thermal energy is generated by a burning material.
High-strength bolt.Fastener in compliance with ASTM A325, A325M, A490, A490M,
F1852, F2280 or an alternate fastener as permitted in Section J3.1.
Horizontal shear. In a composite beam, force at the interface between steel and concrete
surfaces.
HSS.Square, rectangular or round hollow structural steel section produced in accordance
with a pipeor tubing product specification.
Inelastic analysis. Structural analysisthat takes into account inelastic material behavior,
including plastic analysis.
In-plane instability†. Limit stateinvolving bucklingin the plane of the frame or the member.
Instability†. Limit state reached in the loading of a structural component, frame or structure
in which a slight disturbance in the loadsor geometry produces large displacements.
Introduction length.In an encased composite column, the length along which the column
forceis assumed to be transferred into or out of the steel shape.
Joint†. Area where two or more ends, surfaces or edges are attached. Categorized by type
of fasteneror weld used and method of forcetransfer.
Joint eccentricity
.In an HSS truss connection, perpendicular distance from chord member
center of gravity to intersection of branch member work points.
k-area. The region of the web that extends from the tangent point of the web and the flange-
web fillet (AISCkdimension) a distance 1
1
/2in. (38 mm) into the web beyond the k
dimension.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlviii

GLOSSARY 16.1–xlix
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
K-connection. HSS connectionin which forces in branch members or connecting elements
transverse to the main member are primarily equilibriated by forcesin other branch mem-
bers or connecting elements on the same side of the main member.
Lacing. Plate, angle or other steel shape, in a lattice configuration, that connects two steel
shapes together.
Lap joint. Jointbetween two overlapping connectionelements in parallel planes.
Lateral bracing. Member or system that is designed to inhibit lateral buckling or lateral-
torsional bucklingof structural members.
Lateral force resisting system.Structural system designed to resist lateral loads and provide
stability for the structure as a whole.
Lateral load. Loadacting in a lateral direction, such as wind or earthquake effects.
Lateral-torsional buckling†. Bucklingmode of a flexural member involving deflection out
of the plane of bending occurring simultaneously with twist about the shear center of the
cross section.
Leaning column. Columndesigned to carry gravity loads only, with connectionsthat are not
intended to provide resistance to lateral loads.
Length effects.Consideration of the reduction in strength of a member based on its unbraced
length.
Lightweight concrete.Structural concrete with an equilibrium density of 115 lb/ft
3
(1840 kg/m
3
) or less as determined by ASTM C567.
Limit state†. Condition in which a structure or component becomes unfit for service and is
judged either to be no longer useful for its intended function (serviceability limit state) or
to have reached its ultimate load-carrying capacity (strength limit state).
Load†. Forceor other action that results from the weight of building materials, occupants
and their possessions, environmental effects, differential movement or restrained dimen-
sional changes.
Load effect†. Forces, stressesand deformations produced in a structural componentby the
applied loads.
Load factor†. Factor that accounts for deviations of the nominal load from the actual load,
for uncertainties in the analysis that transforms the load into a load effect and for the prob-
ability that more than one extreme load will occur simultaneously.
Local bending**†. Limit state of large deformation of a flange under a concentrated trans-
verse force.
Local buckling**. Limit state of bucklingof a compression element within a cross section.
Local yielding**†. Yielding that occurs in a local area of an element.
LRFD (load and resistance factor design)†. Method of proportioning structural components
such that the design strengthequals or exceeds the required strengthof the component
under the action of the LRFD load combinations.
LRFD load combination†. Load combination in the applicable building codeintended for
strength design (load and resistance factor design).
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlix

16.1–l GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Main member.In an HSS connection, chord member, columnor other HSS member to which
branch membersor other connecting elements are attached.
Mechanism. Structural systemthat includes a sufficient number of real hinges, plastic
hingesor both, so as to be able to articulate in one or more rigid body modes.
Mill scale.Oxide surface coating on steel formed by the hot rolling process.
Moment connection. Connectionthat transmits bending moment between connected
members.
Moment frame†. Framing system that provides resistance to lateral loads and provides sta-
bility to the structural system, primarily by shear and flexure of the framing members and
their connections.
Negative flexural strength. Flexural strength of a composite beam in regions with tension
due to flexure on the top surface.
Net area.Gross area reduced to account for removed material.
Nodal brace. Brace that prevents lateral movement or twist independently of other braces at
adjacent brace points (see relative brace).
Nominal dimension. Designated or theoretical dimension, as in tables of section properties.
Nominal load†. Magnitude of the loadspecified by the applicable building code.
Nominal rib height. In a formed steel deck, height of deck measured from the underside of
the lowest point to the top of the highest point.
Nominal strength*†. Strength of a structure or component (without the resistance factoror
safety factorapplied) to resist load effects, as determined in accordance with this
Specification.
Noncompact section. Section that can develop the yield stressin its compression elements
before local bucklingoccurs, but cannot develop a rotation capacityof three.
Nondestructive testing.Inspection procedure wherein no material is destroyed and the
integrity of the material or component is not affected.
Notch toughness. Energy absorbed at a specified temperature as measured in the Charpy
V-notch impact test.
Notional load.Virtual loadapplied in a structural analysisto account for destabilizing
effects that are not otherwise accounted for in the design provisions.
Out-of-plane buckling†. Limit stateof a beam, column or beam-columninvolving lateral or
lateral-torsional buckling.
Overlapped connection. HSStruss connectionin which intersectingbranc
h members
overlap.
Panel zone. Web area of beam-to-column connection delineated by the extension of
beam and column flanges through the connection, transmitting moment through a
shear panel.
Partial-joint-penetration (PJP) groove weld. Groove weldin which the penetration is inten-
tionally less than the complete thickness of the connected element.
Partially restrained moment connection. Connectioncapable of transferring moment with
rotation between connected members that is not negligible.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page l

GLOSSARY 16.1–li
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Percent elongation.Measure of ductility, determined in a tensile test as the maximum elon-
gation of the gage length divided by the original gage length expressed as a percentage.
Pipe.See HSS.
Pitch. Longitudinal center-to-center spacing of fasteners. Center-to-center spacing of bolt
threads along axis of bolt.
Plastic analysis. Structural analysisbased on the assumption of rigid-plastic behavior, that
is, that equilibrium is satisfied and the stressis at or below the yield stress throughout the
structure.
Plastic hinge. Fully yielded zone that forms in a structural member when the plastic moment
is attained.
Plastic moment. Theoretical resisting moment developed within a fully yielded cross
section.
Plastic stress distribution method.In a compositemember, method for determining stresses
assuming that the steel section and the concrete in the cross section are fully plastic.
Plastification. In an HSS connection, limit statebased on an out-of-plane flexural yield line
mechanismin the chord at a branch memberconnection.
Plate girder. Built-up beam.
Plug weld.Weld made in a circular hole in one element of a joint fusing that element to
another element.
Ponding. Retention of water due solely to the deflection of flat roof framing.
Positive flexural strength. Flexural strength of a composite beam in regions with compres-
sion due to flexure on the top surface.
Pretensioned bolt. Bolt tightened to the specified minimum pretension.
Pretensioned joint. Jointwith high-strength bolts tightened to the specified minimum
pretension.
Properly developed.Reinforcing bars detailed to yield in a ductile manner before crushing
of the concrete occurs. Bars meeting the provisions of ACI 318, insofar as development
length, spacing and cover, are deemed to be properly developed.
Prying action. Amplification of the tension force in a bolt caused by leverage between the
point of applied load, the bolt and the reaction of the connected elements.
Punching load.In an HSS connection, component of branch memberforce perpendicular to
a chord.
P-δeffect. Effect of loads acting on the deflected shape of a member between joints or
nodes.
P-Δeffect. Effect of loads acting on the displaced location of joints or nodes in a structure.
In tiered building structures, this is the effect of loads acting on the laterally displaced
location of floors and roofs.
Quality assurance. Monitoring and inspection tasks performed by an agency or firm other
than the fabricator or erector to ensure that the material provided and work performed by
the fabricator and erector meet the requirements of the approved construction documents
and referenced standards. Quality assur anceincludes those tasks designated “special
inspection” by the applicable b
uilding code.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page li

16.1–lii GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Quality assurance inspector (QAI).Individual designated to provide quality assurance
inspection for the work being performed.
Quality assurance plan (QAP).Program in which the agency or firm responsible for
quality assurancemaintains detailed monitoring and inspection procedures to ensure
conformance with the approved construction documents and referenced standards.
Quality control. Controls and inspections implemented by the fabricator or erector, as appli-
cable, to ensure that the material provided and work performed meet the requirements of
the approved construction documentsand referenced standards.
Quality control inspector (QCI).Individual designated to perform quality controlinspection
tasks for the work being performed.
Quality control program (QCP). Program in which the fabricator or erector, as applicable,
maintains detailed fabrication or erection and inspection procedures to ensure confor-
mance with the approved design drawings, specificationsand referenced standards.
Reentrant. In a cope or weld access hole, a cut at an abrupt change in direction in which the
exposed surface is concave.
Relative brace. Brace that controls the relative movement of two adjacent brace points along
the length of a beamor columnor the relative lateral displacement of two stories in a
frame (see nodal brace).
Required strength*†. Forces, stressesand deformations acting on a structural component,
determined by either structural analysis, for the LRFD or ASD load combinations, as
appropriate, or as specified by this Specification or Standard.
Resistance factorφ†. Factor that accounts for unavoidable deviations of the nominal strength
from the actual strength and for the manner and consequences of failure.
Restrained construction. Floor and roof assemblies and individual beams in buildings where
the surrounding or supporting structure is capable of resisting substantial thermal expan-
sion throughout the range of anticipated elevated temperatures.
Reverse curvature.See double curvature.
Root of joint.Portion of a joint to be welded where the members are closest to each other.
Rotation capacity. Incremental angular rotation that a given shape can accept prior to exces-
sive load shedding, defined as the ratio of the inelastic rotation attained to the idealized
elastic rotation at first yield.
.
Rupture strength†. Strength limited by breaking or tearing of members or connecting
elements.
Safety factor, Ω†. Factor that accounts for deviations of the actual strength from the nomi-
nal strength, deviations of the actual loadfrom the nominal load , uncertainties in the
analysis that transforms the load into a load effect, and for the manner and consequences
of failure.
Second-order effect.Effect of loads acting on the deformed configuration of a structure;
includes P-δeffectand P-Δeffect.
Seismic response modification factor.Factor that reduces seismic load effects to strength
level.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page lii

GLOSSARY 16.1–liii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Service load†.Loadunder which serviceability limit states are evaluated.
Service load combination.Load combination under which serviceability limit statesare
evaluated.
Serviceability limit state†. Limiting condition affecting the ability of a structure to preserve
its appearance, maintainability, durability or the comfort of its occupants or function of
machinery, under normal usage.
Shear buckling†. Bucklingmode in which a plate element, such as the web of a beam,
deforms under pure shear applied in the plane of the plate.
Shear lag.Nonuniform tensile stress distribution in a member or connecting element in the-
vicinity of a connection.
Shear wall†. Wall that provides resistance to lateral loadsin the plane of the wall and
provides stability for the structural system.
Shear yielding (punching). In an HSS connection, limit statebased on out-of-plane shear
strength of the chord wall to whichbranch members are attached.
Sheet steel. In a compositefloor system, steel used for closure plates or miscellaneous trim-
ming in a formed steel deck.
Shim. Thin layer of material used to fill a space between faying or bearing surfaces.
Sidesway buckling (frame). Stability limit state involving lateral sidesway instabilityof a
frame.
Simple connection. Connectionthat transmits negligible bending moment between con-
nected members.
Single-concentrated force. Tensile or compressive force applied normal to the flange of a
member.
Single curvature. Deformed shape of a beam with no inflection point within the span.
Slender-element section. Cross section possessing plate components of sufficient slender-
ness such that local buckling in the elastic range will occur.
Slip. In a bolted connection, limit state of relative motion of connected parts prior to the
attainment of the available strengthof the connection.
Slip-critical connection. Bolted connectiondesigned to resist movement by friction on the
faying surface of the connection under the clamping force of the bolts.
Slot weld. Weld made in an elongated hole fusing an element to another element.
Snug-tightened joint. Jointwith the connected plies in firm contact as specified in Chapter J.
Specifications. Written documents containing the requirements for materials, standards and
workmanship.
Specified minimum tensile strength. Lower limit of tensile strength specified for a material
as defined by ASTM.
Specified minimum yield str
ess†. Lower limit of yield stress specified for a material as
defined by ASTM.
Splice. Connectionbetween two structural elements joined at their ends to form a single,
longer element.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page liii

16.1–liv GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Stability.Condition in the loading of a structural component, frame or structure in which a
slight disturbance in the loadsor geometry does not produce large displacements.
Statically loaded. Not subject to significant fatigue stresses. Gravity, wind and seismic load-
ings are considered to be static loadings.
Steel anchor. Headed stud or hot rolled channel welded to a steel member and embodied in
concrete of a composite memberto transmit shear, tension or a combination of shear and
tension at the interface of the two materials.
Stiffened element. Flat compression element with adjoining out-of-plane elements along
both edges parallel to the direction of loading.
Stiffener. Structural element, usually an angle or plate, attached to a member to distribute
load, transfer shear or prevent buckling.
Stiffness. Resistance to deformation of a member or structure, measured by the ratio of the
applied force(or moment) to the corresponding displacement (or rotation).
Strain compatibility method. In a composite member, method for determining thestresses
considering the stress-strain relationships of each material and its location with respect to
the neutral axis of the cross section.
Strength limit state†. Limiting condition in which the maximum strength of a structure or its
components is reached.
Stress. Force per unit area caused by axial force, moment, shear or torsion.
Stress concentration. Localized stress considerably higher than average due to abrupt
changes in geometry or localized loading.
Strong axis. Major principal centroidal axis of a cross section.
Structural analysis†. Determination of load effectson members and connections based on
principles of structural mechanics.
Structural component†. Member, connector, connecting element or assemblage.
Structural steel.Steel elements as defined in Section 2.1 of the AISC Code of Standard
Practice for Steel Buildings and Bridges.
Structural system. An assemblage of load-carrying components that are joined together to
provide interaction or interdependence.
T-connection. HSS connectionin which the branch memberor connecting element is per-
pendicular to the main memberand in which forces transverse to the main member are
primarily equilibriated by shear in the main member.
Tensile strength (of material)†. Maximum tensile stressthat a material is capable of sus-
taining as defined by ASTM.
Tensile strength (of member).Maximum tension force that a member is capable of
sustaining.
Tension and shear rupture†. In a bolt or other type of mechanical fastener, limit stateof rup-
ture due to simultaneous tension and shear force.
Tension field action. Behavior of a panel under shear in which diagonal tensile forces
develop in the web and compressive forces develop in the transverse stiffenersin a man-
ner similar to a Pratt truss.
Thermally cut. Cut with gas, plasma or laser.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page liv

GLOSSARY 16.1–lv
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Tie plate. Plate element used to join two parallel components of a built-up column, girderor
strut rigidly connected to the parallel components and designed to transmit shear between
them.
Toe of fillet. Junction of a fillet weld face and base metal. Tangent point of a fillet in a rolled
shape.
Torsional bracing.Bracing resisting twist of a beam or column.
Torsional buckling†. Buckling mode in which a compression member twists about its shear
center axis.
Transverse reinforcement. In an encased composite column, steel reinforcement in the form
of closed ties or welded wire fabric providing confinement for the concrete surrounding
the steel shape.
Transverse stiffener. Web stiffeneroriented perpendicular to the flanges, attached to the
web.
Tubing.See HSS.
Turn-of-nut method. Procedure whereby the specified pretension in high-strength bolts is
controlled by rotating the fastenercomponent a predetermined amount after the bolt has
been snug tightened.
Unbraced length. Distance between braced points of a member, measured between the cen-
ters of gravity of the bracing members.
Uneven load distribution.In an HSS connection, condition in which the loadis not distrib-
uted through the cross section of connected elements in a manner that can be readily
determined.
Unframed end. The end of a member not restrained against rotation by stiffenersor connec-
tion elements.
Unrestrained construction. Floor and roof assemblies and individual beamsin buildings that
are assumed to be free to rotate and expand throughout the range of anticipated elevated
temperatures.
Unstiffened element. Flat compression element with an adjoining out-of-plane element
along one edge parallel to the direction of loading.
Weak axis. Minor principal centroidal axis of a cross section.
Weathering steel. High-strength, low-alloy steel that, with suitable precautions, can be used
in normal atmospheric exposures (not marine) without protective paint coating.
Web crippling†. Limit state of local failure of web plate in the immediate vicinity of a con-
centratedload or reaction.
Web sidesway buckling. Limit state of lateralbuckling of the tension flange opposite the
location of a concentrated compressionforce.
Weld metal. Portion of a fusion weld that has been completely melted during welding. Weld
metal has elements of filler metal and base metal melted in the weld thermal cycle.
Weld root.See root of joint.
Y-connection. HSS connectionin which the branch memberor connecting element is not
perpendicular to the main memberand in which forces transverse to the main member are
primarily equilibriated by shear in the main member.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page lv

16.1–lvi GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Yield moment†. In a member subjected to bending, the moment at which the extreme outer
fiber first attains the yield stress.
Yield point†. First stress in a material at which an increase in strain occurs without an
increase in stress as defined by ASTM.
Yield strength†. Stressat which a material exhibits a specified limiting deviation from the
proportionality of stress to strain as defined by ASTM.
Yield stress†. Generic term to denote either yield pointor yield strength, as appropriate for
the material.
Yielding†. Limit state of inelastic deformation that occurs when the yield stressis reached.
Yielding (plastic moment)†. Yieldingthroughout the cross section of a member as the bend-
ing moment reaches theplastic moment.
Yielding (yield moment)†. Yieldingat the extreme fiber on the cross section of a member
when the bending moment reaches the yield moment.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page lvi

16.1–1
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER A
GENERAL PROVISIONS
This chapter states the scope of the Specification, summarizes referenced specifications,
codes and standards, and provides requirements for materials and structural design
documents.
The chapter is organized as follows:
A1. Scope
A2. Referenced Specifications, Codes and Standards
A3. Material
A4. Structural Design Drawings and Specifications
A1. SCOPE
The Specification for Structural Steel Buildings(ANSI/AISC 360), hereafter referred
to as the Specification, shall apply to the design of the structural steelsystem or sys-
tems with structural steel acting compositely with reinforced concrete, where the
steel elements are defined in the AISCCode of Standard Practice for Steel Buildings
and Bridges, Section 2.1, hereafter referred to as the Code of Standard Practice .
This Specification includes the Symbols, the Glossary, Chapters A through N, and
Appendices 1 through 8. The Commentary and the User Notes interspersed through-
out are not part of the Specification.
User Note:User notes are intended to provide concise and practical guidance in
the application of the provisions.
This Specification sets forth criteria for the design, fabrication and erection of struc-
tural steel buildings and other structures, where other structures are defined as
structures designed, fabricated and erected in a manner similar to buildings, with
building-like vertical and lateral loadresisting-elements.
Wherever this Specification refers to the applicable building code and there is none,
the loads, load combinations, system limitations, and general design requirements
shall be those in ASCE/SEI 7.
Where conditions are not covered by the Specification, designs are permitted to be
based on tests or analysis, subject to the approval of the authority having jurisdiction.
Alternative methods of analysis and design are permitted, provided such alternative
methods or criteria are acceptable to the authority having jurisdiction.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 1

User Note:For the design of structural members, other than hollow structural
sections (HSS) that are cold-formed to shapes with elements not more than 1 in.
(25 mm) in thickness, the provisions of the AISI North American Specification for
the Design of Cold-Formed Steel Structural Membersare recommended.
1. Seismic Applications
The Seismic Provisions for Structural Steel Buildings(ANSI/AISC 341) shall apply
to the design of seismic forceresisting systems of structural steelor of structural
steel acting compositely with reinforced concrete, unless specifically exempted by
the applicable building code.
User Note:ASCE/SEI 7 (Table 12.2-1, Item H) specifically exempts structural
steel systems, but not composite systems, in seismic design categories B and C
if they are designed according to the Specification and the seismicloads are
computed using a seismic response modification factor, R, of 3. For seismic
design category A, ASCE/SEI 7 does specify lateral forces to be used as the
seismic loads and effects, but these calculations do not involve the use of an R
factor. Thus for seismic design category A it is not necessary to define a seismic
force resisting system that meets any special requirements and the Seismic
Provisions for Structural Steel Buildingsdo not apply.
The provisions of Appendix 1 of this Specification shall not apply to the seismic
design of buildings and other structures.
2. Nuclear Applications
The design, fabrication and erection of nuclear structures shall comply with the
requirements of the Specification for Safety-Related Steel Structures for Nuclear
Facilities (ANSI/AISC N690), in addition to the provisions of this Specification.
A2. REFERENCED SPECIFICATIONS, CODES AND STANDARDS
The following specifications, codes and standards are referenced in this Specification:
ACI International (ACI)
ACI 318-08 Building Code Requirements for Structural Concrete and Commentary
ACI 318M-08 Metric Building Code Requirements for Structural Concrete and
Commentary
ACI 349-06 Code Requirements for Nuclear Safety-Related Concrete Structures and
Commentary
American Institute of Steel Construction (AISC)
AISC 303-10Code of Standard Practice for Steel Buildings and Bridges
ANSI/AISC 341-10 Seismic Provisions for Structural Steel Buildings
ANSI/AISC N690-06 Specification for Safety-Related Steel Structures for Nuclear
Facilities
16.1–2 SCOPE [Sect. A1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 2

American Society of Civil Engineers (ASCE)
ASCE/SEI 7-10 Minimum Design Loads for Buildings and Other Structures
ASCE/SEI/SFPE 29-05 Standard Calculation Methods for Structural Fire Protection
American Society of Mechanical Engineers (ASME)
ASME B18.2.6-06 Fasteners for Use in Structural Applications
ASME B46.1-02 Surface Texture, Surface Roughness, Waviness, and Lay
American Society for Nondestructive Testing (ASNT)
ANSI/ASNT CP-189-2006 Standard for Qualification and Certification of
Nondestructive Testing Personnel
Recommended Practice No. SNT-TC-1A-2006 Personnel Qualification and
Certification in Nondestructive Testing
ASTM International (ASTM)
A6/A6M-09 Standard Specification for General Requirements for Rolled Structural
Steel Bars, Plates, Shapes, and Sheet Piling
A36/A36M-08 Standard Specification for Carbon Structural Steel
A53/A53M-07Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-
Coated, Welded and Seamless
A193/A193M-08b Standard Specification for Alloy-Steel and Stainless Steel Bolting
Materials for High Temperature or High Pressure Service and Other Special
Purpose Applications
A194/A194M-09 Standard Specification for Carbon and Alloy Steel Nuts for Bolts
for High Pressure or High Temperature Service, or Both
A216/A216M-08 Standard Specification for Steel Castings, Carbon, Suitable for
Fusion Welding, for High Temperature Service
A242/A242M-04(2009)Standard Specification for High-Strength Low-Alloy
Structural Steel
A283/A283M-03(2007)Standard Specification for Low and Intermediate Tensile
Strength Carbon Steel Plates
A307-07bStandard Specification for Carbon Steel Bolts and Studs, 60,000 PSI
Tensile Strength
A325-09 Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105
ksi Minimum Tensile Strength
A325M-09Standard Specification for Structural Bolts, Steel, Heat Treated 830 MPa
Minimum Tensile Strength (Metric)
A354-07a Standard Specification for Quenched and Tempered Alloy Steel Bolts,
Studs, and Other Externally Threaded Fasteners
A370-09Standard Test Methods and Definitions for Mechanical Testing of Steel
Products
A449-07bStandard Specification for Hex Cap Screws, Bolts and Studs, Steel, Heat
Treated, 120/105/90 ksi Minimum Tensile Strength, General Use
A490-08bStandard Specification for Heat-Treated Steel Structural Bolts, Alloy
Steel, Heat Treated, 150 ksi Minimum Tensile Strength
A490M-08Standard Specification for High-Strength Steel Bolts, Classes 10.9 and
10.9.3, for Structural Steel Joints (Metric)
Sect. A2.] REFERENCED SPECIFICATIONS, CODES AND STANDARDS 16.1–3
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 3

A500/A500M-07Standard Specification for Cold-Formed Welded and Seamless
Carbon Steel Structural Tubing in Rounds and Shapes
A501-07Standard Specification for Hot-Formed Welded and Seamless Carbon Steel
Structural Tubing
A502-03 Standard Specification for Steel Structural Rivets, Steel, Structural
A514/A514M-05 Standard Specification for High-Yield Strength, Quenched and
Tempered Alloy Steel Plate, Suitable for Welding
A529/A529M-05Standard Specification for High-Strength Carbon-Manganese
Steel of Structural Quality
A563-07aStandard Specification for Carbon and Alloy Steel Nuts
A563M-07 Standard Specification for Carbon and Alloy Steel Nuts [Metric]
A568/A568M-09Standard Specification for Steel, Sheet, Carbon, Structural, and
High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, General Requirements for
A572/A572M-07Standard Specification for High-Strength Low-Alloy Columbium-
Vanadium Structural Steel
A588/A588M-05Standard Specification for High-Strength Low-Alloy Structural Steel,
up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance
A606/A606M-09Standard Specification for Steel, Sheet and Strip, High-Strength,
Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion
Resistance
A618/A618M-04Standard Specification for Hot-Formed Welded and Seamless
High-Strength Low-Alloy Structural Tubing
A668/A668M-04 Standard Specification for Steel Forgings, Carbon and Alloy, for
General Industrial Use
A673/A673M-04Standard Specification for Sampling Procedure for Impact Testing
of Structural Steel
A709/A709M-09 Standard Specification for Structural Steel for Bridges
A751-08 Standard Test Methods, Practices, and Terminology for Chemical Analysis
of Steel Products
A847/A847M-05 Standard Specification for Cold-Formed Welded and Seamless
High-Strength, Low-Alloy Structural Tubing with Improved Atmospheric
Corrosion Resistance
A852/A852M-03(2007)Standard Specification for Quenched and Tempered Low-
Alloy Structural Steel Plate with 70 ksi [485 MPa] Minimum Yield Strength to 4
in. [100 mm] Thick
A913/A913M-07Standard Specification for High-Strength Low-Alloy Steel Shapes
of Structural Quality, Produced by Quenching and Self-Tempering Process (QST)
A992/A992M-06aStandard Specification for Structural Steel Shapes
User Note:ASTM A992 is the most commonly referenced specification for
W-shapes.
A1011/A1011M-09aStandard Specification for Steel, Sheet and Strip, Hot-Rolled,
Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with
Improved Formability, and Ultra-High Strength
A1043/A1043M-05 Standard Specification for Structural Steel with Low Yield to
Tensile Ratio for Use in Buildings
16.1–4 REFERENCED SPECIFICATIONS, CODES AND STANDARDS [Sect. A2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 4

Sect. A2.] REFERENCED SPECIFICATIONS, CODES AND STANDARDS 16.1–5
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
C567-05a Standard Test Method for Determining Density of Structural Lightweight
Concrete
E119-08a Standard Test Methods for Fire Tests of Building Construction and Materials
E165-02 Standard Test Method for Liquid Penetrant Examination
E709-08Standard Guide for Magnetic Particle Examination
F436-09Standard Specification for Hardened Steel Washers
F436M-09 Standard Specification for Hardened Steel Washers (Metric)
F606-07 Standard Test Methods for Determining the Mechanical Properties of
Externally and Internally Threaded Fasteners, Washers, Direct Tension Indicators,
and Rivets
F606M-07 Standard Test Methods for Determining the Mechanical Properties of
Externally and Internally Threaded Fasteners, Washers, and Rivets (Metric)
F844-07a Standard Specification for Washers, Steel, Plain (Flat), Unhardened for
General Use
F959-09Standard Specification for Compressible-Washer-Type Direct Tension
Indicators for Use with Structural Fasteners
F959M-07 Standard Specification for Compressible-Washer-Type Direct Tension
Indicators for Use with Structural Fasteners (Metric)
F1554-07aStandard Specification for Anchor Bolts, Steel, 36, 55, and 105 ksi Yield
Strength
User Note:ASTM F1554 is the most commonly referenced specification for
anchor rods. Grade and weldability must be specified.
F1852-08Standard Specification for “Twist-Off” Type Tension Control Structural
Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile
Strength
F2280-08 Standard Specification for “Twist Off” Type Tension Control Structural Bolt/
Nut/Washer Assemblies, Steel, Heat Treated, 150 ksi Minimum Tensile Strength
American Welding Society (AWS)
AWS A5.1/A5.1M-2004 Specification for Carbon Steel Electrodes for Shielded
Metal Arc Welding
AWS A5.5/A5.5M-2004 Specification for Low-Alloy Steel Electrodes for Shielded
Metal Arc Welding
AWS A5.17/A5.17M-1997 (R2007) Specification for Carbon Steel Electrodes and
Fluxes for Submerged Arc Welding
AWS A5.18/A5.18M-2005 Specification for Carbon Steel Electrodes and Rods for
Gas Shielded Arc Welding
AWS A5.20/A5.20M-2005 Specification for Carbon Steel Electrodes for Flux Cored
Arc Welding
AWS A5.23/A5.23M-2007 Specification for Low-Alloy Steel Electrodes and Fluxes
for Submerged Arc Welding
AWS A5.25/A5.25M-1997 (R2009) Specification for Carbon and Low-Alloy Steel
Electrodes and Fluxes for Electroslag Welding
AWS A5.26/A5.26M-1997 (R2009) Specification for Carbon and Low-Alloy Steel
Electrodes for Electrogas Welding
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 5

AWS A5.28/A5.28M-2005 Specification for Low-Alloy Steel Electrodes and Rods
for Gas Shielded Arc Welding
AWS A5.29/A5.29M-2005 Specification for Low-Alloy Steel Electrodes for Flux
Cored Arc Welding
AWS A5.32/A5.32M-1997 (R2007) Specification for Welding Shielding Gases
AWS B5.1-2003 Specification for the Qualification of Welding Inspectors
AWS D1.1/D1.1M-2010 Structural Welding Code—Steel
AWS D1.3 -2008 Structural Welding Code—Sheet Steel
Research Council on Structural Connections (RCSC)
Specification for Structural Joints Using High-Strength Bolts, 2009
A3. MATERIAL
1. Structural Steel Materials
Material test reports or reports of tests made by the fabricator or a testing laboratory
shall constitute sufficient evidence of conformity with one of the ASTM standards
listed in Section A3.1a. For hot-rolled structural shapes, plates, and bars, such tests
shall be made in accordance with ASTM A6/A6M; for sheets, such tests shall be
made in accordance with ASTM A568/A568M; for tubing and pipe, such tests shall
be made in accordance with the requirements of the applicable ASTM standards
listed above for those product forms.
1a. ASTM Designations
Structural steelmaterial conforming to one of the following ASTMspecificationsis
approved for use under this Specification:
(1) Hot-rolled structural shapes
ASTM A36/A36M ASTM A709/A709M
ASTM A529/A529M ASTM A913/A913M
ASTM A572/A572M ASTM A992/ A992M
ASTM A588/A588M ASTM A1043/A1043M
(2) Structural tubing
ASTM A500 ASTM A618/A618M
ASTM A501 ASTM A847/A847M
(3) Pipe
ASTM A53/A53M, Gr. B
(4) Plates
ASTM A36/A36M ASTM A588/A588M
ASTM A242/A242M ASTM A709/A709M
ASTM A283/A283M ASTM A852/A852M
ASTM A514/A514M ASTM A1011/A1011M
ASTM A529/A529M ASTM A1043/A1043M
ASTM A572/A572M
(5) Bars
ASTM A36/A36M ASTM A572/A572M
ASTM A529/A529M ASTM A709/A709M
16.1–6 REFERENCED SPECIFICATIONS, CODES AND STANDARDS [Sect. A2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 6

Sect. A3.] MATERIAL 16.1–7
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(6) Sheets
ASTM A606/A606M
ASTM A1011/A1011M SS, HSLAS, AND HSLAS-F
1b. Unidentified Steel
Unidentified steel, free of injurious defects, is permitted to be used only for members
or details whose failure will not reduce the strength of the structure, either locally or
overall. Such use shall be subject to the approval of the engineer of record.
User Note:Unidentified steel may be used for details where the precise mechan-
ical properties and weldability are not of concern. These are commonly curb
plates, shimsand other similar pieces.
1c. Rolled Heavy Shapes
ASTM A6/A6M hot-rolled shapes with a flange thickness exceeding 2 in. (50 mm)
are considered to be rolled heavy shapes. Rolled heavy shapes used as members
subject to primary (computed) tensile forcesdue to tension or flexure and spliced
or connected using complete-joint-penetration groove weldsthat fuse through the
thickness of the flange or the flange and the web, shall be specified as follows.
The structural design documents shall require that such shapes be supplied with
Charpy V-notch (CVN) impact testresults in accordance with ASTM A6/A6M,
Supplementary Requirement S30, Charpy V-Notch Impact Test for Structural Shapes
– Alternate Core Location. The impact test shall meet a minimum average value of
20 ft-lb (27 J) absorbed energy at a maximum temperature of +70 °F (+21 °C).
The above requirements do not apply if the splicesand connectionsare made by
bolting. Where a rolled heavy shape is welded to the surface of another shape using
groove welds, the requirement above applies only to the shape that has weld metal
fused through the cross section.
User Note:Additional requirements for joints in heavy rolled members are given
in Sections J1.5, J1.6, J2.6 and M2.2.
1d. Built-Up Heavy Shapes
Built-up cross sectionsconsisting of plates with a thickness exceeding 2 in. (50 mm)
are considered built-up heavy shapes. Built-up heavy shapes used as members sub-
ject to primary (computed) tensile forces due to tension or flexure and spliced or
connected to other members using complete-joint-penetration groove welds that
fuse through the thickness of the plates, shall be specified as follows. The structural
design documents shall require that the steel be supplied with Charpy V-notch
impact testresults in accordance with ASTM A6/A6M, Supplementary
Requirement S5, Charpy V-Notch Impact Test. The impact test shall be conducted
in accordance with ASTM A673/A673M, Frequency P, and shall meet a minimum
average value of 20 ft-lb (27 J) absorbed energy at a maximum temperature of
+70 °F (+21 °C).
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 7

16.1–8 MATERIAL [Sect. A3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
When a built-up heavy shape is welded to the face of another member using groove
welds, the requirement above applies only to the shape that has weld metal fused
through the cross section.
User Note:Additional requirements for joints in heavy built-up members are
given in Sections J1.5, J1.6, J2.6 and M2.2.
2. Steel Castings and Forgings
Steel castings shall conform to ASTM A216/A216M, Grade WCB with Sup-
plementary Requirement S11. Steel forgings shall conform to ASTM A668/A668M.
Test reports produced in accordance with the above reference standards shall consti-
tute sufficient evidence of conformity with such standards.
3. Bolts, Washers and Nuts
Bolt, washer and nut material conforming to one of the following ASTMspecifica-
tionsis approved for use under this Specification:
(1) Bolts
ASTM A307 ASTM A490
ASTM A325 ASTM A490M
ASTM A325M ASTM F1852
ASTM A354 ASTM F2280
ASTM A449
(2) Nuts
ASTM A194/A194M ASTM A563M
ASTM A563
(3) Washers
ASTM F436 ASTM F844
ASTM F436M
(4) Compressible-Washer-Type Direct Tension Indicators
ASTM F959
ASTM F959M
Manufacturer’s certification shall constitute sufficient evidence of conformity with
the standards.
4. Anchor Rods and Threaded Rods
Anchor rod and threaded rod material conforming to one of the following ASTM
specificationsis approved for use under this Specification:
ASTM A36/A36M ASTM A572/A572M
ASTM A193/A193M ASTM A588/A588M
ASTM A354 ASTM F1554
ASTM A449
User Note:ASTM F1554 is the preferred material specification for anchor rods.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 8

A449 material is acceptable for high-strength anchor rods and threaded rods of
any diameter.
Threads on anchor rods and threaded rods shall conform to the Unified Standard
Series of ASME B18.2.6 and shall have Class 2A tolerances.
Manufacturer’s certification shall constitute sufficient evidence of conformity with
the standards.
5. Consumables for Welding
Filler metalsand fluxes shall conform to one of the following specificationsof the
American Welding Society:
AWS A5.1/A5.1M AWS A5.25/A5.25M
AWS A5.5/A5.5M AWS A5.26/A5.26M
AWS A5.17/A5.17M AWS A5.28/A5.28M
AWS A5.18/A5.18M AWS A5.29/A5.29M
AWS A5.20/A5.20M AWS A5.32/A5.32M
AWS A5.23/A5.23M
Manufacturer’s certification shall constitute sufficient evidence of conformity with
the standards. Filler metals and fluxes that are suitable for the intended application
shall be selected.
6. Headed Stud Anchors
Steel headed stud anchors shall conform to the requirements of the Structural
Welding Code—Steel(AWS D1.1/D1.1M).
Manufacturer’s certification shall constitute sufficient evidence of conformity with
AWS D1.1/D1.1M.
A4. STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS
The structural design drawings and specificationsshall meet the requirements in the
Code of Standard Practice.
User Note: Provisions in this Specification contain information that is to be
shown on design drawings. These include:
Section A3.1c Rolled heavy shapes where alternate core Charpy V-notch tough-
ness(CVN) is required
Section A3.1d Built-up heavy shapes where CVN toughness is required
Section J3.1 Locations of connections using pretensioned bolts
Other information is needed by the fabricator or erector and should be shown on
design drawings including:
Fatiguedetails requiring nondestructive testing (Appendix 3; e.g., Table A3.1,
Cases 5.1 to 5.4)
Risk category (Chapter N)
Indication of complete-joint-penetration (CJP) welds subject to tension (Chapter N)
Sect. A4.] STRUCTURAL DESIGN DRAWINGS ANS SPECIFICATIONS 16.1–9
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 9

CHAPTER B
DESIGN REQUIREMENTS
This chapter addresses general requirements for the analysis and design of steel structures
applicable to all chapters of the specification.
The chapter is organized as follows:
B1. General Provisions
B2. Loads and Load Combinations
B3. Design Basis
B4. Member Properties
B5. Fabrication and Erection
B6. Quality Control and Quality Assurance
B7. Evaluation of Existing Structures
B1. GENERAL PROVISIONS
The design of members and connections shall be consistent with the intended behav-
ior of the framing system and the assumptions made in the structural analysis.
Unless restricted by the applicable building code, lateral loadresistance and stabil-
itymay be provided by any combination of members and connections.
B2. LOADS AND LOAD COMBINATIONS
The loadsand load combinations shall be as stipulated by the applicable building
code. In the absence of a building code, the loads and load combinations shall be
those stipulated in Minimum Design Loads for Buildings and Other Structures
(ASCE/SEI 7). For design purposes, the nominal loadsshall be taken as the loads
stipulated by the applicable building code.
User Note: When using ASCE/SEI 7, for design according to Section B3.3
(LRFD), the load combinations in ASCE/SEI 7, Section 2.3 apply. For design
according to Section B3.4 (ASD), the load combinations in ASCE/SEI 7, Section
2.4 apply.
B3. DESIGN BASIS
Designs shall be made according to the provisions for load and resistance factor
design (LRFD)or to the provisions for allowable strength design (ASD) .
1. Required Strength
The required strengthof structural members and connectionsshall be determined by
structural analysisfor the appropriate load combinations as stipulated in Section B2.
16.1–10
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 10

Design by elastic, inelastic or plastic analysisis permitted. Provisions for inelastic
and plastic analysis are as stipulated in Appendix 1, Design by Inelastic Analysis.
2. Limit States
Design shall be based on the principle that no applicable strength or serviceability
limit stateshall be exceeded when the structure is subjected to all appropriate load
combinations.
Design for structural integrity requirements of the applicable building codeshall be
based on nominal strength rather than design strength (LRFD) or allowable strength
(ASD), unless specifically stated otherwise in the applicable building code. Limit
states for connections based on limiting deformations or yielding of the connection
components need not be considered for meeting structural integrity requirements.
For the purpose of satisfying structural integrity provisions of the applicable building
code, bearingbolts in connections with short-slotted holes parallel to the direction of
the tension load are permitted, and shall be assumed to be located at the end of the slot.
3. Design for Strength Using Load and Resistance Factor Design (LRFD)
Design according to the provisions for load and resistance factor design (LRFD)
satisfies the requirements of this Specification when the design strength of each
structural componentequals or exceeds the required strength determined on the
basis of the LRFD load combinations . All provisions of this Specification, except
for those in Section B3.4, shall apply.
Design shall be performed in accordance with Equation B3-1:
R
u≤φRn (B3-1)
where
R
u=required strength using LRFD load combinations
R
n=nominal strength, specified in Chapters B through K
φ=resistance factor, specified in Chapters B through K
φR
n=design strength
4. Design for Strength Using Allowable Strength Design (ASD)
Design according to the provisions for allowable strength design (ASD)satisfies the
requirements of this Specification when the allowable strength of each structural
componentequals or exceeds the required strengthdetermined on the basis of the
ASD load combinations. All provisions of this Specification, except those of Section
B3.3, shall apply.
Design shall be performed in accordance with Equation B3-2:
R
a≤Rn/Ω (B3-2)
where
R
a=required strength using ASD load combinations
R
n=nominal strength, specified in Chapters B through K
Ω= safety factor, specified in Chapters B through K
R
n/Ω=allowable strength
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Sect. B3.] DESIGN BASIS 16–11
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 11

5. Design for Stability
Stabilityof the structure and its elements shall be determined in accordance with
Chapter C.
6. Design of Connections
Connectionelements shall be designed in accordance with the provisions of Chapters
J and K. The forces and deformations used in design shall be consistent with the
intended performance of the connection and the assumptions used in the structural
analysis. Self-limiting inelastic deformations of the connections are permitted. At
points of support, beams, girdersand trusses shall be restrained against rotation about
their longitudinal axis unless it can be shown by analysis that the restraint is not
required.
User Note:Section 3.1.2 of the Code of Standard Practiceaddresses communi-
cation of necessary information for the design of connections.
6a. Simple Connections
A simple connection transmits a negligible moment. In the analysis of the structure,
simple connections may be assumed to allow unrestrained relative rotation between
the framing elements being connected. A simple connection shall have sufficient
rotation capacityto accommodate the required rotation determined by the analysis
of the structure.
6b. Moment Connections
Two types of moment connections, fully restrained and partially restrained, are per-
mitted, as specified below.
(a) Fully Restrained (FR) Moment Connections
A fully restrained (FR) moment connectiontransfers moment with a negligible
rotation between the connected members. In the analysis of the structure, the
connection may be assumed to allow no relative rotation. An FR connection shall
have sufficient strength and stiffness to maintain the angle between the con-
nected members at the strength limit states.
(b) Partially Restrained (PR) Moment Connections
Partially restrained (PR) moment connectionstransfer moments, but the rotation
between connected members is not negligible. In the analysis of the structure, the
force-deformation response characteristics of the connection shall be included.
The response characteristics of a PR connection shall be documented in the
technical literature or established by analytical or experimental means. The com-
ponent elements of a PR connection shall have sufficient strength, stiffness and
deformation capacity at the strength limit states.
7. Moment Redistribution in Beams
The required flexural strengthof beamscomposed of compact sections, as defined
in Section B4.1, and satisfying the unbraced lengthrequirements of Section F13.5
16.1–12 DESIGN BASIS [Sect. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 12

may be taken as nine-tenths of the negative moments at the points of support, pro-
duced by the gravity loading and determined by an elastic analysissatisfying the
requirements of Chapter C, provided that the maximum positive moment is
increased by one-tenth of the average negative moment determined by an elastic
analysis. This reduction is not permitted for moments in members with F
yexceed-
ing 65 ksi (450 MPa), for moments produced by loading on cantilevers, for design
using partially restrained (PR) moment connections, or for design by inelastic
analysis using the provisions of Appendix 1. This reduction is permitted for design
according to Section B3.3 (LRFD) and for design according to Section B3.4 (ASD).
The required axial strength shall not exceed 0.15φ
cFyAgfor LRFD or 0.15F yAg/Ωc
for ASD where φ c and Ω care determined from Section E1, and A g=gross area of
member, in.
2
(mm
2
), and F y =specified minimum yield stress, ksi (MPa).
8. Diaphragms and Collectors
Diaphragmsand collectorsshall be designed for forces that result from loads as stip-
ulated in Section B2. They shall be designed in conformance with the provisions of
Chapters C through K, as applicable.
9. Design for Serviceability
The overall structure and the individual members and connections shall be checked
for serviceability. Requirements for serviceability design are given in Chapter L.
10. Design for Ponding
The roof system shall be investigated through structural analysisto assure adequate
strength and stabilityunder pondingconditions, unless the roof surface is provided
with a slope of
1
/4in. per ft (20 mm per meter) or greater toward points of free
drainage or an adequate system of drainage is provided to prevent the accumulation
of water.
Methods of checking ponding are provided in Appendix 2, Design for Ponding.
11. Design for Fatigue
Fatigueshall be considered in accordance with Appendix 3, Design for Fatigue, for
members and their connections subject to repeated loading. Fatigue need not be con-
sidered for seismic effects or for the effects of wind loading on normal building
lateral force resisting systemsand building enclosure components.
12. Design for Fire Conditions
Two methods of design for fireconditions are provided in Appendix 4, Structural
Design for Fire Conditions: by Analysis and by Qualification Testing. Compliance
with the fire protection requirements in the applicable building codeshall be
deemed to satisfy the requirements of this section and Appendix 4.
Nothing in this section is intended to create or imply a contractual requirement for the
engineer of recordresponsible for the structural design or any other member of the
design team.
Sect. B3.] DESIGN BASIS 16.1–13
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 13

16.1–14 DESIGN BASIS [Sect. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:Design by qualification testing is the prescriptive method specified in
most building codes. Traditionally, on most projects where the architect is the
prime professional, the architect has been the responsible party to specify and
coordinate fire protection requirements. Design by analysis is a new engineering
approach to fire protection. Designation of the person(s) responsible for design-
ing for fire conditions is a contractual matter to be addressed on each project.
13. Design for Corrosion Effects
Where corrosion may impair the strength or serviceability of a structure, structural
componentsshall be designed to tolerate corrosion or shall be protected against
corrosion.
14. Anchorage to Concrete
Anchorage between steel and concrete acting compositely shall be designed in accor-
dance with Chapter I. The design of column basesand anchor rods shall be in
accordance with Chapter J.
B4. MEMBER PROPERTIES
1. Classification of Sections for Local Buckling
For compression, sections are classified as nonslender element or slender-element
sections. For a nonslender element section, the width-to-thickness ratios of its com-
pression elements shall not exceed λ
rfrom Table B4.1a. If the width-to-thickness
ratio of any compression element exceeds λ
r, the section is a slender-element section.
For flexure, sections are classified as compact, noncompactor slender-element sec-
tions. For a section to qualify as compact, its flanges must be continuously connected
to the web or webs and the width-to-thickness ratios of its compression elements
shall not exceed the limiting width-to-thickness ratios, λ
p, from Table B4.1b. If the
width-to-thickness ratio of one or more compression elements exceeds λ
p, but does
not exceed λ
rfrom Table B4.1b, the section is noncompact. If the width-to-thickness
ratio of any compression element exceeds λ
r, the section is a slender-element section.
1a. Unstiffened Elements
For unstiffened elementssupported along only one edge parallel to the direction of
the compression force, the width shall be taken as follows:
(a) For flanges of I-shaped members and tees, the width, b, is one-half the full-flange
width, b
f.
(b) For legs of angles and flanges of channels and zees, the width, b, is the full nom-
inal dimension.
(c) For plates, the width, b, is the distance from the free edge to the first row of fas-
tenersor line of welds.
(d) For stems of tees, d is taken as the full nominal depth of the section.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 14

Sect. B4.] MEMBER PROPERTIES 16.1–15
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:Refer to Table B4.1 for the graphic representation of unstiffened ele-
ment dimensions.
1b. Stiffened Elements
For stiffened elementssupported along two edges parallel to the direction of the com-
pression force, the width shall be taken as follows:
(a) For webs of rolled or formed sections, h is the clear distance between flanges less
the fillet or corner radius at each flange; h
cis twice the distance from the center
of gravity to the inside face of the compression flange less the fillet or corner
radius.
(b) For webs of built-up sections, h is the distance between adjacent lines of fasten-
ersor the clear distance between flanges when welds are used, and h
cis twice the
distance from the center of gravity to the nearest line of fasteners at the com-
pression flange or the inside face of the compression flange when welds are used;
h
pis twice the distance from the plastic neutral axis to the nearest line of fasten-
ers at the compression flange or the inside face of the compression flange when
welds are used.
(c) For flange or diaphragm plates in built-up sections, the width, b, is the distance
between adjacent lines of fasteners or lines of welds.
(d) For flanges of rectangular hollow structural sections (HSS), the width, b, is the
clear distance between webs less the inside corner radius on each side. For webs
of rectangular HSS, h is the clear distance between the flanges less the inside cor-
ner radius on each side. If the corner radius is not known, band hshall be taken
as the corresponding outside dimension minus three times the thickness. The
thickness, t, shall be taken as the design wall thickness, per Section B4.2.
(e) For perforated cover plates , bis the transverse distance between the nearest line
of fasteners, and the net area of the plate is taken at the widest hole.
User Note:Refer to Table B4.1 for the graphic representation of stiffened element
dimensions.
For tapered flanges of rolled sections, the thickness is the nominal value halfway
between the free edge and the corresponding face of the web.
2. Design Wall Thickness for HSS
The design wall thickness, t, shall be used in calculations involving the wall thick-
ness of hollow structural sections (HSS). The design wall thickness, t, shall be taken
equal to 0.93 times the nominal wall thickness for electric-resistance-welded (ERW)
HSS and equal to the nominal thickness for submerged-arc-welded (SAW) HSS.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 15

TABLE B4.1a
Width-to-Thickness Ratios: Compression Elements
Members Subject to Axial Compression
Examples
Limiting
Width-to-Thickness
Ratio
r
(nonslender/slender)
Width-to-
Thickness
Ratio
Description of
Element
Case
Flanges of rolled
I-shaped sections,
plates projecting
from rolled I-shaped
sections; outstanding
legs of pairs of
angles connected
with continuous
contact, flanges of
channels, and
flanges of tees
Flanges of built-up
I-shaped sections
and plates or angle
legs projecting from
built-up I-shaped
sections
Legs of single
angles, legs of
double angles with
separators, and all
other unstiffened
elements
Stems of tees
Webs of doubly-
symmetric I-shaped
sections and
channels
Walls of rectangular
HSS and boxes of
uniform thickness
Flange cover plates
and diaphragm
plates between lines
of fasteners or welds
All other stiffened
elements
Round HSS
b/t
b/t
b/t
d/t
h/t
w
b/t
b/t
b/t
D/t
Stiffened ElementsUnstiffened Elements
075.
E
F
y
056.
E
F
y
064.
kE
F
c
y
045.
E
F
y
149.
E
F
y
140.
E
F
y
140.
E
F
y
149.
E
F
y
011.
E
F
y
1
2
3
4
5
6
7
8
9
[a]
16.1–16 MEMBER PROPERTIES [Sect. B4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed._ 2/17/12 2:34 PM Page 16

Sect. B4.] MEMBER PROPERTIES 16.1–17
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE B4.1b
Width-to-Thickness Ratios: Compression Elements
Members Subject to Flexure
Examples
Limiting
Width-to-Thickness Ratio

p ⎛r
(compact/ (noncompact/
noncompact) slender) Width-to-
Thickness
Ratio
Description of
Element
Case
Flanges of rolled
I-shaped sections,
channels, and tees
Flanges of doubly
and singly symmet-
ric I-shaped built-up
sections
Legs of single
angles
Flanges of all
I-shaped sections
and channels in
flexure about the
weak axis
Stems of tees
Webs of doubly-
symmetric I-shaped
sections and
channels
Webs of singly-
symmetric I-shaped
sections
Flanges of
rectangular HSS
and boxes of
uniform thickness
Flange cover plates
and diaphragm
plates between
lines of fasteners
or welds
Webs of rectangular
HSS and boxes
Round HSS
b/t
b/t
b/t
b/t
d/t
h/t
w
hc/tw
b/t
b/t
h/t
D/t
Stiffened ElementsUnstiffened Elements
376.
E
F
y
038.
E
F
y
054.
E
F
y
084.
E
F
y
h
h
E
F
M
M
c
py
p
y
r
054 009
2
.. −






≤λ
112.
E
F
y
112.
E
F
y
242.
E
F
y
007.
E
F
y
10
11
12
13
14
15
16
17
18
19
20
[a] [b]
038.
E
F
y
038.
E
F
y
10.
E
F
y
095.
kE
F
c
L
091.
E
F
y
10.
E
F
y
570.
E
F
y
103.
E
F
y
140.
E
F
y
570.
E
F
y
140.
E
F
y
570.
E
F
y
031.
E
F
y
[c]
[a] kc=4⎛ but shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes.
[b]
FL=0.7Fyfor major axis bending of compact and noncompact web built-up I-shaped members with Sxt/Sxc≥0.7;
FL=FySxt/Sxc≥0.5Fyfor major-axis bending of compact and noncompact web built-up I-shaped members with Sxt/Sxc<0.7.
[c]
Myis the moment at yielding of the extreme fiber. Mp=plastic bending moment, kip-in. (N-mm)
E=modulus of elasticity of steel = 29,000 ksi (200 000 MPa)
Fy=specified minimum yield stress, ksi (MPa)
ht
w/
AISC_PART 16_Spec.1_A:14th Ed._ 2/17/12 2:18 PM Page 17

16.1–18 MEMBER PROPERTIES [Sect. B4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:A pipecan be designed using the provisions of the Specification for
round HSS sections as long as the pipe conforms to ASTM A53 Class B and the
appropriate limitations of the Specification are used.
ASTM A500 HSS and ASTM A53 Grade B pipe are produced by an ERW
process. An SAW process is used for cross sections that are larger than those per-
mitted by ASTM A500.
3. Gross and Net Area Determination
3a. Gross Area
The gross area, A g, of a member is the total cross-sectional area.
3b. Net Area
The net area, A n, of a member is the sum of the products of the thickness and the net
width of each element computed as follows:
In computing net area for tension and shear, the width of a bolt hole shall be taken
as
1
/16in. (2 mm) greater than the nominal dimensionof the hole.
For a chain of holes extending across a part in any diagonal or zigzag line, the net
width of the part shall be obtained by deducting from the gross width the sum of the
diameters or slot dimensions as provided in this section, of all holes in the chain, and
adding, for each gage space in the chain, the quantity s
2
/4g,
where
s =longitudinal center-to-center spacing (pitch) of any two consecutive holes, in.
(mm)
g =transverse center-to-center spacing (gage) between fastener gage lines, in.
(mm)
For angles, the gage for holes in opposite adjacent legs shall be the sum of the gages
from the back of the angles less the thickness.
For slotted HSS welded to a gusset plate, the net area, A
n, is the gross area minus the
product of the thickness and the total width of material that is removed to form the
slot.
In determining the net area across plug or slot welds, the weld metal shall not be con-
sidered as adding to the net area.
For members without holes, the net area, A
n, is equal to the gross area, A g.
User Note:Section J4.1(b) limits A
nto a maximum of 0.85A gfor spliceplates
with holes.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 18

B5. FABRICATION AND ERECTION
Shop drawings, fabrication, shop painting and erection shall satisfy the requirements
stipulated in Chapter M, Fabrication and Erection.
B6. QUALITY CONTROL AND QUALITY ASSURANCE
Quality controland quality assuranceactivities shall satisfy the requirements stipu-
lated in Chapter N, Quality Control and Quality Assurance.
B7. EVALUATION OF EXISTING STRUCTURES
The evaluation of existing structures shall satisfy the requirements stipulated in
Appendix 5, Evaluation of Existing Structures.
Sect. B7.] EVALUATION OF EXISTING STRUCTURES 16.1–19
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 19

CHAPTER C
DESIGN FOR STABILITY
This chapter addresses requirements for the design of structures for stability. The direct
analysis methodis presented herein; alternative methods are presented in Appendix 7.
The chapter is organized as follows:
C1. General Stability Requirements
C2. Calculation of Required Strengths
C3. Calculation of Available Strengths
C1. GENERAL STABILITY REQUIREMENTS
Stabilityshall be provided for the structure as a whole and for each of its elements.
The effects of all of the following on the stability of the structure and its elements
shall be considered: (1) flexural, shear and axial member deformations, and all other
deformations that contribute to displacements of the structure; (2) second-order
effects(both P-Δand P-δeffects); (3) geometric imperfections; (4) stiffness reduc-
tions due to inelasticity; and (5) uncertainty in stiffness and strength. All
load-dependent effects shall be calculated at a level of loading corresponding to
LRFD load combinationsor 1.6 times ASD load combinations .
Any rational method of design for stability that considers all of the listed effects is
permitted; this includes the methods identified in Sections C1.1 and C1.2.
For structures designed by inelastic analysis, the provisions of Appendix 1 shall
be satisfied.
User Note:The term “design” as used in these provisions is the combination of
analysis to determine the required strengths of components and the proportioning
of components to have adequate available strength.
See Commentary Section C1 and Table C-C1.1 for explanation of how require-
ments (1) through (5) of Section C1 are satisfied in the methods of design listed
in Sections C1.1 and C1.2.
1. Direct Analysis Method of Design
The direct analysis methodof design, which consists of the calculation of required
strengthsin accordance with Section C2 and the calculation of available strengthsin
accordance with Section C3, is permitted for all structures.
2. Alternative Methods of Design
The effective length method and the first-order analysis method, defined in Appendix
7, are permitted as alternatives to the direct analysis methodfor structures that sat-
isfy the constraints specified in that appendix.
16.1–20
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 20

C2. CALCULATION OF REQUIRED STRENGTHS
For the direct analysis methodof design, the required strengthsof components of the
structure shall be determined from an analysis conforming to Section C2.1. The
analysis shall include consideration of initial imperfections in accordance with
Section C2.2 and adjustments to stiffnessin accordance with Section C2.3.
1. General Analysis Requirements
The analysis of the structure shall conform to the following requirements:
(1) The analysis shall consider flexural, shear and axial member deformations, and
all other component and connectiondeformations that contribute to displace-
ments of the structure. The analysis shall incorporate reductions in all stiffnesses
that are considered to contribute to the stabilityof the structure, as specified in
Section C2.3.
(2) The analysis shall be a second-order analysisthat considers both P-Δ and P-δ
effects, except that it is permissible to neglect the effect of P-δon the response
of the structure when the following conditions are satisfied: (a) The structure
supports gravity loadsprimarily through nominally-vertical columns, walls or
frames; (b) the ratio of maximum second-order drift to maximum first-order drift
(both determined for LRFD load combinations or 1.6 times ASD load combina-
tions, with stiffnesses adjusted as specified in Section C2.3) in all stories is equal
to or less than 1.7; and (c) no more than one-third of the total gravity load on the
structure is supported by columns that are part of moment-resisting frames in the
direction of translation being considered. It is necessary in all cases to consider
P-δeffects in the evaluation of individual members subject to compression and
flexure.
User Note:A P-Δ-only second-order analysis (one that neglects the effects of
P-δon the response of the structure) is permitted under the conditions listed.
The requirement for considering P -δeffects in the evaluation of individual
members can be satisfied by applying the B
1multiplier defined in Appendix 8.
Use of the approximate method of second-order analysis provided in Appendix
8 is permitted as an alternative to a rigorous second-order analysis.
(3) The analysis shall consider all gravity and other applied loadsthat may influence
the stability of the structure.
User Note: It is important to include in the analysis all gravity loads, includ-
ing loads on leaning columnsand other elements that are not part of the
lateral force resisting system.
(4) For design by LRFD, the second-order analysis shall be carried out under LRFD
load combinations. For design by ASD, the second-order analysis shall be carried
out under 1.6 times the ASD load combinations, and the results shall be divided
by 1.6 to obtain the required strengthsof components.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Sect. C2.] CALCULATION OF REQUIRED STRENGTHS 16–21
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 21

16.1–22 CALCULATION OF REQUIRED STRENGTHS [Sect. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Consideration of Initial Imperfections
The effect of initial imperfections on the stabilityof the structure shall be taken into
account either by direct modeling of imperfections in the analysis as specified in
Section C2.2a or by the application of notional loadsas specified in Section C2.2b.
User Note:The imperfections considered in this section are imperfections in the
locations of points of intersection of members. In typical building structures, the
important imperfection of this type is the out-of-plumbness of columns. Initial
out-of-straightness of individual members is not addressed in this section; it is
accounted for in the compression member design provisions of Chapter E and
need not be considered explicitly in the analysis as long as it is within the limits
specified in the AISC Code of Standard Practice .
2a. Direct Modeling of Imperfections
In all cases, it is permissible to account for the effect of initial imperfections by
including the imperfections directly in the analysis. The structure shall be analyzed
with points of intersection of members displaced from their nominal locations. The
magnitude of the initial displacements shall be the maximum amount considered in
the design; the pattern of initial displacements shall be such that it provides the great-
est destabilizing effect.
User Note:Initial displacements similar in configuration to both displacements
due to loading and anticipated bucklingmodes should be considered in the mod-
eling of imperfections. The magnitude of the initial displacements should be
based on permissible construction tolerances, as specified in the AISC Code
of Standard Practiceor other governing requirements, or on actual imperfections
if known.
In the analysis of structures that support gravity loads primarily through nominally-
vertical columns, walls or frames, where the ratio of maximum second-order drift to
maximum first-order drift (both determined for LRFD load combinationsor 1.6
times ASD load combinations, with stiffnessesadjusted as specified in Section C2.3)
in all stories is equal to or less than 1.7, it is permissible to include initial imperfec-
tions only in the analysis for gravity-only load combinations and not in the analysis
for load combinations that include applied lateral loads.
2b. Use of Notional Loads to Represent Imperfections
For structures that support gravity loads primarily through nominally-vertical columns,
walls or frames, it is permissible to use notional loadsto represent the effects of initial
imperfections in accordance with the requirements of this section. The notional load
shall be applied to a model of the structure based on its nominal geometry.
User Note:The notional load concept is applicable to all types of structures, but
the specific requirements in Sections C2.2b(1) through C2.2b(4) are applicable
only for the particular class of structure identified above.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 22

Sect. C2.] CALCULATION OF REQUIRED STRENGTHS 16.1–23
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) Notional loads shall be applied as lateral loadsat all levels. The notional loads
shall be additive to other lateral loads and shall be applied in all load combina-
tions, except as indicated in (4), below. The magnitude of the notional loads shall
be:
N
i =0.002αY i (C2-1)
where
α=1.0 (LRFD); α=1.6 (ASD)
N
i=notional load applied at level i, kips (N)
Y
i=gravity load applied at level ifrom the LRFD load combination or ASD
load combination, as applicable, kips (N)
User Note:The notional loads can lead to additional (generally small) ficti-
tious base shears in the structure. The correct horizontal reactions at the
foundation may be obtained by applying an additional horizontal force at the
base of the structure, equal and opposite in direction to the sum of all
notional loads, distributed among vertical load-carrying elements in the same
proportion as the gravity load supported by those elements. The notional
loads can also lead to additional overturning effects, which are not fictitious.
(2) The notional load at any level, N
i, shall be distributed over that level in the same
manner as the gravity load at the level. The notional loads shall be applied in the
direction that provides the greatest destabilizing effect.
User Note:For most building structures, the requirement regarding notional
load direction may be satisfied as follows: For load combinations that do not
include lateral loading, consider two alternative orthogonal directions of
notional load application, in a positive and a negative sense in each of the
two directions, in the same direction at all levels; for load combinations that
include lateral loading, apply all notional loads in the direction of the result-
ant of all lateral loads in the combination.
(3) The notional load coefficient of 0.002 in Equation C2-1 is based on a nominal ini-
tial story out-of-plumbness ratio of 1/500; where the use of a different maximum
out-of-plumbness is justified, it is permissible to adjust the notional load coefficient
proportionally.
User Note:An out-of-plumbness of 1/500 represents the maximum tolerance
on column plumbness specified in the AISC Code of Standard Practice. In
some cases, other specified tolerances such as those on plan location of
columns will govern and will require a tighter plumbness tolerance.
(4) For structures in which the ratio of maximum second-order drift to maximum
first-order drift (both determined for LRFD load combinations or 1.6 times ASD
load combinations, with stiffnesses adjusted as specified in Section C2.3) in all
stories is equal to or less than 1.7, it is permissible to apply the notional load,N
i,
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 23

only in gravity-only load combinations and not in combinations that include
other lateral loads.
3. Adjustments to Stiffness
The analysis of the structure to determine the required strengthsof components shall
use reduced stiffnesses, as follows:
(1) A factor of 0.80 shall be applied to all stiffnesses that are considered to contribute
to the stabilityof the structure. It is permissible to apply this reduction factor to
all stiffnesses in the structure.
User Note:Applying the stiffness reduction to some members and not oth-
ers can, in some cases, result in artificial distortion of the structure under
loadand possible unintended redistribution of forces. This can be avoided
by applying the reduction to all members, including those that do not con-
tribute to the stability of the structure.
(2) An additional factor, τ
b, shall be applied to the flexural stiffnesses of all mem-
bers whose flexural stiffnesses are considered to contribute to the stability of the
structure.
(a) When αP
r/Py≤0.5
τ
b=1.0 (C2-2a)
(b) When αP
r/Py>0.5
τ
b=4(αP r/Py)[1−(αP r/Py)] (C2-2b)
where
α=1.0 (LRFD); α=1.6 (ASD)
P
r=required axial compressive strength using LRFD or ASD load combi-
nations, kips (N)
P
y=axial yield strength(=F yAg), kips (N)
User Note: Taken together, sections (1) and (2) require the use of 0.8τ
btimes
the nominal elastic flexural stiffness and 0.8 times other nominal elastic stiff-
nesses for structural steelmembers in the analysis.
(3) In structures to which Section C2.2b is applicable, in lieu of using τ
b<1.0 where
αP
r/Py>0.5, it is permissible to use τ b=1.0 for all members if a notional load
of 0.001αY
i[where Y iis as defined in Section C2.2b(1)] is applied at all levels,
in the direction specified in Section C2.2b(2), in all load combinations. These
notional loads shall be added to those, if any, used to account for imperfections
and shall not be subject to Section C2.2b(4).
(4) Where components comprised of materials other than structural steel are consid-
ered to contribute to the stability of the structure and the governing codes and
specificationsfor the other materials require greater reductions in stiffness, such
greater stiffness reductions shall be applied to those components.
16.1–24 CALCULATION OF REQUIRED STRENGTHS [Sect. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 24

C3. CALCULATION OF AVAILABLE STRENGTHS
For the direct analysis methodof design, the available strengthsof members and
connections shall be calculated in accordance with the provisions of Chapters D, E,
F, G, H, I, J and K, as applicable, with no further consideration of overall structure
stability. The effective length factor, K, of all members shall be taken as unity unless
a smaller value can be justified by rational analysis.
Bracingintended to define the unbraced lengthsof members shall have sufficient
stiffnessand strength to control member movement at the braced points.
Methods of satisfying bracing requirements for individual columns, beams and
beam-columns are provided in Appendix 6. The requirements of Appendix 6 are not
applicable to bracing that is included as part of the overall force-resisting system.
Sect. C3.] CALCULATION OF AVAILABLE STRENGTHS 16.1–25
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 25

CHAPTER D
DESIGN OF MEMBERS FOR TENSION
This chapter applies to members subject to axial tension caused by static forcesacting
through the centroidal axis.
The chapter is organized as follows:
D1. Slenderness Limitations
D2. Tensile Strength
D3. Effective Net Area
D4. Built-Up Members
D5. Pin-Connected Members
D6. Eyebars
User Note:For cases not included in this chapter the following sections apply:
• B3.11 Members subject to fatigue
• Chapter H Members subject to combined axial tension and flexure
• J3 Threaded rods
• J4.1 Connecting elements in tension
• J4.3 Block shear rupturestrength at end connections of tension
members
D1. SLENDERNESS LIMITATIONS
There is no maximum slenderness limit for members in tension.
User Note:For members designed on the basis of tension, the slenderness ratio
L/r preferably should not exceed 300. This suggestion does not apply to rods or
hangers in tension.
D2. TENSILE STRENGTH
The design tensile strength, φ tPn, and the allowable tensile strength, P n/Ωt, of tension
members shall be the lower value obtained according to the limit statesof tensile
yieldingin the gross section and tensile rupture in the net section.
(a) For tensile yielding in the gross section:
P
n=FyAg (D2-1)
φ
t=0.90 (LRFD) Ω t=1.67 (ASD)
(b) For tensile rupture in the net section:
P
n=FuAe (D2-2)
φ
t=0.75 (LRFD) Ω t=2.00 (ASD)
16.1–26
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 26

where
A
e=effective net area, in.
2
(mm
2
)
A
g=gross area of member, in.
2
(mm
2
)
F
y=specified minimum yield stress, ksi (MPa)
F
u=specified minimum tensile strength, ksi (MPa)
When members without holes are fully connected by welds, the effective net area
used in Equation D2-2 shall be as defined in Section D3. When holes are present in
a member with welded end connections, or at the welded connection in the case of
plug or slot welds, the effective net area through the holes shall be used in Equation
D2-2.
D3. EFFECTIVE NET AREA
The gross area, A g, and net area, A n, of tension members shall be determined in
accordance with the provisions of Section B4.3.
The effective net areaof tension members shall be determined as follows:
A
e=AnU (D3-1)
where U, the shear lag factor, is determined as shown in Table D3.1.
For open cross sections such as W, M, S, C or HP shapes, WTs, STs, and single and
double angles, the shear lag factor, U, need not be less than the ratio of the gross area
of the connected element(s) to the member gross area. This provision does not apply
to closed sections, such as HSS sections, nor to plates.
User Note:For bolted splice plates A
e=An ≤0.85A g, according to Section J4.1.
D4. BUILT-UP MEMBERS
For limitations on the longitudinal spacing of connectors between elements in con-
tinuous contact consisting of a plate and a shape or two plates, see Section J3.5.
Either perforated cover plates or tie plateswithout lacingare permitted to be used on
the open sides of built-up tension members. Tie plates shall have a length not less
than two-thirds the distance between the lines of welds or fastenersconnecting them
to the components of the member. The thickness of such tie plates shall not be less
than one-fiftieth of the distance between these lines. The longitudinal spacing of
intermittent welds or fasteners at tie plates shall not exceed 6 in. (150 mm).
User Note:The longitudinal spacing of connectors between components should
preferably limit the slenderness ratio in any component between the connectors to
300.
Sect. D4.] BUILT-UP MEMBERS 16.1–27
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 27

16.1–28 BUILT-UP MEMBERS [Sect. D4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE D3.1
Shear Lag Factors for Connections
to Tension Members
Description of ElementCase Shear Lag Factor, U Example
1
2
3
4
5
6
7
8
All tension members where the tension
load is transmitted directly to each of the
cross-sectional elements by fasteners or
welds (except as in Cases 4, 5 and 6).
All tension members, except plates
and HSS, where the tension load is trans-
mitted to some but not all of the cross-
sectional elements by fasteners or longitu-
dinal welds or by longitudinal welds in
combination with transverse welds. (Alter-
natively, for W, M, S and HP, Case 7 may
be used. For angles, Case 8 may be used.)
All tension members where the tension
load is transmitted only by transverse
welds to some but not all of the
cross-sectional elements.
Plates where the tension load is
transmitted by longitudinal welds only.
Round HSS with a single concentric
gusset plate
Rectangular HSS with a single
concentric gusset
plate
with two side gusset
plates
W, M, S or HP
Shapes or Tees cut
from these shapes.
(If
Uis calculated
per Case 2, the
larger value is per-
mitted to be used.)
Single and double
angles (If
Uis
calculated per
Case 2, the larger
value is permitted
to be used.)
U=1.0
U=0.70
U=0.80
U=0.60
U x
l
=−1
U=1.0
and
An=area of the directly
connected elements
/ ≥2w…U=1.0
2
w> /≥1.5w…U=0.87
1.5
w> /≥w…U=0.75
bf≥2/3d…U=0.90
bf<2/3d…U=0.85
/ ≥1.3D…U=1.0
Dl DU x
l
≤< … =−13 1.
xD=
π
lHU x
l
≥…=− 1
lHU x
l
≥…=− 1
x
BBH
BH
=
+
+
2
2
4( )
x
B
BH
=
+
2
4( )
with flange con-
nected with 3 or
more fasteners per
line in the direction
of loading
with web connected
with 4 or more fas-
teners per line in the
direction of loading
with 4 or more fas-
teners per line in the
direction of loading
with 3 fasteners per
line in the direction
of loading (With
fewer than 3 fasten-
ers per line in the
direction of loading,
use Case 2.)
l=length of connection, in. (mm); w=plate width, in. (mm); x

=eccentricity of connection, in. (mm);
B=overall width
of rectangular HSS member, measured 90° to the plane of the connection, in. (mm);
H=overall height of rectangular
HSS member, measured in the plane of the connection, in. (mm)
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 28

D5. PIN-CONNECTED MEMBERS
1. Tensile Strength
The design tensile strength, φ tPn, and the allowable tensile strength, P n/Ωt, of pin-
connected members, shall be the lower value determined according to the limit states
of tensile rupture, shear rupture, bearingand yielding.
(a) For tensile rupture on the net effective area:
P
n=Fu(2tbe) (D5-1)
φ
t=0.75 (LRFD) Ω t=2.00 (ASD)
(b) For shear rupture on the effective area:
P
n=0.6F uAsf (D5-2)
φ
sf=0.75 (LRFD) Ω sf=2.00 (ASD)
where
A
sf=area on the shear failure path = 2t(a+d/ 2), in.
2
(mm
2
)
a=shortest distance from edge of the pin hole to the edge of the member
measured parallel to the direction of the force, in. (mm)
b
e=2t+0.63, in. (= 2t+16, mm), but not more than the actual distance from
the edge of the hole to the edge of the part measured in the direction nor-
mal to the applied force, in. (mm)
d=diameter of pin, in. (mm)
t=thickness of plate, in. (mm)
(c) For bearing on the projected area of the pin, use Section J7.
(d) For yielding on the gross section, use Section D2(a).
2. Dimensional Requirements
The pin hole shall be located midway between the edges of the member in the direc-
tion normal to the applied force. When the pin is expected to provide for relative
movement between connected parts while under full load, the diameter of the pin
hole shall not be more than
1
/32in. (1 mm) greater than the diameter of the pin.
The width of the plate at the pin hole shall not be less than 2b
e+dand the minimum
extension, a, beyond the bearing end of the pin hole, parallel to the axis of the mem-
ber, shall not be less than 1.33b
e.
The corners beyond the pin hole are permitted to be cut at 45°to the axis of the
member, provided the net areabeyond the pin hole, on a plane perpendicular to the
cut, is not less than that required beyond the pin hole parallel to the axis of the
member.
D6. EYEBARS
1. Tensile Strength
The available tensile strengthof eyebarsshall be determined in accordance with
Section D2, with A
gtaken as the cross-sectional area of the body.
Sect. D6.] EYEBARS 16.1–29
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 29

For calculation purposes, the width of the body of the eyebars shall not exceed eight
times its thickness.
2. Dimensional Requirements
Eyebarsshall be of uniform thickness, without reinforcement at the pin holes, and
have circular heads with the periphery concentric with the pin hole.
The radius of transition between the circular head and the eyebar body shall not be
less than the head diameter.
The pin diameter shall not be less than seven-eighths times the eyebar body width,
and the pin hole diameter shall not be more than
1
/32in. (1 mm) greater than the pin
diameter.
For steels having F
ygreater than 70 ksi (485 MPa), the hole diameter shall not exceed
five times the plate thickness, and the width of the eyebar body shall be reduced
accordingly.
A thickness of less than
1
/2in. (13 mm) is permissible only if external nuts are pro-
vided to tighten pin plates and fillerplates into snug contact. The width from the hole
edge to the plate edge perpendicular to the direction of applied loadshall be greater
than two-thirds and, for the purpose of calculation, not more than three-fourths times
the eyebar body width.
16.1–30 EYEBARS [Sect. D6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 30

CHAPTER E
DESIGN OF MEMBERS FOR COMPRESSION
This chapter addresses members subject to axial compression through the centroidal axis.
The chapter is organized as follows:
E1. General Provisions
E2. Effective Length
E3. Flexural Buckling of Members without Slender Elements
E4. Torsional and Flexural-Torsional Buckling of Members without Slender
Elements
E5. Single Angle Compression Members
E6. Built-Up Members
E7. Members with Slender Elements
User Note:For cases not included in this chapter the following sections apply:
H1 – H2 Members subject to combined axial compression and flexure
H3 Members subject to axial compression and torsion
I2 Composite axially loaded members
J4.4 Compressive strength of connecting elements
E1. GENERAL PROVISIONS
The design compressive strength, φ cPn, and the allowable compressive strength ,
P
n/Ωc, are determined as follows.
The nominal compressive strength, P
n, shall be the lowest value obtained based
on the applicable limit states of flexural buckling, torsional buckling, and flexural-
torsional buckling.
φ
c=0.90 (LRFD) Ω c=1.67 (ASD)
16.1–31
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:39 AM Page 31

16.1–32 GENERAL PROVISIONS [Sect. E1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE USER NOTE E1.1
Selection Table for the Application of
Chapter E Sections
Sections in Limit Sections in Limit
Chapter E States Chapter E States
E3 FB E7 LB
E4 TB FB
TB
E3 FB E7 LB
E4 FTB FB
FTB
E3 FB E7 LB
FB
E3 FB E7 LB
FB
E3 FB E7 LB
E4 FTB FB
FTB
E6 E6
E3 FB E7 LB
E4 FTB FB
FTB
E5 E5
E3 FB N/A N/A
E4 FTB E7 LB
FTB
Unsymmetrical shapes
other than single angles
Cross Section
FB = flexural buckling, TB = torsional buckling, FTB = flexural-torsional buckling, LB = local buckling










Without Slender Elements With Slender Elements
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 32

E2. EFFECTIVE LENGTH
The effective length factor, K,for calculation of member slenderness, KL/r, shall be
determined in accordance with Chapter C or Appendix 7,
where
L=laterally unbraced lengthof the member, in. (mm)
r=radius of gyration, in. (mm)
User Note:For members designed on the basis of compression, the effective slen-
derness ratio KL /rpreferably should not exceed 200.
E3. FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER
ELEMENTS
This section applies to nonslender element compression members as defined in
Section B4.1 for elements in uniform compression.
User Note:When the torsional unbraced lengthis larger than the lateral unbraced
length, Section E4 may control the design of wide flange and similarly shaped
columns.
The nominal compressive strength, P
n, shall be determined based on the limit stateof
flexural buckling.
P
n=FcrAg (E3-1)
The critical stress, F
cr, is determined as follows:
(a) When
(E3-2)
(b) When
F
cr=0.877F e (E3-3)
where
F
e=elastic bucklingstress determined according to Equation E3-4, as specified
in Appendix 7, Section 7.2.3(b), or through an elastic buckling analysis, as
applicable, ksi (MPa)
(E3-4)
Sect. E3.] FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS 16.1–33
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
KL
r
E
F
y
≤471.
(or )
F
F
y
e
≤225.
FFcr
F
F
y
y
e
=








0 658.
KL
r
E
F
y
>471.
(or )
F
F
y
e
>225.
F
E
KL
re=






π
2
2
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 33

16.1–34 FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS [Sect. E3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:The two inequalities for calculating the limits and applicability of
Sections E3(a) and E3(b), one based on KL/r and one based on F
y/Fe, provide the
same result.
E4. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF
MEMBERS WITHOUT SLENDER ELEMENTS
This section applies to singly symmetric and unsymmetric members and certain dou-
bly symmetric members, such as cruciform or built-up columns without slender
elements, as defined in Section B4.1 for elements in uniform compression. In addi-
tion, this section applies to all doubly symmetric members without slender elements
when the torsional unbraced lengthexceeds the lateral unbraced length. These pro-
visions are required for single angles with b/t >20.
The nominal compressive strength, P
n, shall be determined based on the limit states
oftorsionaland flexural-torsional buckling, as follows:
P
n=FcrAg (E4-1)
The critical stress, F
cr, is determined as follows:
(a) For double angle and tee-shaped compression members:
(E4-2)
where F
cryis taken as F crfrom Equation E3-2 or E3-3 for flexural bucklingabout
the y-axis of symmetry, and for tee-shaped compression members,
and from Section E6 for double angle compression members, and
(E4-3)
(b) For all other cases, F
cr shall be determined according to Equation E3-2 or E3-3,
using the torsional or flexural-torsional elastic buckling stress, F
e, determined as
follows:
(i) For doubly symmetric members:
(E4-4)
(ii) For singly symmetric members where yis the axis of symmetry:
F
FF
H
FFH
FFcr
cry crz cry crz
cry cr=
+⎛





−−
+
2
11
4
zz( )








2
KL
r
KL
r y
y
=
KL
r
KL
r
m
=()
F
GJ
Arcrz
go=
2
F
EC
KL
GJ
IIe
w
z xy=
()
+







⎥+
π
2
2
1
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 34

(E4-5)
(iii) For unsymmetric members, F
eis the lowest root of the cubic equation:
(E4-6)
where
A
g=gross cross-sectional area of member, in.
2
(mm
2
)
C
w=warping constant, in.
6
(mm
6
)
F
ex= (E4-7)
F
ey= (E4-8)
F
ez= (E4-9)
G=shear modulus of elasticity of steel = 11,200 ksi (77 200 MPa)
H (E4-10)
I
x, Iy=moment of inertia about the principal axes, in.
4
(mm
4
)
J=torsional constant, in.
4
(mm
4
)
K
x=effective length factorfor flexural buckling about x-axis
K
y=effective length factor for flexural buckling about y-axis
K
z=effective length factor for torsional buckling

r
o=polar radius of gyration about the shear center, in. (mm)

r
o
2
= (E4-11)
r
x=radius of gyration about x-axis, in. (mm)
r
y=radius of gyration about y-axis, in. (mm)
x
o, yo=coordinates of the shear center with respect to the centroid, in. (mm)
User Note:For doubly symmetric I-shaped sections, C
wmay be taken as I yho
2
/4,
where h
ois the distance between flange centroids, in lieu of a more precise analy-
sis. For tees and double angles, omit the term with C
wwhen computing F ezand
take x
oas 0.
Sect. E4.] TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF MEMBERS 16.1–35
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F
FF
H
FFH
FFe
ey ez ey ez
ey ez=
+⎛





−−
+



2
11
4
2
()⎢⎢




()()()()FFFFFF FFF
x
reexeeyeez eeey
o
o−−−−−



2
⎞⎞


−−






=
2
2
2
0FF F
y
ree ex
o
o()
π
2
2
E
KL
r
x
x⎛





π
2
2
E
KL
r
y
y






π
2
22
1EC
KL
GJ
Arw
z go
()
+






=−
+
1
22
2
xy
roo
o
xy
II
Aoo
xy
g
22++
+
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 35

16.1–36 SINGLE ANGLE COMPRESSION MEMBERS [Sect. E5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
E5. SINGLE ANGLE COMPRESSION MEMBERS
The nominal compressive strength, P n, of single angle members shall be determined
in accordance with Section E3 or Section E7, as appropriate, for axially loaded mem-
bers. For single angles with b/t >20, Section E4 shall be used. Members meeting the
criteria imposed in Section E5(a) or E5(b) are permitted to be designed as axially
loaded members using the specified effective slenderness ratio, KL /r.
The effects of eccentricity on single angle members are permitted to be neglected
when evaluated as axially loaded compression members using one of the effective
slenderness ratios specified in Section E5(a) or E5(b), provided that:
(1) members are loaded at the ends in compression through the same one leg;
(2) members are attached by welding or by connections with a minimum of two
bolts; and
(3) there are no intermediate transverseloads.
Single angle members with different end conditions from those described in Section
E5(a) or (b), with the ratio of long leg width to short leg width greater than 1.7 or
with transverse loading, shall be evaluated for combined axial load and flexure using
the provisions of Chapter H.
(a) For equal-leg angles or unequal-leg angles connected through the longer leg that
are individual members or are web members of planar trusses with adjacent web
members attached to the same side of the gusset plateor chord:
(i) When
(E5-1)
(ii) When
(E5-2)
For unequal-leg angles with leg length ratios less than 1.7 and connected through
the shorter leg, KL/rfrom Equations E5-1 and E5-2 shall be increased by adding
4[(b
l/bs)
2
≤1], but KL/r of the members shall not be taken as less than 0.95L /r z.
(b) For equal-leg angles or unequal-leg angles connected through the longer leg that
are web members of box or space trusses with adjacent web members attached
to the same side of the gusset plate or chord:
(i) When
(E5-3)
(ii) When
L
r
x
≤80 :
KL
r
L
r
x
=+72 0 75.
L
r
x
>80 :
KL
r
L
r
x
=+ ≤32 1 25 200.
L
r
x
≤75 :
KL
r
L
r
x
=+60 0 8.
L
r
x
>75 :
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 36

(E5-4)
For unequal-leg angles with leg length ratios less than 1.7 and connected through
the shorter leg, KL/rfrom Equations E5-3 and E5-4 shall be increased by adding
6[(b
l/bs)
2
≤1], but KL /rof the member shall not be taken as less than 0.82L/r z
where
L=length of member between work points at truss chord centerlines, in. (mm)
b
l=length of longer leg of angle, in. (mm)
b
s=length of shorter leg of angle, in. (mm)
r
x=radius of gyration about the geometric axisparallel to the connected leg, in.
(mm)
r
z=radius of gyration about the minor principal axis, in. (mm)
E6. BUILT-UP MEMBERS
1. Compressive Strength
This section applies to built-up memberscomposed of two shapes either (a) inter-
connected by bolts or welds, or (b) with at least one open side interconnected by
perforated cover plates or lacing with tie plates. The end connection shall be welded
or connected by means of pretensioned boltswith Class A or B faying surfaces.
User Note:It is acceptable to design a bolted end connection of a built-up com-
pression member for the full compressive loadwith bolts in bearingand bolt
design based on the shear strength; however, the bolts must be pretensioned. In
built-up compression members, such as double-angle struts in trusses, a small rel-
ative slipbetween the elements especially at the end connections can increase the
effective length of the combined cross section to that of the individual components
and significantly reduce the compressive strength of the strut. Therefore, the con-
nection between the elements at the ends of built-up members should be designed
to resist slip.
The nominal compressive strengthof built-up members composed of two shapes that
are interconnected by bolts or welds shall be determined in accordance with Sections
E3, E4 or E7 subject to the following modification. In lieu of more accurate analy-
sis, if the buckling mode involves relative deformations that produce shear forcesin
the connectors between individual shapes, KL/ris replaced by (KL/r)
mdetermined as
follows:
(a) For intermediate connectors that are bolted snug-tight:
(E6-1)
(b) For intermediate connectors that are welded or are connected by means of pre-
tensioned bolts:
Sect. E6.] BUILT-UP MEMBERS 16.1–37
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
KL
r
L
r
x
=+≤45 200
mo i
KL
r
KL
r
a
r


















=+
2 2
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 37

16.1–38 BUILT-UP MEMBERS [Sect. E5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(i) When
(E6-2a)
(ii) When
(E6-2b)
where
= modified slenderness ratio of built-up member
= slenderness ratio of built-up member acting as a unit in the
buckling direction being considered
K
i = 0.50 for angles back-to-back
= 0.75 for channels back-to-back
= 0.86 for all other cases
a = distance between connectors, in. (mm)
r
i = minimum radius of gyration of individual component, in. (mm)
2. Dimensional Requirements
Individual components of compression members composed of two or more shapes
shall be connected to one another at intervals, a, such that the effective slenderness
ratio, Ka/r
i, of each of the component shapes between the fastenersdoes not exceed
three-fourths times the governing slenderness ratio of the built-up member. The least
radius of gyration, r
i, shall be used in computing the slenderness ratio of each com-
ponent part.
At the ends of built-up compression members bearing on base plates or finished sur-
faces, all components in contact with one another shall be connected by a weld
having a length not less than the maximum width of the member or by bolts spaced
longitudinally not more than four diameters apart for a distance equal to 1
1
/2times
the maximum width of the member.
Along the length of built-up compression members between the end connections
required above, longitudinal spacing for intermittent welds or bolts shall be adequate
to provide for the transfer of the required strength. For limitations on the longitudi-
nal spacing of fasteners between elements in continuous contact consisting of a
plate and a shape or two plates, see Section J3.5.Where a component of a built-up
compression member consists of an outside plate, the maximum spacing shall not
exceed the thickness of the thinner outside plate times nor 12 in. (305
mm), when intermittent welds are provided along the edges of the components or
when fasteners are provided on all gage lines at each section. When fasteners are
staggered, the maximum spacing of fasteners on each gage line shall not exceed the
thickness of the thinner outside plate times nor 18 in. (460 mm).
a
r
i
>40
KL
r
KL
r
Ka
r
mo
i
i⎛





=






+






2 2
m
KL
r






o
KL
r






075./EF y
112./EF y
a
r
i
≤40
KL
r
KL
r
mo





⎟=






AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 38

Open sides of compression members built up from plates or shapes shall be provided
with continuous cover platesperforated with a succession of access holes. The
unsupported width of such plates at access holes, as defined in Section B4.1, is
assumed to contribute to the available strengthprovided the following requirements
are met:
(1) The width-to-thickness ratio shall conform to the limitations of Section B4.1.
User Note:It is conservative to use the limiting width-to-thickness ratio for Case
7 in Table B4.1a with the width, b, taken as the transverse distance between the
nearest lines of fasteners. The net area of the plate is taken at the widest hole. In
lieu of this approach, the limiting width-to-thickness ratio may be determined
through analysis.
(2) The ratio of length (in direction of stress) to width of hole shall not exceed 2.
(3) The clear distance between holes in the direction of stress shall be not less than
the transverse distance between nearest lines of connecting fasteners or welds.
(4) The periphery of the holes at all points shall have a minimum radius of 1
1
/2in.
(38 mm).
As an alternative to perforated cover plates, lacing with tie platesis permitted at each
end and at intermediate points if the lacing is interrupted. Tie plates shall be as near
the ends as practicable. In members providing available strength, the end tie plates
shall have a length of not less than the distance between the lines of fasteners or
welds connecting them to the components of the member. Intermediate tie plates
shall have a length not less than one-half of this distance. The thickness of tie plates
shall be not less than one-fiftieth of the distance between lines of welds or fasteners
connecting them to the segments of the members. In welded construction, the weld-
ing on each line connecting a tie plate shall total not less than one-third the length of
the plate. In bolted construction, the spacing in the direction of stress in tie plates
shall be not more than six diameters and the tie plates shall be connected to each seg-
ment by at least three fasteners.
Lacing, including flat bars, angles, channels or other shapes employed as lacing, shall
be so spaced that the L/rratio of the flange element included between their connections
shall not exceed three-fourths times the governing slenderness ratio for the member as
a whole. Lacing shall be proportioned to provide a shearing strength normal to the axis
of the member equal to 2% of the available compressive strengthof the member. The
L/rratio for lacing bars arranged in single systems shall not exceed 140. For double
lacing this ratio shall not exceed 200. Double lacing bars shall be joined at the inter-
sections. For lacing bars in compression, L is permitted to be taken as the unsupported
length of the lacing bar between welds or fasteners connecting it to the components of
the built-up member for single lacing, and 70% of that distance for double lacing.
User Note: The inclination of lacing bars to the axis of the member shall prefer-
ably be not less than 60λfor single lacing and 45λ for double lacing. When the
distance between the lines of welds or fasteners in the flanges is more than 15 in.
(380 mm), the lacing shall preferably be double or be made of angles.
Sect. E6.] BUILT-UP MEMBERS 16.1–39
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 39

For additional spacing requirements, see Section J3.5.
E7. MEMBERS WITH SLENDER ELEMENTS
This section applies to slender-element compression members, as defined in Section
B4.1 for elements in uniform compression.
The nominal compressive strength, P
n, shall be the lowest value based on the applicable
limit statesof flexural buckling, torsional buckling, and flexural-torsional buckling.
P
n=FcrAg (E7-1)
The critical stress, F
cr, shall be determined as follows:
(a) When
(E7-2)
(b) When
F
cr=0.877F e (E7-3)
where
F
e=elastic buckling stress, calculated using Equations E3-4 and E4-4 for doubly
symmetric members, Equations E3-4 and E4-5 for singly symmetric mem-
bers, and Equation E4-6 for unsymmetric members, except for single angles
with b/t ≤20, where F
eis calculated using Equation E3-4, ksi (MPa)
Q=net reduction factor accounting for all slender compression elements;
=1.0 for members without slender elements, as defined in Section B4.1, for
elements in uniform compression
=Q
sQafor members with slender-element sections, as defined in Section
B4.1, for elements in uniform compression.
User Note:For cross sections composed of only unstiffened slender elements, Q
=Q
s(Qa=1.0). For cross sections composed of only stiffened slender elements,
Q=Q
a(Qs=1.0). For cross sections composed of both stiffened and unstiffened
slender elements, Q =Q
sQa. For cross sections composed of multiple unstiffened
slender elements, it is conservative to use the smaller Q
sfrom the more slender
element in determining the member strength for pure compression.
1. Slender Unstiffened Elements, Q s
The reduction factor, Q s, for slender unstiffened elements is defined as follows:
(a) For flanges, angles and plates projecting from rolled columns or other compres-
sion members:
16.1–40 BUILT-UP MEMBERS [Sect. E6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
KL
r
E
QF
y
≤471.
or
QF
F
y
e







225.
FQ Fcr
QF
F
y
y
e
=








0 658.
KL
r
E
QF
y
>471.
or
QF
F
y
e
>






225.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 40

Sect. E7.] MEMBERS WITH SLENDER ELEMENTS 16.1–41
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(i) When
Q
s=1.0 (E7-4)
(ii) When
(E7-5)
(iii) When
(E7-6)
(b) For flanges, angles and plates projecting from built-up I-shaped columns or other
compression members:
(i) When
Q
s=1.0 (E7-7)
(ii) When
(E7-8)
(iii) When
(E7-9)
where
b=width of unstiffened compression element, as defined in Section B4.1, in.
(mm)
, and shall not be taken less than 0.35 nor greater than 0.76 for
calculation purposes
t=thickness of element, in. (mm)
b
t
E
F
y
≤056.
056 103..
E
F
b
t
E
F
yy
<<
Q
b
t
F
Es
y=−





⎟1 415 0 74..
b
t
E
F
y
≥103.
Q
E
F
b
ts
y=






069
2
.
b
t
Ek
F c
y
≤064.
064 117..
Ek
F
b
t
Ek
F
c
y
c
y
<≤
Q
b
t
F
Eks
y
c=−






1 415 0 65..
b
t
Ek
F c
y
>117.
Q
Ek
F
b
ts
c
y=






090
2
.
k
htc
w=
4

AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 41

(c) For single angles
(i) When
Q
s=1.0 (E7-10)
(ii) When
(E7-11)
(iii) When
(E7-12)
where
b=full width of longest leg, in. (mm)
(d) For stems of tees
(i) When
Q
s=1.0 (E7-13)
(ii) When
(E7-14)
(iii) When
(E7-15)
where
d=full nominal depth of tee, in. (mm)
16.1–42 MEMBERS WITH SLENDER ELEMENTS [Sect. E7.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
045 091..
E
F
b
t
E
F
yy
<≤
Q
b
t
F
Es
y=−





⎟134 076..
b
t
E
F
y
>091.
Q
E
F
b
ts
y=






053
2
.
d
t
E
F
y
≤075.
075 103..
E
F
d
t
E
F
yy
<≤
Q
d
t
F
Es
y=−





⎟1 908 1 22..
d
t
E
F
y
>103.
Q
E
F
d
ts
y=






069
2
.
b
t
E
F
y
≤045.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 42

2. Slender Stiffened Elements, Q a
The reduction factor, Q a, for slender stiffened elements is defined as follows:
(E7-16)
where
A
g= gross cross-sectional area of member, in.
2
(mm
2
)
A
e= summation of the effective areas of the cross section based on the reduced
effective width, b
e, in.
2
(mm
2
)
The reduced effective width, b
e, is determined as follows:
(a) For uniformly compressed slender elements, with, except flanges of
square and rectangular sections of uniform thickness:
(E7-17)
where
fis taken as F
crwith F crcalculated based on Q =1.0
(b) For flanges of square and rectangular slender-element sections of uniform thick-
ness with
(E7-18)
where
f =P
n/Ae
User Note:In lieu of calculating f =P n/Ae, which requires iteration, fmay be
taken equal to F
y. This will result in a slightly conservative estimate of column
available strength.
(c) For axially loaded circular sections:
When
(E7-19)
where
D=outside diameter of round HSS, in. (mm)
t=thickness of wall, in. (mm)
Sect. E7.] MEMBERS WITH SLENDER ELEMENTS 16.1–43
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Q
A
Aa
e
g=
b
t
E
f
≥149.
bt
E
fbt
E
f
be=−





⎥≤192 1
034
.
.
(/)
bt
E
fbt
E
f
be=−





⎥≤192 1
038
.
.
(/)
b
t
E
f
≥140.:
011 045..
E
F
D
t
E
F
yy
<<
QQ
E
FDta
y== +
0 038 2
3
.
(/)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 43

CHAPTER F
DESIGN OF MEMBERS FOR FLEXURE
This chapter applies to members subject to simple bending about one principal axis. For
simple bending, the member is loaded in a plane parallel to a principal axis that passes
through the shear center or is restrained against twisting at load points and supports.
The chapter is organized as follows:
F1. General Provisions
F2. Doubly Symmetric Compact I-Shaped Members and Channels Bent About
Their Major Axis
F3. Doubly Symmetric I-Shaped Members with Compact Webs and Noncompact
or Slender Flanges Bent About Their Major Axis
F4. Other I-Shaped Members With Compact or Noncompact Webs Bent About
Their Major Axis
F5. Doubly Symmetric and Singly Symmetric I-Shaped Members With Slender
Webs Bent About Their Major Axis
F6. I-Shaped Members and Channels Bent About Their Minor Axis
F7. Square and Rectangular HSS and Box-Shaped Members
F8. Round HSS
F9. Tees and Double Angles Loaded in the Plane of Symmetry
F10. Single Angles
F11. Rectangular Bars and Rounds
F12. Unsymmetrical Shapes
F13. Proportions of Beams and Girders
User Note:For cases not included in this chapter the following sections apply:
• Chapter G Design provisions for shear
• H1–H3 Members subject to biaxial flexure or to combined flexure
and axial force
• H3 Members subject to flexure and torsion
• Appendix 3 Members subject to fatigue
For guidance in determining the appropriate sections of this chapter to apply, Table User
Note F1.1 may be used.
16.1–44
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 44

Section in Cross Flange Web Limit
Chapter F Section Slenderness Slenderness States
F2 C C Y, LTB
F3 NC, S C LTB, FLB
F4 C, NC, S C, NC Y, LTB,
FLB, TFY
F5 C, NC, S S Y, LTB,
FLB, TFY
F6 C, NC, S N/A Y, FLB
F7 C, NC, S C, NC Y, FLB, WLB
F8 N/A N/A Y, LB
F9 C, NC, S N/A Y, LTB, FLB
F10 N/A N/A Y, LTB, LLB
F11 N/A N/A Y, LTB
F12 Unsymmetrical shapes, All limit
other than single angles N/A N/A states
Y = yielding, LTB = lateral-torsional buckling, FLB = flange local buckling, WLB = web local buckling,
TFY = tension flange yielding, LLB = leg local buckling, LB = local buckling, C = compact, NC = noncompact,
S = slender
TABLE USER NOTE F1.1
Selection Table for the Application
of Chapter F Sections
Sect. F1.] GENERAL PROVISIONS 16.1–45
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION









AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 45

F1. GENERAL PROVISIONS
The design flexural strength, φ bMn,and the allowable flexural strength, M n/Ωb,shall
be determined as follows:
(1) For all provisions in this chapter
φ
b=0.90 (LRFD) Ω b=1.67 (ASD)
and the nominal flexural strength, M
n, shall be determined according to Sections
F2 through F13.
(2) The provisions in this chapter are based on the assumption that points of support
for beamsand girders are restrained against rotation about their longitudinal axis.
(3) For singly symmetric members in single curvature and all doubly symmetric
members:
C
b, the lateral-torsional bucklingmodification factor for nonuniform moment
diagrams when both ends of the segment are braced is determined as follows:
(F1-1)
where
M
max=absolute value of maximum moment in the unbraced segment, kip-in.
(N-mm)
M
A=absolute value of moment at quarter point of the unbraced segment,
kip-in. (N-mm)
M
B=absolute value of moment at centerline of the unbraced segment, kip-
in. (N-mm)
M
C=absolute value of moment at three-quarter point of the unbraced seg-
ment, kip-in. (N-mm)
For cantilevers or overhangs where the free end is unbraced, C
b= 1.0.
User Note:For doubly symmetric members with no transverse loading between
brace points, Equation F1-1 reduces to 1.0 for the case of equal end moments of
opposite sign (uniform moment), 2.27 for the case of equal end moments of the
same sign (reverse curvature bending), and to 1.67 when one end moment equals
zero. For singly symmetric members, a more detailed analysis for C
bis presented
in the Commentary.
(4) In singly symmetric members subject to reverse curvature bending, the lateral-
torsional buckling strengthshall be checked for both flanges. The available
flexural strength shall be greater than or equal to the maximum required moment
causing compression within the flange under consideration.
16.1–46 GENERAL PROVISIONS [Sect. F1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
C
M
MMMMb
max
max A B C=
+++
12 5
25 3 4 3
.
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 46

F2. DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND
CHANNELS BENT ABOUT THEIR MAJOR AXIS
This section applies to doubly symmetric I-shaped members and channels bent
about their major axis, having compact webs and compact flanges as defined in
Section B4.1 for flexure.
User Note:All current ASTM A6 W, S, M, C and MC shapes except W21×48,
W14×99, W14×90, W12×65, W10×12, W8×31, W8×10, W6×15, W6×9,
W6×8.5 and M4×6 have compact flanges for F
y=50 ksi (345 MPa); all
current ASTM A6 W, S, M, HP, C and MC shapes have compact webs at
F
y≤65 ksi (450 MPa).
The nominal flexural strength, M
n, shall be the lower value obtained according to the
limit statesof yielding (plastic moment)and lateral-torsional buckling.
1. Yielding
Mn=Mp = FyZx (F2-1)
where
F
y=specified minimum yield stressof the type of steel being used, ksi (MPa)
Z
x=plastic section modulus about the x-axis, in.
3
(mm
3
)
2. Lateral-Torsional Buckling
(a) When L b≤Lp, the limit stateof lateral-torsional bucklingdoes not apply.
(b) When L
p<Lb≤Lr
(F2-2)
(c) When L
b> Lr
Mn=FcrSx≤ Mp (F2-3)
where
L
b= length between points that are either braced against lateral displacement of
the compression flange or braced against twist of the cross section, in. (mm)
F
cr (F2-4)
and where
E=modulus of elasticity of steel = 29,000 ksi (200 000 MPa)
J=torsional constant, in.
4
(mm
4
)
S
x=elastic section modulus taken about the x-axis, in.
3
(mm
3
)
h
o=distance between the flange centroids, in. (mm)
Sect. F2.] DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND CHANNELS 16.1–47
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
MCM M FS
LL
LLnbp p yx
bp
rp=−− ( )














⎥07.
⎥⎥
≤M
p
=






+






CE
L
r
Jc
Sh
L
r
b
b
ts
xo
b
tsπ
2
2
2
1 0 078.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 47

User Note:The square root term in Equation F2-4 may be conservatively taken
equal to 1.0.
User Note:Equations F2-3 and F2-4 provide identical solutions to the following
expression for lateral-torsional buckling of doubly symmetric sections that has
been presented in past editions of the AISC LRFD Specification:
The advantage of Equations F2-3 and F2-4 is that the form is very similar to the
expression for lateral-torsional buckling of singly symmetric sections given in
Equations F4-4 and F4-5.
The limiting lengths L
pand L rare determined as follows:
(F2-5)
(F2-6)
where
(F2-7)
and the coefficient c is determined as follows:
(a) For doubly symmetric I-shapes: c =1 (F2-8a)
(b) For channels: (F2-8b)
User Note: For doubly symmetric I-shapes with rectangular flanges,
and thus Equation F2-7 becomes
r
tsmay be approximated accurately and conservatively as the radius of gyration
of the compression flange plus one-sixth of the web:
16.1–48 DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND CHANNELS [Sect. F2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
MC
L
EI GJ
E
L
ICcr b
b
y
b
yw=+






ππ
2
Lr
E
Fpy
y=176.
Lr
E
F
Jc
Sh
Jc
Shrts
yxo xo=+






+195
07
676
0
2
.
.
.
.
77
2
F
Ey⎛





r
IC
Sts
yw
x
2=
c
hI
C
o y
w
=
2
C
Ihw
yo=
2
4
r
Ih
Sts
yo
x
2
2
=
r
b
ht
btts
f
w
ff=
+






12 1
1
6
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 48

F3. DOUBLY SYMMETRIC I-SHAPED MEMBERS WITH COMPACT
WEBS AND NONCOMPACT OR SLENDER FLANGES BENT ABOUT
THEIR MAJOR AXIS
This section applies to doubly symmetric I-shaped members bent about their major
axis having compact webs and noncompact or slender flanges as defined in Section
B4.1 for flexure.
User Note:The following shapes have noncompact flanges for F
y=50 ksi (345
MPa): W21×48, W14×99, W14×90, W12×65, W10×12, W8×31, W8×10,
W6×15, W6×9, W6×8.5 and M4×6. All other ASTM A6 W, S and M shapes
have compact flanges for F
y≤50 ksi (345 MPa).
The nominal flexural strength, M
n, shall be the lower value obtained according to the
limit statesof lateral-torsional bucklingand compression flange local buckling.
1. Lateral-Torsional Buckling
For lateral-torsional buckling, the provisions of Section F2.2 shall apply.
2. Compression Flange Local Buckling
(a) For sections with noncompact flanges
(F3-1)
(b) For sections with slender flanges
(F3-2)
where
λ
λ
pf= λpis the limiting slenderness for a compact flange, Table B4.1b
λ
rf= λris the limiting slenderness for a noncompact flange, Table B4.1b
k
c and shall not be taken less than 0.35 nor greater than 0.76 for calcu-
lation purposes
h=distance as defined in Section B4.1b, in. (mm)
F4. OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT
WEBS BENT ABOUT THEIR MAJOR AXIS
This section applies to doubly symmetric I-shaped members bent about their major
axis with noncompact webs and singly symmetric I-shaped members with webs
attached to the mid-width of the flanges, bent about their major axis, with compact
or noncompact webs, as defined in Section B4.1 for flexure.
Sect. F4.] OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS 16.1–49
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
MM M FSnp p yx
pf
rf pf=− −( )








07.
λλ
λλ
M
Ek Sn
cx=
09
2
.
λ
=
b
t
f
f
2
=
4
ht
w

AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 49

User Note:I-shaped members for which this section is applicable may be
designed conservatively using Section F5.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof compression flange yielding, lateral-torsional buckling, compres-
sion flange local buckling, and tension flange yielding.
1. Compression Flange Yielding
Mn=RpcMyc = RpcFySxc (F4-1)
where
M
yc=yield momentin the compression flange, kip-in. (N-mm)
2. Lateral-Torsional Buckling
(a) When L b≤Lp, the limit stateof lateral-torsional bucklingdoes not apply.
(b) When L
p <Lb≤Lr
(F4-2)
(c) When L
b>Lr
Mn=FcrSxc≤RpcMyc (F4-3)
where
M
yc= FySxc (F4-4)
(F4-5)
For , Jshall be taken as zero
where
I
yc= moment of inertia of the compression flange about the y-axis, in.
4
(mm
4
)
The stress, F
L, is determined as follows:
(i) When
F
L= 0.7F y (F4-6a)
(ii) When
(F4-6b)
16.1–50 OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS [Sect. F4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
M C RM RM FS
LL
LLn b pc yc pc yc L xc
bp
rp=−− ( )









⎣⎣






≤RM
pc yc
F
CE
L
r
J
Sh
L
rcr
b
b
t
xc o
b
t=






+






π
2
2
1 0 078.
22
I
Iyc
y
≤0.23
S
Sxt
xc
≥07.
S
Sxt
xc
<07.
FF
S
S
FLy
xt
xc
y=≥ 05.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 50

Sect. F4.] OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS 16.1–51
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The limiting laterally unbraced lengthfor the limit state of yielding, L p, is deter-
mined as:
(F4-7)
The limiting unbraced length for the limit state of inelastic lateral-torsional buck-
ling, L
r, is determined as:
(F4-8)
The web plastification factor, R
pc, shall be determined as follows:
(i) When I
yc/Iy>0.23
(a) When
(F4-9a)
(b) When
(F4-9b)
(ii) When I
yc/Iy≤0.23
R
pc=1.0 (F4-10)
where
M
p=FyZx≤1.6F ySxc
Sxc, Sxt=elastic section modulus referred to compression and tension flanges,
respectively, in.
3
(mm
3
)
λ=
λ
pw=λp, the limiting slenderness for a compact web, Table B4.1b
λ
rw=λr, the limiting slenderness for a noncompact web, Table B4.1b
h
c =twice the distance from the centroid to the following: the inside face of
the compression flange less the fillet or corner radius, for rolled shapes;
the nearest line of fastenersat the compression flange or the inside faces
of the compression flange when welds are used, for built-up sections, in.
(mm)
Lr
E
Fpt
y=11.
Lr
E
F
J
Sh
J
Sh
F
Ert
Lxco xco
L=+






+


⎜195 676
2
..
⎞⎞


2
h
tc
w
pw
≤λ
R
M
Mpc
p
yc=
h
tc
w
pw

R
M
M
M
Mpc
p
yc
p
yc
pw
rw pw=−−
















1
λλ
λλ
⎢⎢






M
M
p
yc
h
tc
w
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 51

The effective radius of gyration for lateral-torsional buckling, r t, is determined as fol-
lows:
(i) For I-shapes with a rectangular compression flange
(F4-11)
where
a
w (F4-12)
b
fc=width of compression flange, in. (mm)
t
fc=compression flange thickness, in. (mm)
(ii) For I-shapes with a channel cap or a cover plate attached to the compression
flange
r
t=radius of gyration of the flange components in flexural compression plus
one-third of the web area in compression due to application of major axis
bending moment alone, in. (mm)
a
w=the ratio of two times the web area in compression due to application of
major axis bending moment alone to the area of the compression flange
components
User Note:For I-shapes with a rectangular compression flange, r
tmay be approx-
imated accurately and conservatively as the radius of gyration of the compression
flange plus one-third of the compression portion of the web; in other words
3. Compression Flange Local Buckling
(a) For sections with compact flanges, the limit state of local bucklingdoes not
apply.
(b) For sections with noncompact flanges
(F4-13)
(c) For sections with slender flanges
(F4-14)
16.1–52 OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS [Sect. F4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
r
b
h
d
a
h
hdt
fc
o
w
o=
+






12
1
6
2
=
ht
bt
cw
fc fc
r
b
at
fc
w=
+





⎟12 1
1
6
MRM RM FSn pcyc pcyc Lxc
pf
rf pf=− − ( )








λλ
λλ
M
Ek Sn
cxc=
09
2
.
λ
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 52

Sect. F4.] OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS 16.1–53
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
F
Lis defined in Equations F4-6a and F4-6b
R
pcis the web plastification factor, determined by Equations F4-9
k
c and shall not be taken less than 0.35 nor greater than 0.76 for calcu-
lation purposes
λ
λ
pf= λp, the limiting slenderness for a compact flange, Table B4.1b
λ
rf= λr, the limiting slenderness for a noncompact flange, Table B4.1b
4. Tension Flange Yielding
(a) When S xt≥Sxc, the limit stateof tension flange yieldingdoes not apply.
(b) When S
xt<Sxc
Mn=RptMyt (F4-15)
where
M
yt=FySxt
The web plastification factor corresponding to the tension flange yielding limit
state, R
pt, is determined as follows:
(i) When
(F4-16a)
(ii) When
(F4-16b)
where
λ
λ
pw=λp, the limiting slenderness for a compact web, defined in Table
B4.1b
λ
rw=λr, the limiting slenderness for a noncompact web, defined in Table
B4.1b
=
4
ht
w

=
b
t
fc
fc
2
h
tc
w
pw
≤λ
R
M
Mpt
p
yt=
h
tc
w
pw

R
M
M
M
Mpt
p
yt
p
yt
pw
rw pw=−−
















1
λλ
λλ
⎢⎢






M
M
p
yt
=
h
t
c
w
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 53

16.1–54 DOUBLY SYMMETRIC AND SINGLY SYMMETRIC I-SHAPED MEMBERS [Sect. F5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F5. DOUBLY SYMMETRIC AND SINGLY SYMMETRIC I-SHAPED
MEMBERS WITH SLENDER WEBS BENT ABOUT THEIR
MAJOR AXIS
This section applies to doubly symmetric and singly symmetric I-shaped members
with slender webs attached to the mid-width of the flanges and bent about their major
axis as defined in Section B4.1 for flexure.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof compression flange yielding, lateral-torsional buckling, compres-
sion flange local buckling, and tension flange yielding.
1. Compression Flange Yielding
Mn=RpgFySxc (F5-1)
2. Lateral-Torsional Buckling
Mn=RpgFcrSxc (F5-2)
(a) When L
b≤Lp, the limit stateof lateral-torsional bucklingdoes not apply.
(b) When L
p<Lb≤Lr
(F5-3)
(c) When L
b>Lr
(F5-4)
where
L
pis defined by Equation F4-7
L
r (F5-5)
R
pg, the bending strength reduction factor is determined as follows:
(F5-6)
where
a
wis defined by Equation F4-12 but shall not exceed 10
r
tis the effective radius of gyration for lateral buckling as defined in Section F4
FCF F
LL
LL
Fcr b y y
bp
rp
y=− ( )
















≤03.
F
CE
L
r
Fcr
b
b
t
y=







π
2
2
=πr
E
Ft
y
07.
R
a
a
h
t
E
Fpg
w
w
c
wy=−
+







≤1
1 200 300
57 10
,
..
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 54

Sect. F6.] I-SHAPED MEMBERS AND CHANNELS 16.1–55
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Compression Flange Local Buckling
Mn=RpgFcrSxc (F5-7)
(a) For sections with compact flanges, the limit state of compression flange local
bucklingdoes not apply.
(b) For sections with noncompact flanges
(F5-8)
(c) For sections with slender flanges
(F5-9)
where
k
c and shall not be taken less than 0.35 nor greater than 0.76 for calcu-
lation purposes
λ
λ
pf=λp, the limiting slenderness for a compact flange, Table B4.1b
λ
rf=λr, the limiting slenderness for a noncompact flange, Table B4.1b
4. Tension Flange Yielding
(a) When S xt≥Sxc, the limit stateof tension flange yieldingdoes not apply.
(b) When S
xt<Sxc
Mn=FySxt (F5-10)
F6. I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR
MINOR AXIS
This section applies to I-shaped members and channels bent about their minor axis.
The nominal flexural strength, M
n, shall be the lower value obtained according to the
limit statesof yielding (plastic moment) and flange local buckling.
1. Yielding
Mn= Mp=FyZy≤1.6F ySy (F6-1)
2. Flange Local Buckling
(a) For sections with compact flanges the limit state of flange local buckling does
not apply.
FF Fcr y y
pf
rf pf=− ( )
















03.
λλ
λλ
F
Ek
b
tcr
c
f
f=






09
2
2
.=
4
ht
w

=
b
t
fc
fc
2
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 55

User Note:All current ASTM A6 W, S, M, C and MC shapes except W21×48,
W14×99, W14×90, W12×65, W10×12, W8×31, W8×10, W6×15, W6×9, W6×8.5
and M4×6 have compact flanges at F
y=50 ksi (345 MPa).
(b) For sections with noncompact flanges
(F6-2)
(c) For sections with slender flanges
M
n=FcrSy (F6-3)
where
F
cr (F6-4)
λ
λ
pf= λp, the limiting slenderness for a compact flange, Table B4.1b
λ
rf= λr, the limiting slenderness for a noncompact flange, Table B4.1b
b= for flanges of I-shaped members, half the full-flange width, b
f; for flanges
of channels, the full nominal dimensionof the flange, in. (mm)
t
f= thickness of the flange, in. (mm)
S
y= elastic section modulus taken about the y-axis, in.
3
(mm
3
); for a
channel, the minimum section modulus
F7. SQUARE AND RECTANGULAR HSS AND BOX-SHAPED MEMBERS
This section applies to square and rectangular HSS, and doubly symmetric box-
shaped members bent about either axis, having compact or noncompact webs and
compact, noncompact or slender flanges as defined in Section B4.1 for flexure.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof yielding (plastic moment), flange local bucklingand web local
buckling under pure flexure.
User Note: Very long rectangular HSS bent about the major axis are subject to
lateral-torsional buckling; however, the Specification provides no strength equa-
tion for this limit state since beamdeflection will control for all reasonable cases.
1. Yielding
Mn= Mp=FyZ (F7-1)
where
Z=plastic section modulus about the axis of bending, in.
3
(mm
3
)
16.1–56 I-SHAPED MEMBERS AND CHANNELS [Sect. F6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
=






069
2
.E
b
t
f=
b
t
f
MMM FSnpp yy
pf
rf pf=−− ( )














⎥07.
λλ
λλ ⎥⎥
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 56

Sect. F8.] ROUND HSS 16.1–57
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Flange Local Buckling
(a) For compact sections, the limit state of flange local buckling does not apply.
(b) For sections with noncompact flanges
(F7-2)
(c) For sections with slender flanges
M
n=FySe (F7-3)
where
S
e=effective section modulus determined with the effective width, b e, of the
compression flange taken as:
(F7-4)
3. Web Local Buckling
(a) Forcompact sections, the limit state of web local buckling does not apply.
(b) For sections with noncompact webs
(F7-5)
F8. ROUND HSS
This section applies to round HSS having D/tratios of less than
The nominal flexural strength, M
n, shall be the lower value obtained according to the
limit statesof yielding (plastic moment)and local buckling.
1. Yielding
Mn= Mp=FyZ (F8-1)
2. Local Buckling
(a) For compact sections, the limit state of flange local buckling does not apply.
(b) For noncompact sections
(F8-2)
(c) For sections with slender walls
M
n=FcrS (F8-3)
MM MFS
b
t
F
E
Mnp py
f
y
p=− −( ) −






≤357 40..
bt
E
Fbt
E
F
bef
yfy=−








≤192 1
038
.
.
/
MM MFS
h
t
F
E
Mnp py
w
y
p=− −( ) −






≤0 305 0 738..
045.
.
E
F
y
M
E
D
t
FSny=






+










0 021.
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:42 AM Page 57

16.1–58 ROUND HSS [Sect. F8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
F
cr (F8-4)
S= elastic section modulus, in.
3
(mm
3
)
t= thickness of wall, in. (mm)
F9. TEES AND DOUBLE ANGLES LOADED IN THE PLANE
OF SYMMETRY
This section applies to tees and double angles loaded in the plane of symmetry.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof yielding (plastic moment), lateral-torsional buckling, flange local
buckling, and local buckling of tee stems.
1. Yielding
Mn= Mp (F9-1)
where
(a) For stems in tension
M
p= FyZx≤1.6M y (F9-2)
(b) For stems in compression
M
p= FyZx≤My (F9-3)
2. Lateral-Torsional Buckling
(F9-4)
where
(F9-5)
The plus sign for B applies when the stem is in tension and the minus sign applies
when the stem is in compression. If the tip of the stem is in compression anywhere
along the unbraced length, the negative value of Bshall be used.
3. Flange Local Buckling of Tees
(a) For sections with a compact flange in flexural compression, the limit state of
flangelocal bucklingdoes not apply.
(b) For sections with a noncompact flange in flexural compression
=






033.E
D
t
MM
EI GJ
L
BBncr
y
b== ++ ( )
π
1
2
B
d
L
I
J
b
y







23.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 58

(F9-6)
(c) For sections with a slender flange in flexural compression
(F9-7)
where
S
xc=elastic section modulus referred to the compression flange, in.
3
(mm
3
)
λ=
λ
pf=λp, the limiting slenderness for a compact flange, Table B4.1b
λ
rf=λr, the limiting slenderness for a noncompact flange, Table B4.1b
User Note: For double angles with flange legs in compression, M
nbased on local
buckling is to be determined using the provisions of Section F10.3 withb/tof the
flange legs and Equation F10-1 as an upper limit.
4. Local Buckling of Tee Stems in Flexural Compression
Mn=FcrSx (F9-8)
where
S
x=elastic section modulus, in.
3
(mm
3
)
The critical stress, F
cr, is determined as follows:
(a) When
F
cr=Fy (F9-9)
(b) When
(F9-10)
(c) When
(F9-11)
Sect. F9.] TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY 16.1–59
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
MM M FS Mnp p yxc
pf
rf pf
y=− −








≤(.) .07 16
λλ
λλ
M
ES
b
tn
xc
f
f=






07
2
2
.
b
tf
f
2
d
t
E
F
wy
≤084.
084 103..
E
F
d
t
E
F
yw y
<≤
F
d
t
F
E
Fcr
w
y
y=−





⎥255 184..
d
t
E
F
wy
>103.
F
E
d
tcr
w=






069
2
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 59

User note: For double angles with web legs in compression, M nbased on local
bucklingis to be determined using the provisions of Section F10.3 withb/tof the
web legs and Equation F10-1 as an upper limit.
F10. SINGLE ANGLES
This section applies to single angles with and without continuous lateral restraint
along their length.
Single angles with continuous lateral-torsional restraint along the length are permit-
ted to be designed on the basis of geometric axis (x, y) bending. Single angles without
continuous lateral-torsional restraint along the length shall be designed using the pro-
visions for principal axis bending except where the provision for bending about a
geometric axis is permitted.
If the moment resultant has components about both principal axes, with or without
axial load, or the moment is about one principal axis and there is axial load, the com-
bined stressratio shall be determined using the provisions of Section H2.
User Note:For geometric axis design, use section properties computed about the
x-and y-axis of the angle, parallel and perpendicular to the legs. For principal axis
design, use section properties computed about the major and minor principal axes
of the angle.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof yielding (plastic moment), lateral-torsional buckling, and leg local
buckling.
User Note:For bending about the minor axis, only the limit states of yielding and
leg local buckling apply.
1. Yielding
Mn= 1.5M y (F10-1)
where
M
y= yield momentabout the axis of bending, kip-in. (N-mm)
2. Lateral-Torsional Buckling
For single angles without continuous lateral-torsional restraint along the length
(a) When M
e≤My
(F10-2)
16.1–60 TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY [Sect. F9.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
M
M
M
Mn
e
y
e=−






092
017
.
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 60

(b) When M e>My
(F10-3)
where
M
e, the elastic lateral-torsional bucklingmoment, is determined as follows:
(i) For bending about the major principal axis of equal-leg angles:
(F10-4)
(ii) For bending about the major principal axis of unequal-leg angles:
(F10-5)
where
C
b is computed using Equation F1-1 with a maximum value of 1.5
L
b= laterally unbraced lengthof member, in. (mm)
I
z= minor principal axis moment of inertia, in.
4
(mm
4
)
r
z = radius of gyration about the minor principal axis, in. (mm)
t= thickness of angle leg, in. (mm)
β
w= section property for unequal leg angles, positive for short legs in com-
pression and negative for long legs in compression. If the long leg is in
compression anywhere along the unbraced length of the member, the neg-
ative value of β
wshall be used.
User Note:The equation for β
wand values for common angle sizes are listed in
the Commentary.
(iii) For bending moment about one of the geometric axesof an equal-leg angle
with no axial compression
(a) And with no lateral-torsional restraint:
(i) With maximum compression at the toe
(F10-6a)
(ii) With maximum tension at the toe
(F10-6b)
Sect. F10.] SINGLE ANGLES 16.1–61
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
M
M
M
MMn
y
e
yy=−






≤192 117 15.. .
M
Eb t C
Le
b
b=
046
22
.
M
EI C
L
Lt
re
zb
b
w
b
z
w=+






+








49
0 052
2
2
.
.ββ
2
M
Eb tC
L
Lt
be
b
b
b=+















066
1 0 78 1
4
22
2
.
.
M
Eb tC
L
Lt
be
b
b
b=+






+








066
1 0 78 1
4
22
2
.
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 61

Myshall be taken as 0.80 times the yield momentcalculated using the geo-
metric section modulus.
where
b =full width of leg in compression, in. (mm)
User Note:M
nmay be taken as M yfor single angles with their vertical leg toe in
compression, and having a span-to-depth ratio less than or equal to
(b) And with lateral-torsional restraint at the point of maximum moment only:
M
eshall be taken as 1.25 times M ecomputed using Equation F10-6a or
F10-6b.
M
yshall be taken as the yield moment calculated using the geometric sec-
tion modulus.
3. Leg Local Buckling
The limit stateof leg local bucklingapplies when the toe of the leg is in compres-
sion.
(a) For compact sections,the limit state of leg local buckling does not apply.
(b) For sections with noncompact legs:
(F10-7)
(c) For sections with slender legs:
M
n=FcrSc (F10-8)
where
(F10-9)
S
c= elastic section modulus to the toe in compression relative to the axis of
bending, in.
3
(mm
3
). For bending about one of the geometric axesof an
equal-leg angle with no lateral-torsional restraint, S
cshall be 0.80 of the
geometric axis section modulus.
F11. RECTANGULAR BARS AND ROUNDS
This section applies to rectangular bars bent about either geometric axisand rounds.
The nominal flexural strength, M
n, shall be the lower value obtained according to the
limit statesof yielding(plastic moment) and lateral-torsional buckling.
16.1–62 SINGLE ANGLES [Sect. F10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
164
14
2
.
.
E
F
t
b
F
E
y
y







MFS
b
t
F
Enyc
y=−












243 172..
F
E
b
tcr=






071
2
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 62

Sect. F12.] UNSYMMETRICAL SHAPES 16.1–63
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Yielding
For rectangular bars with bent about their major axis, rectangular bars
bent about their minor axis and rounds:
M
n=Mp=FyZ ≤1.6M y (F11-1)
2. Lateral-Torsional Buckling
(a) For rectangular bars with bent about their major axis:
(F11-2)
(b) For rectangular bars with bent about their major axis:
M
n=FcrSx≤Mp (F11-3)
where
(F11-4)
L
b= length between points that are either braced against lateral displacement
of the compression region, or between points braced to prevent twist of
the cross section, in. (mm)
d= depth of rectangular bar, in. (mm)
t= width of rectangular bar parallel to axis of bending, in. (mm)
(c) For rounds and rectangular bars bent about their minor axis, the limit state of lat-
eral-torsional bucklingneed not be considered.
F12. UNSYMMETRICAL SHAPES
This section applies to all unsymmetrical shapes, except single angles.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof yielding (yield moment), lateral-torsional buckling,and local buck-
lingwhere
M
n=FnSmin (F12-1)
where
S
min=lowest elastic section modulus relative to the axis of bending, in.
3
(mm
3
)
1. Yielding
Fn=Fy (F12-2)
Ld
t
E
Fb
y
2008

.
008 19
2
..E
F
Ld
t
E
F
y
b
y
<≤
MC
Ld
t
F
E
MMnb
b y
yp=−












≤1 52 0 274
2
..
F
EC
Ld
tcr
b
b=
19
2
.
Ld
t
E
Fb
y
219
>
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 63

2. Lateral-Torsional Buckling
Fn=Fcr≤Fy (F12-3)
where
F
cr= lateral-torsional buckling stressfor the section as determined by analysis,
ksi (MPa)
User Note:In the case of Z-shaped members, it is recommended that F
crbe taken
as 0.5F
crof a channel with the same flange and web properties.
3. Local Buckling
Fn=Fcr≤Fy (F12-4)
where
F
cr= local buckling stressfor the section as determined by analysis, ksi (MPa)
F13. PROPORTIONS OF BEAMS AND GIRDERS
1. Strength Reductions for Members With Holes in the Tension Flange
This section applies to rolled or built-up shapesand cover-plated beams with holes,
proportioned on the basis of flexural strength of the gross section.
In addition to the limit statesspecified in other sections of this Chapter, the nominal
flexural strength, M
n, shall be limited according to the limit state of tensile rupture
of the tension flange.
(a) When F
uAfn≥YtFyAfg, the limit state of tensile rupture does not apply.
(b) When F
uAfn<YtFyAfg, the nominal flexural strength, M n, at the location of the
holes in the tension flange shall not be taken greater than
(F13-1)
where
A
fg=gross area of tension flange, calculated in accordance with the provisions of
Section B4.3a, in.
2
(mm
2
)
A
fn=net areaof tension flange, calculated in accordance with the provisions of
Section B4.3b, in.
2
(mm
2
)
Y
t =1.0 for F y/Fu≤0.8
=1.1 otherwise
2. Proportioning Limits for I-Shaped Members
Singly symmetric I-shaped members shall satisfy the following limit:
(F13-2)
16.1–64 UNSYMMETRICAL SHAPES [Sect. F12.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
M
FA
A
Sn
ufn
fg
x=
01 09..≤≤
I
I
yc
y
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 64

Sect. F13.] PROPORTIONS OF BEAMS AND GIRDERS 16.1–65
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I-shaped members with slender webs shall also satisfy the following limits:
(a) When
(F13-3)
(b) When
(F13-4)
where
a= clear distance between transverse stiffeners, in. (mm)
In unstiffened girders h/t
wshall not exceed 260. The ratio of the web area to the com-
pression flange area shall not exceed 10.
3. Cover Plates
Flanges of welded beams or girders may be varied in thickness or width by splicing
a series of plates or by the use of cover plates .
The total cross-sectional area of cover plates of bolted girders shall not exceed 70%
of the total flange area.
High-strength bolts or welds connecting flange to web, or cover plate to flange, shall
be proportioned to resist the total horizontal shearresulting from the bending forces
on the girder. The longitudinal distribution of these bolts or intermittent welds shall
be in proportion to the intensity of the shear.
However, the longitudinal spacing shall not exceed the maximum specified for com-
pression or tension members in Section E6 or D4, respectively. Bolts or welds
connecting flange to web shall also be proportioned to transmit to the web any loads
applied directly to the flange, unless provision is made to transmit such loads by
direct bearing.
Partial-length cover plates shall be extended beyond the theoretical cutoff point
and the extended portion shall be attached to the beam or girder by high-strength
bolts in a slip-critical connectionor fillet welds. The attachment shall be adequate,
at the applicable strength given in Sections J2.2, J3.8 or B3.11 to develop the cover
plate’s portion of the flexural strength in the beam or girder at the theoretical cut-
off point.
For welded cover plates, the welds connecting the cover plate termination to the
beam or girder shall have continuous welds along both edges of the cover plate in the
length a′, defined below, and shall be adequate to develop the cover plate’s portion
of the available strengthof the beam or girder at the distance a′from the end of the
cover plate.
h
t
E
F
w
max
y






=12 0.
a
h
≤15.
a
h
>15.
h
t
E
F
w
max
y






=
040.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 65

16.1–66 PROPORTIONS OF BEAMS AND GIRDERS [Sect. F13.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(a) When there is a continuous weld equal to or larger than three-fourths of the plate
thickness across the end of the plate
a′=w (F13-5)
where
w =width of cover plate, in. (mm)
(b) When there is a continuous weld smaller than three-fourths of the plate thickness
across the end of the plate
a′=1.5w (F13-6)
(c) When there is no weld across the end of the plate
a′=2w (F13-7)
4. Built-Up Beams
Where two or more beams or channels are used side-by-side to form a flexural mem-
ber, they shall be connected together in compliance with Section E6.2. When
concentrated loadsare carried from one beam to another or distributed between the
beams, diaphragmshaving sufficient stiffnessto distribute the load shall be welded
or bolted between the beams.
5. Unbraced Length for Moment Redistribution
For moment redistribution in beams according to Section B3.7, the laterally
unbraced length,L
b, of the compression flange adjacent to the redistributed end
moment locations shall not exceed L
mdetermined as follows.
(a) For doubly symmetric and singly symmetric I-shaped beams with the compres-
sion flange equal to or larger than the tension flange loaded in the plane of the
web:
(F13-8)
(b) For solid rectangular bars and symmetric box beams bent about their major axis:
(F13-9)
where
F
y= specified minimum yield stressof the compression flange, ksi (MPa)
M
1= smaller moment at end of unbraced length, kip-in. (N-mm)
M
2= larger moment at end of unbraced length, kip-in. (N-mm)
r
y= radius of gyration about y-axis, in. (mm)
(M
1/M2) is positive when moments cause reverse curvature and negative for sin-
gle curvature
There is no limit on L
bfor members with round or square cross sections or for any
beam bent about its minor axis.
L
M
M
E
F
rm
y
y=+


















0 12 0 076
1
2
..
L
M
M
E
F
rm
y
y=+


















≥017 010 01
1
2
.. .
00
E
F
r
y
y






AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 66

16.1–67
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER G
DESIGN OF MEMBERS FOR SHEAR
This chapter addresses webs of singly or doubly symmetric members subject to shear in the
plane of the web, single angles and HSSsections, and shear in the weak direction of singly
or doubly symmetric shapes.
The chapter is organized as follows:
G1. General Provisions
G2. Members with Unstiffened or Stiffened Webs
G3. Tension Field Action
G4. Single Angles
G5. Rectangular HSS and Box-Shaped Members
G6. Round HSS
G7. Weak Axis Shear in Doubly Symmetric and Singly Symmetric Shapes
G8. Beams and Girders with Web Openings
User Note:For cases not included in this chapter, the following sections apply:
• H3.3 Unsymmetric sections
• J4.2 Shear strength of connecting elements
• J10.6 Web panel zone shear
G1. GENERAL PROVISIONS
Two methods of calculating shear strength are presented below. The method pre-
sented in Section G2 does not utilize the post buckling strengthof the member
(tension field action). The method presented in Section G3 utilizes tension field
action.
The design shear strength, φ
vVn, and the allowable shear strength, V n/Ωv, shall be
determined as follows:
For all provisions in this chapter except Section G2.1(a):
φ
v=0.90 (LRFD)Ω v=1.67 (ASD)
G2. MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS
1. Shear Strength
This section applies to webs of singly or doubly symmetric members and channels
subject to shear in the plane of the web.
The nominal shear strength, V
n, of unstiffened or stiffened webs according to the
limit statesof shear yieldingand shear buckling, is
V
n=0.6F yAwCv (G2-1)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 67

(a) For webs of rolled I-shaped members with
φ
v=1.00 (LRFD)Ω v=1.50 (ASD)
and
C
v=1.0 (G2-2)
User Note:All current ASTM A6 W, S and HP shapes except W44×230,
W40×149, W36×135, W33×118, W30×90, W24×55, W16×26 and W12×14 meet
the criteria stated in Section G2.1(a) for F
y=50 ksi (345 MPa).
(b) For webs of all other doubly symmetric shapes and singly symmetric shapes
and channels, except round HSS, the web shear coefficient, C
v, is determined
as follows:
(i) When
C
v=1.0 (G2-3)
(ii) When
(G2-4)
(iii) When
(G2-5)
where
A
w=area of web, the overall depth times the web thickness, dt w, in.
2
(mm
2
)
h=for rolled shapes, the clear distance between flanges less the fillet or cor-
ner radii, in. (mm)
=for built-up welded sections, the clear distance between flanges,
in. (mm)
=for built-up bolted sections, the distance between fastenerlines,
in. (mm)
=for tees, the overall depth, in. (mm)
t
w=thickness of web, in. (mm)
The web plate shear bucklingcoefficient, k
v, is determined as follows:
(i) For webs without transverse stiffeners and with h/t
w<260:
k
v=5
except for the stem of tee shapes where k
v=1.2.
16–68 MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS [Sect. G2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ht kEFwvy/. /≤110
110 137.//./kE F h t kE Fvy w vy<≤
C
kE F
htv
vy
w=
110./
/
ht kEFwvy/. />137
C
kE
ht Fv
v
wy=
( )
151
2
.
/
ht EFwy≤224.:
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 68

(ii) For webs with transverse stiffeners:
(G2-6)
=5 when a/h >3.0 or a/h >
where
a=clear distance between transverse stiffeners, in. (mm)
User Note:For all ASTM A6 W, S, M and HP shapes except M12.5×12.4,
M12.5×11.6, M12×11.8, M12×10.8, M12×10, M10×8 and M10×7.5, when
F
y=50 ksi (345 MPa), C v=1.0.
2. Transverse Stiffeners
Transverse stiffeners are not required where , or where the avail-
able shear strength provided in accordance with Section G2.1 for k
v=5 is greater
than the required shear strength.
The moment of inertia, I
st, of transverse stiffeners used to develop the available web
shear strength, as provided in Section G2.1, about an axis in the web center for stiff-
ener pairs or about the face in contact with the web plate for single stiffeners, shall
meet the following requirement
(G2-7)
where
(G2-8)
and b is the smaller of the dimensions a andh
Transverse stiffeners are permitted to be stopped short of the tension flange, provided
bearingis not needed to transmit a concentrated load or reaction. The weld by which
transverse stiffeners are attached to the web shall be terminated not less than four
times nor more than six times the web thickness from the near toe of the web-to-flange
weld. When single stiffeners are used, they shall be attached to the compression
flange, if it consists of a rectangular plate, to resist any uplift tendency due to torsion
in the flange.
Bolts connecting stiffeners to the girder web shall be spaced not more than 12 in.
(305 mm) on center. If intermittent fillet welds are used, the clear distance be-
tween welds shall not be more than 16 times the web thickness nor more than 10 in.
(250 mm).
Sect. G2.] MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS 16.1–69
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
k
ahv=+
()
5
5
2
/
260
2
htw/( )






Ibtjst w≥
3
j
ah
=
()
−≥
25
205
2
.
/
.
ht EFwy/./≤246
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:43 AM Page 69

G3. TENSION FIELD ACTION
1. Limits on the Use of Tension Field Action
Consideration of tension field action is permitted for flanged members when the web
plate is supported on all four sides by flanges or stiffeners . Consideration of tension
field action is not permitted:
(a) for end panelsin all members with transverse stiffeners ;
(b) when a
≤hexceeds 3.0 or λ260≤Ωh≤twΣμ
2
;
(c) when 2A
w≤ΩAfc+AftΣ>2.5; or
(d) when h
≤bfcor h≤bft>6.0.
where
A
fc= area of compression flange, in.
2
(mm
2
)
A
ft= area of tension flange, in.
2
(mm
2
)
b
fc= width of compression flange, in. (mm)
b
ft= width of tension flange, in. (mm)
In these cases, the nominal shear strength , V
n, shall be determined according to the
provisions of Section G2.
2. Shear Strength With Tension Field Action
When tension field actionis permitted according to Section G3.1, the nominal shear
strength, V
n, with tension field action, according to the limit stateof tension field
yielding, shall be
(a) When
V
n=0.6F yAw (G3-1)
(b) When
(G3-2)
where
k
vand C vare as defined in Section G2.1
3. Transverse Stiffeners
Transverse stiffenerssubject to tension field actionshall meet the requirements of
Section G2.2 and the following limitations:
(1) (G3-3)
(2) (G3-4)
16.1–70 TENSION FIELD ACTION [Sect. G3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ht kEFwvy/. /≤110
ht kEFwvy/. />110
VFAC
C
ahnywv
v=+

+
()








06
1
115 1
2
.
./
bt
E
F
st
yst
()≤056.
II I I
VV
VVst st st st
rc
cc≥+ −( )








121
1
21
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 70

Sect. G5.] RECTANGULAR HSS AND BOX-SHAPED MEMBERS 16.1–71
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
⎢b≤t⎤
st=width-to-thickness ratio of the stiffener
F
yst=specified minimum yield stressof the stiffener material, ksi (MPa)
I
st=moment of inertia of the transverse stiffeners about an axis in the web
center for stiffener pairs, or about the face in contact with the web plate
for single stiffeners, in.
4
(mm
4
)
I
st1 =minimum moment of inertia of the transverse stiffeners required for
development of the web shear bucklingresistance in Section G2.2, in.
4
(mm
4
)
I
st2 =minimum moment of inertia of the transverse stiffeners required for
development of the full web shear buckling plus the web tension field
resistance, V
r= Vc2,in.
4
(mm
4
)
= (G3-5)
V
r=larger of therequired shear strengthsin the adjacent web panels using
LRFDor ASD load combinations, kips (N)
V
c1=smaller of the available shear strengths in the adjacent web panels with
V
nas defined in Section G2.1, kips (N)
V
c2=smaller of the available shear strengths in the adjacent web panels with
V
nas defined in Section G3.2, kips (N)
ρ
st=the larger of F yw/Fystand 1.0
F
yw=specified minimum yield stress of the web material, ksi (MPa)
G4. SINGLE ANGLES
The nominal shear strength, V n, of a single angle leg shall be determined using
Equation G2-1 and Section G2.1(b) with A
w=bt
where
b=width of the leg resisting the shear force, in. (mm)
t=thickness of angle leg, in. (mm)
h/t
w=b/t
k
v=1.2
G5. RECTANGULAR HSS AND BOX-SHAPED MEMBERS
The nominal shear strength, V n, of rectangular HSSand box members shall be deter-
mined using the provisions of Section G2.1 with A
w=2ht
where
h=width resisting the shear force, taken as the clear distance between the flanges
less the inside corner radius on each side, in. (mm)
t=design wall thickness, equal to 0.93 times the nominal wall thickness for elec-
tric-resistance-welded (ERW) HSS and equal to the nominal thickness for
submerged-arc-welded (SAW) HSS, in. (mm)
t
w=t, in. (mm)
k
v=5
h F
Est yw
413 15
40
ρ
. .






AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 71

If the corner radius is not known, hshall be taken as the corresponding outside
dimension minus 3 times the thickness.
G6. ROUND HSS
The nominal shear strength, V n, of round HSS, according to the limit states of shear
yieldingand shear buckling, shall be determined as:
V
n=FcrAg/2(G6-1)
where
F
crshall be the larger of
(G6-2a)
and
(G6-2b)
but shall not exceed 0.6F
y
Ag=gross cross-sectional area of member, in.
2
(mm
2
)
D=outside diameter, in. (mm)
L
v=distance from maximum to zero shear force, in. (mm)
t=design wall thickness, equal to 0.93 times the nominal wall thickness for
ERW HSS and equal to the nominal thickness for SAW HSS, in. (mm)
User Note:The shear buckling equations, Equations G6-2a and G6-2b, will con-
trol for D/t over 100, high-strength steels, and long lengths. For standard sections,
shear yielding will usually control.
G7. WEAK AXIS SHEAR IN DOUBLY SYMMETRIC AND SINGLY
SYMMETRIC SHAPES
For doubly and singly symmetric shapes loaded in the weak axiswithout torsion, the
nominal shear strength, V
n, for each shear resisting element shall be determined
using Equation G2-1 and Section G2.1(b) with A
w=bf tf, h/tw=b/tf, kv=1.2, and
b =for flanges of I-shaped members, half the full-flange width, b
f; for flanges of
channels, the full nominal dimensionof the flange, in. (mm)
User Note:For all ASTM A6 W, S, M and HP shapes, when F
y≤ 50 ksi (345
MPa), C
v=1.0.
G8. BEAMS AND GIRDERS WITH WEB OPENINGS
The effect of all web openings on the shear strength of steel and composite beams
shall be determined. Adequate reinforcement shall be provided when the required
strengthexceeds the available strengthof the member at the opening.
16.1–72 RECTANGULAR HSS AND BOX-SHAPED MEMBERS [Sect. G5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F
E
L
D
D
tcr
v=






160
5
4
.
F
E
D
tcr=






078
3
2
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 72

CHAPTER H
DESIGN OF MEMBERS FOR COMBINED
FORCES AND TORSION
This chapter addresses members subject to axial force and flexure about one or both axes,
with or without torsion, and members subject to torsion only.
The chapter is organized as follows:
H1. Doubly and Singly Symmetric Members Subject to Flexure and Axial Force
H2. Unsymmetric and Other Members Subject to Flexure and Axial Force
H3. Members Subject to Torsion and Combined Torsion, Flexure, Shear and/or
Axial Force
H4. Rupture of Flanges with Holes Subject to Tension
User Note:For compositemembers, see Chapter I.
H1. DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO
FLEXURE AND AXIAL FORCE
1. Doubly and Singly Symmetric Members Subject to Flexure and
Compression
The interaction of flexure and compression in doubly symmetric members and singly
symmetric members for which 0.1 ≤ I
yc≤Iy≤0.9, constrained to bend about a geo-
metric axis(xand/or y) shall be limited by Equations H1-1a and H1-1b, where I
ycis
the moment of inertia of the compression flange about the y-axis, in.
4
(mm
4
).
User Note:Section H2 is permitted to be used in lieu of the provisions of this
section.
(a) When
(H1-1a)
(b) When
(H1-1b)
where
P
r=required axial strength using LRFDor ASD load combinations, kips (N)
P
c=available axial strength, kips (N)
16.1–73
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
P
Pr
c
≥02.
P
P
M
M
M
Mr
c
rx
cx
ry
cy
++







8
9
10.
P
Pr
c
<02.
P
P
M
M
M
Mr
c
rx
cx
ry
cy
2
10++






≤.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 73

16.1–74 DOUBLY AND SINGLY SYMMETRIC MEMBERS [Sect. H1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Mr=required flexural strengthusing LRFD or ASD load combinations, kip-in.
(N-mm)
M
c=available flexural strength, kip-in. (N-mm)
x=subscript relating symbol to strong axis bending
y=subscript relating symbol to weak axis bending
For design according to Section B3.3 (LRFD):
P
r=required axial strength using LRFD load combinations, kips (N)
P
c=φcPn=design axial strength, determined in accordance with Chapter E,
kips (N)
M
r=required flexural strength using LRFD load coMbinations, kip-in. (N-mm)
M
c=φbMn=design flexural strengthdetermined in accordance with Chapter F,
kip-in. (N-mm)
φ
c=resistance factorfor compression = 0.90
φ
b=resistance factor for flexure =0.90
For design according to Section B3.4 (ASD):
P
r=required axial strength using ASD load combinations, kips (N)
P
c=Pn/Ωc=allowable axial strength, determined in accordance with Chapter
E, kips (N)
M
r=required flexural strength using ASD load combinations, kip-in. (N-mm)
M
c=Mn/Ωb=allowable flexural strengthdetermined in accordance with
Chapter F, kip-in. (N-mm)
Ω
c=safety factorfor compression = 1.67
Ω
b=safety factor for flexure =1.67
2. Doubly and Singly Symmetric Members Subject to Flexure and Tension
The interaction of flexure and tension in doubly symmetric members and singly sym-
metric members constrained to bend about a geometric axis(xand/or y) shall be
limited by Equations H1-1a and H1-1b
where
For design according to Section B3.3 (LRFD):
P
r=required axial strength using LRFD load combinations, kips (N)
P
c=φtPn=design axial strength, determined in accordance with Section D2,
kips (N)
M
r=required flexural strength using LRFD load combinations, kip-in. (N-mm)
M
c=φbMn=design flexural strength determined in accordance with Chapter F,
kip-in. (N-mm)
φ
t=resistance factorfor tension (see Section D2)
φ
b=resistance factor for flexure =0.90
For design according to Section B3.4 (ASD):
P
r=required axial strength using ASD load combinations, kips (N)
P
c=Pn/Ωt= allowable axial strength, determined in accordance with Section
D2, kips (N)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 74

Mr=required flexural strength using ASD load combinations, kip-in. (N-mm)
M
c=Mn/Ωb=allowable flexural strengthdetermined in accordance with
Chapter F, kip-in. (N-mm)
Ω
t=safety factorfor tension (see Section D2)
Ω
b=safety factor for flexure =1.67
For doubly symmetric members, C
bin Chapter F may be multiplied by
for axial tension that acts concurrently with flexure
where
and
α=1.0 (LRFD); α=1.6 (ASD)
A more detailed analysis of the interaction of flexure and tension is permitted in lieu
of Equations H1-1a and H1-1b.
3. Doubly Symmetric Rolled Compact Members Subject to Single Axis
Flexure and Compression
For doubly symmetric rolled compact members with KL z≤ KL ysubjected to flex-
ure and compression with moments primarily about their major axis, it is permissible
to consider the two independent limit states, in-plane instabilityand out-of-plane
bucklingor lateral-torsional buckling, separately in lieu of the combined approach
provided in Section H1.1.
For members with M
ry Mcy≥0.05, the provisions of Section H1.1 shall be followed.
(a) For the limit state of in-plane instability, Equations H1-1 shall be used with P
c,
M
rxand M cxdetermined in the plane of bending.
(b) For the limit state of out-of-plane buckling and lateral-torsional buckling:
(H1-2)
where
P
cy=available compressive strengthout of the plane of bending, kips (N)
C
b=lateral-torsional buckling modification factor determined from Section F1
M
cx=available lateral-torsional strengthfor strong axisflexure determined in
accordance with Chapter F using C
b= 1.0, kip-in. (N-mm)
User Note:In Equation H1-2, C
bMcxmay be larger than φ bMpxin LRFD or
M
px/Ωbin ASD. The yielding resistance of the beam-column is captured by
Equations H1-1.
Sect. H1.] DOUBLY AND SINGLY SYMMETRIC MEMBERS 16.1–75
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1+
αP
P
r
ey
P
EI
Ley
y
b=
π
2
2
P
P
P
P
M
CMr
cy
r
cy
rx
bcx
15 05 10
2
.. .−






+







AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 75

H2. UNSYMMETRIC AND OTHER MEMBERS SUBJECT TO FLEXURE
AND AXIAL FORCE
This section addresses the interaction of flexure and axial stress for shapes not cov-
ered in Section H1. It is permitted to use the provisions of this Section for any shape
in lieu of the provisions of Section H1.
(H2-1)
where
f
ra =required axial stressat the point of consideration using LRFD
or ASD load combinations, ksi (MPa)
F
ca =available axial stressat the point of consideration, ksi (MPa)
f
rbw, frbz=required flexural stress at the point of consideration using LRFD
or ASD load combinations, ksi (MPa)
F
cbw ,Fcbz=available flexural stressat the point of consideration, ksi (MPa)
w =subscript relating symbol to major principal axis bending
z =subscript relating symbol to minor principal axis bending
For design according to Section B3.3 (LRFD):
f
ra =required axial stress at the point of consideration using LRFD load
combinations, ksi (MPa)
F
ca =φcFcr=design axial stress, determined in accordance with Chapter
E for compression or Section D2 for tension, ksi (MPa)
f
rbw, frbz=required flexural stress at the point of consideration using LRFD or
ASD load combinations, ksi (MPa)
F
cbw, Fcbz== design flexural stressdetermined in accordance with
Chapter F, ksi (MPa). Use the section modulus for the specific
location in the cross section and consider the sign of the stress.
φ
c =resistance factorfor compression = 0.90
φ
t =resistance factor for tension (Section D2)
φ
b =resistance factor for flexure =0.90
For design according to Section B3.4 (ASD):
f
ra =required axial stress at the point of consideration using ASD load
combinations, ksi (MPa)
F
ca == allowable axial stressdetermined in accordance with Chapter E
for compression, or Section D2 for tension, ksi (MPa)
f
rbw, frbz=required flexural stress at the point of consideration using LRFD or
ASD load combinations, ksi (MPa)
F
cbw, Fcbz== allowable flexural stressdetermined in accordance with
Chapter F, ksi (MPa). Use the section modulus for the specific
location in the cross section and consider the sign of the stress.
Ω
c =safety factorfor compression = 1.67
16.1–76 UNSYMMETRIC AND OTHER MEMBERS [Sect. H2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
f
F
f
F
f
Fra
ca
rbw
cbw
rbz
cbz
++≤ 10.
φbnM
S
M
Sn
b
Ω
Fcr
c
Ω
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 76

Sect. H3.] MEMBERS SUBJECT TO TORSION AND COMBINED TORSION 16.1–77
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt =safety factor for tension (see Section D2)
Ω
b =safety factor for flexure =1.67
Equation H2-1 shall be evaluated using the principal bending axes by considering the
sense of the flexural stresses at the critical points of the cross section. The flexural
terms are either added to or subtracted from the axial term as appropriate. When the
axial forceis compression, second order effects shall be included according to the
provisions of Chapter C.
A more detailed analysis of the interaction of flexure and tension is permitted in lieu
of Equation H2-1.
H3. MEMBERS SUBJECT TO TORSION AND COMBINED TORSION,
FLEXURE, SHEAR AND/OR AXIAL FORCE
1. Round and Rectangular HSS Subject to Torsion
The design torsional strength, φ TTn, and the allowable torsional strength, T n/ΩT, for
round and rectangular HSSaccording to the limit statesof torsional yieldingand tor-
sional bucklingshall be determined as follows:
φ
T=0.90 (LRFD)Ω T=1.67 (ASD)
T
n= FcrC (H3-1)
where
C is the HSS torsional constant
The critical stress, F
cr, shall be determined as follows:
(a) For round HSS, F
crshall be the larger of
(i) (H3-2a)
and
(ii) (H3-2b)
but shall not exceed 0.6F
y,
where
L=length of the member, in. (mm)
D=outside diameter, in. (mm)
(b) For rectangular HSS
(i) When
F
E
L
D
D
tcr=






123
5
4
.
F
E
D
tcr=






060
3
2
.
ht EF y/. /≤245
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 77

Fcr=0.6F y (H3-3)
(ii) When
(H3-4)
(iii) When
(H3-5)
where
h=flat widthof longer side as defined in Section B4.1b(d), in. (mm)
t=design wall thicknessdefined in Section B4.2, in. (mm)
User Note:The torsional constant, C, may be conservatively taken as:
For round HSS:
For rectangular HSS: C =2 B t H tt 4.5 4 πt
3
2. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force
When the required torsional strength, T r, is less than or equal to 20% of the avail-
able torsional strength, T
c, the interaction of torsion, shear, flexure and/or axial force
for HSSshall be determined by Section H1 and the torsional effects shall be neg-
lected. When T
rexceeds 20% of T c, the interaction of torsion, shear, flexure and/or
axial force shall be limited, at the point of consideration, by
(H3-6)
where
For design according to Section B3.3 (LRFD):
P
r=required axial strengthusing LRFD load combinations, kips (N)
P
c=φPn=design tensile or compressive strengthin accordance with Chapter
D or E, kips (N)
M
r=required flexural strengthusing LRFD load combinations, kip-in. (N-mm)
M
c=φbMn=design flexural strengthin accordance with Chapter F, kip-in.
(N-mm)
V
r=required shear strengthusing LRFD load combinations, kips (N)
16.1–78 MEMBERS SUBJECT TO TORSION AND COMBINED TORSION [Sect. H3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
245 307./.
E
F
ht
E
F
yy
<≤
F
FEF
h
tcr
yy=
( )






06 245../
3 07 260./
E
F
ht
y
<≤
C
Dtt
=

()π
2
2
P
P
M
M
V
V
T
Tr
c
r
c
r
c
r
c
+






++







2
10.
F
E
h
tcr=






0 458
2
2

AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 78

Sect. H4.] RUPTURE OF FLANGES WITH HOLES SUBJECT TO TENSION 16.1–79
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Vc=φvVn=design shear strengthin accordance with Chapter G, kips (N)
T
r=required torsional strength using LRFD load combinations, kip-in.
(N-mm)
T
c=φTTn=design torsional strengthin accordance with Section H3.1, kip-in.
(N-mm)
For design according to Section B3.4 (ASD):
P
r=required axial strength using ASD load combinations , kips (N)
P
c=Pn/Ω =allowable tensile or compressive strengthin accordance with
Chapter D or E, kips (N)
M
r=required flexural strength using ASD load combinations, kip-in. (N-mm)
M
c=Mn/Ωb=allowable flexural strengthin accordance with Chapter F, kip-in.
(N-mm)
V
r=required shear strength using ASD load combinations, kips (N)
V
c=Vn/Ωv=allowable shear strengthin accordance with Chapter G, kips (N)
T
r=required torsional strength using ASD load combinations, kip-in. (N-mm)
T
c=Tn/ΩT=allowable torsional strengthin accordance with Section H3.1,
kip-in. (N-mm)
3. Non-HSS Members Subject to Torsion and Combined Stress
The available torsional strengthfor non-HSS members shall be the lowest value
obtained according to the limit statesof yielding under normal stress, shear yielding
under shear stress, or buckling, determined as follows:
φ
T=0.90 (LRFD) Ω T=1.67 (ASD)
(a) For the limit state of yielding under normal stress
F
n=Fy (H3-7)
(b) For the limit state of shear yielding under shear stress
F
n=0.6F y (H3-8)
(c) For the limit state of buckling
F
n=Fcr (H3-9)
where
F
cr=buckling stress for the section as determined by analysis, ksi (MPa)
Some constrained local yieldingis permitted adjacent to areas that remain elastic.
H4. RUPTURE OF FLANGES WITH HOLES SUBJECT TO TENSION
At locations of bolt holes in flanges subject to tension under combined axial force
and major axis flexure, flange tensile rupture strengthshall be limited by Equation
H4-1. Each flange subject to tension due to axial force and flexure shall be checked
separately.
(H4-1)
P
P
M
Mr
c
rx
cx
+≤ 10.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 79

16.1–80 RUPTURE OF FLANGES WITH HOLES SUBJECT TO TENSION [Sect. H4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
P
r=required axial strength of the member at the location of the bolt holes, pos-
itive in tension, negative in compression, kips (N)
P
c=available axial strength for the limit stateof tensile rupture of the net sec-
tion at the location of bolt holes, kips (N)
M
rx=required flexural strength at the location of the bolt holes; positive for
tension in the flange under consideration, negative for compression, kip-in.
(N-mm)
M
cx=available flexural strength about x-axis for the limit state of tensile rupture
of the flange, determined according to Section F13.1. When the limit state
of tensile rupture in flexure does not apply, use the plastic bending moment,
M
p, determined with bolt holes not taken into consideration, kip-in. (N-mm)
For design according to Section B3.3 (LRFD):
P
r=required axial strength using LRFD load combinations , kips (N)
P
c=φtPn=design axial strength for the limit state of tensile rupture, deter-
mined in accordance with Section D2(b), kips (N)
M
rx=required flexural strength using LRFD load combinations, kip-in. (N-
mm)
M
cx=φbMn =design flexural strength determined in accordance with Section
F13.1 or the plastic bending moment, M
p, determined with bolt holes not
taken into consideration, as applicable, kip-in. (N-mm)
φ
t=resistance factorfor tensile rupture = 0.75
φ
b=resistance factor for flexure =0.90
For design according to Section B3.4 (ASD):
P
r=required axial strength using ASD load combinations , kips (N)
P
c== allowable axial strength for the limit state of tensile rupture, deter-
mined in accordance with Section D2(b), kips (N)
M
rx=required flexural strength using ASD load combinations, kip-in. (N-mm)
M
cx== allowable flexural strength determined in accordance with Section
F13.1, or the plastic bending moment, M
p, determined with bolt holes
not taken into consideration, as applicable, kip-in. (N-mm)
Ω
t=safety factorfor tensile rupture = 2.00
Ω
b=safety factor for flexure =1.67
Pn
t
Ω
Mn
b
Ω
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 80

16.1–81
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER I
DESIGN OF COMPOSITE MEMBERS
This chapter addresses composite members composed of rolled or built-up structural steel
shapes or HSS and structural concrete acting together, and steel beamssupporting a reinforced
concrete slab so interconnected that the beams and the slab act together to resist bending.
Simple and continuous composite beamswith steel headed stud anchors, concrete-encased,
and concrete filled beams, constructed with or without temporary shores, are included.
The chapter is organized as follows:
I1. General Provisions
I2. Axial Force
I3. Flexure
I4. Shear
I5. Combined Axial Force and Flexure
I6. Load Transfer
I7. Composite Diaphragms and Collector Beams
I8. Steel Anchors
I9. Special Cases
I1. GENERAL PROVISIONS
In determining load effectsin members and connections of a structure that includes
compositemembers, consideration shall be given to the effective sections at the time
each increment of loadis applied.
1. Concrete and Steel Reinforcement
The design, detailing and material properties related to the concrete and reinforcing
steel portions of composite construction shall comply with the reinforced concrete
and reinforcing bar design specifications stipulated by the applicable building code.
Additionally, the provisions in ACI 318 shall apply with the following exceptions
and limitations:
(1) ACI 318 Sections 7.8.2 and 10.13, and Chapter 21 shall be excluded in their
entirety.
(2) Concrete and steel reinforcement material limitations shall be as specified in
Section I1.3.
(3)Transverse reinforcementlimitations shall be as specified in Section I2.1a(2), in
addition to those specified in ACI 318.
(4) The minimum longitudinal reinforcing ratio for encased composite members
shall be as specified in Section I2.1a(3).
Concrete and steel reinforcement components designed in accordance with ACI 318
shall be based on a level of loading corresponding to LRFD load combinations.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 81

User Note:It is the intent of the Specification that the concrete and reinforcing
steel portions of composite concrete members be detailed utilizing the noncom-
posite provisions of ACI 318 as modified by the Specification. All requirements
specific to composite members are covered in the Specification.
Note that the design basis for ACI 318 is strength design. Designers using ASD
for steel must be conscious of the different load factors.
2. Nominal Strength of Composite Sections
The nominal strengthof composite sections shall be determined in accordance with
the plastic stress distribution methodor the strain compatibility methodas defined in
this section.
The tensile strengthof the concrete shall be neglected in the determination of the
nominal strength of composite members.
Local bucklingeffects shall be considered for filled composite members as defined in
Section I1.4. Local buckling effects need not be considered for encased composite
members.
2a. Plastic Stress Distribution Method
For the plastic stress distribution method, the nominal strength shall be computed
assuming that steel components have reached a stress of F
yin either tension or
compression and concrete components in compression due to axial force and/or
flexure have reached a stress of 0.85f′
c. For round HSS filled with concrete, a stress
of 0.95f ′
cis permitted to be used for concrete components in compression due to
axial force and/or flexure to account for the effects of concrete confinement.
2b. Strain Compatibility Method
For the strain compatibility method, a linear distribution of strains across the section
shall be assumed, with the maximum concrete compressive strain equal to 0.003
in./in. (mm/mm). The stress-strain relationships for steel and concrete shall be
obtained from tests or from published results for similar materials.
User Note: The strain compatibility method should be used to determine nominal
strengthfor irregular sections and for cases where the steel does not exhibit
elasto-plastic behavior. General guidelines for the strain compatibility method for
encased members subjected to axial load, flexure or both are given in AISC
Design Guide 6 and ACI 318.
3. Material Limitations
For concrete, structural steel , and steel reinforcing bars in composite systems, the
following limitations shall be met, unless justified by testing or analysis:
16–82 GENERAL PROVISIONS [Sect. I1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 82

(1) For the determination of the available strength, concrete shall have a compres-
sive strength, f ′
c, of not less than 3 ksi (21 MPa) nor more than 10 ksi (70 MPa)
for normal weight concrete and not less than 3 ksi (21 MPa) nor more than 6 ksi
(42 MPa) for lightweight concrete.
User Note:Higher strength concrete material properties may be used for stiff-
nesscalculations but may not be relied upon for strength calculations unless
justified by testing or analysis.
(2) The specified minimum yield stressof structural steel and reinforcing bars used
in calculating the strength of composite members shall not exceed 75 ksi (525
MPa).
4. Classification of Filled Composite Sections for Local Buckling
For compression, filled composite sections are classified as compact, noncompact or
slender. For a section to qualify as compact, the maximum width-to-thickness ratio
of its compression steel elements shall not exceed the limiting width-to-thickness
ratio, λ
p, from Table I1.1a. If the maximum width-to-thickness ratio of one or more
steel compression elements exceeds λ
p, but does not exceed λrfrom Table I1.1a, the
filled composite section is noncompact. If the maximum width-to-thickness ratio of
any compression steel element exceeds λ
r, the section is slender. The maximum per-
mitted width-to-thickness ratio shall be as specified in the table.
For flexure, filled composite sections are classified as compact, noncompact or slen-
der. For a section to qualify as compact, the maximum width-to-thickness ratio of its
compression steel elements shall not exceed the limiting width-to-thickness ratio, λ
p,
from Table I1.1b. If the maximum width-to-thickness ratio of one or more steel com-
pression elements exceeds λ
p, but does not exceed λrfrom Table I1.1b, the section is
noncompact. If the width-to-thickness ratio of any steel element exceeds λ
r, the sec-
tion is slender. The maximum permitted width-to-thickness ratio shall be as specified
in the table.
Refer to Table B4.1a and Table B4.1b for definitions of width (band D) and thick-
ness (t) for rectangular and round HSS sections.
User Note: All current ASTM A500 Grade B square HSS sections are compact
according to the limits of Table I1.1a and Table I1.1b except HSS7×7×
1
/8,
HSS8×8×
1
/8, HSS9×9×
1
/8and HSS12×12×
3
/16which are noncompact for both
axial compression and flexure.
All current ASTM A500 Grade B round HSS sections are compact according
to the limits of Table I1.1a and Table I1.1b for both axial compression and flex-
ure with the exception of HSS16.0×0.25, which is noncompact for flexure.
Sect. I1.] GENERAL PROVISIONS 16.1–83
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 83

16.1–84 GENERAL PROVISIONS [Sect. I1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE I1.1A
Limiting Width-to-Thickness Ratios for
Compression Steel Elements in Composite
Members Subject to Axial Compression
For Use with Section I2.2
Width-to- λ p λr
Description of Thickness Compact/ Noncompact/ Maximum
Element Ratio Noncompact Slender Permitted
Walls of Rectangular HSS
and Boxes of Uniform
Thickness
Round HSS
226.
E
F
y
300.
E
F
y
015.E
F
y
019.E
F
y
031.E
F
y
500.
E
F
y
TABLE I1.1B
Limiting Width-to-Thickness Ratios for
Compression Steel Elements in Composite
Members Subject to Flexure
For Use with Section I3.4
Width-to- λ p λr
Description of Thickness Compact/ Noncompact/ Maximum
Element Ratio Noncompact Slender Permitted
Flanges of Rectangular
HSS and Boxes of
Uniform Thickness
Webs of Rectangular HSS
and Boxes of Uniform
Thickness
Round HSS
226.
E
F
y
300.
E
F
y
300.
E
F
y
570.
E
F
y
570.
E
F
y
009.E
F
y
031.E
F
y
031.E
F
y
500.
E
F
y
b/t
b/t
h/t
D/t
D/t
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 84

I2. AXIAL FORCE
This section applies to two types of composite members subject to axial force:
encased composite membersand filled composite members.
1.
Encased Composite Members
1a. Limitations
For encased composite members, the following limitations shall be met:
(1) The cross-sectional area of the steel core shall comprise at least 1% of the total
composite cross section.
(2) Concrete encasement of the steel core shall be reinforced with continuous longi-
tudinal bars and lateral ties or spirals.
Where lateral ties are used, a minimum of either a No. 3 (10 mm) bar spaced
at a maximum of 12 in. (305 mm) on center, or a No. 4 (13 mm) bar or larger
spaced at a maximum of 16 in. (406 mm) on center shall be used. Deformed wire
or welded wire reinforcement of equivalent area are permitted.
Maximum spacing of lateral ties shall not exceed 0.5 times the least column
dimension.
(3) The minimum reinforcement ratio for continuous longitudinal reinforcing, ρ
sr,
shall be 0.004, where ρ
sris given by:
(I2-1)
where
A
g=gross area of composite member, in.
2
(mm
2
)
A
sr=area of continuous reinforcing bars, in.
2
(mm
2
)
User Note: Refer to Sections 7.10 and 10.9.3 of ACI 318 for additional tie and
spiral reinforcing provisions.
1b. Compressive Strength
The design compressive strength, φ cPn, and allowable compressive strength, Pn/Ωc,
of doubly symmetric axially loaded encased composite members shall be determined
for the limit stateof flexural bucklingbased on member slenderness as follows:
φ
c=0.75 (LRFD) Ω c=2.00 (ASD)
(a) When
(I2-2)
(b) When
Sect. I2.] AXIAL FORCE 16.1–85
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ρsr
sr
g
A
A
=
P
Pno
e
≤225.
PPnno
P
P
no
e
=








0 658.
P
Pno
e
>225.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 85

Pn=0.877P e
(I2-3)
where
P
no (I2-4)
P
e=elastic critical buckling loaddetermined in accordance with Chapter C or
Appendix 7, kips (N)

2
(EIeff)/(KL)
2
(I2-5)
A
c=area of concrete, in.
2
(mm
2
)
A
s=area of the steel section, in.
2
(mm
2
)
E
c=modulus of elasticity of concrete
EI
eff=effective stiffnessof composite section, kip-in.
2
(N-mm
2
)
=E
sIs+0.5E sIsr+C1EcIc (I2-6)
C
1=coefficient for calculation of effective rigidity of an
encased composite compression member
(I2-7)
E
s =modulus of elasticity of steel
=29,000 ksi (200 000 MPa)
F
y=specified minimum yield stressof steel section, ksi (MPa)
F
ysr=specified minimum yield stress of reinforcing bars, ksi (MPa)
I
c=moment of inertia of the concrete section about the elastic neutral axis of
the composite section, in.
4
(mm
4
)
I
s=moment of inertia of steel shape about the elastic neutral axis of the com-
posite section, in.
4
(mm
4
)
I
sr=moment of inertia of reinforcing bars about the elastic neutral axis of the
composite section, in.
4
(mm
4
)
K=effective length factor
L=laterally unbraced lengthof the member, in. (mm)
f
c′=specified compressive strength of concrete, ksi (MPa)
w
c=weight of concrete per unit volume (90 ≤w c≤155 lbs/ft
3
or 1500 ≤ w c≤
2500 kg/m
3
)
The available compressive strength need not be less than that specified for the bare
steel member as required by Chapter E.
1c. Tensile Strength
The available tensile strength of axially loaded encased composite members shall be
determined for the limit state of yieldingas follows:
P
n=FyAs+FysrAsr (I2-8)
φ
t=0.90 (LRFD) Ω t=1.67 (ASD)
1d. Load Transfer
Loadtransfer requirements for encased composite members shall be determined in
accordance with Section I6.
16.1–86 AXIAL FORCE [Sect. I2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
=+ + ′FA F A fAys ysrsr cc085.
= ′′ ( )wf wfcc cc
15 15 0 043
..
, ksi . , MPa
= 0 1 2 0 3..+
+







A
AA
s
cs
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 86

Sect. I2.] AXIAL FORCE 16.1–87
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1e. Detailing Requirements
Clear spacing between the steel core and longitudinal reinforcing shall be a minimum
of 1.5 reinforcing bar diameters, but not less than 1.5 in. (38 mm).
If the composite cross section is built up from two or more encased steel shapes, the
shapes shall be interconnected with lacing, tie plates, batten platesor similar com-
ponents to prevent bucklingof individual shapes due to loadsapplied prior to
hardening of the concrete.
2. Filled Composite Members
2a. Limitations
For filled composite members, the cross-sectional area of the steel section shall com-
prise at least 1% of the total composite cross section.
Filled composite members shall be classified for local bucklingaccording to Section
I1.4.
2b. Compressive Strength
The available compressive strengthof axially loaded doubly symmetric filled com-
posite membersshall be determined for the limit state of flexural buckling in
accordance with Section I2.1b with the following modifications:
(a) For compact sections
P
no=Pp (I2-9a)
where
(I2-9b)
C
2=0.85 for rectangular sections and 0.95 for round sections
(b) For noncompact sections
(I2-9c)
where
λ, λ
pand λrare slenderness ratios determined from Table I1.1a
P
pis determined from Equation I2-9b
(I2-9d)
(c) For slender sections
(I2-9e)
PFACfAA
E
Epys ccsr
s
c=+ ′+





⎟ 2
PP
PPno p
py
rp
p=−


( )
−( )
λλ
λλ
2
2
PFA fAA
E
Eyys ccsr
s
c=+ ′+






07.
PFA fAA
E
Eno cr s c c sr
s
c=+ ′+






07.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 87

where
(i) For rectangular filled sections
(I2-10)
(ii) For round filled sections
(I2-11)
The effective stiffness of the composite section, EI
eff, for all sections shall be:
EI
eff=EsIs+EsIsr+ C3EcIc (I2-12)
where
C
3= coefficient for calculation of effective rigidity of filled composite compres-
sion member
= (I2-13)
The available compressivestrengthneed not be less than specified for the bare steel
member as required by Chapter E.
2c. Tensile Strength
The available tensile strengthof axially loaded filled composite members shall be
determined for the limit state of yieldingas follows:
P
n=AsFy+AsrFysr (I2-14)
φ
t=0.90 (LRFD) Ω t=1.67 (ASD)
2d. Load Transfer
Loadtransfer requirements for filled composite membersshall be determined in
accordance with Section I6.
I3. FLEXURE
This section applies to three types of composite members subject to flexure: com-
posite beamswith steel anchors consisting of steel headed stud anchors or steel
channel anchors, encased composite members , and filled composite members.
1. General
1a. Effective Width
The effective widthof the concrete slab shall be the sum of the effective widths for
each side of the beam centerline, each of which shall not exceed:
16.1–88 AXIAL FORCE [Sect. I2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F
E
b
tcr
s=






9
2
F
F
D
t
F
Ecr
y
y
s=












072
02
.
.
06 2 09..+
+







A
AA
s
cs
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:44 AM Page 88

(1) one-eighth of the beam span, center-to-center of supports;
(2) one-half the distance to the centerline of the adjacent beam; or
(3) the distance to the edge of the slab.
1b. Strength During Construction
When temporary shores are not used during construction, the steel section alone shall
have adequate strength to support all loadsapplied prior to the concrete attaining
75% of its specified strength f
c′. The available flexural strengthof the steel section
shall be determined in accordance with Chapter F.
2. Composite Beams With Steel Headed Stud or Steel Channel Anchors
2a. Positive Flexural Strength
The design positive flexural strength, φ bMn, andallowable positive flexural strength,
M
n/Ωb, shall be determined for thelimit state ofyielding as follows:
φ
b=0.90 (LRFD) Ω b=1.67 (ASD)
(a) When
M
nshall be determined from the plastic stressdistribution on the composite sec-
tion for the limit state of yielding (plastic moment).
User Note: All current ASTM A6 W, S and HP shapes satisfy the limit given
in Section I3.2a(a) for F
y≤50 ksi (345 MPa).
(b) When
M
nshall be determined from the superposition of elastic stresses, considering the
effects of shoring, for the limit state of yielding (yield moment).
2b. Negative Flexural Strength
The available negative flexural strengthshall be determined for the steel section
alone, in accordance with the requirements of Chapter F.
Alternatively, the available negative flexural strength shall be determined from the
plastic stress distribution on the composite section, for the limit state of yielding
(plastic moment),with
φ
b=0.90 (LRFD) Ω b=1.67 (ASD)
provided that the following limitations are met:
(1) The steel beamis compact and is adequately braced in accordance with Chapter F.
(2) Steel headed stud or steel channel anchors connect the slab to the steel beam in
the negative moment region.
(3) The slab reinforcement parallel to the steel beam, within the effective widthof the
slab, is properly developed.
Sect. I3.] FLEXURE 16.1–89
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ht E Fwy≤376./
ht E Fwy>376./
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 89

2c. Composite Beams With Formed Steel Deck
(1) General
The available flexural strength of composite construction consisting of concrete
slabs on formed steel deck connected to steel beamsshall be determined by the
applicable portions of Sections I3.2a and I3.2b, with the following requirements:
(1) The nominal rib heightshall not be greater than 3 in. (75 mm). The average
width of concrete rib or haunch, w
r, shall be not less than 2 in. (50 mm), but
shall not be taken in calculations as more than the minimum clear width near
the top of the steel deck.
(2) The concrete slab shall be connected to the steel beam with welded steel
headed stud anchors,
3
/4in. (19 mm) or less in diameter (AWS D1.1/D1.1M).
Steel headed stud anchors shall be welded either through the deck or directly
to the steel cross section. Steel headed stud anchors, after installation, shall
extend not less than 1
1
/2in. (38 mm) above the top of the steel deck and there
shall be at least
1
/2in. (13 mm) of specified concrete cover above the top of
the steel headed stud anchors.
(3) The slab thickness above the steel deck shall be not less than 2 in. (50 mm).
(4) Steel deck shall be anchored to all supporting members at a spacing not to
exceed 18 in. (460 mm). Such anchorage shall be provided by steel headed
stud anchors, a combination of steel headed stud anchors and arc spot (pud-
dle) welds, or other devices specified by the contract documents.
(2) Deck Ribs Oriented Perpendicular to Steel Beam
Concrete below the top of the steel deck shall be neglected in determining com-
posite section properties and in calculating A
cfor deck ribs oriented
perpendicular to the steel beams.
(3) Deck Ribs Oriented Parallel to Steel Beam
Concrete below the top of the steel deck is permitted to be included in determin-
ing composite section properties and shall be included in calculating A
c.
Formed steel deck ribs over supporting beams are permitted to be split longi-
tudinally and separated to form a concrete haunch.
When the nominal depth of steel deck is 1
1
/2in. (38 mm) or greater, the aver-
age width, w
r, of the supported haunch or rib shall be not less than 2 in. (50 mm)
for the first steel headed stud anchor in the transverse row plus four stud diame-
ters for each additional steel headed stud anchor.
2d. Load Transfer Between Steel Beam and Concrete Slab
(1) Load Transfer for Positive Flexural Strength
The entire horizontal shearat the interface between the steel beamand the con-
crete slab shall be assumed to be transferred by steel headed stud or steel channel
anchors, except for concrete-encased beams as defined in Section I3.3. For com-
posite action with concrete subject to flexural compression, the nominal shear
force between the steel beam and the concrete slab transferred by steel anchors,
V′, between the point of maximum positive moment and the point of zero
moment shall be determined as the lowest value in accordance with the limit
16.1–90 FLEXURE [Sect. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 90

Sect. I3.] FLEXURE 16.1–91
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
statesof concrete crushing, tensile yielding of the steel section, or the shear
strength of the steel anchors:
(a) Concrete crushing
V′=0.85f
c′Ac (I3-1a)
(b) Tensile yielding of the steel section
V′=F
yAs (I3-1b)
(c) Shear strength of steel headed stud or steel channel anchors
V′=ΣQ
n (I3-1c)
where
A
c=area of concrete slab within effective width, in.
2
(mm
2
)
A
s=area of steel cross section, in.
2
(mm
2
)
ΣQ
n=sum of nominal shear strengthsof steel headed stud or steel
channel anchors between the point of maximum positive
moment and the point of zero moment, kips (N)
(2) Load Transfer for Negative Flexural Strength
In continuous composite beams where longitudinal reinforcing steel in the nega-
tive moment regions is considered to act compositely with the steel beam, the
total horizontal shear between the point of maximum negative moment and the
point of zero moment shall be determined as the lower value in accordance with
the following limit states:
(a) For the limit state of tensile yielding of the slab reinforcement
V′=F
ysrAsr (I3-2a)
where
A
sr= area of adequately developed longitudinal reinforcing steel within
the effective width of the concrete slab, in.
2
(mm
2
)
F
ysr= specified minimum yield stressof the reinforcing steel, ksi (MPa)
(b) For the limit state of shear strength of steel headed stud or steel channel
anchors
V′=ΣQ
n (I3-2b)
3. Encased Composite Members
The available flexural strengthof concrete-encased members shall be determined as
follows:
φ
b=0.90 (LRFD) Ω b=1.67 (ASD)
The nominal flexural strength, M
n, shall be determined using one of the following
methods:
(a) The superposition of elastic stresses on the composite section, considering the
effects of shoring for the limit stateof yielding (yield moment).
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 91

(b) The plastic stress distribution on the steel section alone, for the limit state of
yielding (plastic moment) on the steel section.
(c) The plastic stress distribution on the composite section or the strain-compatibil-
ity method, for the limit state of yielding (plastic moment) on the composite
section. For concrete-encased members, steel anchors shall be provided.
4. Filled Composite Members
4a. Limitations
Filled composite sections shall be classified for local buckling according to Section
I1.4.
4b. Flexural Strength
The available flexural strength of filled composite membersshall be determined as
follows:
φ
b=0.90 (LRFD) Ω b=1.67 (ASD)
The nominal flexural strength, M
n, shall be determined as follows:
(a) For compact sections
M
n=Mp (I3-3a)
where
M
p=moment corresponding to plastic stressdistribution over the composite
cross section, kip-in. (N-mm)
(b) For noncompact sections
(I3-3b)
where
λ, λ
pand λrare slenderness ratios determined from Table I1.1b.
M
y=yield momentcorresponding to yielding of the tension flange and first
yield of the compression flange, kip-in. (N-mm). The capacity at first
yield shall be calculated assuming a linear elastic stress distribution with
the maximum concrete compressive stress limited to 0.7f′
cand the maxi-
mum steel stress limited to F
y.
(c) For slender sections, M
n, shall be determined as the first yield moment. The com-
pression flange stress shall be limited to the local buckling stress, F
cr, determined
using Equation I2-10 or I2-11. The concrete stress distribution shall be linear
elastic with the maximum compressive stress limited to 0.70f′
c.
16.1–92 FLEXURE [Sect. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
MM MMnp py
p
rp=− −( )








λλ
λλ
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 92

Sect. I6.] LOAD TRANSFER 16.1–93
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I4. SHEAR
1. Filled and Encased Composite Members
The design shear strength, φ vVn,and allowable shear strength, Vn/Ωv,shall be deter-
mined based on one of the following:
(a) The available shear strengthof the steel section alone as specified in Chapter G
(b) The available shear strength of the reinforced concrete portion (concrete plus
steel reinforcement) alone as defined by ACI 318 with
φ
v=0.75 (LRFD) Ω v=2.00 (ASD)
(c) The nominal shear strengthof the steel section as defined in Chapter G plus the
nominal strength of the reinforcing steel as defined by ACI 318 with a combined
resistance or safety factor of
φ
v=0.75 (LRFD) Ω v=2.00 (ASD)
2. Composite Beams With Formed Steel Deck
The available shear strength of composite beams with steel headed stud or steel chan-
nel anchors shall be determined based upon the properties of the steel section alone
in accordance with Chapter G.
I5. COMBINED FLEXURE AND AXIAL FORCE
The interaction between flexure and axial forces in composite members shall account
for stabilityas required by Chapter C. The available compressive strength and the
available flexural strengthshall be determined as defined in Sections I2 and I3,
respectively. To account for the influence of length effects on the axial strength of the
member, the nominal axial strength of the member shall be determined in accordance
with Section I2.
For encased composite membersand for filled composite memberswith compact sec-
tions, the interaction between axial force and flexure shall be based on the interaction
equations of Section H1.1 or one of the methods as defined in Section I1.2.
For filled composite members with noncompact or slender sections, the interaction
between axial forces and flexure shall be based on the interaction equations of
Section H1.1.
User Note: Methods for determining the capacity of composite beam-columns are
discussed in the Commentary.
I6. LOAD TRANSFER
1. General Requirements
When external forces are applied to an axially loaded encased or filled composite
member, the introduction of force to the member and the transfer of longitudinal
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 93

shears within the member shall be assessed in accordance with the requirements for
force allocation presented in this section.
The design strength, φR
n, or the allowable strength, R n/Ω, of the applicable force
transfer mechanisms as determined in accordance with Section I6.3 shall equal or
exceed the required longitudinal shear force to be transferred, V′
r, as determined in
accordance with Section I6.2.
2. Force Allocation
Force allocation shall be determined based upon the distribution of external force in
accordance with the following requirements:
User Note: Bearing strength provisions for externally applied forces are provided
in Section J8. For filled composite members, the term in Equation J8-2
may be taken equal to 2.0 due to confinement effects.
2a. External Force Applied to Steel Section
When the entire external forceis applied directly to the steel section, the force
required to be transferred to the concrete, V ′
r, shall be determined as follows:
V′
r=Pr(1 ≤F yAs/Pno) (I6-1)
where
P
no=nominal axial compressive strength without consideration of length
effects, determined by Equation I2-4 for encased composite members,
and Equation I2-9a for filled composite members, kips (N)
P
r=required external force applied to the composite member, kips (N)
2b. External Force Applied to Concrete
When the entire external force is applied directly to the concrete encasement or con-
crete fill, the force required to be transferred to the steel, V′
r, shall be determined as
follows:
V′
r=Pr(FyAs/Pno) (I6-2)
where
P
no= nominal axial compressive strength without consideration of length effects,
determined by Equation I2-4 for encased composite members, and Equation
I2-9a for filled composite members, kips (N)
P
r= required external force applied to the composite member, kips (N)
2c. External Force Applied Concurrently to Steel and Concrete
When the external force is applied concurrently to the steel section and concrete
encasement or concrete fill, V′
rshall be determined as the force required to establish
equilibrium of the cross section.
16.1–94 LOAD TRANSFER [Sect. I6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AA21
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 94

Sect. I6.] LOAD TRANSFER 16.1–95
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note: The Commentary provides an acceptable method of determining the
longitudinal shear force required for equilibrium of the cross section.
3. Force Transfer Mechanisms
The nominal strength, R n, of the force transfer mechanisms of direct bond interac-
tion, shear connection, and direct bearingshall be determined in accordance with this
section. Use of the force transfer mechanism providing the largest nominal strength
is permitted. Force transfer mechanisms shall not be superimposed.
The force transfer mechanism of direct bond interaction shall not be used for encased
composite members.
3a. Direct Bearing
Where force is transferred in an encased or filled composite member by direct bear-
ingfrom internal bearing mechanisms, the available bearing strengthof the concrete
for the limit stateof concrete crushingshall be determined as follows:
R
n=1.7f′ cA1 (I6-3)
φ
B= 0.65 (LRFD)Ω B=2.31 (ASD)
where
A
1=loaded area of concrete, in.
2
(mm
2
)
User Note: An example of force transfer via an internal bearing mechanism is the
use of internal steel plates within a filled composite member.
3b. Shear Connection
Where force is transferred in an encased or filled composite memberby shear con-
nection, the available shear strengthof steel headed stud or steel channel anchors
shall be determined as follows:
R
c=ΣQ cv (I6-4)
where
ΣQ
cv=sum of available shear strengths, φQ nvor Qnv/Ωas appropriate, of steel
headed stud or steel channel anchors, determined in accordance with
Section I8.3a or Section I8.3d, respectively, placed within the load intro-
duction lengthas defined in Section I6.4, kips (N)
3c. Direct Bond Interaction
Where force is transferred in a filled composite memberby direct bond interaction,
the available bond strengthbetween the steel and concrete shall be determined as
follows:
φ=0.45 (LRFD) Ω=3.33 (ASD)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 95

(a) For rectangular steel sections filled with concrete:
R
n=B
2
CinFin (I6-5)
(b) For round steel sections filled with concrete:
R
n=0.25πD
2
CinFin (I6-6)
where
C
in=2 if the filled composite member extends to one side of the point of force
transfer
=4 if the filled composite member extends on both sides of the point of force
transfer
R
n=nominal bond strength, kips (N)
F
in=nominal bond stress= 0.06 ksi (0.40 MPa)
B=overall width of rectangular steel section along face transferring load, in.
(mm)
D=outside diameter of round HSS, in. (mm)
4. Detailing Requirements
4a. Encased Composite Members
Steel anchorsutilized to transfer longitudinal shear shall be distributed within the
load introduction length, which shall not exceed a distance of two times the mini-
mum transverse dimension of the encased composite member above and below the
loadtransfer region. Anchors utilized to transfer longitudinal shear shall be placed
on at least two faces of the steel shape in a generally symmetric configuration about
the steel shape axes.
Steel anchor spacing, both within and outside of the load introduction length, shall
conform to Section I8.3e.
4b. Filled Composite Members
Where required, steel anchors transferring the required longitudinal shear force shall
be distributed within the load introduction length, which shall not exceed a distance
of two times the minimum transverse dimension of a rectangular steel member or
two times the diameter of a round steel member both above and below the loadtrans-
fer region. Steel anchor spacing within the load introduction length shall conform to
Section I8.3e.
I7. COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS
Compositeslab diaphragms and collector beamsshall be designed and detailed to
transfer loads between the diaphragm, the diaphragm’s boundary members and col-
lector elements, and elements of the lateral force resisting system.
User Note: Design guidelines for composite diaphragms and collector beams can
be found in the Commentary.
16.1–96 LOAD TRANSFER [Sect. I6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 96

Sect. I8.] STEEL ANCHORS 16.1–97
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I8. STEEL ANCHORS
1. General
The diameter of a steel headed stud anchor shall not be greater than 2.5 times the
thickness of the base metal to which it is welded, unless it is welded to a flange
directly over a web.
Section I8.2 applies to a compositeflexural member where steel anchors are embed-
ded in a solid concrete slab or in a slab cast on formed steel deck. Section I8.3 applies
to all other cases.
2. Steel Anchors in Composite Beams
The length of steel headed stud anchors shall not be less than four stud diameters
from the base of the steel headed stud anchor to the top of the stud head after instal-
lation.
2a. Strength of Steel Headed Stud Anchors
The nominal shear strengthof one steel headed stud anchor embedded in a solid con-
crete slab or in a composite slab with decking shall be determined as follows:
(I8-1)
where
A
sa=cross-sectional area of steel headed stud anchor, in.
2
(mm
2
)
E
c=modulus of elasticity of concrete
F
u=specified minimum tensile strengthof a steel headed stud anchor,
ksi (MPa)
R
g=1.0 for:
(a) one steel headed stud anchor welded in a steel deck rib with the deck
oriented perpendicular to the steel shape;
(b) any number of steel headed stud anchors welded in a row directly to
the steel shape;
(c) any number of steel headed stud anchors welded in a row through
steel deck with the deck oriented parallel to the steel shape and the
ratio of the average rib widthto rib depth ≥1.5
=0.85 for:
(a) two steel headed stud anchors welded in a steel deck rib with the deck
oriented perpendicular to the steel shape;
(b) one steel headed stud anchor welded through steel deck with the deck
oriented parallel to the steel shape and the ratio of the average rib
width to rib depth <1.5
=0.7 for three or more steel headed stud anchors welded in a steel deck rib
with the deck oriented perpendicular to the steel shape
QAfERRAFnsaccgpsau= ′≤05.
= ′′ ( )wf wfcc cc
15 15 0 043
..
, ksi . , MPa
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 97

Condition R g Rp
No decking 1.0 0.75
Decking oriented parallel to the
steel shape
1.0 0.75
0.85
**
0.75
Decking oriented perpendicular to
the steel shape
Number of steel headed stud anchors
occupying the same decking rib
1 1.0 0.6
+
2 0.85 0.6
+
3 or more 0.7 0.6
+
Rp=0.75 for:
(a) steel headed stud anchors welded directly to the steel shape; (b) steel headed stud anchors welded in a composite slab with the deck
oriented perpendicular to the beamand e
mid-ht≥2 in. (50 mm);
(c) steel headed stud anchors welded through steel deck, or steel sheet
used as girder fillermaterial, and embedded in a composite slab with
the deck oriented parallel to the beam
=0.6 for steel headed stud anchors welded in a composite slab with deck oriented perpendicular to the beam and e
mid-ht<2 in. (50 mm)
e
mid-ht=distance from the edge of steel headed stud anchor shank to the steel deck web, measured at mid-height of the deck rib, and in the load bearing
direction of the steel headed stud anchor (in other words, in the direction of maximum moment for a simply supported beam), in. (mm)
16.1–98 STEEL ANCHORS [Sect. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
w
hr
r
≥15.
w
hr
r
<15.
hr=nominal rib height, in. (mm)
w
r=average width of concrete rib or haunch (as defined in Section I3.2c), in.
(mm)
**
for a single steel headed stud anchor
+
this value may be increased to 0.75 when e mid-ht≥2 in. (51 mm)
User Note:The table below presents values for R
gand R pfor several cases.
Capacities for steel headed stud anchors can be found in the Manual.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 98

Sect. I8.] STEEL ANCHORS 16.1–99
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2b. Strength of Steel Channel Anchors
The nominal shear strength of one hot-rolled channel anchor embedded in a solid
concrete slab shall be determined as follows:
(I8-2)
where
l
a= length of channel anchor, in. (mm)
t
f= thickness of flange of channel anchor, in. (mm)
t
w= thickness of channel anchor web, in. (mm)
The strength of the channel anchor shall be developed by welding the channel to the
beamflange for a force equal to Q
n, considering eccentricity on the anchor.
2c. Required Number of Steel Anchors
The number of anchors required between the section of maximum bending moment,
positive or negative, and the adjacent section of zero moment shall be equal to the
horizontal shearas determined in Sections I3.2d(1) and I3.2d(2) divided by the nom-
inal shear strength of one steel anchor as determined from Section I8.2a or Section
I8.2b. The number of steel anchors required between any concentrated loadand the
nearest point of zero moment shall be sufficient to develop the maximum moment
required at the concentrated load point.
2d. Detailing Requirements
Steel anchors required on each side of the point of maximum bending moment, pos-
itive or negative, shall be distributed uniformly between that point and the adjacent
points of zero moment, unless specified otherwise on the contract documents.
Steel anchors shall have at least 1 in. (25 mm) of lateral concrete cover in the direc-
tion perpendicular to the shear force, except for anchors installed in the ribs of
formed steel decks. The minimum distance from the center of an anchor to a free
edge in the direction of the shear force shall be 8 in. (203 mm) if normal weight con-
crete is used and 10 in. (250 mm) if lightweight concrete is used. The provisions of
ACI 318, Appendix D are permitted to be used in lieu of these values.
The minimum center-to-center spacing of steel headed stud anchors shall be six
diameters along the longitudinal axis of the supporting composite beamand four
diameters transverse to the longitudinal axis of the supporting composite beam,
except that within the ribs of formed steel decks oriented perpendicular to the steel
beam the minimum center-to-center spacing shall be four diameters in any direction.
The maximum center-to-center spacing of steel anchors shall not exceed eight times
the total slab thickness or 36 in. (900 mm).
QttlfEnfwacc=+ ′03 05.( . )
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 99

16.1–100 STEEL ANCHORS [Sect. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Steel Anchors in Composite Components
This section shall apply to the design of cast-in-place steel headed stud anchors and
steel channel anchors in composite components.
The provisions of the applicable building code or ACI 318, Appendix D may be used
in lieu of the provisions in this section.
User Note: The steel headed stud anchor strength provisions in this section are
applicable to anchors located primarily in the loadtransfer (connection) region of
composite columnsand beam-columns, concrete-encased and filled composite
beams, composite coupling beams, and composite walls, where the steel and con-
crete are working compositely within a member. They are not intended for hybrid
construction where the steel and concrete are not working compositely, such as
with embed plates.
Section I8.2 specifies the strength of steel anchors embedded in a solid con-
crete slab or in a concrete slab with formed steel deck in a composite beam.
Limit statesfor the steel shank of the anchor and for concrete breakout in shear
are covered directly in this Section. Additionally, the spacing and dimensional
limitations provided in these provisions preclude the limit states of concrete pry-
out for anchors loaded in shear and concrete breakout for anchors loaded in
tension as defined by ACI 318, Appendix D.
For normal weight concrete: Steel headed stud anchors subjected to shear only shall
not be less than five stud diameters in length from the base of the steel headed stud
to the top of the stud head after installation. Steel headed stud anchors subjected to
tension or interaction of shear and tension shall not be less than eight stud diameters
in length from the base of the stud to the top of the stud head after installation.
For lightweight concrete: Steel headed stud anchors subjected to shear only shall not
be less than seven stud diameters in length from the base of the steel headed stud to
the top of the stud head after installation. Steel headed stud anchors subjected to ten-
sion shall not be less than ten stud diameters in length from the base of the stud to
the top of the stud head after installation. The nominal strengthof steel headed stud
anchors subjected to interaction of shear and tension for lightweight concrete shall
be determined as stipulated by the applicable building code or ACI 318 Appendix D.
Steel headed stud anchors subjected to tension or interaction of shear and tension
shall have a diameter of the head greater than or equal to 1.6 times the diameter of
the shank.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 100

Sect. I8.] STEEL ANCHORS 16.1–101
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Loading Normal Weight Lightweight
Condition Concrete Concrete
Shear h/d ≥5 h/d ≥7
Tension h/d ≥8 h/d ≥10
Shear and Tension h/d≥8N /A

h/d=ratio of steel headed stud anchor shank length to the top of the stud head,
to shank diameter

Refer to ACI 318, Appendix D for the calculation of interaction effects of
anchors embedded in lightweight concrete.
3a. Shear Strength of Steel Headed Stud Anchors in Composite Components
Where concrete breakout strength in shear is not an applicable limit state, the design
shear strength, φ
vQnv,and allowable shear strength, Qnv/Ωv,of one steel headed
stud anchor shall be determined as follows:
Q
nv=FuAsa (I8-3)
φ
v=0.65 (LRFD) Ω v=2.31 (ASD)
where
Q
nv=nominal shear strength of steel headed stud anchor, kips (N)
A
sa=cross-sectional area of steel headed stud anchor, in.
2
(mm
2
)
F
u=specified minimum tensile strengthof a steel headed stud anchor, ksi (MPa)
Where concrete breakout strength in shear is an applicable limit state, the available
shear strengthof one steel headed stud anchor shall be determined by one of the fol-
lowing:
(1) Where anchor reinforcement is developed in accordance with Chapter 12 of ACI
318 on both sides of the concrete breakout surfacefor the steel headed stud
anchor, the minimum of the steel nominal shear strength from Equation I8-3 and
the nominal strengthof the anchor reinforcement shall be used for the nominal
shear strength, Q
nv, of the steel headed stud anchor.
(2) As stipulated by the applicable building codeor ACI 318, Appendix D.
User Note: The following table presents values of minimum steel headed stud
anchor h/dratios for each condition covered in the Specification:
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 101

User Note:If concrete breakout strength in shear is an applicable limit state (for
example, where the breakout prism is not restrained by an adjacent steel plate,
flange or web), appropriate anchor reinforcement is required for the provisions of
this Section to be used. Alternatively, the provisions of the applicable building
code or ACI 318, Appendix D may be used.
3b. Tensile Strength of Steel Headed Stud Anchors in
Composite Components
Where the distance from the center of an anchor to a free edge of concrete in the
direction perpendicular to the height of the steel headed stud anchor is greater than
or equal to 1.5 times the height of the steel headed stud anchor measured to the top
of the stud head, and where the center-to-center spacing of steel headed stud anchors
is greater than or equal to three times the height of the steel headed stud anchor meas-
ured to the top of the stud head, the available tensile strengthof one steel headed stud
anchor shall be determined as follows:
Q
nt=FuAsa (I8-4)
φ
t=0.75 (LRFD) Ω t=2.00 (ASD)
where
Q
nt=nominal tensile strengthof steel headed stud anchor, kips (N)
Where the distance from the center of an anchor to a free edge of concrete in the
direction perpendicular to the height of the steel headed stud anchor is less than 1.5
times the height of the steel headed stud anchor measured to the top of the stud head,
or where the center-to-center spacing of steel headed stud anchors is less than three
times the height of the steel headed stud anchor measured to the top of the stud head,
the nominal tensile strength of one steel headed stud anchor shall be determined by
one of the following:
(a) Where anchor reinforcement is developed in accordance with Chapter 12 of ACI
318 on both sides of the concrete breakout surfacefor the steel headed stud
anchor, the minimum of the steel nominal tensile strength from Equation I8-4
and the nominal strength of the anchor reinforcement shall be used for the nom-
inal tensile strength, Q
nt, of the steel headed stud anchor.
(b) As stipulated by the applicable building codeor ACI 318, Appendix D.
User Note:Supplemental confining reinforcement is recommended around the
anchors for steel headed stud anchors subjected to tension or interaction of shear
and tension to avoid edge effects or effects from closely spaced anchors. See the
Commentary and ACI 318, Section D5.2.9 for guidelines.
3c. Strength of Steel Headed Stud Anchors for Interaction of Shear and
Tension in Composite Components
Where concrete breakout strength in shear is not a governing limit state, and where
the distance from the center of an anchor to a free edge of concrete in the direction
16.1–102 STEEL ANCHORS [Sect. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 102

perpendicular to the height of the steel headed stud anchor is greater than or equal to
1.5 times the height of the steel headed stud anchor measured to the top of the stud
head, and where the center-to-center spacing of steel headed stud anchors is greater
than or equal to three times the height of the steel headed stud anchor measured to
the top of the stud head, the nominal strengthfor interaction of shear and tension of
one steel headed stud anchor shall be determined as follows:
(I8-5)
where
Q
ct=available tensile strength, kips (N)
Q
rt=required tensile strength, kips (N)
Q
cv=available shear strength, kips (N)
Q
rv=required shear strength, kips (N)
For design in accordance with Section B3.3 (LRFD):
Q
rt=required tensile strength using LRFD load combinations , kips (N)
Q
ct=φtQnt=design tensile strength, determined in accordance with Section
I8.3b, kips (N)
Q
rv=required shear strength using LRFD load combinations, kips (N)
Q
cv=φvQnv=design shear strength, determined in accordance with Section
I8.3a, kips (N)
φ
t=resistance factorfor tension = 0.75
φ
v=resistance factor for shear = 0.65
For design in accordance with Section B3.4 (ASD):
Q
rt=required tensile strength using ASD load combinations , kips (N)
Q
ct== allowable tensile strength, determined in accordance with Section
I8.3b, kips (N)
Q
rv=required shear strength using ASD load combinations, kips (N)
Q
cv== allowable shear strength, determined in accordance with Section
I8.3a, kips (N)
Ω
t=safety factorfor tension = 2.00
Ω
v=safety factor for shear =2.31
Where concrete breakout strength in shear is a governing limit state, or where the dis-
tance from the center of an anchor to a free edge of concrete in the direction
perpendicular to the height of the steel headed stud anchor is less than 1.5 times the
height of the steel headed stud anchor measured to the top of the stud head, or where
the center-to-center spacing of steel headed stud anchors is less than three times the
height of the steel headed stud anchor measured to the top of the stud head, the nom-
inal strength for interaction of shear and tension of one steel headed stud anchor shall
be determined by one of the following:
(a) Where anchor reinforcement is developed in accordance with Chapter 12 of ACI
318 on both sides of the concrete breakout surfacefor the steel headed stud
Sect. I8.] STEEL ANCHORS 16.1–103
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Q
Q
Q
Qrt
ct
rv
cv⎛





+















53 53
10
//
.
Qnt
t
Ω
Qnv
v
Ω
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 103

anchor, the minimum of the steel nominal shear strength from Equation I8-3 and
the nominal strength of the anchor reinforcement shall be used for the nominal
shear strength, Q
nv, of the steel headed stud anchor, and the minimum of the steel
nominal tensile strength from Equation I8-4 and the nominal strength of the
anchor reinforcement shall be used for the nominal tensile strength, Q
nt, of the
steel headed stud anchor for use in Equation I8-5.
(b) As stipulated by the applicable building code or ACI 318, Appendix D.
3d. Shear Strength of Steel Channel Anchors in Composite Components
The available shear strength of steel channel anchors shall be based on the provisions
of Section I8.2b with the resistance factor and safety factor as specified below.
φ
v=0.75 (LRFD) Ω v=2.00 (ASD)
3e. Detailing Requirements in Composite Components
Steel anchors shall have at least 1 in. (25 mm) of lateral clear concrete cover. The
minimum center-to-center spacing of steel headed stud anchors shall be four diame-
ters in any direction. The maximum center-to-center spacing of steel headed stud
anchors shall not exceed 32 times the shank diameter. The maximum center-to-cen-
ter spacing of steel channel anchors shall be 24 in. (600 mm).
User Note:Detailing requirements provided in this section are absolute limits.
See Sections I8.3a, I8.3b and I8.3c for additional limitations required to preclude
edge and group effect considerations.
I9. SPECIAL CASES
When compositeconstruction does not conform to the requirements of Section I1
through Section I8, the strength of steel anchorsand details of construction shall be
established by testing.
16.1–104 STEEL ANCHORS [Sect. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 104

16.1–105
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER J
DESIGN OF CONNECTIONS
This chapter addresses connecting elements, connectors and the affected elements of con-
nected members not subject to fatigue loads.
The chapter is organized as follows:
J1. General Provisions
J2. Welds
J3. Bolts and Threaded Parts
J4. Affected Elements of Members and Connecting Elements
J5. Fillers
J6. Splices
J7. Bearing Strength
J8. Column Bases and Bearing on Concrete
J9. Anchor Rods and Embedments
J10. Flanges and Webs with Concentrated Forces
User Note:For cases not included in this chapter, the following sections apply:
• Chapter K Design of HSS and Box Member Connections
• Appendix 3 Design for Fatigue
J1. GENERAL PROVISIONS
1. Design Basis
The design strength, φR n, and the allowable strength R n/Ω, of connections shall be
determined in accordance with the provisions of this chapter and the provisions of
Chapter B.
The required strengthof the connections shall be determined by structural analysis
for the specified design loads, consistent with the type of construction specified, or
shall be a proportion of the required strength of the connected members when so
specified herein.
Where the gravity axes of intersecting axially loaded members do not intersect at one
point, the effects of eccentricity shall be considered.
2. Simple Connections
Simple connectionsof beams, girders and trusses shall be designed as flexible and
are permitted to be proportioned for the reaction shears only, except as otherwise
indicated in the design documents. Flexible beam connections shall accommodate
end rotations of simple beams. Some inelastic but self-limiting deformation in the
connection is permitted to accommodate the end rotation of a simple beam.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 105

16–106 GENERAL PROVISIONS [Sect. J1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Moment Connections
End connections of restrained beams, girders and trusses shall be designed for the com-
bined effect of forces resulting from moment and shear induced by the rigidity of the
connections. Response criteria for moment connections are provided in Section B3.6b.
User Note:See Chapter C and Appendix 7 for analysis requirements to establish
the required strengthfor the design of connections.
4. Compression Members With Bearing Joints
Compression members relying on bearing for loadtransfer shall meet the following
requirements:
(1) When columnsbear on bearing plates or are finished to bear at splices, there shall
be sufficient connectors to hold all parts securely in place.
(2) When compression members other than columns are finished to bear, the splice
material and its connectors shall be arranged to hold all parts in line and their
required strength shall be the lesser of:
(i) An axial tensile force of 50% of the required compressive strength of the
member; or
(ii) The moment and shear resulting from a transverse load equal to 2% of the
required compressive strength of the member. The transverse load shall be
applied at the location of the splice exclusive of other loads that act on the
member. The member shall be taken as pinned for the determination of the
shears and moments at the splice.
User Note:All compression joints should also be proportioned to resist any ten-
sion developed by theload combinations stipulated in Section B2.
5. Splices in Heavy Sections
When tensile forces due to applied tension or flexure are to be transmitted through
splicesin heavy sections, as defined in Sections A3.1c and A3.1d, by complete-joint-
penetration groove (CJP) welds, the following provisions apply: (1) material
notch-toughness requirements as given in Sections A3.1c and A3.1d; (2) weld access
hole details as given in Section J1.6; (3) filler metalrequirements as given in Section
J2.6; and (4) thermal cut surface preparation and inspection requirements as given in
Section M2.2. The foregoing provision is not applicable to splices of elements of
built-up shapesthat are welded prior to assembling the shape.
User Note:CJP groove welded splices of heavy sections can exhibit detrimental
effects of weld shrinkage. Members that are sized for compression that are also
subject to tensile forces may be less susceptible to damage from shrinkage if they
are spliced using partial-joint-penetration PJP groove welds on the flanges and fil-
let-welded web plates, or using bolts for some or all of the splice.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 106

Sect. J1.] GENERAL PROVISIONS 16.1–107
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6. Weld Access Holes
All weld access holes required to facilitate welding operations shall be detailed to
provide room for weld backing as needed. The access hole shall have a length from
the toe of the weld preparation not less than 1
1
/2times the thickness of the material
in which the hole is made, nor less than 1
1
/2in. (38 mm). The access hole shall have
a height not less than the thickness of the material with the access hole, nor less than
3
/4in. (19 mm), nor does it need to exceed 2 in. (50 mm).
For sections that are rolled or welded prior to cutting, the edge of the web shall be
sloped or curved from the surface of the flange to the reentrant surface of the access
hole. In hot-rolled shapes, and built-up shapes with CJP groove welds that join the
web-to-flange, weld access holes shall be free of notches and sharp reentrant corners.
No arc of the weld access hole shall have a radius less than
3
/8in. (10 mm).
In built-up shapes with fillet or partial-joint-penetration groove welds that join the
web-to-flange, weld access holes shall be free of notches and sharp reentrant cor-
ners. The access hole shall be permitted to terminate perpendicular to the flange,
providing the weld is terminated at least a distance equal to the weld size away from
the access hole.
For heavy sections as defined in Sections A3.1c and A3.1d, the thermally cutsurfaces
of weld access holes shall be ground to bright metal and inspected by either magnetic
particle or dye penetrant methods prior to deposition of splicewelds. If the curved
transition portion of weld access holes is formed by predrilled or sawed holes, that
portion of the access hole need not be ground. Weld access holes in other shapes need
not be ground nor inspected by dye penetrant or magnetic particle methods.
7. Placement of Welds and Bolts
Groups of welds or bolts at the ends of any member which transmit axial force into
that member shall be sized so that the center of gravity of the group coincides with
the center of gravity of the member, unless provision is made for the eccentricity. The
foregoing provision is not applicable to end connections of single angle, double
angle and similar members.
8. Bolts in Combination With Welds
Bolts shall not be considered as sharing the loadin combination with welds, except
that shear connections with any grade of bolts permitted by Section A3.3, installed
in standard holes or short slots transverse to the direction of the load, are permitted
to be considered to share the load with longitudinally loaded fillet welds. In such con-
nections the available strengthof the bolts shall not be taken as greater than 50% of
the available strength of bearing-type bolts in the connection.
In making welded alterations to structures, existing rivets and high-strength bolts
tightened to the requirements for slip-critical connections are permitted to be utilized
for carrying loads present at the time of alteration and the welding need only provide
the additional required strength.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 107

9. High-Strength Bolts in Combination With Rivets
In both new work and alterations, in connections designed as slip-critical connec-
tionsin accordance with the provisions of Section J3, high-strength bolts are
permitted to be considered as sharing the load with existing rivets.
10. Limitations on Bolted and Welded Connections
Joints with pretensioned bolts or welds shall be used for the following connections:
(1)Column splicesin all multi-story structures over 125 ft (38 m) in height
(2) Connections of all beams and girdersto columns and any other beams and gird-
ers on which the bracing of columns is dependent in structures over 125 ft (38
m) in height
(3) In all structures carrying cranes of over 5 ton (50 kN) capacity: roof truss splices
and connections of trusses to columns; column splices; column bracing; knee
braces; and crane supports
(4) Connections for the support of machinery and other live loadsthat produce
impact or reversal of load
Snug-tightened jointsor joints with ASTM A307 bolts shall be permitted except
where otherwise specified.
J2. WELDS
All provisions of AWS D1.1/D1.1M apply under this Specification, with the excep-
tion that the provisions of the listed AISC Specification Sections apply under this
Specification in lieu of the cited AWS provisions as follows:
(1) Section J1.6 in lieu of AWS D1.1/D1.1M, Section 5.17.1
(2) Section J2.2a in lieu of AWS D1.1/D1.1M, Section 2.4.2.10
(3) Table J2.2 in lieu of AWS D1.1/D1.1M, Table 2.1
(4) Table J2.5 in lieu of AWS D1.1/D1.1M, Table 2.3
(5) Appendix 3, Table A-3.1 in lieu of AWS D1.1/D1.1M, Table 2.5
(6) Section B3.11 and Appendix 3 in lieu of AWS D1.1/D1.1M, Section 2, Part C
(7) Section M2.2 in lieu of AWS D1.1/D1.1M, Sections 5.15.4.3 and 5.15.4.4
1. Groove Welds
1a. Effective Area
The effective area of groove weldsshall be considered as the length of the weld times
the effective throat.
The effective throat of a complete-joint-penetration (CJP) groove weldshall be the
thickness of the thinner part joined.
The effective throat of a partial-joint-penetration (PJP) groove weldshall be as
shown in Table J2.1.
16.1–108 GENERAL PROVISIONS [Sect. J1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:45 AM Page 108

Sect. J2.] WELDS 16.1–109
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE J2.1
Effective Throat of
Partial-Joint-Penetration Groove Welds
Welding Position
F (flat),
H (horizontal), Groove Type
V (vertical), (AWS D1.1/D1.1M,
Welding Process OH (overhead) Figure 3.3) Effective Throat
Shielded metal arc (SMAW) J or U groove
Gas metal arc (GMAW) All
Flux cored arc (FCAW) 60° V
J or U groove
Submerged arc (SAW) F
60°bevel or V
Gas metal arc (GMAW)
45°bevel
Flux cored arc (FCAW)
F, H
Shielded metal arc (SMAW) All
45°bevel
Gas metal arc (GMAW)
Flux cored arc (FCAW)
V, OH
depth of groove
depth of groove
depth of groove
minus
1
/8in.
(3 mm)
User Note:The effective throat of a partial-joint-penetration groove weld
is dependent on the process used and the weld position. The design drawings
should either indicate the effective throat required or the weld strength required,
and the fabricator should detail the jointbased on the weld process and position
to be used to weld the joint.
The effective weld throat for flare groove welds when filled flush to the surface of a
round bar or a 90°bend in a formed section or rectangular HSS, shall be as shown in
Table J2.2, unless other effective throats are demonstrated by tests. The effective
throat of flare groove welds filled less than flush shall be as shown in Table J2.2, less
the greatest perpendicular dimension measured from a line flush to the base metal
surface to the weld surface.
Larger effective throats than those in Table J2.2 are permitted for a given welding
procedure specification (WPS), provided the fabricator can establish by qualification
the consistent production of such larger effective throat. Qualification shall consist
of sectioning the weld normal to its axis, at mid-length and terminal ends. Such sec-
tioning shall be made on a number of combinations of material sizes representative
of the range to be used in the fabrication.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 109

16.1–110 WELDS [Sect. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE J2.2
Effective Weld Throats of Flare
Groove Welds
Welding Process Flare Bevel Groove
[a]
Flare V-Groove
GMAW and FCAW-G
5
/8R
3
/4R
SMAW and FCAW-S
5
/16R
5
/8R
SAW
5
/16R
1
/2R
[a]
For flare bevel groove with R<3/8 in. (10 mm), use only reinforcing fillet weld on filled flush joint.
General note:
R=radius of joint surface (can be assumed to be 2tfor HSS), in. (mm)
TABLE J2.3
Minimum Effective Throat of
Partial-Joint-Penetration Groove Welds
Material Thickness of Minimum Effective
Thinner Part Joined, in. (mm) Throat,
[a]
in. (mm)
To
1
/4(6) inclusive
1
/8(3)
Over
1
/4(6) to
1
/2(13)
3
/16(5)
Over
1
/2(13) to
3
/4(19)
1
/4(6)
Over
3
/4(19) to 1
1
/2(38)
5
/16(8)
Over 1
1
/2(38) to 2
1
/4(57)
3
/8(10)
Over 2
1
/4(57) to 6 (150)
1
/2(13)
Over 6 (150)
5
/8(16)
[a]
See Table J2.1.
1b. Limitations
The minimum effective throat of a partial-joint-penetration groove weld shall not be
less than the size required to transmit calculated forces nor the size shown in Table
J2.3. Minimum weld size is determined by the thinner of the two parts joined.
2. Fillet Welds
2a. Effective Area
The effective area of a fillet weldshall be the effective length multiplied by the
effective throat. The effective throat of a fillet weld shall be the shortest distance
from the root to the face of the diagrammatic weld. An increase in effective throat
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:47 AM Page 110

Sect. J2.] WELDS 16.1–111
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is permitted if consistent penetration beyond the root of the diagrammatic weld is
demonstrated by tests using the production process and procedure variables.
For fillet welds in holes and slots, the effective length shall be the length of the cen-
terline of the weld along the center of the plane through the throat. In the case of
overlapping fillets, the effective area shall not exceed the nominal cross-sectional
area of the hole or slot, in the plane of the faying surface.
2b. Limitations
The minimum size of fillet welds shall be not less than the size required to transmit
calculated forces, nor the size as shown in Table J2.4. These provisions do not apply
to fillet weld reinforcementsof partial- or complete-joint-penetration groove welds.
The maximum size offillet weldsof connected parts shall be:
(a) Along edges of material less than
1
/4-in. (6 mm) thick; not greater than the thick-
ness of the material.
(b) Along edges of material
1
/4in. (6 mm) or more in thickness; not greater than the
thickness of the material minus
1
/16in. (2 mm), unless the weld is especially des-
ignated on the drawings to be built out to obtain full-throat thickness. In the
as-welded condition, the distance between the edge of the base metal and the toe
of the weld is permitted to be less than
1
/16in. (2 mm) provided the weld size is
clearly verifiable.
The minimum length of fillet welds designed on the basis of strength shall be not less
than four times the nominal weld size, or else the effective size of the weld shall be
considered not to exceed one quarter of its length. If longitudinal fillet welds are used
alone in end connections of flat-bar tension members, the length of each fillet weld
shall be not less than the perpendicular distance between them. For the effect of lon-
gitudinal fillet weld length in end connections upon the effective area of the
connected member, see Section D3.
TABLE J2.4
Minimum Size of Fillet Welds
Material Thickness of Minimum Size of
Thinner Part Joined, in. (mm) Fillet Weld,
[a]
in. (mm)
To
1
/4(6) inclusive
1
/8(3)
Over
1
/4(6) to
1
/2(13)
3
/16(5)
Over
1
/2(13) to
3
/4(19)
1
/4(6)
Over
3
/4(19)
5
/16(8)
[a]
Leg dimension of fillet welds. Single pass welds must be used.
Note: See Section J2.2b for maximum size of fillet welds.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 111

16.1–112 WELDS [Sect. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For end-loaded fillet welds with a length up to 100 times the weld size, it is permit-
ted to take the effective length equal to the actual length. When the length of the
end-loaded fillet weld exceeds 100 times the weld size, the effective length shall be
determined by multiplying the actual length by the reduction factor, β, determined as
follows:
β=1.2 β0.002(l /w) ≤1.0 (J2-1)
where
l=actual length of end-loaded weld, in. (mm)
w=size of weld leg, in. (mm)
When the length of the weld exceeds 300 times the leg size, w, the effective length
shall be taken as 180w.
Intermittent fillet welds are permitted to be used to transfer calculated stressacross
a jointor faying surfacesand to join components of built-up members. The length of
any segment of intermittent fillet welding shall be not less than four times the weld
size, with a minimum of 1
1
/2in. (38 mm).
Inlap joints, the minimum amount of lap shall be five times the thickness of the thin-
ner part joined, but not less than 1 in. (25 mm). Lap joints joining plates or bars
subjected to axial stress that utilize transverse fillet welds only shall be fillet welded
along the end of both lapped parts, except where the deflection of the lapped parts is
sufficiently restrained to prevent opening of the joint under maximum loading.
Fillet weld terminations are permitted to be stopped short or extend to the ends or
sides of parts or be boxed except as limited by the following:
(1) For overlapping elements of members in which one connected part extends
beyond an edge of another connected part that is subject to calculated tensile
stress, fillet welds shall terminate not less than the size of the weld from that
edge.
(2) For connectionswhere flexibility of the outstanding elements is required, when
end returnsare used the length of the return shall not exceed four times the nom-
inal size of the weld nor half the width of the part.
(3) Fillet welds joining transverse stiffeners to plate girderwebs
3
/4-in. (19 mm)
thick or less shall end not less than four times nor more than six times the thick-
ness of the web from the web toe of the web-to-flange welds, except where the
ends of stiffeners are welded to the flange.
(4) Fillet welds that occur on opposite sides of a common plane shall be interrupted
at the corner common to both welds.
User Note:Fillet weld terminations should be located approximately one weld
size from the edge of the connection to minimize notches in the base metal. Fillet
welds terminated at the end of the joint, other than those connecting stiffeners to
girder webs, are not a cause for correction.
Fillet welds in holes or slots are permitted to be used to transmit shear and resist
loadsperpendicular to the faying surface in lap joints or to prevent the bucklingor
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:47 AM Page 112

Sect. J2.] WELDS 16.1–113
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
separation of lapped parts and to join components of built-up members. Such fillet
welds may overlap, subject to the provisions of Section J2. Fillet welds in holes or
slots are not to be considered plug or slot welds.
3. Plug and Slot Welds
3a. Effective Area
The effective shearing area of plug and slot weldsshall be considered as the nominal
cross-sectional area of the hole or slot in the plane of the faying surface.
3b. Limitations
Plug or slot welds are permitted to be used to transmit shear in lap joints or to pre-
vent bucklingor separation of lapped parts and to join component parts of built-up
members.
The diameter of the holes for a plug weld shall not be less than the thickness of the
part containing it plus
5
/16in. (8 mm), rounded to the next larger odd
1
/16in. (even
mm), nor greater than the minimum diameter plus
1
/8in. (3 mm) or 2
1
/4times the
thickness of the weld.
The minimum center-to-center spacing of plug welds shall be four times the diame-
ter of the hole.
The length of slot for a slot weld shall not exceed 10 times the thickness of the weld.
The width of the slot shall be not less than the thickness of the part containing it plus
5
/16in. (8 mm) rounded to the next larger odd
1
/16in. (even mm), nor shall it be larger
than 2
1
/4times the thickness of the weld. The ends of the slot shall be semicircular
or shall have the corners rounded to a radius of not less than the thickness of the part
containing it, except those ends which extend to the edge of the part.
The minimum spacing of lines of slot welds in a direction transverse to their length
shall be four times the width of the slot. The minimum center-to-center spacing in a
longitudinal direction on any line shall be two times the length of the slot.
The thickness of plug or slot welds in material
5
/8in. (16 mm) or less in thickness
shall be equal to the thickness of the material. In material over
5
/8-in. (16 mm) thick,
the thickness of the weld shall be at least one-half the thickness of the material but
not less than
5
/8in. (16 mm).
4. Strength
The design strength, φR nand the allowable strength, R n/Ω, of welded joints shall be
the lower value of the base material strength determined according to thelimit states
of tensile ruptureand shear ruptureand the weld metalstrength determined accord-
ing to the limit state of rupture as follows:
For the base metal
R
n=FnBMABM (J2-2)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 113

Nominal Effective
Stress Area
Load Type and (
FnBMor (ABMor Required Filler
Direction Relative Pertinent
Fnw) Awe) Metal Strength
to Weld Axis Metal φand Ωksi (MPa) in.
2
(mm
2
) Level
[a][b]
COMPLETE-JOINT-PENETRATION GROOVE WELDS
Matching filler metal shall
be used. For T- and
Tension corner joints with backing
Normal to weld axis left in place, notch tough
filler metal is required.
See Section J2.6.
Filler metal with a
strength level equal to
Compression
or one strength level
Normal to weld axis
less than matching
filler metal is permitted.
Tension or
Filler metal with a
compression
strength level equal to
Parallel to weld axis
or less than matching
filler metal is permitted.
Shear Strength of the joint is controlled Matching filler metal
by the base metal shall be used.
[c]
PARTIAL-JOINT-PENETRATION GROOVE WELDS INCLUDING FLARE V-GROOVE
AND FLARE BEVEL GROOVE WELDS
φ=0.75
Base
Ω=2.00
Fu See J4
φ=0.80
Weld
Ω=1.88
0.60
FEXXSee J2.1a
Compression
Column to base plate
and column splices
designed per
Section J1.4(1)
φ=0.90
Base
Ω=1.67
Fy See J4
φ=0.80
Weld
Ω=1.88
0.60
FEXXSee J2.1a
φ=0.90
Base
Ω=1.67
Fy See J4
φ=0.80
Weld
Ω=1.88
0.90
FEXXSee J2.1a
Base Governed by J4
φ=0.75
Weld
Ω=2.00
0.60
FEXXSee J2.1a
16.1–114 WELDS [Sect. J2.
Specification for Structural Steel Building, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE J2.5
Available Strength of Welded Joints,
ksi (MPa)
Tension
Normal to weld axis
Filler metal with a
strength level equal
to or less than
matching filler metal
is permitted.
Strength of the joint is controlled
by the base metal
Strength of the joint is controlled
by the base metal
Tension or compression in parts joined parallel
to a weld need not be considered in design
of welds joining the parts.
Compressive stress need not be considered
in design of welds joining the parts.
Compression
Connections of
members designed
to bear other than
columns as described
in Section J1.4(2)
Compression
Connections not
finished-to-bear
Tension or
compression
Parallel to weld axis
Tension or compression in parts joined parallel
to a weld need not be considered in design
of welds joining the parts.
Shear
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 114

Nominal Effective
Stress Area
Load Type and (
FnBMor (ABMor Required Filler
Direction Relative Pertinent
Fnw) Awe) Metal Strength
to Weld Axis Metal φand Ωksi (MPa) in.
2
(mm
2
) Level
[a][b]
FILLET WELDS INCLUDING FILLETS IN HOLES AND SLOTS AND SKEWED T–JOINTS
Base Governed by J4
φ=0.75
Weld
Ω=2.00
0.60
FEXX
[d]
See J2.2a
PLUG AND SLOT WELDS
Base Governed by J4
φ=0.75
Weld
Ω=2.00
0.60
FEXXSee J2.3a
Sect. J2.] WELDS 16.1–115
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shear
Shear
Parallel to faying
surface on the
effective area
Tension or
compression
Parallel to weld axis
TABLE J2.5 (continued)
Available Strength of Welded Joints,
ksi (MPa)
Filler metal with a
strength level equal
to or less than
matching filler metal
is permitted.
Filler metal with a
strength level equal
to or less than
matching filler metal
is permitted.
Tension or compression in parts joined parallel
to a weld need not be considered in design
of welds joining the parts.
[a]
For matching weld metal see AWS D1.1/D1.1M, Section 3.3.
[b]
Filler metal with a strength level one strength level greater than matching is permitted.
[c]
Filler metals with a strength level less than matching may be used for groove welds between the webs and
flanges of built-up sections transferring shear loads, or in applications where high restraint is a concern. In
these applications, the weld joint shall be detailed and the weld shall be designed using the thickness of
the material as the effective throat, where φ=0.80, Ω=1.88 and 0.60
FEXXis the nominal strength.
[d]
Alternatively, the provisions of Section J2.4(a) are permitted provided the deformation compatibility of the
various weld elements is considered. Sections J2.4(b) and (c) are special applications of Section J2.4(a)
that provide for deformation compatibility.
For the weld metal
R
n=FnwAwe (J2-3)
where
F
nBM= nominal stress of the base metal, ksi (MPa)
F
nw= nominal stress of the weld metal, ksi (MPa)
A
BM= cross-sectional area of the base metal, in.
2
(mm
2
)
A
we= effective area of the weld, in.
2
(mm
2
)
The values of φ, Ω, F
nBMand F nwand limitations thereon are given in Table J2.5.
Alternatively, for fillet weldsthe available strengthis permitted to be determined as
follows:
φ=0.75 (LRFD) Ω=2.00 (ASD)
(a) For a linear weld group with a uniform leg size, loaded through the center of
gravity
R
n=FnwAwe (J2-4)
where
F
nw=0.60F EXXφ1.0 +0.50 sin
1.5
θΩ (J2-5)
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:49 AM Page 115

16.1–116 WELDS [Sect. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
and
F
EXX=filler metalclassification strength, ksi (MPa)
θ= angle of loading measured from the weld longitudinal axis, degrees
User Note:A linear weld group is one in which all elements are in a line or are
parallel.
(b) For weld elements within a weld group that are analyzed using an instantaneous
center of rotation method, the components of the nominal strength, R
nxand R ny,
and thenominal moment capacity, M
n, are permitted to be determined as follows:
R
nx=∑F nwixAwei (J2-6a)
R
ny=∑FnwiyAwei (J2-6b)
M
n=∑λFnwiyAwei(xi)≤F nwixAwei(yi)μ (J2-7)
where
A
wei=effective area of weld throat of the ith weld element, in.
2
(mm
2
)
F
nwi=0.60F EXX 1.0 +0.50sin
1.5
θif pi (J2-8)
f p
i=λp i 1.9≤0.9p i)μ
0.3
(J2-9)
F
nwi=nominal stress in the ith weld element, ksi (MPa)
F
nwix=x-component of nominal stress, F nwi, ksi (MPa)
F
nwiy=y-component of nominal stress, F nwi, ksi (MPa)
p
i= Δi/Δmi, ratio of element i deformation to its deformation at maximum
stress
r
cr=distance from instantaneous center of rotation to weld element with
minimum Δ
ui/ri ratio, in. (mm)
r
i=distance from instantaneous center of rotation to ith weld element, in.
(mm)
x
i=x component ofr i
yi=y component ofr i
Δi=riΔucr/rcr=deformation of the ith weld element at an intermediate
stress level, linearly proportioned to the critical deformation based on
distance from the instantaneous center of rotation, r
i, in. (mm)
Δ
mi=0.209(θ i+2)
≤0.32
w, deformation of the ith weld element at maximum
stress, in. (mm)
Δ
ucr=deformation of the weld element with minimum Δ ui/ri ratio at ultimate
stress (rupture), usually in the element furthest from instantaneous cen-
ter of rotation, in. (mm)
Δ
ui=1.087(θ i+6)
≤0.65
w ≤0.17w, deformation of the ith weld element at
ultimate stress (rupture), in. (mm)
θ
i=angle between the longitudinal axis of ith weld element and the direc-
tion of the resultant force acting on the element, degrees
(c) For fillet weld groups concentrically loaded and consisting of elements with a
uniform leg size that are oriented both longitudinally and transversely to the
direction of applied load, the combined strength, R
n, of the fillet weld group shall
be determined as the greater of
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 116

Base Metal Matching Filler Metal
A36 ≤
3
/4in. thick 60 & 70 ksi filler metal
A36 >¾ in. A572 (Gr. 50 & 55)
A588* A913 (Gr. 50) SMAW: E7015, E7016, E7018, E7028
A1011 A992 Other processes: 70 ksi filler metal
A1018
A913 (Gr. 60 & 65) 80 ksi filler metal
*For corrosion resistance and color similar to the base metal, see AWS D1.1/D1.1M, subclause
3.7.3.
Notes:
Filler metals shall meet the requirements of AWS A5.1, A5.5, A5.17, A5.18, A5.20, A5.23, A5.28
or A5.29.
In joints with base metals of different strengths, use either a filler metal that matches the higher
strength base metal or a filler metal that matches the lower strength and produces a low hydro-
gen deposit.
User Note: The following User Note Table summarizes the AWS D1.1/D1.1M
provisions for matching filler metals. Other restrictions exist. For a complete list
of base metals and prequalified matching filler metals see AWS D1.1/D1.1M,
Table 3.1.
Sect. J2.] WELDS 16.1–117
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(i)R n=Rnwl +Rnwt (J2-10a)
or
(ii)R
n=0.85 R nwl+1.5 R nwt (J2-10b)
where
R
nwl=total nominal strength of longitudinally loaded fillet welds, as deter- mined in accordance with Table J2.5, kips (N)
R
nwt=total nominal strength of transversely loaded fillet welds, as determined in accordance with Table J2.5 without the alternate in Section J2.4(a), kips (N)
5. Combination of Welds
If two or more of the general types of welds (groove, fillet, plug, slot) are combined in a single joint, the strength of each shall be separately computed with reference to
the axis of the group in order to determine the strength of the combination.
6. Filler Metal Requirements
The choice of filler metalfor use with complete-joint-penetration groove welds sub-
ject to tension normal to the effective area shall comply with the requirements for matching filler metals given in AWS D1.1/D1.1M.
Filler metal with a specified minimum Charpy V-notch toughnessof 20 ft-lb (27 J)
at 40 °F (4 °C) or lower shall be used in the following joints:
(1) Complete-joint-penetration groove welded T- and corner joints with steel back-
ing left in place, subject to tension normal to the effective area, unless the joints
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 117

are designed using the nominal strengthand resistance factoror safety factoras
applicable for a partial-joint-penetration groove weld
(2) Complete-joint-penetration groove welded splicessubject to tension normal to
the effective area in heavy sections as defined in Sections A3.1c and A3.1d
The manufacturer’s Certificate of Conformance shall be sufficient evidence of com-
pliance.
7. Mixed Weld Metal
When Charpy V-notch toughnessis specified, the process consumables for all weld
metal, tack welds, root pass and subsequent passes deposited in a joint shall be com-
patible to ensure notch-tough composite weld metal.
J3. BOLTS AND THREADED PARTS
1. High-Strength Bolts
Use of high-strength boltsshall conform to the provisions of the Specification for
Structural Joints Using High-Strength Bolts, hereafter referred to as the RCSC
Specification, as approved by the Research Council on Structural Connections,
except as otherwise provided in this Specification. High-strength bolts in this
Specification are grouped according to material strength as follows:
Group A—ASTM A325, A325M, F1852, A354 Grade BC, and A449
Group B—ASTM A490, A490M, F2280, and A354 Grade BD
When assembled, all joint surfaces, including those adjacent to the washers, shall be
free of scale, except tight mill scale.
Bolts are permitted to be installed to the snug-tight condition when used in:
(a)bearing-type connections except as noted in Section E6 or Section J1.10
(b) tension or combined shear and tension applications, for Group A bolts only,
where loosening or fatigue due to vibration or loadfluctuations are not design
considerations
The snug-tight condition is defined as the tightness required to bring the connected
plies into firm contact. Bolts to be tightened to a condition other than snug tight shall
be clearly identified on the design drawings.
All high-strength bolts specified on the design drawings to be used in pretensioned
or slip-critical joints shall be tightened to a bolt tension not less than that given in
Table J3.1 or J3.1M. Installation shall be by any of the following methods: turn-of-
nut method, a direct-tension-indicator, twist-off-type tension-control bolt, calibrated
wrench, or alternative design bolt.
User Note: There are no specific minimum or maximum tension requirements for
snug-tight bolts. Fully pretensioned boltssuch as ASTM F1852 or F2280 are per-
mitted unless specifically prohibited on design drawings.
16.1–118 WELDS [Sect. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 118

Sect. J3.] BOLTS AND THREADED PARTS 16.1–119
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE J3.1
Minimum Bolt Pretension, kips*
Bolt Size, in. Group A (e.g., A325 Bolts) Group B ( e.g., A490 Bolts)
1
/2 12 15
5
/8 19 24
3
/4 28 35
7
/8 39 49
15 16 4
1
1
/8 56 80
1
1
/4 71 102
1
3
/8 85 121
1
1
/2 103 148
*Equal to 0.70 times the minimum tensile strength of bolts, rounded off to nearest kip, as specified in ASTM
specifications for A325 and A490 bolts with UNC threads.
TABLE J3.1M
Minimum Bolt Pretension, kN*
Bolt Size, mm Group A ( e.g., A325M Bolts) Group B ( e.g., A490M Bolts)
M16 91 114
M20 142 179
M22 176 221
M24 205 257
M27 267 334
M30 326 408
M36 475 595
*Equal to 0.70 times the minimum tensile strength of bolts, rounded off to nearest kN, as specified in ASTM
specifications for A325M and A490M bolts with UNC threads.
When bolt requirements cannot be provided within the RCSC Specificationlimita-
tions because of requirements for lengths exceeding 12 diameters or diameters
exceeding 1
1
/2in. (38 mm), bolts or threaded rods conforming to Group A or Group
B materials are permitted to be used in accordance with the provisions for threaded
parts in Table J3.2.
When ASTM A354 Grade BC, A354 Grade BD, or A449 bolts and threaded rods are
used in slip-critical connections, the bolt geometry including the thread pitch, thread
length, head and nut(s) shall be equal to or (if larger in diameter) proportional to that
required by the RCSC Specification. Installation shall comply with all applicable
requirements of the RCSC Specification with modifications as required for the
increased diameter and/or length to provide the design pretension.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 119

2. Size and Use of Holes
The maximum sizes of holes for bolts are given in Table J3.3 or Table J3.3M, except
that larger holes, required for tolerance on location of anchor rods in concrete foun-
dations, are permitted in column base details.
Standard holes orshort-slotted holes transverse to the direction of the load shall be
provided in accordance with the provisions of this specification, unless oversized
holes, short-slotted holes parallel to the load, or long-slotted holesare approved
16.1–120 BOLTS AND THREADED PARTS [Sect. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE J3.2
Nominal Strength of Fasteners and
Threaded Parts, ksi (MPa)
Nominal Shear Strength in
Nominal Tensile Strength, Bearing-Type Connections,
Description of Fasteners
Fnt, ksi (MPa)
[a]
Fnv, ksi (MPa)
[b]
A307 bolts 45 (310) 27 (188)
[c] [d]
Group A (e.g., A325) bolts,
when threads are not excluded 90 (620) 54 (372)
from shear planes
Group A (e.g., A325) bolts,
when threads are excluded 90 (620) 68 (457)
from shear planes
Group B (e.g., A490) bolts,
when threads are not excluded 113 (780) 68 (457)
from shear planes
Group B (e.g., A490) bolts,
when threads are excluded 113 (780) 84 (579)
from shear planes
Threaded parts meeting the
requirements of Section A3.4,
when threads are not excluded 0.75
Fu 0.450Fu
from shear planes
Threaded parts meeting the
requirements of Section A3.4,
when threads are excluded 0.75
Fu 0.563Fu
from shear planes
[a]
For high-strength bolts subject to tensile fatigue loading, see Appendix 3.
[b]
For end loaded connections with a fastener pattern length greater than 38 in. (965 mm), Fnvshall be
reduced to 83.3% of the tabulated values. Fastener pattern length is the maximum distance parallel to the
line of force between the centerline of the bolts connecting two parts with one faying surface.
[c]
For A307 bolts the tabulated values shall be reduced by 1% for each
1
/16in. (2 mm) over 5 diameters of
length in the grip.
[d]
Threads permitted in shear planes.
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:50 AM Page 120

Sect. J3.] BOLTS AND THREADED PARTS 16.1–121
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Hole Dimensions
Standard Oversize Short-Slot Long-Slot
(Dia.) (Dia.) (Width ≤Length) (Width ≤Length)
1
/2
9 /16
5 /8
9 /16×
11
/16
9 /16×1
1
/4
5
/8
11 /16
13 /16
11 /16×
7
/8
11 /16×1
9
/16
3
/4
13 /16
15 /16
13 /16×1
13
/16×1
7
/8
7
/8
15 /16 1
1
/16
15 /16×1
1
/8
15 /16×2
3
/16
11
1
/16 1
1
/4 1
1
/16×1
5
/16 1
1
/16×2½
≥1
1
/8 d+
1
/16 d+
5
/16 (d+
1
/16) ×(d+
3
/8)(d+
1
/16) ×(2.5 × d)
TABLE J3.3
Nominal Hole Dimensions, in.
Bolt
Diameter, in.
Hole Dimensions
Standard Oversize Short-Slot Long-Slot
(Dia.) (Dia.) (Width ≤Length) (Width ≤Length)
M16 18 20 18 ×22 18 ×40
M20 22 24 22 ×26 22 ×50
M22 24 28 24 ×30 24 ×55
M24 27
[a]
30 27 ×32 27 ×60
M27 30 35 30 ×37 30 ×67
M30 33 38 33 ×40 33 ×75
≥M36
d+3 d+8( d+3) ×( d+10) (d+3) ×2.5 d
[a]
Clearance provided allows the use of a 1-in. bolt if desirable.
TABLE J3.3M
Nominal Hole Dimensions, mm
Bolt
Diameter, mm
by the engineer of record. Finger shims up to
1
/4in. (6 mm) are permitted in slip-
critical connectionsdesigned on the basis of standard holes without reducing the
nominal shear strength of the fastener to that specified for slotted holes.
Oversized holes are permitted in any or all plies of slip-critical connections, but they
shall not be used in bearing-type connections. Hardened washers shall be installed
over oversized holes in an outer ply.
Short-slotted holes are permitted in any or all plies of slip-critical or bearing-type
connections. The slots are permitted without regard to direction of loading in slip-
critical connections, but the length shall be normal to the direction of the load in
bearing-type connections. Washers shall be installed over short-slotted holes in an
outer ply; when high-strength bolts are used, such washers shall be hardened wash-
ers conforming to ASTM F436.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 121

When Group B bolts over 1 in. (25 mm) in diameter are used in slotted or oversized
holes in external plies, a single hardened washer conforming to ASTM F436, except
with
5
/16-in. (8 mm) minimum thickness, shall be used in lieu of the standard washer.
User Note: Washer requirements are provided in the RCSC Specification, Section 6.
Long-slotted holes are permitted in only one of the connected parts of either a slip-
critical or bearing-type connection at an individual faying surface. Long-slotted
holes are permitted without regard to direction of loading in slip-critical connec-
tions, but shall be normal to the direction of load in bearing-type connections.
Where long-slotted holes are used in an outer ply, plate washers, or a continuous bar
with standard holes, having a size sufficient to completely cover the slot after instal-
lation, shall be provided. In high-strength bolted connections, such plate washers or
continuous bars shall be not less than
5
/16-in. (8 mm) thick and shall be of structural
grade material, but need not be hardened. If hardened washers are required for use
of high-strength bolts, the hardened washers shall be placed over the outer surface
of the plate washer or bar.
3. Minimum Spacing
The distance between centers of standard, oversized or slotted holes shall not be less
than 2
2
/3times the nominal diameter, d, of the fastener; a distance of 3d is preferred.
User Note:ASTM F1554 anchor rods may be furnished in accordance to prod-
uct specifications with a body diameter less than the nominal diameter. Load
effects such as bending and elongation should be calculated based on minimum
diameters permitted by the product specification. See ASTM F1554 and the
table, “Applicable ASTM Specifications for Various Types of Structural
Fasteners,” in Part 2 of the AISC Steel Construction Manual.
4. Minimum Edge Distance
The distance from the center of a standard hole to an edge of a connected part in any
direction shall not be less than either the applicable value from Table J3.4 or Table
J3.4M, or as required in Section J3.10. The distance from the center of an oversized
or slotted hole to an edge of a connected part shall be not less than that required for
a standard hole to an edge of a connected part plus the applicable increment, C
2, from
Table J3.5 or Table J3.5M.
User Note:The edge distances in Tables J3.4 and J3.4M are minimum edge dis-
tances based on standard fabrication practices and workmanship tolerances. The
appropriate provisions of Sections J3.10 and J4 must be satisfied.
5. Maximum Spacing and Edge Distance
The maximum distance from the center of any bolt to the nearest edge of parts in
contact shall be 12 times the thickness of the connected part under consideration,
16.1–122 BOLTS AND THREADED PARTS [Sect. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 122

Sect. J3.] BOLTS AND THREADED PARTS 16.1–123
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Bolt Diameter, in. Minimum Edge Distance
1
/2
3 /4
5
/8
7 /8
3
/4 1
7
/8 1
1
/8
11
1
/4
1
1
/8 1
1
/2
1
1
/4 1
5
/8
Over 1
1
/4 1
1
/4 ×d
[a]
If necessary, lesser edge distances are permitted provided the appropriate provisions from Sections J3.10
and J4 are satisfied, but edge distances less than one bolt diameter are not permitted without approval
from the engineer of record.
[b]
For oversized or slotted holes, see Table J3.5.
TABLE J3.4
Minimum Edge Distance
[a]
from
Center of Standard Hole
[b]
to Edge of
Connected Part, in.
Bolt Diameter, mm Minimum Edge Distance
16 22
20 26
22 28
24 30
27 34
30 38
36 46
Over 36 1.25
d
[a]
If necessary, lesser edge distances are permitted provided the appropriate provisions from Sections J3.10 and J4 are satisfied, but edge distances less than one bolt diameter are not permitted without approval from the engineer of record.
[b]
For oversized or slotted holes, see Table J3.5M.
TABLE J3.4M
Minimum Edge Distance
[a]
from
Center of Standard Hole
[b]
to Edge of
Connected Part, mm
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 123

but shall not exceed 6 in. (150 mm). The longitudinal spacing of fastenersbetween
elements consisting of a plate and a shape or two plates in continuous contact shall
be as follows:
(a) For painted members or unpainted members not subject to corrosion, the spacing
shall not exceed 24 times the thickness of the thinner part or 12 in. (305 mm).
(b) For unpainted members of weathering steel subject to atmospheric corrosion,
the spacing shall not exceed 14 times the thickness of the thinner part or 7 in.
(180 mm).
User Note: Dimensions in (a) and (b) do not apply to elements consisting of two
shapes in continuous contact.
16.1–124 BOLTS AND THREADED PARTS [Sect. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Slotted Holes
Long Axis Perpendicular to Edge
Short Slots Long Slots
[a]

7
/8
1 /16
1 /8
1
1
/8
1 /8
≥ 1
1
/8
1 /8
3 /16
[a]
When length of slot is less than maximum allowable (see Table J3.3), C2is permitted to be reduced by
one-half the difference between the maximum and actual slot lengths.
TABLE J3.5
Values of Edge Distance Increment
C2, in.
Nominal
Diameter
of Fastener,
in.
Oversized
Holes
Long Axis
Parallel to Edge
3
/4d0
Slotted Holes
Long Axis Perpendicular to Edge
Short Slots Long Slots
[a]
≤ 22 2 3
24 3 3
≥27 3 5
[a]
When length of slot is less than maximum allowable (see Table J3.3M), C2is permitted to be reduced by
one-half the difference between the maximum and actual slot lengths.
TABLE J3.5M
Values of Edge Distance Increment
C2, mm
Nominal
Diameter
of Fastener,
mm
Oversized
Holes
Long Axis
Parallel to Edge
0.75
d 0
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 124

Sect. J3.] BOLTS AND THREADED PARTS 16.1–125
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6. Tensile and Shear Strength of Bolts and Threaded Parts
The design tensileor shear strength, φR n, and the allowable tensileor shear
strength, R
n/Ω, of a snug-tightened or pretensioned high-strength bolt or threaded
part shall be determined according to the limit states of tension rupture and shear
ruptureas follows:
R
n=FnAb (J3-1)
φ=0.75 (LRFD) Ω=2.00 (ASD)
where
A
b= nominal unthreaded body area of bolt or threaded part, in.
2
(mm
2
)
F
n= nominal tensile stress, F nt, or shear stress, F nv, from Table J3.2, ksi (MPa)
The required tensile strengthshall include any tension resulting from prying action
produced by deformation of the connected parts.
User Note:The force that can be resisted by a snug-tightened or pretensioned
high-strength bolt or threaded part may be limited by the bearingstrength at the
bolt hole per Section J3.10. The effective strength of an individual fastenermay
be taken as the lesser of the fastener shear strength per Section J3.6 or the bear-
ing strength at the bolt hole per Section J3.10. The strength of the bolt group is
taken as the sum of the effective strengths of the individual fasteners.
7. Combined Tension and Shear in Bearing-Type Connections
The available tensile strengthof a bolt subjected to combined tension and shear
shall be determined according to the limit statesof tension and shear ruptureas
follows:
R
n=F′ntAb (J3-2)
φ=0.75 (LRFD) Ω=2.00 (ASD)
where
F′
nt= nominal tensile stressmodified to include the effects of shear stress,
ksi (MPa)
F′
nt (J3-3a)
F′
nt (J3-3b)
F
nt= nominal tensile stress from Table J3.2, ksi (MPa)
F
nv= nominal shear stress from Table J3.2, ksi (MPa)
f
rv= required shear stress using LRFD or ASD load combinations, ksi (MPa)
The available shear stress of the fastener shall equal or exceed the required shear
stress, f
rv.
F
F
F
fFnt
nt
nv
rv nt=− ≤13.(LRFD)
φ

F
F
F
fFnt
nt
nv
rv nt=− ≤13. (ASD)
Ω

AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 125

User Note:Note that when the required stress,f, in either shear or tension, is less
than or equal to 30% of the corresponding available stress, the effects of com-
bined stressneed not be investigated. Also note that Equations J3-3a and J3-3b
can be rewritten so as to find a nominal shear stress, F ′
nv, as a function of the
required tensile stress, f
t.
8. High-Strength Bolts in Slip-Critical Connections
Slip-critical connectionsshall be designed to prevent slipand for the limit states of
bearing-type connections. When slip-critical bolts pass through fillers, all surfaces
subject to slip shall be prepared to achieve design slip resistance.
The available slip resistance for the limit state of slip shall be determined as follows:
R
n=μD uhfTbns (J3-4)
(a) For standard size and short-slotted holes perpendicular to the direction of the
load
φ=1.00 (LRFD) Ω=1.50 (ASD)
(b) For oversized and short-slotted holes parallel to the direction of the load
φ=0.85 (LRFD) Ω=1.76 (ASD)
(c) For long-slotted holes
φ=0.70 (LRFD) Ω=2.14 (ASD)
where
μ=mean slip coefficient for Class A or B surfaces, as applicable, and deter-
mined as follows, or as established by tests:
(i) For Class A surfaces (unpainted clean mill scale steel surfaces or sur-
faces with Class A coatings on blast-cleaned steel or hot-dipped
galvanized and roughened surfaces)
μ=0.30
(ii) For Class B surfaces (unpainted blast-cleaned steel surfaces or sur-
faces with Class B coatings on blast-cleaned steel)
μ=0.50
D
u=1.13, a multiplier that reflects the ratio of the mean installed bolt preten-
sion to the specified minimum bolt pretension. The use of other values
may be approved by the engineer of record.
T
b=minimum fastenertension given in Table J3.1, kips, or Table J3.1M, kN
h
f=factor for fillers, determined as follows:
(i) Where there are no fillers or where bolts have been added to distrib-
ute loads in the filler
h
f=1.0
16.1–126 BOLTS AND THREADED PARTS [Sect. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 126

Sect. J3.] BOLTS AND THREADED PARTS 16.1–127
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(ii) Where bolts have not been added to distribute the loadin the filler:
(a) For one filler between connected parts
h
f=1.0
(b) For two or more fillers between connected parts
h
f=0.85
n
s=number of slip planes required to permit the connection to slip
9. Combined Tension and Shear in Slip-Critical Connections
When a slip-critical connectionis subjected to an applied tension that reduces the net
clamping force, the available slipresistance per bolt, from Section J3.8, shall be mul-
tiplied by the factor, k
sc, as follows:
(J3-5a)
(J3-5b)
where
T
a=required tension force using ASD load combinations , kips (kN)
T
u=required tension force using LRFD load combinations , kips (kN)
n
b=number of bolts carrying the applied tension
10. Bearing Strength at Bolt Holes
The available bearing strength, φR nand R n/Ω, at bolt holes shall be determined for
the limit state ofbearingas follows:
φ=0.75 (LRFD) Ω=2.00 (ASD)
The nominal bearing strength of the connected material, R
n, is determined as
follows:
(a) For a bolt in a connectionwith standard, oversized and short-slotted holes, inde-
pendent of the direction of loading, or a long-slotted hole with the slot parallel to
the direction of the bearing force
(i) When deformation at the bolt hole at service loadis a design consideration
R
n =1.2l ctFu≤2.4dtF u (J3-6a)
(ii) When deformation at the bolt hole at service load is not a design considera-
tion
R
n=1.5l ctFu≤3.0dtF u (J3-6b)
(b) For a bolt in a connection with long-slotted holes with the slot perpendicular to
the direction of force
R
n=1.0l ctFu≤2.0dtF u (J3-6c)
k
T
DTnsc
u
ubb=−1 (LRFD)
k
T
DTnsc
a
ubb=−1
15.
(ASD)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 127

16.1–128 BOLTS AND THREADED PARTS [Sect. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(c) For connections made using bolts that pass completely through an unstiffened
box member or HSS, see Section J7 and Equation J7-1;
where
F
u= specified minimum tensile strengthof the connected material, ksi (MPa)
d= nominal bolt diameter, in. (mm)
l
c= clear distance, in the direction of the force, between the edge of the hole and
the edge of the adjacent hole or edge of the material, in. (mm)
t= thickness of connected material, in. (mm)
For connections, the bearing resistance shall be taken as the sum of the bearing resist-
ances of the individual bolts.
Bearing strength shall be checked for both bearing-type and slip-critical connections.
The use of oversized holes and short- and long-slotted holes parallel to the line of
force is restricted to slip-critical connections per Section J3.2.
User Note:The effective strength of an individual fasteneris the lesser of the fas-
tener shear strength per Section J3.6 or the bearing strength at the bolt hole per
Section J3.10. The strength of the bolt group is the sum of the effective strengths
of the individual fasteners.
11. Special Fasteners
The nominal strengthof special fasteners other than the bolts presented in Table J3.2
shall be verified by tests.
12. Tension Fasteners
When bolts or other fasteners in tension are attached to an unstiffened box or HSS
wall, the strength of the wall shall be determined by rational analysis.
J4. AFFECTED ELEMENTS OF MEMBERS AND CONNECTING
ELEMENTS
This section applies to elements of members at connections and connecting elements,
such as plates, gussets, angles and brackets.
1. Strength of Elements in Tension
The design strength, φR n, and the allowable strength, R n/Ω, of affected and con-
necting elements loaded in tension shall be the lower value obtained according to the
limit statesof tensile yieldingand tensile rupture.
(a) For tensile yielding of connecting elements
R
n=FyAg (J4-1)
φ=0.90 (LRFD) Ω=1.67 (ASD)
(b) For tensile rupture of connecting elements
R
n=FuAe (J4-2)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 128

Sect. J4.] AFFECTED ELEMENTS OF MEMBERS AND CONNECTING ELEMENTS 16.1–129
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
φ=0.75 (LRFD) Ω=2.00 (ASD)
where
A
e=effective net areaas defined in Section D3, in.
2
(mm
2
); for bolted splice
plates, A
e=An≤0.85A g.
User Note: The effective net area of the connection plate may be limited due to
stressdistribution as calculated by methods such as the Whitmore section.
2. Strength of Elements in Shear
The available shear strength of affected and connecting elements in shear shall be the
lower value obtained according to the limit statesof shear yieldingand shear rup-
ture:
(a) For shear yielding of the element:
R
n=0.60F yAgv (J4-3)
φ=1.00 (LRFD) Ω=1.50 (ASD)
where
A
gv=gross area subject to shear, in.
2
(mm
2
)
(b) For shear rupture of the element:
R
n=0.60F uAnv (J4-4)
φ=0.75 (LRFD) Ω=2.00 (ASD)
where
A
nv =net areasubject to shear, in.
2
(mm
2
)
3. Block Shear Strength
The available strengthfor the limit stateof block shear rupturealong a shear failure
path or paths and a perpendicular tension failure path shall be taken as
R
n=0.60F uAnv+UbsFuAnt≤0.60F yAgv+UbsFuAnt (J4-5)
φ=0.75 (LRFD) Ω=2.00 (ASD)
where
A
nt=net areasubject to tension, in.
2
(mm
2
)
Where the tension stressis uniform, U
bs=1; where the tension stress is nonuniform,
U
bs=0.5.
User Note:Typical cases where U
bsshould be taken equal to 0.5 are illustrated in
the Commentary.
4. Strength of Elements in Compression
The available strengthof connecting elements in compression for the limit statesof
yieldingand bucklingshall be determined as follows:
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 129

(a) When KL/r≤25
P
n=FyAg (J4-6)
φ=0.90 (LRFD) Ω=1.67 (ASD)
(b) When KL/r >25, the provisions of Chapter E apply.
5. Strength of Elements in Flexure
The available flexural strength of affected elements shall be the lower value obtained
according to the limit states of flexuralyielding, local buckling, flexural lateral-
torsional buckling and flexural rupture.
J5. FILLERS
1. Fillers in Welded Connections
Whenever it is necessary to use fillersin joints required to transfer applied force, the
fillers and the connecting welds shall conform to the requirements of Section J5.1a
or Section J5.1b, as applicable.
1a. Thin Fillers
Fillers less than
1
/4in. (6 mm) thick shall not be used to transfer stress. When the
thickness of the fillers is less than
1
/4in. (6 mm), or when the thickness of the filler
is
1
/4in. (6 mm) or greater but not adequate to transfer the applied force between the
connected parts, the filler shall be kept flush with the edge of the outside connected
part, and the size of the weld shall be increased over the required size by an amount
equal to the thickness of the filler.
1b. Thick Fillers
When the thickness of the fillersis adequate to transfer the applied force between
the connected parts, the filler shall extend beyond the edges of the outside con-
nected base metal. The welds joining the outside connected base metal to the filler
shall be sufficient to transmit the force to the filler and the area subjected to the
applied force in the filler shall be adequate to avoid overstressing the filler. The
welds joining the filler to the inside connected base metal shall be adequate to
transmit the applied force.
2. Fillers in Bolted Connections
When a bolt that carries loadpasses through fillers that are equal to or less than
1
/4
in. (6 mm) thick, the shear strength shall be used without reduction. When a bolt that
carries load passes through fillers that are greater than
1
/4in. (6 mm) thick, one of the
following requirements shall apply:
(a) The shear strength of the bolts shall be multiplied by the factor
1 ≤0.4(t ≤0.25)
[S.I.: 1 ≤ 0.0154(t ≤6)]
but not less than 0.85, where t is the total thickness of the fillers;
16.1–130 AFFECTED ELEMENTS OF MEMBERS AND CONNECTING ELEMENTS [Sect. J4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 130

Sect. J7.] BEARING STRENGTH 16.1–131
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(b) The fillers shall be extended beyond the jointand the filler extension shall be
secured with enough bolts to uniformly distribute the total forcein the connected
element over the combined cross section of the connected element and the fillers;
(c) The size of the joint shall be increased to accommodate a number of bolts that is
equivalent to the total number required in (b) above; or
(d) The joint shall be designed to prevent slipin accordance with Section J3.8 using
either Class B surfaces or Class A surfaces with turn-of-nut tightening.
J6. SPLICES
Groove-welded splices in plate girdersand beamsshall develop the nominal strength
of the smaller spliced section. Other types of splices in cross sections of plate gird-
ers and beams shall develop the strength required by the forces at the point of the
splice.
J7. BEARING STRENGTH
The design bearing strength, φR n, and the allowable bearing strength, Rn/Ω, of sur-
faces in contact shall be determined for the limit stateof bearing (local compressive
yielding) as follows:
φ=0.75 (LRFD) Ω=2.00 (ASD)
The nominal bearing strength, R
n, shall be determined as follows:
(a) For finished surfaces, pins in reamed, drilled, or bored holes, and ends of fitted
bearing stiffeners
R
n=1.8F yApb (J7-1)
where
A
pb=projected area in bearing, in.
2
(mm
2
)
F
y=specified minimum yield stress, ksi (MPa)
(b) For expansion rollersand rockers
(i) When d ≤25 in. (635 mm)
R
n=1.2(F y≤13)l bd/20 (J7-2)
(S.I.: R
n=1.2(F y≤90)l bd/20) (J7-2M)
(ii) When d >25 in. (635 mm)
(J7-3)
(J7-3M)
where
d=diameter, in. (mm)
l
b=length of bearing, in. (mm)
RFldnyb=−6 0 13 20.( ) /
S.I.: . ( ) /RFldnyb=−( )30 2 90 20
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 131

J8. COLUMN BASES AND BEARING ON CONCRETE
Proper provision shall be made to transfer the column loads and moments to the foot-
ings and foundations.
In the absence of code regulations, the design bearing strength, φ
cPp, and the allow-
able bearing strength, P
p/Ωc, for the limit state of concrete crushingare permitted to
be taken as follows:
φ
c=0.65 (LRFD) Ω c=2.31 (ASD)
The nominal bearing strength, P
p, is determined as follows:
(a) On the full area of a concrete support:
P
p=0.85f c′A1 (J8-1)
(b) On less than the full area of a concrete support:
(J8-2)
where
A
1= area of steel concentrically bearing on a concrete support, in.
2
(mm
2
)
A
2= maximum area of the portion of the supporting surface that is geometrically
similar to and concentric with the loaded area, in.
2
(mm
2
)
f′
c= specified compressive strength of concrete, ksi (MPa)
J9. ANCHOR RODS AND EMBEDMENTS
Anchor rods shall be designed to provide the required resistance to loadson the com-
pleted structure at the base of columns including the net tensile components of any
bending moment that may result from load combinations stipulated in Section B2.
The anchor rods shall be designed in accordance with the requirements for threaded
parts in Table J3.2.
Design of column bases and anchor rods for the transfer of forces to the concrete
foundation including bearingagainst the concrete elements shall satisfy the require-
ments of ACI 318 or ACI 349.
User Note: When columns are required to resist a horizontal force at the base
plate, bearing against the concrete elements should be considered.
When anchor rods are used to resist horizontal forces, hole size, anchor rod setting
tolerance, and the horizontal movement of the column shall be considered in the
design.
Larger oversized holes and slotted holes are permitted in base plates when adequate
bearing is provided for the nut by using ASTM F844 washers or plate washers to
bridge the hole.
16.1–132 COLUMN BASES AND BEARING ON CONCRETE [Sect. J8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PfAAAfApc c= ′ ≤ ′085 17121 1./.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 132

Sect. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–133
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note: The permitted hole sizes, corresponding washer dimensions and nuts
are given in the AISC Steel Construction Manual and ASTM F1554.
User Note: See ACI 318 for embedment design and for shear friction design. See
OSHA for special erection requirements for anchor rods.
J10. FLANGES AND WEBS WITH CONCENTRATED FORCES
This section applies to single-and double-concentrated forcesapplied normal to the
flange(s) of wide flange sections and similar built-up shapes. A single-concentrated
force can be either tensile or compressive. Double-concentrated forces are one ten-
sile and one compressive and form a couple on the same side of the loaded member.
When the required strength exceeds the available strengthas determined for the limit
stateslisted in this section, stiffenersand/or doublersshall be provided and shall be
sized for the difference between the required strength and the available strength for
the applicable limit state. Stiffeners shall also meet the design requirements in
Section J10.8. Doublers shall also meet the design requirement in Section J10.9.
User Note: See Appendix 6.3 for requirements for the ends of cantilever
members.
Stiffeners are required at unframed ends of beamsin accordance with the require-
ments of Section J10.7.
1. Flange Local Bending
This section applies to tensile single-concentrated forcesand the tensile component
of double-concentrated forces.
The design strength, φR
n, and the allowable strength, R n/Ω, for the limit state of
flange local bendingshall be determined as follows:
R
n=6.25F yftf
2
(J10-1)
φ=0.90 (LRFD) Ω=1.67 (ASD)
where
F
yf=specified minimum yield stressof the flange, ksi (MPa)
t
f=thickness of the loaded flange, in. (mm)
If the length of loading across the member flange is less than 0.15b
f, where b fis the
member flange width, Equation J10-1 need not be checked.
When the concentrated force to be resisted is applied at a distance from the member
end that is less than 10t
f, Rnshall be reduced by 50%.
When required, a pair of transverse stiffenersshall be provided.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 133

2. Web Local Yielding
This section applies to single-concentrated forcesand both components of double-
concentrated forces.
The available strengthfor the limit stateof web local yieldingshall be determined as
follows:
φ=1.00 (LRFD) Ω=1.50 (ASD)
The nominal strength, R
n, shall be determined as follows:
(a) When the concentrated forceto be resisted is applied at a distance from the mem-
ber end that is greater than the depth of the member, d,
R
n=Fywtw(5k +l b) (J10-2)
(b) When the concentrated force to be resisted is applied at a distance from the mem-
ber end that is less than or equal to the depth of the member, d,
R
n=Fywtw(2.5k +l b) (J10-3)
where
F
yw=specified minimum yield stressof the web material, ksi (MPa)
k=distance from outer face of the flange to the web toe of the fillet, in. (mm)
l
b=length of bearing (not less than k for end beam reactions), in. (mm)
t
w=thickness of web, in. (mm)
When required, a pair of transverse stiffenersor a doublerplate shall be provided.
3. Web Local Crippling
This section applies to compressive single-concentrated forces or the compressive
component of double-concentrated forces.
The available strength for the limit state of web local cripplingshall be determined
as follows:
φ=0.75 (LRFD) Ω=2.00 (ASD)
The nominal strength, R
n, shall be determined as follows:
(a) When the concentrated compressive forceto be resisted is applied at a distance
from the member end that is greater than or equal to d/2:
(J10-4)
(b) When the concentrated compressive force to be resisted is applied at a distance
from the member end that is less than d/ 2:
16.1–134 FLANGES AND WEBS WITH CONCENTRATED FORCES [Sect. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Rt
l
d
t
t
EFnw
bw
f
y=+




















0.80
2
15
13
.
wwf
wt
t
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 134

Sect. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–135
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(i) For l b/d ≤0.2
(J10-5a)
(ii) For l
b/d >0.2
(J10-5b)
where
d =full nominal depth of the section, in. (mm)
When required, a transverse stiffener, a pair of transverse stiffeners, or a doubler
plate extending at least one-half the depth of the web shall be provided.
4. Web Sidesway Buckling
This section applies only to compressive single-concentrated forcesapplied to mem-
bers where relative lateral movement between the loaded compression flange and the
tension flange is not restrained at the point of application of the concentrated force.
The available strengthof the web for the limit state of sidesway bucklingshall be
determined as follows:
φ=0.85 (LRFD) Ω=1.76 (ASD)
The nominal strength, R
n, shall be determined as follows:
(a) If the compression flange is restrained against rotation
(i) When (h/t
w)/(Lb/bf) ≤2.3
(J10-6)
(ii) When (h/t
w)/(Lb/bf) >2.3, the limit state of web sidesway bucklingdoes not
apply.
When the required strength of the web exceeds the available strength, local lateral
bracingshall be provided at the tension flange or either a pair of transverse stiffen-
ersor a doublerplate shall be provided.
(b) If the compression flange is not restrained against rotation
(i) When (h/t
w)/(Lb/bf) ≤1.7
(J10-7)
Rt
l
d
t
t
EFnw
bw
f
y=+




















0.40
2
15
13
.
wwf
wt
t
Rt
l
d
t
tnw
bw
f=+−


















⎥ 0.40
2
15
1
4
02.
.
⎥⎥
EF t
t
yw f
w
R
Ct t
h
ht
Lbn
rw f w
bf=+














3
2
3
104.
/
/
R
Ct t
h
ht
Lbn
rw f w
bf=














3
2
3
04.
/
/
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 135

(ii) When (h/t w)/(Lb/bf) >1.7, the limit state of web sidesway buckling does not
apply.
When the required strength of the web exceeds the available strength, local lateral
bracing shall be provided at both flanges at the point of application of the concen-
trated forces.
In Equations J10-6 and J10-7, the following definitions apply:
C
r=960,000 ksi (6.62 Ω 10
6
MPa) when M u<My(LRFD) or 1.5M a<My(ASD)
at the location of the force
=480,000 ksi (3.31 Ω10
6
MPa) when M u≥My(LRFD) or 1.5M a≥My(ASD)
at the location of the force
L
b=largest laterally unbraced lengthalong either flange at the point of load, in.
(mm)
M
a=required flexural strength using ASD load combinations , kip-in. (N-mm)
M
u=required flexural strength using LRFD load combinations, kip-in. (N-mm)
b
f=width of flange, in. (mm)
h=clear distance between flanges less the fillet or corner radius for rolled
shapes; distance between adjacent lines of fastenersor the clear distance
between flanges when welds are used for built-up shapes, in. (mm)
User Note: For determination of adequate restraint, refer to Appendix 6.
5. Web Compression Buckling
This section applies to a pair of compressive single-concentrated forcesor the com-
pressive components in a pair of double-concentrated forces, applied at both flanges
of a member at the same location.
The available strengthfor the limit stateof web local buckling shall be determined
as follows:
(J10-8)
φ=0.90 (LRFD) Ω=1.67 (ASD)
When the pair of concentrated compressive forcesto be resisted is applied at a dis-
tance from the member end that is less than d/ 2, R
nshall be reduced by 50%.
When required, a single transverse stiffener, a pair of transverse stiffeners, or a dou-
blerplate extending the full depth of the web shall be provided.
6. Web Panel Zone Shear
This section applies to double-concentrated forcesapplied to one or both flanges of
a member at the same location.
The available strengthof the web panel zone for the limit stateof shear yieldingshall
be determined as follows:
16.1–136 FLANGES AND WEBS WITH CONCENTRATED FORCES [Sect. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
R
tEF
hn
wyw=
24
3
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 136

Sect. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–137
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
φ=0.90 (LRFD) Ω=1.67 (ASD)
The nominal strength, R
n, shall be determined as follows:
(a) When the effect of panel-zone deformation on frame stabilityis not considered
in the analysis:
(i) For P
r≤0.4P c
Rn=0.60F ydctw (J10-9)
(ii) For P
r>0.4P c
(J10-10)
(b) When frame stability, including plastic panel-zone deformation, is considered in
the analysis:
(i) For P
r≤0.75P c
(J10-11)
(ii) For P
r>0.75P c
(J10-12)
In Equations J10-9 through J10-12, the following definitions apply:
A
g=gross cross-sectional area of member, in.
2
(mm
2
)
b
cf=width of column flange, in. (mm)
d
b=depth of beam, in. (mm)
d
c=depth of column, in. (mm)
F
y=specified minimum yield stress of the column web, ksi (MPa)
P
c=Py, kips (N) (LRFD)
P
c=0.60P y, kips (N) (ASD)
P
r=required axial strength using LRFD orASD load combinations, kips (N)
P
y=FyAg, axialyield strength of the column, kips (N)
t
cf=thickness of column flange, in. (mm)
t
w=thickness of column web, in. (mm)
When required, doublerplate(s) or a pair of diagonal stiffeners shall be provided
within the boundaries of the rigid connection whose webs lie in a common plane.
See Section J10.9 for doubler plate design requirements.
RFdt
P
Pnycw
r
c=−






060 14..
RFdt
bt
ddtnycw
cf cf
bcw=+






060 1
3
2
.
RFdt
bt
ddt
Pnycw
cf cf
bcw=+






−060 1
3
19
12
2
..
.
rr
c
P






AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 137

7. Unframed Ends of Beams and Girders
At unframed endsof beamsand girdersnot otherwise restrained against rotation
about their longitudinal axes, a pair of transverse stiffeners , extending the full depth
of the web, shall be provided.
8. Additional Stiffener Requirements for Concentrated Forces
Stiffenersrequired to resist tensile concentrated forcesshall be designed in accor-
dance with the requirements of Section J4.1 and welded to the loaded flange and the
web. The welds to the flange shall be sized for the difference between the required
strengthand available strength. The stiffener to web welds shall be sized to transfer
to the web the algebraic difference in tensile force at the ends of the stiffener.
Stiffeners required to resist compressive concentrated forces shall be designed in
accordance with the requirements in Section J4.4 and shall either bear on or be
welded to the loaded flange and welded to the web. The welds to the flange shall be
sized for the difference between the required strength and the applicable limit state
strength. The weld to the web shall be sized to transfer to the web the algebraic dif-
ference in compression force at the ends of the stiffener. For fitted bearing stiffeners,
see Section J7.
Transverse full depth bearing stiffeners for compressive forces applied to a beam or
plate girderflange(s) shall be designed as axially compressed members (columns) in
accordance with the requirements of Section E6.2 and Section J4.4. The member
properties shall be determined using an effective length of 0.75h and a cross section
composed of two stiffeners, and a strip of the web having a width of 25t
wat interior
stiffeners and 12t
wat the ends of members. The weld connecting full depth bearing
stiffeners to the web shall be sized to transmit the difference in compressive force at
each of the stiffeners to the web.
Transverseand diagonal stiffenersshall comply with the following additional
requirements:
(1) The width of each stiffener plus one-half the thickness of the column web shall
not be less than one-third of the flange or moment connection plate width deliv-
ering the concentrated force.
(2) The thickness of a stiffener shall not be less than one-half the thickness of the
flange or moment connection plate delivering the concentrated load, nor less than
the width divided by 16.
(3) Transverse stiffeners shall extend a minimum of one-half the depth of the mem-
ber except as required in Section J10.5 and Section J10.7.
9. Additional Doubler Plate Requirements for Concentrated Forces
Doublerplates required for compression strength shall be designed in accordance
with the requirements of Chapter E.
Doubler plates required for tensile strength shall be designed in accordance with the
requirements of Chapter D.
16.1–138 FLANGES AND WEBS WITH CONCENTRATED FORCES [Sect. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:51 AM Page 138

Sect. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–139
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Doubler plates required for shear strength (see Section J10.6) shall be designed in
accordance with the provisions of Chapter G.
Doubler plates shall comply with the following additional requirements:
(1) The thickness and extent of the doubler plate shall provide the additional mate-
rial necessary to equal or exceed the strength requirements.
(2) The doubler plate shall be welded to develop the proportion of the total force
transmitted to the doubler plate.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 139

CHAPTER K
DESIGN OF HSS AND BOX MEMBER
CONNECTIONS
This chapter addresses connections to HSS members and box sections of uniform wall
thickness.
User Note: Connection strength is often governed by the size of HSS members, espe-
cially the wall thickness of truss chords, and this must be considered in the initial design.
The chapter is organized as follows:
K1. Concentrated Forces on HSS
K2. HSS-to-HSS Truss Connections
K3. HSS-to-HSS Moment Connections
K4. Welds of Plates and Branches to Rectangular HSS
User Note:See also Chapter J for additional requirements for bolting to HSS. See
Section J3.10(c) for through-bolts.
User Note: Connection parameters must be within the limits of applicability. Limit states
need only be checked when connection geometry or loading is within the parameters
given in the description of the limit state.
K1. CONCENTRATED FORCES ON HSS
The design strength, φR n, and the allowable strength, R n/Ω, of connectionsshall be
determined in accordance with the provisions of this chapter and the provisions of
Section B3.6.
1. Definitions of Parameters
Ag=gross cross-sectional area of member, in.
2
(mm
2
)
B=overall width of rectangular HSS member, measured 90°to the plane of the
connection, in. (mm)
B
p=width of plate, measured 90°to the plane of the connection, in. (mm)
D=outside diameter of round HSS, in. (mm)
F
c=available stress, ksi (MPa)
=F
yfor LRFD; 0.60F yfor ASD
F
y=specified minimum yield stressof HSS member material, ksi (MPa)
F
yp=specified minimum yield stress of plate material, ksi (MPa)
F
u=specified minimum tensile strengthof HSS member material, ksi (MPa)
H=overall height of rectangular HSS member, measured in the plane of the con-
nection, in. (mm)
16.1–140
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 140

S=elastic section modulus of member, in.
3
(mm
3
)
l
b=bearing length of the load, measured parallel to the axis of the HSS member
(or measured across the width of the HSS in the case of loaded cap plates), in.
(mm)
t=design wall thicknessof HSS member, in. (mm)
t
p=thickness of plate, in. (mm)
2. Round HSS
The available strengthof connections with concentrated loads and within the limits
in Table K1.1A shall be taken as shown in Table K1.1.
3. Rectangular HSS
The available strengthof connections with concentrated loadsand within the limits
in Table K1.2A shall be taken as the lowest value of the applicable limit statesshown
in Table K1.2.
K2. HSS-TO-HSS TRUSS CONNECTIONS
The design strength, φP n, and the allowable strength, P n/Ω, of connections shall be
determined in accordance with the provisions of this chapter and the provisions of
Section B3.6.
HSS-to-HSS truss connections are defined as connections that consist of one or more
branch membersthat are directly welded to a continuous chord that passes through
the connection and shall be classified as follows:
(a) When the punching load, P
r sinθ, in a branch member is equilibrated by beam
shear in the chord member, the connection shall be classified as a T-connection
when the branch is perpendicular to the chord, and a Y-connectionotherwise.
(b) When the punching load, P
r sinθ, in a branch member is essentially equilibrated
(within 20%) by loads in other branch member(s) on the same side of the con-
nection, the connection shall be classified as a K-connection. The relevant gap is
between the primary branch members whose loads equilibrate. An N-connection
can be considered as a type of K-connection.
User Note:A K-connection with one branch perpendicular to the chord is often
called an N-connection.
(c) When the punching load, P
rsinθ, is transmitted through the chord member and
is equilibrated by branch member(s) on the opposite side, the connection shall be
classified as a cross-connection.
(d) When a connection has more than two primary branch members, or branch mem-
bers in more than one plane, the connection shall be classified as a general or
multiplanar connection.
When branch members transmit part of their load as K-connections and part of their
load as T-, Y- or cross-connections, the adequacy of the connections shall be deter-
mined by interpolation on the proportion of the available strength of each in total.
Sect. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–141
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 141

Plate Bending
Out-
Connection Type Connection Available Strength In-Plane of-Plane
Transverse Plate T- and Limit State: HSS Local Yielding
Cross-Connections Plate Axial Load
(K1-1) —
Mn=0.5BpRn
φ=0.90 (LRFD) Ω=1.67 (ASD)
Longitudinal Plate T-, Y- Limit State: HSS Plastification
and Cross-Connections Plate Axial Load
(K1-2)
Mn=0.8IbRn —
φ=0.90 (LRFD) Ω=1.67 (ASD)
Longitudinal Plate Limit States: Plate Limit States
T-Connections and HSS Punching Shear
Plate Shear Load
(K1-3)
——
Cap Plate Connections Limit State: Local Yielding
of HSS
Axial Load
(K1-4) — —
φ=1.00 (LRFD) Ω=1.50 (ASD)
TABLE K1.1
Available Strengths of
Plate-to-Round HSS Connections
RFt
B
D
Q
ny
p
fsinθ=













2 55
1081
.
.
RFt
l
D
Q
ny
b
fsinθ= +






55 1 025
2
..
For Rn, see Chapter J.
Additionally, the following
relationship shall be met:
t
F
F
t
p
u
yp≤
RFttlFA
nypby=+( )≤25
FUNCTIONS
Q
f
=1 for HSS (connecting surface) in tension
=1.0 −0.3
U(1 +U) for HSS (connecting surface) in compression (K1-5)
where
Proand Mroare determined on the side of the joint that
has the lower compression stress.
Proand Mrorefer to required (K1-6)
strengths in the HSS.
Pro=Pufor LRFD; Pafor ASD. Mro=Mufor LRFD; Mafor ASD.
U
P
FA
M
FS
ro
cg
ro
c
=+
16.1–142 HSS-TO-HSS TRUSS CONNECTIONS [Sect. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 2/17/12 11:57 AM Page 142

Connection Type Connection Available Strength
Transverse Plate T- and Limit State: Local Yielding of Plate, For All β
Cross-Connections, Under
Plate Axial Load
(K1-7)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Limit State: HSS Shear Yielding (Punching),
When 0.85
B≤Bp≤B 2t
(K1-8)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Limit State: Local Yielding of HSS Sidewalls,
When β=1.0
(K1-9)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Local Crippling of HSS Sidewalls,
When β=1.0 and Plate is in Compression,
for T-Connections
(K1-10)
φ=0.75 (LRFD) Ω=2.00 (ASD)
Limit State: Local Crippling of HSS Sidewalls,
When β=1.0 and Plate is in Compression,
for Cross-Connections
(K1-11)
φ=0.90 (LRFD) Ω=1.67 (ASD)
TABLE K1.2
Available Strengths of
Plate-to-Rectangular HSS Connections
R
Bt
FtB F t B
nypy ppp=≤
10
RFttB
nypep=+ ( )06 2 2.
RFtkl
ny b=+( )25
Rt
l
Ht
EF Q
n
b
yf=+







16 1
3
3
2
.
R
t
Ht
EF Q
ny f=







48
3
3
Sect. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–143
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K1.1A
Limits of Applicability of Table K1.1
Plate load angle:θ≥ 30°
HSS wall
D/t≤50 for T-connections under branch plate axial load or bending
slenderness:
D/t≤40 for cross-connections under branch plate axial load or bending
D/t≤0.11E/Fyunder branch plate shear loading
D/t≤0.11E/Fyfor cap plate connections in compression
Width ratio: 0.2 <
Bp/D≤1.0 for transverse branch plate connections
Material strength:
Fy≤52 ksi (360 MPa)
Ductility:
Fy/Fu≤0.8 Note: ASTM A500 Grade C is acceptable.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 143

16.1–144 HSS-TO-HSS TRUSS CONNECTIONS [Sect. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K1.2. (continued)
Available Strengths of
Plate-to-Rectangular HSS Connections
Connection Type Connection Available Strength
Longitudinal Plate T-, Y- and Cross- Limit State: HSS Plastification
Connections, Under Plate Axial Load
(K1-12)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Longitudinal Through Plate T- and Limit State: HSS Wall Plastification
Y-Connections, Under Plate Axial Load
(K1-13)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Longitudinal Plate T-Connections, Limit States: Plate Limit States and
Under Plate Shear Load HSS Punching Shear
For
Rn, see Chapter J.
Additionally, the following relationship
shall be met:
(K1-3)
R
Ft
t
B
l
B
t
B
Q
n
y
p
b p
fsinθ=

+−








2
1
2
41
R
Ft
t
B
l
B
t
B
Q
n
y
p
b p
fsinθ=

+−








2
1
2
41
2
t
F
F
t
p
u
yp≤
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 144

FUNCTIONS
Q
f
=1 for HSS (connecting surface) in tension
for HSS (connecting surface) in compression, for transverse
plate connections (K1-16)
for HSS (connecting surface) in compression, for longitudinal plate
and longitudinal through plate connections (K1-17)
where
Proand Mroare determined on the side of the joint that has
U the lower compression stress. Proand Mrorefer to required
strengths in the HSS. (K1-6)
Pro=Pufor LRFD; Pafor ASD. Mro=Mufor LRFD; Mafor ASD.
(K1-18)
k=outside corner radius of HSS ≥ 1.5 t
=− ≤13 04 10.. .
U
β
=−1
2
U
P
FA
M
FS
ro
cg
ro
c
=+ ,
B
B
Bt
B
ep
p
p=≤
10
Sect. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–145
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K1.2 (continued)
Available Strengths of
Plate-to-Rectangular HSS Connections
Connection Type Connection Available Strength
Cap Plate Connections, Limit State: Local Yielding
under Axial Load of Sidewalls
(K1-14a)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Local Crippling of Sidewalls,
When Plate is in Compression
(K1-15)
φ=0.75 (LRFD) Ω=2.00 (ASD)
RFttl tlB
n y pb pb=+( ) +( )<25 5 , when
RF tl B
ny pb=+ ( )≥A, when 5
Rt
l
B
t
t
EF
t
t
n
b
p
y
p=+














16 1
6
2
15
.
.
,whhen 5tl B
pb+( )<
(K1-14b)
AISC_PART 16_Spec.3_C:14th Ed._ 2/17/12 12:09 PM Page 145

For the purposes of this Specification, the centerlines of branch members and
chord members shall lie in a common plane. Rectangular HSS connections are fur-
ther limited to have all members oriented with walls parallel to the plane. For trusses
that are made with HSS that are connected by welding branch members to chord
members, eccentricities within the limits of applicability are permitted without con-
sideration of the resulting moments for the design of the connection.
1. Definitions of Parameters
Ag=gross cross-sectional area of member, in.
2
(mm
2
)
B=overall width of rectangular HSS main member, measured 90 °to the plane of
the connection, in. (mm)
B
b=overall width of rectangular HSS branch member, measured 90 °to the plane
of the connection, in. (mm)
D=outside diameter of round HSS main member, in. (mm)
D
b=outside diameter of round HSS branch member, in. (mm)
F
c=available stressin chord, ksi (MPa)
=F
yfor LRFD; 0.60F yfor ASD
F
y=specified minimum yield stressof HSS main member material, ksi (MPa)
F
yb=specified minimum yield stress of HSS branch member material, ksi (MPa)
F
u=specified minimum tensile strengthof HSS material, ksi (MPa)
H=overall height of rectangular HSS main member, measured in the plane of the
connection, in. (mm)
H
b=overall height of rectangular HSS branch member, measured in the plane of the
connection, in. (mm)
O
v=lov/lp×100, %
S=elastic section modulus of member, in.
3
(mm
3
)
e=eccentricity in a truss connection, positive being away from the branches, in.
(mm)
g=gap between toes of branch members in a gapped K-connection, neglecting the
welds, in. (mm)
l
b=Hb/sinθ, in. (mm)
l
ov=overlap length measured along the connecting face of the chord beneath the
two branches, in. (mm)
16.1–146 HSS-TO-HSS TRUSS CONNECTIONS [Sect. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K1.2A
Limits of Applicability of Table K1.2
Plate load angle: θ≥ 30°
HSS wall slenderness:
B/tor H/t ≤35 for loaded wall, for transverse branch plate
connections
B/tor H/t ≤40 for loaded wall, for longitudinal branch
plate and through plate connections
for loaded wall, for branch plate
shear loading
Width ratio: 0.25 ≤
Bp/B ≤1.0 for transverse branch plate connections
Material strength:
Fy ≤52 ksi (360 MPa)
Ductility:
Fy/Fu ≤0.8 Note: ASTM A500 Grade C is acceptable.
Btt Htt EF
y−( ) −( )≤33140or .
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 146

Sect. K3.] HSS-TO-HSS MOMENT CONNECTIONS 16.1–147
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
lp=projected length of the overlapping branch on the chord, in. (mm)
t=design wall thicknessof HSS main member, in. (mm)
t
b=design wall thickness of HSS branch member, in. (mm)
β=width ratio; the ratio of branch diameter to chord diameter =D
b/Dfor round
HSS; the ratio of overall branch width to chord width = B
b/Bfor rectangular
HSS
β
eff=effective widthratio; the sum of the perimeters of the two branch members in
a K-connection divided by eight times the chord width
γ=chord slenderness ratio; the ratio of one-half the diameter to the wall thickness
=D/2tfor round HSS; the ratio of one-half the width to wall thickness = B/2t
for rectangular HSS
η=loadlength parameter, applicable only to rectangular HSS; the ratio of the
length of contact of the branch with the chord in the plane of the connection to
the chord width =l
b/B
θ=acute angle between the branch and chord (degrees)
ζ=gap ratio; the ratio of the gap between the branches of a gapped K-connection
to the width of the chord =g/Bfor rectangular HSS
2. Round HSS
The available strengthof HSS-to-HSS truss connections within the limits in Table
K2.1A shall be taken as the lowest value of the applicable limit states shown in Table
K2.1.
3. Rectangular HSS
The available strengthof HSS-to-HSS truss connections within the limits in Table
K2.2A shall be taken as the lowest value of the applicable limit states shown in
Table K2.2.
K3. HSS-TO-HSS MOMENT CONNECTIONS
The design strength, φM n, and the allowable strength , M n/Ω, of connections shall be
determined in accordance with the provisions of this chapter and the provisions of
Section B3.6.
HSS-to-HSS moment connectionsare defined as connections that consist of one or
two branch membersthat are directly welded to a continuous chord that passes
through the connection, with the branch or branches loaded by bending moments.
A connection shall be classified as:
(a) A T-connectionwhen there is one branch and it is perpendicular to the chord and
as a Y-connectionwhen there is one branch but not perpendicular to the chord
(b) A cross-connection when there is a branch on each (opposite) side of the chord
For the purposes of this Specification, the centerlines of the branch member(s) and
the chord membershall lie in a common plane.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 147

Connection Type Connection Available Axial Strength
General Check Limit State: Shear Yielding
For T-, Y-, Cross- and (Punching)
K-Connections With Gap,
When
Db(tens/comp)<(D 2t)
(K2-1)
φ=0.95 (LRFD) Ω=1.58 (ASD)
T- and Y-Connections Limit State: Chord Plastification
(K2-2)
φ=0.90 (LRFD) Ω=1.67 (ASD)
Cross-Connections Limit State: Chord Plastification
(K2-3)
φ=0.90 (LRFD) Ω=1.67 (ASD)
K-Connections With Gap or Overlap Limit State: Chord Plastification
(K2-4)
(K2-5)
φ=0.90 (LRFD) Ω=1.67 (ASD)
16.1–148 HSS-TO-HSS MOMENT CONNECTIONS [Sect. K3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K2.1
Available Strengths of Round
HSS-to-HSS Truss Connections
PFtD
nyb=
+⎛





06
1
2
2

θ
θ
sin
sin
PFt Q
ny fsinθβγ=+ ( )
22 02
31 156..
.
PFt Q
ny fsinθ
β
=







257
1081
.
.
PF t
D
ny
bsin
compression branch
co
θ( ) =+
2
2 0 11 33..
m mp
D
QQ
gf






PP
nnsin sin
tension branch compression br
θθ( ) =( )
a anch
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 148

FUNCTIONS
Q
f
=1 for chord (connecting surface) in tension (K1-5a)
Ω1.0 0.3
U(1 θU) for HSS (connecting surface) in compression (K1-5b)
where
Proand Mroare determined on the side of the joint that has
U the lower compression stress. Proand Mrorefer to required (K1-6)
strengths in the HSS.
Pro=Pufor LRFD; Pafor ASD. Mro=Mufor LRFD; Mafor ASD.
(K2-6)
[a]
Note that exp(x) is equal to e
x
, where e = 2.71828 is the base of the natural logarithm.
Sect. K3.] HSS-TO-HSS MOMENT CONNECTIONS 16.1–149
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K2.1 (continued)
Available Strengths of Round
HSS-to-HSS Truss Connections
P
FA
M
FS
ro
cg
ro
c
=+ ,
Q
g
t
g=+







+




γ
γ
02
12
1
0 024
05
133 1
.
. .
.
.exp
⎢⎢









[a]
Joint eccentricity: -0.55 ≤ e/D≤0.25 for K-connections
Branch angle: θ≥ 30°
Chord wall slenderness:
D/t ≤50 for T-, Y- and K-connections
D/t ≤40 for cross-connections
Branch wall slenderness:
Db/tb ≤50 for compression branch
Db/tb ≤0.05E/Fybfor compression branch
Width ratio: 0.2 <
Db/D≤1.0 for T-, Y-, cross- and overlapped
K-connections
0.4 ≤
Db/D≤1.0 for gapped K-connections
Gap:
g ≥tbcomp+tbtensfor gapped K-connections
Overlap: 25% ≤
Ov≤100% for overlapped K-connections
Branch thickness:
tboverlapping ≤tboverlappedfor branches in overlapped
K-connections
Material strength:
Fyand Fyb ≤52 ksi (360 MPa)
Ductility:
Fy/Fuand Fyb/Fub ≤0.8 Note: ASTM A500 Grade C is acceptable.
TABLE K2.1A
Limits of Applicability of Table K2.1
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 149

Connection Type Connection Available Axial Strength
T-, Y- and Cross-Connections Limit State: Chord Wall Plastification, When β≤0.85
(K2-7)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Shear Yielding (Punching), When
(K2-8)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Limit State: Local Yielding of Chord Sidewalls,
When β=1.0
(K2-9)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Case for checking limit state of shear Limit State: Local Crippling of Chord Sidewalls,
of chord side walls When β=1.0 and Branch is in Compression,
for T- or Y-Connections
(K2-10)
φ=0.75 (LRFD) Ω=2.00 (ASD)
Limit State: Local Crippling of Chord Sidewalls,
When β=1.0 and Branches are in Compression,
for Cross-Connections
(K2-11)
φ=0.90 (LRFD) Ω=1.67 (ASD)
Limit State: Local Yielding of Branch/Branches Due
to Uneven Load Distribution, When β>0.85
(K2-12)
φ=0.95 (LRFD) Ω=1.58 (ASD)
16.1–150 HSS-TO-HSS MOMENT CONNECTIONS [Sect. K3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K2.2
Available Strengths of Rectangular
HSS-to-HSS Truss Connections
PFt Q
ny fsinθ
η
β β
=

()
+









22
1
4
1
085 1 1 10.<≤− <βγ orBt
PFtB
n y eopsinθηβ=+ ( )06 2 2.
PFtkl
nybsinθ= + ( )25
Pt
l
Ht
EF Q
n
b
yfsinθ= +







16 1
3
3
2
.
P
t
Ht
EF Q
ny fsinθ=







48
3
3
PFt H b t
n yb b b eoi b=+−( )22 4
b
Bt
Ft
Ft
BB
eoi
y
yb b
bb=





⎟≤
10
(K2-13)
where
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 150

Sect. K3.] HSS-TO-HSS MOMENT CONNECTIONS 16.1–151
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Connection Type Connection Available Axial Strength
Limit State: Shear of Chord Sidewalls
For Cross-Connections With θ<90° and Where
a Projected Gap is Created (See Figure).
Determine
Pnsinθin accordance with Section G5.
Gapped K-Connections Limit State: Chord Wall Plastification, for All β
(K2-14)
φ=0.90 (LRFD) Ω=1.67 (ASD)
Limit State: Shear Yielding (Punching),
when
Bb<Bβ2t
Do not check for square branches.
(K2-15)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Limit State: Shear of Chord Sidewalls,
in the Gap Region
Determine
Pnsinθin accordance
with Section G5.
Do not check for square chords.
Limit State: Local Yielding of Branch/Branches Due
to Uneven Load Distribution.
Do not check for square branches or if
B/t≥15.
(K2-16)
φ=0.95 (LRFD) Ω=1.58 (ASD)
(K2-13)
TABLE K2.2 (continued)
Available Strengths of Rectangular
HSS-to-HSS Truss Connections
PFt Q
nyefffsinθβγ= ( )
20 5
98.
.
PFtB
n y eopsinθηββ=++ ( )06 2.
PFt HBb t
n yb b b b eoi b=++−( )24
b
Bt
Ft
Ft
BB
eoi
y
yb b
bb=





⎟≤
10
T-, Y- and Cross-Connections
where
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 151

Connection Type Connection Available Axial Strength
Overlapped K-Connections Limit State: Local Yielding of Branch/Branches Due
to Uneven Load Distribution
φ=0.95 (LRFD) Ω=1.58 (ASD)
When 25% ≤
Ov<50%:
(K2-17)
When 50% ≤
Ov<80%:
(K2-18)
When 80% ≤
Ov<100%:
(K2-19)
(K2-20)
(K2-21)
Subscript
irefers to the overlapping branch
Subscript
jrefers to the overlapped branch
(K2-22)
16.1–152 HSS-TO-HSS MOMENT CONNECTIONS [Sect. K3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K2.2 (continued)
Available Strengths of Rectangular
HSS-to-HSS Truss Connections
PFt
O
Htbb
n i ybi bi
v
bi bi eoi eov,=− ( )++






50
24
PFtH tb b
n i ybi bi bi bi eoi eov,=−++( )24
PFt H tBb
n,i ybi bi bi bi bi eov=−++( )24
PP
FA
FA
n, j n,i
ybj bj
ybi bi=






b
Bt
Ft
Ft
BB
eoi
y
ybi bi
bi bi=





⎟≤
10
b
Bt
Ft
Ft
BB
eov
bj bj
ybj bj
ybi bi
bi bi=





⎟≤
10
FUNCTIONS
Q
f
=1 for chord (connecting surface) in tension (K1-5a)
for chord (connecting surface) in compression, for T-, Y- and
cross-connections (K1-16)
for chord (connecting surface) in compression, for gapped
K-connections (K2-23)
where
Proand Mroare determined on the side of the joint that has
U the higher compression stress. Proand Mrorefer to required
strengths in the HSS. (K1-6)
Pro=Pufor LRFD; Pafor ASD. Mro=Mufor LRFD; Mafor ASD.
(K2-24)
(K2-25)
=− ≤13 04 1..
U
β
=− ≤13 04 10.. .
U
effβ
P
FA
M
FS
ro
cg
ro
c
=+ ,
β
eff b b b bBH BH=+( ) ++( )
compression branch tensio on branch

⎣⎢

⎦⎥
4B
β
β
γ
β
eop=≤
5
Note that the force arrows shown for
overlapped K-connections may be
reversed;
iand jcontrol member identification.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 152

Sect. K3.] HSS-TO-HSS MOMENT CONNECTIONS 16.1–153
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Joint eccentricity: -0.55 ≤ e/H≤0.25 for K-connections
Branch angle: θ≥ 30°
Chord wall slenderness:
B/tand H/t ≤35 for gapped K-connections and T-, Y-
and cross-connections
B/t ≤30 for overlapped K-connections
H/t ≤35 for overlapped K-connections
Branch wall slenderness:
Bb/tband Hb/tb≤35 for tension branch
for compression branch of gapped
K-, T-, Y- and cross-connections
≤35 for compression branch of gapped K-, T-, Y-
and cross-connections
for compression branch of
overlapped K-connections
Width ratio:
Bb/Band Hb/B≥0.25 for T-, Y- cross- and overlapped
K-connections
Aspect ratio: 0.5 ≤
Hb/Bb≤2.0 and 0.5 ≤ H/B≤2.0
Overlap: 25% ≤
Ov≤100% for overlapped K-connections
Branch width ratio:
Bbi/Bbj ≥0.75 for overlapped K-connections, where
subscript
irefers to the overlapping branch and
subscript
jrefers to the overlapped branch
Branch thickness ratio:
tbi/tbj ≤1.0 for overlapped K-connections, where
subscript
irefers to the overlapping branch and
subscript
jrefers to the overlapped branch
Material strength:
Fyand Fyb ≤52 ksi (360 MPa)
Ductility:
Fy/Fuand Fyb/Fub≤0.8 Note: ASTM A500 Grade C is acceptable.
ADDITIONAL LIMITS FOR GAPPED K-CONNECTIONS
Width ratio:
β
eff ≥0.35
Gap ratio: ζ=
g/B≥0.5 (1 ≤ β eff)
Gap:
g ≥tbcompression branch+tbtension branch
Branch size: smaller Bb≥0.63 (larger Bb), if both branches are square
Note: Maximum gap size will be controlled by the e/Hlimit. If gap is large, treat as two Y-connections.
TABLE K2.2A
Limits of Applicability of Table K2.2
≤125.
E
F
yb
≤11.
E
F
yb
B
B
H
B
bb
and
≥+01
50
.
γ
AISC_PART 16_Spec.3_C_14th Ed._ 22/02/12 2:54 PM Page 153

1. Definitions of Parameters
Ag=gross cross-sectional area of member, in.
2
(mm
2
)
B=overall width of rectangular HSS main member, measured 90 °to the plane of
the connection, in. (mm)
B
b=overall width of rectangular HSS branch member, measured 90 ° to the plane
of the connection, in. (mm)
D=outside diameter of round HSS main member, in. (mm)
D
b=outside diameter of round HSS branch member, in. (mm)
F
c=available stress, ksi (MPa)
=F
yfor LRFD; 0.60F yfor ASD
F
y=specified minimum yield stressof HSS main member material, ksi (MPa)
F
yb=specified minimum yield stress of HSS branch member material, ksi (MPa)
F
u=specified minimum tensile strengthof HSS member material, ksi (MPa)
H=overall height of rectangular HSS main member, measured in the plane of the
connection, in. (mm)
H
b=overall height of rectangular HSS branch member, measured in the plane of the
connection, in. (mm)
S=elastic section modulus of member, in.
3
(mm
3
)
Z
b=Plastic section modulus of branch about the axis of bending, in.
3
(mm
3
)
t=design wall thicknessof HSS main member, in. (mm)
t
b=design wall thickness of HSS branch member, in. (mm)
β=width ratio
=D
b/Dfor round HSS; ratio of branch diameter to chord diameter
=B
b/Bfor rectangular HSS; ratio of overall branch width to chord width
γ=chord slenderness ratio
=D/2tfor round HSS; ratio of one-half the diameter to the wall thickness
=B/2tfor rectangular HSS; ratio of one-half the width to the wall thickness
η=loadlength parameter, applicable only to rectangular HSS
=l
b/B; the ratio of the length of contact of the branch with the chord in the plane
of the connection to the chord width, where l
b=Hb /sin θ
θ=acute angle between the branch and chord (degrees)
2. Round HSS
The available strengthof moment connections within the limits of Table K3.1A shall
be taken as the lowest value of the applicable limit statesshown in Table K3.1.
3. Rectangular HSS
The available strengthof moment connections within the limits of Table K3.2A shall
be taken as the lowest value of the applicable limit statesshown in Table K3.2.
K4. WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS
The design strength, φR n, φMnandφP n, and the allowable strength, R n/Ω, M n/Ωand
P
n/Ω, of connections shall be determined in accordance with the provisions of this
chapter and the provisions of Section B3.6.
16.1–154 HSS-TO-HSS MOMENT CONNECTIONS [Sect. K3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 154

Sect. K4.] WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS 16.1–155
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Connection Type Connection Available Flexural Strength
Branch(es) under In-Plane Bending Limit State: Chord Plastification
T-, Y- and Cross-Connections
(K3-1)
φ=0.90 (LRFD) Ω=1.67 (ASD)
Limit State: Shear Yielding (Punching),
When
Db<(D β2 t)
(K3-2)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Branch(es) under Out-of-Plane Bending Limit State: Chord Plastification
T-, Y- and Cross-Connections
(K3-3)
φ=0.90 (LRFD) Ω=1.67 (ASD)
Limit State: Shear Yielding (Punching),
When
Db<(D β2 t)
(K3-4)
φ=0.95 (LRFD) Ω=1.58 (ASD)
For T-, Y- and cross-connections, with branch(es) under combined axial load, in-plane bending
and out-of-plane bending, or any combination of these load effects:
(K3-5)
Mc-ip= φMn= design flexural strength for in-plane bending from Table K3.1, kip-in. (N-mm)
=
Mn/Ω= allowable flexural strength for in-plane bending from Table K3.1, kip-in. (N-mm)
Mc-op= φMn= design flexural strength for out-of-plane bending from Table K3.1, kip-in. (N-mm)
=
Mn/Ω= allowable flexural strength for out-of-plane bending from Table K3.1, kip-in. (N-mm)
Mr-ip= required flexural strength for in-plane bending, using LRFD or ASD load combinations,
as applicable, kip-in. (N-mm)
Mr-op= required flexural strength for out-of-plane bending, using LRFD or ASD load
combinations, as applicable, kip-in. (N-mm)
Pc= φPn= design axial strength from Table K2.1, kips (N)
=
Pn/Ω= allowable axial strength from Table K2.1, kips (N)
Pr= required axial strength using LRFD or ASD load combinations, as applicable, kips (N)
TABLE K3.1
Available Strengths of Round
HSS-to-HSS Moment Connections
MFtDQ
nyb fsinθγβ=539
205
.
.
MFtD
nyb=
+⎛





06
13
4
2
2
.
sin
sin
θ
θ
MFtD Q
nyb fsinθ
β
=







2 30
1081
.
.
MFtD
nyb=
+⎛





06
3
4
2
2
.
sin
sin
θ
θ
P
P
M
M
M
M
r
c
rip
c-ip
rop
c-op
+





⎟+





⎟≤
−−
2
10.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 155

16.1–156 WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS [Sect. K4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K3.1. (continued)
Available Strengths of Round
HSS-to-HSS Moment Connections
FUNCTIONS
Q
f
=1 for chord (connecting surface) in tension
=1.0 θ0.3
U(1 +U) for HSS (connecting surface) in compression (K1-5)
where
Proand Mroare determined on the side of the joint that has
U the lower compression stress. Proand Mrorefer to required
strengths in the HSS. (K1-6)
Pro=Pufor LRFD; Pafor ASD. Mro=Mufor LRFD; Mafor ASD.
P
FA
M
FS
ro
cg
ro
c
=+ ,
TABLE K3.1A
Limits of Applicability of Table K3.1
Branch angle: θ≥ 30°
Chord wall slenderness:
D/t ≤50 for T- and Y-connections
D/t ≤40 for cross-connections
Branch wall slenderness:
Db/tb ≤50
Db/tb ≤0.05E/Fyb
Width ratio: 0.2 < Db/D≤1.0
Material strength:
Fyand Fyb ≤52 ksi (360 MPa)
Ductility:
Fy/Fuand Fyb/Fub≤0.8 Note: ASTM A500 Grade C is acceptable.
AISC_PART 16_Spec.3_C:14th Ed._ 2/17/12 12:11 PM Page 156

Connection Type Connection Available Flexural Strength
Branch(es) under In-Plane Bending Limit State: Chord Wall Plastification, When β≤0.85
T- and Cross-Connections
(K3-6)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Sidewall Local Yielding, When β>0.85
(K3-7)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Local Yielding of Branch/Branches Due
to Uneven Load Distribution, When β>0.85
(K3-8)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Branch(es) under Out-of-Plane Bending Limit State: Chord Wall Plastification, When β≤0.85
T- and Cross-Connections
(K3-9)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Sidewall Local Yielding, When β>0.85
(K3-10)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Local Yielding of Branch/Branches Due
to Uneven Load Distribution, When β>0.85
(K3-11)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Sect. K4.] WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS 16.1–157
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K3.2.
Available Strengths of Rectangular
HSS-to-HSS Moment Connections
MFtH Q
nyb f=+

+

()








2 1
2
2
1 1η β
η
β
MFZ
b
B
BHt
nybb
eoi
b
bbb=−−














1
MFt
HBB
ny
bb=
+
()
−()
+
+
()
−()






2
05 1
1
21
1
. β
β
β
β
⎥⎥

Q
f
MFZ
b
B
Bt
nybb
eoi
b
bb=−−














05 1
2
2
.
Mn=0.5 F*yt(Hb+5t)
2
Mn=F*yt(B−t)(Hb+5t)
AISC_PART 16_Spec.3_C:14th Ed._ 2/17/12 12:12 PM Page 157

Connection Type Connection Available Flexural Strength
Branch(es) under Out-of-Plane Bending Limit State: Chord Distortional Failure, for
T- and Cross-Connections (continued) T-Connections and Unbalanced Cross-Connections
(K3-12)
φ=1.00 (LRFD) Ω=1.50 (ASD)
For T- and cross-connections, with branch(es) under combined axial load, in-plane bending
and out-of-plane bending, or any combination of these load effects:
(K3-13)
Mc-ip= φMn= design flexural strength for in-plane bending from Table K3.2, kip-in. (N-mm)
=
Mn/Ω= allowable flexural strength for in-plane bending from Table K3.2, kip-in. (N-mm)
Mc-op= φMn= design flexural strength for out-of-plane bending from Table K3.2, kip-in. (N-mm)
=
Mn/Ω= allowable flexural strength for out-of-plane bending from Table K3.2, kip-in. (N-mm)
Mr-ip= required flexural strength for in-plane bending, using LRFD or ASD load combinations,
as applicable, kip-in. (N-mm)
Mr-op= required flexural strength for out-of-plane bending, using LRFD or ASD load
combinations, as applicable, kip-in. (N-mm)
Pc= φPn= design axial strength from Table K2.2, kips (N)
=
Pn/Ω= allowable axial strength from Table K2.2, kips (N)
Pr= required axial strength using LRFD or ASD load combinations, as applicable, kips (N)
FUNCTIONS
Q
f
=1 for chord (connecting surface) in tension (K1-15)
for chord (connecting surface) in compression (K1-16)
where
Proand Mroare determined on the side of the joint that
U has the lower compression stress. Proand Mrorefer to required (K1-6)
strengths in the HSS.
Pro=Pufor LRFD; Pafor ASD. Mro=Mufor LRFD; Mafor ASD.
F*y=Fyfor T-connections and =0.8 Fyfor cross-connections
(K2-13)
16.1–158 WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS [Sect. K4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K3.2 (continued)
Available Strengths of Rectangular
HSS-to-HSS Moment Connections
MFtHtBHtBH
nyb=++ ( )

⎣⎢

⎦⎥
2
P
P
M
M
M
M
r
c
r-ip
c-ip
r-op
c-op
+





⎟+





⎟≤10.
=− ≤13 04 10.. .
U
β
=+
P
FA
M
FS
ro
cg
ro
c
,
b
Bt
Ft
Ft
BB
eoi
y
yb b
bb=





⎟≤
10
/
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 158

Sect. K4.] WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS 16.1–159
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The available strength of branch connections shall be determined for the limit state
of nonuniformity of load transfer along the line of weld, due to differences in rela-
tive stiffnessof HSSwalls in HSS-to-HSS connections and between elements in
transverse plate-to-HSS connections, as follows:
R
norPn= Fnwtwle (K4-1)
M
n-ip= FnwSip (K4-2)
M
n-op= FnwSop (K4-3)
For interaction, see Equation K3-13.
(a) For fillet welds
φ=0.75 (LRFD) Ω=2.00 (ASD)
(b) For partial-joint-penetration groove welds
φ=0.80 (LRFD) Ω=1.88 (ASD)
where
F
nw= nominal stressof weld metal(Chapter J) with no increase in strength due to
directionality of load, ksi (MPa)
S
ip= effective elastic section modulus of welds for in-plane bending (Table
K4.1), in.
3
(mm
3
)
S
op= effective elastic section modulus of welds for out-of-plane bending (Table
K4.1), in.
3
(mm
3
)
l
e= total effective weld length of groove and fillet welds to rectangular HSS for
weld strength calculations, in. (mm)
t
w= smallest effective weld throat around the perimeter of branch or plate, in.
(mm)
TABLE K3.2A
Limits of Applicability of Table K3.2
Branch angle: θ≅ 90°
Chord wall slenderness:
B/tand H/t ≤35
Branch wall slenderness:
Bb/tband Hb/tb ≤35
Width ratio:
Bb/B ≥0.25
Aspect ratio: 0.5 ≤
Hb/Bb≤2.0 and 0.5 ≤ H/B≤2.0
Material strength:
Fyand Fyb ≤52 ksi (360 MPa)
Ductility:
Fy/Fuand Fyb/Fub≤0.8 Note: ASTM A500 Grade C is acceptable.
≤125.
E
F
yb
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 159

16.1–160 WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS [Sect. K4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Connection Type Connection Weld Strength
Transverse Plate T- and Cross- Effective Weld Properties
Connections Under Plate Axial Load
(K4-4)
where
le=total effective weld length for
welds on both sides of the transverse plate
T-, Y- and Cross-Connections Under Effective Weld Properties
Branch Axial Load or Bending
(K4-5)
(K4-6)
(K4-7)
(K2-13)
When β>0.85 or θ>50°,
beoi/2 shall not
exceed 2
t.
Gapped K-Connections Under Effective Weld Properties
Branch Axial Load
When θ≤50°:
(K4-8)
When θ≥60°:
(K4-9)
When 50° <θ<60°, linear interpolation shall be
used to determine
le.
TABLE K4.1
Effective Weld Properties for
Connections to Rectangular HSS
l
Bt
Ft
Ft
BB
e
y
yp p
pp=











⎟≤2
10
2
l
H
b
e
b
eoi=+
2
2
sinθ
S
tH
tb
H
ip
wb
w eoi
b=






+






3
2
sin sinθθ
St
H
B
t
B
tBb
op w
b
b
w
b
w b eoi=






+ ()−
()−(
sinθ 3
3
2
))
3
B
b
b
Bt
Ft
Ft
BB
eoi
y
yb b
bb=





⎟≤
10
l
Ht
Bt
e
bb
bb=

( )
+−( )
212
212
.
.
sinθ
l
Ht
Bt
e
bb
bb=

( )
+−( )
212
12
.
.
sinθ
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 160

Connection Type Connection Weld Strength
Overlapped K-Connections Overlapping Member Effective Weld Properties
under Branch Axial Load (all dimensions are for the overlapping branch,
i)
When 25% ≤
Ov<50%:
(K4-10)
When 50% ≤
Ov<80%:
(K4-11)
When 80% ≤
Ov≤100%:
(K4-12)
(K2-20)
(K2-21)
when
Bbi/Bb> 0.85 or θ i>50°, beoi/2 shall not
exceed 2
tand when Bbi/Bbj> 0.85 or
(180 θ
i θj) > 50°, beov/2 shall not exceed 2tbj
Subscript irefers to the overlapping branch
Subscript
jrefers to the overlapped branch
(K4-13)
(K4-14)
When
Bbj/B> 0.85 or θ j>50°,
le, j=2 (Hbj 1.2tbj)/sinθ j
Sect. K4.] WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS 16.1–161
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K4.1 (continued)
Effective Weld Properties for
Connections to Rectangular HSS
l
OOHO
e,i
vvbi
i
v=−












+
2
50
1
100 100sinθHH
bb
bi
ij
eoi eov
sinθθ+( )
















++
l
OH O H
e,i
vbi
i
vbi=−












+21
100 100sinθ
ssinθθ
ij
eoi eov
bb
+
( )
















++
b
Bt
Ft
Ft
BB
eoi
y
ybi bi
bi bi=





⎟≤
10
b
Bt
Ft
Ft
BB
eov
bj bj
ybj bj
ybi bi
bi bi=





⎟≤
10
Note that the force arrows shown for
overlapped K-connections may be
reversed;
iand jcontrol member identification
l
OH O H
e,i
vbi
i
vbi=−












+21
100 100sinθ
ssinθθ
ij
bi eov
Bb
+
( )
















++
l
H
b
ej
bj
j
eoj,=+
2
2
sinθ
b
Bt
Ft
Ft
BB
eoj
y
ybj bj
bj bj=





⎟≤
10
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 161

When an overlapped K-connection has been designed in accordance with Table K2.2
of this chapter, and the branch membercomponent forces normal to the chord are
80% “balanced” (i.e., the branch member forces normal to the chord face differ by
no more than 20%), the “hidden” weld under an overlapping branch may be omitted
if the remaining welds to the overlapped branch everywhere develop the full capac-
ity of the overlapped branch member walls.
The weld checks in Table K4.1 are not required if the welds are capable of develop-
ing the full strength of the branch member wall along its entire perimeter (or a plate
along its entire length).
User Note:The approach used here to allow down-sizing of welds assumes a con-
stant weld size around the full perimeter of the HSS branch. Special attention
is required for equal width (or near-equal width) connections which combine
partial-joint-penetration groove welds along the matched edges of the connection,
with fillet welds generally across the main member face.
16.1–162 WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS [Sect. K4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 162

CHAPTER L
DESIGN FOR SERVICEABILITY
This chapter addresses serviceability design requirements.
The chapter is organized as follows:
L1. General Provisions
L2. Camber
L3. Deflections
L4. Drift
L5. Vibration
L6. Wind-Induced Motion
L7. Expansion and Contraction
L8. Connection Slip
L1. GENERAL PROVISIONS
Serviceabilityis a state in which the function of a building, its appearance, main-
tainability, durability and comfort of its occupants are preserved under normal usage.
Limiting values of structural behavior for serviceability (such as maximum deflec-
tions and accelerations) shall be chosen with due regard to the intended function of
the structure. Serviceability shall be evaluated using appropriate load combinations
for the serviceability limit statesidentified.
User Note: Serviceability limit states, service loads, and appropriate load combi-
nations for serviceabilityrequirements can be found in ASCE/SEI 7, Appendix C
and Commentary to Appendix C. The performance requirements for serviceabil-
ity in this chapter are consistent with those requirements. Service loads, as
stipulated herein, are those that act on the structure at an arbitrary point in time
and are not usually taken as the nominal loads.
L2. CAMBER
Where camberis used to achieve proper position and location of the structure, the
magnitude, direction and location of camber shall be specified in the structural
drawings.
L3. DEFLECTIONS
Deflections in structural members and structural systemsunder appropriate service
load combinationsshall not impair the serviceabilityof the structure.
16.1–163
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 163

16.1–164 DEFLECTIONS [Sect. L3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:Conditions to be considered include levelness of floors, alignment of
structural members, integrity of building finishes, and other factors that affect the
normal usage and function of the structure. For composite members, the addi-
tional deflections due to the shrinkage and creep of the concrete should be
considered.
L4. DRIFT
Driftof a structure shall be evaluated under service loadsto provide for serviceabil-
ityof the structure, including the integrity of interior partitions and exterior cladding.
Drift under strength load combination s shall not cause collision with adjacent struc-
tures or exceed the limiting values of such drifts that may be specified by the
applicable building code.
L5. VIBRATION
The effect of vibration on the comfort of the occupants and the function of the struc-
ture shall be considered. The sources of vibration to be considered include pedestrian
loading, vibrating machinery and others identified for the structure.
L6. WIND-INDUCED MOTION
The effect of wind-induced motion of buildings on the comfort of occupants shall be
considered.
L7. EXPANSION AND CONTRACTION
The effects of thermal expansion and contraction of a building shall be considered.
Damage to building claddingcan cause water penetration and may lead to corrosion.
L8. CONNECTION SLIP
The effects of connection slip shall be included in the design where slip at bolted
connections may cause deformations that impair the serviceabilityof the structure.
Where appropriate, the connection shall be designed to preclude slip.
User Note:For the design of slip-critical connections, see Sections J3.8 and J3.9.
For more information on connection slip, refer to the RCSC Specification for
Structural Joints Using High-Strength Bolts.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 164

16.1–165
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER M
FABRICATION AND ERECTION
This chapter addresses requirements for shop drawings, fabrication, shop painting and
erection.
The chapter is organized as follows:
M1. Shop and Erection Drawings
M2. Fabrication
M3. Shop Painting
M4. Erection
M1. SHOP AND ERECTION DRAWINGS
Shop and erection drawings are permitted to be prepared in stages. Shop drawings
shall be prepared in advance of fabrication and give complete information necessary
for the fabrication of the component parts of the structure, including the location,
type and size of welds and bolts. Erection drawings shall be prepared in advance of
erection and give information necessary for erection of the structure. Shop and erec-
tion drawings shall clearly distinguish between shop and field welds and bolts and
shall clearly identify pretensioned and slip-critical high-strength bolted connections.
Shop and erection drawings shall be made with due regard to speed and economy in
fabrication and erection.
M2. FABRICATION
1. Cambering, Curving and Straightening
Local application of heat or mechanical means is permitted to be used to introduce
or correct camber, curvature and straightness. The temperature of heated areas shall
not exceed 1,100 °F (593 °C) for ASTM A514/A514M and ASTM A852/A852M
steel nor 1,200 °F (649 °C) for other steels.
2. Thermal Cutting
Thermally cutedges shall meet the requirements of AWS D1.1/D1.1M, subclauses
5.15.1.2, 5.15.4.3 and 5.15.4.4 with the exception that thermally cut free edges that
will not be subject to fatigueshall be free of round-bottom gouges greater than
3
/16
in. (5 mm) deep and sharp V-shaped notches. Gouges deeper than
3
/16in. (5 mm) and
notches shall be removed by grinding or repaired by welding.
Reentrantcorners shall be formed with a curved transition. The radius need not
exceed that required to fit the connection. The surface resulting from two straight
torch cuts meeting at a point is not considered to be curved. Discontinuous corners
are permitted where the material on both sides of the discontinuous reentrant corner
are connected to a mating piece to prevent deformation and associated stress con-
centrationat the corner.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 165

16.1–166 FABRICATION [Sect. M2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note: Reentrant corners with a radius of
1
/2to
3
/8in. (13 to 10 mm) are
acceptable for statically loaded work. Where pieces need to fit tightly together, a
discontinuous reentrant corner is acceptable if the pieces are connected close to
the corner on both sides of the discontinuous corner. Slots in HSSfor gussets may
be made with semicircular ends or with curved corners. Square ends are accept-
able provided the edge of the gusset is welded to the HSS.
Weld access holes shall meet the geometrical requirements of Section J1.6. Beam
copesand weld access holes in shapes that are to be galvanized shall be ground to
bright metal. For shapes with a flange thickness not exceeding 2 in. (50 mm), the
roughness of thermally cut surfaces of copes shall be no greater than a surface rough-
ness value of 2,000 μin. (50 μm) as defined in ASME B46.1. For beam copes and
weld access holes in which the curved part of the access hole is thermally cut in
ASTM A6/A6M hot-rolled shapes with a flange thickness exceeding 2 in. (50 mm)
and welded built-up shapeswith material thickness greater than 2 in. (50 mm), a pre-
heat temperature of not less than 150 °F (66 °C) shall be applied prior to thermal
cutting. The thermally cut surface of access holes in ASTM A6/A6M hot-rolled
shapes with a flange thickness exceeding 2 in. (50 mm) and built-up shapes with a
material thickness greater than 2 in. (50 mm) shall be ground.
User Note:The AWS Surface Roughness Guide for Oxygen Cutting (AWS C4.1-
77) sample 2 may be used as a guide for evaluating the surface roughness of copes
in shapes with flanges not exceeding 2 in. (50 mm) thick.
3. Planing of Edges
Planing or finishing of sheared or thermally cut edges of plates or shapes is not
required unless specifically called for in the construction documents or included in a
stipulated edge preparation for welding.
4. Welded Construction
The technique of welding, the workmanship, appearance, and quality of welds, and
the methods used in correcting nonconforming work shall be in accordance with
AWS D1.1/D1.1M except as modified in Section J2.
5. Bolted Construction
Parts of bolted members shall be pinned or bolted and rigidly held together during
assembly. Use of a drift pin in bolt holes during assembly shall not distort the metal
or enlarge the holes. Poor matching of holes shall be cause for rejection.
Bolt holes shall comply with the provisions of the RCSC Specification for Structural
Joints Using High-Strength Bolts, hereafter referred to as the RCSC Specification,
Section 3.3 except that thermally cutholes are permitted with a surface roughness
profile not exceeding 1,000 μin. (25 μ m) as defined in ASME B46.1. Gouges shall not
exceed a depth of
1
/16in. (2 mm). Water jet cut holes are also permitted.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 166

Sect. M2.] FABRICATION 16.1–167
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note: The AWS Surface Roughness Guide for Oxygen Cutting (AWS C4.1-
77) sample 3 may be used as a guide for evaluating the surface roughness of
thermally cut holes.
Fully inserted finger shims, with a total thickness of not more than
1
/4in. (6 mm)
within a joint, are permitted without changing the strength (based upon hole type) for
the design of connections. The orientation of such shims is independent of the direc-
tion of application of the load.
The use of high-strength bolts shall conform to the requirements of the RCSC
Specification, except as modified in Section J3.
6. Compression Joints
Compression joints that depend on contact bearingas part of the splice strength shall
have the bearing surfaces of individual fabricated pieces prepared by milling, sawing
or other suitable means.
7. Dimensional Tolerances
Dimensional tolerances shall be in accordance with Chapter 6 of the AISC Code of
Standard Practice for Steel Buildings and Bridges, hereafter referred to as the Code
of Standard Practice.
8. Finish of Column Bases
Columnbases and base plates shall be finished in accordance with the following
requirements:
(1) Steel bearing plates 2 in. (50 mm) or less in thickness are permitted without
milling provided a satisfactory contact bearing is obtained. Steel bearing plates
over 2 in. (50 mm) but not over 4 in. (100 mm) in thickness are permitted to be
straightened by pressing or, if presses are not available, by milling for bearing sur-
faces, except as noted in subparagraphs 2 and 3 of this section, to obtain a
satisfactory contact bearing. Steel bearing plates over 4 in. (100 mm) in thickness
shall be milled for bearing surfaces, except as noted in subparagraphs 2 and 3 of
this section.
(2) Bottom surfaces of bearing plates and column bases that are grouted to ensure
full bearing contact on foundations need not be milled.
(3) Top surfaces of bearing plates need not be milled when complete-joint-penetra-
tion groove weldsare provided between the column and the bearing plate.
9. Holes for Anchor Rods
Holes for anchor rods are permitted to be thermally cut in accordance with the pro-
visions of Section M2.2.
10. Drain Holes
When water can collect inside HSSor box members, either during construction or
during service, the member shall be sealed, provided with a drain hole at the base, or
protected by other suitable means.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 167

11. Requirements for Galvanized Members
Members and parts to be galvanized shall be designed, detailed and fabricated to pro-
vide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup
in enclosed parts.
User Note:See The Design of Products to be Hot-Dip Galvanized After Fabrication,
American Galvanizer’s Association, and ASTM A123, A153, A384 and A780 for
useful information on design and detailing of galvanized members. See Section
M2.2 for requirements for copes of members to be galvanized.
M3. SHOP PAINTING
1. General Requirements
Shop painting and surface preparation shall be in accordance with the provisions in
Chapter 6 of the Code of Standard Practice.
Shop paint is not required unless specified by the contract documents.
2. Inaccessible Surfaces
Except for contact surfaces, surfaces inaccessible after shop assembly shall be cleaned
and painted prior to assembly, if required by the construction documents.
3. Contact Surfaces
Paint is permitted in bearing-type connections. For slip-critical connections, the fay-
ing surfacerequirements shall be in accordance with the RCSC Specification,
Section 3.2.2(b).
4. Finished Surfaces
Machine-finished surfaces shall be protected against corrosion by a rust inhibitive
coating that can be removed prior to erection, or which has characteristics that make
removal prior to erection unnecessary.
5. Surfaces Adjacent to Field Welds
Unless otherwise specified in the design documents, surfaces within 2 in. (50 mm)
of any field weld location shall be free of materials that would prevent proper weld-
ing or produce objectionable fumes during welding.
M4. ERECTION
1. Column Base Setting
Columnbases shall be set level and to correct elevation with full bearing on concrete
or masonry as defined in Chapter 7 of the Code of Standard Practice .
16.1–168 FABRICATION [Sect. M2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 168

Sect. M4.] ERECTION 16.1–169
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Stability and Connections
The frame of structural steel buildings shall be carried up true and plumb within the
limits defined in Chapter 7 of the Code of Standard Practice. As erection progresses,
the structure shall be secured to support dead, erection and other loads anticipated
to occur during the period of erection. Temporary bracingshall be provided, in
accordance with the requirements of the Code of Standard Practice, wherever nec-
essary to support the loads to which the structure may be subjected, including
equipment and the operation of same. Such bracing shall be left in place as long as
required for safety.
3. Alignment
No permanent bolting or welding shall be performed until the adjacent affected por-
tions of the structure have been properly aligned.
4. Fit of Column Compression Joints and Base Plates
Lack of contact bearing not exceeding a gap of
1
/16in. (2 mm), regardless of the type
of spliceused (partial-joint-penetration groove weldedor bolted), is permitted. If the
gap exceeds
1
/16in. (2 mm), but is equal to or less than
1
/4in. (6 mm), and if an engi-
neering investigation shows that sufficient contact area does not exist, the gap shall
be packed out with nontapered steel shims. Shims need not be other than mild steel,
regardless of the grade of the main material.
5. Field Welding
Surfaces in and adjacent to jointsto be field welded shall be prepared as necessary
to assure weld quality. This preparation shall include surface preparation necessary
to correct for damage or contamination occurring subsequent to fabrication.
6. Field Painting
Responsibility for touch-up painting, cleaning and field painting shall be allocated in
accordance with accepted local practices, and this allocation shall be set forth explic-
itly in the contract documents.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 169

16.1–170
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER N
QUALITY CONTROL AND QUALITY ASSURANCE
This chapter addresses minimum requirements for quality control, quality assuranceand
nondestructive testingfor structural steelsystems and steel elements of composite members
for buildings and other structures.
User Note: This chapter does not address quality control or quality assurance for con-
crete reinforcing bars, concrete materials or placement of concrete for composite
members. This chapter does not address quality control or quality assurance for surface
preparation or coatings.
User Note:The inspection of steel (open-web) joists and joist girders, tanks, pressure
vessels, cables, cold-formed steel products, or gage metal products is not addressed in
this Specification.
The Chapter is organized as follows:
N1. Scope
N2. Fabricator and Erector Quality Control Program
N3. Fabricator and Erector Documents
N4. Inspection and Nondestructive Testing Personnel
N5. Minimum Requirements for Inspection of Structural Steel Buildings
N6. Minimum Requirements for Inspection of Composite Construction
N7. Approved Fabricators and Erectors
N8. Nonconforming Material and Workmanship
N1. SCOPE
Quality control(QC) as specified in this chapter shall be provided by the fabricator
and erector. Quality assurance(QA) as specified in this chapter shall be provided by
others when required by the authority having jurisdiction (AHJ), applicable building
code (ABC), purchaser, owner, or engineer of record (EOR). Nondestructive testing
(NDT) shall be performed by the agency or firm responsible for quality assurance,
except as permitted in accordance with Section N7.
User Note:The QA/QC requirements in Chapter N are considered adequate and
effective for most steel structures and are strongly encouraged without modifica-
tion. When the ABC and AHJ requires the use of a quality assurance plan, this
chapter outlines the minimum requirements deemed effective to provide satisfac-
tory results in steel building construction. There may be cases where supplemental
inspections are advisable. Additionally, where the contractor’s quality control pro-
gramhas demonstrated the capability to perform some tasks this plan has assigned
to quality assurance, modification of the plan could be considered.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 170

Sect. N3.] FABRICATOR AND ERECTOR DOCUMENTS 16.1–171
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:The producers of materials manufactured in accordance with standard
specificationsreferenced in Section A3 in this Specification, and steel deck man-
ufacturers, are not considered to be fabricators or erectors.
N2. FABRICATOR AND ERECTOR QUALITY CONTROL PROGRAM
The fabricator and erector shall establish and maintain quality controlprocedures and
perform inspections to ensure that their work is performed in accordance with this
Specification and the construction documents.
Material identification procedures shall comply with the requirements of Section 6.1
of the Code of Standard Practice, and shall be monitored by the fabricator’s quality
control inspector(QCI).
The fabricator’s QCI shall inspect the following as a minimum, as applicable:
(1) Shop welding, high-strength bolting, and details in accordance with Section N5
(2) Shop cut and finished surfacesin accordance with Section M2
(3) Shop heating for straightening, cambering and curving in accordance with
Section M2.1
(4) Tolerances for shop fabrication in accordance with Section 6 of the Code of
Standard Practice
The erector’s QCI shall inspect the following as a minimum, as applicable:
(1) Field welding, high-strength bolting, and details in accordance with Section N5
(2) Steel deck and headed steel stud anchor placement and attachment in accordance
with Section N6
(3) Field cut surfaces in accordance with Section M2.2
(4) Field heating for straightening in accordance with Section M2.1
(5) Tolerances for field erection in accordance with Section 7.13 of the Code of
Standard Practice.
N3. FABRICATOR AND ERECTOR DOCUMENTS
1. Submittals for Steel Construction
The fabricator or erector shall submit the following documents for review by the
engineer of record(EOR) or the EOR’s designee, in accordance with Section 4 or
A4.4 of the Code of Standard Practice , prior to fabrication or erection, as applicable:
(1) Shop drawings, unless shop drawings have been furnished by others
(2) Erection drawings, unless erection drawings have been furnished by others
2. Available Documents for Steel Construction
The following documents shall be available in electronic or printed form for review
by the EOR or the EOR’s designee prior to fabrication or erection, as applicable,
unless otherwise required in the contract documents to be submitted:
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 171

16.1–172 FABRICATOR AND ERECTOR DOCUMENTS [Sect. N3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) For main structural steel elements, copies of material test reports in accordance
with Section A3.1.
(2) For steel castings and forgings, copies of material test reports in accordance with
Section A3.2.
(3) For fasteners, copies of manufacturer’s certifications in accordance with Section
A3.3.
(4) For deck fasteners, copies of manufacturer’s product data sheets or catalog data.
The data sheets shall describe the product, limitations of use, and recommended
or typical installation instructions.
(5) For anchor rods and threaded rods, copies of material test reports in accordance
with Section A3.4.
(6) For welding consumables, copies of manufacturer’s certifications in accordance
with Section A3.5.
(7) For headed stud anchors, copies of manufacturer’s certifications in accordance
with Section A3.6.
(8) Manufacturer’s product data sheets or catalog data for welding filler metalsand
fluxes to be used. The data sheets shall describe the product, limitations of use,
recommended or typical welding parameters, and storage and exposure require-
ments, including baking, if applicable.
(9) Welding procedure specifications (WPSs).
(10) Procedure qualification records (PQRs) for WPSs that are not prequalified in
accordance with AWS D1.1/D1.1M or AWS D1.3/D1.3M, as applicable.
(11) Welding personnel performance qualification records (WPQR) and continuity
records.
(12) Fabricator’s or erector’s, as applicable, written quality control manual that shall
include, as a minimum:
(i) Material control procedures
(ii) Inspection procedures
(iii) Nonconformance procedures
(13) Fabricator’s or erector’s, as applicable, QC inspector qualifications.
N4. INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL
1. Quality Control Inspector Qualifications
Quality control(QC) welding inspection personnel shall be qualified to the satisfac-
tion of the fabricator’s or erector’s QC program, as applicable, and in accordance
with either of the following:
(a) Associate welding inspectors (AWI) or higher as defined in AWS B5.1, Standard
for the Qualification of Welding Inspectors, or
(b) Qualified under the provisions of AWS D1.1/D1.1M subclause 6.1.4
QC bolting inspection personnel shall be qualified on the basis of documented train-
ing and experience in structural bolting inspection.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 172

2. Quality Assurance Inspector Qualifications
Quality assurance(QA) welding inspectors shall be qualified to the satisfaction of
the QA agency’s written practice, and in accordance with either of the following:
(a) Welding inspectors (WIs) or senior welding inspectors (SWIs), as defined in AWS
B5.1, Standard for the Qualification of Welding Inspectors, except associate weld-
ing inspectors (AWIs) are permitted to be used under the direct supervision of
WIs, who are on the premises and available when weld inspection is being con-
ducted, or
(b) Qualified under the provisions of AWS D1.1/D1.1M, subclause 6.1.4
QA bolting inspection personnel shall be qualified on the basis of documented train-
ing and experience in structural bolting inspection.
3. NDT Personnel Qualifications
Nondestructive testingpersonnel, for NDT other than visual, shall be qualified in
accordance with their employer’s written practice, which shall meet or exceed the
criteria of AWS D1.1/D1.1M Structural Welding Code—Steel, subclause 6.14.6, and:
(a) American Society for Nondestructive Testing (ASNT) SNT-TC-1A, Recommended
Practice for the Qualification and Certification of Nondestructive Testing Personnel,
or
(b) ASNT CP-189, Standard for the Qualification and Certification of Nondestructive
Testing Personnel.
N5. MINIMUM REQUIREMENTS FOR INSPECTION OF STRUCTURAL
STEEL BUILDINGS
1. Quality Control
QC inspection tasks shall be performed by the fabricator’s or erector’s quality con-
trol inspector(QCI), as applicable, in accordance with Sections N5.4, N5.6 and
N5.7.
Tasks in Tables N5.4-1 through N5.4-3 and Tables N5.6-1 through N5.6-3 listed for
QC are those inspections performed by the QCI to ensure that the work is performed
in accordance with the construction documents.
For QC inspection, the applicable construction documents are the shop drawingsand
the erection drawings, and the applicable referenced specifications, codes and stan-
dards.
User Note:The QCI need not refer to the design drawingsand project specifica-
tions. The Code of Standard Practice, Section 4.2(a), requires the transfer of
information from the Contract Documents (design drawings and project specifi-
cation) into accurate and complete shop and erection drawings, allowing QC
inspection to be based upon shop and erection drawings alone.
Sect. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–173
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 173

2. Quality Assurance
Quality assurance(QA) inspection of fabricated items shall be made at the fabrica-
tor’s plant. The quality assurance inspector(QAI) shall schedule this work to
minimize interruption to the work of the fabricator.
QA inspection of the erected steel system shall be made at the project site. The QAI
shall schedule this work to minimize interruption to the work of the erector.
The QAI shall review the material test reports and certifications as listed in Section
N3.2 for compliance with the construction documents .
QA inspection tasks shall be performed by the QAI, in accordance with Sections
N5.4, N5.6 and N5.7.
Tasks in Tables N5.4-1 through N5.4-3 and N5.6-1 through N5.6-3 listed for QA are
those inspections performed by the QAI to ensure that the work is performed in
accordance with the construction documents.
Concurrent with the submittal of such reports to the AHJ, EOR or owner, the QA
agency shall submit to the fabricator and erector:
(1) Inspection reports
(2)Nondestructive testingreports
3. Coordinated Inspection
Where a task is noted to be performed by both QC and QA, it is permitted to coor-
dinate the inspection function between the QCI and QAI so that the inspection
functions are performed by only one party. Where QA relies upon inspection func-
tions performed by QC, the approval of the engineer of record and the authority
having jurisdictionis required.
4. Inspection of Welding
Observation of welding operations and visual inspection of in-process and completed
welds shall be the primary method to confirm that the materials, procedures and
workmanship are in conformance with the construction documents . For structural
steel, all provisions of AWS D1.1/D1.1M Structural Welding Code—Steelfor stati-
cally loadedstructures shall apply.
User Note:Section J2 of this Specification contains exceptions to AWS
D1.1/D1.1M.
As a minimum, welding inspection tasks shall be in accordance with Tables N5.4-
1, N5.4-2 and N5.4-3. In these tables, the inspection tasks are as follows:
O – Observe these items on a random basis. Operations need not be delayed pending
these inspections.
P – Perform these tasks for each welded joint or member.
16.1–174 MINIMUM REQUIREMENTS FOR INSPECTION [Sect. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 174

Sect. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–175
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE N5.4-1
Inspection Tasks Prior to Welding
Inspection Tasks Prior to Welding QC QA
Welding procedure specifications (WPSs) available P P
Manufacturer certifications for welding consumables available P P
Material identification (type/grade) O O
Welder identification system
1
OO
Fit-up of groove welds (including joint geometry)
• Joint preparation
• Dimensions (alignment, root opening, root face, bevel)
• Cleanliness (condition of steel surfaces)
OO
• Tacking (tack weld quality and location)
• Backing type and fit (if applicable)
Configuration and finish of access holes O O
Fit-up of fillet welds
• Dimensions (alignment, gaps at root)
• Cleanliness (condition of steel surfaces)
OO
• Tacking (tack weld quality and location)
Check welding equipment O —
1
The fabricator or erector, as applicable, shall maintain a system by which a welder who has welded a joint
or member can be identified. Stamps, if used, shall be the low-stress type.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 175

16.1–176 MINIMUM REQUIREMENTS FOR INSPECTION [Sect. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE N5.4-2
Inspection Tasks During Welding
Inspection Tasks During Welding QC QA
Use of qualified welders O O
Control and handling of welding consumables
• Packaging O O
• Exposure control
No welding over cracked tack welds O O
Environmental conditions
• Wind speed within limits O O
• Precipitation and temperature
WPS followed
• Settings on welding equipment
• Travel speed
• Selected welding materials
OO
• Shielding gas type/flow rate
• Preheat applied
• Interpass temperature maintained (min./max.)
• Proper position (F, V, H, OH)
Welding techniques
• Interpass and final cleaning
OO
• Each pass within profile limitations
• Each pass meets quality requirements
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 176

Sect. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–177
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5. Nondestructive Testing of Welded Joints
5a. Procedures
Ultrasonic testing (UT), magnetic particle testing (MT), penetrant testing (PT) and
radiographic testing (RT), where required, shall be performed by QA in accordance
with AWS D1.1/D1.1M. Acceptance criteria shall be in accordance with AWS
D1.1/D1.1M for statically loadedstructures, unless otherwise designated in the
design drawingsor project specifications.
5b. CJP Groove Weld NDT
For structures in Risk Category III or IV of Table 1.5-1, Risk Category of Buildings
and Other Structures for Flood, Wind, Snow, Earthquake and Ice Loads, of ASCE/
SEI 7, Minimum Design Loads for Buildings and Other Structures, UT shall be per-
formed by QA on all CJP groove welds subject to transversely applied tension
loading in butt, T- and corner joints, in materials
5
/16in. (8 mm) thick or greater. For
structures in Risk Category II, UT shall be performed by QA on 10% of CJP groove
welds in butt, T- and corner joints subject to transversely applied tension loading, in
materials
5
/16in. (8 mm) thick or greater.
TABLE N5.4-3
Inspection Tasks After Welding
Inspection Tasks After Welding QC QA
Welds cleaned O O
Size, length and location of welds P P
Welds meet visual acceptance criteria
Crack prohibition
Weld/base-metal fusion
Crater cross section
PP
Weld profiles
Weld size
Undercut
Porosity
Arc strikes P P
k-area
1
PP
Backing removed and weld tabs removed (if required) P P
Repair activities P P
Document acceptance or rejection of welded joint or member P P
1
When welding of doubler plates, continuity plates or stiffeners has been performed in the k-area, visually
inspect the web
k-area for cracks within 3 in. (75 mm) of the weld.
AISC_PART 16_Spec.3_C:14th Ed._ 2/17/12 12:14 PM Page 177

16.1–178 MINIMUM REQUIREMENTS FOR INSPECTION [Sect. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note: For structures in Risk Category I, NDT of CJP groove welds is not
required. For all structures in all Risk Categories, NDT of CJP groove welds in
materials less than
5
/16in. (8 mm) thick is not required.
5c. Access Hole NDT
Thermally cutsurfaces of access holes shall be tested by QA using MT or PT, when
the flange thickness exceeds 2 in. (50 mm) for rolled shapes, or when the web thick-
ness exceeds 2 in. (50 mm) for built-up shapes. Any crack shall be deemed
unacceptable regardless of size or location.
User Note:See Section M2.2.
5d. Welded Joints Subjected to Fatigue
When required by Appendix 3, Table A-3.1, welded joints requiring weld soundness
to be established by radiographic or ultrasonic inspection shall be tested by QA as
prescribed. Reduction in the rate of UT is prohibited.
5e. Reduction of Rate of Ultrasonic Testing
The rate of UT is permitted to be reduced if approved by the EOR and the AHJ.
Where the initial rate for UT is 100%, the NDT rate for an individual welder or weld-
ing operator is permitted to be reduced to 25%, provided the reject rate, the number
of welds containing unacceptable defects divided by the number of welds completed,
is demonstrated to be 5% or less of the welds tested for the welder or welding
operator. A sampling of at least 40 completed welds for a job shall be made for
such reduction evaluation. For evaluating the reject rate of continuous welds over
3 ft (1 m) in length where the effective throat is 1 in. (25 mm) or less, each 12 in.
(300 mm) increment or fraction thereof shall be considered as one weld. For evalu-
ating the reject rate on continuous welds over 3 ft (1 m) in length where the effective
throat is greater than 1 in. (25 mm), each 6 in. (150 mm) of length or fraction thereof
shall be considered one weld.
5f. Increase in Rate of Ultrasonic Testing
For structures in Risk Category II, where the initial rate for UT is 10%, the NDT rate
for an individual welder or welding operator shall be increased to 100% should the
reject rate, the number of welds containing unacceptable defects divided by the num-
ber of welds completed, exceeds 5% of the welds tested for the welder or welding
operator. A sampling of at least 20 completed welds for a job shall be made prior
to implementing such an increase. When the reject rate for the welder or welding
operator, after a sampling of at least 40 completed welds, has fallen to 5% or less, the
rate of UT shall be returned to 10%. For evaluating the reject rate of continuous
welds over 3 ft (1 m) in length where the effective throat is 1 in. (25 mm) or less,
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 178

Sect. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–179
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
each 12-in. (300 mm) increment or fraction thereof shall be considered as one weld.
For evaluating the reject rate on continuous welds over 3 ft (1 m) in length where the
effective throat is greater than 1 in. (25 mm), each 6 in. (150 mm) of length or frac-
tion thereof shall be considered one weld.
5g. Documentation
All NDT performed shall be documented. For shop fabrication, the NDT report shall
identify the tested weld by piece mark and location in the piece. For field work, the
NDT report shall identify the tested weld by location in the structure, piece mark, and
location in the piece.
When a weld is rejected on the basis of NDT, the NDT record shall indicate the loca-
tion of the defect and the basis of rejection.
6. Inspection of High-Strength Bolting
Observation of bolting operations shall be the primary method used to confirm
that the materials, procedures and workmanship incorporated in construction are in
conformance with the construction documentsand the provisions of the RCSC
Specification.
(1) For snug-tight joints, pre-installation verification testing as specified in Table
N5.6-1 and monitoring of the installation procedures as specified in Table
N5.6-2 are not applicable. The QCI and QAI need not be present during the
installation of fastenersin snug-tight joints.
(2) For pretensioned jointsand slip-critical joints, when the installer is using the
turn-of-nut methodwith matchmarking techniques, the direct-tension-indicator
method, or the twist-off-type tension control bolt method, monitoring of bolt pre-
tensioning procedures shall be as specified in Table N5.6-2. The QCI and QAI
need not be present during the installation of fasteners when these methods are
used by the installer.
(3) For pretensioned joints and slip-critical joints, when the installer is using the
calibrated wrench method or the turn-of-nut method without matchmarking,
monitoring of bolt pretensioning procedures shall be as specified in Table
N5.6-2. The QCI and QAI shall be engaged in their assigned inspection duties
during installation of fasteners when these methods are used by the installer.
As a minimum, bolting inspection tasks shall be in accordance with Tables
N5.6-1, N5.6-2 and N5.6-3. In these tables, the inspection tasks are as follows:
O – Observe these items on a random basis. Operations need not be delayed pending
these inspections.
P – Perform these tasks for each bolted connection.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 179

16.1–180 MINIMUM REQUIREMENTS FOR INSPECTION [Sect. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE N5.6-1
Inspection Tasks Prior to Bolting
Inspection Tasks Prior to Bolting QC QA
Manufacturer’s certifications available for fastener materials O P
Fasteners marked in accordance with ASTM requirements O O
Proper fasteners selected for the joint detail (grade, type, bolt length
if threads are to be excluded from shear plane)
OO
Proper bolting procedure selected for joint detail O O
Connecting elements, including the appropriate faying surface condition
and hole preparation, if specified, meet applicable requirements
OO
Pre-installation verification testing by installation personnel observed and
documented for fastener assemblies and methods used
PO
Proper storage provided for bolts, nuts, washers and other fastener
components
OO
TABLE N5.6-2
Inspection Tasks During Bolting
Inspection Tasks During Bolting QC QA
Fastener assemblies, of suitable condition, placed in all holes and washers (if required) are positioned as required
OO
Joint brought to the snug-tight condition prior to the pretensioning operation
OO
Fastener component not turned by the wrench prevented from rotating O O
Fasteners are pretensioned in accordance with the RCSC
Specification,
progressing systematically from the most rigid point toward the O O
free edges
TABLE N5.6-3
Inspection Tasks After Bolting
Inspection Tasks After Bolting QC QA
Document acceptance or rejection of bolted connections P P
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 180

Sect. N6.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–181
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
7. Other Inspection Tasks
The fabricator’s QCI shall inspect the fabricated steel to verify compliance with the
details shown on the shop drawings, such as proper application of joint details at each
connection. The erector’s QCI shall inspect the erected steel frame to verify compli-
ance with the details shown on the erection drawings, such as braces, stiffeners,
member locations and proper application of joint details at each connection.
The QAI shall be on the premises for inspection during the placement of anchor rods
and other embedments supporting structural steel for compliance with the construc-
tion documents. As a minimum, the diameter, grade, type and length of the anchor
rod or embedded item, and the extent or depth of embedment into the concrete, shall
be verified prior to placement of concrete.
The QAI shall inspect the fabricated steel or erected steel frame, as appropriate, to
verify compliance with the details shown on the construction documents, such as
braces, stiffeners, member locations and proper application of joint details at each
connection.
N6. MINIMUM REQUIREMENTS FOR INSPECTION OF
COMPOSITE CONSTRUCTION
Inspection of structural steel and steel deck used in composite construction shall
comply with the requirements of this Chapter.
For welding of steel headed stud anchors, the provisions of AWS D1.1/D1.1M,
Structural Welding Code—Steel,apply.
For welding of steel deck, observation of welding operations and visual inspection
of in-process and completed welds shall be the primary method to confirm that the
materials, procedures and workmanship are in conformance with the construction
documents. All applicable provisions of AWS D1.3/D1.3M, Structural Welding
Code—Sheet Steel,shall apply. Deck welding inspection shall include verification of
the welding consumables, welding procedure specificationsand qualifications of
welding personnel prior to the start of the work, observations of the work in progress,
and a visual inspection of all completed welds. For steel deck attached by fastening
systems other than welding, inspection shall include verification of the fastenersto
be used prior to the start of the work, observations of the work in progress to confirm
installation in conformance with the manufacturer’s recommendations, and a visual
inspection of the completed installation.
For those items for quality control (QC) in Table N6.1 that contain an observe des-
ignation, the QC inspection shall be performed by the erector’s quality control
inspector (QCI). In Table N6.1, the inspection tasks are as follows:
O – Observe these items on a random basis. Operations need not be delayed pending
these inspections.
P – Perform these tasks for each steel element.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 181

16.1–182 MINIMUM REQUIREMENTS FOR INSPECTION [Sect. N6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
N7. APPROVED FABRICATORS AND ERECTORS
Quality assurance(QA) inspections, except nondestructive testing (NDT), may be
waived when the work is performed in a fabricating shop or by an erector approved
by the authority having jurisdiction(AHJ) to perform the work without QA. NDT of
welds completed in an approved fabricator’s shop may be performed by that fabri-
cator when approved by the AHJ. When the fabricator performs the NDT, the QA
agency shall review the fabricator’s NDT reports.
At completion of fabrication, the approved fabricator shall submit a certificate of
compliance to the AHJ stating that the materials supplied and work performed by the
fabricator are in accordance with the construction documents. At completion of erec-
tion, the approved erector shall submit a certificate of compliance to the AHJ stating
that the materials supplied and work performed by the erector are in accordance with
the construction documents.
N8. NONCONFORMING MATERIAL AND WORKMANSHIP
Identification and rejection of material or workmanship that is not in conformance
with the construction documents shall be permitted at any time during the progress
of the work. However, this provision shall not relieve the owner or the inspector of
the obligation for timely, in-sequence inspections. Nonconforming material and
workmanship shall be brought to the immediate attention of the fabricator or erec-
tor, as applicable.
Nonconforming material or workmanship shall be brought into conformance, or
made suitable for its intended purpose as determined by the engineer of record.
Concurrent with the submittal of such reports to the AHJ, EOR or owner, the QA
agency shall submit to the fabricator and erector:
(1) Nonconformance reports
(2) Reports of repair, replacement or acceptance of nonconforming items
TABLE N6.1
Inspection of Steel Elements of Composite
Construction Prior to Concrete Placement
Inspection of Steel Elements of Composite Construction
Prior to Concrete Placement QC QA
Placement and installation of steel deck P P
Placement and installation of steel headed stud anchors P P
Document acceptance or rejection of steel elements P P
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 182

16.1–183
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 1
DESIGN BY INELASTIC ANALYSIS
This appendix addresses design by inelastic analysis, in which consideration of the redistri-
bution of member and connection forces and moments as a result of localized yielding is
permitted.
The appendix is organized as follows:
1.1. General Requirements
1.2. Ductility Requirements
1.3. Analysis Requirements
1.1. GENERAL REQUIREMENTS
Design by inelastic analysis shall be conducted in accordance with Section B3.3,
using load and resistance factor design(LRFD). The design strength of the struc-
tural systemand its members and connections shall equal or exceed the required
strengthas determined by the inelastic analysis. The provisions of this Appendix do
not apply to seismic design.
The inelastic analysis shall take into account: (1) flexural, shear and axial member
deformations, and all other component and connectiondeformations that contribute
to the displacements of the structure; (2) second-order effects (including P-Δand
P-δeffects); (3) geometric imperfections; (4) stiffness reductions due to inelasticity,
including the effect of residual stressesand partial yielding of the cross section; and
(5) uncertainty in system, member, and connection strength and stiffness.
Strength limit statesdetected by an inelastic analysis that incorporates all of the
above requirements are not subject to the corresponding provisions of the
Specification when a comparable or higher level of reliability is provided by the
analysis. Strength limit states not detected by the inelastic analysis shall be evaluated
using the corresponding provisions of Chapters D, E, F, G, H, I, J and K.
Connections shall meet the requirements of Section B3.6.
Members and connections subject to inelastic deformations shall be shown to have
adequate ductility consistent with the intended behavior of the structural system.
Force redistribution due to rupture of a member or connection is not permitted.
Any method that uses inelastic analysis to proportion members and connections to
satisfy these general requirements is permitted. A design method based on inelastic
analysis that meets the above strength requirements, the ductility requirements of
Section 1.2, and the analysis requirements of Section 1.3 satisfies these general
requirements.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 183

16.1–184 DUCTILITY REQUIREMENTS [App. 1.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1.2. DUCTILITY REQUIREMENTS
Members and connections with elements subject to yielding shall be proportioned
such that all inelastic deformation demands are less than or equal to their inelastic
deformation capacities. In lieu of explicitly ensuring that the inelastic deformation
demands are less than or equal to their inelastic deformation capacities, the follow-
ing requirements shall be satisfied for steel members subject to plastic hinging.
1. Material
The specified minimum yield stress, Fy, of members subject to plastic hinging shall
not exceed 65 ksi (450 MPa).
2. Cross Section
The cross section of members at plastic hinge locations shall be doubly symmetric
with width-to-thickness ratios of their compression elements not exceeding λ
p d,
where λ
p dis equal to λ p from Table B4.1b except as modified below:
(a) For the width-to-thickness ratio, h/t
w, of webs of I-shaped sections, rectangular
HSS, and box-shaped sections subject to combined flexure and compression
(i) When P
u/φcPy≤0.125
(A-1-1)
(ii) When P
u/φcPy>0.125
(A-1-2)
where
h=as defined in Section B4.1, in. (mm)
t
w=web thickness, in. (mm)
P
u=required axial strengthin compression, kips (N)
P
y=FyAg=axial yield strength, kips (N)
φ
c=resistance factorfor compression = 0.90
(b) For the width-to-thickness ratio, b/t, of flanges of rectangular HSS and box-
shaped sections, and for flange cover plates, and diaphragm platesbetween lines
of fastenersor welds
(A-1-3)
where
b=as defined in Section B4.1, in. (mm)
t=as defined in Section B4.1, in. (mm)
λ
φpd
y
u
cy
E
F
P
P
=−






376 1
275
.
.
λ
φpd
y
u
cy y
E
F
P
P
E
F
=−






≥112 233 149.. .
λpd y EF=094./
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 184

App. 1.2.] DUCTILITY REQUIREMENTS 16.1–185
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(c) For the diameter-to-thickness ratio, D/t, of circular HSS in flexure
λ
p d =0.045E/F y (A-1-4)
where
D=outside diameter of round HSS, in. (mm)
3. Unbraced Length
In prismatic member segments that contain plastic hinges, the laterally unbraced
length, L
b, shall not exceed L pd, determined as follows. For members subject to flex-
ure only, or to flexure and axial tension, L
bshall be taken as the length between
points braced against lateral displacement of the compression flange, or between
points braced to prevent twist of the cross section. For members subject to flexure
and axial compression, L
bshall be taken as the length between points braced against
both lateral displacement in the minor axis direction and twist of the cross section.
(a) For I-shaped members bent about their major axis:
(A-1-5)
where
r
y=radius of gyration about minor axis, in. (mm)
(i) When the magnitude of the bending moment at any location within the
unbraced length exceeds M
2
(A-1-6a)
Otherwise:
(ii) When M
mid≤(M1+M2)/2
(A-1-6b)
(iii) When M
mid>(M1+M2)/2
(A-1-6c)
where
M
1= smaller moment at end of unbraced length, kip-in. (N-mm)
M
2= larger moment at end of unbraced length, kip-in. (N-mm). M 2shall be
taken as positive in all cases.
M
mid= moment at middle of unbraced length, kip-in. (N-mm)
= effective moment at end of unbraced length opposite from M
2, kip-in.
(N-mm)
The moments M
1and M midare individually taken as positive when they cause
compression in the same flange as the moment M
2and negative otherwise.
L
M
M
E
F
rpd
y
y=−
′⎡







0 12 0 076
1
2
..
MM12 1′=+/
MM11
′=
MMMM mid1222′=−<
M1

AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 185

(b) For solid rectangular bars and for rectangular HSS and box-shaped members bent
about their major axis
(A-1-7)
For all types of members subject to axial compression and containing plastic hinges,
the laterally unbraced lengths about the cross section major and minor axes shall not
exceed and , respectively.
There is no L
pdlimit for member segments containing plastic hinges in the following
cases:
(1) Members with circular or square cross sections subject only to flexure or to com-
bined flexure and tension
(2) Members subject only to flexure about their minor axis or combined tension and
flexure about their minor axis
(3) Members subject only to tension
4. Axial Force
To assure adequate ductility in compression members with plastic hinges, the
design strengthin compression shall not exceed 0.75F
yAg.
1.3. ANALYSIS REQUIREMENTS
The structural analysisshall satisfy the general requirements of Section 1.1. These
requirements are permitted to be satisfied by a second-order inelastic analysis meet-
ing the requirements of this Section.
Exception:
For continuous beamsnot subject to axial compression, a first-order inelastic or plas-
tic analysisis permitted and the requirements of Sections 1.3.2 and 1.3.3 are waived.
User Note: Refer to the Commentary for guidance in conducting a traditional
plastic analysis and design in conformance with these provisions.
1. Material Properties and Yield Criteria
The specified minimum yield stress, F y, and the stiffness of all steel members and con-
nections shall be reduced by a factor of 0.90 for the analysis, except as noted below
in Section 1.3.3.
The influence of axial force, major axis bending moment, and minor axis bending
moment shall be included in the calculation of the inelastic response.
The plastic strength of the member cross section shall be represented in the analysis
either by an elastic-perfectly-plastic yield criterion expressed in terms of the axial
16.1–186 DUCTILITY REQUIREMENTS [App. 1.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
471.rEFxy 471.rEFyy
L
M
M
E
F
r
E
F
rpd
y
y
y
y=−
′⎡







≥017 010 010
1
2
.. .
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 186

App. 1.3.] ANALYSIS REQUIREMENTS 16.1–187
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
force, major axis bending moment, and minor axis bending moment, or by explicit
modeling of the material stress-strain response as elastic-perfectly-plastic.
2. Geometric Imperfections
The analysis shall include the effects of initial geometric imperfections. This shall be
done by explicitly modeling the imperfections as specified in Section C2.2a or by the
application of equivalent notional loads as specified in Section C2.2b.
3. Residual Stress and Partial Yielding Effects
The analysis shall include the influence of residual stresses and partial yielding. This
shall be done by explicitly modeling these effects in the analysis or by reducing the
stiffnessof all structural componentsas specified in Section C2.3.
If the provisions of Section C2.3 are used, then:
(1) The 0.9 stiffness reduction factor specified in Section 1.3.1 shall be replaced by
the reduction of the elastic modulus Eby 0.8 as specified in Section C2.3, and
(2) The elastic-perfectly-plastic yield criterion, expressed in terms of the axial
force, major axis bending moment, and minor axis bending moment, shall sat-
isfy the cross section strength limit defined by Equations H1-1a and H1-1b
using P
c=0.9P y, Mcx=0.9M pxand M cy=0.9M py.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 187

16.1–188
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 2
DESIGN FOR PONDING
This appendix provides methods for determining whether a roof system has adequate
strength and stiffnessto resist ponding.
The appendix is organized as follows:
2.1. Simplified Design for Ponding
2.2. Improved Design for Ponding
2.1. SIMPLIFIED DESIGN FOR PONDING
The roof system shall be considered stable for ponding and no further investigation
is needed if both of the following two conditions are met:
C
p+0.9C s≤0.25 (A-2-1)
I
d≥25(S
4
)10
–6
(A-2-2)
(S.I.: I
d≥3 940 S
4
) (A-2-2M)
where
(A-2-3)
(A-2-3M)
(A-2-4)
(A-2-4M)
I
d= moment of inertia of the steel deck supported on secondary members, in.
4
per
ft (mm
4
per m)
I
p= moment of inertia of primary members, in.
4
(mm
4
)
I
s= moment of inertia of secondary members, in.
4
(mm
4
)
L
p= length of primary members, ft (m)
L
s= length of secondary members, ft (m)
S= spacing of secondary members, ft (m)
C
LL
Ip
sp
p=
32
10
4
7
C
LL
Ip
sp
p=
504
4
(S.I.)
C
SL
Is
s
s=
32
10
4
7
C
SL
Is
s
s=
504
4
(S.I.)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 188

For trusses and steel joists, the calculation of the moments of inertia, I pandI s, shall
include the effects of web member strain when used in the above equation.
User Note: When the moment of inertia is calculated using only the truss or joist
chord areas, the reduction in the moment of inertia due to web strain can typically
be taken as 15%.
A steel deck shall be considered a secondary member when it is directly supported
by the primary members.
2.2. IMPROVED DESIGN FOR PONDING
The provisions given below are to be used when a more accurate evaluation of fram-
ing stiffnessis needed than that given by Equations A-2-1 and A-2-2.
Define the stress indexes
(A-2-5)
(A-2-6)
where
f
o=stress due to D +R(D =nominal dead load, R=nominal loaddue to rainwa-
ter or snow exclusive of the ponding contribution), ksi (MPa)
For roof framing consisting of primary and secondary members, evaluate the com-
bined stiffness as follows. Enter Figure A-2.1 at the level of the computed stress
index, U
p, determined for the primary beam; move horizontally to the computed C s
value of the secondary beams and then downward to the abscissa scale. The com-
bined stiffness of the primary and secondary framing is sufficient to prevent ponding
if the flexibility coefficient read from this latter scale is more than the value of C
p
computed for the given primary member; if not, a stiffer primary or secondary beam,
or combination of both, is required.
A similar procedure must be followed using Figure A-2.2.
App. 2.2.] IMPROVED DESIGN FOR PONDING 16.1–189
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
U
Ff
fp
yo
o
p=
−⎛





08.
for the primary member
for the secondary meU
Ff
fs
yo
o
s=
−⎛





08.
mmber
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 189

For roof framing consisting of a series of equally spaced wall bearing beams, evalu-
ate the stiffness as follows. The beams are considered as secondary members
supported on an infinitely stiff primary member. For this case, enter Figure A-2.2
with the computed stress index, U
s. The limiting value of C sis determined by the
intercept of a horizontal line representing the U
svalue and the curve for C p=0.
User Note:The ponding deflection contributed by a metal deck is usually such a
small part of the total ponding deflection of a roof panel that it is sufficient merely
to limit its moment of inertia [per foot (meter) of width normal to its span] to
0.000025 (3 940) times the fourth power of its span length.
16.1–190 IMPROVED DESIGN FOR PONDING [App. 2.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. A-2.1. Limiting flexibility coefficient for the primary systems.
Upper Limit of Flexibility Coefficient Cp
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 190

App. 2.2.] IMPROVED DESIGN FOR PONDING 16.1–191
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Evaluate the stabilityagainst ponding of a roof consisting of a metal roof deck of rel-
atively slender depth-to-span ratio, spanning between beams supported directly on
columns, as follows. Use Figure A-2.1 or A-2.2, using as C
sthe flexibility coefficient
for a one-foot (one-meter) width of the roof deck (S=1.0).
Fig. A-2.2. Limiting flexibility coefficient for the secondary systems.
Upper Limit of Flexibility Coefficient Cs
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 191

APPENDIX 3
DESIGN FOR FATIGUE
This appendix applies to members and connectionssubject to high cycle loading within the
elastic range of stresses of frequency and magnitude sufficient to initiate cracking and pro-
gressive failure, which defines the limit state of fatigue.
User Note:See AISC Seismic Provisions for Structural Steel Buildingsfor structures
subject to seismic loads.
The appendix is organized as follows:
3.1. General Provisions
3.2. Calculation of Maximum Stresses and Allowable Stress Ranges
3.3. Plain Material and Welded Joints
3.4. Bolts and Threaded Parts
3.5. Special Fabrication and Erection Requirements
3.1. GENERAL PROVISIONS
The provisions of this Appendix apply to stressescalculated on the basis of service
loads. The maximum permitted stress due to service loads is 0.66F
y.
Stress range is defined as the magnitude of the change in stress due to the applica-
tion or removal of the service live load. In the case of a stress reversal, the stress
range shall be computed as the numerical sum of maximum repeated tensile and
compressive stresses or the numerical sum of maximum shearing stresses of oppo-
site direction at the point of probable crack initiation.
In the case of complete-joint-penetration groove welds, the maximum allowable
stress range calculated by Equation A-3-1 applies only to welds that have been
ultrasonically or radiographically tested and meet the acceptance requirements of
Sections 6.12.2 or 6.13.2 of AWS D1.1/D1.1M.
No evaluation of fatigueresistance is required if the live load stress range is less than
the threshold allowable stress range, F
TH. See Table A-3.1.
No evaluation of fatigue resistance of members consisting of shapes or plate is
required if the number of cycles of application of live load is less than 20,000. No
evaluation of fatigue resistance of members consisting of HSS in building-type struc-
tures subject to code mandated wind loads is required.
The cyclic load resistance determined by the provisions of this Appendix is appli-
cable to structures with suitable corrosion protection or subject only to mildly
corrosive atmospheres, such as normal atmospheric conditions.
16.1–192
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 192

App. 3.3.] PLAIN MATERIAL AND WELDED JOINTS 16.1–193
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The cyclic loadresistance determined by the provisions of this Appendix is applica-
ble only to structures subject to temperatures not exceeding 300 °F (150 °C).
The engineer of recordshall provide either complete details including weld sizes or
shall specify the planned cycle life and the maximum range of moments, shears and
reactions for the connections.
3.2. CALCULATION OF MAXIMUM STRESSES AND STRESS RANGES
Calculated stressesshall be based upon elastic analysis. Stresses shall not be ampli-
fied by stress concentrationfactors for geometrical discontinuities.
For bolts and threaded rods subject to axial tension, the calculated stresses shall
include the effects of prying action, if any. In the case of axial stress combined with
bending, the maximum stresses, of each kind, shall be those determined for concur-
rent arrangements of the applied load.
For members having symmetric cross sections, the fasteners and welds shall be
arranged symmetrically about the axis of the member, or the total stresses including
those due to eccentricity shall be included in the calculation of the stress range.
For axially loaded angle members where the center of gravity of the connecting
welds lies between the line of the center of gravity of the angle cross section and the
center of the connected leg, the effects of eccentricity shall be ignored. If the center
of gravity of the connecting welds lies outside this zone, the total stresses, including
those due to joint eccentricity, shall be included in the calculation of stress range.
3.3. PLAIN MATERIAL AND WELDED JOINTS
In plain material and welded joints the range of stressat service loadsshall not
exceed the allowable stress range computed as follows.
(a) For stress categories A, B, B′, C, D, E and E′ the allowable stress range, F
SR, shall
be determined by Equation A-3-1 or A-3-1M, as follows:
(A-3-1)
(A-3-1M)
where
C
f= constant from Table A-3.1 for the fatigue category
F
SR= allowable stress range, ksi (MPa)
F
TH= threshold allowable stress range, maximum stress range for
indefinite design life from Table A-3.1, ksi (MPa)
n
SR= number of stress range fluctuations in design life
= number of stress range fluctuations per day × 365 ×years
of design life
F
C
n
FSR
f
SR
TH=







0 333.
F
C
n
FSR
f
SR
TH=
×⎛





≥ ()
329
0 333.
S.I.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 193

16.1–194 PLAIN MATERIAL AND WELDED JOINTS [App. 3.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(b) For stress category F, the allowable stress range, F SR, shall be determined by
Equation A-3-2 or A-3-2M as follows:
(A-3-2)
(A-3-2M)
(c) For tension-loaded plate elements connected at their end by cruciform, T or
corner details with complete-joint-penetration(CJP) groove weldsor partial-
joint-penetration(PJP) groove welds, fillet welds, or combinations of the
preceding, transverse to the direction of stress, the allowable stress range on
the cross section of the tension-loaded plate element at the toe of the weld shall
be determined as follows:
(i) Based upon crack initiation from the toe of the weld on the tension loaded
plate element the allowable stress range, F
SR, shall be determined by
Equation A-3-3 or A-3-3M, for stress category C as follows:
(A-3-3)
(A-3-3M)
(ii) Based upon crack initiation from the root of the weld the allowable stress
range, F
SR, on the tension loaded plate element using transverse PJP groove
welds, with or without reinforcing or contouring fillet welds, the allowable
stress range on the cross section at the toe of the weld shall be determined
by Equation A-3-4 or A-3-4M, for stress category C′as follows:
(A-3-4)
(A-3-4M)
where
R
PJP, the reduction factor for reinforced or nonreinforced transverse PJP
groove welds, is determined as follows:
F
C
n
FSR
f
SR
TH=







0 167.
F
C
n
FSR
f
SR
TH=
×
( )









()
11 10
4
0 167.
S.I.
F
nSR
SR=
×⎛






44 10
10
8
0 333.
F
nSR
SR=
×⎛





≥ ()
14 4 10
11
0 333
.
.
68.9 S.I.
FR
nSR PJP
SR=
×⎛





44 10
8
0 333.
FR
nSR PJP
SR=
×⎛




⎟ ()
14 4 10
11
0 333
.
.
S.I.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 194

(A-3-5)
(A-3-5M)
If R
PJP=1.0, use stress category C.
2a= length of the nonwelded root face in the direction of the thickness of
the tension-loaded plate, in. (mm)
w= leg size of the reinforcing or contouring fillet, if any, in the direction
of the thickness of the tension-loaded plate, in. (mm)
t
p= thickness of tension loaded plate, in. (mm)
(iii) Based upon crack initiation from the roots of a pair of transverse fillet welds
on opposite sides of the tension loaded plate element, the allowable stress
range, F
SR, on the cross section at the toe of the welds shall be determined
by Equation A-3-6 or A-3-6M, for stress category C′′as follows:
(A-3-6)
(A-3-6M)
where
R
FIL is the reduction factor for joints using a pair of transverse fillet welds only.
(A-3-7)
(A-3-7M)
If R
FIL= 1.0, use stress category C.
App. 3.3.] PLAIN MATERIAL AND WELDED JOINTS 16.1–195
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
R
a
t
w
t
tPJP
pp
p=







+






065 059
2
072
01
.. .
.667
10












≤.
R
a
t
w
t
tPJP
pp
p=







+






112 101
2
124
01
.. .
.667
10












≤(). S.I.
FR
nSR FIL
SR=
×⎛





44 10
8
0 333.
FR
nSR FIL
SR=
×⎛




⎟ ()
14 4 10
11
0 333
.
.
S.I.
R
wt
tFIL
p
p=
+
( )⎛






006 072
10
0 167
../
.
.
R
wt
tFIL
p
p=
+⎛






010 124
10
0 167
..(/)
.
.
S.I..()
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 195

16.1–196 BOLTS AND THREADED PARTS [App. 3.4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3.4. BOLTS AND THREADED PARTS
In bolts and threaded parts, the range of stress at service loadsshall not exceed the
allowable stressrange computed as follows.
(a) For mechanically fastened connectionsloaded in shear, the maximum range of
stress in the connected material at service loads shall not exceed the allowable
stress range computed using Equation A-3-1 where C
fand F THare taken from
Section 2 of Table A-3.1.
(b) For high-strength bolts, common bolts and threaded anchor rods with cut, ground
or rolled threads, the maximum range of tensile stress on the net tensile area from
applied axial loadand moment plus load due to prying actionshall not exceed
the allowable stress range computed using Equation A-3-8 or A-3-8M (stress cat-
egory G). The net area in tension, A
t, is given by Equation A-3-9 or A-3-9M.
(A-3-8)
(A-3-8M)
(A-3-9)
(A-3-9M)
where
d
b= the nominal diameter (body or shank diameter), in. (mm)
n= threads per in. (threads per mm)
p= pitch, in. per thread (mm per thread)
For jointsin which the material within the gripis not limited to steel or joints which
are not tensioned to the requirements of Table J3.1 or J3.1M, all axial load and
moment applied to the jointplus effects of any prying action shall be assumed to be
carried exclusively by the bolts or rods.
For joints in which the material within the grip is limited to steel and which are
pretensioned to the requirements of Table J3.1 or J3.1M, an analysis of the relative
stiffnessof the connected parts and bolts shall be permitted to be used to determine
the tensile stress range in the pretensioned boltsdue to the total service live load
and moment plus effects of any prying action. Alternatively, the stress range in the
bolts shall be assumed to be equal to the stress on the net tensile area due to 20%
of the absolute value of the service load axial load and moment from dead, live and
other loads.
F
nSR
SR=
×⎛






39 10
7
8
0 333
.
.
F
nSR
SR=
×⎛






128 10
48
11
0 333
.
()
.
S.I.
Ad
ntb=−






π
4
0 9743
2
.
Ad ptb=−( )()
π
4
0 9382 2
. S.I.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 196

3.5. SPECIAL FABRICATION AND ERECTION REQUIREMENTS
Longitudinal backing bars are permitted to remain in place, and if used, shall be con-
tinuous. If splicing is necessary for long joints, the bar shall be joined with complete
penetration butt joints and the reinforcement ground prior to assembly in the joint.
Longitudinal backing, if left in place, shall be attached with continuous fillet welds.
In transverse joints subject to tension, backing bars, if used, shall be removed and the
joint back gouged and welded.
In transverse complete-joint-penetration T and corner joints, a reinforcing fillet weld,
not less than
1
/4in. (6 mm) in size shall be added at reentrantcorners.
The surface roughness of thermally cut edges subject to cyclic stressranges, that
include tension, shall not exceed 1,000 μin. (25 μm), where ASME B46.1 is the ref-
erence standard.
User Note: AWS C4.1 Sample 3 may be used to evaluate compliance with this
requirement.
Reentrant corners at cuts, copes and weld access holes shall form a radius of not less
than
3
/8in. (10 mm) by predrilling or subpunching and reaming a hole, or by thermal
cutting to form the radius of the cut. If the radius portion is formed by thermal cut-
ting, the cut surface shall be ground to a bright metal surface.
For transverse butt joints in regions of tensile stress, weld tabs shall be used to pro-
vide for cascading the weld termination outside the finished joint. End dams shall not
be used. Run-off tabs shall be removed and the end of the weld finished flush with
the edge of the member.
See Section J2.2b for requirements for end returns on certain fillet welds subject to
cyclic service loading.
App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–197
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 197

A 250 x 10
8
24
(165)
1.1 Base metal, except noncoated
weathering steel, with rolled or cleaned
surface. Flame-cut edges with surface
roughness value of 1,000 μin. (25 μm)
or less, but without reentrant corners.
1.2 Noncoated weathering steel base
metal with rolled or cleaned surface.
Flame-cut edges with surface rough-
ness value of 1,000 μin. (25 μm) or less,
but without reentrant corners.
1.3 Member with drilled or reamed
holes. Member with re-entrant corners
at copes, cuts, block-outs or other
geometrical discontinuities made to
requirements of Appendix 3, Section
3.5, except weld access holes.
1.4 Rolled cross sections with weld
access holes made to requirements
of Section J1.6 and Appendix 3, Section
3.5. Members with drilled or reamed
holes containing bolts for attachment of
light bracing where there is a small lon-
gitudinal com ponent of brace force.
Away from all
welds or structural
connections
B 120 x 10
8
16
(110)
Away from all
welds or structural
connections
B 120 x 10
8
16
(110)
Through gross sec-
tion near hole
B 120 x 10
8
16
(110)
In net section origi-
nating at side of
hole
D 22 x 10
8
7
(48)
In net section origi-
nating at side of
hole
E 11 x 10
8
4.5
(31)
In net section origi-
nating at side of
hole
B 120 x 10
8
16
(110)
At any external
edge or at hole
perimeter
C 44 x 10
8
10
(69)
At reentrant cor ner
of weld access
hole or at any small
hole (may contain
bolt for minor con-
nections)
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1
Fatigue Design Parameters
SECTION 1 – PLAIN MATERIAL AWAY FROM ANY WELDING
SECTION 2 – CONNECTED MATERIAL IN MECHANICALLY FASTENED JOINTS
16.1–198 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2.1 Gross area of base metal in lap joints connected by high-strength bolts in joints satisfying all requirements for slip-critical connections.
2.2 Base metal at net section of high-
strength bolted joints, designed on the
basis of bearing resistance, but fabri-
cated and installed to all requirements
for slip-critical connections.
2.3 Base metal at the net section of
other mechanically fastened joints
except eye bars and pin plates.
2.4 Base metal at net section of
eyebar
head or pin plate.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 198

SECTION 1 – PLAIN MATERIAL AWAY FROM ANY WELDING
SECTION 2 – CONNECTED MATERIAL IN MECHANICALLY FASTENED JOINTS
App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–199
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE A-3.1 (continued)
Fatigue Design Parameters
1.1 and 1.2
1.3
1.4
2.1
2.2
2.3
2.4
(Note: figures are for slip-critical bolted connections)
(Note: figures are for snug-tightened bolts, rivets, or other mechanical fasteners)
(Note: figures are for bolted connections designed to bear, meeting the
requirements of slip-critical connections)
Illustrative Typical Examples
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 199

16.1–200 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
B 120 x 10
8
16
(110)
3.1 Base metal and weld metal in
members without attachments built up
of plates or shapes connected by con-
tinuous longitudinal complete-joint-pen-
etration groove welds, back gouged and
welded from second side, or by continu-
ous fillet welds.
3.2 Base metal and weld metal in
members without attachments built up of
plates or shapes, connected by con-
tinuous longitudinal complete-joint-pen-
etration groove welds with backing bars
not removed, or by continuous partial-
joint-penetration groove welds.
3.3 Base metal at weld metal termina-
tions of longitudinal welds at weld
access holes in connected built-up
members.
3.4 Base metal at ends of longitudinal
intermittent fillet weld segments.
3.5 Base metal at ends of partial length
welded coverplates narrower than the
flange having square or tapered ends,
with or without welds across the ends;
and coverplates wider than the flange
with welds across the ends.
Flange thickness (
tf) ≤0.8 in. (20 mm)
Flange thickness (
tf) >0.8 in. (20 mm)
3.6 Base metal at ends of partial length
welded coverplates wider than the
flange without welds across the ends.
From surface or
internal discontinu-
ities in weld away
from end of weld
B′ 61 x 10
8
12
(83)
From surface or
internal discontinu-
ities in weld, includ-
ing weld attaching
backing bars
E′ 3.9 x 10
8
2.6
(18)
In edge of flange
at end of cover-
plate weld
D 22 x 10
8
7
(48)
From the weld ter-
mination into the
web or flange
E 11 x 10
8
4.5
(31)
In connected mate-
rial at start and
stop locations of
any weld deposit
E 11 x 10
8
4.5
(31)
E′ 3.9 x 10
8
2.6
(18)
In flange at toe
of end weld or in
flange at termina-
tion of longitudinal
weld or in edge of
flange with wide
coverplates
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 3 – WELDED JOINTS JOINING COMPONENTS OF BUILT-UP MEMBERS
SECTION 4 – LONGITUDINAL FILLET WELDED END CONNECTIONS
Initiating from end
of any weld termi-
nation extending
into the base metal
E 11 x 10
8
4.5
(31)
E′ 3.9 x 10
8
2.6
(18)
4.1 Base metal at junction of axially
loaded members with longitudinally
welded end connections. Welds shall be
on each side of the axis of the member
to balance weld stresses.
t≤0.5 in. (12 mm)
t>0.5 in. (12 mm)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 200

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–201
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SECTION 3 – WELDED JOINTS JOINING COMPONENTS OF BUILT-UP MEMBERS
TABLE A-3.1 (continued)
Fatigue Design Parameters
3.1
3.2
3.3
3.4
3.5
3.6
Illustrative Typical Examples
SECTION 4 – LONGITUDINAL FILLET WELDED END CONNECTIONS
4.1
(a) (b)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 201

16.1–202 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
B 120 x 10
8
16
(110)5.1 Weld metal and base metal in or adja-
cent to complete-joint-penetration groove
welded splices in rolled or welded cross
sections with welds ground essentially
parallel to the direction of stress and with
soundness established by radiographic or
ultrasonic inspection in accordance with
the requirements of subclauses 6.12 or
6.13 of AWS D1.1/D1.1M.
5.2 Weld metal and base metal in or adja-
cent to complete-joint-penetration groove
welded splices with welds ground essen-
tially parallel to the direction of stress at
transitions in thickness or width made on
a slope no greater than 1:2
1
/2and with
weld soundness established by radi-
ographic or ultrasonic inspection in acc-
ordance with the requirements of sub-
clauses 6.12 or 6.13 of AWS D1.1/D1.1M.
Fy<90 ksi (620 MPa)
Fy≥90 ksi (620 MPa)
5.3 Base metal with Fyequal to or
greater than 90 ksi (620 MPa) and weld
metal in or adjacent to complete-joint-
penetration groove welded splices with
welds ground essentially parallel to the
direction of stress at transitions in width
made on a radius of not less than 2 ft (600
mm) with the point of tangency at the end
of the groove weld and with weld sound-
ness established by radiographic or
ultrasonic inspection in accordance with
the requirements of subclauses 6.12 or
6.13 of AWS D1.1/D1.1M.
5.4 Weld metal and base metal in or
adjacent to the toe of complete-joint-
penetration groove welds in T or corner
joints or splices, with or without transi-
tions in thickness having slopes no
greater than 1:2
1
/2, when weld reinforce-
ment is not removed and with weld
soundness established by radiographic or
ultrasonic inspection in accordance with
the requirements of subclauses 6.12 or
6.13 of AWS D1.1/D1.1M.
From internal dis-
continuities in weld
metal or along the
fusion boundary
B 120 x 10
8
16
(110)
B′ 61 x 10
8
12
(83)
From internal dis-
continuities in filler
metal or along
fusion boundary or
at start of transition
when
Fy≥90 ksi
(620 MPa)
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 5 – WELDED JOINTS TRANSVERSE TO DIRECTION OF STRESS
B 120 x 10
8
16
(110)
From internal dis- continuities in filler metal or disconti- nuities along the fusion boundary
C 44 x 10
8
10
(69)
From surface dis- continuity at toe of weld extending into base metal or into weld metal.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 202

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–203
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5.1
5.2
SECTION 5 – WELDED JOINTS TRANSVERSE TO DIRECTION OF STRESS
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
5.3
5.4
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 203

C 44 x 10
8
10
(69)
C′ Eqn. None
A-3-4 or provided
A-3-4M
5.5 Base metal and weld metal at trans-
verse end connections of tension-loaded
plate elements using partial-joint-penetra-
tion groove welds in butt or T- or corner
joints, with reinforcing or contouring fillets,
FSRshall be the smaller of the toe crack
or root crack allowable stress range.
Crack initiating from weld toe:
Crack initiating from weld root:
5.6 Base metal and weld metal at trans-
verse end connections of tension-
loaded plate elements using a pair of fil-
let welds on opposite sides of the plate.
FSRshall be the smaller of the toe crack
or root crack allowable stress range.
Crack initiating from weld toe:
Crack initiating from weld root:
5.7 Base metal of tension loaded plate
elements and on girders and rolled
beam webs or flanges at toe of trans-
verse fillet welds adjacent to welded
transverse stiffeners.
Initiating from geo-
metrical discontin-
uity at toe of weld
extending into base
metal.
Initiating at weld
root subject to ten-
sion extending into
and through weld
C 44 x 10
8
10
(69)
C′′ Eqn. None
A-3-5 or provided
A-3-5M
Initiating from geo-
metrical discontin-
uity at toe of weld
extending into base
metal.
Initiating at weld
root subject to ten-
sion extending into
and through weld
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 5 – WELDED JOINTS TRANSVERSE TO DIRECTION OF STRESS (continued)
C 44 x 10
8
10
(69)
From geometrical discontinuity at toe of fillet extending into base metal
16.1–204 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 204

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–205
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5.5
SECTION 5 – WELDED JOINTS TRANSVERSE TO DIRECTION OF STRESS
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
5.6
5.7
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 205

16.1–206 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
B 120 x 10
8
16
(110)
C 44 x 10
8
10
(69)
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
6.1 Base metal at details attached by
complete-joint-penetration groove welds
subject to longitudinal loading only when
the detail embodies a transition radius,
R, with the weld termination ground
smooth and with weld soundness estab-
lished by radiographic or ultrasonic
inspection in accordance with the
requirements of subclauses 6.12 or 6.13
of AWS D1.1/D1.1M.
R≥24 in. (600 mm)
24 in. >
R≥6 in.
(600 mm >
R≥150 mm)
6 in. >
R≥2 in.
(150 mm >
R≥50 mm)
2 in. (50 mm) >
R
6.2 Base metal at details of equal
thickness attached by complete-joint-
penetration groove welds subject to
transverse loading with or without longi-
tudinal loading when the detail embodies
a transition radius,
R, with the weld ter-
mination ground smooth and with weld
soundness established by radiographic
or ultrasonic inspection in accordance
with the requirements of subclauses
6.12 or 6.13 of AWS D1.1/D1.1M:
When weld reinforcement is removed:
R≥24 in. (600 mm)
24 in. >
R≥6 in.
(600 mm >
R≥150 mm)
6 in. >
R≥2 in.
(150 mm >
R≥50 mm)
2 in. (50 mm) >
R
When weld reinforcement is not removed:
R≥24 in. (600 mm)
24 in. >
R≥6 in.
(600 mm >
R≥150 mm)
6 in. >
R≥2 in.
(150 mm >
R≥50 mm)
2 in. (50 mm) >
R
Near point of tan-
gency of radius at
edge of member
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 6 – BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS
B 120 x 10
8
16
(110)
C 44 x 10
8
10
(69)
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
C 44 x 10
8
10
(69)
C 44 x 10
8
10
(69)
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
Near points of tan- gency of radius or in the weld or at fusion boundary or member or attach- ment
At toe of the weld
either along edge
of member or the
attachment
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 206

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–207
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6.1
SECTION 6 – BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
6.2
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 207

D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
E 11 x 10
8
4.5
(31)
6.3 Base metal at details of unequal
thickness attached by complete-joint-
penetration groove welds subject to
transverse loading with or without longi-
tudinal loading when the detail embodies
a transition radius,
R, with the weld ter-
mination ground smooth and with weld
soundness established by radiographic
or ultrasonic inspection in accordance
with the requirements of subclauses
6.12 or 6.13 of AWS D1.1/D1.1M.
When weld reinforcement is removed:
R>2 in. (50 mm)
R≤2 in. (50 mm)
When reinforcement is not removed:
Any radius
6.4 Base metal subject to longitudinal
stress at transverse members, with or
without transverse stress, attached by
fillet or partial-joint-penetration groove
welds parallel to direction of stress when
the detail embodies a transition radius,
R, with weld termination ground smooth:
R>2 in. (50 mm)
R≤2 in. (50 mm)
At toe of weld
along edge of thin-
ner material
In weld termination
in small radius
At toe of weld
along edge of thin-
ner material
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 6 – BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS (cont’d)
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
Initiating in base metal at the weld termination or at the toe of the weld extending into the base metal
16.1–208 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 208

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–209
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6.3
SECTION 6 – BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS (cont’d)
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
6.4
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 209

16.1–210 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1
“Attachment” as used herein is defined as any steel detail welded to a member which, by its mere pres-
ence and independent of its loading, causes a discontinuity in the stress flow in the member and thus
reduces the fatigue resistance.
C 44 x 10
8
10
(69)
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
E′ 3.9 x 10
8
2.6
(18)
7.1 Base metal subject to longitudinal
loading at details with welds parallel or
transverse to the direction of stress
where the detail embodies no transition
radius and with detail length in direction
of stress,
a, and thickness of the attach-
ment,
b:
a<2 in. (50 mm)
2 in. (50 mm) ≤
a≤lesser of 12b
or 4 in. (100 mm)
a>4 in. (100 mm)
when
b>0.8 in. (20 mm)
a> lesser of 12bor 4 in. (100 mm)
when
b≤0.8 in. (20 mm)
7.2 Base metal subject to longitudinal
stress at details attached by fillet or par-
tial-joint-penetration groove welds, with
or without transverse load on detail,
when the detail embodies a transition
radius,
R, with weld termination ground
smooth:
R >2 in. (50 mm)
R ≤2 in. (50 mm)
Initiating in base
metal at the weld
termination or at
the toe of the weld
extending into the
base metal
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 7 – BASE METAL AT SHORT ATTACHMENTS
1
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
Initiating in base metal at the weld termination, extend- ing into the base metal
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 210

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–211
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
7.1
SECTION 7 – BASE METAL AT SHORT ATTACHMENTS
1
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
7.2
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 211

16.1–212 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Initiating in the
weld at the faying
surface, extending
into the weld
E 11 x 10
8
4.5
(31)
Initiating in the
base metal at the
end of the plug or
slot weld, extend-
ing into the base
metal
F 150 x 10
10
8
(Eqn. (55)
A-3-2 or
A-3-2M)
G3.9 x 10
8
7
(48)
Initiating at the root
of the threads,
extending into the
fastener
C 44 x 10
8
10
(69)
8.1 Base metal at steel headed stud anchors attached by fillet or automatic stud welding.
8.2 Shear on throat of continuous or
intermittent longitudinal or transverse fil-
let welds.
8.3 Base metal at plug or slot welds.
8.4 Shear on plug or slot welds.
8.5 Snug-tightened high-strength bolts,
common bolts, threaded anchor rods,
and hanger rods with cut, ground or
rolled threads. Stress range on tensile
stress area due to live load plus prying
action when applicable.
At toe of weld in
base metal
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 8 - MISCELLANEOUS
F 150 x 10
10
8
(Eqn. (55)
A-3-2 or
A-3-2M)
Initiating at the root of the fillet weld, extending into the weld
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 212

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–213
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
8.1
8.2
8.4
8.5
8.3
SECTION 8 - MISCELLANEOUS
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 213

16.1–214
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 4
STRUCTURAL DESIGN FOR FIRE CONDITIONS
This appendix provides criteria for the design and evaluation of structural steelcomponents,
systems and frames for fire conditions. These criteria provide for the determination of the
heat input, thermal expansion and degradation in mechanical properties of materials at ele-
vated temperaturesthat cause progressive decrease in strength and stiffness of structural
componentsand systems at elevated temperatures.
The appendix is organized as follows:
4.1. General Provisions
4.2. Structural Design for Fire Conditions by Analysis
4.3. Design by Qualification Testing
4.1. GENERAL PROVISIONS
The methods contained in this appendix provide regulatory evidence of compli-
ance in accordance with the design applications outlined in this section.
4.1.1. Performance Objective
Structural components, members and building frame systems shall be designed so
as to maintain their load-bearing function during the design-basis fireand to sat-
isfy other performance requirements specified for the building occupancy.
Deformation criteria shall be applied where the means of providing structural fire
resistance, or the design criteria for fire barriers, requires consideration of the
deformation of the load-carrying structure.
Within the compartment of fireorigin,forcesand deformations from the design-
basis fire shall not cause a breach of horizontal or vertical compartmentation.
4.1.2. Design by Engineering Analysis
The analysis methods in Section 4.2 are permitted to be used to document the
anticipated performance of steel framing when subjected to design-basis firesce-
narios. Methods in Section 4.2 provide evidence of compliance with performance
objectives established in Section 4.1.1.
The analysis methods in Section 4.2 are permitted to be used to demonstrate an
equivalency for an alternative material or method, as permitted by the applicable
building code.
Structural design for fire conditions using Appendix 4.2 shall be performed using
the load and resistance factor designmethod in accordance with the provisions of
Section B3.3 (LRFD).
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 214

App. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–215
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.1.3. Design by Qualification Testing
The qualification testing methods in Section 4.3 are permitted to be used to doc-
ument the fire resistanceof steel framing subject to the standardized firetesting
protocols required by the applicable building code.
4.1.4. Load Combinations and Required Strength
The required strengthof the structure and its elements shall be determined from
the gravity load combination as follows:
[0.9 or 1.2] D +T+0.5L+0.2S (A-4-1)
where
D=nominal dead load
L=nominal occupancy live load
S=nominal snow load
T=nominal forces and deformations due to the design-basis fire
defined in Section 4.2.1
A notional load, N
i=0.002Y i, as defined in Section C2.2, where N i =notional load
applied at framing level iand Y
i=gravity load from combination A-4-1 acting on
framing level i, shall be applied in combination with the loadsstipulated in
Equation A-4-1. Unless otherwise stipulated by the applicable building code , D,
Land S shall be the nominal loadsspecified in ASCE/SEI 7.
4.2. STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS
It is permitted to design structural members, components and building frames for
elevated temperaturesin accordance with the requirements of this section.
4.2.1. Design-Basis Fire
A design-basis fireshall be identified to describe the heating conditions for the
structure. These heating conditions shall relate to the fuel commodities and com-
partment characteristics present in the assumed fire area. The fuel loaddensity
based on the occupancy of the space shall be considered when determining the
total fuel load. Heating conditions shall be specified either in terms of a heat flux
or temperature of the upper gas layer created by the fire. The variation of the
heating conditions with time shall be determined for the duration of the fire.
When the analysis methods in Section 4.2 are used to demonstrate an equivalency
as an alternative material or method as permitted by the applicable building code,
the design-basis fire shall be determined in accordance with ASTM E119.
4.2.1.1. Localized Fire
Where the heat release ratefrom the fire is insufficient to cause flashover, a local-
ized fire exposure shall be assumed. In such cases, the fuel composition,
arrangement of the fuel array and floor area occupied by the fuel shall be used to
determine the radiant heat flux from the flame and smoke plume to the structure.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 215

16.1–216 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [App. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.2.1.2. Post-Flashover Compartment Fires
Where the heat release rate from the fireis sufficient to cause flashover, a
post-flashover compartment fire shall be assumed. The determination of the tem-
perature versus time profile resulting from the fire shall include fuel load,
ventilation characteristics of the space (natural and mechanical), compartment
dimensions and thermal characteristics of the compartment boundary.
The fire duration in a particular area shall be determined by considering the total
combustible mass, or fuel load available in the space. In the case of either a local-
ized fire or a post-flashover compartment fire, the fire duration shall be
determined as the total combustible mass divided by the mass loss rate.
4.2.1.3. Exterior Fires
The exposure of exterior structure to flames projecting from windows or other
wall openings as a result of a post-flashover compartment fireshall be considered
along with the radiation from the interior fire through the opening. The shape and
length of the flame projection shall be used along with the distance between the
flame and the exterior steelwork to determine the heat flux to the steel. The
method identified in Section 4.2.1.2 shall be used for describing the characteris-
tics of the interior compartment fire.
4.2.1.4. Active Fire Protection Systems
The effects of active fire protection systems shall be considered when describing
the design-basis fire.
Where automatic smoke and heat vents are installed in nonsprinklered spaces, the
resulting smoke temperature shall be determined from calculation.
4.2.2. Temperatures in Structural Systems under Fire Conditions
Temperatures within structural members, components and frames due to the heat-
ing conditions posed by the design-basis fireshall be determined by a heat
transfer analysis.
4.2.3. Material Strengths at Elevated Temperatures
Material properties at elevated temperatures shall be determined from test data. In
the absence of such data, it is permitted to use the material properties stipulated
in this section. These relationships do not apply for steels with yield strengths in
excess of 65 ksi (448 MPa) or concretes with specified compression strength in
excess of 8,000 psi (55 MPa).
4.2.3.1. Thermal Elongation
The coefficients of expansion shall be taken as follows:
(a) For structural and reinforcing steels: For calculations at temperatures above
150 °F (65 °C), the coefficient of thermal expansion shall be 7.8 ×10
−6
/°F
(1.4 ×10
−5
/
o
C).
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 216

App. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–217
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(b) For normal weight concrete: For calculations at temperatures above 150 °F
(65 °C), the coefficient of thermal expansion shall be 1.0 ×10
−5
/°F (1.8 ×
10
−5
/
o
C).
(c) For lightweight concrete: For calculations at temperatures above 150 ° F
(65 °C), the coefficient of thermal expansion shall be 4.4 ×10
−6
/°F (7.9 ×
10
−6
/
o
C).
4.2.3.2. Mechanical Properties at Elevated Temperatures
The deterioration in strength and stiffnessof structural members, components and
systems shall be taken into account in the structural analysisof the frame. The
values F
y(T), Fp(T),F u(T), E(T), G(T) , f′c(T),E c(T) andε cu(T) at elevated tem-
perature to be used in structural analysis, expressed as the ratio with respect to the
property at ambient, assumed to be 68 °F (20 °C), shall be defined as in Tables
A-4.2.1 and A-4.2.2. F
p(T) is the proportional limit at elevated temperatures,
which is calculated as a ratio to yield strengthas specified in Table A-4.2.1. It is
permitted to interpolate between these values.
For lightweight concrete, values of ε
cushall be obtained from tests.
TABLE A-4.2.1
Properties of Steel at Elevated
Temperatures
Steel Temperature, kEβE(T)/E
°F (°C) β G(T)/GkpβFp(T)/FykyβFy(T)/FykuβFu(T)/Fy
68 (20) 1.00 1.00 1.00 1.00
200 (93) 1.00 1.00 1.00 1.00
400 (204) 0.90 0.80 1.00 1.00
600 (316) 0.78 0.58 1.00 1.00
750 (399) 0.70 0.42 1.00 1.00
800 (427) 0.67 0.40 0.94 0.94
1000 (538) 0.49 0.29 0.66 0.66
1200 (649) 0.22 0.13 0.35 0.35
1400 (760) 0.11 0.06 0.16 0.16
1600 (871) 0.07 0.04 0.07 0.07
1800 (982) 0.05 0.03 0.04 0.04
2000 (1093) 0.02 0.01 0.02 0.02
2200 (1204) 0.00 0.00 0.00 0.00
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 217

16.1–218 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [App. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.2.4. Structural Design Requirements
4.2.4.1. General Structural Integrity
The structural frame shall be capable of providing adequate strength and defor-
mation capacity to withstand, as a system, the structural actions developed
during the firewithin the prescribed limits of deformation. The structural system
shall be designed to sustain local damage with the structural system as a whole
remaining stable.
Continuous loadpaths shall be provided to transfer all forces from the exposed
region to the final point of resistance. The foundation shall be designed to resist
the forces and to accommodate the deformations developed during the design-
basis fire.
4.2.4.2. Strength Requirements and Deformation Limits
Conformance of the structural system to these requirements shall be demonstrated
by constructing a mathematical model of the structure based on principles of
structural mechanics and evaluating this model for the internal forces and defor-
mations in the members of the structure developed by the temperatures from the
design-basis fire.
TABLE A-4.2.2
Properties of Concrete at Elevated Temperatures
68 (20) 1.00 1.00 1.00 0.25
200 (93) 0.95 1.00 0.93 0.34
400 (204) 0.90 1.00 0.75 0.46
550 (288) 0.86 1.00 0.61 0.58
600 (316) 0.83 0.98 0.57 0.62
800 (427) 0.71 0.85 0.38 0.80
1000 (538) 0.54 0.71 0.20 1.06
1200 (649) 0.38 0.58 0.092 1.32
1400 (760) 0.21 0.45 0.073 1.43
1600 (871) 0.10 0.31 0.055 1.49
1800 (982) 0.05 0.18 0.036 1.50
2000 (1093) 0.01 0.05 0.018 1.50
2200 (1204) 0.00 0.00 0.000 0.00
Concrete
Temperature
°F (°C)
kcβf′c(T)/f′c
Ec(T)/Ec
Normal weight
concrete
ε
cu(T), %
Normal weight
concrete
Lightweight
concrete
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 218

Individual members shall be provided with adequate strength to resist the shears,
axial forces and moments determined in accordance with these provisions.
Connectionsshall develop the strength of the connected members or the
forces indicated above. Where the means of providing fire resistancerequires the
consideration of deformation criteria, the deformation of the structural system, or
members thereof, under the design-basis fire shall not exceed the prescribed limits.
4.2.4.3. Methods of Analysis
4.2.4.3a. Advanced Methods of Analysis
The methods of analysis in this section are permitted for the design of all steel
building structures for fire conditions. The design-basis fireexposure shall be that
determined in Section 4.2.1. The analysis shall include both a thermal response
and the mechanical response to the design-basis fire.
The thermal response shall produce a temperature field in each structural
element as a result of the design-basis fire and shall incorporate temperature-
dependent thermal properties of the structural elements and fire-resistive materi-
als, as per Section 4.2.2.
The mechanical response results in forces and deformations in the structural sys-
temsubjected to the thermal response calculated from the design-basis fire. The
mechanical response shall take into account explicitly the deterioration in strength
and stiffnesswith increasing temperature, the effects of thermal expansions, and
large deformations. Boundary conditions and connection fixity must represent the
proposed structural design. Material properties shall be defined as per Section
4.2.3.
The resulting analysis shall consider all relevant limit states, such as excessive
deflections, connection fractures, and overall or local buckling.
4.2.4.3b. Simple Methods of Analysis
The methods of analysis in this section are permitted to be used for the evaluation
of the performance of individual members at elevated temperatures during expo-
sure to fire .
The support and restraint conditions (forces, moments and boundary conditions)
applicable at normal temperatures are permitted to be assumed to remain
unchanged throughout the fire exposure.
For steel temperatures less than or equal to 400 °F (204 °C), the member and con-
nection design strengthsshall be determined without consideration of temperature
effects.
User Note:At temperatures below 400 °F (204 °C), the degradation in steel
properties need not be considered in calculating member strengths for the
simple method of analysis; however, forces and deformations induced by ele-
vated temperatures must be considered.
App. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–219
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 219

16.1–220 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [App. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) Tension Members
It is permitted to model the thermal response of a tension element using a one-
dimensional heat transfer equation with heat input as determined by the
design-basis firedefined in Section 4.2.1.
The design strength of a tension member shall be determined using the provi-
sions of Chapter D, with steel properties as stipulated in Section 4.2.3 and
assuming a uniform temperature over the cross section using the temperature
equal to the maximum steel temperature.
(2) Compression Members
It is permitted to model the thermal response of a compression element using
a one-dimensional heat transfer equation with heat input as determined by the
design-basis fire defined in Section 4.2.1.
The design strength of a compression member shall be determined using
the provisions of Chapter E with steel properties as stipulated in Section 4.2.3
and Equation A-4-2 used in lieu of Equations E3-2 and E3-3 to calculate the
nominal compressive strength for flexural buckling :
(A-4-2)
where F
y(T) is the yield stressat elevated temperature and F e(T) is the criti-
cal elastic buckling stress calculated from Equation E3-4 with the elastic
modulus E(T) at elevated temperature. F
y(T) and E (T) are obtained using
coefficients from Table A-4.2.1.
(3) Flexural Members
It is permitted to model the thermal response of flexural elements using a
one-dimensional heat transfer equation to calculate bottom flange tempera-
ture and to assume that this bottom flange temperature is constant over the
depth of the member.
The design strength of a flexural member shall be determined using the pro-
visions of Chapter F with steel properties as stipulated in Section 4.2.3 and
Equations A-4-3 through A-4-10 used in lieu of Equations F2-2 through F2-
6 to calculate the nominal flexural strength for lateral-torsional buckling of
laterally unbraced doubly symmetric members:
(a) When L
b≤Lr(T)
(A-4-3)
(b) When L
b>Lr(T)
(A-4-4)
FT FTcr
FT
FT
y
y
e
() . ()
()
()
=








042
MT C MT MT MT
L
LTnbr p r
b
r
c
x
() () () ()
()
=+− ⎡











1
⎣⎣






MT FTSncrx() ()=
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 220

App. 4.3.] DESIGN BY QUALIFICATION TESTING 16.1–221
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
F
cr(T) (A-4-5)
L
r(T) (A-4-6)
M
r(T) (A-4-7)
F
L(T) (A-4-8)
M
p(T) (A-4-9)
c
x where Tis in °F (A-4-10)
c
x where Tis in °C (S.I.) (A-4-10M)
The material properties at elevated temperatures, E(T) and F
y(T), and the k p
and k ycoefficients are calculated in accordance with Table A-4.2.1, and other
terms are as defined in Chapter F.
(4) Composite Floor Members
It is permitted to model the thermal response of flexural elements supporting
a concrete slab using a one-dimensional heat transfer equation to calculate
bottom flange temperature. That temperature shall be taken as constant
between the bottom flange and mid-depth of the web and shall decrease lin-
early by no more than 25% from the mid-depth of the web to the top flange
of the beam.
The design strength of a composite flexural member shall be determined using
the provisions of Chapter I, with reduced yield stresses in the steel consistent
with the temperature variation described under thermal response.
4.2.4.4. Design Strength
The design strength shall be determined as in Section B3.3. The nominal strength,
R
n, shall be calculated using material properties, as provided in Section 4.2.3, at
the temperature developed by the design-basis fire, and as stipulated in this
appendix.
4.3. DESIGN BY QUALIFICATION TESTING
4.3.1. Qualification Standards
Structural members and components in steel buildings shall be qualified for the
rating period in conformance with ASTM E119. Demonstration of compliance
CET
L
r
Jc
Sh
L
rb
b
ts
xo
b
ts()
.=






+


π
2
2
1 0 078
⎜⎜



2
r
ET
FT
Jc
Sh
Jc
Shts
Lxoxo.
()
()
.=+






+195 676
2
FFT
ETL()
()






2
SF TxL()=
Fk kyp y.=−( )03
ZF Txy()=
T
=+≤053
450
30..
T
=+ ≤06
250
30..
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 221

16.1–222 DESIGN BY QUALIFICATION TESTING [App. 4.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
with these requirements using the procedures specified for steel construction in
Section 5 of SEI/ASCE/SFPE Standard 29-05, Standard Calculation Methods for
Structural Fire Protection, is permitted.
4.3.2. Restrained Construction
For floor and roof assemblies and individual beamsin buildings, a restrained con-
dition exists when the surrounding or supporting structure is capable of resisting
forces and accommodating deformations caused by thermal expansion throughout
the range of anticipated elevated temperatures.
Steel beams, girders and frames supporting concrete slabs that are welded or
bolted to integral framing members shall be considered restrained construction.
4.3.3. Unrestrained Construction
Steel beams, girders and frames that do not support a concrete slab shall be con-
sidered unrestrained unless the members are bolted or welded to surrounding
construction that has been specifically designed and detailed to resist effects of
elevated temperatures.
A steel member bearing on a wall in a single span or at the end span of multiple
spans shall be considered unrestrained unless the wall has been designed and
detailed to resist effects of thermal expansion.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 222

16.1–223
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 5
EVALUATION OF EXISTING STRUCTURES
This appendix applies to the evaluation of the strength and stiffnessunder static vertical
(gravity) loadsof existing structures by structural analysis, by load tests or by a combina-
tion of structural analysis and load tests when specified by the engineer of recordor in the
contract documents. For such evaluation, the steel grades are not limited to those listed in
Section A3.1. This appendix does not address load testing for the effects of seismic loads or
moving loads (vibrations).
The Appendix is organized as follows:
5.1. General Provisions
5.2. Material Properties
5.3. Evaluation by Structural Analysis
5.4. Evaluation by Load Tests
5.5. Evaluation Report
5.1. GENERAL PROVISIONS
These provisions shall be applicable when the evaluation of an existing steel struc-
ture is specified for (a) verification of a specific set of design loadings or (b)
determination of the available strengthof a forceresisting member or system. The
evaluation shall be performed by structural analysis(Section 5.3), by loadtests
(Section 5.4), or by a combination of structural analysis and load tests, as specified
in the contract documents. Where load tests are used, the engineer of recordshall
first analyze the applicable parts of the structure, prepare a testing plan, and develop
a written procedure to prevent excessive permanent deformation or catastrophic col-
lapse during testing.
5.2. MATERIAL PROPERTIES
1. Determination of Required Tests
The engineer of recordshall determine the specific tests that are required from
Sections 5.2.2 through 5.2.6 and specify the locations where they are required.
Where available, the use of applicable project records shall be permitted to reduce or
eliminate the need for testing.
2. Tensile Properties
Tensile properties of members shall be considered in evaluation by structural analy-
sis(Section 5.3) or load tests (Section 5.4). Such properties shall include the yield
stress, tensile strengthand percent elongation. Where available, certified material
test reports or certified reports of tests made by the fabricator or a testing laboratory
in accordance with ASTM A6/A6M or A568/A568M, as applicable, shall be permit-
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 223

16.1–224 MATERIAL PROPERTIES [App. 5.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ted for this purpose. Otherwise, tensile tests shall be conducted in accordance with
ASTM A370 from samples cut from components of the structure.
3. Chemical Composition
Where welding is anticipated for repair or modification of existing structures, the
chemical composition of the steel shall be determined for use in preparing a weld-
ing procedure specification (WPS). Where available, results from certified material
test reports or certified reports of tests made by the fabricator or a testing labora-
tory in accordance with ASTM procedures shall be permitted for this purpose.
Otherwise, analyses shall be conducted in accordance with ASTM A751 from the
samples used to determine tensile properties, or from samples taken from the same
locations.
4. Base Metal Notch Toughness
Where welded tension splicesin heavy shapes and plates as defined in Section A3.1d
are critical to the performance of the structure, the Charpy V-notch toughness shall
be determined in accordance with the provisions of Section A3.1d. If the notch
toughness so determined does not meet the provisions of Section A3.1d, the engineer
of recordshall determine if remedial actions are required.
5. Weld Metal
Where structural performance is dependent on existing welded connections, repre-
sentative samples of weld metal shall be obtained. Chemical analysis and mechanical
tests shall be made to characterize the weld metal. A determination shall be made of
the magnitude and consequences of imperfections. If the requirements of AWS
D1.1/D1.1M are not met, the engineer of recordshall determine if remedial actions
are required.
6. Bolts and Rivets
Representative samples of bolts shall be inspected to determine markings and clas-
sifications. Where bolts cannot be properly identified visually, representative
samples shall be removed and tested to determine tensile strengthin accordance
with ASTM F606 or ASTM F606M and the bolt classified accordingly.
Alternatively, the assumption that the bolts are ASTM A307 shall be permitted.
Rivets shall be assumed to be ASTM A502, Grade 1, unless a higher grade is estab-
lished through documentation or testing.
5.3. EVALUATION BY STRUCTURAL ANALYSIS
1. Dimensional Data
All dimensions used in the evaluation, such as spans, columnheights, member spac-
ings, bracinglocations, cross section dimensions, thicknesses, and connection
details, shall be determined from a field survey. Alternatively, when available, it shall
be permitted to determine such dimensions from applicable project design or shop
drawings with field verification of critical values.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 224

App. 5.4.] EVALUATION BY LOAD TESTS 16.1–225
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Strength Evaluation
Forces(load effects) in members and connections shall be determined by structural
analysisapplicable to the type of structure evaluated. The load effects shall be deter-
mined for the static vertical (gravity) loads and factored load combinations
stipulated in Section B2.
The available strengthof members and connections shall be determined from appli-
cable provisions of Chapters B through K of this Specification.
3. Serviceability Evaluation
Where required, the deformations at service loadsshall be calculated and reported.
5.4. EVALUATION BY LOAD TESTS
1. Determination of Load Rating by Testing
To determine the loadrating of an existing floor or roof structure by testing, a test
load shall be applied incrementally in accordance with the engineer of record’splan.
The structure shall be visually inspected for signs of distress or imminent failure at
each load level. Appropriate measures shall be taken if these or any other unusual
conditions are encountered.
The tested strength of the structure shall be taken as the maximum applied test load
plus the in-situ dead load. The live load rating of a floor structure shall be deter-
mined by setting the tested strength equal to 1.2D+1.6L, where D is the nominal
dead load and Lis the nominal live load rating for the structure. The nominal live
load rating of the floor structure shall not exceed that which can be calculated using
applicable provisions of the specification. For roof structures, L
r, Sor Ras defined
in ASCE/SEI 7, shall be substituted for L. More severe load combinations shall be
used where required by applicable building codes.
Periodic unloading shall be considered once the service loadlevel is attained and
after the onset of inelastic structural behavior is identified to document the amount
of permanent set and the magnitude of the inelastic deformations. Deformations of
the structure, such as member deflections, shall be monitored at critical locations
during the test, referenced to the initial position before loading. It shall be demon-
strated that the deformation of the structure does not increase by more than 10%
during a one-hour holding period under sustained, maximum test load. It is permis-
sible to repeat the sequence if necessary to demonstrate compliance.
Deformations of the structure shall also be recorded 24 hours after the test loading is
removed to determine the amount of permanent set. Because the amount of accept-
able permanent deformation depends on the specific structure, no limit is specified
for permanent deformation at maximum loading. Where it is not feasible to load test
the entire structure, a segment or zone of not less than one complete bay, representa-
tive of the most critical conditions, shall be selected.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 225

16.1–226 EVALUATION BY LOAD TESTS [App. 5.4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Serviceability Evaluation
When loadtests are prescribed, the structure shall be loaded incrementally to the
service loadlevel. Deformations shall be monitored during a one hour holding period
under sustained service test load. The structure shall then be unloaded and the defor-
mation recorded.
5.5. EVALUATION REPORT
After the evaluation of an existing structure has been completed, the engineer of
recordshall prepare a report documenting the evaluation. The report shall indicate
whether the evaluation was performed by structural analysis, by load testing, or by
a combination of structural analysis and load testing. Furthermore, when testing is
performed, the report shall include the loads and load combination used and the load-
deformation and time-deformation relationships observed. All relevant information
obtained from design drawings, material test reports, and auxiliary material testing
shall also be reported. Finally, the report shall indicate whether the structure, includ-
ing all members and connections, is adequate to withstand the load effects.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 226

16.1–227
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 6
STABILITY BRACING FOR COLUMNS AND BEAMS
This appendix addresses the minimum strength and stiffness necessary to provide a braced
point in a column, beamor beam-column.
The appendix is organized as follows:
6.1. General Provisions
6.2. Column Bracing
6.3. Beam Bracing
6.4. Beam-Column Bracing
User Note: The stabilityrequirements for braced-frame systems are provided in Chapter
C. The provisions in this appendix apply to bracingthat is provided to stabilize individ-
ual columns, beams and beam-columns.
6.1. GENERAL PROVISIONS
Columnswith end and intermediate braced points designed to meet the requirements
in Section 6.2 are permitted to be designed based on the unbraced length, L, between
the braced points with an effective length factor, K=1.0. Beams with intermediate
braced points designed to meet the requirements in Section 6.3 are permitted to be
designed based on the unbraced length, L
b, between the braced points.
When bracingis perpendicular to the members to be braced, the equations in
Sections 6.2 and 6.3 shall be used directly. When bracing is oriented at an angle to
the member to be braced, these equations shall be adjusted for the angle of inclina-
tion. The evaluation of the stiffnessfurnished by a brace shall include its member and
geometric properties, as well as the effects of connectionsand anchoring details.
User Note:In this appendix, relative and nodal bracing systems are addressed for
columns and for beams with lateral bracing. For beams with torsional bracing ,
nodal and continuous bracing systems are addressed.
A relative bracecontrols the movement of the braced point with respect to
adjacent braced points. A nodal bracecontrols the movement at the braced point
without direct interaction with adjacent braced points. A continuous bracing sys-
tem consists of bracing that is attached along the entire member length; however,
nodal bracing systems with a regular spacing can also be modeled as a continu-
ous system.
The available strengthand stiffness of the bracing members and connections shall
equal or exceed the required strengthand stiffness, respectively, unless analysis indi-
cates that smaller values are justified. A second-order analysisthat includes the
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 227

initial out-of-straightness of the member to obtain brace strength and stiffness
requirements is permitted in lieu of the requirements of this appendix.
6.2. COLUMN BRACING
It is permitted to brace an individual columnat end and intermediate points along the
length using either relative or nodal bracing.
1. Relative Bracing
The required strengthis
P
rb=0.004P r (A-6-1)
The required stiffnessis
(A-6-2)
where
φ=0.75 (LRFD) Ω=2.00 (ASD)
L
b=unbraced length, in. (mm)
For design according to Section B3.3 (LRFD)
P
r=required strength in axial compression using LRFD load combinations, kips
(N)
For design according to Section B3.4 (ASD)
P
r=required strength in axial compression using ASD load combinations , kips
(N)
2. Nodal Bracing
The required strengthis
P
rb=0.01P r (A-6-3)
The required stiffnessis
(A-6-4)
User Note:These equations correspond to the assumption that nodal bracesare
equally spaced along the column.
where
φ=0.75 (LRFD) Ω=2.00 (ASD)
For design according to Section B3.3 (LRFD)
P
r=required strength in axial compression using LRFD load combinations, kips
(N)
16.1–228 GENERAL PROVISIONS [App. 6.1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
β
φbr
r
b
P
L
=






12
(LRFD)
βbr
r
b
P
L
=






Ω
2
(ASD)
β
φbr
r
b
P
L
=






18
(LRFD)
βbr
r
b
P
L
=






Ω
8
(ASD)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 228

App. 6.3.] BEAM BRACING 16.1–229
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For design according to Section B3.4 (ASD)
P
r=required strength in axial compression using ASD load combinations , kips
(N)
In Equation A-6-4, L
bneed not be taken less than the maximum effective length, KL,
permitted for the column based upon the required axial strength, P
r.
6.3. BEAM BRACING
Beamsand trusses shall be restrained against rotation about their longitudinal axis at
points of support. When a braced point is assumed in the design between points of
support, lateral bracing, torsional bracing, or a combination of the two shall be pro-
vided to prevent the relative displacement of the top and bottom flanges (i.e., to
prevent twist). In members subject to double curvature bending, the inflection point
shall not be considered a braced point unless bracingis provided at that location.
1. Lateral Bracing
Lateral bracingshall be attached at or near the beamcompression flange, except as
follows:
(1) At the free end of a cantilevered beam, lateral bracing shall be attached at or near
the top (tension) flange.
(2) For braced beams subject to double curvature bending, lateral bracing shall be
attached to both flanges at the braced point nearest the inflection point.
1a. Relative Bracing
The required strengthis
P
rb=0.008M rCd/ho (A-6-5)
The required stiffnessis
(A-6-6)
where
φ=0.75 (LRFD) Ω=2.00 (ASD)
C
d=1.0 except in the following case;
=2.0 for the brace closest to the inflection point in a beamsubject to double
curvaturebending
h
o=distance between flange centroids, in. (mm)
For design according to Section B3.3 (LRFD)
M
r=required flexural strengthusing LRFD load combinations, kip-in. (N-mm)
For design according to Section B3.4 (ASD)
M
r=required flexural strength using ASD load combinations , kip-in. (N-mm)
β
φbr
rd
bo
MC
Lh
=






14
(LRFD)
βbr
rd
bo
MC
Lh
=






Ω
4
(ASD)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 229

1b. Nodal Bracing
The required strength is
P
rb=0.02M rCd/ho (A-6-7)
The required stiffness is
(A-6-8)
where
φ=0.75 (LRFD) Ω = 2.00 (ASD)
For design according to Section B3.3 (LRFD)
M
r=required flexural strength using LRFD load combinations, kip-in. (N-mm)
For design according to Section B3.4 (ASD)
M
r=required flexural strength using ASD load combinations , kip-in. (N-mm)
In Equation A-6-8, L
bneed not be taken less than the maximum unbraced lengthper-
mitted for the beam based upon the flexural required strength, M
r.
2. Torsional Bracing
It is permitted to attach torsional bracingat any cross-sectional location, and it need
not be attached near the compression flange.
User Note:Torsional bracing can be provided with a moment-connected beam,
cross-frame, or other diaphragm element.
2a. Nodal Bracing
The required strengthis
(A-6-9)
The required stiffnessof the brace is
(A-6-10)
where
(A-6-11)
16.1–230 BEAM BRACING [App. 6.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
β
φbr
rd
bo
MC
Lh
=






110
LRFD()
βbr
rd
bo
MC
Lh
=






Ω
10
ASD()
β
φT
r
yb
LM
nEI C
=






124
2
2
.
() LRFD
βT
r
yb
LM
nEI C
=






Ω
24
2
2
.
() ASD
M
ML
nC Lrb
r
bb=
0 024.
β
β
β
βTb
T
T
sec=







1
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 230

(A-6-12)
where
φ=0.75 (LRFD) Ω=3.00 (ASD)
User Note: Ω=1.5
2
/φ=3.00 in Equation A-6-11 because the moment term is
squared.
C
b=modification factor defined in Chapter F
E=modulus of elasticity of steel = 29,000 ksi (200 000 MPa)
I
y=out-of-plane moment of inertia, in.
4
(mm
4
)
L=length of span, in. (mm)
b
s=stiffenerwidth for one-sided stiffeners, in. (mm)
=twice the individual stiffener width for pairs of stiffeners, in. (mm)
n=number of nodal braced points within the span
t
w=thickness of beam web, in. (mm)
t
st=thickness of web stiffener, in. (mm)
β
T=overall brace system stiffness, kip-in./rad (N-mm/rad)
β
sec=web distortional stiffness, including the effect of web transverse stiffeners,
if any, kip-in./rad (N-mm/rad)
User Note: If β
sec<βT, Equation A-6-10 is negative, which indicates that tor-
sional beam bracingwill not be effective due to inadequate web distortional
stiffness.
For design according to Section B3.3 (LRFD)
M
r=required flexural strength using LRFD load combinations, kip-in. (N-mm)
For design according to Section B3.4 (ASD)
M
r=required flexural strength using ASD load combination s, kip-in. (N-mm)
When required, the web stiffener shall extend the full depth of the braced member
and shall be attached to the flange if the torsional brace is also attached to the flange.
Alternatively, it shall be permissible to stop the stiffener short by a distance equal to
4t
wfrom any beam flange that is not directly attached to the torsional brace.
In Equation A-6-9, L
bneed not be taken less than the maximum unbraced lengthper-
mitted for the beam based upon the required flexural strength, M
r.
2b. Continuous Bracing
For continuous bracing, Equations A-6-9 and A-6-10 shall be used with the follow-
ing modifications:
(1)L/n=1.0
(2)L
bshall be taken equal to the maximum unbraced lengthpermitted for the beam
based upon the required flexural strength, M
r
App. 6.3.] BEAM BRACING 16.1–231
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
βsec
o
ow st s
E
h
ht t b
=+






33 15
12 12
33
..
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 231

16.1–232 BEAM BRACING [App. 6.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(3) The web distortional stiffness shall be taken as:
(A-6-13)
6.4. BEAM-COLUMN BRACING
For bracingof beam-columns, the required strength and stiffnessfor the axial force
shall be determined as specified in Section 6.2, and the required strength and stiff-
ness for the flexure shall be determined as specified in Section 6.3. The values so
determined shall be combined as follows:
(a) When relative lateral bracingis used, the required strength shall be taken as the
sum of the values determined using Equations A-6-1 and A-6-5, and the
required stiffness shall be taken as the sum of the values determined using
Equations A-6-2 and A-6-6.
(b) When nodal lateral bracing is used, the required strength shall be taken as the
sum of the values determined using Equations A-6-3 and A-6-7, and the
required stiffness shall be taken as the sum of the values determined using
Equations A-6-4 and A-6-8. In Equations A-6-4 and A-6-8, L
bfor beam-
columns shall be taken as the actual unbraced length; the provisions in Sections
6.2.2 and 6.3.1b that L
bneed not be taken less than the maximum permitted
effective length based upon P
rand M rshall not be applied.
(c) When torsional bracingis provided for flexure in combination with relative or
nodal bracingfor the axial force, the required strength and stiffness shall be com-
bined or distributed in a manner that is consistent with the resistance provided by
the element(s) of the actual bracing details.
βsec
w
o
Et
h
=
33
12
3
.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 232

APPENDIX 7
ALTERNATIVE METHODS OF DESIGN FOR STABILITY
This appendix presents alternatives to the direct analysis methodof design for stability
defined in Chapter C. The two alternative methods covered are the effective lengthmethod
and the first-order analysismethod.
The appendix is organized as follows:
7.1. General Stability Requirements
7.2. Effective Length Method
7.3. First-Order Analysis Method
7.1. GENERAL STABILITY REQUIREMENTS
The general requirements of Section C1 shall apply. As an alternative to the direct
analysis method(defined in Sections C1 and C2), it is permissible to design struc-
tures for stability in accordance with either the effective length method, specified in
Section 7.2, or the first-order analysis method, specified in Section 7.3, subject to the
limitations indicated in those sections.
7.2. EFFECTIVE LENGTH METHOD
1. Limitations
The use of the effective length method shall be limited to the following conditions:
(1) The structure supports gravity loads primarily through nominally vertical columns,
walls or frames.
(2) The ratio of maximum second-order drift to maximum first-order drift (both
determined for LRFD load combinations or 1.6 times ASD load combinations) in
all stories is equal to or less than 1.5.
User Note:The ratio of second-order drift to first-order drift in a story may be
taken as the B
2multiplier, calculated as specified in Appendix 8.
2. Required Strengths
The required strengthsof components shall be determined from analysis conforming
to the requirements of Section C2.1, except that the stiffnessreduction indicated in
Section C2.3 shall not be applied; the nominal stiffnesses of all structural steelcom-
ponents shall be used. Notional loadsshall be applied in the analysis in accordance
with Section C2.2b.
16.1–233
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 233

16.1–234 EFFECTIVE LENGTH METHOD [App. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:Since the condition specified in Section C2.2b(4) will be satisfied in
all cases where the effective length method is applicable, the notional load need
only be applied in gravity-only load cases.
3. Available Strengths
The available strengthsof members and connections shall be calculated in accor-
dance with the provisions of Chapters D, E, F, G, H, I, J and K, as applicable.
The effective length factor, K, of members subject to compression shall be taken as
specified in (a) or (b), below, as applicable.
(a) In braced framesystems, shear wallsystems, and other structural systems
where lateral stabilityand resistance to lateral loads does not rely on the flex-
ural stiffnessof columns, the effective length factor, K , of members subject to
compression shall be taken as 1.0, unless rational analysis indicates that a lower
value is appropriate.
(b) In moment framesystems and other structural systems in which the flexural stiff-
nesses of columns are considered to contribute to lateral stability and resistance
to lateral loads, the effective length factor, K, or elastic critical bucklingstress,
F
e, of those columns whose flexural stiffnesses are considered to contribute to
lateral stability and resistance to lateral loads shall be determined from a side-
sway bucklinganalysis of the structure; K shall be taken as 1.0 for columns
whose flexural stiffnesses are not considered to contribute to lateral stability and
resistance to lateral loads.
Exception: It is permitted to use K =1.0 in the design of all columns if the ratio
of maximum second-order drift to maximum first-order drift (both determined
for LRFD load combinationsor 1.6 times ASD load combinations ) in all stories
is equal to or less than 1.1.
User Note:Methods of calculating the effective length factor, K, are discussed in
the Commentary.
Bracingintended to define the unbraced lengthsof members shall have sufficient
stiffness and strength to control member movement at the braced points.
User Note:Methods of satisfying the bracing requirement are provided in
Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is
included in the analysis of the overall structure as part of the overall force-resist-
ing system.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 234

7.3. FIRST-ORDER ANALYSIS METHOD
1. Limitations
The use of the first-order analysis method shall be limited to the following condi-
tions:
(1) The structure supports gravity loads primarily through nominally vertical columns,
walls or frames.
(2) The ratio of maximum second-order drift to maximum first-order drift (both
determined for LRFD load combinations or 1.6 times ASD load combinations) in
all stories is equal to or less than 1.5.
User Note:The ratio of second-order drift to first-order drift in a story may be
taken as the B
2multiplier, calculated as specified in Appendix 8.
(3) The required axial compressive strengthsof all members whose flexural stiff-
nessesare considered to contribute to the lateral stabilityof the structure satisfy
the limitation:
αP
r≤0.5P y (A-7-1)
where
α=1.0 (LRFD); α = 1.6 (ASD)
P
r=required axial compressive strength under LRFD or ASD load combina-
tions, kips (N)
P
y=FyA =axial yield strength, kips (N)
2. Required Strengths
The required strengthsof components shall be determined from a first-order analy-
sis, with additional requirements (1) and (2) below. The analysis shall consider
flexural, shear and axial member deformations, and all other deformations that con-
tribute to displacements of the structure.
(1) All load combinations shall include an additional lateral load, N
i, applied in
combination with other loads at each level of the structure:
N
i =2.1α(Δ/L)Y i≥0.0042Y i (A-7-2)
where
α=1.0 (LRFD); α = 1.6 (ASD)
Y
i=gravity loadapplied at level ifrom the LRFD load combination
or ASD load combination, as applicable, kips (N)
Δ/L=maximum ratio of Δto Lfor all stories in the structure
Δ=first-order interstory driftdue to the LRFD or ASD load combination, as
applicable, in. (mm). Where Δvaries over the plan area of the
structure, Δshall be the average drift weighted in proportion to vertical
loador, alternatively, the maximum drift.
L=height of story, in. (mm)
App. 7.3.] FIRST-ORDER ANALYSIS METHOD 16.1–235
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 235

16.1–236 FIRST-ORDER ANALYSIS METHOD [App. 7.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The additional lateral load at any level, N i, shall be distributed over that level in
the same manner as the gravity load at the level. The additional lateral loads shall
be applied in the direction that provides the greatest destabilizing effect.
User Note:For most building structures, the requirement regarding the direc-
tion of N
imay be satisfied as follows: For load combinations that do not
include lateral loading, consider two alternative orthogonal directions for the
additional lateral load, in a positive and a negative sense in each of the two
directions, same direction at all levels; for load combinations that include lat-
eral loading, apply all the additional lateral loads in the direction of the
resultant of all lateral loads in the combination.
(2) The nonsway amplification of beam-column moments shall be considered by
applying the B
1amplifier of Appendix 8 to the total member moments.
User Note:Since there is no second-order analysis involved in the first-order
analysis method for design by ASD, it is not necessary to amplify ASD load com-
binations by 1.6 before performing the analysis, as required in the direct analysis
methodand the effective length method.
3. Available Strengths
The available strengthsof members and connections shall be calculated in accor-
dance with the provisions of Chapters D, E, F, G, H, I, J and K, as applicable.
The effective length factor, K, of all members shall be taken as unity.
Bracingintended to define the unbraced lengthsof members shall have sufficient
stiffnessand strength to control member movement at the braced points.
User Note:Methods of satisfying this requirement are provided in Appendix 6.
The requirements of Appendix 6 are not applicable to bracing that is included in
the analysis of the overall structure as part of the overall force-resisting system.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 236

16.1–237
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 8
APPROXIMATE SECOND-ORDER ANALYSIS
This appendix provides, as an alternative to a rigorous second-order analysis, a procedure to
account for second-order effects in structures by amplifying the required strengthsindicated
by a first-order analysis.
The appendix is organized as follows:
8.1. Limitations
8.2. Calculation Procedure
8.1. LIMITATIONS
The use of this procedure is limited to structures that support gravity loadsprimarily
through nominally vertical columns, walls or frames, except that it is permissible to
use the procedure specified for determining P-δ effectsfor any individual compres-
sion member.
8.2. CALCULATION PROCEDURE
The required second-order flexural strength, M r, and axial strength, P r, of all mem-
bers shall be determined as follows:
M
r=B1Mnt+B2Mlt (A-8-1)
P
r=Pnt+B2Plt (A-8-2)
where
B
1= multiplier to account for P-δeffects, determined for each member subject to
compression and flexure, and each direction of bending of the member in
accordance with Section 8.2.1. B
1shall be taken as 1.0 for members not sub-
ject to compression.
B
2= multiplier to account for P-Δ effects, determined for each story of the struc-
ture and each direction of lateral translation of the story in accordance with
Section 8.2.2
M
lt= first-order moment using LRFD or ASD load combinations, due to lateral
translation of the structure only, kip-in. (N-mm)
M
nt= first-order moment using LRFD or ASD load combinations, with the struc-
ture restrained against lateral translation, kip-in. (N-mm)
M
r= required second-order flexural strength using LRFD or ASD load combina-
tions, kip-in. (N-mm)
P
lt= first-order axial force using LRFD or ASD load combinations, due to lateral
translation of the structure only, kips (N)
P
nt= first-order axial force using LRFD or ASD load combinations, with the
structure restrained against lateral translation, kips (N)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 237

16.1–238 CALCULATION PROCEDURE [App. 8.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Pr= required second-order axial strength using LRFD or ASD load combina-
tions, kips (N)
User Note:Equations A-8-1 and A-8-2 are applicable to all members in all struc-
tures. Note, however, that B
1values other than unity apply only to moments in
beam-columns; B
2applies to moments and axial forces in components of the lat-
eral force resisting system(including columns, beams, bracingmembers and
shear walls). See Commentary for more on the application of Equations A-8-
1and A-8-2.
1. Multiplier B 1for P-δEffects
The B 1multiplier for each member subject to compression and each direction of
bending of the member is calculated as follows:
(A-8-3)
where
α=1.00 (LRFD); α=1.60 (ASD)
C
m=coefficient assuming no lateral translation of the frame determined
as follows:
(a) For beam-columnsnot subject to transverse loading between supports in
the plane of bending
C
m=0.6 β0.4(M 1/M2) (A-8-4)
where M
1andM 2, calculated from a first-order analysis, are the smaller
and larger moments, respectively, at the ends of that portion of the mem-
ber unbraced in the plane of bending under consideration. M
1/M2is
positive when the member is bent in reverse curvature, negative when
bent in single curvature.
(b) For beam-columns subject to transverse loading between supports, the
value of C
mshall be determined either by analysis or conservatively
taken as 1.0 for all cases.
P
e1= elastic critical buckling strengthof the member in the plane of bending, cal-
culated based on the assumption of no lateral translation at the member ends,
kips (N)
(A-8-5)
where
EI*=flexural rigidity required to be used in the analysis (=0.8τ
bEIwhen
used in the direct analysis methodwhere τ
bis as defined in Chapter C;
=EIfor the effective length and first-order analysis methods)
E=modulus of elasticity of steel = 29,000 ksi (200 000 MPa)
B
C
PP
m
re
1
1
1
1=


α/
P
EI
KLe1
2
1
2=
()
π*
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 238

App. 8.2.] CALCULATION PROCEDURE 16.1–239
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
B
P
P
story
estory
2
1
1
1=


α

PR
HLestory M
H
=
Δ
I=moment of inertia in the plane of bending, in.
4
(mm
4
)
L=length of member, in. (mm)
K
1=effective length factorin the plane of bending, calculated based on the
assumption of no lateral translation at the member ends, set equal to 1.0
unless analysis justifies a smaller value
It is permitted to use the first-order estimate of P
r(i.e., P r=Pnt+Plt) in Equation
A-8-3.
2. Multiplier B 2for P-ΔEffects
The B 2multiplier for each story and each direction of lateral translation is calculated
as follows:
(A-8-6)
where
α= 1.00 (LRFD); α=1.60 (ASD)
P
story= total vertical load supported by the story using LRFDor ASD load com-
binations, as applicable, including loads in columnsthat are not part of
the lateral force resisting system, kips (N)
P
e story= elastic critical buckling strengthfor the story in the direction of transla-
tion being considered, kips (N), determined by sidesway buckling
analysis or as:
(A-8-7)
where
R
M=1 β0.15 (P mf/Pstory) (A-8-8)
L=height of story, in. (mm)
P
mf=total vertical load in columns in the story that are part of moment frames, if
any, in the direction of translation being considered (= 0 for braced frame
systems), kips (N)
Δ
H=first-order interstory drift, in the direction of translation being considered,
due to lateral forces, in. (mm), computed using the stiffnessrequired to be
used in the analysis (stiffness reduced as provided in Section C2.3 when the
direct analysis methodis used). Where Δ
Hvaries over the plan area of the
structure, it shall be the average drift weighted in proportion to vertical load
or, alternatively, the maximum drift.
H=story shear, in the direction of translation being considered, produced by the
lateral forces used to compute Δ
H, kips (N)
User Note: H and Δ
Hin Equation A-8-7 may be based on any lateral loading that
provides a representative value of story lateral stiffness, H /Δ
H.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 239

16.1–240 CALCULATION PROCEDURE [App. 8.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 240

16.1–241
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
COMMENTARY
on the Specification for Structural
Steel Buildings
June 22, 2010
(The Commentary is not a part of ANSI/AISC 360-10, Specification for Structural Steel
Buildings, but is included for informational purposes only.)
INTRODUCTION
The Specification is intended to be complete for normal design usage.
The Commentary furnishes background information and references for the benefit of the
design professional seeking further understanding of the basis, derivations and limits of the
Specification.
The Specification and Commentary are intended for use by design professionals with
demonstrated engineering competence.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 241

16.1–242
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
COMMENTARY SYMBOLS
The Commentary uses the following symbols in addition to the symbols defined in the
Specification. The section number in the right-hand column refers to the Commentary sec-
tion where the symbol is first used.
Symbol Definition Section
A Angle cross-sectional area, in.
2(mm
2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G4
B Overall width of rectangular HSS, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . I3
C
f Compression force in concrete slab for fully composite beam;
smaller of F
yAsand 0.85f ′ cAc,kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3.2
F
y Reported yield stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 5.2.2
F
ys Static yield stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 5.2.2
H Overall height of rectangular HSS, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . I3
H Anchor height, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2b
I
g Moment of inertia of gross concrete section about centroidal
axis, neglecting reinforcement, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
I
LB Lower bound moment of inertia, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . I3.2
I
pos Effective moment of inertia for positive moment, in.
4
(mm
4
) . . . . . . . . . . . I3.2
I
neg Effective moment of inertia for negative moment, in.
4
(mm
4
) . . . . . . . . . . I3.2
I
s Moment of inertia for the structural steel section, in.
4(mm
4) . . . . . . . . . . . I3.2
I
tr Moment of inertia for the fully composite uncracked
transformed section, in.
4(mm
4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I3.2
I
y Top Moment of inertia of the top flange about an axis through
the web, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
I
y Moment of inertia of the entire section about an axis through
the web, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
K
S Secant stiffness, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3.6
M
CL Moment at the middle of the unbraced length, kip-in. (N-mm) . . . . . . . . . . . F1
M
S Moment at service loads, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . B3.6
M
T Torsional moment, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G4
M
o Maximum first-order moment within the member due to the
transverse loading, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8
N Number of cycles to failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.3
Q
m Mean value of the load effect Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B3.3
R
cap Minimum rotation capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 1.2.2
R
m Mean value of the resistance R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B3.3
S
r Stress range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.3
S
s Section modulus for the structural steel section, referred to
the tension flange, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3.2
S
tr Section modulus for the fully composite uncracked transformed
section, referred to the tension flange of the steel section,
in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3.2
V
Q Coefficient of variation of the load effect Q . . . . . . . . . . . . . . . . . . . . . . . . B3.3
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 242

COMMENTARY SYMBOLS 16.1–243
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
VR Coefficient of variation of the resistance R . . . . . . . . . . . . . . . . . . . . . . . . . B3.3
V
b Component of the shear force parallel to the angle leg with
width band thickness t, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G4
a
cr Distance from the compression face to the neutral axis for
a slender section, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3
a
p Distance from the compression face to the neutral axis for
a compact section, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3
a
y Distance from the compression face to the neutral axis for
a noncompact section, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3
f
v Shear stress in angle, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G4
k Plate buckling coefficient characteristic of the type of plate
edge-restraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.1
β Reliability index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3.3
β
act Actual bracing stiffness provided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.1
δ
o Maximum deflection due to transverse loading, in. (mm) . . . . . . . . . . . . App. 8
ν Poisson’s ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.1
θ
S Rotation at service loads, rad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3.6
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 243

16.1–244
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
COMMENTARY GLOSSARY
The Commentary uses the following terms in addition to the terms defined in the Glossary
of the Specification. The terms listed below are italicized where they first appear in a chap-
ter in the Commentary text.
Alignment chart. Nomograph for determining the effective length factor, K, for some types
of columns.
Biaxial bending. Simultaneous bending of a member about two perpendicular axes.
Brittle fracture. Abrupt cleavage with little or no prior ductile deformation.
Column curve. Curve expressing the relationship between axial column strength and slen-
derness ratio.
Critical load. Load at which a perfectly straight member under compression may either
assume a deflected position or may remain undeflected, or a beam under flexure may
either deflect and twist out of plane or remain in its in-plane deflected position, as deter-
mined by a theoretical stability analysis.
Cyclic load.Repeatedly applied external load that may subject the structure to fatigue.
Drift damage index. Parameter used to measure the potential damage caused by interstory
drift.
Effective moment of inertia. Moment of inertia of the cross section of a member that remains
elastic when partial plastification of the cross section takes place, usually under the com-
bination of residual stressand applied stress; also, the moment of inertia based on
effective widths of elements that buckle locally; also, the moment of inertia used in the
design of partially composite members.
Effective stiffness. Stiffness of a member computed using the effective moment of inertiaof
its cross section.
Fatigue threshold.Stress range at which fatigue cracking will not initiate regardless of the
number of cycles of loading.
First-order plastic analysis. Structural analysisbased on the assumption of rigid-plastic
behavior—in other words, that equilibrium is satisfied throughout the structure and the
stress is at or below the yield stress—and in which equilibrium conditions are formulated
on the undeformed structure.
Flexible connection. Connection permitting a portion, but not all, of the simple beam rota-
tion of a member end.
Inelastic action. Material deformation that does not disappear on removal of the force that
produced it.
Interstory drift. Lateral deflection of a floor relative to the lateral deflection of the floor
immediately below, divided by the distance between floors, (δ
n– δn-1)/h.
Permanent load. Loadin which variations over time are rare or of small magnitude. All
other loadsare variable loads.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 244

COMMENTARY GLOSSARY 16.1–245
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Plastic plateau. Portion of the stress-strain curve for uniaxial tension or compression in
which the stress remains essentially constant during a period of substantially increased
strain.
Primary member.For ponding analysis, beam or girder that supports the concentrated reac-
tions from the secondary members framing into it.
Residual stress. Stress that remains in an unloaded member after it has been formed into a
finished product. (Examples of such stresses include, but are not limited to, those induced
by cold bending, cooling after rolling, or welding).
Rigid frame. Structure in which connections maintain the angular relationship between
beam and column members under load.
Secondary member. For ponding analysis, beam or joist that directly supports the distributed
ponding loads on the roof of the structure.
Sidesway. Lateral movement of a structure under the action of lateral loads, unsymmetrical
vertical loads or unsymmetrical properties of the structure.
Sidesway buckling. Buckling mode of a multistory frame precipitated by the relative lateral
displacements of joints, leading to failure by sideswayof the frame.
St. Venant torsion. Portion of the torsion in a member that induces only shear stresses in the
member.
Strain hardening. Phenomenon wherein ductile steel, after undergoing considerable defor-
mation at or just above yield point, exhibits the capacity to resist substantially higher
loading than that which caused initial yielding.
Stub-column.A short compression test specimen utilizing the complete cross section, suffi-
ciently long to provide a valid measure of the stress-strain relationship as averaged over
the cross section, but short enough so that it will not buckle as a column in the elastic or
plastic range.
Total building drift.Lateral frame deflection at the top of the most occupied floor divided
by the height of the building to that level, Δ/H.
Undercut. Notch resulting from the melting and removal of base metal at the edge of a weld.
Variable load. Load with substantial variation over time.
Warping torsion. Portion of the total resistance to torsion that is provided by resistance to
warping of the cross section.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 245

16.1–246
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER A
GENERAL PROVISIONS
A1. SCOPE
The scope of this Specification is essentially the same as the 2005 Specification for
Structural Steel Buildingsthat it replaces, with the exception of a new Chapter N,
Quality Control and Quality Assurance.
The basic purpose of the provisions in this Specification is the determination of the
nominal and available strengths of the members, connections and other components
of steel building structures.
This Specification provides two methods of design:
(1)Load and Resistance Factor Design (LRFD): The nominal strength is multi-
plied by a resistance factor, φ,and the resulting design strength is then required
to equal or exceed the required strength determined by structural analysis for the
appropriate LRFD load combinations specified by the applicable building code.
(2)Allowable Strength Design (ASD): The nominal strength is divided by a safety
factor, Ω,and the resulting allowable strength is then required to equal or exceed
the required strength determined by structural analysis for the appropriate ASD
load combinations specified by the applicable building code.
This Specification gives provisions for determining the values of the nominal
strengths according to the applicable limit states and lists the corresponding values
of the resistance factor, φ , and the safety factor, Ω. Nominal strength is usually
defined in terms of resistance to a load effect, such as axial force, bending moment,
shear or torque, but in some instances it is expressed in terms of a stress. The ASD
safety factors are calibrated to give the same structural reliability and the same
component size as the LRFD method at a live-to-dead load ratio of 3. The term
available strength is used throughout the Specification to denote design strength
and allowable strength, as applicable.
This Specification is applicable to both buildings and other structures. Many struc-
tures found in petrochemical plants, power plants, and other industrial applications
are designed, fabricated and erected in a manner similar to buildings. It is not
intended that this Specification address steel structures with vertical and lateral
load-resisting systems that are not similar to buildings, such as those constructed of
shells or catenary cables.
The Specification may be used for the design of structural steel elements, as defined
in the AISC Code of Standard Practice for Steel Buildings and Bridges (AISC,
2010a), hereafter referred to as the Code of Standard Practice , when used
as components of nonbuilding structures or other structures. Engineering judgment
must be applied to the Specification requirements when the structural steel elements
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 246

Comm. A3.] MATERIAL 16.1–247
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
are exposed to environmental or service conditions and/or loads not usually applica-
ble to building structures.
The Code of Standard Practice defines the practices that are the commonly accepted
standards of custom and usage for structural steel fabrication and erection. As such,
the Code of Standard Practiceis primarily intended to serve as a contractual docu-
ment to be incorporated into the contract between the buyer and seller of fabricated
structural steel. Some parts of the Code of Standard Practice, however, form the
basis for some of the provisions in this Specification. Therefore, the Code of
Standard Practice is referenced in selected locations in this Specification to maintain
the ties between these documents, where appropriate.
The Specification disallows seismic design of buildings and other structures using
the provisions of Appendix 1. The R-factor specified in ASCE/SEI 7-10 (ASCE,
2010) used to determine the seismic loads is based on a nominal value of system
overstrength and ductility that is inherent in steel structures designed by elastic
analysis using this Specification. Therefore, it would be inappropriate to take advan-
tage of the additional strength afforded by the inelastic design approach presented
in Appendix 1 while simultaneously using the code specified R-factor. In addition,
the provisions for ductility in Appendix 1 are not fully consistent with the intended
levels for seismic design.
A2. REFERENCED SPECIFICATIONS, CODES AND STANDARDS
Section A2 provides references to documents cited in this Specification. Note that not
all grades of a particular material specification are necessarily approved for use
according to this Specification. For a list of approved materials and grades, see
Section A3.
A3. MATERIAL
1. Structural Steel Materials
1a. ASTM Designations
There are hundreds of steel materials and products. This Specification lists those
products/materials that are commonly useful to structural engineers and those that
have a history of satisfactory performance. Other materials may be suitable for spe-
cific applications, but the evaluation of those materials is the responsibility of the
engineer specifying them. In addition to typical strength properties, considerations
for materials may include but are not limited to strength properties in transverse
directions, ductility, formability, soundness, weldability including sensitivity to ther-
mal cycles, notch toughness, and other forms of crack sensitivity, coatings, and
corrosivity. Consideration for product form may include material considerations in
addition to effects of production, tolerances, testing, reporting and surface profiles.
Hot-Rolled Structural Shapes. The grades of steel approved for use under this
Specification, covered by ASTM specifications, extend to a yield stress of 100 ksi
(690 MPa). Some of the ASTM specifications specify a minimum yield point, while
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 247

16.1–248 MATERIAL [Comm. A3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
others specify a minimum yield strength. The term “yield stress” is used in this
Specification as a generic term to denote either the yield point or the yield strength.
It is important to be aware of limitations of availability that may exist for some com-
binations of strength and size. Not all structural section sizes are included in the
various material specifications. For example, the 60 ksi (415 MPa) yield stress steel
in the A572/A572M specification includes plate only up to 1
1
/4in. (32 mm) in thick-
ness. Another limitation on availability is that even when a product is included in
this Specification, it may be infrequently produced by the mills. Specifying these
products may result in procurement delays or require ordering large quantities
directly from the producing mills. Consequently, it is prudent to check availability
before completing the details of a design. The AISC web site provides this infor-
mation (www.aisc.org).
Properties in the direction of rolling are of principal interest in the design of steel
structures. Hence, yield stress as determined by the standard tensile test is the prin-
cipal mechanical property recognized in the selection of the steels approved for use
under this Specification. It must be recognized that other mechanical and physical
properties of rolled steel, such as anisotropy, ductility, notch toughness, formability,
corrosion resistance, etc., may also be important to the satisfactory performance of
a structure.
It is not possible to incorporate in the Commentary adequate information to impart
full understanding of all factors that might merit consideration in the selection and
specification of materials for unique or especially demanding applications. In such a
situation the user of the Specification is advised to make use of reference material
contained in the literature on the specific properties of concern and to specify sup-
plementary material production or quality requirements as provided for in ASTM
material specifications. One such case is the design of highly restrained welded con-
nections (AISC, 1973). Rolled steel is anisotropic, especially insofar as ductility is
concerned; therefore, weld contraction strains in the region of highly restrained
welded connections may exceed the strength of the material if special attention is not
given to material selection, details, workmanship and inspection.
Another special situation is that of fracture control design for certain types of serv-
ice conditions (AASHTO, 2010). For especially demanding service conditions such
as structures exposed to low temperatures, particularly those with impact loading,
the specification of steels with superior notch toughness may be warranted.
However, for most buildings, the steel is relatively warm, strain rates are essentially
static, and the stress intensity and number of cycles of full design stress are low.
Accordingly, the probability of fracture in most building structures is low. Good
workmanship and good design details incorporating joint geometry that avoids
severe stress concentrations are generally the most effective means of providing
fracture-resistant construction.
Hollow Structural Sections (HSS). Specified minimum tensile properties are sum-
marized in Table C-A3.1 for various HSS and pipe material specifications and
grades. ASTM A53 Grade B is included as an approved pipe material specification
because it is the most readily available round product in the United States. Other
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 248

Comm. A3.] MATERIAL 16.1–249
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
North American HSS products that have properties and characteristics that are sim-
ilar to the approved ASTM products are produced in Canada under the General
Requirements for Rolled or Welded Structural Quality Steel(CSA, 2004). In addi-
tion, pipe is produced to other specifications that meet the strength, ductility and
weldability requirements of the materials in Section A3, but may have additional
requirements for notch toughness or pressure testing.
Pipe can be readily obtained in ASTM A53 material and round HSS in ASTM A500
Grade B is also common. For rectangular HSS, ASTM A500 Grade B is the most
commonly available material and a special order would be required for any other
material. Depending upon size, either welded or seamless round HSS can be
obtained. In North America, however, all ASTM A500 rectangular HSS for structural
purposes are welded. Rectangular HSS differ from box sections in that they have uni-
form thickness except for some thickening in the rounded corners.
Nominal strengths of direct welded (T, Y & K) connections of HSS have been devel-
oped analytically and empirically. Connection deformation is anticipated and is an
acceptance limit for connection tests. Ductility is necessary to achieve the expected
deformations. The ratio of the specified yield strength to the specified tensile strength
(yield/tensile ratio) is one measure of material ductility. Materials in HSS used in
connection tests have had a yield/tensile ratio of up to 0.80 and therefore that ratio
has been adopted as a limit of applicability for direct welded HSS connections.
ASTM A500 Grade A material does not meet this ductility “limit of applicability” for
direct connections in Chapter K. ASTM A500 Grade C has a yield/tensile ratio of
0.807 but it is reasonable to use the rounding method described in ASTM E29 and
find this material acceptable for use.
TABLE C-A3.1
Minimum Tensile Properties of HSS
and Pipe Steels
Specification Grade Fy, ksi (MPa) Fu, ksi (MPa)
ASTM A53 B 35 (240) 60 (415)
ASTM A500 B 42 (290) 58 (400)
(round) C 46 (315) 62 (425)
ASTM A500 B 46 (315) 58 (400)
(rectangular) C 50 (345) 62 (425)
ASTM A501 A 36 (250) 58 (400)
B 50 (345) 70 (485)
ASTM A618 I and II 50 (345) 70 (485)
(round) (
t ≤
3
/4in.)
III 50 (345) 65 (450)
ASTM A847 — 50 (345) 70 (485)
CAN/CSA-G40.20/G40.21 350W 51 (350) 65 (450)
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 249

16.1–250 MATERIAL [Comm. A3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Even though ASTM A501 includes rectangular HSS, hot-formed rectangular HSS
are not currently produced in the United States. The General Requirements for Rolled
or Welded Structural Quality Steel(CSA, 2004) includes Class C (cold-formed) and
Class H (cold-formed and stress relieved) HSS. Class H HSS have relatively low lev-
els of residual stress, which enhances their performance in compression and may
provide better ductility in the corners of rectangular HSS.
1c. Rolled Heavy Shapes
The web-to-flange intersection and the web center of heavy hot-rolled shapes, as well
as the interior portions of heavy plates, may contain a more coarse grain structure
and/or lower notch toughness material than other areas of these products. This is
probably caused by ingot segregation, the somewhat lesser deformation during hot
rolling, higher finishing temperature, and the slower cooling rate after rolling for
these heavy sections. This characteristic is not detrimental to suitability for com-
pression members or for nonwelded members. However, when heavy cross sections
are joined by splices or connections using complete-joint-penetration groove welds
that extend through the coarser and/or lower notch-tough interior portions, tensile
strains induced by weld shrinkage may result in cracking. An example is a complete-
joint-penetration groove welded connection of a heavy cross section beam to any
column section. When members of lesser thickness are joined by complete-joint-pen-
etration groove welds, which induce smaller weld shrinkage strains, to the finer
grained and/or more notch-tough surface material of ASTM A6/A6M shapes and
heavy built-up cross sections, the potential for cracking is significantly lower. An
example is a complete-joint-penetration groove welded connection of a nonheavy
cross section beam to a heavy cross section column.
For critical applications such as primary tension members, material should be spec-
ified to provide adequate notch toughness at service temperatures. Because of
differences in the strain rate between the Charpy V-notch (CVN) impact test and the
strain rate experienced in actual structures, the CVN test is conducted at a tempera-
ture higher than the anticipated service temperature for the structure. The location of
the CVN test specimens (“alternate core location”) is specified in ASTM A6/A6M,
Supplemental Requirement S30.
The notch toughness requirements of Section A3.1c are intended only to provide
material of reasonable notch toughness for ordinary service applications. For unusual
applications and/or low temperature service, more restrictive requirements and/or
notch toughness requirements for other section sizes and thicknesses may be appro-
priate. To minimize the potential for fracture, the notch toughness requirements of
Section A3.1c must be used in conjunction with good design and fabrication proce-
dures. Specific requirements are given in Sections J1.5, J1.6, J2.6 and J2.7.
For rotary-straightened W-shapes, an area of reduced notch toughness has been doc-
umented in a limited region of the web immediately adjacent to the flange. This
region may exist in W-shapes of all weights, not just heavy shapes. Considerations
in design and detailing that recognize this situation are presented in Chapter J.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 250

Comm. A3.] MATERIAL 16.1–251
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Steel Castings and Forgings
There are a number of ASTM specifications for steel castings. The SFSA Steel
Castings Handbook (SFSA, 1995) recommends ASTM A216 as a product useful for
steel structures. In addition to the requirements of this Specification, SFSA recom-
mends that various other requirements be considered for cast steel products. It may
be appropriate to inspect the first piece cast using magnetic particle inspection in
accordance with ASTM E125, degree 1a, b or c. Radiographic inspection level III
may be desirable for critical sections of the first piece cast. Ultrasonic testing (UT)
in compliance with ASTM A609/A609M (ASTM, 2007b) may be appropriate for
the first cast piece over 6 in. thick. Design approval, sample approval, periodic non-
destructive testing of the mechanical properties, chemical testing, and selection of
the correct welding specification should be among the issues defined in the selec-
tion and procurement of cast steel products. Refer to SFSA (1995) for design
information about cast steel products.
3. Bolts, Washers and Nuts
The ASTM standard specification for A307 bolts covers two grades of fasteners
(ASTM, 2007c). Either grade may be used under this Specification; however, it
should be noted that Grade B is intended for pipe flange bolting and Grade A is the
grade long in use for structural applications.
4. Anchor Rods and Threaded Rods
ASTM F1554 is the primary specification for anchor rods. Since there is a limit
on the maximum available length of ASTM A325/A325M and ASTM A490/
A490M bolts, the attempt to use these bolts for anchor rods with design lengths
longer than the maximum available lengths has presented problems in the past. The
inclusion of ASTM A449 and A354 materials in this Specification allows the use
of higher strength material for bolts longer than ASTM A325/A325M and ASTM
A490/A490M bolts.
The engineer of record should specify the required strength for threaded rods used as
load-carrying members.
5. Consumables for Welding
The AWS filler metal specifications listed in Section A3.5 are general specifications
that include filler metal classifications suitable for building construction, as well
as classifications that may not be suitable for building construction. The AWS
D1.1/D1.1M,Structural Welding Code—Steel(AWS, 2010) lists in Table 3.1 various
electrodes that may be used for prequalified welding procedure specifications, for the
various steels that are to be joined. This list specifically does not include various
classifications of filler metals that are not suitable for structural steel applications.
Filler metals listed under the various AWS A5 specifications may or may not have
specified notch toughness properties, depending on the specific electrode classifica-
tion. Section J2.6 identifies certain welded joints where notch toughness of filler
metal is needed in building construction. There may be other situations where the
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 251

16.1–252 MATERIAL [Comm. A3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
engineer of record may elect to specify the use of filler metals with specified notch
toughness properties, such as for structures subject to high loading rate, cyclic load-
ing,or seismic loading. Since AWS D1.1/D1.1M does not automatically require that
the filler metal used have specified notch toughness properties, it is important that
filler metals used for such applications be of an AWS classification where such prop-
erties are required. This information can be found in the AWS Filler Metal
Specifications and is often contained on the filler metal manufacturer’s certificate of
conformance or product specification sheets.
When specifying filler metal and/or flux by AWS designation, the applicable stan-
dard specifications should be carefully reviewed to assure a complete understanding
of the designation reference. This is necessary because the AWS designation systems
are not consistent. For example, in the case of electrodes for shielded metal arc weld-
ing (AWS A5.1), the first two or three digits indicate the nominal tensile strength
classification, in ksi, of the filler metal and the final two digits indicate the type of
coating. For metric designations, the first two digits times 10 indicate the nominal
tensile strength classification in MPa. In the case of mild steel electrodes for sub-
merged arc welding (AWS A5.17/A5.17M), the first one or two digits times 10
indicate the nominal tensile strength classification for both U.S. customary and met-
ric units, while the final digit or digits times 10 indicate the testing temperature in °F,
for filler metal impact tests. In the case of low-alloy steel covered arc welding elec-
trodes (AWS A5.5), certain portions of the designation indicate a requirement for
stress relief, while others indicate no stress relief requirement.
Engineers do not, in general, specify the exact filler metal to be employed on a par-
ticular structure. Rather, the decision as to which welding process and which filler
metal is to be utilized is usually left with the fabricator or erector. Codes restrict the
usage of certain filler materials, or impose qualification testing to prove the suitabil-
ity of the specific electrode, so as to make certain that the proper filler metals are used.
A4. STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS
The abbreviated list of requirements in this Specification is intended to be compati-
ble with and a summary of the more extensive requirements in Section 3 of the Code
of Standard Practice. The user should refer to Section 3 of the Code of Standard
Practice for further information.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 252

16.1–253
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER B
DESIGN REQUIREMENTS
B1. GENERAL PROVISIONS
Previous to the 2005 edition, the Specification contained a section entitled “Types of
Construction”; for example, Section A2 in the 1999 Load and Resistance Factor
Design Specification for Structural Steel Buildings(AISC, 2000b), hereafter referred
to as the 1999 LRFD Specification. In this Specification there is no such section and
the requirements related to “types of construction” have been divided between
Section B1, Section B3.6 and Section J1.
Historically, “Types of Construction” was the section that established what type
of structures the Specification covers. The preface to the 1999 LRFD
Specification suggested that the purpose of the Specification was “to provide
design criteria for routine use and not to provide specific criteria for infrequently
encountered problems.” The preface to the 1978 Specification for the Design,
Fabrication, and Erection of Structural Steel for Buildings(AISC, 1978) con-
tained similar language. While “routine use” may be difficult to describe, the
contents of “Types of Construction” have been clearly directed at ordinary build-
ing frames with beams, columns and connections.
The 1969 Specification for the Design, Fabrication, and Erection of Structural Steel
for Buildings(AISC, 1969) classified “types of construction” as Type 1, 2 or 3. The
primary distinction among these three types of construction was the nature of the
connections of the beams to the columns. Type 1 construction referred to “rigid
frames,” now called moment-resisting frames, which had connections capable of
transmitting moment. Type 2 construction referred to “simple frames” with no
moment transfer between beams and columns. Type 3 construction utilized “semi-
rigid frames” with partially restrained connections. This system was allowed if a
predictable and reliable amount of connection flexibility and moment transfer could
be documented.
The 1986 Load and Resistance Factor Design Specification for Structural Steel
Buildings(AISC, 1986) changed the designations from Type 1, 2 or 3 to the desig-
nations FR (fully restrained) and PR (partially restrained). In these designations, the
term “restraint” refers to the degree of moment transfer and the associated deforma-
tion in the connections. The 1986 LRFD Specification also used the term “simple
framing” to refer to structures with “simple connections,” that is, connections with
negligible moment transfer. In essence, FR was equivalent to Type 1, “simple fram-
ing” was equivalent to Type 2, and PR was equivalent to Type 3 construction.
Type 2 construction of earlier Specifications and “simple framing” of the 1986 LRFD
Specificationhad additional provisions that allowed the wind loads to be carried by
moment resistance of selected joints of the frame, provided that:
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 253

16.1–254 GENERAL PROVISIONS [Comm. B1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) The connections and connected members have capacity to resist the wind
moments.
(2) The girders are adequate to carry the full gravity load as “simple beams.”
(3) The connections have adequate inelastic rotation capacity to avoid overstress of
the fasteners or welds under combined gravity and wind loading.
The concept of “wind connections” as both simple (for gravity loads) and moment
resisting (for wind loads) was proposed by Sourochnikoff (1950) and further exam-
ined by Disque (1964). The basic proposal asserted that such connections have some
moment resistance but that this resistance is low enough under wind load such that
the connections would sustain inelastic deformations. Under repeated (cyclic) wind
loads, the connection response would appear to reach a condition where the gravity
load moments would be very small. The proposal postulated that the elastic resist-
ance of the connections to wind moments would remain the same as the initial
resistance, although it is known that many connections do not exhibit a linear elastic
initial response. Additional recommendations have been provided by Geschwindner
and Disque (2005). More recent research has shown that the AISC direct analysis
method, as defined in the 2005 Specification for Structural Steel Buildings (AISC,
2005a) and this Specification, is the best approach to cover all relevant response
effects (White and Goverdhan, 2008).
Section B1 widens the purview of this Specification to a broader class of construc-
tion types. It recognizes that a structural system is a combination of members
connected in such a way that the structure can respond in different ways to meet dif-
ferent design objectives under different loads. Even within the purview of ordinary
buildings, there can be enormous variety in the design details.
This Specification is meant to be primarily applicable to the common types of build-
ing frames with gravity loads carried by beams and girders and lateral loads carried
by moment frames, braced frames or shear walls. However, there are many unusual
buildings or building-like structures for which this Specification is also applicable.
Rather than attempt to establish the purview of the Specification with an exhaustive
classification of construction types, Section B1 requires that the design of members
and their connections be consistent with the intended use of the structure and the
assumptions made in the analysis of the structure.
B2. LOADS AND LOAD COMBINATIONS
The loads and load combinations for use with this Specification are given in the
applicable building code. In the absence of an applicable specific local, regional or
national building code, the nominal loads (for example, D, L, L
r, S, R, Wand E), load
factors and load combinations are as specified in ASCE/SEI 7,Minimum Design
Loads for Buildings and Other Structures(ASCE, 2010). This edition of ASCE/SEI
7 has adopted the seismic design provisions of the NEHRP Recommended Seismic
Provisions for New Buildings and Other Structures(BSSC, 2009), as have the AISC
Seismic Provisions for Structural Steel Buildings (AISC, 2010b). The reader is
referred to the commentaries of these documents for an expanded discussion on
loads, load factors and seismic design.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 254

Comm. B2.] LOADS AND LOAD COMBINATIONS 16.1–255
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
This Specification is based on strength limit states that apply to structural steel
design in general. The Specification permits design for strength using either load
and resistance factor design (LRFD) or allowable strength design (ASD). It should
be noted that the terms strength and stress reflect whether the appropriate section
property has been applied in the calculation of the limit state available strength. In
most instances, the Specification uses strength rather than stress in the safety check.
In all cases it is a simple matter to recast the provisions in a stress format. The ter-
minology used to describe load combinations in ASCE/SEI 7 is somewhat different
from that used by this Specification. Section 2.3 of ASCE/SEI 7 defines Combining
Factored Loads Using Strength Design; these combinations are applicable to design
using the LRFD approach. Section 2.4 of ASCE/SEI 7 defines Combining Nominal
Loads Using Allowable Stress Design; these combinations are applicable to design
using the ASD load approach. Both the LRFD and ASD load combinations in the cur-
rent edition of ASCE/SEI 7 (ASCE, 2010) have been changed from those of previous
editions as has the overall treatment of wind loads.
LRFD load combinations. If the LRFD approach is selected, the load combination
requirements are defined in Section 2.3 of ASCE/SEI 7.
The load combinations in Section 2.3 of ASCE/SEI 7 are based on modern proba-
bilistic load modeling and a comprehensive survey of reliabilities inherent in
traditional design practice (Galambos et al., 1982; Ellingwood et al., 1982). These
load combinations utilize a “principal action-companion action format,” which is
based on the notion that the maximum combined load effect occurs when one of the
time-varying loads takes on its maximum lifetime value (principal action) while the
other variable loadsare at “arbitrary point-in-time” values (companion actions), the
latter being loads that would be measured in a load survey at any arbitrary time. The
dead load, which is considered to be permanent, is the same for all combinations in
which the load effects are additive. Research has shown that this approach to load
combination analysis is consistent with the manner in which loads actually combine
on structural elements and systems in situations in which strength limit states may be
approached. The load factors reflect uncertainty in individual load magnitudes and in
the analysis that transforms load to load effect. The nominal loads in ASCE/SEI 7 are
substantially in excess of the arbitrary point-in-time values. The nominal live, wind
and snow loads historically have been associated with mean return periods of
approximately 50 years. Wind loads historically have been adjusted upward by a high
load factor in previous editions to approximate a longer return period; in the 2010
edition of ASCE/SEI 7 the load factor is 1.0 and the wind-speed maps correspond to
return periods deemed appropriate for the design of each occupancy type (approxi-
mately 700 years for common occupancies).
The return period associated with earthquake loads has been more complex histori-
cally and the approach has been revised in both the 2003 and 2009 editions of the
NEHRP Recommended Seismic Provisions for New Buildings and Other Structures
(BSSC, 2003, 2009). In the 2009 edition, adopted as the basis for ASCE/SEI 7-10,
the earthquake loads calculated at most locations are intended to produce a uniform
maximum collapse probability of 1% in a 50 year period by integrating the collapse
probability (a product of hazard amplitude and an assumed structural fragility) across
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 255

16.1–256 LOADS AND LOAD COMBINATIONS [Comm. B2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
all return periods. At some sites in regions of high seismic activity, where high inten-
sity events occur frequently, deterministic limits on the ground motion result in
somewhat higher collapse probabilities. Commentary to Chapter 1 of ASCE/SEI 7-
10 provides information on the intended maximum probability of structural failure
under earthquake and other loads.
Load combinations of ASCE/SEI 7, Section 2.3, which apply specifically to cases in
which the structural actions due to lateral forces and gravity loads counteract one
another and the dead load stabilizes the structure, incorporate a load factor on dead
load of 0.9.
ASD Load Combinations.If the ASD approach is selected, the load combination
requirements are defined in Section 2.4 of ASCE/SEI 7.
The load combinations in Section 2.4 of ASCE/SEI 7 are similar to those tradition-
ally used in allowable stress design. In ASD, safety is provided by the safety factor,
Ω, and the nominal loads in the basic combinations involving gravity loads, earth
pressure or fluid pressure are not factored. The reduction in the combined time-vary-
ing load effect in combinations incorporating wind or earthquake load is achieved by
the load combination factor 0.75. This load combination factor dates back to the 1972
edition of ANSI Standard A58.1, the predecessor of ASCE/SEI 7. It should be noted
that in ASCE/SEI 7, the 0.75 factor applies only to combinations of variable loads;
it is irrational to reduce the dead load because it is always present and does not fluc-
tuate in time. It should also be noted that certain ASD load combinations may
actually result in a higher required strength than similar load combinations for
LRFD. Load combinations that apply specifically to cases in which the structural
actions due to lateral forces and gravity loads counteract one another, where the dead
load stabilizes the structure, incorporate a load factor on dead load of 0.6. This elim-
inates a deficiency in the traditional treatment of counteracting loads in allowable
stress design and emphasizes the importance of checking stability. The earthquake
load effect is multiplied by 0.7 in applicable combinations involving that load to
align allowable strength design for earthquake effects with the definition of E in the
sections of ASCE/SEI 7 defining Seismic Load Effects and Combinations.
The load combinations in Sections 2.3 and 2.4 of ASCE/SEI 7 apply to design for
strength limit states. They do not account for gross error or negligence. Loads and
load combinations for nonbuilding structures and other structures may be defined in
ASCE/SEI 7 or other applicable industry standards and practices.
B3. DESIGN BASIS
Load and resistance factor design (LRFD) and allowable strength design (ASD) are
distinct methods. They are equally acceptable by this Specification, but their provi-
sions are not identical and not interchangeable. Indiscriminate use of combinations
of the two methods could result in unpredictable performance or unsafe design. Thus,
the LRFD and ASD methods are specified as alternatives. There are, however, cir-
cumstances in which the two methods could be used in the design, modification or
renovation of a structural system without conflict, such as providing modifications to
a structural floor system of an older building after assessing the as-built conditions.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 256

Comm. B3.] DESIGN BASIS 16.1–257
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Required Strength
This Specification permits the use of elastic, inelastic or plastic structural analysis.
Generally, design is performed by elastic analysis. Provisions for inelastic and plas-
tic analysis are given in Appendix 1. The required strength is determined by the
appropriate methods of structural analysis.
In some circumstances, as in the proportioning of stability bracing members that
carry no calculated forces (see, for example, Appendix 6), the required strength is
explicitly stated in this Specification.
2. Limit States
A limit state is a condition in which a structural system or component becomes unfit
for its intended purpose (serviceability limit state), or has reached its ultimate load-
carrying capacity (strength limit state). Limit states may be dictated by functional
requirements, such as maximum deflections or drift; they may be related to structural
behavior, such as the formation of a plastic hinge or mechanism; or they may repre-
sent the collapse of the whole or part of the structure, such as by instability or
fracture. The design provisions in the Specification ensure that the probability of
exceeding a limit state is acceptably small by stipulating the combination of load fac-
tors, resistance or safety factors, nominal loads and nominal strengths consistent with
the design assumptions.
Two kinds of limit states apply to structures: (1) strength limit states, which define
safety against local or overall failure conditions during the intended life of the struc-
ture; and (2) serviceability limit states, which define functional requirements. This
Specification, like other structural design codes, focuses primarily on strength limit
states because of overriding considerations of public safety. This does not mean that
limit states of serviceability (see Chapter L) are not important to the designer, who
must provide for functional performance and economy of design. However, service-
ability considerations permit more exercise of judgment on the part of the designer.
Strength limit states vary from element to element, and several limit states may apply
to a given element. The most common strength limit states are yielding, buckling and
rupture. The most common serviceability limit states include deflections or drift, and
vibrations.
Structural integrity provisions that establish minimum requirements for connectivity
have been introduced into various building codes. The intent of those provisions is
to provide a minimum level of robustness for the structure to enhance its perform-
ance under an extraordinary event. The requirements are prescriptive in nature, as the
forces generated by the undefined extraordinary event may exceed those due to the
minimum nominal loads stipulated by the building code. Unless specifically prohib-
ited by the applicable building code, the full ductile load-deformation (stress-strain)
response of steel may be used to calculate the nominal capacity to satisfy nominal
strength requirements prescribed for structural integrity.
The performance criteria for structural integrity are different from the traditional
design methodology where serviceability and strength limit states, such as limiting
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 257

16.1–258 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
deformation and preventing yielding, often control connection design. Thus, Section
B3.2 establishes that limit states checked during design for traditional loads and load
combinations involving limiting deformations or yielding of connection components
are not necessary for the structural integrity checks. Thus, as examples of the appli-
cation of these provisions, this section removes the limitation on inelastic yielding of
double angles in a beam connection as they tend to straighten when subjected to high
axial tension forces or the substantial deformation of bolt holes that might be
restricted in traditional connection design.
In addition, this section permits the use of short-slots parallel to the direction of the
specified tension force without triggering the slip-critical requirements, contrary to
traditional connection design, since movement of the bolt in the slot during an extraor-
dinary event is not detrimental to overall structural performance. In this case, bolts are
assumed to be located at the critical end of the slot for all applicable limit states.
Single-plate shear connection design to meet structural integrity requirements is dis-
cussed in Geschwindner and Gustafson (2010).
3. Design for Strength Using Load and Resistance Factor Design (LRFD)
Design for strength by LRFD is performed in accordance with Equation B3-1. The
left side of Equation B3-1, R
u, represents the required strength computed by struc-
tural analysis based on load combinations stipulated in ASCE/SEI 7 (ASCE, 2010),
Section 2.3 (or their equivalent),while the right side, φR
n, represents the limiting
structural resistance, or design strength, provided by the member or element.
The resistance factor, φ, in this Specification is equal to or less than 1.0. When com-
pared to the nominal strength, R
n, computed according to the methods given in
Chapters D through K, a φof less than 1.0 accounts for approximations in the theory
and variations in mechanical properties and dimensions of members and frames. For
limit states where φ=1.00, the nominal strength is judged to be sufficiently conser-
vative when compared to the actual strength that no reduction is needed.
The LRFD provisions are based on: (1) probabilistic models of loads and resistance;
(2) a calibration of the LRFD provisions to the 1978 edition of the ASD Specification
for selected members; and (3) the evaluation of the resulting provisions by judgment
and past experience aided by comparative design office studies of representative
structures.
In the probabilistic basis for LRFD (Ravindra and Galambos, 1978; Ellingwood et
al., 1982), the load effects, Q, and the resistances, R, are modeled as statistically
independent random variables. In Figure C-B3.1, relative frequency distributions for
Q and R are portrayed as separate curves on a common plot for a hypothetical case.
As long as the resistance, R, is greater than (to the right of) the effects of the loads,
Q, a margin of safety for the particular limit state exists. However, because Q and R
are random variables, there is a small probability that R may be less than Q. The
probability of this limit state is related to the degree of overlap of the frequency dis-
tributions in Figure C-B3.1, which depends on the positioning of their mean values
(R
mversus Q m) and their dispersions.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 258

Comm. B3.] DESIGN BASIS 16.1–259
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The probability that Ris less than Q depends on the distributions of the many vari-
ables (material, loads, etc.) that determine resistance and total load effect. Often, only
the means and the standard deviations or coefficients of variation of the variables
involved in the determination of Rand Qcan be estimated. However, this informa-
tion is sufficient to build an approximate design provision that is independent of the
knowledge of these distributions, by stipulating the following design condition:
(C-B3-1)
where
R
m=mean value of the resistance R
Q
m=mean value of the load effect Q
V
R=coefficient of variation of the resistance R
V
Q=coefficient of variation of the load effect Q
For structural elements and the usual loading, R
m, Qm, and the coefficients of varia-
tion, V
Rand V Q, can be estimated, so a calculation of
(C-B3-2)
will give a comparative measure of reliability of a structure or component. The
parameter βis denoted the reliability index. Extensions to the determination of βin
Equation C-B3-2 to accommodate additional probabilistic information and more
complex design situations are described in Ellingwood et al. (1982) and have been
used in the development of the recommended load combinations in ASCE/SEI 7.
The original studies that determined the statistical properties (mean values and coef-
ficients of variation) for the basic material properties and for steel beams, columns,
composite beams, plate girders, beam-columns and connection elements that were
Fig. C-B3.1. Frequency distribution of load effect Q and resistance R.
βVV RQRQ mm
22+≤ ( )ln
β=
( )
+
1
22
nRQ
VVmm
RQ/
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 259

16.1–260 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
used to develop the LRFD provisions are presented in a series of eight articles in the
September 1978 issue of the Journal of the Structural Division (ASCE, Vol. 104,
ST9). The corresponding load statistics are given in Galambos et al. (1982). Based
on these statistics, the values of β inherent in the 1978 Specification for the Design,
Fabrication, and Erection of Structural Steel for Buildings(AISC, 1978) were eval-
uated under different load combinations (live/dead, wind/dead, etc.) and for various
tributary areas for typical members (beams, columns, beam-columns, structural
components, etc.). As might be expected, there was a considerable variation in the
range of β-values. For example, compact rolled beams (flexure) and tension mem-
bers (yielding) had β -values that decreased from about 3.1 at L/D=0.50 to 2.4 at
L/D =4. This decrease is a result of ASD applying the same factor to dead load,
which is relatively predictable, and live load, which is more variable. For bolted or
welded connections, β was in the range of 4 to 5.
The variation in βthat was inherent to ASD is reduced substantially in LRFD by
specifying several target β-values and selecting load and resistance factors to meet
these targets. The Committee on Specifications set the point at which LRFD is cali-
brated to ASD at L/D =3.0 for braced compact beams in flexure and tension
members at yield. The resistance factor, φ, for these limit states is 0.90, and the
implied βis approximately 2.6 for members and 4.0 for connections. The larger β-
value for connections reflects the complexity in modeling their behavior, effects of
workmanship, and the benefit provided by additional strength. Limit states for other
members are handled similarly.
The databases on steel strength used in previous editions of the LRFD Specification
for Structural Steel Buildingswere based mainly on research conducted prior to
1970. An important recent study of the material properties of structural shapes
(Bartlett et al., 2003) reflected changes in steel production methods and steel mate-
rials that have occurred over the past 15 years. This study indicated that the new steel
material characteristics did not warrant changes in the φ-values.
4. Design for Strength Using Allowable Strength Design (ASD)
The ASD method is provided in this Specification as an alternative to LRFD for use
by engineers who prefer to deal with ASD load combinations and allowable stresses
in the traditional ASD format. The term “allowable strength” has been introduced to
emphasize that the basic equations of structural mechanics that underlie the provi-
sions are the same for LRFD and ASD.
Traditional ASD is based on the concept that the maximum stress in a component
shall not exceed a specified allowable stress under normal service conditions. The
load effects are determined on the basis of an elastic analysis of the structure, while
the allowable stress is the limiting stress (at yielding, instability, rupture, etc.)
divided by a safety factor. The magnitude of the safety factor and the resulting allow-
able stress depend on the particular governing limit state against which the design
must produce a certain margin of safety. For any single element, there may be a num-
ber of different allowable stresses that must be checked.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 260

Comm. B3.] DESIGN BASIS 16.1–261
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The safety factor in traditional ASD provisions was a function of both the material
and the component being considered. It may have been influenced by factors such as
member length, member behavior, load source and anticipated quality of workman-
ship. The traditional safety factors were based solely on experience and have
remained unchanged for over 50 years. Although ASD-designed structures have per-
formed adequately over the years, the actual level of safety provided was never
known. This was a principal drawback of the traditional ASD approach. An illustra-
tion of typical performance data is provided in Bjorhovde (1978), where theoretical
and actual safety factors for columns are examined.
Design for strength by ASD is performed in accordance with Equation B3-2. The
ASD method provided in the Specification recognizes that the controlling modes of
failure are the same for structures designed by ASD and LRFD. Thus, the nominal
strength that forms the foundation of LRFD is the same nominal strength that
provides the foundation for ASD. When considering available strength, the only dif-
ference between the two methods is the resistance factor in LRFD, φ, and the safety
factor in ASD, Ω.
In developing appropriate values of Ωfor use in this Specification, the aim was to
ensure similar levels of safety and reliability for the two methods. A straightforward
approach for relating the resistance factor and the safety factor was developed. As
already mentioned, the original LRFD Specification was calibrated to the 1978 ASD
Specificationat a live load to dead load ratio of 3. Thus, by equating the designs for
the two methods at a ratio of live-to-dead load of 3, the relationship between φand
Ωcan be determined. Using the live plus dead load combinations, with L =3D,
yields the following relationships.
For design according to Section B3.3 (LRFD):
(C-B3-3)
For design according to Section B3.4 (ASD):
(C-B3-4)
R
n=Ω(4D)
Equating R
nfrom the LRFD and ASD formulations and solving for Ω yields
(C-B3-5)
Throughout the Specification, the values of Ωwere obtained from the values of φ by
Equation C-B3-5.
φRDLD DDn=+=+ =12 16 12 16 3 6....()
R
Dn=
6
φ
R
DL D D Dn
Ω
=+=+ = 34
Ω=





⎟=
61
4
15D
Dφφ
.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 261

16.1–262 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5. Design for Stability
Section B3.5 provides the charging language for Chapter C on design for stability.
6. Design of Connections
Section B3.6 provides the charging language for Chapter J and Chapter K on the
design of connections. Chapter J covers the proportioning of the individual elements
of a connection (angles, welds, bolts, etc.) once the load effects on the connection are
known. Section B3.6 establishes that the modeling assumptions associated with the
structural analysis must be consistent with the conditions used in Chapter J to pro-
portion the connecting elements.
In many situations, it is not necessary to include the connection elements as part of
the analysis of the structural system. For example, simple and FR connections may
often be idealized as pinned or fixed, respectively, for the purposes of structural
analysis. Once the analysis has been completed, the deformations or forces computed
at the joints may be used to proportion the connection elements. The classifications
of FR (fully restrained) and simple connections are meant to justify these idealiza-
tions for analysis with the provision that if, for example, one assumes a connection
to be FR for the purposes of analysis, the actual connection must meet the FR con-
ditions. In other words, it must have adequate strength and stiffness, as described in
the provisions and discussed below.
In certain cases, the deformation of the connection elements affects the way the
structure resists load and hence the connections must be included in the analysis of
the structural system. These connections are referred to as partially restrained (PR)
moment connections. For structures with PR connections, the connection flexibility
must be estimated and included in the structural analysis, as described in the fol-
lowing sections. Once the analysis is complete, the load effects and deformations
computed for the connection can be used to check the adequacy of the connecting
elements.
For simple and FR connections, the connection proportions are established after the
final analysis of the structural design is completed, thereby greatly simplifying the
design cycle. In contrast, the design of PR connections (like member selection) is
inherently iterative because one must assume values of the connection proportions in
order to establish the force-deformation characteristics of the connection needed to
perform the structural analysis. The life-cycle performance characteristics must also
be considered. The adequacy of the assumed proportions of the connection elements
can be verified once the outcome of the structural analysis is known. If the connec-
tion elements are inadequate, then the values must be revised and the structural
analysis repeated. The potential benefits of using PR connections for various types
of framing systems are discussed in the literature.
Connection Classification. The basic assumption made in classifying connections is
that the most important behavioral characteristics of the connection can be modeled
by a moment-rotation (M-θ) curve. Figure C-B3.2 shows a typical M-θ curve.
Implicit in the moment-rotation curve is the definition of the connection as being a
region of the column and beam along with the connecting elements. The connection
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 262

Comm. B3.] DESIGN BASIS 16.1–263
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
response is defined this way because the rotation of the member in a physical test is
generally measured over a length that incorporates the contributions of not only the
connecting elements, but also the ends of the members being connected and the col-
umn panel zone.
Examples of connection classification schemes include those in Bjorhovde et al.
(1990) and Eurocode 3 (CEN, 2005). These classifications account directly for the
stiffness, strength and ductility of the connections.
Connection Stiffness.Because the nonlinear behavior of the connection manifests
itself even at low moment-rotation levels, the initial stiffness of the connection (shown
in Figure C-B3.2) does not adequately characterize connection response at service
levels. Furthermore, many connection types do not exhibit a reliable initial stiffness,
or it exists only for a very small moment-rotation range. The secant stiffness, K
S,at
service loads is taken as an index property of connection stiffness. Specifically,
K
S=MS/θS (C-B3-6)
where
M
S=moment at service loads, kip-in. (N-mm)
θ
S=rotation at service loads, rad
In the discussion below, L and EIare the length and bending rigidity, respectively, of
the beam.
IfK
SL /EI ≥ 20, it is acceptable to consider the connection to be fully restrained (in
other words, able to maintain the angles between members). IfK
SL/EI ≤2, it is
acceptable to consider the connection to be simple (in other words, it rotates without
developing moment). Connections with stiffnesses between these two limits are
partially restrained and the stiffness, strength and ductility of the connection must be
Fig. C-B3.2. Definition of stiffness, strength and ductility characteristics of the
moment-rotation response of a partially restrained connection.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 263

16.1–264 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
considered in the design (Leon, 1994). Examples of FR, PR and simple connection
response curves are shown in Figure C-B3.3. The points markedθ
Sindicate the serv-
ice load states for the example connections and thereby define the secant stiffnesses
for those connections.
Connection Strength.The strength of a connection is the maximum moment that it
is capable of carrying, M
n, as shown in Figure C-B3.2. The strength of a connection
can be determined on the basis of an ultimate limit-state model of the connection, or
from a physical test. If the moment-rotation response does not exhibit a peak load
then the strength can be taken as the moment at a rotation of 0.02 rad (Hsieh and
Deierlein, 1991; Leon et al., 1996).
It is also useful to define a lower limit on strength below which the connection may
be treated as a simple connection. Connections that transmit less than 20% of the
fully plastic moment of the beam at a rotation of 0.02 rad may be considered to have
no flexural strength for design. However, it should be recognized that the aggregate
strength of many weak connections can be important when compared to that of a few
strong connections (FEMA, 1997).
In Figure C-B3.3, the points marked M
nindicate the maximum strength states of the
example connections. The points marked θ
uindicate the maximum rotation states of
the example connections. Note that it is possible for an FR connection to have a
strength less than the strength of the beam. It is also possible for a PR connection to
have a strength greater than the strength of the beam.
The strength of the connection must be adequate to resist the moment demands
implied by the design loads.
Fig. C-B3.3. Classification of moment-rotation response of fully restrained (FR),
partially restrained (PR) and simple connections.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 264

Comm. B3.] DESIGN BASIS 16.1–265
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Connection Ductility.If the connection strength substantially exceeds the fully plas-
tic moment of the beam, then the ductility of the structural system is controlled by
the beam and the connection can be considered elastic. If the connection strength
only marginally exceeds the fully plastic moment of the beam, then the connection
may experience substantial inelastic deformation before the beam reaches its full
strength. If the beam strength exceeds the connection strength, then deformations can
concentrate in the connection. The ductility required of a connection will depend
upon the particular application. For example, the ductility requirement for a braced
frame in a nonseismic area will generally be less than the ductility required in a high
seismic area. The rotation ductility requirements for seismic design depend upon the
structural system (AISC, 2010b).
In Figure C-B3.2, the rotation capacity, θ
u, can be defined as the value of the connec-
tion rotation at the point where either (a) the resisting strength of the connection has
dropped to 0.8M
nor (b) the connection has deformed beyond 0.03 rad. This second
criterion is intended to apply to connections where there is no loss in strength until
very large rotations occur. It is not prudent to rely on these large rotations in design.
The available rotation capacity, θ
u, should be compared with the rotation required at
the strength limit state, as determined by an analysis that takes into account the non-
linear behavior of the connection. (Note that for design by ASD, the rotation required
at the strength limit state should be assessed using analyses conducted at 1.6 times
the ASD load combinations.) In the absence of an accurate analysis, a rotation capac-
ity of 0.03 rad is considered adequate. This rotation is equal to the minimum
beam-to-column connection capacity as specified in the seismic provisions for spe-
cial moment frames (AISC, 2010b). Many types of PR connections, such as top and
seat-angle connections, meet this criterion.
Structural Analysis and Design. When a connection is classified as PR, the relevant
response characteristics of the connection must be included in the analysis of the
structure to determine the member and connection forces, displacements and the
frame stability. Therefore, PR construction requires, first, that the moment-rotation
characteristics of the connection be known and, second, that these characteristics be
incorporated in the analysis and member design.
Typical moment-rotation curves for many PR connections are available from one of
several databases [for example, Goverdhan (1983); Ang and Morris (1984);
Nethercot (1985); and Kishi and Chen (1986)]. Care should be exercised when uti-
lizing tabulated moment-rotation curves not to extrapolate to sizes or conditions
beyond those used to develop the database since other failure modes may control
(ASCE Task Committee on Effective Length, 1997). When the connections to be
modeled do not fall within the range of the databases, it may be possible to deter-
mine the response characteristics from tests, simple component modeling, or finite
element studies (FEMA, 1995). Examples of procedures to model connection
behavior are given in the literature (Bjorhovde et al., 1988; Chen and Lui, 1991;
Bjorhovde et al., 1992; Lorenz et al., 1993; Chen and Toma, 1994; Chen et al., 1995;
Bjorhovde et al., 1996; Leon et al., 1996; Leon and Easterling, 2002; Bijlaard et al.,
2005; Bjorhovde et al., 2008).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 265

16.1–266 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The degree of sophistication of the analysis depends on the problem at hand. Design
for PR construction usually requires separate analyses for the serviceability and
strength limit states. For serviceability, an analysis using linear springs with a stiff-
ness given by K
s(see Figure C-B3.2) is sufficient if the resistance demanded of the
connection is well below the strength. When subjected to strength load combinations,
a procedure is needed whereby the characteristics assumed in the analysis are con-
sistent with those of the connection response. The response is especially nonlinear as
the applied moment approaches the connection strength. In particular, the effect of
the connection nonlinearity on second-order moments and other stability checks
needs to be considered (ASCE Task Committee on Effective Length, 1997).
7. Moment Redistribution in Beams
A beam that is reliably restrained at one or both ends (either by connection to other
members or by a support) will have reserve capacity past yielding at the point with
the greatest moment predicted by an elastic analysis. The additional capacity is the
result of inelastic redistribution of moments. This Specification bases the design of
the member on providing a resisting moment greater than the demand represented by
the greatest moment predicted by the elastic analysis. This approach ignores the
reserve capacity associated with inelastic redistribution. The 10% reduction of the
greatest moment predicted by elastic analysis (with the accompanying 10% increase
in the moment on the reverse side of the moment diagram) is an attempt to account
approximately for the reserve capacity.
This adjustment is appropriate only for cases where the inelastic redistribution of
moments is possible. For statically determinate spans (e.g., beams that are simply
supported at both ends or for cantilevers), redistribution is not possible. Therefore the
adjustment is not allowable in these cases. Members with fixed ends or beams con-
tinuous over a support can sustain redistribution. Member sections that are unable to
accommodate the inelastic rotation associated with the redistribution (e.g., because
of local buckling) are also not permitted the reduction. Thus, only compact sections
qualify for redistribution in this Specification.
An inelastic analysis will automatically account for any redistribution. Therefore, the
redistribution of moments only applies to moments computed from an elastic analysis.
The 10% reduction rule applies only to beams. Inelastic redistribution is possible in
more complicated structures, but the 10% amount is only verified, at present, for
beams. For other structures, the provisions of Appendix 1 should be used.
8. Diaphragms and Collectors
This section provides charging language for the design of structural steel components
(members and their connections) of diaphragms and collector systems.
Diaphragms transfer in-plane lateral loads to the lateral force resisting system.
Typical diaphragm elements in a building structure are the floor and roof systems
which accumulate lateral forces due to gravity, wind and/or seismic loads and dis-
tribute these forces to individual elements (braced frames, moment frames, shear
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 266

Comm. B3.] DESIGN BASIS 16.1–267
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
walls, etc.) of the vertically oriented lateral force resisting system of the building
structure. Collectors (also known as drag struts) are often used to collect and deliver
diaphragm forces to the lateral force resisting system.
Diaphragms are classified into one of three categories: rigid, semi-rigid or flexible.
Rigid diaphragms distribute the in-plane forces to the lateral load resisting system
with negligible in-plane deformation of the diaphragm. A rigid diaphragm may be
assumed to distribute the lateral loads in proportion to the relative stiffness of the
individual elements of the lateral force resisting system. A semi-rigid diaphragm dis-
tributes the lateral loads in proportion to the in-plane stiffness of the diaphragm and
the relative stiffness of the individual elements of the lateral force resisting system.
The in-plane stiffness of a flexible diaphragm is negligible compared to the stiffness
of the lateral load resisting system and, therefore, the distribution of lateral forces is
independent of the relative stiffness of the individual elements of the lateral force
resisting system. In this case, the distribution of lateral forces may be computed in a
manner analogous to a series of simple beams spanning between the lateral force
resisting system elements.
Diaphragms should be designed for the shear, moment and axial forces resulting
from the design loads. The diaphragm response may be considered analogous to a
deep beam where the flanges (often referred to as chords of the diaphragm) develop
tension and compression forces, and the web resists the shear. The component ele-
ments of the diaphragm need to have strength and deformation capacity consistent
with assumptions and intended behavior.
10. Design for Ponding
As used in this Specification, ponding refers to the retention of water due solely to
the deflection of flat roof framing. The amount of this water is dependent on the flex-
ibility of the framing. Lacking sufficient framing stiffness, the accumulated weight
of the water can result in the collapse of the roof. The problem becomes catastrophic
when more water causes more deflection, resulting in more room for more water
until the roof collapses. Detailed provisions for determining ponding stability and
strength are given in Appendix 2.
12. Design for Fire Conditions
Section B3.12 provides the charging language for Appendix 4 on structural design
for fire resistance. Qualification testing is an acceptable alternative to design by
analysis for providing fire resistance. Qualification testing is addressed in
ASCE/SFPE Standard 29 (ASCE, 2008), ASTM E119, and similar documents.
13. Design for Corrosion Effects
Steel members may deteriorate in some service environments. This deterioration
may appear either as external corrosion, which would be visible upon inspection,
or in undetected changes that would reduce member strength. The designer should
recognize these problems by either factoring a specific amount of tolerance for
damage into the design or providing adequate protection (for example, coatings or
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 267

16.1–268 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
cathodic protection) and/or planned maintenance programs so that such problems
do not occur.
Because the interior of an HSS is difficult to inspect, some concern has been
expressed regarding internal corrosion. However, good design practice can eliminate
the concern and the need for expensive protection. Corrosion occurs in the presence
of oxygen and water. In an enclosed building, it is improbable that there would be
sufficient reintroduction of moisture to cause severe corrosion. Therefore, internal
corrosion protection is a consideration only in HSS exposed to weather.
In a sealed HSS, internal corrosion cannot progress beyond the point where the oxy-
gen or moisture necessary for chemical oxidation is consumed (AISI, 1970). The
oxidation depth is insignificant when the corrosion process must stop, even when a
corrosive atmosphere exists at the time of sealing. If fine openings exist at connec-
tions, moisture and air can enter the HSS through capillary action or by aspiration
due to the partial vacuum that is created if the HSS is cooled rapidly (Blodgett,
1967). This can be prevented by providing pressure-equalizing holes in locations that
make it impossible for water to flow into the HSS by gravity.
Situations where conservative practice would recommend an internal protective coat-
ing include: (1) open HSS where changes in the air volume by ventilation or direct
flow of water is possible; and (2) open HSS subject to a temperature gradient that
would cause condensation.
HSS that are filled or partially filled with concrete should not be sealed. In the event
of fire, water in the concrete will vaporize and may create pressure sufficient to burst
a sealed HSS. Care should be taken to keep water from remaining in the HSS during
or after construction, since the expansion caused by freezing can create pressure that
is sufficient to burst an HSS.
Galvanized HSS assemblies should not be completely sealed because rapid pressure
changes during the galvanizing process tend to burst sealed assemblies.
B4. MEMBER PROPERTIES
1. Classification of Sections for Local Buckling
Cross sections with a limiting width-to-thickness ratio, λ, greater than those provided
in Table B4.1 are subject to local buckling limit states. For the 2010 Specification for
Structural Steel Buildings, Table B4.1 was separated into two parts: B4.1a for com-
pression members and B4.1b for flexural members. Separation of Table B4.1 into
two parts reflects the fact that compression members are only categorized as either
slender or nonslender, while flexural members may be slender, noncompact or com-
pact. In addition, separation of Table B4.1 into two parts clarifies ambiguities in λ
r.
The width-to-thickness ratio, λ
r, may be different for columns and beams, even for
the same element in a cross section, reflecting both the underlying stress state of the
connected elements, and the different design methodologies between columns
(Chapter E and Appendix 1) and beams (Chapter F and Appendix 1).
Limiting Width-to-Thickness Ratios for Compression Elements in Members
Subject to Axial Compression. Compression members containing any elements
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 268

with width-to-thickness ratios greater than λ rprovided in Table B4.1a are desig-
nated as slender and are subject to the local buckling reductions detailed in Section
E7 of the Specification. Nonslender compression members (all elements having
width-to-thickness ratio ≤ λ
r) are not subject to local buckling reductions.
Flanges of Built-Up I-Shaped Sections.In the 1993 LRFD Specification for
Structural Steel Buildings(AISC, 1993) , for built-up I-shaped sections under axial
compression (Case 2 in Table B4.1a), modifications were made to the flange local
buckling criterion to include web-flange interaction. Thek
c in the λ rlimit is the same
as that used for flexural members. Theory indicates that the web-flange interaction
in axial compression is at least as severe as in flexure. Rolled shapes are excluded
from this provision because there are no standard sections with proportions where the
interaction would occur at commonly available yield stresses. In built-up sections
where the interaction causes a reduction in the flange local buckling strength, it is
likely that the web is also a thin stiffened element. The k
cfactor accounts for the
interaction of flange and web local buckling demonstrated in experiments reported
in Johnson (1985). The maximum limit of 0.76 corresponds to F
cr=0.69E/λ
2
which
was used as the local buckling strength in earlier editions of both the ASD and LRFD
Specifications. An h/t
w=27.5 is required to reach k c=0.76. Fully fixed restraint for
an unstiffened compression element corresponds to k
c=1.3 while zero restraint gives
k
c=0.42. Because of web-flange interactions it is possible to get k c <0.42 from the
k
c formula. If , use h/t w= in the k cequation, which
corresponds to the 0.35 limit.
Rectangular HSS in Compression.The limits for rectangular HSS walls in uniform
compression (Case 6 in Table B4.1a) have been used in AISC Specifications since
1969. They are based on Winter (1968), where adjacent stiffened compression ele-
ments in box sections of uniform thickness were observed to provide negligible
torsional restraint for one another along their corner edges.
Round HSS in Compression.The λ
rlimit for round HSS in compression (Case 9 in
Table B4.1a) was first used in the 1978 Specification for the Design, Fabrication, and
Erection of Structural Steel for Buildings(AISC, 1978). It was recommended in
Schilling (1965) based upon research reported in Winter (1968). The same limit was
also used to define a compact shape in bending in the 1978 Specification. Excluding
the use of round HSS with D/t>0.45E/F
ywas also recommended in Schilling
(1965). However, following the SSRC recommendations (Ziemian, 2010) and the
approach used for other shapes with slender compression elements, a Q factor is used
in Section E7 for round sections to account for interaction between local and column
buckling. The Q factor is the ratio between the local buckling stress and the yield
stress. The local buckling stress for the round section is taken from AISI provisions
based on inelastic action (Winter, 1970) and is based on tests conducted on fabri-
cated and manufactured cylinders. Subsequent tests on fabricated cylinders
(Ziemian, 2010) confirm that this equation is conservative.
Limiting Width-to-Thickness Ratios for Compression Elements in Members
Subject to Flexure. Flexural members containing compression elements, all with
width-to-thickness ratios less than or equal to λ
pas provided in Table B4.1b, are des-
ignated as compact. Compact sections are capable of developing a fully plastic stress
Comm. B4.] MEMBER PROPERTIES 16.1–269
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ht EFwy>570. 570./EF y
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 269

16.1–270 MEMBER PROPERTIES [Comm. B4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
distribution and they possess a rotation capacity of approximately 3 before the onset
of local buckling (Yura et al., 1978). Flexural members containing any compression
element with width-to-thickness ratios greater than λ
p, but still with all compression
elements having width-to-thickness ratios less than or equal to λ
r, are designated as
noncompact. Noncompact sections can develop partial yielding in compression ele-
ments before local buckling occurs, but will not resist inelastic local buckling at the
strain levels required for a fully plastic stress distribution. Flexural members con-
taining any compression elements with width-to-thickness ratios greater than λ
rare
designated as slender. Slender-element sections have one or more compression ele-
ments that will buckle elastically before the yield stress is achieved. Noncompact and
slender-element sections are subject to flange local buckling and/or web local buck-
ling reductions as provided in Chapter F and summarized in Table User Note F1.1,
or in Appendix 1.
The values of the limiting ratios, λ
pand λ r, specified in Table B4.1b are similar to
those in the 1989 Specification for Structural Steel Buildings—Allowable Stress
Design and Plastic Design(AISC, 1989) and Table 2.3.3.3 of Galambos (1978),
except that , limited in Galambos (1978) to determinate beams and
to indeterminate beams when moments are determined by elastic analysis, was
adopted for all conditions on the basis of Yura et al. (1978). For greater inelastic rota-
tion capacities than provided by the limiting value of λ
pgiven in Table B4.1b, and/or
for structures in areas of high seismicity, see Chapter D and Table D1.1 of the AISC
Seismic Provisions for Structural Steel Buildings(AISC, 2010b).
Webs in Flexure.In the 2010 Specification for Structural Steel Buildings, formulas
forλ
pwere added as Case 16 in Table B4.1b for I-shaped beams with unequal flanges
based on White (2003).
Rectangular HSS in Flexure.The λ
plimit for compact sections is adopted from the
Limit States Design of Steel Structures(CSA, 2009). Lower values of λ
pare speci-
fied for high-seismic design in the Seismic Provisions for Structural Steel Buildings
based upon tests (Lui and Goel, 1987) that have shown that rectangular HSS braces
subjected to reversed axial load fracture catastrophically under relatively few cycles
if a local buckle forms. This was confirmed in tests (Sherman, 1995a) where rectan-
gular HSS braces sustained over 500 cycles when a local buckle did not form, even
though general column buckling had occurred, but failed in less than 40 cycles when
a local buckle developed. Since 2005, the λ
plimit for webs in rectangular HSS flex-
ural members (Case 19 in Table B4.1b) has been reduced from λ
p= to
λ
p= based on the work of Wilkinson and Hancock (1998, 2002).
Round HSS in Flexure.The λ
pvalues for round HSS in flexure (Case 20, Table
B4.1b) are based on Sherman (1976), Sherman and Tanavde (1984) and Ziemian
(2010). Section F8 also limits the D/t ratio for any round section to 0.45E/F
y.Beyond
this, the local buckling strength decreases rapidly, making it impractical to use these
sections in building construction.
376./EF y
242./EF y
λpy EF=038./
AISC_PART 16_Comm.1A_14Ed._ 22/02/12 2:56 PM Page 270

Comm. B4.] MEMBER PROPERTIES 16.1–271
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Design Wall Thickness for HSS
ASTM A500/A500M (ASTM, 2007d) tolerances allow for a wall thickness that is
not greater than ± 10% of the nominal value. Because the plate and strip from which
electric-resistance-welded (ERW) HSS are made are produced to a much smaller
thickness tolerance, manufacturers in the United States consistently produce ERW
HSS with a wall thickness that is near the lower-bound wall thickness limit.
Consequently, AISC and the Steel Tube Institute of North America (STI) recom-
mend that 0.93 times the nominal wall thickness be used for calculations involving
engineering design properties of ERW HSS. This results in a weight (mass) varia-
tion that is similar to that found in other structural shapes. Submerged-arc-welded
(SAW) HSS are produced with a wall thickness that is near the nominal thickness
and require no such reduction. The design wall thickness and section properties
based upon this reduced thickness have been tabulated in AISC and STI publica-
tions since 1997.
3. Gross and Net Area Determination
3a. Gross Area
Gross area is the total area of the cross section without deductions for holes or inef-
fective portions of elements subject to local buckling.
3b. Net Area
The net area is based on net width and load transfer at a particular chain. Because
of possible damage around a hole during drilling or punching operations,
1
/16in.
(1.5 mm) is added to the nominal hole diameter when computing the net area.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 271

16.1–272
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER C
DESIGN FOR STABILITY
Design for stability is the combination of analysis to determine the required strengths of
components and proportioning of components to have adequate available strengths. Various
methods are available to provide for stability (Ziemian, 2010).
Chapter C addresses the stability design requirements for steel buildings and other struc-
tures. It is based upon the direct analysis method, which can be used in all cases. The
effective length method and first-order analysis method are addressed in Appendix 7 as
alternative methods of design for stability, and can be used when the limits in Appendix
Sections 7.2.1 and 7.3.1, respectively, are satisfied. Other approaches, including design
using second-order inelastic or plastic analysis are permitted provided the general require-
ments in Section C1 are met. Additional provisions for design by inelastic analysis are
provided in Appendix 1. Elastic structural analysis by itself is not sufficient to assess sta-
bility because the analysis and the equations for component strengths are inextricably
interdependent.
C1. GENERAL STABILITY REQUIREMENTS
There are many parameters and behavioral effects that influence the stability of steel-
framed structures (Birnstiel and Iffland, 1980; McGuire, 1992; White and Chen,
1993; ASCE Task Committee on Effective Length, 1997; Ziemian, 2010). The sta-
bility of structures and individual elements must be considered from the standpoint
of the structure as a whole, including not only the compression members, but also the
beams, bracing systems and connections.
Stiffness requirements for control of seismic drift are included in many building
codes that prohibit sidesway amplification (Δ
2nd-order/Δ1st-orderor B2), calculated with
nominal stiffness, from exceeding approximately 1.5 to 1.6 (ICC, 2009). This limit
usually is well within the more general recommendation that sidesway amplification,
calculated with reduced stiffness, should be equal to or less than 2.5.The latter rec-
ommendation is made because at larger levels of amplification, small changes in
gravity loads and/or structural stiffness can result in relatively larger changes in side-
sway deflections and second-order effects, due to large geometric nonlinearities.
Table C-C1.1 shows how the five general requirements provided in Section C1 are
addressed in the direct analysis method (Sections C2 and C3) and the effective length
method (Appendix 7, Section 7.2). The first-order analysis method (Appendix 7,
Section 7.3) is not included in Table C-C1.1 because it addresses these requirements
in an indirect manner using a mathematical manipulation of the direct analysis
method. The additional lateral load required in Appendix 7, Section 7.3.2(1) is cali-
brated to achieve roughly the same result as the collective effects of the notional load
required in Section C2.2b, a B
2multiplier for P-Δeffects required in Section C2.1(2),
and the stiffness reduction required in Section C2.3. Additionally, a B
1multiplier
addresses P-δeffects as required in Appendix 7, Section 7.3.2(2).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 272

Comm. C2.] CALCULATION OF REQUIRED STRENGTHS 16.1–273
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-C1.1
Comparison of Basic Stability Requirements
with Specific Provisions
Basic Requirement in Section C1
Provision in Direct
Analysis Method
(DM)
Provision in Effective
Length Method
(ELM)
(1) Consider all deformations C2.1(1). Consider all
deformations
Same as DM
(by reference to C2.1)
(2) Consider second-order effects (both
P-Δand
P-δ)
C2.1(2). Consider
second-order effects
(
P-Δand P-δ)**
Same as DM
(by reference to C2.1)
(3) Consider geometric
imperfections
This includes joint-
position imper-
fections* (which
affect structure
response) and mem-
ber imperfections
(which affect struc-
ture response and
member strength)
Effect of joint-position imperfections* on structure response
Effect of member
imperfections on
structure response
Effect of member
imperfections on
member strength
C2.2a. Direct modeling
or C2.2b. Notional
loads
Included in the stiffness
reduction specified in
C2.3
Included in member
strength formulas,
with
KL=L
Effect of stiffness
reduction on structure
response
Effect of stiffness
reduction on member
strength
Included in the stiffness
reduction specified in
C2.3
Included in member
strength formulas,
with
KL=L
Effect of stiffness/
strength uncertainty on
structure response
Effect of stiffness/
strength uncertainty on
member strength
Included in the stiffness
reduction specified in
C2.3
Included in member
strength formulas,
with
KL=L
Same as DM, second
option only (by refer-
ence to C2.2b)
(4) Consider stiffness
reduction due to inelasticity
This affects struc-
ture response and
member strength
All these effects are considered by using
KLfrom a sidesway
buckling analysis in the member strength check. Note that the only difference between DM and ELM is that:
DM uses reduced
stiffness in the
analysis;
KL=Lin
the member strength
check
ELM uses full
stiffness in the
analysis;
KLfrom
sidesway buckling
analysis in the
member strength
check for frame
members
(5) Consider uncertainty
in strength and
stiffness
This affects struc-
ture response and
member strength
* In typical building structures, the “joint-position imperfections” refers to column out-of-plumbness.
** Second-order effects may be considered either by rigorous second-order analysis or by the approximate
technique (using
B1and B2) specified in Appendix 8.
C2. CALCULATION OF REQUIRED STRENGTHS
Analysis to determine required strengths in accordance with this Section and the
assessment of member and connection available strengths in accordance with
Section C3 form the basis of the direct analysis method of design for stability. This
method is useful for the stability design of all structural steel systems, including
moment frames, braced frames, shear walls, and combinations of these and similar
systems (AISC-SSRC, 2003b). While the precise formulation of this method is
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 273

16.1–274 CALCULATION OF REQUIRED STRENGTHS [Comm. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
unique to the AISC Specification, some of its features have similarities to other
major design specifications around the world, including the Eurocodes, the
Australian standard, the Canadian standard, and ACI 318 (ACI, 2008).
The direct analysis method allows a more accurate determination of the load effects
in the structure through the inclusion of the effects of geometric imperfections and
stiffness reductions directly within the structural analysis. This also allows the use of
K =1.0 in calculating the in-plane column strength, P
c, within the beam-column
interaction equations of Chapter H. This is a significant simplification in the design
of steel moment frames and combined systems.
1. General Analysis Requirements
Deformations to be Considered in the Analysis. It is required that the analysis
consider flexural, shear and axial deformations, and all other component and con-
nection deformations that contribute to the displacement of the structure. However,
it is important to note that “consider” is not synonymous with “include,” and some
deformations can be neglected after rational consideration of their likely effect. For
example, the in-plane deformation of a concrete-on-steel deck floor diaphragm in
an office building usually can be neglected, but that of a cold-formed steel roof
deck in a large warehouse with widely spaced lateral-load-resisting elements usu-
ally cannot. As another example, shear deformations in beams and columns in a
low-rise moment frame usually can be neglected, but this may not be true in a high-
rise framed-tube system.
Second-Order Effects. The direct analysis method includes the basic requirement to
calculate the internal load effects using a second-order analysis that accounts for both
P-Δand P-δeffects (see Figure C-C2.1). P-Δ effects are the effects of loads acting
on the displaced location of joints or nodes in a structure. P-δeffects are the effect
of loads acting on the deflected shape of a member between joints or nodes.
Fig. C-C2.1. P-Δand P-δeffects in beam-columns.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 274

Comm. C2.] CALCULATION OF REQUIRED STRENGTHS 16.1–275
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Rigorous second-order analyses are those that accurately model all significant sec-
ond-order effects. One such approach is the solution of the governing differential
equation, either through stability functions or computer frame analysis programs that
model these effects (McGuire et al., 2000; Ziemian, 2010). Some—but not all, and
possibly not even most—modern commercial computer programs are capable of per-
forming a rigorous second-order analysis, although this should be verified by the user
for each particular program. The effect of neglecting P-δin the analysis of the struc-
ture, a common approximation that is permitted under certain conditions, is
discussed at the end of this section.
Methods that modify first-order analysis results through second-order amplifiers are
permitted as an alternative to a rigorous analysis. The use of the B
1and B 2amplifiers
provided in Appendix 8 is one such method. The accuracy of other methods should
be verified.
Analysis Benchmark Problems. The following benchmark problems are recom-
mended as a first-level check to determine whether an analysis procedure meets the
requirements of a rigorous second-order analysis adequate for use in the direct analy-
sis method (and the effective length method in Appendix 7). Some second-order
analysis procedures may not include the effects of P-δ on the overall response of the
structure. These benchmark problems are intended to reveal whether or not these
effects are included in the analysis. It should be noted that per the requirements of
Section C2.1(2), it is not always necessary to include P-δeffects in the second-order
analysis (additional discussion of the consequences of neglecting these effects
appears below).
The benchmark problem descriptions and solutions are shown in Figures C-C2.2
and C-C2.3. Case 1 is a simply supported beam-column subjected to an axial load
concurrent with a uniformly distributed transverse load between supports. This
problem contains only P-δ effects because there is no translation of one end of the
member relative to the other. Case 2 is a fixed-base cantilevered beam-column sub-
jected to an axial load concurrent with a lateral load at its top. This problem contains
both P-Δand P-δeffects. In confirming the accuracy of the analysis method, both
moments and deflections should be checked at the locations shown for the various
levels of axial load on the member and in all cases should agree within 3% and 5%,
respectively.
Given that there are many attributes that must be studied to confirm the accuracy of
a given analysis method for routine use in the design of general framing systems, a
wide range of benchmark problems should be employed. Several other targeted
analysis benchmark problems can be found in Kaehler et al. (2010), Chen and Lui
(1987), and McGuire et al. (2000). When using benchmark problems to assess the
correctness of a second-order procedure, the details of the analysis used in the bench-
mark study, such as the number of elements used to represent the member and the
numerical solution scheme employed, should be replicated in the analysis used to
design the actual structure. Because the ratio of design load to elastic buckling load
is a strong indicator of the influence of second-order effects, benchmark problems
with such ratios on the order of 0.6 to 0.7 should be included.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 275

16.1–276 CALCULATION OF REQUIRED STRENGTHS [Comm. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effect of Neglecting P-δ . A common type of approximate analysis is one that cap-
tures only P-Δ effects due to member end translations (for example, interstory drift)
but fails to capture P-δeffects due to curvature of the member relative to its chord.
This type of analysis is referred to as a P-Δanalysis. Where P-δeffects are signifi-
cant, errors arise in approximate methods that do not accurately account for the effect
of P-δmoments on amplification of both local (δ) and global (Δ) displacements and
corresponding internal moments. These errors can occur both with second-order
computer analysis programs and with the B
1and B 2amplifiers. For instance, the R M
modifier in Equation A-8-7 is an adjustment factor that approximates the effects of
P-δ(due to column curvature) on the overall sidesway displacements, Δ, and the cor-
responding moments. For regular rectangular moment frames, a single-element-
per-member P-Δanalysis is equivalent to using the B
2 amplifier of Equation A-8-6
with R
M=1, and hence, such an analysis neglects the effect of P-δ on the response
of the structure.
Fig. C-C2.2. Benchmark problem Case 1.
Fig. C-C2.3. Benchmark problem Case 2.
Axial Force, P (kips) 0 100 150 200
Mbase (kip-in.)
336
[336]
470
[469]
601
[598]
856
[848]
'tip (in.)
0.907
[0.901]
1.34
[1.33]
1.77
[1.75]
2.60
[2.56]


Axial Force, P (kN) 0 445 667 890
Mbase (kN-m)
38.0
[38.0]
53.2
[53.1]
68.1
[67.7]
97.2
[96.2]
'tip (mm)
23.1
[22.9]
34.2
[33.9]
45.1
[44.6]
66.6
[65.4]
Analyses include axial, flexural and shear deformations.
[Values in brackets] exclude shear deformations.
Axial Force, P (kips) 0 150 300 450
Mmid (kip-in.)
235
[235]
270
[269]
316
[313]
380
[375]
'mid (in.)
0.202
[0.197]
0.230
[0.224]
0.269
[0.261]
0.322
[0.311]


Axial Force, P (kN) 0 667 1334 2001
Mmid (kN-m)
26.6
[26.6]
30.5
[30.4]
35.7
[35.4]
43.0
[42.4]
'mid (mm)
5.13
[5.02]
5.86
[5.71]
6.84
[6.63]
8.21
[7.91]
Analyses include axial, flexural and shear deformations. [Values in brackets] exclude shear deformations.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 276

Comm. C2.] CALCULATION OF REQUIRED STRENGTHS 16.1–277
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Section C2.1(2) indicates that a P-Δ-only analysis (one that neglects the effect of P-
δdeformations on the response of the structure) is permissible for typical building
structures when the ratio of second-order drift to first-order drift is less than 1.7 and
no more than one-third of the total gravity load on the building is on columns that are
part of moment-resisting frames. The latter condition is equivalent to an R
Mvalue of
0.95 or greater. When these conditions are satisfied, the error in lateral displacement
from a P-Δ-only analysis typically will be less than 3%. However, when the P-δ
effect in one or more members is large (corresponding to a B
1multiplier of more than
about 1.2), use of a P-Δ-only analysis may lead to larger errors in the nonsway
moments in components connected to the high-P-δmembers.
The engineer should be aware of this possible error before using a P-Δ-only analysis
in such cases. For example, consider the evaluation of the fixed-base cantilevered
beam-column shown in Figure C-C2.4 using the direct analysis method. The side-
sway displacement amplification factor is 3.83 and the base moment amplifier is
3.32, giving M
u=1,394 kip-in.
For the loads shown, the beam-column strength interaction according to Equation
H1-1a is equal to 1.0. The sidesway displacement and base moment amplification
determined by a single-element P-Δanalysis, which ignores the effect of P-δ on the
response of the structure, is 2.55, resulting in an estimated M
u=1,070 kip-in.—an
error of 23.2% relative to the more accurate value of M
u—and a beam-column inter-
action value of 0.91.
P-δeffects can be captured in some (but not all) P-Δ-only analysis methods by sub-
dividing the members into multiple elements. For this example, three equal-length
P-Δanalysis elements are required to reduce the errors in the second-order base
moment and sidesway displacement to less than 3% and 5%, respectively.
It should be noted that in this case the unconservative error that results from ignor-
ing the effect of P-δon the response of the structure is removed through the use of
Equation A-8-8. For the loads shown in Figure C-C2.4, Equations A-8-6 and A-8-7
Fig. C-C2.4. Illustration of potential errors associated with
the use of a single-element-per-member P-Δ analysis.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 277

16.1–278 CALCULATION OF REQUIRED STRENGTHS [Comm. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
with R M=0.85 gives a B 2amplifier of 3.52. This corresponds to M u=1,476 kip-in.
(166 ×10
6
N-mm) in the preceding example, approximately 6% over that determined
from a rigorous second order analysis.
For sway columns with nominally simply supported base conditions, the errors in the
second-order internal moment and in the second-order displacements from a
P-Δ-only analysis are generally smaller than 3% and 5%, respectively, when α P
r/PeL
≤0.05,
where
α=1.00 (LRFD)
=1.60 (ASD)
P
r=required axial force, ASD or LRFD, kips (N)
P
eL=π
2
EI/L
2
if the analysis uses nominal stiffness, kips (N)
P
eL=0.8τ bπ
2
EI/L
2
, kips (N), if the analysis uses a flexural stiffness reduction of
0.8τ
b
For sway columns with rotational restraint at both ends of at least 1.5(EI/L) if the
analysis uses nominal stiffness or 1.5(0.8τ
bEI/L) if the analysis uses a flexural stiff-
ness reduction of 0.8τ
b, the errors in the second-order internal moments and
displacements from a P-Δ-only analysis are generally smaller than 3% and 5%,
respectively, when αP
r/PeL≤0.12.
For members subjected predominantly to nonsway end conditions, the errors in the
second-order internal moments and displacements from a P-Δ-only analysis are gen-
erally smaller than 3% and 5%, respectively, when α P
r/PeL≤0.05.
In meeting the above limitations for use of a P-Δ-only analysis, it is important to note
that per Section C2.1(2) the moments along the length of member (i.e., the moments
between the member-end nodal locations) should be amplified as necessary to
include P-δeffects. One device for achieving this is the use of a B
1factor.
Kaehler et al. (2010) provide further guidelines for the appropriate number of P-Δ
analysis elements in cases where the above limits are exceeded, as well as guidelines
for calculating internal element second-order moments. They also provide relaxed
guidelines for the number of elements required per member when using typical sec-
ond-order analysis capabilities that include both P-Δand P-δeffects.
As previously indicated, the engineer should verify the accuracy of second-order
analysis software by comparisons to known solutions for a range of representative
loadings. In addition to the examples presented in Chen and Lui (1987) and McGuire
et al. (2000), Kaehler et al. (2010) provides five useful benchmark problems for test-
ing second-order analysis of frames composed of prismatic members. In addition,
they provide benchmarks for evaluation of second-order analysis capabilities for
web-tapered members.
Analysis at Strength Level.It is essential that the analysis of the frame be made at
the strength level because of the nonlinearity associated with second-order effects.
For design by ASD, this load level is estimated as 1.6 times the ASD load combina-
tions, and the analysis must be conducted at this elevated load to capture
second-order effects at the strength level.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 278

Comm. C2.] CALCULATION OF REQUIRED STRENGTHS 16.1–279
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Consideration of Initial Imperfections
Modern stability design provisions are based on the premise that the member forces
are calculated by second-order elastic analysis, where equilibrium is satisfied on the
deformed geometry of the structure. Initial imperfections in the structure, such as out-
of-plumbness and material and fabrication tolerances, create destabilizing effects.
In the development and calibration of the direct analysis method, initial geometric
imperfections are conservatively assumed equal to the maximum material, fabrica-
tion and erection tolerances permitted in the AISC Code of Standard Practice for
Steel Buildings and Bridges (AISC, 2010a): a member out-of-straightness equal to
L/1000, where Lis the member length between brace or framing points, and a frame
out-of-plumbness equal to H/500, where His the story height. The permitted out-
of-plumbness may be smaller in some cases, as specified in the AISC Code of
Standard Practice for Steel Buildings and Bridges.
Initial imperfections can be accounted for in the direct analysis method through
direct modeling (Section C2.2a) or the inclusion of notional loads (Section C2.2b).
When second-order effects are such that the maximum sidesway amplification
Δ
2nd order/Δ1st orderor B2≤1.7 using the reduced elastic stiffness (or 1.5 using the
unreduced elastic stiffness) for all lateral load combinations, it is permitted to apply
the notional loads only in the gravity load-only combinations and not in combination
with other lateral loads. At this low range of sidesway amplification or B
2,the errors
in internal forces caused by not applying the notional loads in combination with other
lateral loads are relatively small. When B
2is above the threshold, the notional loads
must also be applied in combination with other lateral loads.
The Specification requirements for consideration of initial imperfections are
intended to apply only to analyses for strength limit states. It is not necessary, in most
cases, to consider initial imperfections in analyses for serviceability conditions such
as drift, deflection and vibration.
3. Adjustments to Stiffness
Partial yielding accentuated by residual stressesin members can produce a general
softening of the structure at the strength limit state that further creates destabilizing
effects. The direct analysis method is also calibrated against inelastic distributed-
plasticity analyses that account for the spread of plasticity through the member cross
section and along the member length. The residual stresses in W-shapes are assumed
to have a maximum value of 0.3F
yin compression at the flange tips, and a distribu-
tion matching the so-called Lehigh pattern—a linear variation across the flanges and
uniform tension in the web (Ziemian, 2010).
Reduced stiffness (EI* =0.8τ
bEIand EA* =0.8EA) is used in the direct analysis
method for two reasons. First, for frames with slender members, where the limit state
is governed by elastic stability, the 0.8 factor on stiffness results in a system avail-
able strength equal to 0.8 times the elastic stability limit. This is roughly equivalent
to the margin of safety implied in the design provisions for slender columns by the
effective length procedure where from Equation E3-3, φP
n=0.9(0.877P e) =0.79P e.
Second, for frames with intermediate or stocky columns, the 0.8τ
bfactor reduces the
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 279

16.1–280 CALCULATION OF REQUIRED STRENGTHS [Comm. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
stiffness to account for inelastic softening prior to the members reaching their design
strength. The τ
b factor is similar to the inelastic stiffness reduction factor implied in
the column curveto account for loss of stiffness under high compression loads (αP
r
>0.5P y), and the 0.8 factor accounts for additional softening under combined axial
compression and bending. It is a fortuitous coincidence that the reduction coeffi-
cients for both slender and stocky columns are close enough, such that the single
reduction factor of 0.8τ
bworks over the full range of slenderness.
The use of reduced stiffness only pertains to analyses for strength and stability limit
states. It does not apply to analyses for other stiffness-based conditions and criteria,
such as for drift, deflection, vibration and period determination.
For ease of application in design practice, where τ
b=1, the reduction on EIand EA
can be applied by modifying Ein the analysis. However, for computer programs that
do semi-automated design, one should ensure that the reduced Eis applied only for
the second-order analysis. The elastic modulus should not be reduced in nominal
strength equations that include E(for example, M
nfor lateral-torsional buckling in
an unbraced beam).
As shown in Figure C-C2.5, the net effect of modifying the analysis in the manner
just described is to amplify the second-order forces such that they are closer to the
(a) Effective length method
Fig. C-C2.5. Comparison of in-plane beam-column interaction checks for (a) the effective
length method and (b) the direct analysis method.
(b) Direct analysis method
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 280

Comm. C3.] CALCULATION OF AVAILABLE STRENGTHS 16.1–281
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
actual internal forces in the structure. It is for this reason that the beam-column
interaction for in-plane flexural buckling is checked using an axial strength, P
nL,
calculated from the column curveusing the actual unbraced member length, L, in
other words, with K =1.0.
In cases where the flexibility of other structural components (connections, column
base details, horizontal trusses acting as diaphragms) is modeled explicitly in the
analysis, the stiffness of these components also should be reduced. The stiffness
reduction may be taken conservatively as EA*=0.8EAand/or EI*=0.8EIfor all
cases. Surovek-Maleck et al. (2004) discusses the appropriate reduction of connec-
tion stiffness in the analysis of PR frames.
Where concrete shear walls or other nonsteel components contribute to the stability
of the structure and the governing codes or standards for those elements specify a
greater stiffness reduction, the greater reduction should be applied.
C3. CALCULATION OF AVAILABLE STRENGTHS
Section C3 provides that when the analysis meets the requirements in Section C2,
the member provisions for available strength in Chapters E through I and connection
provisions in Chapters J and K complete the process of design by the direct analysis
method. The effective length factor, K, can be taken as unity for all members in the
strength checks.
Where beams and columns rely upon braces that are not part of the lateral-load-
resisting system to define their unbraced length, the braces themselves must have
sufficient strength and stiffness to control member movement at the brace points (see
Appendix 6). Design requirements for braces that are part of the lateral-load-resist-
ing system (that is, braces that are included within the analysis of the structure) are
addressed within Chapter C.
For beam-columns in single-axis flexure and compression, the analysis results from
the direct analysis method may be used directly with the interaction equations in
Section H1.3, which address in-plane flexural buckling and out-of-plane lateral-tor-
sional instability separately. These separated interaction equations reduce the
conservatism of the Section H1.1 provisions, which combine the two limit state
checks into one equation that uses the most severe combination of in-plane and out-
of-plane limits for P
r/Pcand M r/Mc. A significant advantage of the direct analysis
method is that the in-plane check with P
cin the interaction equation is determined
using K =1.0.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 281

16.1–282
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER D
DESIGN OF MEMBERS FOR TENSION
The provisions of Chapter D do not account for eccentricities between the lines of action of
connected assemblies.
D1. SLENDERNESS LIMITATIONS
The advisory upper limit on slenderness in the User Note is based on professional
judgment and practical considerations of economics, ease of handling, and care
required so as to minimize inadvertent damage during fabrication, transport and erec-
tion. This slenderness limit is not essential to the structural integrity of tension
members; it merely assures a degree of stiffness such that undesirable lateral move-
ment (“slapping” or vibration) will be unlikely. Out-of-straightness within
reasonable tolerances does not affect the strength of tension members. Applied ten-
sion tends to reduce, whereas compression tends to amplify, out-of-straightness.
For single angles, the radius of gyration about the z-axis produces the maximum L/r
and, except for very unusual support conditions, the maximum KL/r.
D2. TENSILE STRENGTH
Because of strain hardening, a ductile steel bar loaded in axial tension can resist
without rupture a force greater than the product of its gross area and its specified
minimum yield stress. However, excessive elongation of a tension member due to
uncontrolled yielding of its gross area not only marks the limit of its usefulness but
can precipitate failure of the structural system of which it is a part. On the other hand,
depending upon the reduction of area and other mechanical properties of the steel,
the member can fail by rupture of the net area at a load smaller than required to yield
the gross area. Hence, general yielding of the gross area and rupture of the net area
both constitute limit states.
The length of the member in the net area is generally negligible relative to the total
length of the member. Strain hardening is easily reached in the vicinity of holes and
yielding of the net area at fastener holes does not constitute a limit state of practical
significance.
Except for HSS that are subjected to cyclic load reversals, there is no information
that the factors governing the strength of HSS in tension differ from those for other
structural shapes, and the provisions in Section D2 apply. Because the number of dif-
ferent end connection types that are practical for HSS is limited, the determination
of the effective net area, A
e, can be simplified using the provisions in Chapter K.
D3. EFFECTIVE NET AREA
Section D3 deals with the effect of shear lag, applicable to both welded and bolted
tension members. Shear lag is a concept used to account for uneven stress distribu-
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 282

Comm. D3.] EFFECTIVE NET AREA 16.1–283
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
tion in connected members where some but not all of their elements (flange, web,
leg, etc.) are connected. The reduction coefficient, U, is applied to the net area, A
n,
of bolted members and to the gross area, A
g, of welded members. As the length of
the connection, l, is increased, the shear lag effect diminishes. This concept is
expressed empirically by the equation for U. Using this expression to compute the
effective area, the estimated strength of some 1,000 bolted and riveted connection
test specimens, with few exceptions, correlated with observed test results within a
scatterband of ±10% (Munse and Chesson, 1963). Newer research provides further
justification for the current provisions (Easterling and Gonzales, 1993).
For any given profile and configuration of connected elements, x

is the perpendicu-
lar distance from the connection plane, or face of the member, to the centroid of the
member section resisting the connection force, as shown in Figure C-D3.1. The
length, l, is a function of the number of rows of fasteners or the length of weld. The
length, l, is illustrated as the distance, parallel to the line of force, between the first
and last row of fasteners in a line for bolted connections. The number of bolts in a
line, for the purpose of the determination of l, is determined by the line with the max-
imum number of bolts in the connection. For staggered bolts, the out-to-out
dimension is used for l, as shown in Figure C-D3.2.
Fig. C-D3.1. Determination of x

for U.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 283

16.1–284 EFFECTIVE NET AREA [Comm. D3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
From the definition of the plastic section modulus, Z=∑|A idi|, where A iis the area
of a cross-sectional element and d
iis the perpendicular distance from the plastic neu-
tral axis to the center of gravity of the element; x

for cases like that shown on the
right hand side of Figure C-D3.1(c) is Z
y/A. Because the section shown is symmet-
ric about the vertical axis and that axis is also the plastic neutral axis, the first
moment of the area to the left is Z
y/2, where Z yis the plastic section modulus of the
entire section. The area of the left side is A/2; therefore, by definition x

=Z
y/A. For
the case shown on the right hand side of Figure C-D3.1(b), x

=d/2 ≤Z
x/A. Note that
the plastic neutral axis must be an axis of symmetry for this relationship to apply.
There is insufficient data for establishing a value of U if all lines have only one bolt,
but it is probably conservative to useA
eequal to the net area of the connected ele-
ment. The limit states of block shear (Section J4.3) and bearing (Section J3.10),
which must be checked, will probably control the design.
The ratio of the area of the connected element to the gross area is a reasonable lower
bound for U and allows for cases where the calculated Ubased on (1–x

/l)
is very small, or nonexistent, such as when a single bolt per gage line is used and
l =0. This lower bound is similar to other design specifications, for example the
AASHTO Standard Specifications for Highway Bridges(AASHTO, 2002), which
allow a U based on the area of the connected portion plus half the gross area of the
unconnected portion.
The effect of connection eccentricity is a function of connection and member stiff-
ness and may sometimes need to be considered in the design of the tension
connection or member. Historically, engineers have neglected the effect of eccen-
tricity in both the member and the connection when designing tension-only bracing.
In Cases 1a and 1b shown in Figure C-D3.3, the length of the connection required
to resist the axial loads will usually reduce the applied axial load on the bolts to a
negligible value. For Case 2, the flexibility of the member and the connections will
allow the member to deform such that the resulting eccentricity is relieved to a con-
siderable extent.
Fig. C-D3.2. Determination oflfor Uof bolted connections
with staggered holes.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 284

Comm. D3.] EFFECTIVE NET AREA 16.1–285
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-D3.3. The effect of connection restraint on eccentricity.
Case 1a. End Rotation Restrained by Connection to Rigid Abutments
Case 1b. End Rotation Restrained by Symmetry
Case 2. End Rotation Not Restrained—Connection to Thin Plate
For welded connections, l is the length of the weld parallel to the line of force as
shown in Figure C-D3.4 for longitudinal and longitudinal plus transverse welds. For
welds with unequal lengths, use the average length.
End connections for HSS in tension are commonly made by welding around the
perimeter of the HSS; in this case, there is no shear lag or reduction in the gross area.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 285

16.1–286 EFFECTIVE NET AREA [Comm. D3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Alternatively, an end connection with gusset plates can be used. Single gusset plates
may be welded in longitudinal slots that are located at the centerline of the cross sec-
tion. Welding around the end of the gusset plate may be omitted for statically loaded
connections to prevent possible undercuttingof the gusset and having to bridge the
gap at the end of the slot. In such cases, the net area at the end of the slot is the crit-
ical area as illustrated in Figure C-D3.5. Alternatively, a pair of gusset plates can be
welded to opposite sides of a rectangular HSS with flare bevel groove welds with no
reduction in the gross area.
For end connections with gusset plates, the general provisions for shear lag in Case
2 of Table D3.1 can be simplified and the connection eccentricity can be explicitly
defined as in Cases 5 and 6. In Cases 5 and 6 it is implied that the weld length, l,
should not be less than the depth of the HSS. This is consistent with the weld length
requirements in Case 4. In Case 5, the use of U =1 when l ≥1.3Dis based on
research (Cheng and Kulak, 2000) that shows rupture occurs only in short connec-
tions and in long connections the round HSS tension member necks within its length
and failure is by member yielding and eventual rupture.
The shear lag factors given in Cases 7 and 8 of Table D3.1 are given as alternate U
values to the value determined from 1 ≤x

/lgiven for Case 2 in Table D3.1. It is per-
missible to use the larger of the two values.
Fig. C-D3.5. Net area through slot for a single gusset plate.
Fig. C-D3.4. Determination oflfor calculation ofUfor connections
with longitudinal and transverse welds.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 286

Comm. D5.] PIN-CONNECTED MEMBERS 16.1–287
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
D4. BUILT-UP MEMBERS
Although not commonly used, built-up member configurations using lacing, tie
plates and perforated cover plates are permitted by this Specification. The length and
thickness of tie plates are limited by the distance between the lines of fasteners, h,
which may be either bolts or welds.
D5. PIN-CONNECTED MEMBERS
Pin-connected members are occasionally used as tension members with very large
dead loads. Pin-connected members are not recommended when there is sufficient
variation in live loading to cause wearing of the pins in the holes. The dimensional
requirements presented in Specification Section D5.2 must be met to provide for the
proper functioning of the pin.
1. Tensile Strength
The tensile strength requirements for pin-connected members use the same φand
Ωvalues as elsewhere in this Specification for similar limit states. However, the
definitions of effective net area for tension and shear are different.
2. Dimensional Requirements
Dimensional requirements for pin-connected members are illustrated in Figure
C-D5.1.
Fig. C-D5.1. Dimensional requirements for pin-connected members.
Dimensional Requirements
1.a≥1.33 be
2.w≥2be +d
3.c≥a
where
be=2t+0.63 in. (16 mm) ≤ b
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 287

16.1–288 EYEBARS [Comm. D6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
D6. EYEBARS
Forged eyebars have generally been replaced by pin-connected plates or eyebars
thermally cut from plates. Provisions for the proportioning of eyebars contained in
this Specification are based upon standards evolved from long experience with
forged eyebars. Through extensive destructive testing, eyebars have been found to
provide balanced designs when they are thermally cut instead of forged. The more
conservative rules for pin-connected members of nonuniform cross section and for
members not having enlarged “circular” heads are likewise based on the results of
experimental research (Johnston, 1939).
Stockier proportions are required for eyebars fabricated from steel having a yield
stress greater than 70 ksi (485 MPa) to eliminate any possibility of their “dishing”
under the higher design stress.
1. Tensile Strength
The tensile strength of eyebars is determined as for general tension members, except
that, for calculation purposes, the width of the body of the eyebar is limited to eight
times its thickness.
2. Dimensional Requirements
Dimensional limitations for eyebars are illustrated in Figure C-D6.1. Adherence to
these limits assures that the controlling limit state will be tensile yielding of the body;
thus, additional limit state checks are unnecessary.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 288

Comm. D6.] EYEBARS 16.1–289
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Dimensional Requirements
t≥
1
/2in. (13 mm) (Exception is provided
in Section D6.2)
w≤8t
d

7
/8w
d
h≤d+
1
/32in. (1 mm)
R≥dh+2b
2
/3w≤b≤
3
/4w(Upper limit is for
calculation purposes only)
Fig. C-D6.1. Dimensional limitations for eyebars.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 289

16.1–290
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER E
DESIGN OF MEMBERS FOR COMPRESSION
E1. GENERAL PROVISIONS
The column equations in Section E3 are based on a conversion of the research data
into strength equations (Ziemian, 2010; Tide, 1985, 2001). These equations are the
same as those in the 2005 AISC Specification for Structural Steel Buildings(AISC,
2005a) and are essentially the same as those in the previous editions of the LRFD
Specification (AISC, 1986, 1993, 2000b). The resistance factor, φ,was increased
from 0.85 to 0.90 in the 2005 Specification, recognizing substantial numbers of addi-
tional column strength analyses and test results, combined with the changes in
industry practice that had taken place since the original calibrations were performed
in the 1970s and 1980s.
In the original research on the probability-based strength of steel columns
(Bjorhovde, 1972, 1978, 1988), three column curveswere recommended. The three
column curves were the approximate means of bands of strength curves for columns
of similar manufacture, based on extensive analyses and confirmed by full-scale
tests (Bjorhovde, 1972). For example, hot-formed and cold-formed heat treated
HSS columns fell into the data band of highest strength [SSRC Column Category
1P (Bjorhovde, 1972, 1988; Bjorhovde and Birkemoe, 1979; Ziemian, 2010)], while
welded built-up wide-flange columns made from universal mill plates were
included in the data band of lowest strength (SSRC Column Category 3P). The
largest group of data clustered around SSRC Column Category 2P. Had the original
LRFD Specification opted for using all three column curves for the respective col-
umn categories, probabilistic analysis would have resulted in a resistance factor φ=
0.90 or even slightly higher (Galambos, 1983; Bjorhovde, 1988; Ziemian, 2010).
However, it was decided to use only one column curve, SSRC Column Category 2P,
for all column types. This resulted in a larger data spread and thus a larger coeffi-
cient of variation, and so a resistance factor φ=0.85 was adopted for the column
equations to achieve a level of reliability comparable to that of beams. Since that
time, significant additional analyses and tests, as well as changes in practice, have
demonstrated that the increase to 0.90 was warranted, indeed even somewhat con-
servative (Bjorhovde, 1988).
The single column curve and the resistance factor of 0.85 were selected by the AISC
Committee on Specifications in 1981 when the first draft of the LRFD Specification
was developed (AISC, 1986). Since then a number of changes in industry practice
have taken place: (1) welded built-up shapes are no longer manufactured from uni-
versal mill plates; (2) the most commonly used structural steel is now ASTM A992,
with a specified minimum yield stress of 50 ksi (345 MPa); and (3) changes in steel-
making practice have resulted in materials of higher quality and much better defined
properties. The level and variability of the yield stress thus have led to a reduced
coefficient of variation for the relevant material properties (Bartlett et al., 2003).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 290

Comm. E1.] GENERAL PROVISIONS 16.1–291
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
An examination of the SSRC Column Curve Selection Table (Bjorhovde, 1988;
Ziemian, 2010) shows that the SSRC 3P Column Curve Category is no longer
needed. It is now possible to use only the statistical data for SSRC Column Category
2P for the probabilistic determination of the reliability of columns. The curves in
Figures C-E1.1 and C-E1.2 show the variation of the reliability index βwith the live-
to-dead load ratio, L/D, in the range of 1 to 5 for LRFD with φ=0.90 and ASD with
Fig. C-E1.2. Reliability of columns (ASD).
Fig. C-E1.1. Reliability of columns (LRFD).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 291

16.1–292 GENERAL PROVISIONS [Comm. E1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ω=1.67, respectively, for F y=50 ksi (345 MPa). The reliability index does not fall
below β=2.6. This is comparable to the reliability of beams.
E2. EFFECTIVE LENGTH
The concept of a maximum limiting slenderness ratio has experienced an evolu-
tionary change from a mandatory “…The slenderness ratio, KL/r, of compression
members shall not exceed 200…” in the 1978 Specification to no restriction at all
in the 2005 Specification (AISC, 2005a). The 1978 ASDand the 1999 LRFD
Specifications (AISC, 1978; AISC, 2000b) provided a transition from the manda-
tory limit to a limit that was defined in the 2005 Specification by a User Note, with
the observation that “…the slenderness ratio, KL/r, preferably should not exceed
200….” However, the designer should keep in mind that columns with a slender-
ness ratio of more than 200 will have an elastic buckling stress (Equation E3-4)
less than 6.3 ksi (43.5 MPa). The traditional upper limit of 200 was based on pro-
fessional judgment and practical construction economics, ease of handling, and
care required to minimize inadvertent damage during fabrication, transport and
erection. These criteria are still valid and it is not recommended to exceed this limit
for compression members except for cases where special care is exercised by the
fabricator and erector.
E3. FLEXURAL BUCKLING OF MEMBERS WITHOUT
SLENDER ELEMENTS
Section E3 applies to compression members with all nonslender elements, as defined
in Section B4.
The column strength equations in Section E3 are the same as those in the previous
editions of the LRFD Specification, with the exception of the cosmetic replacement
in
2005 of the slenderness term, , by the more familiar slenderness ratio,
. For the convenience of those calculating the elastic buckling stress directly,
without first calculating K, the limits on the use of Equations E3-2 and E3-3 are also
provided in terms of the ratio F
y/Fe, as shown in the following discussion.
Comparisons between the previous column design curves and those introduced
in the 2005 Specification and continued in this Specification are shown in Figures
C-E3.1 and C-E3.2 for the case of F
y=50 ksi (345 MPa). The curves show the vari-
ation of the available column strength with the slenderness ratio for LRFD and
ASD, respectively. The LRFD curves reflect the change of the resistance factor, φ,
from 0.85 to 0.90, as was explained in Commentary Section E1. These column
equations provide improved economy in comparison with the previous editions of
the Specification.
The limit between elastic and inelastic buckling is defined to be
. These are the same as F
e=0.44F ythat was used in the 2005 Specification.
λ
πc
y
KL
r
F
E
=
KL
r
KL
r
E
F
y
=471. or F
Fy
e
=225.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 292

Comm. E3.] FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS 16.1–293
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-E3.1. LRFD column curves compared.
Fig. C-E3.2. ASD column curves compared.
For convenience, these limits are defined in Table C-E3.1 for the common values
of F
y.
One of the key parameters in the column strength equations is the elastic critical
stress, F
e. Equation E3-4 presents the familiar Euler form for F e. However, F ecan
also be determined by other means, including a direct frame buckling analysis or a
torsional or flexural-torsional buckling analysis as addressed in Section E4.
The column strength equations of Section E3 can also be used for frame buckling and
for torsional or flexural-torsional buckling (Section E4); they can also be entered
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 293

16.1–294 FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS [Comm. E3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
with a modified slenderness ratio for single-angle members (Section E5); and they
can be modified by the Q-factor for columns with slender elements (Section E7).
E4. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF
MEMBERS WITHOUT SLENDER ELEMENTS
Section E4 applies to singly symmetric and unsymmetric members, and certain dou-
bly symmetric members, such as cruciform or built-up columns, with all nonslender
elements, as defined in Section B4 for uniformly compressed elements. It also
applies to doubly symmetric members when the torsional buckling length is greater
than the flexural buckling length of the member.
The equations in Section E4 for determining the torsional and flexural-torsional elas-
tic buckling loads of columns are derived in textbooks and monographs on structural
stability [for example, Bleich (1952); Timoshenko and Gere (1961); Galambos
(1968a); Chen and Atsuta (1977); Galambos and Surovek (2008), Ziemian (2010)].
Since these equations apply only to elastic buckling, they must be modified for
inelastic buckling by using the torsional and flexural-torsional critical stress, F
cr, in
the column equations of Section E3.
Torsional buckling of symmetric shapes and flexural-torsional buckling of unsym-
metrical shapes are failure modes usually not considered in the design of hot-rolled
columns. They generally do not govern, or the critical loaddiffers very little from
the weak-axis flexural buckling load. Torsional and flexural-torsional buckling
modes may, however, control the strength of symmetric columns manufactured
from relatively thin plate elements and unsymmetric columns and symmetric
columns having torsional unbraced lengths significantly larger than the weak-axis
flexural unbraced lengths. Equations for determining the elastic critical stress for
such columns are given in Section E4. Table C-E4.1 serves as a guide for selecting
the appropriate equations.
The simpler method of calculating the buckling strength of double-angle and tee-
shaped members (Equation E4-2) uses directly the y-axis flexural strength from the
column equations of Section E3 (Galambos, 1991).
TABLE C-E3.1
Limiting values of
KL/rand Fe
Fy
Limiting
Fe
ksi (MPa) ksi (MPa)
36 (250) 134 16.0 (111)
50 (345) 113 22.2 (153)
60 (415) 104 26.7 (184)
70 (485) 96 31.1 (215)
KL
r
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 294

Comm. E4.] TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING 16.1–295
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-E4.1
Selection of Equations for Torsional and Flexural-
Torsional Buckling
Applicable Equations
Type of Cross Section in Section E4
Double angle and tee-shaped members
Case (a) in Section E4
All doubly symmetric shapes and Z-shapes
Case (b) (i) in Section E4
Singly symmetric members except double angles
and tee-shaped members
Case (b)(ii) in Section E4
Unsymmetric shapes
Case (b)(iii) in Section E4
E4-2
E4-4
E4-6
E4-5
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 295

16.1–296 TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING [Comm. E4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Equations E4-4 and E4-9 contain a torsional buckling effective length factor, K z. This
factor may be conservatively taken as K
z=1.0. For greater accuracy, K z =0.5 if both
ends of the column have a connection that restrains warping, say by boxing the end
over a length at least equal to the depth of the member. If one end of the member is
restrained from warping and the other end is free to warp, then K
z=0.7.
At points of bracing both lateral and/or torsional bracing shall be provided, as
required in Appendix 6. AISC Design Guide 9 (Seaburg and Carter, 1997) provides
an overview of the fundamentals of torsional loading for structural steel members.
Design examples are also included.
E5. SINGLE ANGLE COMPRESSION MEMBERS
The axial load capacity of single angles is to be determined in accordance with
Section E3 or E7. However, as noted in Section E4 and E7, single angles with
b/t≤20 do not require the computation of F
eusing Equations E4-5 or E4-6. This
applies to all currently produced hot rolled angles; use Section E4 to compute F
efor
fabricated angles with b/t >20.
Section E5 also provides a simplified procedure for the design of single angles sub-
jected to an axial compressive load introduced through one connected leg. The angle
is treated as an axially loaded member by adjusting the member slenderness. The
attached leg is to be fixed to a gusset plate or the projecting leg of another member
by welding or by a bolted connection with at least two bolts. The equivalent slen-
derness expressions in this section presume significant restraint about they-axis,
which is perpendicular to the connected leg. This leads to the angle member tend-
ing to bend and buckle primarily about the x-axis. For this reason, L/r
xis the
slenderness parameter used. The modified slenderness ratios indirectly account for
bending in the angles due to the eccentricity of loading and for the effects of end
restraint from the truss chords.
The equivalent slenderness expressions also presume a degree of rotational restraint.
Equations E5-3 and E5-4 [Case (b)] assume a higher degree of x-axis rotational
restraint than do Equations E5-1 and E5-2 [Case (a)]. Equations E5-3 and E5-4 are
essentially equivalent to those employed for equal-leg angles as web members in
latticed transmission towers in ASCE 10-97 (ASCE, 2000).
In space trusses, the web members framing in from one face typically restrain the
twist of the chord at the panel points and thus provide significant x-axis restraint
of the angles under consideration. It is possible that the chords of a planar truss
well restrained against twist justify use of Case (b), in other words, Equations E5-
3 and E5-4. Similarly, simple single-angle diagonal braces in braced frames could be
considered to have enough end restraint such that Case (a), in other words, Equations
E5-1 and E5-2, could be employed for their design. This procedure, however, is not
intended for the evaluation of the compressive strength of x-braced single angles.
The procedure in Section E5 permits use of unequal-leg angles attached by the
smaller leg provided that the equivalent slenderness is increased by an amount that
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 296

Comm. E6.] BUILT-UP MEMBERS 16.1–297
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is a function of the ratio of the longer to the shorter leg lengths, and has an upper
limit on L/r
z.
If the single-angle compression members cannot be evaluated using the procedures
in this section, use the provisions of Section H2. In evaluating P
n, the effective length
due to end restraint should be considered. With values of effective length factors
about the geometric axes, one can use the procedure in Lutz (1992) to compute an
effective radius of gyration for the column. To obtain results that are not too conser-
vative, one must also consider that end restraint reduces the eccentricity of the axial
load of single-angle struts and thus the value of f
rbwor frbzused in the flexural term(s)
in Equation H2-1.
E6. BUILT-UP MEMBERS
Section E6 addresses the strength and dimensional requirements of built-up members
composed of two or more shapes interconnected by stitch bolts or welds.
1. Compressive Strength
This section applies to built-up members such as double-angle or double-channel
members with closely spaced individual components. The longitudinal spacing of
connectors connecting components of built-up compression members must be such
that the slenderness ratio, L/r , of individual shapes does not exceed three-fourths of
the slenderness ratio of the entire member. However, this requirement does not nec-
essarily ensure that the effective slenderness ratio of the built-up member is equal to
that of a built-up member acting as a single unit.
For a built-up member to be effective as a structural member, the end connection
must be welded or pretensioned bolted with Class A or B faying surfaces. Even so,
the compressive strength will be affected by the shearing deformation of the inter-
mediate connectors. The Specification uses the effective slenderness ratio to
consider this effect. Based mainly on the test data of Zandonini (1985), Zahn and
Haaijer (1987) developed an empirical formulation of the effective slenderness ratio
for the 1986 AISC Load and Resistance Factor Design Specification for Structural
Steel Buildings(AISC, 1986). When pretensioned bolted or welded intermediate
connectors are used, Aslani and Goel (1991) developed a semi-analytical formula
for use in the 1993, 1999 and 2005 AISC Specifications (AISC, 1993, 2000b,
2005a). As more test data became available, a statistical evaluation (Sato and Uang,
2007) showed that the simplified expressions used in this Specification achieve the
same level of accuracy.
Fastener spacing less than the maximum required for strength may be needed to
ensure a close fit over the entire faying surface of components in continuous contact.
Special requirements for weathering steel members exposed to atmospheric corro-
sion are given in Brockenbrough (1983).
2. Dimensional Requirements
Section E6.2 provides additional requirements on connector spacing and end con-
nection for built-up member design. Design requirements for laced built-up members
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 297

16.1–298 BUILT-UP MEMBERS [Comm. E6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where the individual components are widely spaced are also provided. Some dimen-
sioning requirements are based upon judgment and experience. The provisions
governing the proportioning of perforated cover plates are based upon extensive
experimental research (Stang and Jaffe, 1948).
E7. MEMBERS WITH SLENDER ELEMENTS
The structural engineer designing with hot-rolled shapes will seldom find an occa-
sion to turn to Section E7 of the Specification. Among rolled shapes, the most
frequently encountered cases requiring the application of this section are beam
shapes used as columns, columns containing angles with thin legs, and tee-shaped
columns having slender stems. Special attention to the determination of Qmust be
given when columns are made by welding or bolting thin plates together.
The provisions of Section E7 address the modifications to be made when one or more
plate elements in the column cross section are slender. A plate element is considered
to be slender if its width-to-thickness ratio exceeds the limiting value, λ
r, defined in
Table B4.1a. As long as the plate element is not slender, it can support the full yield
stress without local buckling. When the cross section contains slender elements, the
slenderness reduction factor, Q, defines the ratio of the stress at local buckling to the
yield stress, F
y. The yield stress,F y, is replaced by the value QF yin the column equa-
tions of Section E3. These modified equations are repeated as Equations E7-2 and
E7-3. This approach to dealing with columns with slender elements has been used
since the 1969 AISC Specification for the Design, Fabrication, and Erection of
Structural Steel for Buildings(AISC, 1969), emulating the 1969 AISI Specification
for the Design of Cold-Formed Steel Structural Members(AISI, 1969). Prior to 1969,
the AISC practice was to remove the width of the plate that exceeded the λ
rlimit and
check the remaining cross section for conformance with the allowable stress, which
proved inefficient and uneconomical. The equations in Section E7 are almost identi-
cal to the original 1969 equations.
This Specification makes a distinction between columns having unstiffened and
stiffened elements. Two separate philosophies are used: Unstiffened elements are
considered to have attained their limit state when they reach the theoretical local
buckling stress. Stiffened elements, on the other hand, make use of the post-buck-
ling strength inherent in a plate that is supported on both of its longitudinal edges,
such as in HSS columns. The effective width concept is used to obtain the added
post-buckling strength. This dual philosophy reflects the 1969 practice in the design
of cold-formed columns. Subsequent editions of the AISI Specifications, in partic-
ular, the North American Specification for the Design of Cold-Formed Steel
Structural Members(AISI, 2001, 2007), hereafter referred to as the AISI North
American Specification,adopted the effective width concept for both stiffened and
unstiffened elements. Subsequent editions of the AISC Specification (including this
Specification) did not follow the example set by AISI for unstiffened plates because
the advantages of the post-buckling strength do not become available unless the
plate elements are very slender. Such dimensions are common for cold-formed
columns, but are rarely encountered in structures made from hot-rolled plates.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 298

Comm. E7.] MEMBERS WITH SLENDER ELEMENTS 16.1–299
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Slender Unstiffened Elements, Q s
Equations for the slender element reduction factor, Q s, are given in Section E7.1 for
outstanding elements in rolled shapes (Case a), built-up shapes (Case b), single
angles (Case c), and stems of tees (Case d). The underlying scheme for these provi-
sions is illustrated in Figure C-E7.1. The curves show the relationship between the
Q-factor and a nondimensional slenderness ratio . The width, b,
and thickness,t, are defined for the applicable cross sections in Section B4; v =0.3
(Poisson’s ratio), and k is the plate buckling coefficient characteristic of the type of
plate edge-restraint. For single angles, k =0.425 (no restraint is assumed from the
other leg), and for outstanding flange elements and stems of tees, k equals approxi-
mately 0.7, reflecting an estimated restraint from the part of the cross section to
which the plate is attached on one of its edges, the other edge being free.
The curve relating Qto the plate slenderness ratio has three components: (i) a part
where Q =1 when the slenderness factor is less than or equal to 0.7 (the plate can be
stressed up to its yield stress), (ii) the elastic plate buckling portion when buckling
is governed by , and (iii) a transition range that empirically
accountsfor the effect of early yielding due to residual stressesin the shape.
Generally this transition range is taken as a straight line. The development of the
provisions for unstiffened elements is due to the research of Winter and his co-work-
b
t
F
E
v
k y12 1
2
2
(– )
π
F=
Ek

b
tcr
π
2
12 1v
2
2
( )






Fig. C-E7.1. Definition of Q sfor unstiffened slender elements.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 299

16.1–300 MEMBERS WITH SLENDER ELEMENTS [Comm. E7.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ers, and a full listing of references is provided in the Commentary to the AISI North
American Specification(AISI, 2001, 2007). The slenderness provisions are illus-
trated for the example of slender flanges of rolled shapes in Figure C-E7.2.
The equations for the unstiffened projecting flanges, angles and plates in built-up
cross sections (Equations E7-7 through E7-9) have a history that starts with the
research reported in Johnson (1985). It was noted in tests of beams with slender
flanges and slender webs that there was an interaction between the buckling of the
flanges and the distortions in the web causing an unconservative prediction of
strength. A modification based on the equations recommended in Johnson (1985)
appeared first in the 1989 Specification for Structural Steel Buildings—Allowable
Stress Design and Plastic Design(AISC, 1989).
Modifications to simplify the original equations were introduced in the 1993 Load
and Resistance Factor Design Specification for Structural Steel Buildings (AISC,
1993), and these equations have remained unchanged in the present Specification.
The influence of web slenderness is accounted for by the introduction of the factor
(C-E7-1)
into the equations for λ
rand Q, where k cis not taken as less than 0.35 nor greater
than 0.76 for calculation purposes.
2. Slender Stiffened Elements, Q a
While for slender unstiffened elements the Specification for local buckling is based
on the limit state of the onset of plate buckling, an improved approach based on the
k=
h
t
c
w
4
Fig. C-E7.2. Qfor rolled wide-flange columns with F y= 50 ksi (345 MPa).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 300

Comm. E7.] MEMBERS WITH SLENDER ELEMENTS 16.1–301
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
effective width concept is used for the compressive strength of stiffened elements in
columns. This method was first proposed in von Kármán et al. (1932). It was later
modified by Winter (1947) to provide a transition between very slender elements and
stockier elements shown by tests to be fully effective. As modified for the AISI North
American Specification(AISI, 2001, 2007), the ratio of effective width to actual
width increases as the level of compressive stress applied to a stiffened element in a
member is decreased, and takes the form
(C-E7-2)
where fis taken as F
crof the column based on Q=1.0, and C is a constant based on
test results (Winter, 1947).
The basis for cold-formed steel columns in the AISI North American Specification
editions since the 1970s is C=0.415. The original AISI coefficient 1.9 in Equation
C-E7-2 is changed to 1.92 in the Specification to reflect the fact that the modulus of
elasticity Eis taken as 29,500 ksi (203 400 MPa) for cold-formed steel, and 29,000
ksi (200 000 MPa) for hot-rolled steel.
For the case of square and rectangular box-sections of uniform thickness, where the
sides provide negligible rotational restraint to one another, the value of C=0.38 in
Equation E7-18 is higher than the value of C=0.34 in Equation E7-17. Equation
E7-17 applies to the general case of stiffened plates in uniform compression where
there is substantial restraint from the adjacent flange or web elements. The coeffi-
cients C=0.38 and C =0.34 are smaller than the corresponding value of C=0.415
in the AISI North American Specification (AISI, 2001, 2007), reflecting the fact that
hot-rolled steel sections have stiffer connections between plates due to welding or fil-
lets in rolled shapes than do cold-formed shapes.
The classical theory of longitudinally compressed cylinders overestimates the actual
buckling strength, often by 200% or more. Inevitable imperfections of shape and the
eccentricity of the load are responsible for the reduction in actual strength below
the theoretical strength. The limits in Section E7.2(c) are based upon test evidence
(Sherman, 1976), rather than theoretical calculations, that local buckling will not
occur if . When D/texceeds this value but is less than , Equation
E7-19 provides a reduction in the local buckling reduction factor Q . This Specification
does not recommend the use of round HSS or pipe columns with.
b
t
=
E
f

C
b/t
E
fe
1.9 1
()






D
t
E

0.11
F
y
0.45E
F
y
D
t
E
F
y
>
0.45
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 301

16.1–302
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER F
DESIGN OF MEMBERS FOR FLEXURE
F1. GENERAL PROVISIONS
Chapter F applies to members subject to simple bending about one principal axis of
the cross section. Section F2 gives the provisions for the flexural strength of doubly
symmetric compact I-shaped and channel members subject to bending about their
major axis. For most designers, the provisions in this section will be sufficient to per-
form their everyday designs. The remaining sections of Chapter F address less
frequently occurring cases encountered by structural engineers. Since there are many
such cases, many equations and many pages in the Specification, the table in User
Note F1.1 is provided as a map for navigating through the cases considered in
Chapter F. The coverage of the chapter is extensive and there are many equations that
appear formidable; however, it is stressed again that for most designs, the engineer
need seldom go beyond Section F2.
For all sections covered in Chapter F, the highest possible nominal flexural strength
is the plastic moment, M
n=Mp. Being able to use this value in design represents the
optimum use of the steel. In order to attain M
pthe beam cross section must be com-
pact and the member must be laterally braced. Compactness depends on the flange
and web width-to-thickness ratios, as defined in Section B4. When these conditions
are not met, the nominal flexural strength diminishes. All sections in Chapter F treat
this reduction in the same way. For laterally braced beams, the plastic moment region
extends over the range of width-to-thickness ratios, λ, terminating at λ
p. This is the
compact condition. Beyond these limits the nominal flexural strength reduces lin-
early untilλreaches λ
r. This is the range where the section is noncompact. Beyond
λ
rthe section is a slender-element section.
These three ranges are illustrated in Figure C-F1.1 for the case of rolled wide-flange
members for the limit state of flange local buckling. AISC Design Guide 25, Frame
Design Using Web-Tapered Members (Kaehler et al., 2010), addresses flexural
strength for web-tapered members. The curve in Figure C-F1.1 shows the relation-
ship between the flange width-to-thickness ratio, b
f/2tf, and the nominal flexural
strength, M
n.
The basic relationship between the nominal flexural strength, M
n, and the unbraced
length, L
b, for the limit state of lateral-torsional buckling is shown in Figure C-F1.2
for a compact section that is simply supported and subjected to uniform bending with
C
b= 1.0.
There are four principal zones defined on the basic curve by the lengths L
pd,Lpand
L
r. Equation F2-5 defines the maximum unbraced length, L p, to reach M pwith uni-
form moment. Elastic lateral-torsional buckling will occur when the unbraced
length is greater than L
rgiven by Equation F2-6. Equation F2-2 defines the range
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 302

Comm. F1.] GENERAL PROVISIONS 16.1–303
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
of inelastic lateral-torsional buckling as a straight line between the defined limits
M
patLpand 0.7F ySxatLr. Buckling strength in the elastic region is given by
Equation F2-3. The length L
pdis defined in Appendix 1 as the limiting unbraced
length needed for plastic design. Although plastic design methods generally require
more stringent limits on the unbraced length compared to elastic design, the magni-
tude of L
pdis often larger than L p. The reason for this is because the L pdexpression
Fig. C-F1.1. Nominal flexural strength as a function of the flange
width-to-thickness ratio of rolled I-shapes.
Fig. C-F1.2. Nominal flexural strength as a function of unbraced length
and moment gradient.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 303

16.1–304 GENERAL PROVISIONS [Comm. F1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
accounts for moment gradient directly, while designs based upon an elastic analysis
rely on C
bfactors to account for the benefits of moment gradient as outlined in the
following paragraphs.
For moment along the member other than uniform moment, the lateral buckling
strength is obtained by multiplying the basic strength in the elastic and inelastic
region by C
bas shown in Figure C-F1.2. However, in no case can the maximum
moment capacity exceed the plastic moment, M
p. Note that L pgiven by Equation
F2-5 is merely a definition that has physical meaning only when C
b=1.0. For C b
greater than 1.0, members with larger unbraced lengths can reach M p,as shown by
the curve for C
b>1.0 in Figure C-F1.2. This length is calculated by setting Equation
F2-2 equal to M
pand solving for L busing the actual value of C b.
Since 1961, the following equation has been used in AISC Specifications to adjust
the lateral-torsional buckling equations for variations in the moment diagram within
the unbraced length.
(C-F1-1)
where
M
1=smaller moment at end of unbraced length, kip-in. (N-mm)
M
2=larger moment at end of unbraced length, kip-in. (N-mm)
(M
1/M2) is positive when moments cause reverse curvature and negative for sin-
gle curvature
This equation is only applicable to moment diagrams that consist of straight lines
between braced points—a condition that is rare in beam design. The equation pro-
vides a lower bound to the solutions developed in Salvadori (1956). Equation C-F1-1
can be easily misinterpreted and misapplied to moment diagrams that are not linear
within the unbraced segment. Kirby and Nethercot (1979) present an equation that
applies to various shapes of moment diagrams within the unbraced segment. Their
original equation has been slightly adjusted to give Equation C-F1-2 (Equation F1-1
in the body of the Specification):
(C-F1-2)
This equation gives a more accurate solution for a fixed-end beam, and gives approx-
imately the same answers as Equation C-F1-1 for moment diagrams with straight lines
between points of bracing. C
bcomputed by Equation C-F1-2 for moment diagrams
with other shapes shows good comparison with the more precise but also more com-
plex equations (Ziemian, 2010). The absolute values of the three quarter-point
moments and the maximum moment regardless of its location are used in Equation C-
F1-2. The maximum moment in the unbraced segment is always used for comparison
with the nominal moment, M
n. The length between braces, not the distance to inflec-
tion points is used. It is still satisfactory to use C
bfrom Equation C-F1-1 for
straight-line moment diagrams within the unbraced length.
C= +
M
M
+
M
Mb1.75 1.05 0.3
1
2
1
2⎛











2
C=
M
M +M+M+Mb
max
max A B C
12.5
2.5 3 4 3
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 304

Comm. F1.] GENERAL PROVISIONS 16.1–305
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The lateral-torsional buckling modification factor given by Equation C-F1-2 is appli-
cable for doubly symmetric sections and should be modified for application with
singly symmetric sections. Previous work considered the behavior of singly-sym-
metric I-shaped beams subjected to gravity loading (Helwig et al., 1997). The study
resulted in the following expression:
(C-F1-3)
For single curvature bending: R
m=1.0
For reverse curvature bending:
(C-F1-4)
where
I
y Top=moment of inertia of the top flange about an axis through the web, in.
4
(mm
4
)
I
y=moment of inertia of the entire section about an axis through the web, in.
4
(mm
4
)
Since Equation C-F1-3 was developed for gravity loading on beams with a horizon-
tal orientation of the longitudinal axis, the top flange is defined as the flange above
the geometric centroid of the section. The term in the brackets of Equation C-F1-3 is
identical to Equation C-F1-2 while the factor R
mis a modifier for singly-symmetric
sections that is greater than unity when the top flange is the larger flange and less
than unity when the top flange is the smaller flange. For singly-symmetric sections
subjected to reverse curvature bending, the lateral-torsional buckling strength should
be evaluated by separately treating each flange as the compression flange and com-
paring the available flexural strength with the required moment that causes
compression in the flange under consideration.
TheC
bfactors discussed above are defined as a function of the spacing between
braced points. However, many situations arise where a beam may be subjected to
reverse curvature bending and have one of the flanges continuously braced laterally
by closely spaced joists and/or light gauge decking normally used for roofing or
flooring systems. Although the lateral bracing provides significant restraint to one of
the flanges, the other flange can still buckle laterally due to the compression caused
by the reverse curvature bending. A variety of C
bexpressions have been developed
that are a function of the type of loading, distribution of the moment, and the support
conditions. For gravity loaded beams with the top flange laterally restrained, the fol-
lowing expression is applicable (Yura, 1995; Yura and Helwig, 2009):
(C-F1-5)
C
M
MMMM
Rb
max
max A B C
m=
+++







12 5
25 3 4 3
30
.
.
.
R
I
Im
yTop
y=+






05 2
2
.
C
M
M
M
MMb
o
CL
o=−







+
( )








30
2
3
8
3
1
1
.
*
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 305

16.1–306 GENERAL PROVISIONS [Comm. F1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
M
o =moment at the end of the unbraced length that gives the largest com-
pressive stress in the bottom flange, kip-in. (N-mm)
M
1 =moment at other end of the unbraced length, kip-in. (N-mm)
M
CL =moment at the middle of the unbraced length, kip-in. (N-mm)
(M
o+M1)*=M oif M1is positive
The unbraced length is defined as the spacing between locations where twist is
restrained. The sign convention for the moments are shown in Figure C-F1.3. M
oand
M
1are negative as shown in the figure, while M CLis positive. The asterisk on the last
term in Equation C-F1-5 indicates that M
1is taken as zero in the last term if it is pos-
itive. For example, considering the distribution of moment shown in Figure C-F1.4,
the C
bvalue would be:
Cb=−
+






⎟−
+






⎟=30
2
3
200
100
8
3
50
100
56..7 7
Fig. C-F1.3. Sign convention for moments in Equation C-F1-5.
Fig. C-F1.4. Moment diagram for numerical example of application of Equation C-F1-5.
AISC_PART 16_Comm.1A_14Ed._ 29/02/12 1:19 PM Page 306

Comm. F1.] GENERAL PROVISIONS 16.1–307
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Note that (M o+M1)* is taken as M osince M 1is positive.
In this case, theC
b=5.67 would be used with the lateral-torsional buckling strength
for the beam using an unbraced length of 20 ft which is defined by locations where
twist or lateral movement of both flanges is restrained.
A similar buckling problem occurs with roofing beams subjected to uplift from
wind loading. The light gauge metal decking that is used for the roofing system
usually provides continuous restraint to the top flange of the beam; however, the
uplift can be large enough to cause the bottom flange to be in compression. The
sign convention for the moment is the same as indicated in Figure C-F1.3. The
moment must cause compression in the bottom flange (M
CLnegative) for the beam
to buckle. Three different expressions are given in Figure C-F1.5 depending on
whether the end moments are positive or negative (Yura and Helwig, 2009). As
outlined above, the unbraced length is defined as the spacing between points where
both the top and bottom flange are restrained from lateral movement or between
points restrained from twist.
The equations for the limit state of lateral-torsional buckling in Chapter F assume
that the loads are applied along the beam centroidal axis. C
bmay be conservatively
Fig. C-F1.5. C bfactors for uplift loading on beams with
the top flange continuously restrained laterally.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 307

16.1–308 GENERAL PROVISIONS [Comm. F1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
taken equal to 1.0, with the exception of some cases involving unbraced overhangs
or members with no bracing within the span and with significant loading applied to
the top flange. If the load is placed on the top flange and the flange is not braced,
there is a tipping effect that reduces the critical moment; conversely, if the load is
suspended from an unbraced bottom flange, there is a stabilizing effect that increases
the critical moment (Ziemian, 2010). For unbraced top flange loading on compact I-
shaped members, the reduced critical moment may be conservatively approximated
by setting the square root expression in Equation F2-4 equal to unity.
An effective length factor of unity is implied in the critical moment equations to rep-
resent the worst-case simply supported unbraced segment. Consideration of any end
restraint due to adjacent unbuckled segments on the critical segment can increase its
strength. The effects of beam continuity on lateral-torsional buckling have been stud-
ied, and a simple conservative design method, based on the analogy to end-restrained
nonsway columns with an effective length less than unity, has been proposed
(Ziemian, 2010).
F2. DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND
CHANNELS BENT ABOUT THEIR MAJOR AXIS
Section F2 applies to members with compact I-shaped or channel cross sections sub-
ject to bending about their major axis; hence, the only limit state to consider is
lateral-torsional buckling. Almost all rolled wide-flange shapes listed in the AISC
Steel Construction Manual(AISC, 2005b) are eligible to be designed by the provi-
sions of this section, as indicated in the User Note in the Specification.
The equations in Section F2 are identical to the corresponding equations in Section
F1 of the 1999 Specification for Structural Steel Buildings—Load and Resistance
Factor Design, hereafter referred to as the 1999 LRFD Specification, (AISC, 2000b)
and to the provisions in the 2005 Specification for Structural Steel Buildings(AISC,
2005a), hereafter referred to as the 2005 Specification, although they are presented
in different form. Table C-F2.1 gives the list of equivalent equations.
The only difference between the 1999 LRFD Specification (AISC, 2000b) and this
Specification is that the stress at the interface between inelastic and elastic buckling
has been changed from F
y≤Frin the 1999 edition to 0.7F y. In the specifications
prior to the 2005 Specification the residual stress, F
r, for rolled and welded shapes
was different, namely 10 ksi (69 MPa) and 16.5 ksi (114 MPa), respectively, while
in the 2005 Specification and in this Specification the residual stress is taken as 0.3F
y
so that the value of F y≤Fr=0.7F yis adopted. This change was made in the interest
of simplicity with negligible effect on economy.
The elastic lateral-torsional buckling stress, F
cr, of Equation F2-4:
(C-F2-1)
F=
Cπ E
L
r
+
Jc
Sh
L
rcr
b
b
ts
xo
b
ts
2
2 1 0.078










⎠⎠ ⎟
2
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 308

Comm. F2.] DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS 16.1–309
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is identical to Equation F1-13 in the 1999 LRFD Specification:
(C-F2-2)
if c=1 (see Section F2 for definition):
Equation F2-5 is the same as Equation F1-4 in the 1999 LRFD Specification, and
Equation F2-6 corresponds to Equation F1-6. It is obtained by setting F
cr=0.7F yin
Equation F2-4 and solving for L
b. The format of Equation F2-6 has changed in the
2010 Specification so that it is not undefined at the limit when J=0; otherwise it
gives identical results. The term r
tscan conservatively be calculated as the radius of
gyration of the compression flange plus one-sixth of the web.
These provisions have been simplified when compared to the previous ASD provi-
sions based on a more informed understanding of beam limit states behavior. The
maximum allowable stress obtained in these provisions may be slightly higher than
the previous limit of 0.66F
y, since the true plastic strength of the member is reflected
by use of the plastic section modulus in Equation F2-1. The Section F2 provisions
for unbraced length are satisfied through the use of two equations, one for inelastic
lateral-torsional buckling (Equation F2-2), and one for elastic lateral-torsional buck-
ling (Equation F2-3). Previous ASD provisions placed an arbitrary stress limit of
0.6F
ywhen a beam was not fully braced and required that three equations be checked
with the selection of the largest stress to determine the strength of a laterally
unbraced beam. With the current provisions, once the unbraced length is determined,
the member strength can be obtained directly from these equations.
TABLE C-F2.1
Comparison of Equations for
Nominal Flexural Strength
1999 AISC LRFD Specification 2005 and 2010 Specification
Equations Equations
F1-1 F2-1
F1-2 F2-2
F1-13 F2-3
F
M
S
C
LS
EI GJ
E
L
ICcr
cr
x
b
bx
y
b
yw== +






ππ
2
r=
IC
S
; h = d – t ;
G
E
=ts
yw
x
of
2
2 and
2
0.0779
π
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 309

16.1–310 DOUBLY SYMMETRIC I-SHAPED MEMBERS [Comm. F3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F3. DOUBLY SYMMETRIC I-SHAPED MEMBERS WITH COMPACT
WEBS AND NONCOMPACT OR SLENDER FLANGES BENT ABOUT
THEIR MAJOR AXIS
Section F3 is a supplement to Section F2 for the case where the flange of the section
is noncompact or slender (see Figure C-F1.1, linear variation of M
nbetween λ pfand
λ
rf). As pointed out in the User Note of Section F2, very few rolled wide-flange
shapes are subject to this criterion.
F4. OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT
WEBS BENT ABOUT THEIR MAJOR AXIS
The provisions of Section F4 are applicable to doubly symmetric I-shaped beams
with noncompact webs and to singly symmetric I-shaped members with compact or
noncompact webs (see the Table in User Note F1.1). This section deals with welded
I-shaped beams where the webs are not slender. Flanges may be compact, noncom-
pact or slender. The following section, F5, considers welded I-shapes with slender
webs. The contents of Section F4 are based on White (2004).
Four limit states are considered: (a) compression flange yielding; (b) lateral-
torsional buckling (LTB); (c) flange local buckling (FLB); and (d) tension flange
yielding (TFY). The effect of inelastic buckling of the web is taken care of indirectly
by multiplying the moment causing yielding in the compression flange by a factor,
R
pc, and the moment causing yielding in the tension flange by a factor, R pt. These
two factors can vary from unity to as high as 1.6. Conservatively, they can be
assumed to equal 1.0. The following steps are provided as a guide to the determina-
tion of R
pcand R pt.
Step 1.Calculate h
pand h c, as defined in Figure C-F4.1.
Step 2.Determine web slenderness and yield moments in compression and tension:
Fig. C-F4.1. Elastic and plastic stress distributions.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 310

Comm. F4.] OTHER I-SHAPED MEMBERS 16.1–311
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-F4-1)
Step 3.Determine λ
pwand λ rw:
(C-F4-2)
If λ> λ
rw, then the web is slender and the design is governed by Section F5.
Step 4.Calculate R
pcand R ptusing Section F4.
The basic maximum nominal moment is R
pcMyc=RpcFySxcif the flange is in com-
pression, and R
ptMyt=RptFySxt if it is in tension. Thereafter, the provisions are the
same as for doubly symmetric members in Sections F2 and F3. For the limit state of
lateral-torsional buckling, I-shaped members with cross sections that have unequal
flanges are treated as if they were doubly symmetric I-shapes. That is, Equations
F2-4 and F2-6 are the same as Equations F4-5 and F4-8, except the former use S
x
and the latter use S xc, the elastic section moduli of the entire section and of the com-
pression side, respectively. This is a simplification that tends to be somewhat
conservative if the compression flange is smaller than the tension flange, and it is
somewhat unconservative when the reverse is true. It is also required to check for
tension flange yielding if the tension flange is smaller than the compression flange
(Section F4.4).
For a more accurate solution, especially when the loads are not applied at the cen-
troid of the member, the designer is directed to Chapter 5 of the SSRC Guide and
other references (Galambos, 2001; White and Jung, 2003; Ziemian, 2010). The fol-
lowing alternative equations in lieu of Equations F4-4, F4-5 and F4-8 are provided
by White and Jung:
(C-F4-3)
(C-F4-4)
λ=
h
t
S=
I
y
; S =
I
d–y
M =FS M =FS
c
w
xc
x
xt
x
yc y xc yt y x
; tt


















λ
λpw
rw=
h
h
E
F
M
M

E
F
=
c
py
p
y
y
0.54
0.09
5.70
5.70







2
EE
F
y






















M=C
EI
++
C
I
+
J
C
Lnb
y w
yw
b
π ββ
2
2
2
Lb
xx22
1 0.0390
2⎛






⎣⎣














L=
EIJ
SF
FS
EJ
++
FS
EJ
+r
y
xc L
Lxc Lxc
1.38 2.6
1
2.6
1
ββ
xx ⎡
⎣⎢⎢
⎤ ⎦







22
+
C
I
FS
EJ
w
y
Lxc27.0
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 311

16.1–312 OTHER I-SHAPED MEMBERS [Comm. F4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where the coefficient of monosymmetry,
the warping constant, C
w=h
2
Iycα, and
F5. DOUBLY SYMMETRIC AND SINGLY SYMMETRIC I-SHAPED
MEMBERS WITH SLENDER WEBS BENT ABOUT THEIR
MAJOR AXIS
This section applies to doubly and singly symmetric I-shaped welded plate girders
with a slender web, that is, . The applicable limit states are com-
pression flange yielding, lateral-torsional buckling, compression flange local buckling,
and tension flange yielding. The provisions in this section have changed little since
1963. The provisions for plate girders are based on research reported in Basler and
Thürlimann (1963).
There is no seamless transition between the equations in Section F4 and F5. Thus
the bending strength of a girder with F
y=50 ksi (345 MPa) and a web slenderness
h/t
w=137 is not close to that of a girder withh/t w=138. These two slenderness ratios
are on either side of the limiting ratio. This gap is caused by the discontinuity
between the lateral-torsional buckling resistances predicted by Section F4 and those
predicted by Section F5 due to the implicit use of J=0 in Section F5. However, for
typical noncompact web section members close to the noncompact web limit, the
influence of J on the lateral-torsional buckling resistance is relatively small (for
example, the calculated L
rvalues including Jversus using J =0 typically differ by
less than 10%). The implicit use of J =0 in Section F5 is intended to account for the
influence of web distortional flexibility on the lateral-torsional buckling resistance
for slender-web I-section members.
F6. I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR
MINOR AXIS
I-shaped members and channels bent about their minor axis do not experience lat-
eral-torsional buckling or web buckling. The only limit states to consider are yielding
and flange local buckling. The user note informs the designer of the few rolled
shapes that need to be checked for flange local buckling.
F7. SQUARE AND RECTANGULAR HSS AND BOX-SHAPED MEMBERS
The provisions for the nominal flexural strength of HSS include the limit states of
yielding and local buckling. Square and rectangular HSS are typically not subject to
lateral-torsional buckling.
h
t
>=
E
Fc
wy
λr5.70
βαx
yc
yt h
I
I
=−






09 1.,
α=
I
I
+
yc
yt
1
1
.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 312

Comm. F7.] SQUARE AND RECTANGULAR HSS AND BOX-SHAPED MEMBERS 16.1–313
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Because of the high torsional resistance of the closed cross section, the critical
unbraced lengths, L
pand L r, that correspond to the development of the plastic
moment and the yield moment, respectively, are very large. For example, as shown
in Figure C-F7.1, an HSS20×4×
5
/16(HSS508×101.6×7.9), which has one of the
largest depth-to-width ratios among standard HSS, has L
pof 6.7 ft (2.0 m) and L rof
137 ft (42 m) as determined in accordance with the 1993 Load and Resistance Factor
Design Specification for Structural Steel Buildings(AISC, 1993). An extreme deflec-
tion limit might correspond to a length-to-depth ratio of 24 or a length of 40 ft (12
m) for this member. Using the specified linear reduction between the plastic moment
and the yield moment for lateral-torsional buckling, the plastic moment is reduced by
only 7% for the 40-ft (12-m) length. In most practical designs where there is a
moment gradient and the lateral-torsional buckling modification factor, C
b, is larger
than unity, the reduction will be nonexistent or insignificant.
The provisions for local buckling of noncompact rectangular HSS are also the same
as those in the previous sections of this chapter: M
n=Mpfor b/t≤λ p, and a linear
transition from M
pto FySxwhen λ p<b/t≤λ r. The equation for the effective width
of the compression flange when b/t exceeds λ
ris the same as that used for rectangu-
lar HSS in axial compression except that the stress is taken as the yield stress. This
implies that the stress in the corners of the compression flange is at yield when the
ultimate post-buckling strength of the flange is reached. When using the effective
width, the nominal flexural strength is determined from the effective section modu-
lus to the compression flange using the distance from the shifted neutral axis. A
slightly conservative estimate of the nominal flexural strength can be obtained by
using the effective width for both the compression and tension flange, thereby main-
taining the symmetry of the cross section and simplifying the calculations.
Fig. C-F7.1. Lateral-torsional buckling of rectangular HSS.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 313

16.1–314 ROUND HSS [Comm. F8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F8. ROUND HSS
Round HSS are not subject to lateral-torsional buckling. The failure modes and post-
buckling behavior of round HSS can be grouped into three categories (Sherman,
1992; Ziemian, 2010):
(a) For low values of D/t, a long plastic plateau occurs in the moment-rotation
curve. The cross section gradually ovalizes, local wave buckles eventually form,
and the moment resistance subsequently decays slowly. Flexural strength may
exceed the theoretical plastic moment due to strain hardening.
(b) For intermediate values of D/t, the plastic moment is nearly achieved but a sin-
gle local buckle develops and the flexural strength decays slowly with little or no
plastic plateau region.
(c) For high values of D/t, multiple buckles form suddenly with very little ovaliza-
tion and the flexural strength drops quickly.
The flexural strength provisions for round HSS reflect these three regions of behav-
ior and are based upon five experimental programs involving hot-formed seamless
pipe, electric-resistance-welded pipe, and fabricated tubing (Ziemian, 2010).
F9. TEES AND DOUBLE ANGLES LOADED IN THE PLANE
OF SYMMETRY
The lateral-torsional buckling (LTB) strength of singly symmetric tee beams is given
by a fairly complex formula (Ziemian, 2010). Equation F9-4 is a simplified formu-
lation based on Kitipornchai and Trahair (1980). See also Ellifritt et al. (1992).
The C
bfactor used for I-shaped beams is unconservative for tee beams with the stem
in compression. For such cases, C
b =1.0 is appropriate. When beams are bent in
reverse curvature, the portion with the stem in compression may control the LTB
resistance even though the moments may be small relative to other portions of the
unbraced length with C
b≈1.0. This is because the LTB strength of a tee with the
stem in compression may be only about one-fourth of the strength for the stem in ten-
sion. Since the buckling strength is sensitive to the moment diagram,C
bhas been
conservatively taken as 1.0. In cases where the stem is in tension, connection details
should be designed to minimize any end restraining moments that might cause the
stem to be in compression.
The 2005 Specification did not have provisions for the local buckling strength of the
stems of tee sections and the legs of double angle sections under flexural compres-
sive stress gradient. The Commentary to this Section in the 2005 Specification
explained that the local buckling strength was accounted for in the equation for the
lateral-torsional buckling limit state, Equation F9-4, when the unbraced length, L
b,
approached zero. While this is a correct procedure, it led to confusion and to many
questions by users of the Specification. For this reason, Section F9.4, “Local
Buckling of Tee Stems in Flexural Compression,” was added to provide an explicit
set of formulas for the 2010 Specification.
The derivation of the formulas is provided here to explain the changes. The classical
formula for the elastic buckling of a rectangular plate is (Ziemian, 2010):
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 314

Comm. F9.] TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY 16.1–315
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-F9-1)
where
ν=0.3 (Poisson’s ratio)
b/t=plate width-to-thickness ratio
k=plate buckling coefficient
For the stem of tee sections, the width-to-thickness ratio is equal to d/t
w. The two
rectangular plates in Figure C-F9.1 are fixed at the top, free at the bottom and
loaded, respectively, with a uniform and a linearly varying compressive stress. The
corresponding plate buckling coefficients, k, are 1.33 and 1.61 (Figure 4.4, Ziemian,
2010). The graph in Figure C-F9.2 shows the general scheme used historically in
developing the local buckling criteria in AISC Specifications. The ordinate is the
critical stress divided by the yield stress, and the abscissa is a nondimensional
width-to-thickness ratio,
(C-F9-2)
In the traditional scheme it is assumed the critical stress is the yield stress, F
y,
as long as λ

≤0.7. Elastic buckling, governed by Equation C-F9-1 commences when
F
Ek
b
tcr=

( )






π
ν
2
2
2
12 1
λ
ν
π
=

( )b
t
F
E k y
12 1
2
2
Fig.C-F9.1 Plate buckling coefficients for uniform compression
and for linearly varying compressive stresses.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 315

16.1–316 TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY [Comm. F9.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-F9.2. General scheme for plate local buckling limit states.
Fig. C-F9.3. Local buckling of tee stem in flexural compression.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 316

Comm. F10.] SINGLE ANGLES 16.1–317
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
λ

=1.24 and F cr= 0.65F y. Between these two points the transition is assumed linear
to account for initial deflections and residual stresses. While these assumptions are
arbitrary empirical values, they have proven satisfactory. The curve in Figure C-F9.3
shows the graph of the formulas adopted for the stem of tee sections and the legs of
double angle sections when these elements are subject to flexural compression. The
limiting width-to-thickness ratio up to which F
cr= Fyis (using v =0.3 and k = 1.61):
The elastic buckling range was assumed to be governed by the same equation as the
local buckling of the flanges of a wide-flange beam bent about its minor axis
(Equation F6-4):
The underlying plate buckling coefficient for this equation is k=0.76, which is a
conservative assumption for tee stems in flexural compression. The straight-line tran-
sition between the end of the yield limit and the onset of the elastic buckling range
is also indicated in Figure C-F9.3.
Flexure about the y-axis of tees and double angles does not occur frequently and is
not covered in this Specification. However, guidance is given here to address this
condition. The yield limit state and the local buckling limit state of the flange can
be checked by using Equations F6-1 through F6-3. Lateral-torsional buckling can
conservatively be calculated by assuming the flange acts alone as a rectangular
beam, using Equations F11-2 through F11-4. Alternately, an elastic critical moment
given as
(C-F9-3)
may be used in Equations F10-2 or F10-3 to obtain the nominal flexural strength.
F10. SINGLE ANGLES
Flexural strength limits are established for the limit states of yielding, lateral-
torsional buckling, and leg local buckling of single-angle beams. In addition to
addressing the general case of unequal-leg single angles, the equal-leg angle is
treated as a special case. Furthermore, bending of equal-leg angles about a geo-
metric axis, an axis parallel to one of the legs, is addressed separately as it is a
common case of angle bending.
The tips of an angle refer to the free edges of the two legs. In most cases of unre-
strained bending, the flexural stresses at the two tips will have the same sign (tension
or compression). For constrained bending about a geometric axis, the tip stresses will
λ
ν
π
==

( )
→= =07
12 1
084
2
2
..
b
t
F
E k
b
t
d
t
E
F
y
wy
F
E
d
tcr
w=






069
2
.
M
L
EI GJe
b
x=
π
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 317

16.1–318 SINGLE ANGLES [Comm. F10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
differ in sign. Provisions for both tension and compression at the tip should be
checked as appropriate, but in most cases it will be evident which controls.
Appropriate serviceability limits for single-angle beams need also to be considered.
In particular, for longer members subjected to unrestrained bending, deflections are
likely to control rather than lateral-torsional buckling or leg local buckling strength.
The provisions in this section follow the general format for nominal flexural resist-
ance (see Figure C-F1.2). There is a region of full plastification, a linear transition to
the yield moment, and a region of local buckling.
1. Yielding
The strength at full yielding is limited to a shape factor of 1.50 applied to the yield
moment. This leads to a lower bound plastic moment for an angle that could be bent
about any axis, inasmuch as these provisions are applicable to all flexural conditions.
The 1.25 factor originally used was known to be a conservative value. Research work
(Earls and Galambos, 1997) has indicated that the 1.50 factor represents a better
lower bound value. Since the shape factor for angles is in excess of 1.50, the nomi-
nal design strength, M
n=1.5M y, for compact members is justified provided that
instability does not control.
2. Lateral-Torsional Buckling
Lateral-torsional buckling may limit the flexural strength of an unbraced single-angle
beam. As illustrated in Figure C-F10.1, Equation F10-2 represents the elastic buck-
ling portion with the maximum nominal flexural strength, M
n, equal to 75% of
the theoretical buckling moment, M
e. Equation F10-3 represents the inelastic buck-
ling transition expression between 0.75M
yand 1.5M y. The maximum beam flexural
strength M
n=1.5M ywill occur when the theoretical buckling moment, M e, reaches
or exceeds 7.7M
y. Myis the moment at first yield in Equations F10-2 and F10-3, the
Fig. C-F10.1. Lateral-torsional buckling limits of a single-angle beam.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 318

Comm. F10.] SINGLE ANGLES 16.1–319
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
same as the M yin Equation F10-1. These equations are modifications of those devel-
oped from the results of Australian research on single angles in flexure and on an
analytical model consisting of two rectangular elements of length equal to the actual
angle leg width minus one-half the thickness (AISC, 1975; Leigh and Lay, 1978,
1984; Madugula and Kennedy, 1985).
When bending is applied about one leg of a laterally unrestrained single angle, the
angle will deflect laterally as well as in the bending direction. Its behavior can be
evaluated by resolving the load and/or moments into principal axis components and
determining the sum of these principal axis flexural effects. Subsection (a) of Section
F10.2(iii) is provided to simplify and expedite the calculations for this common sit-
uation with equal-leg angles. For such unrestrained bending of an equal-leg angle,
the resulting maximum normal stress at the angle tip (in the direction of bending)
will be approximately 25% greater than the calculated stress using the geometric axis
section modulus. The value of M
egiven by Equations F10-6a and F10-6b and the
evaluation of M
yusing 0.80 of the geometric axis section modulus reflect bending
about the inclined axis shown in Figure C-F10.2.
The deflection calculated using the geometric axis moment of inertia has to be
increased 82% to approximate the total deflection. Deflection has two components:
a vertical component (in the direction of applied load) of 1.56 times the calculated
value and a horizontal component of 0.94 times the calculated value. The resultant
total deflection is in the general direction of the weak principal axis bending of the
angle (see Figure C-F10.2). These unrestrained bending deflections should be con-
sidered in evaluating serviceability and will often control the design over lateral-
torsional buckling.
The horizontal component of deflection being approximately 60% of the vertical
deflection means that the lateral restraining force required to achieve purely vertical
Fig. C-F10.2. Geometric axis bending of laterally unrestrained equal-leg angles.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 319

16.1–320 SINGLE ANGLES [Comm. F10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
deflection must be 60% of the applied load value (or produce a moment 60% of the
applied value), which is very significant.
Lateral-torsional buckling is limited by M
e (Leigh and Lay, 1978, 1984) as defined
in Equation F10-6a, which is based on
(C-F10-1)
(the general expression for the critical moment of an equal-leg angle) with θ = ≤45°
for the condition where the angle tip stress is compressive (see Figure C-F10.3).
Lateral-torsional buckling can also limit the flexural strength of the cross section
when the maximum angle tip stress is tensile from geometric axis flexure, especially
with use of the flexural strength limits in Section F10.2. Using θ=45° in Equation
C-F10-1, the resulting expression is Equation F10-6b with a +1 instead of −1 as the
last term.
Stress at the tip of the angle leg parallel to the applied bending axis is of the same
sign as the maximum stress at the tip of the other leg when the single angle is unre-
strained. For an equal-leg angle this stress is about one-third of the maximum stress.
It is only necessary to check the nominal bending strength based on the tip of the
angle leg with the maximum stress when evaluating such an angle. If an angle is sub-
jected to an axial compressive load, the flexural limits obtained from Section
F10.2(iii) cannot be used due to the inability to calculate a proper moment magnifi-
cation factor for use in the interaction equations.
For unequal-leg angles and for equal-leg angles in compression without lateral-tor-
sional restraint, the applied load or moment must be resolved into components along
the two principal axes in all cases and design must be for biaxial bending using the
interaction equations in Chapter H.
Fig. C-F10.3. Equal-leg angle with general moment loading.
M
Eb t
KLcr=
+
+
+233
13
0 156 1 3
4
22
2
2
.
( cos )( )
sin
.( cos
θ
θ
θ) )( )
sin
KL t
b
22
4
+








θ
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 320

Comm. F10.] SINGLE ANGLES 16.1–321
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Under major axis bending of equal-leg angles, Equation F10-4 in combination with
Equations F10-2 and F10-3 controls the available moment against overall lateral-
torsional buckling of the angle. This is based on M
crgiven in Equation C-F10-1 with
θ=0°.
Lateral-torsional buckling for this case will reduce the stress below 1.5M
yonly for
L/t ≥3,675C
b/Fy(Me=7.7M y). If the Lt/b
2
parameter is small (less than approxi-
mately 0.87C
bfor this case), local buckling will control the available moment and
M
nbased on lateral-torsional buckling need not be evaluated. Local buckling must
be checked using Section F10.3.
Lateral-torsional buckling about the major principal w-axis of an unequal-leg angle
is controlled by M
ein Equation F10-5. The section property, β w, reflects the location
of the shear center relative to the principal axis of the section and the bending direc-
tion under uniform bending. Positive β
wand maximum M eoccur when the shear
center is in flexural compression while negative β
w and minimum M e occur when the
shear center is in flexural tension (see Figure C-F10.4). This β
weffect is consistent
with behavior of singly symmetric I-shaped beams, which are more stable when the
compression flange is larger than the tension flange. For principal w-axis bending of
equal-leg angles, β
w is equal to zero due to symmetry and Equation F10-5 reduces to
Equation F10-4 for this special case.
For reverse curvature bending, part of the unbraced length has positive β
w, while the
remainder has negative β
w; conservatively, the negative value is assigned for that
entire unbraced segment.
The factor β
wis essentially independent of angle thickness (less than 1% variation
from mean value) and is primarily a function of the leg widths. The average values
shown in Table C-F10.1 may be used for design.
3. Leg Local Buckling
The b/tlimits have been modified to be more representative of flexural limits rather
than using those for single angles under uniform compression. Typically the flexural
Fig. C-F10.4. Unequal-leg angle in bending.
(b) −β w(a) +βw
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 321

TABLE C-F10.1
β
wValues for Angles
Angle size β w
in. (mm) in. (mm)*
8 β6 (203 β 152) 3.31 (84.1)
8 β4 (203 β 102) 5.48 (139)
7 β4 (178 β 102) 4.37 (111)
6 β4 (152 β 102) 3.14 (79.8)
6 β3
1
/2(152 β89) 3.69 (93.7)
5 β3
1
/2(127 β89) 2.40 (61.0)
5 β3 (127 β 76) 2.99 (75.9)
4 β3
1
/2(102 β89) 0.87 (22.1)
4 β3 (102 β 76) 1.65 (41.9)
3
1
/2β3 (89 β 76) 0.87 (22.1)
3
1
/2β2
1
/2(89 β64) 1.62 (41.1)
3 β2
1
/2(76 β64) 0.86 (21.8)
3 β2 (76 β 51) 1.56 (39.6)
2
1
/2β2 (64 β 51) 0.85 (21.6)
2
1
/2β1
1
/2(64 β38) 1.49 (37.8)
Equal legs 0.00

w
w
o
A
I
zw z dA z=+−
( )∫
1
2
22
where
z o= coordinate along the z-axis of the shear center with respect to the centroid, in. (mm)
Iw= moment of inertia for the major principal axis, in.
4
(mm
4
)
β
whas a positive or negative value depending on the direction of bending (see Figure C-F10.4).
16.1–322 SINGLE ANGLES [Comm. F10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
stresses will vary along the leg length permitting the use of the stress limits given.
Even for the geometric axis flexure case, which produces uniform compression along
one leg, use of these limits will provide a conservative value when compared to the
results reported in Earls and Galambos (1997).
F11. RECTANGULAR BARS AND ROUNDS
The provisions in Section F11 apply to solid bars with round and rectangular cross
section. The prevalent limit state for such members is the attainment of the full plas-
tic moment, M
p. The exception is the lateral-torsional buckling of rectangular bars
where the depth is larger than the width. The requirements for design are identical to
those given previously in Table A-F1.1 in the 1999 LRFD Specification and the same
as those given in the 2005 Specification for Structural Steel Buildings(AISC, 2005a).
Since the shape factor for a rectangular cross section is 1.5 and for a round section is
1.7, consideration must be given to serviceability issues such as excessive deflection
or permanent deformation under service-load conditions.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 322

Comm. F13.] PROPORTIONS OF BEAMS AND GIRDERS 16.1–323
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F12. UNSYMMETRICAL SHAPES
When the design engineer encounters beams that do not contain an axis of symme-
try, or any other shape for which there are no provisions in the other sections of
Chapter F, the stresses are to be limited by the yield stress or the elastic buckling
stress. The stress distribution and/or the elastic buckling stress must be determined
from principles of structural mechanics, textbooks or handbooks, such as the SSRC
Guide (Ziemian, 2010), papers in journals, or finite element analyses. Alternatively,
the designer can avoid the problem by selecting cross sections from among the many
choices given in the previous sections of Chapter F.
F13. PROPORTIONS OF BEAMS AND GIRDERS
1. Strength Reductions for Members with Holes in the Tension Flange
Historically, provisions for proportions of rolled beams and girders with holes in the
tension flange were based upon either a percentage reduction independent of mate-
rial strength or a calculated relationship between the tension rupture and tension
yield strengths of the flange, with resistance factors or safety factors included in the
calculation. In both cases, the provisions were developed based upon tests of steel
with a specified minimum yield stress of 36 ksi (250 MPa) or less.
More recent tests (Dexter and Altstadt, 2004; Yuan et al., 2004) indicate that the flex-
ural strength on the net section is better predicted by comparison of the quantities
F
yAfgand F uAfn, with slight adjustment when the ratio of F yto Fuexceeds 0.8. If the
holes remove enough material to affect the member strength, the critical stress is
adjusted from F
yto (FuAfn/Afg) and this value is conservatively applied to the elastic
section modulus, S
x.
The resistance factor and safety factor used throughout this chapter, φ=0.90 and
Ω=1.67, are those normally applied for the limit state of yielding. In the case of
rupture of the tension flange due to the presence of holes, the provisions of this
chapter continue to apply the same resistance and safety factors. Since the effect of
Equation F13-1 is to multiply the elastic section modulus by a stress that is always
less than the yield stress, it can be shown that this resistance and safety factor
always give conservative results when Z/S≤1.2. It can also be shown to be conser-
vative when Z/S>1.2 and a more accurate model for the rupture strength is used
(Geschwindner, 2010a).
2. Proportioning Limits for I-Shaped Members
The provisions of this section were taken directly from Appendix G Section G1 of
the 1999 LRFD Specification and are the same as the 2005 Specification for
Structural Steel Buildings(AISC, 2005a). They have been part of the plate-girder
design requirements since 1963 and are derived from Basler and Thürlimann (1963).
The web depth-to-thickness limitations are provided so as to prevent the flange from
buckling into the web. Equation F13-4 was slightly modified from the corresponding
Equation A-G1-2 in the 1999 LRFD Specification to recognize the change in the def-
inition of residual stress from a constant 16.5 ksi (114 MPa) to 30% of the yield stress
in the 2005 Specification, as shown by the following derivation:
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 323

16.1–324 PROPORTIONS OF BEAMS AND GIRDERS [Comm. F13.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-F13-1)
3. Cover Plates
Cover plates need not extend the entire length of the beam or girder. The end con-
nection between the cover plate and beam must be designed to resist the full force in
the cover plate at the theoretical cutoff point. The end force in a cover plate on a
beam whose required strength exceeds the available yield strength, φM
y=φF ySx
(LFRD) or M y/Ω=F ySx/Ω(ASD), of the combined shape can be determined by an
elastic-plastic analysis of the cross section but can conservatively be taken as the full
yield strength of the cover plate for LRFD or the full yield strength of the cover plate
divided by 1.5 for ASD. The forces in a cover plate on a beam whose required
strength does not exceed the available yield strength of the combined section can be
determined using the elastic distribution, MQ/I.
The requirements for minimum weld lengths on the sides of cover plates at each end
reflect uneven stress distribution in the welds due to shear lag in short connections.
5. Unbraced Length for Moment Redistribution
The moment redistribution provisions of Section B3.7 refer to this section for set-
ting the maximum unbraced length when moments are to be redistributed. These
provisions have been a part of the Specification since the 1949 edition. Portions
of members that would be required to rotate inelastically while the moments are
redistributed need more closely spaced bracing than similar parts of a continuous
beam. Equations F13-8 and F13-9 define the maximum permitted unbraced length
in the vicinity of redistributed moment for doubly symmetric and singly symmet-
ric I-shaped members with a compression flange equal to or larger than the tension
flange bent about their major axis, and for solid rectangular bars and symmetric
box beams bent about their major axis, respectively. These equations are identical
to those in Appendix 1 of the 2005 Specification for Structural Steel Buildings
(AISC, 2005a) and the 1999 LRFD Specification, and are based on research
reported in Yura et al. (1978). They are different from the corresponding equations
in Chapter N of the 1989 Specification for Structural Steel Buildings— Allowable
Stress Design and Plastic Design (AISC, 1989).
0.48
16.5
0.48
0.3
0.42E
FF+
E
FF+ F
=
E
F
yy yy y
y( )

( )
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 324

16.1–325
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER G
DESIGN OF MEMBERS FOR SHEAR
G1. GENERAL PROVISIONS
Chapter G applies to webs of singly or doubly symmetric members subject to shear
in the plane of the web, single angles and HSS, and shear in the weak direction of
singly or doubly symmetric shapes.
Two methods for determining the shear strength of singly or doubly symmetric
I-shaped beams and built-up sections are presented. The method of Section G2 does
not utilize the post-buckling strength of the web, while the method of Section G3 uti-
lizes the post-buckling strength.
G2. MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS
Section G2 deals with the shear strength of webs of wide-flange or I-shaped mem-
bers, as well as webs of tee-shapes, that are subject to shear and bending in the plane
of the web. The provisions in Section G2 apply to the general case when an increase
of strength due to tension field action is not permitted. Conservatively, these provi-
sions may be applied also when it is not desired to use the tension field action
enhancement for convenience in design. Consideration of the effect of bending on
the shear strength is not required because the effect is deemed negligible.
1. Shear Strength
The nominal shear strength of a web is defined by Equation G2-1, a product of the
shear yield force, 0.6F
yAw, and the shear-buckling reduction factor, C v.
The provisions of Case (a) in Section G2.1 for rolled I-shaped members with
are similar to the 1999 and earlier LRFD provisions, with the excep-
tion that φ has been increased from 0.90 to 1.00 (with a corresponding decrease of
the safety factor from 1.67 to 1.50), thus making these provisions consistent with
the 1989 provisions for allowable stress design (AISC, 1989). The value of φ of 1.00
is justified by comparison with experimental test data and recognizes the minor
consequences of shear yielding, as compared to those associated with tension
and compression yielding, on the overall performance of rolled I-shaped members.
This increase is applicable only to the shear yielding limit state of rolled I-shaped
members.
Case (b) in Section G2.1 uses the shear buckling reduction factor, C
v, shown in
Figure C-G2.1.The curve for C
vhas three segments.
For webs with , the nominal shear strength, V
n, is based
on shear yielding of the web, with C
vgiven by Equation G2-3. This h/t wlimit was
EFy≤224.
htw
ht kEFwvy w/. /≤110
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 325

16.1–326 MEMBERS WITH UNSTIFFENED OR STIFFENED WEB [Comm. G2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
determined by setting the critical stress causing shear buckling, F cr, equal to the yield
stress of the web, F
yw=Fy, in Equation 35 of Cooper et al. (1978).
When , the web shear strength is based on buckling. It has
been suggested to take the proportional limit as 80% of the yield stress of the web
(Basler, 1961). This corresponds to .
When , the web strength is determined from the elastic
buckling stress given by Equation 6 of Cooper at al. (1978) and Equation 9-7 in
Timoshenko and Gere (1961):
(C-G2-1)
C
vin Equation G2-5 was obtained by dividing F crfrom Equation C-G2-1 by 0.6F y
and using v =0.3.
The inelastic buckling transition for C
v(Equation G2-4) is used between the limits
given by .
The plate buckling coefficient, k
v, for panels subject to pure shear having simple sup-
ports on all four sides is given by Equation 4.3 in Ziemian (2010).
(C-G2-2)
ht kEFwvy w/. />110
ht kEFwv yw/./. /=( )( )110 08
ht kEFwvy w/. />137
F
Ek
vhtcr
v
w=

( )()
π
2
2 2
12 1 /
110 137.//./kE F h t kE Fvy w vy<≤
Fig. C-G2.1. Shear buckling coefficient C vfor
F
y=50 ksi (345 MPa) and k v=5.0.
k
ah
ah
ahv=
+
()

+
()
400
534
1
2
2
.
.
/
/ for
5.34
4.00
/
for ah />














1
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 326

Comm. G3.] TENSION FIELD ACTION 16.1–327
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For practical purposes and without loss of accuracy, these equations have been sim-
plified herein and in AASHTO (2010) to
(C-G2-3)
When the panel ratio, a/h, becomes large, as in the case of webs without transverse
stiffeners, then k
v=5. Equation C-G2-3 applies as long as there are flanges on both
edges of the web. For tee-shaped beams, the free edge is unrestrained and for this sit-
uation k
v=1.2 (JCRC, 1971).
The provisions of Section G2.1 assume monotonically increasing loads. If a flexural
member is subjected to load reversals causing cyclic yielding over large portions of
a web, such as may occur during a major earthquake, special design considerations
may apply (Popov, 1980).
2. Transverse Stiffeners
When transverse stiffeners are needed, they must be rigid enough to cause a buck-
ling node line to form at the stiffener. This requirement applies whether or not tension
field action is counted upon. The required moment of inertia of the stiffener is the
same as in AASHTO (2010), but it is different from the formula in the 1989
Specification for Structural Steel Buildings—Allowable Stress Design (AISC, 1989).
Equation G2-7 is derived in Chapter 11 of Salmon and Johnson (1996). The origin
of the formula can be traced to Bleich (1952).
G3. TENSION FIELD ACTION
The provisions of Section G3 apply when it is intended to account for the enhanced
strength of webs of built-up members due to tension field action.
1. Limits on the Use of Tension Field Action
The panels of the web of a built-up member, bounded on the top and bottom by the
flanges and on each side by the transverse stiffeners, are capable of carrying loads
far in excess of their “web buckling” load. Upon reaching the theoretical web buck-
ling limit, slight lateral web displacements will have developed. These deformations
are of no structural significance, because other means are still present to provide
further strength.
When transverse stiffeners are properly spaced and are stiff enough to resist out-of-
plane movement of the postbuckled web, significant diagonal tension fields form in
the web panels prior to the shear resistance limit. The web in effect acts like a Pratt
truss composed of tension diagonals and compresson verticals that are stabilized by
the transverse stiffeners. This effective Pratt truss furnishes the strength to resist
applied shear forces unaccounted for by the linear buckling theory.
The key requirement in the development of tension field action in the web of plate
girders is the ability of the stiffeners to provide sufficient flexural rigidity to stabilize
the web along their length. In the case of end panels there is a panel only on one side.
The anchorage of the tension field is limited in many situations at these locations and
k
ahv=+
()
5
5
2
/
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 327

16.1–328 TENSION FIELD ACTION [Comm. G3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is thus neglected. In addition, the enhanced resistance due to tension field forces is
reduced when the panel aspect ratio becomes large. For this reason the inclusion of
tension field action is not permitted when a/h exceeds 3.0 or [260/(h/t
w)]
2
.
AISC Specifications prior to 2005 have required explicit consideration of the inter-
action between the flexural and shear strengths when the web is designed using
tension field action. White et al. (2008) show that the interaction between the shear
and flexural resistances is negligible when the requirements 2A
w/(Afc+Aft) ≤2.5
and h/b
f≤6 are satisfied. Section G3.1 disallows the use of tension field action for
I-section members with relatively small flange-to-web proportions identified by
these limits. Similar limits are specified in AASHTO (2010); furthermore, AASHTO
(2010) allows the use of a reduced “true Basler” tension field resistance for cases
where these limits are violated.
2. Shear Strength with Tension Field Action
Analytical methods based on tension field action have been developed (Basler and
Thürlimann, 1963; Basler, 1961) and corroborated in an extensive program of tests
(Basler et al., 1960). Equation G3-2 is based on this research. The second term in the
bracket represents the relative increase of the panel shear strength due to tension field
action. The merits of Equation G3-2 relative to various alternative representations of
web shear resistance are evaluated and Equation G3-2 is recommended in White and
Barker (2008).
3. Transverse Stiffeners
The vertical component of the tension field force that is developed in the web panel
must be resisted by the transverse stiffener. In addition to the rigidity required to keep
the line of the stiffener as a nonmoving point for the buckled panel, as provided for
in Section G2.2, the stiffener must also have a large enough area to resist the tension
field reaction.
Numerous studies (Horne and Grayson, 1983; Rahal and Harding, 1990a, 1990b,
1991; Stanway et al., 1993, 1996; Lee et al., 2002b; Xie and Chapman, 2003; Kim et
al., 2007) have shown that transverse stiffeners in I-girders designed for tension field
action are loaded predominantly in bending due to the restraint they provide to lat-
eral deflection of the web. Generally, there is evidence of some axial compression in
the transverse stiffeners due to the tension field, but even in the most slender web
plates permitted by this Specification; the effect of the axial compression transmitted
from the postbuckled web plate is typically minor compared to the lateral loading
effect. Therefore, the transverse stiffener area requirement from prior Specifications
is no longer specified. Rather, the demands on the stiffener flexural rigidity are
increased in situations where the tension field action of the web is developed.
Equation G3-4 is the same requirement as specified in AASHTO (2010).
G4. SINGLE ANGLES
Shear stresses in single-angle members are the result of the gradient of the bending
moment along the length (flexural shear) and the torsional moment.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 328

Comm. G5.] RECTANGULAR HSS AND BOX-SHAPED MEMBERS 16.1–329
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The maximum elastic stress due to flexural shear is
(C-G4-1)
where V
bis the component of the shear force parallel to the angle leg with width b
and thickness t. The stress is constant throughout the thickness, and it should be cal-
culated for both legs to determine the maximum. The coefficient 1.5 is the calculated
value for equal leg angles loaded along one of the principal axes. For equal leg angles
loaded along one of the geometric axes, this factor is 1.35. Factors between these
limits may be calculated conservatively from V
bQ/Itto determine the maximum
stress at the neutral axis. Alternatively, if only flexural shear is considered, a uniform
flexural shear stress in the leg of V
b/btmay be used due to inelastic material behav-
ior and stress redistribution.
If the angle is not laterally braced against twist, a torsional moment is produced equal
to the applied transverse load times the perpendicular distance, e, to the shear center,
which is at the point of intersection of the centerlines of the two legs. Torsional
moments are resisted by two types of shear behavior: pure torsion (St. Venant tor-
sion) and warping torsion [see Seaburg and Carter (1997)]. The shear stresses due to
restrained warping are small compared to the St. Venant torsion (typically less than
20%) and they can be neglected for practical purposes. The applied torsional moment
is then resisted by pure shear stresses that are constant along the width of the leg
(except for localized regions at the toe of the leg), and the maximum value can be
approximated by
(C-G4-2)
where
A=angle cross-sectional area, in.
2
(mm
2
)
J=torsional constant [approximated by Σ(bt
3
/3) when precomputed value is
unavailable], in.
4
(mm
4
)
M
T=torsional moment, kip-in. (N-mm)
For a study of the effects of warping, see Gjelsvik (1981). Torsional moments from
laterally unrestrained transverse loads also produce warping normal stresses that are
superimposed on the bending stresses. However, since the warping strength of single
angles is relatively small, this additional bending effect, just like the warping shear
effect, can be neglected for practical purposes.
G5. RECTANGULAR HSS AND BOX-SHAPED MEMBERS
The two webs of a closed rectangular cross section resist shear the same way as the
single web of an I-shaped plate girder or wide-flange beam, and therefore, the pro-
visions of Section G2 apply.
f
V
btv
b=
15.
f
Mt
J
M
Atv
TT==
3
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 329

16.1–330 ROUND HSS [Comm. G6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
G6. ROUND HSS
Little information is available on round HSS subjected to transverse shear and the
recommendations are based on provisions for local buckling of cylinders due to tor-
sion. However, since torsion is generally constant along the member length and
transverse shear usually has a gradient; it is recommended to take the critical stress
for transverse shear as 1.3 times the critical stress for torsion (Brockenbrough and
Johnston, 1981; Ziemian, 2010). The torsion equations apply over the full length of
the member, but for transverse shear it is reasonable to use the length between the
points of maximum and zero shear force. Only thin HSS may require a reduction in
the shear strength based upon first shear yield. Even in this case, shear will only gov-
ern the design of round HSS for the case of thin sections with short spans.
In the equation for the nominal shear strength, V
n, of round HSS, it is assumed that
the shear stress at the neutral axis, calculated as VQ/lb, is at F
cr. For a thin round
section with radius R and thickness t , I=πR
3
t, Q=2R
2
tand b =2t. This gives the
stress at the centroid as V/πRt, in which the denominator is recognized as half the
area of the round HSS.
G7. WEAK AXIS SHEAR IN DOUBLY SYMMETRIC AND SINGLY
SYMMETRIC SHAPES
The nominal weak axis shear strength of doubly and singly symmetric I-shapes is
governed by the equations of Section G2 with the plate buckling coefficient equal
to k
v=1.2, the same as the web of a tee-shape. The maximum plate slenderness of
all rolled shapes is b/t
f=bf/2tf=13.8, and for F y=100 ksi (690 MPa) the value of
. Thus C
v=1.0, except for built-
up shapes with very slender flanges.
G8. BEAMS AND GIRDERS WITH WEB OPENINGS
Web openings in structural floor members may be used to accommodate various
mechanical, electrical and other systems. Strength limit states, including local buck-
ling of the compression flange or of the web, local buckling or yielding of the
tee-shaped compression zone above or below the opening, lateral buckling and
moment-shear interaction, or serviceability may control the design of a flexural
member with web openings. The location, size and number of openings are impor-
tant and empirical limits for them have been identified. One general procedure for
assessing these effects and the design of any needed reinforcement for both steel and
composite beams is given in the ASCE Specification for Structural Steel Beams with
Web Openings(ASCE, 1999), with background information provided in AISC
Design Guide 2 by Darwin (1990) and in ASCE Task Committee on Design Criteria
for Composite Structures in Steel and Concrete (1992a, 1992b).
1 10 1 10 1 2 29 000 100 20 5./..,/ .kE Fvy = ()( ) =ksi
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 330

16.1–331
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER H
DESIGN OF MEMBERS FOR COMBINED
FORCES AND TORSION
Chapters D, E, F and G of this Specification address members subject to only one type of
force: axial tension, axial compression, flexure and shear, respectively. Chapter H addresses
members subject to a combination of two or more of the individual forces defined above, as
well as possibly by additional forces due to torsion. The provisions fall into two categories:
(a) the majority of the cases that can be handled by an interaction equation involving sums
of ratios of required strengths to the available strengths; and (b) cases where the stresses due
to the applied forces are added and compared to limiting buckling or yield stresses.
Designers will have to consult the provisions of Sections H2 and H3 only in rarely occur-
ring cases.
H1. DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO
FLEXURE AND AXIAL FORCE
1. Doubly and Singly Symmetric Members Subject to Flexure
and Compression
Section H1 contains design provisions for doubly symmetric and singly symmetric
members under combined flexure and compression and under combined flexure and
tension. The provisions of Section H1 apply typically to rolled wide-flange shapes,
channels, tee-shapes, round, square and rectangular HSS, solid rounds, squares, rec-
tangles or diamonds, and any of the many possible combinations of doubly or singly
symmetric shapes fabricated from plates and/or shapes by welding or bolting. The
interaction equations accommodate flexure about one or both principal axes as well
as axial compression or tension.
In 1923, the first AISC Specification required that the stresses due to flexure and
compression be added and that the sum not exceed the allowable value. An interac-
tion equation appeared first in the 1936 Specification, stating “Members subject to
both axial and bending stresses shall be so proportioned that the quantity
shall not exceed unity,” in which F
aand F bare, respectively, the axial and flex-
ural allowable stresses permitted by this Specification, andf
aandf bare the
corresponding stresses due to the axial force and the bending moment, respectively.
This linear interaction equation was in force until the 1961 Specification, when it was
modified to account for frame stability and for the P-δ effect, that is, the secondary
bending between the ends of the members (Equation C-H1-1). The P-Δ effect, that
is, the second-order bending moment due to story sway, was not accommodated.
(C-H1-1)
f
F
f
Fa
a
b
b
+
f
F
+
Cf

f
F
Fa
a
mb
a
b
1
1.0
e








AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 331

16.1–332 DOUBLY AND SINGLY SYMMETRIC MEMBERS [Comm. H1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The allowable axial stress, F a, was determined for an effective length that is larger
than unity for moment frames. The term is the amplification of the interspan
moment due to member deflection multiplied by the axial force (the P-δ effect). C
m
accounts for the effect of the moment gradient. This interaction equation was part of
all the subsequent editions of the AISC ASD Specifications from 1961 through 1998.
A new approach to the interaction of flexural and axial forces was introduced in the
1986 AISC Load and Resistance Factor Design Specification for Structural Steel
Buildings(AISC, 1986). The following is an explanation of the thinking behind the
interaction curves used. The equations
(C-H1-2a)
(C-H1-2b)
define the lower-bound curve for the interaction of the nondimensional axial strength,
P/P
y, and flexural strength, M pc/Mp, for compact wide-flange stub-columns bent
about their x-axis. The cross section is assumed to be fully yielded in tension and com-
pression. The symbol M
pcis the plastic moment strength of the cross section in the
presence of an axial force, P.The curve representing Equations C-H1-2 almost over-
laps the analytically exact curve for the major-axis bending of a W8×31 cross section
(see Figure C-H1.1). The equations for the exact yield capacity of a wide-flange shape
are (ASCE, 1971):
(C-H1-3a)
(C-H1-3b)
The equation approximating the average yield strength of wide-flange shapes is
1
1–
f
F
a
e

P
P
+
M
M
=
P
P

y
pc
py
8
9
1 for 0.2≥
P
P
+
M
M
=
P
P
<
y
pc
py2
1 for 0.2
For 0≤≤

( )P
P
td t
A
y
wf
2
M
M
A
P
P
tZpc
p
y
wx
=−






1
4
2
2
For
td t
A
P
P
wf
y−( )
<≤
2
1
M
M
A
P
P
Z
d
A
P
P
bpc
p
y
x
y
f
=
























1
2
1
2
⎥⎥




AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 332

Comm. H1.] DOUBLY AND SINGLY SYMMETRIC MEMBERS 16.1–333
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-H1-4)
The curves in Figure C-H1.2 show the exact and approximate yield interaction
curves for wide-flange shapes bent about the y-axis, and the exact curves for the solid
M
M
=
P
P
pc
py
1.18 1– 1







Fig. C-H1.1. Stub-column interaction curves: plastic moment versus
axial force for wide-flange shapes, major-axis flexure
[
W8×31, F y=50 ksi (345 MPa)].
Fig. C-H1.2. Stub-column interaction curves: plastic moment versus axial force for
solid round and rectangular sections and for wide-flange shapes, minor-axis flexure.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 333

16.1–334 DOUBLY AND SINGLY SYMMETRIC MEMBERS [Comm. H1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
rectangular and round shapes. It is evident that the lower-bound AISC interaction
curves are very conservative for these shapes.
The idea of portraying the strength of stub beam-columns was extended to actual
beam-columns with actual lengths by normalizing the required flexural strength, M
u,
of the beam by the nominal strength of a beam without axial force, M
n, and the
required axial strength, P
u, by the nominal strength of a column without bending
moment, P
n. This rearrangement results in a translation and rotation of the original
stub-column interaction curve, as seen in Figure C-H1.3.
The normalized equations corresponding to the beam-column with length effects
included are shown as Equation C-H1-5:
(C-H1-5a)
(C-H1-5b)
The interaction equations are designed to be very versatile. The terms in the denom-
inator fix the endpoints of the interaction curve. The nominal flexural strength, M
n,
is determined by the appropriate provisions from Chapter F. It encompasses the limit
states of yielding, lateral-torsional buckling, flange local buckling, and web local
buckling.
The axial term, P
n, is governed by the provisions of Chapter E, and it can accommo-
date nonslender or slender element columns, as well as the limit states of major and
minor axis buckling, and torsional and flexural-torsional buckling. Furthermore, P
n
is calculated for the applicable effective length of the column to take care of frame
Fig. C-H1.3. Interaction curve for stub beam-column and beam-column.
P
P
M
M
P
Pu
n
u
n
u
n
+= ≥
8
9
102 for .
P
P
M
M
P
Pu
n
u
n
u
n
2
102+= < for .
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 334

Comm. H1.] DOUBLY AND SINGLY SYMMETRIC MEMBERS 16.1–335
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
stability effects, if the procedures of Appendix 7, Section 7.2 are used to determine
the required moments and axial forces. These moments and axial forces include the
amplification due to second-order effects.
The utility of the interaction equations is further enhanced by the fact that they also
permit the consideration of biaxial bending.
2. Doubly and Singly Symmetric Members Subject to Flexure and Tension
Section H1.1 considers the most frequently occurring cases in design: members
under flexure and axial compression. Section H1.2 addresses the less frequent cases
of flexure and axial tension. Since axial tension increases the bending stiffness of the
member to some extent, Section H1.2 permits the increase of C
bin Chapter F. Thus,
when the bending term is controlled by lateral-torsional buckling, the moment gradi-
ent factor, C
b, is increased by . For the 2010 Specification, this multiplier
was altered slightly as shown here to use the same constant, α, as is used throughout
the Specification when results at the ultimate strength level are required.
3. Doubly Symmetric Rolled Compact Members Subject to Single Axis
Flexure and Compression
For doubly symmetric wide-flange sections with moment applied about the x-axis,
the bilinear interaction Equation C-H1-5 is conservative for cases where the axial
limit state is out-of-plane buckling and the flexural limit state is lateral-torsional
buckling (Ziemian, 2010). Section H1.3 gives an optional equation for checking the
out-of-plane resistance of such beam-columns.
The two curves labeled Equation H1-1 (out-of-plane) and Equation H1-2 (out-of-
plane) in Figure C-H1.4 illustrate the difference between the bilinear and the
parabolic interaction equations for out-of-plane resistance for the case of a W27×84
beam-column, L
b=10 ft (3.05 m) and F y=50 ksi (345 MPa), subjected to a linearly
varying strong axis moment with zero moment at one end and maximum moment at
the other end (C
b=1.67). In addition, the solid line in the figure shows the in-plane
bilinear strength interaction for this member obtained from Equation H1-1. Note that
the resistance term C
bMcxmay be larger than φ bMpin LRFD and M p/Ωbin ASD. The
smaller ordinate from the out-of-plane and in-plane resistance curves is the control-
ling strength.
Equation H1-2 is developed from the following fundamental form for the out-of-
plane lateral-torsional buckling strength of doubly-symmetric I-section members, in
LRFD:
(C-H1-6)
1+
P
P
r
eyα
M
CM
P
P
P
Pu
b b nx C
u
cny
u
cez
b
φφφ()=






≤−







1
2
11
⎛⎛





AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 335

16.1–336 DOUBLY AND SINGLY SYMMETRIC MEMBERS [Comm. H1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Equation H1-2 is obtained by substituting a lower-bound of 2.0 for the ratio of the
elastic torsional buckling resistance to the out-of-plane nominal flexural buckling
resistance, P
ez/Pny, for W-shape members with KL y=KLz. The 2005 Specification
assumed an upper bound, P
ez/Pny=∞, in Equation C-H1-6 in the development of
Equation H1-2 which leads to some cases where the out-of-plane strength is overes-
timated. In addition, the fact that the nominal out-of-plane flexural resistance term,
C
bMnx(Cb=1), may be larger than M pwas not apparent in the 2005 Specification.
The relationship between Equations H1-1 and H1-2 is further illustrated in Figures
C-H1.5 (for LRFD) and C-H1.6 (for ASD). The curves relate the required axial
force, P(ordinate), and the required bending moment, M(abscissa), when the inter-
action Equations H1-1 and H1-2 are equal to unity. The positive values of Pare
compression and the negative values are tension. The curves are for a 10 ft (3 m)
long W16×26 [F
y=50 ksi (345 MPa)] member subjected to uniform strong axis
bending, C
b=1. The solid curve is for in-plane behavior, that is, lateral bracing pre-
vents lateral-torsional buckling. The dotted curve represents Equation H1-1 for the
case when there are no lateral braces between the ends of the beam-column. In the
Fig. C-H1.4. Comparison between bilinear (Equation H1-1) and parabolic
(Equation H1-2) out-of-plane strength interaction equations and bilinear
(Equation H1-1) in-plane strength interaction equation
(
W27×84, F y= 50 ksi, L b=10 ft, C b=1.75).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 336

Comm. H1.] DOUBLY AND SINGLY SYMMETRIC MEMBERS 16.1–337
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-H1.5. Beam-columns under compressive and tensile axial force
(tension is shown as negative) (LRFD)
(
W16×26, F y= 50 ksi, L b= 10 ft, C b= 1).
Fig. C-H1.6. Beam-columns under compressive and tensile axial force
(tension is shown as negative) (ASD)
(
W16×26, F y= 50 ksi, L b= 10 ft, C b= 1).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 337

16.1–338 DOUBLY AND SINGLY SYMMETRIC MEMBERS [Comm. H1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
region of the tensile axial force, the curve is modified by the term , as per-
mitted in Section H1.2. The dashed curve is Equation H1-2 for the case of axial
compression, and it is taken as the lower-bound determined using Equation C-H1-6
with P
ez/Pnytaken equal to infinity for the case of axial tension. For a given com-
pressive or tensile axial force, Equations H1-2 and C-H1-6 allow a larger bending
moment over most of their applicable range.
H2. UNSYMMETRIC AND OTHER MEMBERS SUBJECT TO FLEXURE
AND AXIAL FORCE
The provisions of Section H1 apply to beam-columns with cross sections that are
either doubly or singly symmetric. However, there are many cross sections that are
unsymmetrical, such as unequal leg angles and any number of possible fabricated
sections. For these situations, the interaction equations of Section H1 may not be
appropriate. The linear interaction provides a conservative
and simple way to deal with such problems. The lower case stresses,f, are the
required axial and flexural stresses computed by elastic analysis for the applicable
loads, including second-order effects where appropriate, and the upper case stresses,
F, are the available stresses corresponding to the limit state of yielding or buckling.
The subscripts r and crefer to the required and available stresses respectively while
the subscripts w and zrefer to the principal axes of the unsymmetric cross section.
This Specification leaves the option to the designer to use the Section H2 interaction
equation for cross sections that would qualify for the more liberal interaction equa-
tion of Section H1.
The interaction equation, Equation H2-1, applies equally to the case where the axial
force is in tension. Equation H2-1 was written in stress format as an aid in examin-
ing the condition at the various critical locations of the unsymmetric member. For
unsymmetrical sections with uniaxial or biaxial flexure, the critical condition is
dependent on the resultant direction of the moment. This is also true for singly sym-
metric members such as for x-axis flexure of tees. The same elastic section properties
are used to compute the corresponding required and available flexural stress terms
which means that the moment ratio will be the same as the stress ratio.
There are two approaches for using Equation H2-1:
(a) Strictly using Equation H2-1 for the interaction of the critical moment about each
principal axis, there is only one flexural stress ratio term for every critical loca-
tion since moment and stress ratios are the same as noted above. In this case one
would algebraically add the value of each of the ratio terms to obtain the critical
condition at one of the extreme fibers.
Using Equation H2-1 is the conservative approach and is recommended for
examining members such as single angles. The available flexural stresses at a
particular location (tip of short or long leg or at the heel) are based on the yield-
ing limit moment, the local buckling limit moment, or the lateral-torsional
f
F
f
F
f
Fra
ca
rbw
cbw
rbz
cbz
++≤ 10.
1+
P
P

ey
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 338

Comm. H2.] UNSYMMETRIC AND OTHER MEMBERS 16.1–339
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
buckling moment consistent with the sign of the required flexural stress. In each
case the yield moment should be based on the smallest section modulus about the
axis being considered. One would check the stress condition at the tip of the long
and short legs and at the heel and find that at one of the locations the stress ratios
would be critical.
(b) For certain load components, where the critical stress can transition from tension
at one point on the cross section to compression at another, it may be advanta-
geous to consider two interaction relationships depending on the magnitude of
each component. This is permitted by the sentence at the end of Section H2
which permits a more detailed analysis in lieu of Equation H2-1 for the interac-
tion of flexure and tension.
As an example, for a tee with flexure about both the x and y-axes creating ten-
sion at the tip of the stem, compression at the flange could control or tension at
the stem could control the design. If y-axis flexure is large relative to x-axis flex-
ure, the stress ratio need only be checked for compression at the flange using
corresponding design compression stress limits. However, if the y-axis flexure is
small relative to the x-axis flexure, then one would check the tensile stress con-
dition at the tip of the stem, this limit being independent of the amount of the
y-axis flexure. The two differing interaction expressions are
The interaction diagrams for biaxial flexure of a WT using both approaches are illus-
trated in Figure C-H2.1.
Another situation in which one could benefit from consideration of more than one
interaction relationship occurs when axial tension is combined with a flexural com-
pression limit based on local buckling or lateral-torsional buckling. An example of
this is when the stem of a tee in flexural compression is combined with axial tension.
The introduction of the axial tension will reduce the compression which imposed the
buckling stress limit. With a required large axial tension and a relatively small flex-
ural compression, the design flexural stress could be set at the yield limit at the stem.
where F
cbxis the flange tension stress based on reaching φF yin the stem. There could
be justification for using F
cbxequal to φF yin this expression.
This interaction relationship would hold until the interaction between the flexural
compression stress at the stem with F
cbxbased on local or lateral-torsional buckling
limit as increased by the axial tension would control.
f
F
f
F
f
F
fra
ca
rby
cby
rbx
cbx
r
++ ≤ 10. at tee flange
and
aa
ca
rbx
cbx
F
f
F
+≤ 10. at tee stem
f
F
f
Fra
ca
rbx
cbx
+≤ 10.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 339

16.1–340 UNSYMMETRIC AND OTHER MEMBERS [Comm. H2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The interaction diagrams for this case, using both approaches, are illustrated in
Figure C-H2.2.
Fig. C-H2.1. WT with biaxial flexure.
Fig. C-H2.2. WT with flexural compression on the stem plus axial tension.
f
F
f
Fra
ca
rbx
cbx
−≤ 10.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 340

Comm. H3.] MEMBERS SUBJECT TO TORSION AND COMBINED TORSION 16.1–341
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
H3. MEMBERS SUBJECT TO TORSION AND COMBINED TORSION,
FLEXURE, SHEAR AND/OR AXIAL FORCE
Section H3 provides provisions for cases not covered in the previous two sections.
The first two parts of this section address the design of HSS members, and the third
part is a general provision directed to cases where the designer encounters torsion in
addition to normal stresses and shear stresses.
1. Round and Rectangular HSS Subject to Torsion
Hollow structural sections (HSS) are frequently used in space-frame construction
and in other situations wherein significant torsional moments must be resisted by the
members. Because of its closed cross section, an HSS is far more efficient in resist-
ing torsion than an open cross section such as a W-shape or a channel. While normal
and shear stresses due to restrained warping are usually significant in shapes of open
cross section, they are insignificant in closed cross sections. The total torsional
moment can be assumed to be resisted by pure torsional shear stresses. These are
often referred in the literature as St. Venant torsional stresses.
The pure torsional shear stress in HSS sections is assumed to be uniformly distrib-
uted along the wall of the cross section, and it is equal to the torsional moment, T
u,
divided by a torsional shear constant for the cross section, C. In a limit state format,
the nominal torsional resisting moment is the shear constant times the critical shear
stress, F
cr.
For round HSS, the torsional shear constant is equal to the polar moment of inertia
divided by the radius,
(C-H3-1)
where D
iis the inside diameter.
For rectangular HSS, the torsional shear constant is obtained as 2tA
ousing the mem-
brane analogy (Timoshenko, 1956), where A
ois the area bounded by the midline of
the section. Conservatively assuming an outside corner radius of 2t, the midline
radius is 1.5t and
(C-H3-2)
resulting in
(C-H3-3)
The resistance factor,φ,and the safety factor, Ω,are the same as for flexural shear in
Chapter G.
When considering local buckling in round HSS subjected to torsion, most structural
members will either be long or of moderate length and the provisions for short
C=
Dπ π
4
−( )


()
D
D
tD ti
4 2
32 2 2
A=B–t H–to()( )−
()
9
2
t
4–
4
π
C= t B–t H–t – t –2 4.5 4
3
()( ) ( )π
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 341

16.1–342 MEMBERS SUBJECT TO TORSION AND COMBINED TORSION [Comm. H3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
cylinders will not apply. The elastic local buckling strength of long cylinders is
unaffected by end conditions and the critical stress is given in Ziemian (2010) as
(C-H3-4)
The theoretical value of K
tis 0.73 but a value of 0.6 is recommended to account for
initial imperfections. An equation for the elastic local buckling stress for round HSS
of moderate length (L >5.1D
2
/t) where the edges are not fixed at the ends against
rotation is given in Schilling (1965) and Ziemian (2010) as
(C-H3-5)
This equation includes a 15% reduction to account for initial imperfections. The
length effect is included in this equation for simple end conditions, and the approxi-
mately 10% increase in buckling strength is neglected for edges fixed at the end. A
limitation is provided so that the shear yield strength, 0.6F
y, is not exceeded.
The critical stress provisions for rectangular HSS are identical to the flexural shear
provisions of Section G2 with the shear buckling coefficient equal to k
v= 5.0. The
shear distribution due to torsion is uniform in the longest sides of a rectangular HSS,
and this is the same distribution that is assumed to exist in the web of a W-shape
beam. Therefore, it is reasonable that the provisions for buckling are the same in both
cases.
2. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force
Several interaction equation forms have been proposed in the literature for load com-
binations that produce both normal and shear stresses. In one common form, the
normal and shear stresses are combined elliptically with the sum of the squares
(Felton and Dobbs, 1967):
(C-H3-6)
In a second form, the first power of the ratio of the normal stresses is used:
(C-H3-7)
The latter form is somewhat more conservative, but not overly so (Schilling, 1965),
and this is the form used in this Specification:
(C-H3-8)
F=
E
D
t
L
Dcr
1.23






5
4
f
F
+
f
F
cr
v
vcr













22
1
f
F
+
f
F
cr
v
vcr













2
1
P
P
+
M
M
+
V
V
+
T
Tr
c
r
c
r
c
r
c⎛












2
1.0
F=
KE
D
tcr
t






3
2
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 342

Comm. H4.] RUPTURE OF FLANGES WITH HOLES SUBJECT TO TENSION 16.1–343
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where the terms with the subscript r represent the required strengths, and the ones
with the subscript c are the corresponding available strengths. Normal effects due to
flexural and axial load effects are combined linearly and then combined with the
square of the linear combination of flexural and torsional shear effects. When an
axial compressive load effect is present, the required flexural strength, M
c, is to be
determined by second-order analysis. When normal effects due to flexural and axial
load effects are not present, the square of the linear combination of flexural and tor-
sional shear effects underestimates the actual interaction. A more accurate measure
is obtained without squaring this combination.
3. Non-HSS Members Subject to Torsion and Combined Stress
This section covers all the cases not previously covered. Examples are built-up
unsymmetric crane girders and many other types of odd-shaped built-up cross sec-
tions. The required stresses are determined by elastic stress analysis based on
established theories of structural mechanics. The three limit states to consider and the
corresponding available stresses are:
1. Yielding under normal stress—F
y
2. Yielding under shear stress—0.6F y
3. Buckling—F cr
In most cases it is sufficient to consider normal stresses and shear stresses separately
because maximum values rarely occur in the same place in the cross section or at the
same place in the span. AISC Design Guide 9, Torsional Analysis of Structural Steel
Members (Seaburg and Carter, 1997), provides a complete discussion on torsional
analysis of open shapes.
H4. RUPTURE OF FLANGES WITH HOLES SUBJECT TO TENSION
Equation H4-1 is provided to evaluate the limit state of tensile rupture of the flanges
of beam-columns. This provision is only applicable in cases where there are one or
more holes in the flange in net tension under the combined effect of flexure and axial
forces. When both the axial and flexural stresses are tensile, their effects are additive.
When the stresses are of opposite sign, the tensile effect is reduced by the compres-
sion effect.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 343

Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
16.1–344
CHAPTER I
DESIGN OF COMPOSITE MEMBERS
Chapter I includes the following major changes and additions in this edition of the
Specification:
1. Concrete and Steel Reinforcement Detailing (Sections I1, I2 and I8): References to
ACI 318 (ACI, 2008) are made in Sections I1.1 and I2.1 to invoke requirements for
concrete and steel reinforcement requirements. References to ACI 318 are also made
in Section I8.3 to invoke requirements for concrete strength of steel headed stud
anchors.
2. Local Buckling Provisions (Section I1.2 and I1.4): New provisions are added for local
buckling in Sections I1.2 and I1.4. These requirements also lead to new provisions for
axial compression and flexural design of filled composite members that are compact,
noncompact and slender as addressed in Sections I2.2 and I3.4.
3. Minimum Axial Strength for Composite Compression Members (Sections I2.1 and
I2.2): These sections specify that the axial strength of an encased composite compres-
sion member and a filled composite compression member need not be less than the
strength of a bare steel compression member according to the provisions of Chapter E
using the same steel section as the composite member.
4. Load Transfer in Composite Members (Sections I3 and I6): New material is added and
revisions are made to the load transfer requirements in composite components. The
expanded scope of this section has warranted the creation of a new dedicated section
for load transfer in composite members.
5. Reliability of Strength for Encased and Filled Composite Beams (Sections I3.3 and
I3.4): The resistance factor and safety factor for encased and filled composite beams
were adjusted based upon assessment of new data.
6. Design for Shear (Section I4): All provisions for shear design of composite members
are consolidated in a new Section I4.
7. Design of Composite Beam-Columns (Section I5): Clarification of composite beam-
column design methods is covered in Section I5.
8. Diaphragms and Collector Beams (Section I7): Performance language has been added
in a new Section I7 that covers the design and detailing of composite diaphragms and
collector beams. Supplemental information is provided in the Commentary as guid-
ance to designers.
9. Steel Anchors (Section I8): New provisions covering the design of steel anchors (both
headed studs and hot rolled channels) are included in Section I8. Provisions for com-
posite beams with slabs remain essentially unchanged except for edits that were made
for consistency with the new provisions. Provisions are added in Section I8.2 for edge
distances of stud anchors along the axis of a composite beam for normal and light-
weight concrete. New steel anchor provisions for shear, tension, and interaction of
shear and tension are also provided for other forms of composite construction. These
changes propose new terminology to be consistent with the more general provisions
on anchorage in ACI 318 Appendix D (ACI, 2008). Specifically, the term “shear
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 344

Comm. I1.] GENERAL PROVISIONS 16.1–345
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
connector” is replaced by the generic term “steel anchor.” Steel anchors in the
Specification can refer either to steel “headed stud anchors” or hot-rolled steel “chan-
nel anchors.”
I1. GENERAL PROVISIONS
Design of composite sections requires consideration of both steel and concrete
behavior. These provisions were developed with the intent both to minimize conflicts
between current steel and concrete design and detailing provisions and to give proper
recognition to the advantages of composite design.
As a result of the attempt to minimize design conflicts, this Specification uses a
cross-sectional strength approach for compression member design consistent with
that used in reinforced concrete design (ACI, 2008). This approach, in addition,
results in a consistent treatment of cross-sectional strengths for both composite
columns and beams.
The provisions in Chapter I address strength design of the composite sections only.
The designer needs to consider the loads resisted by the steel section alone when
determining load effects during the construction phase. The designer also needs to
consider deformations throughout the life of the structure and the appropriate cross
section for those deformations. When considering these latter limit states, due
allowance should be made for the additional long-term changes in stresses and defor-
mations due to creep and shrinkage of the concrete.
1. Concrete and Steel Reinforcement
Reference is made to ACI 318 (ACI, 2008) for provisions related to the concrete and
reinforcing steel portion of composite design and detailing, such as anchorage and
splice lengths, intermediate column ties, reinforcing spirals, and shear and torsion
provisions.
Exceptions and limitations are provided as follows:
(1) The composite design procedures of ACI 318 have remained unchanged for
many years. It was therefore decided to exclude the composite design sections of
ACI 318 to take advantage of recent research (Ziemian, 2010; Hajjar, 2000;
Shanmugam and Lakshmi, 2001; Leon et al., 2007; Varma and Zhang, 2009;
Jacobs and Goverdhan, 2010) into composite behavior that is reflected in the
Specification.
(2) Concrete limitations in addition to those given in ACI 318 are provided to reflect
the applicable range of test data on composite members. See also Commentary
Section I1.3.
(3) ACI provisions for tie reinforcing of noncomposite reinforced concrete com-
pression members shall be followed in addition to the provisions specified in
Section I2.1a(2). See also Commentary Section I2.1a(2).
(4) The limitation of 0.01A
gin ACI 318 for the minimum longitudinal reinforcing
ratio of reinforced concrete compression members is based upon the phenomena
of stress transfer under service load levels from the concrete to the reinforcement
due to creep and shrinkage. The inclusion of an encased structural steel section
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 345

16.1–346 GENERAL PROVISIONS [Comm. I1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
meeting the requirements of Section I2.1a aids in mitigating this effect and con-
sequently allows a reduction in minimum longitudinal reinforcing requirements.
See also Commentary Section I2.1a(3).
The design basis for ACI 318 is strength design. Designers using allowable stress
design for steel design must be conscious of the different load factors between the
two specifications.
2. Nominal Strength of Composite Sections
The strength of composite sections shall be computed based on either of the two
approaches presented in this Specification. One is the strain compatibility approach,
which provides a general calculation method. The other is the plastic stress distribu-
tion approach, which is a subset of the strain compatibility approach. The plastic
stress distribution method provides a simple and convenient calculation method for
the most common design situations, and is thus treated first. Limited use of the elas-
tic stress distribution method is retained for calculation of composite beams with
noncompact webs.
2a. Plastic Stress Distribution Method
The plastic stress distribution method is based on the assumption of linear strain
across the cross section and elasto-plastic behavior. It assumes that the concrete has
reached its crushing strength in compression at a strain of 0.003 and a corresponding
stress (typically 0.85f ′
c) on a rectangular stress block, and that the steel has exceeded
its yield strain, taken as F
y/Es.
Based on these simple assumptions, the cross-sectional strength for different combi-
nations of axial force and bending moment may be approximated for typical
composite compression member cross sections. The actual interaction diagram for
moment and axial force for a composite section based on a plastic stress distribution
is similar to that of a reinforced concrete section as shown in Figure C-I1.1. As a sim-
plification, for concrete-encased sections a conservative linear interaction between
Fig. C-I1.1. Comparison between exact and simplified
moment-axial compressive force envelopes.
(a) Strong axis (b) Weak axis
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 346

Comm. I1.] GENERAL PROVISIONS 16.1–347
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
four or five anchor points, depending on axis of bending, can be used (Roik and
Bergmann, 1992; Ziemian, 2010). These points are identified as A, B, C, D and E in
Figure C-I1.1.
The plastic stress approach for compression members assumes that no slip has
occurred between the steel and concrete portions and that the required width-to-
thickness ratios prevent local buckling from occurring until some yielding and
concrete crushing have taken place. Tests and analyses have shown that these are rea-
sonable assumptions for both concrete-encased steel sections with steel anchors and
for HSS sections that comply with these provisions (Ziemian, 2010; Hajjar, 2000;
Shanmugam and Lakshmi, 2001; Varma et al. 2002; Leon et al., 2007). For round
HSS, these provisions allow for the increase of the usable concrete stress to 0.95f ′
cfor
calculating both axial compressive and flexural strengths to account for the benefi-
cial effects of the restraining hoop action arising from transverse confinement (Leon
et al., 2007).
Based on similar assumptions, but allowing for slip between the steel beam and the
composite slab, simplified expressions can also be derived for typical composite
beam sections. Strictly speaking, these distributions are not based on slip, but on the
strength of the shear connection. Full interaction is assumed if the shear connection
strength exceeds that of either (a) the tensile yield strength of the steel section or the
compressive strength of the concrete slab when the composite beam is loaded in pos-
itive moment, or (b) the tensile yield strength of the longitudinal reinforcing bars in
the slab or the compressive strength of the steel section when loaded in negative
moment. When steel anchors are provided in sufficient numbers to fully develop this
flexural strength, any slip that occurs prior to yielding has a negligible affect on
behavior. When full interaction is not present, the beam is said to be partially com-
posite. The effects of slip on the elastic properties of a partially composite beam can
be significant and should be accounted for, if significant, in calculations of deflec-
tions and stresses at service loads. Approximate elastic properties of partially
composite beams are given in Commentary Section I3.
2b. Strain Compatibility Method
The principles used to calculate cross-sectional strength in Section I1.2a may not be
applicable to all design situations or possible cross sections. As an alternative,
Section I1.2b permits the use of a generalized strain-compatibility approach that
allows the use of any reasonable strain-stress model for the steel and concrete.
3. Material Limitations
The material limitations given in Section I1.3 reflect the range of material properties
available from experimental testing (Ziemian, 2010; Hajjar, 2000; Shanmugam and
Lakshmi, 2001; Varma et al., 2002; Leon et al., 2007). As for reinforced concrete
design, a limit of 10 ksi (70 MPa) is imposed for strength calculations, both to reflect
the scant data available above this strength and the changes in behavior observed
(Varma et al., 2002). A lower limit of 3 ksi (21 MPa) is specified for both normal and
lightweight concrete and an upper limit of 6 ksi (42 MPa) is specified for lightweight
concrete to encourage the use of good quality, yet readily available, grades of struc-
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 347

16.1–348 GENERAL PROVISIONS [Comm. I1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
tural concrete. The use of higher strengths in computing the modulus of elasticity is
permitted, and the limits given can be extended for strength calculations if appropri-
ate testing and analyses are carried out.
4. Classification of Filled Composite Sections for Local Buckling
The behavior of filled composite members is fundamentally different from the
behavior of hollow steel members. The concrete infill has a significant influence on
the stiffness, strength and ductility of composite members. As the steel section area
decreases, the concrete contribution becomes even more significant.
The elastic local buckling of the steel tube is influenced significantly by the pres-
ence of the concrete infill. The concrete infill changes the buckling mode of the steel
tube (both within the cross section and along the length of the member) by pre-
venting it from deforming inwards. For example, see Figures C-I1.2 and C-I1.3.
Bradford et al. (1998) analyzed the elastic local buckling behavior of filled com-
posite compression members, showing that for rectangular steel tubes, the plate
buckling coefficient (i.e., k-factor) in the elastic plate buckling equation (Ziemian,
Fig. C-I1.3. Changes in buckling mode with length due to the presence of infill.
Fig. C-I1.2. Change in cross-sectional buckling mode due to concrete infill.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 348

Comm. I2.] AXIAL FORCE 16.1–349
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2010) changes from 4.00 (for hollow tubes) to 10.6 (for filled sections). As a result,
the elastic plate buckling stress increases by a factor of 2.65 for filled sections as
compared to hollow structural sections. Similarly, Bradford et al. (2002) showed
that the elastic local buckling stress for filled round sections is 1.73 times that for
hollow round sections.
For rectangular filled sections, the elastic local buckling stress, F
cr, from the plate
buckling equation simplifies to Equation I2-10. This equation indicates that yielding
will occur for plates with b/tless than or equal to , which designates the
limit between noncompact and slender sections, λ
r. This limit does not account for
the effects of residual stresses or geometric imperfections because the concrete con-
tribution governs for these larger b/t ratios and the effects of reducing steel stresses
is small. The maximum permitted b/tvalue for λ
p is based on the lack of experimen-
tal data above the limit of , and the potential effects (plate deflections
and locked-in stresses) of concrete placement in extremely slender filled HSS cross
sections. For flexure, the b/t limits for the flanges are the same as those for walls
in axial compression due to the similarities in loading and behavior. The
compact/noncompact limit, λ
p, for webs in flexure was established conservatively as
. The noncompact/slender limit, λ
r, for the web was established con-
servatively as , which is also the maximum permitted for hollow
structural sections. This was also established as the maximum permitted value due to
the lack of experimental data and concrete placement concerns for thinner filled HSS
cross sections (Varma and Zhang, 2009).
For round filled sections in axial compression, the noncompact/slender limit, λ
r, was
established as 0.19E/F
y, which is 1.73 times the limit (0.11E/F y) for hollow round
sections. This was based on the findings of Bradford et al. (2002) mentioned earlier,
and it compares well with experimental data. The maximum permitted D/tequal to
0.31E/F
yis based on the lack of experimental data and the potential effects of con-
crete placement in extremely slender filled HSS cross sections. For round filled
sections in flexure, the compact/noncompact limit, λ
p, in Table I1.1b was developed
conservatively as 1.25 times the limit (0.07E/F
y) for round hollow structural sec-
tions. The noncompact/slender limit, λ
r, was assumed conservatively to be the same
for round hollow structural sections (0.31E/F
y). This was also established as the
maximum permitted value due to lack of experimental data and concrete placement
concerns for thinner filled HSS cross sections (Varma and Zhang, 2009).
I2. AXIAL FORCE
In Section I2, the design of concrete-encased and concrete-filled composite members
is treated separately, although they have much in common. The intent is to facilitate
design by keeping the general principles and detailing requirements for each type of
compression member separate.
An ultimate strength cross section model is used to determine the section strength
(Leon et al., 2007; Leon and Hajjar, 2008). This model is similar to that used in
previous LRFD Specifications. The major difference is that the full strength of the
reinforcing steel and concrete are accounted for rather than the 70% that was used in
those previous Specifications. In addition, these provisions give the strength of the
300./EF sy
500./EF sy
300./EF sy
570./EF sy
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 349

16.1–350 AXIAL FORCE [Comm. I2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
composite section as a force, while the previous approach had converted that force
to an equivalent stress. Since the reinforcing steel and concrete had been arbitrarily
discounted, the previous provisions did not accurately predict strength for compres-
sion members with a low percentage of steel.
The design for length effects is consistent with that for steel compression members.
The equations used are the same as those in Chapter E, albeit in a different format,
and as the percent of concrete in the section decreases, the design defaults to that of
a steel section (although with different resistance and safety factors). Comparisons
between the provisions in the Specification and experimental data show that the
method is generally conservative but that the coefficient of variation obtained is large
(Leon et al., 2007).
1. Encased Composite Members
1a. Limitations
(1) In this Specification, the use of composite compression members is applicable to
a minimum steel ratio (area of steel shape divided by the gross area of the mem-
ber) equal to or greater than 1%.
(2) The specified minimum quantity for transverse reinforcement is intended to pro-
vide good confinement to the concrete. It is the intent of the Specification that
the transverse tie provisions of ACI 318 Chapter 7 be followed in addition to the
limits provided.
(3) A minimum amount of longitudinal reinforcing steel is prescribed to ensure that
unreinforced concrete encasements are not designed with these provisions.
Continuous longitudinal bars should be placed at each corner of the cross section.
Additional provisions for minimum number of longitudinal bars are provided in
ACI 318 Section 10.9.2. Other longitudinal bars may be needed to provide the
required restraint to the cross-ties, but that longitudinal steel cannot be counted
towards the minimum area of longitudinal reinforcing nor the cross-sectional
strength unless it is continuous and properly anchored.
1b. Compressive Strength
The compressive strength of the cross section is given as the sum of the ultimate
strengths of the components. The strength is not capped as in reinforced concrete com-
pression member design for a combination of the following reasons: (1) the resistance
factor is 0.75 (lower than some older Specifications); (2) the required transverse steel
provides better performance than a typical reinforced concrete compression member;
(3) the presence of a steel section near the center of the section reduces the possibil-
ity of a sudden failure due to buckling of the longitudinal reinforcing steel; and
(4) there will typically be moment present due to the manner in which stability is
addressed in the Specification through the use of a minimum notional load and the
size of the member and the typical force introduction mechanisms.
For application of encased composite members using the direct analysis method as
defined in Chapter C, and pending the results of ongoing research on composite com-
pression members, it is suggested that the reduced flexural stiffness EI* be based on
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 350

Comm. I2.] AXIAL FORCE 16.1–351
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the use of the 0.8τbreduction applied to the EI eff(from Equation I2-6) unless a more
comprehensive study is undertaken. Alternatively, designers are referred to ACI 318
Chapter 10 for appropriate E
cIgvalues to use with the 0.8τbstiffness reduction in per-
forming frame analysis using encased composite compression members whose
stiffness may be evaluated in a similar way to conventional reinforced concrete com-
pression members. Refer to Commentary Section I3.2 for recommendations on
appropriate stiffness for composite beams.
1c. Tensile Strength
Section I2.1c clarifies the tensile strength to be used in situations where uplift is a
concern and for computations related to beam-column interaction. The provision
focuses on the limit state of yield on gross area. Where appropriate for the structural
configuration, consideration should also be given to other tensile strength and con-
nection strength limit states as specified in Chapters D and J.
2. Filled Composite Members
2a. Limitations
(1) As discussed for encased compression members, it is permissible to design filled
composite compression members with a steel ratio as low as 1%.
(2) Filled composite sections are classified as compact, noncompact or slender
depending on the tube slenderness, b/tor D/t, and the limits in Table I1.1a.
2b. Compressive Strength
A compact hollow structural section (HSS) has sufficient thickness to develop yield-
ing of the steel HSS in longitudinal compression, and to provide confinement to the
concrete infill to develop its compressive strength (0.85 or 0.95f′
c). A noncompact
section has sufficient tube thickness to develop yielding of the steel tube in the lon-
gitudinal direction, but it cannot adequately confine the concrete infill after it reaches
0.70f′
ccompressive stress in the concrete and starts undergoing significant inelastic-
ity and volumetric dilation, thus pushing against the steel HSS. A slender section can
neither develop yielding of the steel HSS in the longitudinal direction, nor confine
the concrete after it reaches 0.70f′
ccompressive stress in the concrete and starts
undergoing inelastic strains and significant volumetric dilation pushing against the
HSS (Varma and Zhang, 2009).
Figure C-I2.1 shows the variation of the nominal axial compressive strength, P
no, of
the composite section with respect to the HSS slenderness. As shown, compact sec-
tions can develop the full plastic strength, P
p, in compression. The nominal axial
strength, P
no, of noncompact sections can be determined using a quadratic interpola-
tion between the plastic strength, P
p, and the yield strength, P y, with respect to the
tube slenderness. This interpolation is quadratic because the ability of the steel tube
to confine the concrete infill undergoing inelasticity and volumetric dilation
decreases rapidly with HSS slenderness. Slender sections are limited to developing
the critical buckling stress, F
cr, of the steel HSS and 0.70f ′ cof the concrete infill
(Varma and Zhang, 2009).
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 351

16.1–352 AXIAL FORCE [Comm. I2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The nominal axial strength, P n, of composite compression members including length
effects may be determined using Equations I2-2 and I2-3, while using EI
eff(from
Equation I2-12) to account for composite section rigidity and P
noto account for the
effects of local buckling as described above. This approach is slightly different than the
one used for hollow structural sections found in Section E7, where the effective local
buckling stress, f , for slender sections has an influence on the column buckling stress,
F
cr, and vice versa. This approach was not implemented for filled compression mem-
bers because: (i) their axial strength is governed significantly by the contribution of the
concrete infill, (ii) concrete inelasticity occurs within the compression member failure
segment irrespective of the buckling load, and (iii) the calculated nominal strengths
compare conservatively with experimental results (Varma and Zhang, 2009).
For application of filled composite members in the direct analysis method as defined
in Chapter C and pending the results of ongoing research on composite compression
members, it is suggested that the reduced flexural stiffness, EI*, be based on the use
of the 0.8τ
breduction applied to the EI efffrom Equation I2-12 unless a more com-
prehensive study is undertaken.
2c. Tensile Strength
As for encased compression members, Section I2.2c specifies the tensile strength for
filled composite members. Similarly, while the provision focuses on the limit state of
yield on gross area, where appropriate, consideration should also be given to other
tensile strength and connection strength limit states as specified in Chapters D and J.
I3. FLEXURE
1. General
Three types of composite flexural members are addressed in this section: fully
encased steel beams, concrete-filled HSS, and steel beams with mechanical anchor-
age to a concrete slab which are generally referred to as composite beams.
Fig. C-I2.1. Nominal axial strength, P no, vs. HSS slenderness.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 352

Comm. I3.] FLEXURE 16.1–353
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1a. Effective Width
The same effective width rules apply to composite beams with a slab on either one
side or both sides of the beam. In cases where the effective stiffnessof a beam with a
one-sided slab is important, special care should be exercised since this model can
substantially overestimate stiffness (Brosnan and Uang, 1995). To simplify design,
the effective width is based on the full span, center-to-center of supports, for both
simple and continuous beams.
1b. Strength During Construction
Composite beam design requires care in considering the loading history. Loads
applied to an unshored beam before the concrete has cured are resisted by the steel
section alone; total loads applied before and after the concrete has cured are consid-
ered to be resisted by the composite section. It is usually assumed for design
purposes that concrete has hardened when it attains 75% of its design strength.
Unshored beam deflection caused by fresh concrete tends to increase slab thickness
and dead load. For longer spans this may lead to instability analogous to roof pond-
ing. Excessive increase of slab thickness may be avoided by beam camber. Pouring
the slab to a constant thickness will also help eliminate the possibility of ponding
instability (Ruddy, 1986). When forms are not attached to the top flange, lateral brac-
ing of the steel beam during construction may not be continuous and the unbraced
length may control flexural strength, as defined in Chapter F.
This Specification does not include special requirements for strength during con-
struction. For these noncomposite beams, the provisions of Chapter F apply.
Load combinations for construction loads should be determined for individual proj-
ects according to local conditions, using ASCE (2010) as a guide.
2. Composite Beams with Steel Headed Stud or Steel Channel Anchors
Section I3.2 applies to simple and continuous composite beams with steel anchors,
constructed with or without temporary shores.
When a composite beam is controlled by deflection, the design should limit the
behavior of the beam to the elastic range under serviceability load combinations.
Alternatively, the amplification effects of inelastic behavior should be considered
when deflection is checked.
It is often not practical to make accurate stiffness calculations of composite flexural
members. Comparisons to short-term deflection tests indicate that the effective
moment of inertia, I
eff, is 15 to 30% lower than that calculated based on linear elas-
tic theory, I
equiv. Therefore, for realistic deflection calculations, I effshould be taken
as 0.75I
equiv(Leon, 1990; Leon and Alsamsam, 1993).
As an alternative, one may use a lower bound moment of inertia, I LB, as defined
below:
(C-I3-1)
IIAY d QFddYLB s s ENA n y ENA=+ − + +−()(/)( ) 3
2
31
2 2Σ
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 353

16.1–354 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
A
s=area of steel cross section, in.
2
(mm
2
)
d
1=distance from the compression force in the concrete to the top of the steel
section, in. (mm)
d
3=distance from the resultant steel tension force for full section tension yield
to the top of the steel, in. (mm)
I
LB=lower bound moment of inertia, in.
4
(mm
4
)
I
s=moment of inertia for the structural steel section, in.
4
(mm
4
)
ΣQ
n=sum of the nominal strengths of steel anchors between the point of maxi-
mum positive moment and the point of zero moment to either side, kips
(kN)
Y
ENA=[A sd3+(ΣQ n/Fy ) (2d3+d1)]/[A s+(ΣQ n/Fy)], in. (mm) (C-I3-2)
The use of constant stiffness in elastic analyses of continuous beams is analogous to
the practice in reinforced concrete design. The stiffness calculated using a weighted
average of moments of inertia in the positive moment region and negative moment
regions may take the following form:
I
t=aIpos+bIneg (C-I3-3)
where
I
pos=effective moment of inertia for positive moment, in.
4
(mm
4
)
I
neg=effective moment of inertia for negative moment, in.
4
(mm
4
)
The effective moment of inertia is based on the cracked transformed section consid-
ering the degree of composite action. For continuous beams subjected to gravity
loads only, the value of amay be taken as 0.6 and the value of bmay be taken as 0.4.
For composite beams used as part of a lateral force resisting system in moment
frames, the value of a and bmay be taken as 0.5 for calculations related to drift.
In cases where elastic behavior is desired, the cross-sectional strength of composite
members is based on the superposition of elastic stresses including consideration of
the effective section modulus at the time each increment of load is applied. For cases
where elastic properties of partially composite beams are needed, the elastic moment
of inertia may be approximated by
(C-I3-4)
where
I
s= moment of inertia for the structural steel section, in.
4
(mm
4
)
I
tr=moment of inertia for the fully composite uncracked transformed section,
in.
4
(mm
4
)
ΣQ
n=strength of steel anchors between the point of maximum positive moment
and the point of zero moment to either side, kips (N)
C
f=compression force in concrete slab for fully composite beam; smaller of
A
sFyand 0.85f c′Ac,kips (N)
A
c=area of concrete slab within the effective width, in.
2
(mm
2
)
The effective section modulus, S
eff, referred to the tension flange of the steel section
for a partially composite beam, may be approximated by
II QCIIequiv s n f tr s=+ ( )−( )Σ/
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 354

Comm. I3.] FLEXURE 16.1–355
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-I3-5)
where
S
s=section modulus for the structural steel section, referred to the tension flange,
in.
3
(mm
3
)
S
tr=section modulus for the fully composite uncracked transformed section,
referred to the tension flange of the steel section, in.
3
(mm
3
)
Equations C-I3-4 and C-I3-5 should not be used for ratios, ΣQ
n/Cf, less than 0.25.
This restriction is to prevent excessive slip, as well as substantial loss in beam stiff-
ness. Studies indicate that Equations C-I3-4 and C-I3-5 adequately reflect the
reduction in beam stiffness and strength, respectively, when fewer anchors are used
than required for full composite action (Grant et al., 1977).
U.S. practice does not generally require the following items to be considered. They
are highlighted here for a designer who chooses to construct something for which
these items might apply.
1. Horizontal shear strength of the slab: For the case of girders with decks with nar-
row troughs or thin slabs, shear strength of the slab may govern the design (for
example, see Figure C-I3.1). Although the configuration of decks built in the U.S.
tends to preclude this mode of failure, it is important that it be checked if the
force in the slab is large or an unconventional assembly is chosen. The shear
strength of the slab may be calculated as the superposition of the shear strength
of the concrete plus the contribution of any slab steel crossing the shear plane.
The required shear strength, as shown in the figure, is given by the difference in
the force between the regions inside and outside the potential failure surface.
Where experience has shown that longitudinal cracking detrimental to servicea-
bility is likely to occur, the slab should be reinforced in the direction transverse
to the supporting steel section. It is recommended that the area of such rein-
forcement be at least 0.002 times the concrete area in the longitudinal direction
of the beam and that it be uniformly distributed.
2. Rotational capacity of hinging zones: There is no required rotational capacity for
hinging zones. Where plastic redistribution to collapse is allowed, the moments
SS QCSSeff s n f tr s=+ ( )−( )Σ
Fig. C-I3.1. Longitudinal shear in the slab [after Chien and Ritchie (1984)].
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 355

16.1–356 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
at a cross section may be as much as 30% lower than those given by a corre-
sponding elastic analysis. This reduction in load effects is predicated, however,
on the ability of the system to deform through very large rotations. To achieve
these rotations, very strict local buckling and lateral-torsional buckling require-
ments must be fulfilled (Dekker et al., 1995). For cases in which a 10%
redistribution is utilized, as permitted in Section B3.7, the required rotation
capacity is within the limits provided by the local and lateral-torsional buckling
provisions of Chapter F. Therefore, a rotational capacity check is not normally
required for designs using this provision.
3. Minimum amount of shear connection: There is no minimum requirement for the
amount of shear connection. Design aids in the U.S. often limit partial composite
action to a minimum of 25% for practical reasons, but two issues arise with the
use of low degrees of partial composite action. First, less than 50% composite
action requires large rotations to reach the available flexural strength of the mem-
ber and can result in very limited ductility after the nominal strength is reached.
Second, low composite action results in an early departure from elastic behavior
in both the beam and the studs. The current provisions, which are based on ulti-
mate strength concepts, have eliminated checks for ensuring elastic behavior
under service load combinations, and this can be an issue if low degrees of partial
composite action are used.
4. Long-term deformations due to shrinkage and creep: There is no direct guidance
in the computation of the long-term deformations of composite beams due to creep
and shrinkage. The long-term deformation due to shrinkage can be calculated with
the simplified model shown in Figure C-I3.2, in which the effect of shrinkage is
taken as an equivalent set of end moments given by the shrinkage force (long-term
restrained shrinkage strain times modulus of concrete times effective area of con-
crete) times the eccentricity between the center of the slab and the elastic neutral
Fig. C-I3.2. Calculation of shrinkage effects [from Chien and Ritchie (1984)].
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 356

Comm. I3.] FLEXURE 16.1–357
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
axis. If the restrained shrinkage coefficient for the aggregates is not known, the
shrinkage strain for these calculations may be taken as 0.02%. The long-term
deformations due to creep, which can be quantified using a model similar to that
shown in the figure, are small unless the spans are long and the permanent live
loads large. For shrinkage and creep effects, special attention should be given to
lightweight aggregates, which tend to have higher creep coefficients and moisture
absorption and lower modulus of elasticity than conventional aggregates, exacer-
bating any potential deflection problems. Engineering judgment is required, as
calculations for long-term deformations require consideration of the many vari-
ables involved and because linear superposition of these effects is not strictly
correct (ACI, 1997; Viest et al., 1997).
2a. Positive Flexural Strength
The flexural strength of a composite beam in the positive moment region may be
controlled by the strength of the steel section, the concrete slab or the steel anchors.
In addition, web buckling may limit flexural strength if the web is slender and a large
portion of the web is in compression.
Plastic Stress Distribution for Positive Moment. When flexural strength is deter-
mined from the plastic stress distribution shown in Figure C-I3.3, the compression
force, C, in the concrete slab is the smallest of:
C=A
swFy+2AsfFy (C-I3-6)
C=0.85f
c′Ac (C-I3-7)
C =ΣQ
n (C-I3-8)
where
f
c′=specified compressive strength of concrete, ksi (MPa)
A
c=area of concrete slab within effective width, in.
2
(mm
2
)
A
s=area of steel cross section, in.
2
(mm
2
)
A
sw=area of steel web, in.
2
(mm
2
)
A
sf=area of steel flange, in.
2
(mm
2
)
F
y=minimum specified yield stress of steel, ksi (MPa)
ΣQ
n=sum of nominal strengths of steel headed stud anchors between the point of
maximum positive moment and the point of zero moment to either side,
kips (N)
Longitudinal slab reinforcement makes a negligible contribution to the compression
force, except when Equation C-I3-7 governs. In this case, the area of longitudinal
reinforcement within the effective width of the concrete slab times the yield stress of
the reinforcement may be added in determining C.
The depth of the compression block is
(C-I3-9)
a
C
fb
c
=
′085.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 357

16.1–358 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
b =effective width of concrete slab, in. (mm)
A fully composite beam corresponds to the case of C governed by the yield strength
of the steel beam or the compressive strength of the concrete slab, as in Equation
C-I3-6 or C-I3-7. The number and strength of steel headed stud anchors govern C for
a partially composite beam as in Equation C-I3-8.
The plastic stress distribution may have the plastic neutral axis, PNA, in the web, in
the top flange of the steel section, or in the slab, depending on the value of C.
The nominal plastic moment resistance of a composite section in positive bending is
given by the following equation and Figure C-I3.3:
M
n=C(d 1+d2) +Py(d3λd2) (C-I3-10)
where
P
y=tensile strength of the steel section; P y=FyAs, kips (N)
d
1=distance from the centroid of the compression force, C, in the concrete to the
top of the steel section, in. (mm)
d
2=distance from the centroid of the compression force in the steel section to the
top of the steel section, in. (mm). For the case of no compression in the steel
section, d
2 =0.
d
3=distance from P y to the top of the steel section, in. (mm)
Equation C-I3-10 is applicable for steel sections symmetrical about one or two axes.
According to Table B4.1b, local web buckling does not reduce the plastic strength
of a bare steel beam if the beam depth-to-web thickness ratio is not larger than
. In the absence of web buckling research on composite beams, the same
ratio is conservatively applied to composite beams.
For beams with more slender webs, this Specification conservatively adopts first
yield as the flexural strength limit. In this case, stresses on the steel section from per-
manent loadsapplied to unshored beams before the concrete has cured must be
superimposed on stresses on the composite section from loads applied to the beams
376./EF
y
Fig. C-I3.3. Plastic stress distribution for positive moment in composite beams.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 358

Comm. I3.] FLEXURE 16.1–359
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
after hardening of concrete. For shored beams, all loads may be assumed to be resis-
ted by the composite section.
When first yield is the flexural strength limit, the elastic transformed section is used
to calculate stresses on the composite section. The modular ratio, n= E
s/Ec, used to
determine the transformed section, depends on the specified unit weight and strength
of concrete.
2b. Negative Flexural Strength
Plastic Stress Distribution for Negative Moment. When an adequately braced com-
pact steel section and adequately developed longitudinal reinforcing bars act
compositely in the negative moment region, the nominal flexural strength is deter-
mined from the plastic stress distributions as shown in Figure C-I3.4. Loads applied
to a continuous composite beam with steel anchors throughout its length, after the
slab is cracked in the negative moment region, are resisted in that region by the steel
section and by properly anchored longitudinal slab reinforcement.
The tensile force, T, in the reinforcing bars is the smaller of:
T =F
yrAr (C-I3-11)
T =ΣQ
n (C-I3-12)
where
A
r=area of properly developed slab reinforcement parallel to the steel beam and
within the effective width of the slab, in.
2
(mm
2
)
F
yr=specified yield stress of the slab reinforcement, ksi (MPa)
ΣQ
n=sum of the nominal strengths of steel headed stud anchors between the
point of maximum negative moment and the point of zero moment to either
side, kips (N)
A third theoretical limit on T is the product of the area and yield stress of the steel
section. However, this limit is redundant in view of practical limitations for slab rein-
forcement.
The nominal plastic moment resistance of a composite section in negative bending is
given by the following equation:
Fig. C-I3.4. Plastic stress distribution for negative moment.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 359

16.1–360 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Mn=T(d 1+d2) +Pyc(d3λd2) (C-I3-13)
where
P
yc=the compressive strength of the steel section; P yc=AsFy, kips (N)
d
1=distance from the centroid of the longitudinal slab reinforcement to the top
of the steel section, in. (mm)
d
2=distance from the centroid of the tension force in the steel section to the top
of the steel section, in. (mm)
d
3=distance from P ycto the top of the steel section, in. (mm)
2c. Composite Beams with Formed Steel Deck
Figure C-I3.5 is a graphic presentation of the terminology used in Section I3.2c.
The design rules for composite construction with formed steel deck are based upon
a study (Grant et al., 1977) of the then-available test results. The limiting parameters
listed in Section I3.2c were established to keep composite construction with formed
steel deck within the available research data.
The Specification requires steel headed stud anchors to project a minimum of
1
1
/2in. (38 mm) above the deck flutes. This is intended to be the minimum in-place
projection, and stud lengths prior to installation should account for any shortening
of the stud that could occur during the welding process. The minimum specified
cover over a steel headed stud anchor of
1
/2in. (13 mm) after installation is intended
to prevent the anchor from being exposed after construction is complete. In achiev-
ing this requirement the designer should carefully consider tolerances on steel beam
camber, concrete placement and finishing tolerances, and the accuracy with which
steel beam deflections can be calculated. In order to minimize the possibility of
exposed anchors in the final construction, the designer should consider increasing
the bare steel beam size to reduce or eliminate camber requirements (this also
improves floor vibration performance), checking beam camber tolerances in the
fabrication shop and monitoring concrete placement operations in the field.
Wherever possible, the designer should also consider providing for anchor cover
requirements above the
1
/2in. (13 mm) minimum by increasing the slab thickness
while maintaining the 1
1
/2in. (38 mm) requirement for anchor projection above the
top of the steel deck as required by the Specification.
The maximum spacing of 18 in. (450 mm) for connecting composite decking to the
support is intended to address a minimum uplift requirement during the construction
phase prior to placing concrete.
2d. Load Transfer between Steel Beam and Concrete Slab
(1) Load Transfer for Positive Flexural strength
When studs are used on beams with formed steel deck, they may be welded
directly through the deck or through prepunched or cut-in-place holes in the
deck. The usual procedure is to install studs by welding directly through the
deck; however, when the deck thickness is greater than 16 gage (1.5 mm) for sin-
gle thickness, or 18 gage (1.2 mm) for each sheet of double thickness, or when
the total thickness of galvanized coating is greater than 1.25 ounces/ft
2
(0.38
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 360

Comm. I3.] FLEXURE 16.1–361
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
kg/m
2
), special precautions and procedures recommended by the stud manufac-
turer should be followed.
Composite beam tests in which the longitudinal spacing of steel anchors was
varied according to the intensity of the static shear, and duplicate beams in which
the anchors were uniformly spaced, exhibited approximately the same ultimate
strength and approximately the same amount of deflection at nominal loads.
Under distributed load conditions, only a slight deformation in the concrete near
the more heavily stressed anchors is needed to redistribute the horizontal shear
Fig. C-I3.5. Steel deck limits.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 361

16.1–362 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
to other less heavily stressed anchors. The important consideration is that the
total number of anchors be sufficient to develop the shear on either side of the
point of maximum moment. The provisions of this Specification are based upon
this concept of composite action.
(2) Load Transfer for Negative Flexural strength
In computing the available flexural strength at points of maximum negative
bending, reinforcement parallel to the steel beam within the effective width of
the slab may be included, provided such reinforcement is properly anchored
beyond the region of negative moment. However, steel anchors are required to
transfer the ultimate tensile force in the reinforcement from the slab to the steel
beam.
When steel deck includes units for carrying electrical wiring, crossover head-
ers are commonly installed over the cellular deck perpendicular to the ribs. These
create trenches that completely or partially replace sections of the concrete slab
above the deck. These trenches, running parallel to or transverse to a composite
beam, may reduce the effectiveness of the concrete flange. Without special pro-
visions to replace the concrete displaced by the trench, the trench should be
considered as a complete structural discontinuity in the concrete flange.
When trenches are parallel to the composite beam, the effective flange width
should be determined from the known position of the trench.
Trenches oriented transverse to composite beams should, if possible, be
located in areas of low bending moment and the full required number of studs
should be placed between the trench and the point of maximum positive moment.
Where the trench cannot be located in an area of low moment, the beam should
be designed as noncomposite.
3. Encased Composite Members
Tests of concrete-encased beams demonstrate that: (1) the encasement drastically
reduces the possibility of lateral-torsional instability and prevents local buckling of
the encased steel; (2) the restrictions imposed on the encasement practically prevent
bond failure prior to first yielding of the steel section; and (3) bond failure does not
necessarily limit the moment strength of an encased steel beam (ASCE, 1979).
Accordingly, this Specification permits three alternative design methods for deter-
mination of the nominal flexural strength: (a) based on the first yield in the tension
flange of the composite section; (b) based on the plastic flexural strength of the steel
section alone; and (c) based on the strength of the composite section obtained from
the plastic stress distribution method or the strain-compatibility method. An assess-
ment of the data indicates that the same resistance and safety factors may be used for
all three approaches (Leon et al., 2007). For concrete-encased composite beams,
method (c) is applicable only when shear anchors are provided along the steel sec-
tion and reinforcement of the concrete encasement meets the specified detailing
requirements. For concrete-encased composite beams, no limitations are placed on
the slenderness of either the composite beam or the elements of the steel section,
since the encasement effectively inhibits both local and lateral buckling.
In method (a), stresses on the steel section from permanent loads applied to unshored
beams before the concrete has hardened must be superimposed on stresses on the
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 362

Comm. I3.] FLEXURE 16.1–363
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
composite section from loads applied to the beams after hardening of the concrete.
In this superposition, all permanent loads should be multiplied by the dead load fac-
tor and all live loads should be multiplied by the live load factor. For shored beams,
all loads may be assumed as resisted by the composite section. Complete interaction
(no slip) between the concrete and steel is assumed.
Insufficient research is available to warrant coverage of partially composite encased
or filled sections subjected to flexure.
4. Filled Composite Members
Tests of concrete-filled composite beams indicate that: (1) the steel tube drastically
reduces the possibility of lateral-torsional instability; (2) the concrete infill changes
the buckling mode of the steel HSS; and (3) bond failure does not necessarily limit
the moment strength of a filled composite beam (Leon et al., 2007).
Figure C-I3.6 shows the variation of the nominal flexural strength, M
n, of the filled
section with respect to the HSS slenderness. As shown, compact sections can develop
the full plastic strength, M
p, in flexure. The nominal flexural strength, M n, of non-
compact sections can be determined using a linear interpolation between the plastic
strength, M
p, and the yield strength, M y, with respect to the HSS slenderness. Slender
sections are limited to developing the first yield moment, M
cr, of the composite sec-
tion where the tension flange reaches first yielding, while the compression flange is
limited to the critical buckling stress, F
cr, and the concrete is limited to linear elastic
behavior with maximum compressive stress equal to 0.70f ′
c(Varma and Zhang,
2009). The nominal flexural strengths calculated using the Specification compare
conservatively with experimental results (Varma and Zhang, 2009). Figure C-I3.7
Fig. C-I3.6. Nominal flexural strength of filled beam vs. HSS slenderness.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 363

16.1–364 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(a) Compact section—stress blocks for calculating M p
Fig. C-I3.7. Stress blocks for calculating nominal flexural strengths
of filled rectangular box sections.
(b) Noncompact section—stress blocks for calculating M
y
(c) Slender section—stress blocks for calculating first yield moment, M cr
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 364

Comm. I5.] COMBINED FLEXURE AND AXIAL FORCE 16.1–365
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
shows typical stress blocks for determining the nominal flexural strengths of com-
pact, noncompact and slender filled rectangular box sections.
I4. SHEAR
Shear provisions for filled and encased composite members have been revised
from the 2005 Specification, and all shear provisions are now consolidated in
Section I4.
1. Filled and Encased Composite Members
Three methods for determining the shear strength of filled and encased composite
members are now offered:
(1) The available shear strength of the steel alone as specified in Chapter G. The
intent of this method is to allow the designer to ignore the concrete contribution
entirely and simply use the provisions of Chapter G with their associated resist-
ance or safety factors.
(2) The strength of the reinforced concrete portion (concrete plus transverse rein-
forcing bars) alone as defined by ACI 318. For this method, a resistance factor of
0.75 or the corresponding safety factor of 1.5 is to be applied which is consistent
with ACI 318.
(3) The strength of the steel section in combination with the contribution of the
transverse reinforcing bars. For this method, the nominal shear strength (without
a resistance or safety factor) of the steel section alone should be determined
according to the provisions of Chapter G and then combined with the nominal
shear strength of the transverse reinforcing as determined by ACI 318. These two
nominal strengths should then be combined, and an overall resistance factor of
0.75 or the corresponding safety factor of 1.5 applied to the sum to determine the
overall available shear strength of the member.
Though it would be logical to suggest provisions where both the contributions of the
steel section and reinforced concrete are superimposed, there is insufficient research
available to justify such a combination.
2. Composite Beams with Formed Steel Deck
A conservative approach to shear provisions for composite beams with steel headed
stud or steel channel anchors is adopted by assigning all shear to the steel section in
accordance with Chapter G. This method neglects any concrete contribution and
serves to simplify design.
I5. COMBINED FLEXURE AND AXIAL FORCE
As with all frame analyses in this Specification, required strengths for composite
beam-columns should be obtained from second-order analysis or amplified first-
order analysis as specified in Chapter C and Appendix 7. Sections I2.1 and I2.2
suggest appropriate reduced stiffness, EI*, for composite compression members to
be used with the direct analysis method of Chapter C. For the assessment of the avail-
able strength, the Specification provisions for interaction between axial force and
flexure in composite members are the same as for bare steel members as covered in
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 365

16.1–366 COMBINED FLEXURE AND AXIAL FORCE [Comm. I5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Section H1.1. The provisions also permit an analysis based on the strength provisions
of Section I1.2 which would lead to an interaction diagram similar to those used in
reinforced concrete design. This latter approach is discussed here.
For encased composite members, the available axial strength, including the effects
of buckling, and the available flexural strength can be calculated using either the
plastic stress distribution method or the strain-compatibility method (Leon et al.,
2007; Leon and Hajjar, 2008). For filled composite members, the available axial and
flexural strengths can be calculated using Sections I2.2 and I3.4, respectively, which
also include the effects of local buckling for noncomposite and slender sections
(classified according to Section I1.4).
The section below describes three different approaches to design composite beam-
columns that are applicable to both concrete-encased steel shapes and to compact
concrete-filled HSS sections. The first two approaches are based on variations in the
plastic stress distribution method while the third method references AISC Design
Guide 6, Load and Resistance Factor Design of W-shapes Encased in Concrete
(Griffis, 1992), which is based on an earlier version of the Specification. The strain
compatibility method is similar to that used in the design of concrete compression
members as specified in ACI 318 Chapter 10. The design of noncompact and slender
concrete-filled sections is limited to the use of method 1 described below (Varma and
Zhang, 2009).
Method 1—Interaction Equations of Section H1.The first approach applies to dou-
bly symmetric composite beam-columns, the most common geometry found in
building construction. For this case, the interaction equations of Section H1 provide
a conservative assessment of the available strength of the member for combined axial
compression and flexure (see Figure C-I5.1). These provisions may also be used for
Fig. C-I5.1. Interaction diagram for composite beam-column design—Method 1.
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:40 PM Page 366

Comm. I5.] COMBINED FLEXURE AND AXIAL FORCE 16.1–367
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
combined axial tension and flexure. The degree of conservatism generally depends
on the extent of concrete contribution to the overall strength relative to the steel con-
tribution. The larger the load carrying contribution coming from the steel section the
less conservative the strength prediction of the interaction equations from Section
H1. Thus, for example, the equations are generally more conservative for members
with high concrete compressive strength as compared to members with low concrete
compressive strength. The advantages to this method include the following: (1) The
same interaction equations used for steel beam-columns are applicable; and (2) Only
two anchor points are needed to define the interaction curves—one for pure flexure
(point B) and one for pure axial load (point A). Point A is determined using Equations
I2-2 or I2-3, as applicable. Point B is determined as the flexural strength of the sec-
tion according to the provisions of Section I3. Note that slenderness must also be
considered using the provisions of Section I2. For many common concrete filled
HSS sections, available axial strengths are provided in tables in the manual.
The design of noncompact and slender concrete-filled sections is limited to this
method of interaction equation solution. The other two methods described below
may not be used for their design, due to lack of research to validate those
approaches for cross sections that are not compact. The nominal strengths predicted
using the equations of Section H1 compare conservatively with a wide range of
experimental data for noncompact/slender rectangular and round filled sections
(Varma and Zhang, 2009).
Method 2—Interaction Curves from the Plastic Stress Distribution Method. The sec-
ond approach applies to doubly symmetric composite beam-columns and is based on
developing interaction surfaces for combined axial compression and flexure at the
nominal strength level using the plastic stress distribution method. This approach
results in interaction surfaces similar to those shown in Figure C-I5.2. The four
points identified in Figure C-I5.2 are defined by the plastic stress distribution used
Fig. C-I5.2 Interaction diagram for composite beam-columns—Method 2.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 367

16.1–368 COMBINED FLEXURE AND AXIAL FORCE [Comm. I5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
in their determination. The strength equations for concrete encased W-shapes and
concrete filled HSS shapes used to define each point A through D are provided in the
AISC Design Examplesavailable at www.aisc.org(Geschwindner, 2010b). Point A
is the pure axial strength determined according to Section I2. Point B is determined
as the flexural strength of the section according to the provisions of Section I3. Point
C corresponds to a plastic neutral axis location that results in the same flexural
strength as Point B, but including axial compression. Point D corresponds to an axial
compressive strength of one half of that determined for Point C. An additional Point
E (see Figure C-I1.1) is included (between points A and C) for encased W-shapes
bent about their weak axis. Point E is an arbitrary point, generally corresponding to
a plastic neutral axis location at the flange tips of the encased W-shape, necessary to
better reflect bending strength for weak-axis bending of encased shapes. Linear inter-
polation between these anchor points may be used. However, with this approach,
care should be taken in reducing Point D by a resistance factor or to account for
member slenderness, as this may lead to an unsafe situation whereby additional flex-
ural strength is permitted at a lower axial compressive strength than predicted by the
cross section strength of the member. This potential problem may be avoided through
a simplification to this method whereby point D is removed from the interaction sur-
face. Figure C-I5.3 demonstrates this simplification with the vertical dashed line that
connects point C′′to point B′′. Once the nominal strength interaction surface is deter-
mined, length effects according to Equations I2-2 and I2-3 must be applied. Note that
the same slenderness reduction factor (λ = A′/A in Figure C-I5.2, equal to P
n/Pno,
where P
nand P noare calculated from Section I2) applies to points A, C, D and E. The
available strength is then determined by applying the compression and bending
resistance factors or safety factors.
Fig. C-I5.3 Interaction diagram for composite beam-columns—Method 2 simplified.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 368

Comm. I5.] COMBINED FLEXURE AND AXIAL FORCE 16.1–369
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Using linear interpolation between points A′′, C′′and B′′ in Figure C-I5.3, the fol-
lowing interaction equations may be derived for composite beam-columns subjected
to combined axial compression plus biaxial flexure:
(a) If P
r<PC
(C-I5-1a)
(b) If P
r≥PC
(C-I5-1b)
where
P
r=required compressive strength, kips (N)
P
A=available axial compressive strength at Point A′′, kips (N)
P
C=available axial compressive strength at Point C′′, kips (N)
M
r=required flexural strength, kip-in. (N-mm)
M
C=available flexural strength at Point C′′, kip-in. (N-mm)
x=subscript relating symbol to strong axis bending
y=subscript relating symbol to weak axis bending
For design according to Section B3.3 (LRFD):
P
r=Pu=required compressive strength using LRFD load combinations, kips
(N)
P
A=design axial compressive strength at Point A′′in Figure C-I5.3, determined
in accordance with Section I2, kips (N)
P
C=design axial compressive strength at Point C′′, kips (N)
M
r=required flexural strength using LRFD load combinations, kip-in. (N-mm)
M
C=design flexural strength at Point C′′, determined in accordance with Section
I3, kip-in. (N-mm)
For design according to Section B3.4 (ASD):
P
r=Pa=required compressive strength using ASD load combinations, kips (N)
P
A=allowable compressive strength at Point A′′ in Figure C-I5.3, determined in
accordance with Section I2, kips (N)
P
C=allowable axial compressive strength at Point C′′, kips (N)
M
r=required flexural strength using ASD load combinations, kip-in. (N-mm)
M
C=allowable flexural strength at Point C′′, determined in accordance with
Section I3, kip-in. (N-mm)
For biaxial bending, the value of the axial compressive strength at Point C may be dif-
ferent when computed for the major and minor axis. The smaller of the two values
should be used in Equation C-I5-1b and for the limits in Equations C-I5-1a and b.
Method 3—Design Guide 6. The approach presented in AISC Design Guide 6, Load
and Resistance Factor Design of W-Shapes Encased in Concrete(Griffis, 1992) may
M
M
M
Mrx
Cx
ry
Cy
+≤ 1
PP
PP
M
M
M
MrC
AC
rx
Cx
ry
Cy−

++≤ 1
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 369

16.1–370 COMBINED FLEXURE AND AXIAL FORCE [Comm. I5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
also be used to determine the beam-column strength of concrete encased W-shapes.
Although this method is based on an earlier version of the Specification, axial load
and moment strengths can conservatively be determined directly from the tables in
this design guide. The difference in resistance factors from the earlier Specification
may safely be ignored.
I6. LOAD TRANSFER
1. General Requirements
External forces are typically applied to composite members through direct connec-
tion to the steel member, bearing on the concrete, or a combination thereof. Design
of the connection for force application shall follow the applicable limit states within
Chapters J and K of the Specification as well as the provisions of Section I6. Note
that for concrete bearing checks on filled composite members, confinement can
affect the bearing strength for external force application as discussed in
Commentary Section I6.2.
Once a load path has been provided for the introduction of external force to the mem-
ber, the interface between the concrete and steel must be designed to transfer the
longitudinal shear required to obtain force equilibrium within the composite section.
Section I6.2 contains provisions for determining the magnitude of longitudinal shear
to be transferred between the steel and concrete depending upon the external force
application condition. Section I6.3 contains provisions addressing mechanisms for
the transfer of longitudinal shear.
The load transfer provisions of the Specification are primarily intended for the trans-
fer of longitudinal shear due to applied axial forces. Load transfer of longitudinal
shear due to applied bending moments is beyond the scope of the Specification; how-
ever, tests (Lu and Kennedy, 1994; Prion and Boehme, 1994; Wheeler and Bridge,
2006) indicate that filled composite members can develop their full plastic moment
capacity based on bond alone without the use of additional anchorage.
2. Force Allocation
The Specification addresses conditions in which the entire external force is applied
to the steel or concrete as well as conditions in which the external force is applied to
both materials concurrently. The provisions are based upon the assumption that in
order to achieve equilibrium across the cross section, transfer of longitudinal shears
along the interface between the concrete and steel shall occur such that the resulting
force levels within the two materials may be proportioned according to a plastic
stress distribution model. Load allocation based on the plastic stress distribution
model is represented by Equations I6-1 and I6-2. Equation I6-1 represents the mag-
nitude of force that is present within the concrete encasement or concrete fill at
equilibrium. The longitudinal shear generated by loads applied directly to the steel
section is determined based on the amount of force to be distributed to the concrete
according to Equation I6-1. Conversely, when load is applied to the concrete section
only, the longitudinal shear required for cross-sectional equilibrium is based upon the
amount of force to be distributed to the steel according to Equation I6-2. Where loads
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 370

Comm. I6.] LOAD TRANSFER 16.1–371
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
are applied concurrently to the two materials, the longitudinal shear force to be trans-
ferred to achieve cross-sectional equilibrium can be taken as either the difference in
magnitudes between the portion of external force applied directly to the concrete and
that required by Equation I6-1 or the portion of external force applied directly to the
steel section and that required by Equation I6-2.
When external forces are applied to the concrete of a filled composite member via
bearing, it is acceptable to assume that adequate confinement is provided by the steel
encasement to allow the maximum available bearing strength permitted by Equation
J8-2 to be used. This strength is obtained by setting the term=2. This dis-
cussion is in reference to the introduction of external load to the compression
member. The transfer of longitudinal shear within the compression member via bear-
ing mechanisms such as internal steel plates is addressed directly in Section I6.3a.
3. Force Transfer Mechanisms
Transfer of longitudinal shear by direct bearing via internal bearing mechanisms
(such as internal bearing plates) or shear connection via steel anchors is permitted
for both filled and encased composite members. Transfer of longitudinal shear via
direct bond interaction is permitted solely for filled composite members. Although
it is recognized that force transfer also occurs by direct bond interaction between
the steel and concrete for encased composite columns, this mechanism is typically
ignored and shear transfer is generally carried out solely with steel anchors
(Griffis, 1992).
The use of the force transfer mechanism providing the largest resistance is per-
missible. Superposition of force transfer mechanisms is not permitted as the
experimental data indicate that direct bearing or shear connection often does not
initiate until after direct bond interaction has been breached, and little experimen-
tal data is available regarding the interaction of direct bearing and shear connection
via steel anchors.
3a. Direct Bearing
For the general condition of assessing load applied directly to concrete in bearing,
and considering a supporting concrete area that is wider on all sides than the loaded
area, the nominal bearing strength for concrete may be taken as
(C-I6-1)
where
A
1=loaded area of concrete, in.
2
(mm
2
)
A
2=maximum area of the portion of the supporting surface that is geometrically
similar to and concentric with the loaded area, in.
2
(mm
2
)
f
c′=specified compressive concrete strength, ksi (MPa)
The value of must be less than or equal to 2 (ACI, 2008).
For the specific condition of transferring longitudinal shear by direct bearing via
internal bearing mechanisms, the Specification uses the maximum nominal bearing
AA21/
RfAAAnc= ′085 121./
AA21/
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 371

16.1–372 LOAD TRANSFER [Comm. I6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
strength allowed by Equation C-I6-1 of 1.7f c′A1as indicated in Equation I6-3. The
resistance factor for bearing, φ
B, is 0.65 (and the associated safety factor, Ω B, is 2.31)
in accordance with ACI 318.
3b. Shear Connection
Steel anchors for shear connection shall be designed as composite components
according to Section I8.3.
3c. Direct Bond Interaction
Force transfer by direct bond is commonly used in filled composite members as long
as the connections are detailed to limit local deformations (API, 1993; Roeder et al.,
1999). However, there is large scatter in the experimental data on the bond strength
and associated force transfer length of filled composite compression members, par-
ticularly when comparing tests in which the concrete core is pushed through the steel
tube (push-out tests) to tests in which a beam is connected just to the steel tube and
beam shear is transferred to the filled composite compression member. The added
eccentricities of the connection tests typically raise the bond strength of the filled
composite compression members.
A reasonable lower bound value of the bond strength of filled composite compres-
sion members that meet the provisions of Section I2 is 60 psi (0.4 MPa). While
push-out tests often show bond strengths below this value, eccentricity introduced
into the connection is likely to increase the bond strength to this value or higher.
Experiments also indicate that a reasonable assumption for the distance along the
length of the filled composite compression member required to transfer the force
from the steel HSS to the concrete core is approximately equal to twice the width
of a rectangular HSS or the diameter of a round HSS, to either side of the point of
load transfer.
The equations for direct bond interaction for filled composite compression members
assume that one face of a rectangular filled composite compression member or one-
quarter of the perimeter of a round filled composite compression member is engaged
in the transfer of stress by direct bond interaction for the connection elements fram-
ing into the compression member from each side. If connecting elements frame in
from multiple sides, the direct bond interaction strengths may be increased accord-
ingly. The scatter in the data leads to the recommended low value of the resistance
factor, φ, and the corresponding high value of the safety factor, Ω.
4. Detailing Requirements
To avoid overstressing the structural steel section or the concrete at connections in
encased or filled composite members, transfer of longitudinal shear is required to
occur within the load introduction length. The load introduction length is taken as
two times the minimum transverse dimension of the composite member both above
and below the load transfer region. The load transfer region is generally taken as the
depth of the connecting element as indicated in Figure C-I6.1. In cases where the
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 372

Comm. I6.] LOAD TRANSFER 16.1–373
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
applied forces are of such a magnitude that the required longitudinal shear transfer
cannot take place within the prescribed load introduction length, the designer should
treat the compression member as noncomposite along the additional length required
for shear transfer.
For encased composite members, steel anchors are required throughout the com-
pression member length in order to maintain composite action of the member under
incidental moments (including flexure induced by incipient buckling). These anchors
are typically placed at the maximum permitted spacing according to Section I8.3e.
Additional anchors required for longitudinal shear transfer shall be located within the
load introduction length as described previously.
Unlike concrete encased members, steel anchors in filled members are required only
when used for longitudinal shear transfer and are not required along the length of the
member outside of the introduction region. This discrepancy is due to the adequate
confinement provided by the steel encasement which prevents the loss of composite
action under incidental moments.
Fig. C-I6.1. Load transfer region/load introduction length.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 373

16.1–374 COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS [Comm. I7.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I7. COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS
In composite construction, floor or roof slabs consisting of composite metal deck
and concrete fill are typically connected to the structural framing to form compos-
ite diaphragms. Diaphragms are horizontally spanning members, analogous to deep
beams, which distribute seismic and/or wind loads from their origin to the lateral-
force-resisting-system either directly or in combination with load transfer elements
known as collectors or collector beams (also known as diaphragm struts and drag
struts).
Diaphragms serve the important structural function of interconnecting the compo-
nents of a structure to behave as a unit. Diaphragms are commonly analyzed as
simple-span or continuously spanning deep beams, and hence are subject to shear,
moment and axial forces as well as the associated deformations. Further informa-
tion on diaphragm classifications and behavior can be found in AISC (2006a) and
SDI (2001).
Composite Diaphragm Strength
Diaphragms should be designed to resist all forces associated with the collection and
distribution of seismic and/or wind forces to the lateral force resisting system. In
some cases, loads from other floors should also be included, such as at a level where
a horizontal offset in the lateral force resisting system exists. Several methods exist
for determining the in-place shear strength of composite diaphragms. Three such
methods are as follows:
(1) As determined for the combined strength of composite deck and concrete fill
including the considerations of composite deck configuration as well as type and
layout of deck attachments. One publication which is considered to provide such
guidance is the SDI Diaphragm Design Manual (SDI, 2004). This publication
covers many aspects of diaphragm design including strength and stiffness calcu-
lations. Calculation procedures are also provided for alternative deck to framing
connection methods such as puddle welding and mechanical fasteners in cases
where anchors are not used. Where stud anchors are used, stud shear strength val-
ues shall be as determined in Section I8.
(2) As the thickness of concrete over the steel deck is increased, the shear strength
can approach that for a concrete slab of the same thickness. For example, in com-
posite floor deck diaphragms having cover depths between 2 in. (50 mm) and
6 in. (150 mm), measured shear stresses in the order of 0.11 (where f
c′is in
units of ksi) have been reported. In such cases, the diaphragm strength of con-
crete metal deck slabs can conservatively be based on the principles of reinforced
concrete design (ACI, 2008) using the concrete and reinforcement above the
metal deck ribs and ignoring the beneficial effect of the concrete in the flutes.
(3) Results from in-plane tests of concrete filled diaphragms.
Collector Beams and Other Composite Elements
Horizontal diaphragm forces are transferred to the steel lateral load resisting frame
as axial forces in collector beams (also known as diaphragm struts or drag struts).
The design of collector beams has not been addressed directly in this Chapter. The
rigorous design of composite beam-columns (collector beams) is complex and few
′fc
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 374

Comm. I7.] COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS 16.1–375
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
detailed guidelines exist on such members. Until additional research becomes avail-
able, a reasonable simplified design approach is provided as follows:
Force Application. Collector beams can be designed for the combined effects of
axial load due to diaphragm forces as well as flexure due to gravity and/or lateral
loads. The effect of the vertical offset (eccentricity) between the plane of the
diaphragm and the centerline of the collector element should be investigated for
design.
Axial Strength. The available axial strength of collector beams can be determined
according to the noncomposite provisions of Chapter D and Chapter E. For com-
pressive loading, collector beams are generally considered unbraced for buckling
between braced points about their major axis, and fully braced by the composite
diaphragm for buckling about the minor axis.
Flexural Strength. The available flexural strength of collector beams can be deter-
mined using either the composite provisions of Chapter I or the noncomposite
provisions of Chapter F. It is recommended that all collector beams, even those
designed as noncomposite members, contain enough anchors to ensure that a minimum
of 25% composite action is achieved. This recommendation is intended to prevent
designers from utilizing a small amount of anchors solely to transfer diaphragm forces
on a beam designed as a noncomposite member. Anchors designed only to transfer hor-
izontal shear due to lateral forces will still be subjected to horizontal shear due to
flexure from gravity loads superimposed on the composite section and could become
overloaded under gravity loading conditions. Overloading the anchors could result in
loss of stud strength which could inhibit the ability of the collector beam to function as
required for the transfer of diaphragm forces due to lateral loads.
Interaction. Combined axial force and flexure can be assessed using the interaction
equations provided in Chapter H. As a reasonable simplification for design purposes,
it is acceptable to use the noncomposite axial strength and the composite flexural
strength in combination for determining interaction.
Shear Connection. It is not required to superimpose the horizontal shear due to lat-
eral forces with the horizontal shear due to flexure for the determination of steel
anchor requirements. The reasoning behind this methodology is twofold. First, the
load combinations as presented in ASCE/SEI 7 (ASCE, 2010) provide reduced live
load levels for load combinations containing lateral loads. This reduction decreases
the demand on the steel anchors and provides additional capacity for diaphragm force
transfer. Secondly, horizontal shear due to flexure flows in two directions. For a uni-
formly loaded beam, the shear flow emanates outwards from the center of the beam
as illustrated in Figure C-I7.1(a). Lateral loads on collector beams induce shear in one
direction. As these shears are superimposed, the horizontal shears on one portion of
the beam are increased, and the horizontal shears on the opposite portion of the beam
are decreased as illustrated in Figure C-I7.1(b). In lieu of additional research, it is con-
sidered acceptable for the localized additional loading of the steel anchors in the
additive beam segment to be considered offset by the concurrent unloading of the steel
anchors in the subtractive beam segment up to a force level corresponding to the sum-
mation of the nominal strengths of all studs placed on the beam.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 375

16.1–376 STEEL ANCHORS [Comm. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I8. STEEL ANCHORS
1. General
This section covers the strength, placement and limitations on the use of steel anchors
in composite construction. A new definition is provided for “steel anchor” which
replaces the old term “shear connector” in the 2005 and earlier Specifications. This
change was made to recognize the more generic term “anchor” as used in ACI 318,
PCI and throughout the industry. This term includes the traditional “shear connector,”
now defined as a “steel headed stud anchor” and a “steel channel anchor” both of
which have been part of previous Specifications. Both steel headed stud anchors and
hot-rolled steel channel anchors are addressed in the Specification. The design provi-
sions for steel anchors are given for composite beams with solid slabs or with formed
steel deck and for composite components. A new glossary term is provided for “com-
posite component” as a member, connecting element or assemblage in which steel and
concrete elements work as a unit in the distribution of internal forces. This term
excludes composite beams with solid slabs or formed steel deck. The provisions for
composite components include the use of a resistance factor or safety factor applied
to the nominal strength of the steel anchor, while for composite beams the resistance
factor and safety factor are part of the composite beam resistance and safety factor.
Studs not located directly over the web of a beam tend to tear out of a thin flange
before attaining full shear-resisting strength. To guard against this contingency,
(a) Shear flow due to gravity loads only
(b) Shear flow due to gravity and lateral loads in combination
Fig. C-I7.1. Shear flow at collector beams.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 376

Comm. I8.] STEEL ANCHORS 16.1–377
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the size of a stud not located over the beam web is limited to 2
1
/2times the flange
thickness (Goble, 1968). The practical application of this limitation is to select only
beams with flanges thicker than the stud diameter divided by 2.5.
Section I8.2 requires a minimum ratio value of four for the overall headed stud
anchor height to the shank diameter when calculating the nominal shear strength of
a steel headed stud anchor in a composite beam. This requirement has been used in
previous Specifications and has had a record of successful performance. For calcu-
lating the nominal shear strength of a steel headed stud anchor in other composite
components, Section I8.3 increases this minimum ratio value to five for normal
weight concrete and seven for lightweight concrete. Additional increases in the min-
imum value of this ratio are required for computing the nominal tensile strength or
the nominal strength for interaction of shear and tension in Section I8.3. The provi-
sions of Section I8.3 also establish minimum edge distances and center-to-center
spacings for steel headed stud anchors if the nominal strength equations in that sec-
tion are to be used. These limits are established in recognition of the fact that only
steel failure modes are checked in the calculation of the nominal anchor strengths in
Equations I8-3, I8-4 and I8-5. Concrete failure modes are not checked explicitly in
these equations (Pallarés and Hajjar, 2010a, 2010b), whereas concrete failure is
checked in Equation I8-1. This is discussed further in Commentary Section I8.3.
2. Steel Anchors in Composite Beams
2a. Strength of Steel Headed Stud Anchors
The present strength equations for composite beams and steel stud anchors are
based on the considerable research that has been published in recent years (Jayas
and Hosain, 1988a, 1988b; Mottram and Johnson, 1990; Easterling et al., 1993;
Roddenberry et al., 2002a). Equation I8-1 contains R
gand R pfactors to bring these
composite beam strength requirements comparable to other codes around the world.
Other codes use a stud strength expression similar to the AISC Specification but the
stud strength is reduced by a φ factor of 0.8 in the Canadian code (CSA, 2009) and
by an even lower partial safety factor (φ = 0.60) for the corresponding stud strength
equations in Eurocode 4(CEN, 2003). The AISC Specification includes the stud
anchor resistance factor as part of the overall composite beam resistance factor.
The majority of composite steel floor decks used today have a stiffening rib in the
middle of each deck flute. Because of the stiffener, studs must be welded off-center
in the deck rib. Studies have shown that steel studs behave differently depending
upon their location within the deck rib (Lawson, 1992; Easterling et al., 1993; Van
der Sanden, 1995; Yuan, 1996; Johnson and Yuan, 1998; Roddenberry et al., 2002a,
2002b). The so-called “weak” (unfavorable) and “strong” (favorable) positions are
illustrated in Figure C-I8.1. Furthermore, the maximum value shown in these studies
for studs welded through steel deck is on the order of 0.7 to 0.75F
uAsc. Studs placed
in the weak position have strengths as low as 0.5F
uAsc.
The strength of stud anchors installed in the ribs of concrete slabs on formed steel
deck with the ribs oriented perpendicular to the steel beam is reasonably estimated
by the strength of stud anchors computed from Equation I8-1, which sets the default
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 377

16.1–378 STEEL ANCHORS [Comm. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
value for steel stud strength equal to that for the weak stud position. Both AISC
(1997a) and the Steel Deck Institute (SDI, 2001) recommend that studs be detailed
in the strong position, but ensuring that studs are placed in the strong position is not
necessarily an easy task because it is not always easy for the installer to determine
where along the beam the particular rib is located relative to the end, midspan, or
point of zero shear. Therefore, the installer may not be clear on which location is the
strong, and which is the weak position.
In most composite floors designed today, the ultimate strength of the composite sec-
tion is governed by the stud strength, as full composite action is typically not the
most economical solution to resist the required strength. The degree of composite
action, as represented by the ratio ΣQ
n/FyAs(the total shear connection strength
divided by the yield strength of the steel cross section), influences the flexural
strength as shown in Figure C-I8.2.
Fig. C-I8.2. Normalized flexural strength versus shear connection strength ratio
(
W16×31, F y=50 ksi, Y2 =4.5 in.)
(Easterling et al., 1993).
Fig. C-I8.1. Weak and strong stud positions
[Roddenberry et al. (2002b)].
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 378

Comm. I8.] STEEL ANCHORS 16.1–379
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
It can be seen from Figure C-I8.2 that a relatively large change in shear connection
strength results in a much smaller change in flexural strength. Thus, formulating the
influence of steel deck on shear anchor strength by conducting beam tests and back-
calculating through the flexural model, as was done in the past, leads to an inaccurate
assessment of stud strength when installed in metal deck.
The changes in stud anchor requirements that occurred in the 2005 Specification
were not a result of either structural failures or performance problems. Designers
concerned about the strength of existing structures based on earlier Specification
requirements need to note that the slope of the curve shown in Figure C-I8.2 is rather
flat as the degree of composite action approaches one. Thus, even a large change in
steel stud strength does not result in a proportional decrease of the flexural strength.
In addition, as noted above, the current expression does not account for all the pos-
sible shear force transfer mechanisms, primarily because many of them are difficult
or impossible to quantify. However, as noted in Commentary Section I3.1, as the
degree of composite action decreases, the deformation demands on steel studs
increase. This effect is reflected by the increasing slope of the relationship shown in
Figure C-I8.2 as the degree of composite action decreases. Thus designers should
specify 50% composite action or more.
The reduction factor, R
p, for headed stud anchors used in composite beams with no
decking has been reduced from 1.0 to 0.75 in the 2010 Specification. The methodol-
ogy used for headed stud anchors that incorporates R
gand R pwas implemented in
the 2005 Specification. The research (Roddenberry et al., 2002a) in which the factors
(R
gand R p) were developed focused almost exclusively on cases involving the use
of headed stud anchors welded through steel deck. The research pointed to the like-
lihood that the solid slab case should use R
p=0.75, however, the body of test data
had not been established to support the change. More recent research has shown that
the 0.75 factor is appropriate (Pallarés and Hajjar, 2010a).
2b. Strength of Steel Channel Anchors
Equation I8-2 is a modified form of the formula for the strength of channel anchors
presented in Slutter and Driscoll (1965), which was based on the results of pushout
tests and a few simply supported beam tests with solid slabs by Viest et al. (1952).
The modification has extended its use to lightweight concrete.
Eccentricities need not be considered in the weld design for cases where the welds at
the toe and heel of the channel are greater than
3
/16in. (5 mm) and the anchor meets
the following requirements:
10 55
80
60
05 16
..
.
.
..
≤≤


≤≤
t
t
H
t
L
t
R
t
f
w
w
c
f
w
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 379

16.1–380 STEEL ANCHORS [Comm. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
t
f=flange thickness of channel anchor, in. (mm)
t
w=thickness of channel anchor web, in. (mm)
H=height of anchor, in. (mm)
L
c=length of anchor, in. (mm)
R=radius of the fillet between the flange and the web of the anchor, in. (mm)
2d. Detailing Requirements
Uniform spacing of shear anchors is permitted, except in the presence of heavy con-
centrated loads.
The minimum spacing of anchors along the length of the beam, in both flat soffit
concrete slabs and in formed steel deck with ribs parallel to the beam, is six diame-
ters; this spacing reflects development of shear planes in the concrete slab (Ollgaard
et al., 1971). Because most test data are based on the minimum transverse spacing of
four diameters, this transverse spacing was set as the minimum permitted. If the steel
beam flange is narrow, this spacing requirement may be achieved by staggering the
studs with a minimum transverse spacing of three diameters between the staggered
row of studs. When deck ribs are parallel to the beam and the design requires more
studs than can be placed in the rib, the deck may be split so that adequate spacing is
available for stud installation. Figure C-I8.3 shows possible anchor arrangements.
3. Steel Anchors in Composite Components
This section applies to steel headed stud anchors used primarily in the load transfer
(connection) region of composite compression members and beam-columns, con-
crete-encased and filled composite beams, composite coupling beams, and composite
walls (see Figure C-I8.4), where the steel and concrete are working compositely
within a member. In such cases, it is possible that the steel anchor will be subjected
to shear, tension, or interaction of shear and tension. As the strength of the connec-
tors in the load transfer region must be assessed directly (rather than implicitly within
the strength assessment of a composite member), a resistance or safety factor should
be applied, comparable to the design of bolted connections in Chapter J.
Fig. C-I8.3. Steel anchor arrangements.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 380

Comm. I8.] STEEL ANCHORS 16.1–381
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
These provisions are not intended for hybrid construction where the steel and con-
crete are not working compositely, such as with embed plates. Section I8.2 specifies
the strength of steel anchors embedded in a solid concrete slab or in a concrete slab
with formed steel deck in a composite beam.
Data from a wide range of experiments indicate that the failure of steel headed stud
anchors subjected to shear occurs in the steel shank or weld in a large percentage of
cases if the ratio of the overall height to the shank diameter of the steel headed stud
anchor is greater than five for normal weight concrete. In the case of lightweight con-
crete, the necessary minimum ratio between the overall height of the stud and the
diameter increases up to seven (Pallarés and Hajjar, 2010a). A similarly large percent-
age of failures occur in the steel shank or weld of steel headed stud anchors subjected
to tension or interaction of shear and tension if the ratio of the overall height to shank
diameter of the steel headed stud anchor is greater than eight for normal weight con-
crete. In the case of lightweight concrete, the necessary minimum ratio between the
overall height of the stud and the diameter increases up to ten for steel headed stud
anchors subjected to tension (Pallarés and Hajjar, 2010b). For steel headed stud
anchors subjected to interaction of shear and tension in lightweight concrete, there are
so few experiments available that it is not possible to discern sufficiently when the steel
material will control the failure mode. For the strength of steel headed stud anchors in
lightweight concrete subjected to interaction of shear and tension, it is recommended
that the provisions of ACI 318 (ACI, 2008) Appendix D be used.
Fig. C-I8.4. Typical reinforcement detailing in a composite wall for
steel headed stud anchors subjected to tension.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 381

16.1–382 STEEL ANCHORS [Comm. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The use of edge distances in ACI 318 Appendix D to compute the strength of a steel
anchor subjected to concrete crushing failure is complex. It is rare in composite con-
struction that there is a nearby edge that is not uniformly supported in a way that
prevents the possibility of concrete breakout failure due to a close edge. Thus, for
brevity, the provisions in this Specification simplify the assessment of whether it is
warranted to check for a concrete failure mode. Additionally, if an edge is supported
uniformly, as would be common in composite construction, it is assumed that a con-
crete failure mode will not occur due to the edge condition. Thus, if these provisions
are to be used, it is important that it be deemed by the engineer that a concrete
breakout failure mode in shear is directly avoided through having the edges per-
pendicular to the line of force supported, and the edges parallel to the line of force
sufficiently distant that concrete breakout through a side edge is not deemed viable.
For loading in shear, the determination of whether breakout failure in the concrete
is a viable failure mode for the stud anchor is left to the engineer. Alternatively, the
provisions call for required anchor reinforcement with provisions comparable to
those of ACI 318 Appendix D, Section D6.2.9 (which in turn refers to Chapter 12
of ACI 318) (ACI, 2008). In addition, the provisions of the applicable building code
or ACI 318 Appendix D may be used directly to compute the strength of the steel
headed stud anchor.
The steel limit states and resistance factors (and corresponding safety factors) covered
in this section match with the corresponding limit states of ACI 318 Appendix D,
although they were assessed independently for these provisions. As only steel limit
states are required to be checked if there are no edge conditions, experiments that sat-
isfy the minimum height/diameter ratio but that included failure of the steel headed
stud anchor either in the steel or in the concrete were included in the assessment of
the resistance and safety factors (Pallarés and Hajjar, 2010a, 2010b).
For steel headed stud anchors subjected to tension or combined shear and tension
interaction, it is recommended that anchor reinforcement always be included around
the stud to mitigate premature failure in the concrete. If the ratio of the diameter of
the head of the stud to the shank diameter is too small, the provisions call for use of
ACI 318 Appendix D to compute the strength of the steel headed stud anchor. If the
distance to the edge of the concrete or the distance to the neighboring anchor is too
small, the provisions call for required anchor reinforcement with provisions compa-
rable to those of ACI 318 Appendix D, Section D5.2.9 (which in turn refers to
Chapter 12 of ACI 318) (ACI, 2008). Alternatively, the provisions of the applicable
building code or ACI 318 Appendix D may be also be used directly to compute the
strength of the steel headed stud anchor.
I9. SPECIAL CASES
Tests are required for composite construction that falls outside the limits given in this
Specification. Different types of steel anchors may require different spacing and
other detailing than steel headed stud and channel anchors.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 382

16.1–383
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER J
DESIGN OF CONNECTIONS
The provisions of Chapter J cover the design of connections not subject to cyclic loads.
Wind and other environmental loads are generally not considered to be cyclic loads. The
provisions generally apply to connections other than HSS and box members. See Chapter K
for HSS and box member connections and Appendix 3 for fatigue provisions.
J1. GENERAL PROVISIONS
1. Design Basis
In the absence of defined design loads, a minimum design load should be considered.
Historically, a value of 10 kips (44 kN) for LRFD and 6 kips (27 kN) for ASD have
been used as reasonable values. For smaller elements such as lacing, sag rods, girts
or similar small members, a load more appropriate to the size and use of the part
should be used. Both design requirements and construction loads should be consid-
ered when specifying minimum loads for connections.
2. Simple Connections
Simple connections are considered in Sections B3.6a and J1.2. In Section B3.6a,
simple connections are defined (with further elaboration in Commentary Section
B3.6) in an idealized manner for the purpose of analysis. The assumptions made in
the analysis determine the outcome of the analysis that serves as the basis for design
(for connections that means the force and deformation demands that the connection
must resist). Section J1.2 focuses on the actual proportioning of the connection ele-
ments to achieve the required resistance. Thus, Section B3.6a establishes the
modeling assumptions that determine the design forces and deformations for use in
Section J1.2.
Sections B3.6a and J1.2 are not mutually exclusive. If a “simple” connection is
assumed for analysis, the actual connection, as finally designed, must perform con-
sistent with that assumption. A simple connection must be able to meet the required
rotation and must not introduce strength and stiffness that significantly alter the rota-
tional response.
3. Moment Connections
Two types of moment connections are defined in Section B3.6b: fully restrained
(FR) and partially restrained (PR). FR moment connections must have sufficient
strength and stiffness to transfer moment and maintain the angle between connected
members. PR moment connections are designed to transfer moments but also allow
rotation between connected members as the loads are resisted. The response char-
acteristics of a PR connection must be documented in the technical literature or
established by analytical or experimental means. The component elements of a PR
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 383

16.1–384 GENERAL PROVISIONS [Comm. J1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
connection must have sufficient strength, stiffness and deformation capacity to sat-
isfy the design assumptions.
4. Compression Members with Bearing Joints
The provisions for “compression members other than columns finished to bear” are
intended to account for member out-of-straightness and also to provide a degree of
robustness in the structure to resist unintended or accidental lateral loadings that may
not have been considered explicitly in the design.
A provision analogous to that in Section J1.4(2)(i), requiring that splice materials and
connectors have an available strength of at least 50% of the required compressive
strength, has been in the AISC Specifications since 1946. The current Specification
clarifies this requirement by stating that the force for proportioning the splice mate-
rials and connectors is a tensile force. This avoids uncertainty as to how to handle
situations where compression on the connection imposes no force on the connectors.
Proportioning the splice materials and connectors for 50% of the required member
strength is simple, but can be very conservative. In Section J1.4(2)(ii), the
Specification offers an alternative that addresses directly the design intent of these
provisions. The lateral load of 2% of the required compressive strength of the mem-
ber simulates the effect of a kink at the splice, caused by an end finished slightly
out-of-square or other construction condition. Proportioning the connection for the
resulting moment and shear also provides a degree of robustness in the structure.
5. Splices in Heavy Sections
Solidified but still hot weld metal contracts significantly as it cools to ambient tem-
perature. Shrinkage of large groove welds between elements that are not free to move
so as to accommodate the shrinkage causes strains in the material adjacent to the
weld that can exceed the yield point strain. In thick material the weld shrinkage is
restrained in the thickness direction, as well as in the width and length directions,
causing triaxial stresses to develop that may inhibit the ability to deform in a ductile
manner. Under these conditions, the possibility of brittle fractureincreases.
When splicing hot-rolled shapes with flange thickness exceeding 2 in. (50 mm) or
heavy welded built-up members, these potentially harmful weld shrinkage strains
can be avoided by using bolted splices, fillet-welded lap splices, or splices that com-
bine a welded and bolted detail (see Figure C-J1.1). Details and techniques that
perform well for materials of modest thickness usually must be changed or supple-
mented by more demanding requirements when welding thick material.
The provisions of AWS D1.1/D1.1M (AWS, 2010) are minimum requirements that
apply to most structural welding situations. However, when designing and fabricat-
ing welded splices of hot-rolled shapes with flange thicknesses exceeding 2 in. (50
mm) and similar built-up cross sections, special consideration must be given to all
aspects of the welded splice detail:
(1) Notch-toughness requirements are required to be specified for tension members;
see Commentary Section A3.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 384

Comm. J1.] GENERAL PROVISIONS 16.1–385
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(2) Generously sized weld access holes (see Section J1.6) are required to provide
increased relief from concentrated weld shrinkage strains, to avoid close juncture
of welds in orthogonal directions, and to provide adequate clearance for the exer-
cise of high quality workmanship in hole preparation, welding, and for ease of
inspection.
(3) Preheating for thermal cutting is required to minimize the formation of a hard
surface layer. (See Section M2.2.)
(4) Grinding of copes and weld access holes to bright metal to remove the hard sur-
face layer is required, along with inspection using magnetic particle or
dye-penetrant methods, to verify that transitions are free of notches and cracks.
In addition to tension splices of truss chord members and tension flanges of flexural
members, other joints fabricated from heavy sections subject to tension should be
given special consideration during design and fabrication.
Alternative details that do not generate shrinkage strains can be used. In connections
where the forces transferred approach the member strength, direct welded groove
joints may still be the most effective choice.
Earlier editions of this Specification mandated that backing bars and weld tabs be
removed from all splices of heavy sections. These requirements were deliberately
removed, being judged unnecessary and, in some situations, potentially resulting in
more harm than good. The Specification still permits the engineer of record to spec-
ify their removal when this is judged appropriate.
The previous requirement for the removal of backing bars necessitated, in some sit-
uations, that such operations be performed out-of-position; that is, the welding
required to restore the backgouged area had to be applied in the overhead position.
This may necessitate difficult equipment for gaining access, different welding
equipment, processes and/or procedures, and other practical constraints. When box
sections made of plate are spliced, access to the interior side (necessary for backing
removal) is typically impossible.
Fig. C-J1.1. Alternative splices that minimize weld restraint tensile stresses.
(a) Shear plate welded
to web
(b) Shear plate welded
to flange tips
(c) Bolted splice plates
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 385

16.1–386 GENERAL PROVISIONS [Comm. J1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Weld tabs that are left in place on splices act as “short attachments” and attract little
stress. Even though it is acknowledged that weld tabs might contain regions of infe-
rior quality weld metal, the stress concentration effect is minimized since little stress
is conducted through the attachment.
6. Weld Access Holes
Weld access holes are frequently required in the fabrication of structural components.
The geometry of these structural details can affect the components’ performance. The
size and shape of beam copes and weld access holes can have a significant effect on
the ease of depositing sound weld metal, the ability to conduct nondestructive exam-
inations, and the magnitude of the stresses at the geometric discontinuities produced
by these details.
Weld access holes used to facilitate welding operations are required to have a mini-
mum length from the toe of the weld preparation (see Figure C-J1.2) equal to 1.5
times the thickness of the material in which the hole is made. This minimum length
Notes: These are typical details for joints welded from one side against steel backing.
Alternative details are discussed in the commentary text.
1) Length: Greater of 1.5
twor 1
1
/2in. (38 mm)
2) Height: Greater of 1.0
twor
3
/4in. (19 mm) but need not exceed 2 in. (50 mm)
3)
R: 3/8 in. min. (10 mm). Grind the thermally cut surfaces of weld access holes in
heavy shapes as defined in Sections A3.1(c) and (d).
4) Slope
‘a’forms a transition from the web to the flange. Slope ‘b’may be horizontal.
5) The bottom of the top flange is to be contoured to permit the tight fit of backing bars
where they are to be used.
6) The web-to-flange weld of built-up members is to be held back a distance of at least
the weld size from the edge of the access hole.
Built-up shapes assembled
after cutting the weld access
hole.
Rolled shapes and built-up shapes assembled prior to
cutting the weld access hole.
Alternate 1 Alternate 2 Alternate 3
Fig. C-J1.2. Weld access hole geometry.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 386

Comm. J1.] GENERAL PROVISIONS 16.1–387
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is expected to accommodate a significant amount of the weld shrinkage strains at the
web-to-flange intersection.
The height of the weld access hole must provide sufficient clearance for ease of weld-
ing and inspection and must be large enough to allow the welder to deposit sound
weld metal through and beyond the web. A weld access hole height equal to 1.0 times
the thickness of the material with the access hole but not less than
3
/4in. (19 mm) has
been judged to satisfy these welding and inspection requirements. The height of the
weld access hole need not exceed 2 in. (50 mm).
The geometry of the reentrant corner between the web and the flange determines the
level of stress concentration at that location. A 90° reentrant corner having a very
small radius produces a very high stress concentration that may lead to rupture of the
flange. Consequently, to minimize the stress concentration at this location, the edge
of the web is sloped or curved from the surface of the flange to the reentrant surface
of the weld access hole.
Stress concentrations along the perimeter of weld access holes also can affect the per-
formance of the joint. Consequently, weld access holes are required to be free of
stress raisers such as notches and gouges.
Stress concentrations at web-to-flange intersections of built-up shapes can be
decreased by terminating the weld away from the access hole. Thus, for built-up
shapes with fillet welds or partial-joint-penetration groove welds that join the web to
the flange, the weld access hole may terminate perpendicular to the flange, provided
that the weld is terminated a distance equal to or greater than one weld size away
from the access hole.
7. Placement of Welds and Bolts
Slight eccentricities between the gravity axis of single and double angle members
and the center of gravity of connecting bolts or rivets have long been ignored as
having negligible effect on the static strength of such members. Tests have shown
Fig. C-J1.3. Balanced welds
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:46 PM Page 387

16.1–388 GENERAL PROVISIONS [Comm. J1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
that similar practice is warranted in the case of welded members in statically loaded
structures (Gibson and Wake, 1942).
However, the fatigue life of eccentrically loaded welded angles has been shown to be
very short (Klöppel and Seeger, 1964). Notches at the roots of fillet welds are harm-
ful when alternating tensile stresses are normal to the axis of the weld, as could occur
due to bending when axial cyclic loading is applied to angles with end welds not bal-
anced about the neutral axis. Accordingly, balanced welds are required when such
members are subjected to cyclic loading (see Figure C-J1.3).
8. Bolts in Combination with Welds
As in previous editions, this Specification does not permit bolts to share the load with
welds except for bolts in shear connections. The conditions for load sharing have,
however, changed substantially based on recent research (Kulak and Grondin, 2003).
For shear-resisting connections with longitudinally loaded fillet welds, load sharing
between the longitudinal welds and bolts in standard holes or short-slotted holes
transverse to the direction of the load is permitted, but the contribution of the bolts is
limited to 50% of the available strength of the equivalent bearing-type connection.
Both ASTM A307 and high-strength bolts are permitted. The heat of welding near
bolts will not alter the mechanical properties of the bolts.
In making alterations to existing structures, the use of welding to resist loads other
than those produced by existing dead load present at the time of making the alteration
is permitted for riveted connections and high-strength bolted connections if the bolts
are pretensioned to the levels in Tables J3.1 or J3.1M prior to welding.
The restrictions on bolts in combination with welds do not apply to typical bolted/
welded beam-to-girder and beam-to-column connections and other comparable
connections (Kulak et al., 1987).
9. High-Strength Bolts in Combination with Rivets
When high-strength bolts are used in combination with rivets, the ductility of the riv-
ets permits the direct addition of the strengths of the two fastener types.
10. Limitations on Bolted and Welded Connections
Pretensioned bolts, slip-critical bolted connections, or welds are required whenever
connection slip can be detrimental to the performance of the structure or there is a
possibility that nuts will back off. Snug-tightened high-strength bolts are recom-
mended for all other connections.
J2. WELDS
Selection of weld type [complete-joint-penetration (CJP) groove weld versus fillet
versus partial-joint-penetration (PJP) groove weld] depends on base connection
geometry (butt versus T or corner), in addition to required strength, and other issues
discussed below. Notch effects and the ability to evaluate with nondestructive testing
may affect joint selection for cyclically loaded joints or joints expected to deform
plastically.
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:47 PM Page 388

Comm. J2.] WELDS 16.1–389
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Groove Welds
1a. Effective Area
Tables J2.1 and J2.2 show that the effective throat of partial-joint-penetration and
flare groove welds is dependent upon the weld process and the position of the weld.
It is recommended that the design drawings should show either the required strength
or the required effective throat size and allow the fabricator to select the process and
determine the position required to meet the specified requirements. Effective throats
larger than those in Table J2.2 can be qualified by tests. Weld reinforcement is not
used in determining the effective throat of a groove weld but reinforcing fillets on T
and corner joints are accounted for in the effective throat. See AWS D1.1/D1.1M
Annex A (AWS, 2010).
1b. Limitations
Table J2.3 gives the minimum effective throat thickness of a PJP groove weld.
Notice that for PJP groove welds Table J2.3 goes up to a plate thickness of over 6
in. (150 mm) and a minimum weld throat of
5
/8in. (16 mm), whereas for fillet welds
Table J2.4 goes up to a plate thickness of over
3
/4in. (19 mm) and a minimum leg
size of fillet weld of only
5
/16in. (8 mm). The additional thickness for PJP groove
welds is intended to provide for reasonable proportionality between weld and mate-
rial thickness. The use of single-sided PJP groove welds in joints subject to rotation
about the toe of the weld is discouraged.
2. Fillet Welds
2a. Effective Area
The effective throat of a fillet weld does not include the weld reinforcement, nor any
penetration beyond the weld root. Some welding procedures produce a consistent
penetration beyond the root of the weld. This penetration contributes to the strength
of the weld. However, it is necessary to demonstrate that the weld procedure to be
used produces this increased penetration. In practice, this can be done initially by
cross-sectioning the runoff plates of the joint. Once this is done, no further testing is
required, as long as the welding procedure is not changed.
2b. Limitations
Table J2.4 provides the minimum size of a fillet weld for a given thickness of the
thinner part joined. The requirements are not based on strength considerations, but
on the quench effect of thick material on small welds. Very rapid cooling of weld
metal may result in a loss of ductility. Furthermore, the restraint to weld metal shrink-
age provided by thick material may result in weld cracking.
The use of the thinner part to determine the minimum size weld is based on the
prevalence of the use of filler metal considered to be “low hydrogen.” Because
a
5
/16-in. (8 mm) fillet weld is the largest that can be deposited in a single pass
by the SMAW process and still be considered prequalified under AWS D1.1/D1.1M,
5
/16in. (8 mm) applies to all material greater than
3
/4in. (19 mm) in thickness, but
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 389

16.1–390 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
minimum preheat and interpass temperatures are required by AWS D1.1/D1.1M. The
design drawings should reflect these minimum sizes, and the production welds
should be of these minimum sizes.
For thicker members in lap joints, it is possible for the welder to melt away the upper
corner, resulting in a weld that appears to be full size but actually lacks the required
weld throat dimension. See Figure C-J2.1(a). On thinner members, the full weld
throat is likely to be achieved, even if the edge is melted away. Accordingly, when
the plate is
1
/4in. (6 mm) or thicker, the maximum fillet weld size is
1
/16in. (2 mm)
less than the plate thickness, t, which is sufficient to ensure that the edge remains.
See Figure C-J2.1(b).
(a) Incorrect for t ≥
1
/4in. (b) Correct for t ≥
1
/4in.
Fig. C-J2.1. Identification of plate edge.
Fig. C-J2.2. Longitudinal fillet welds.
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:51 PM Page 390

Comm. J2.] WELDS 16.1–391
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Where longitudinal fillet welds are used alone in a connection (see Figure C-J2.2),
Section J2.2b requires that the length of each weld be at least equal to the width of
the connecting material because of shear lag (Freeman, 1930).
By providing a minimum lap of five times the thickness of the thinner part of a lap
joint, the resulting rotation of the joint when pulled will not be excessive, as shown
in Figure C-J2.3. Fillet welded lap joints under tension tend to open and apply a tear-
ing action at the root of the weld as shown in Figure C-J2.4(b), unless restrained by
a force, F, as shown in Figure C-J2.4(a). The minimum length reduces stresses due
to Poisson effects.
The use of single-sided fillet welds in joints subject to rotation around the toe of the
weld is discouraged. End returns are not essential for developing the full length of
fillet welded connections and have a negligible effect on their strength. Their use has
been encouraged to ensure that the weld size is maintained over the length of the
weld, to enhance the fatigue resistance of cyclically loaded flexible end connections,
and to increase the plastic deformation capability of such connections.
The weld strength database on which the specifications were developed had no end
returns. This includes the study reported in Higgins and Preece (1968), the seat angle
tests in Lyse and Schreiner (1935), the seat and top angle tests in Lyse and Gibson
(1937), the tests on beam webs welded directly to a column or girder by fillet welds in
Johnston and Deits (1942), and the tests on eccentrically loaded welded connections
reported by Butler et al. (1972). Hence, the current strength values and joint design
models do not require end returns when the required weld size is provided. Johnston
and Green (1940) noted that movement consistent with the design assumption of no
end restraint (in other words, joint flexibility) was enhanced without end returns. They
also verified that greater plastic deformation of the connection was achieved when end
returns existed, although the strength was not significantly different.
Fig. C-J2.3. Minimum lap.
Fig. C-J2.4. Restraint of lap joints.
(a) Restrained (b) Unrestrained
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 391

16.1–392 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
When longitudinal fillet welds parallel to the stress are used to transmit the load to
the end of an axially loaded member, the welds are termed “end loaded.” Typical
examples of such welds include, but are not limited to (a) longitudinally welded lap
joints at the end of axially loaded members, (b) welds attaching bearing stiffeners,
and (c) similar cases. Typical examples of longitudinally loaded fillet welds that are
not considered end loaded include, but are not limited to (a) welds that connect plates
or shapes to form built-up cross sections in which the shear force is applied to each
increment of length of weld depending upon the distribution of the shear along the
length of the member, and (b) welds attaching beam web connection angles and shear
plates because the flow of shear force from the beam or girder web to the weld is
essentially uniform throughout the weld length; that is, the weld is not end-loaded
despite the fact that it is loaded parallel to the weld axis. Neither does the reduction
coefficient, β, apply to welds attaching stiffeners to webs because the stiffeners and
welds are not subject to calculated axial stress but merely serve to keep the web flat.
The distribution of stress along the length of end-loaded fillet welds is not uniform
and is dependent upon complex relationships between the stiffness of the longitudi-
nal fillet weld relative to the stiffness of the connected materials. Experience has
shown that when the length of the weld is equal to approximately 100 times the weld
size or less, it is reasonable to assume that the full length is effective. For weld
lengths greater than 100 times the weld size, the effective length should be taken less
than the actual length. The reduction factor, β, provided in Section J2.2b is the equiv-
alent to that given in CEN (2005), which is a simplified approximation of
exponential formulas developed by finite element studies and tests performed in
Europe over many years. The provision is based on the combined consideration of
the nominal strength for fillet welds with leg size less than
1
/4in. (6 mm) and of a
judgment-based serviceability limit of slightly less than
1
/32in. (1 mm) displacement
at the end of the weld for welds with leg size
1
/4in. (6 mm) and larger. Given the
empirically derived mathematical form of the βfactor, as the ratio of weld length to
weld size, w, increases beyond 300, the effective length of the weld begins to
decrease, illogically causing a weld of greater length to have progressively less
strength. Therefore, the effective length is taken as 0.6(300)w =180w when the weld
length is greater than 300 times the leg size.
In most cases, fillet weld terminations do not affect the strength or serviceability of
connections. However, in certain cases the disposition of welds affect the planned
function of the connection, and notches may affect the static strength and/or the
resistance to crack initiation if cyclic loads of sufficient magnitude and frequency
occur. For these cases, termination details at the end of the joint are specified to pro-
vide the desired profile and performance. In cases where profile and notches are less
critical, terminations are permitted to be run to the end. In most cases, stopping the
weld short of the end of the joint will not reduce the strength of the weld. The small
loss of weld area due to stopping the weld short of the end of the joint by one to two
weld sizes is not typically considered in the calculation of weld strength. Only short
weld lengths will be significantly affected by this.
The following situations require special attention:
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 392

Comm. J2.] WELDS 16.1–393
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-J2.5. Fillet welds near tension edges.
(1) For lapped joints where one part extends beyond the end or edge of the part to
which it is welded and if the parts are subject to calculated tensile stress at the
start of the overlap, it is important that the weld terminate a short distance from
the stressed edge. For one typical example, the lap joint between the tee chord
and the web members of a truss, the weld should not extend to the edge of the
tee stem (see Figure C-J2.5). The best technique to avoid inadvertent notches at
this critical location is to strike the welding arc at a point slightly back from the
edge and proceed with welding in the direction away from the edge (see Figure
C-J2.6). Where framing angles extend beyond the end of the beam web to which
they are welded, the free end of the beam web is subject to zero stress; thus, it
is permissible for the fillet weld to extend continuously across the top end, along
the side and along the bottom end of the angle to the extreme end of the beam
(see Figure C-J2.7).
Fig. C-J2.6. Suggested direction of welding travel to avoid notches.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 393

16.1–394 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-J2.8. Flexible connection returns optional unless subject to fatigue.
Fig. C-J2.7. Fillet weld details on framing angles.
(2) For connections such as framing angles and framing tees, which are assumed in
the design of the structure to be flexible connections, the tension edges of the out-
standing legs or flanges must be left unwelded over a substantial portion of their
length to provide flexibility in the connection. Tests have shown that the static
strength of the connection is the same with or without end returns; therefore, the
use of returns is optional, but if used, their length must be restricted to not more
than four times the weld size (Johnston and Green, 1940) (see Figure C-J2.8).
(3) Experience has shown that when ends of intermediate transverse stiffeners on
the webs of plate girders are not welded to the flanges (the usual practice), small
torsional distortions of the flange occur near shipping bearing points in the
normal course of shipping by rail or truck and may cause high out-of-plane
bending stresses (up to the yield point) and fatigue cracking at the toe of the
web-to-flange welds. This has been observed even with closely fitted stiffeners.
The intensity of these out-of-plane stresses may be effectively limited and
cracking prevented if “breathing room” is provided by terminating the stiffener
weld away from the web-to-flange welds. The unwelded distance should not
exceed six times the web thickness so that column buckling of the web within
the unwelded length does not occur.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 394

Comm. J2.] WELDS 16.1–395
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(4) For fillet welds that occur on opposite sides of a common plane, it is difficult to
deposit a weld continuously around the corner from one side to the other without
causing a gouge in the corner of the parts joined; therefore, the welds must be
interrupted at the corner (see Figure C-J2.9).
3. Plug and Slot Welds
A plug weld is a weld made in a circular hole in one member of a joint fusing that
member to another member. A slot weld is a weld made in an elongated hole in one
member of a joint fusing that member to another member. Both plug and slot welds
are only applied to lap joints. Care should be taken when plug or slot welds are
applied to structures subject to cyclic loading as the fatigue performance of these
welds is limited.
A fillet weld inside a hole or slot is not a plug weld. A “puddle weld,” typically used
for joining decking to the supporting steel, is not the same as a plug weld.
3a. Effective Area
When plug and slot welds are detailed in accordance with Section J2.3b, the strength
of the weld is controlled by the size of the fused area between the weld and the base
metal. The total area of the hole or slot is used to determine the effective area.
3b. Limitations
Plug and slot welds are limited to situations where they are loaded in shear, or where
they are used to prevent elements of a cross section from buckling, such as for web
doubler plates on deeper rolled sections. Plug and slot welds are only allowed where
the applied loads result in shear between the joined materials—they are not to be used
to resist direct tensile loads. This restriction does not apply to fillets in holes or slots.
The geometric limitations on hole and slot sizes are prescribed in order to provide a
geometry that is conducive to good fusion. Deep, narrow slots and holes make it dif-
ficult for the welder to gain access and see the bottom of the cavity into which weld
Fig. C-J2.9. Details for fillet welds that occur on opposite sides of a common plane.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 395

16.1–396 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
metal must be placed. Where access is difficult, fusion may be limited, and the
strength of the connection reduced.
4. Strength
The strength of welds is governed by the strength of either the base material or the
deposited weld metal. Table J2.5 presents the nominal weld strengths and the φand
Ωfactors, as well as the limitations on filler metal strength levels.
The strength of a joint that contains a complete-joint-penetration (CJP) groove weld,
whether loaded in tension or compression, is dependent upon the strength of the
base metal, and no computation of the strength of the CJP groove weld is required.
For tension applications, matching strength filler metal is required, as defined in
AWS D1.1/D1.1M Table 3.1. For compression applications, up to a 10 ksi (70 MPa)
decrease in filler metal strength is permitted, which is equivalent to one strength level.
CJP groove welds loaded in tension or compression parallel to the weld axis, such as
for the groove welded corners of box columns, do not transfer primary loads across
the joint. In cases such as this, no computation of the strength of the CJP groove weld
strength is required.
CJP groove welded tension joints are intended to provide strength equivalent to the
base metal, therefore matching filler metal is required. CJP groove welds have been
shown not to exhibit compression failure even when they are undermatched. The
amount of undermatching before unacceptable deformation occurs has not been
established, but one standard strength level is conservative and therefore permitted.
Joints in which the weld strength is calculated based on filler metal classification
strength can be designed using any filler metal strength equal to or less than match-
ing. Filler metal selection is still subject to compliance with AWS D1.1/D1.1M.
The nominal strength of partial-joint-penetration (PJP) groove welded joints in com-
pression is higher than for other joints because compression limit states are not
observed on weld metal until significantly above the yield strength.
Connections that contain PJP groove welds designed to bear in accordance with
Section J1.4(2), and where the connection is loaded in compression, are not limited
in strength by the weld since the surrounding base metal can transfer compression
loads. When not designed in accordance with Section J1.4(2), an otherwise similar
connection must be designed considering the possibility that either the weld or the
base metal may be the critical component in the connection.
The factor of 0.6 on F
EXX for the tensile strength of PJP groove welds is an arbitrary
reduction that has been used since the early 1960s to compensate for the notch effect
of the unfused area of the joint, uncertain quality in the root of the weld due to the
inability to perform nondestructive evaluation, and the lack of a specific notch-
toughness requirement for filler metal. It does not imply that the tensile failure mode
is by shear stress on the effective throat, as in fillet welds.
Column splices have historically been connected with relatively small PJP groove
welds. Frequently, erection aids are available to resist construction loads. Columns are
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 396

Comm. J2.] WELDS 16.1–397
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
intended to be in bearing in splices and on base plates. Section M4.4 recognizes that,
in the as-fitted product, the contact may not be consistent across the joint and therefore
provides rules assuring some contact that limits the potential deformation of weld metal
and the material surrounding it. These welds are intended to hold the columns in place,
not to transfer the compressive loads. Additionally, the effects of very small deforma-
tion in column splices are accommodated by normal construction practices. Similarly,
the requirements for base plates and normal construction practice assure some bearing
at bases. Therefore the compressive stress in the weld metal does not need to be con-
sidered as the weld metal will deform and subsequently stop when the columns bear.
Other PJP groove welded joints connect members that may be subject to unantici-
pated loads and may fit with a gap. Where these connections are finished to bear,
fit-up may not be as good as that specified in Section M4.4 but some bearing is antic-
ipated and the weld is designed to resist loads defined in Section J1.4(2) using the
factors, strengths and effective areas in Table J2.5. Where the joints connect mem-
bers that are not finished to bear, the welds are designed for the total load using the
available strengths and areas in Table J2.5.
In Table J2.5, the nominal strength of fillet welds is determined from the effective
throat area, whereas the strengths of the connected parts are governed by their
respective thicknesses. Figure C-J2.10 illustrates the shear planes for fillet welds
and base material:
(1) Plane 1-1, in which the strength is governed by the shear strength of the material A
(2) Plane 2-2, in which the strength is governed by the shear strength of the weld
metal
(3) Plane 3-3, in which the strength is governed by the shear strength of the material B
The strength of the welded joint is the lowest of the strengths calculated in each plane
of shear transfer. Note that planes 1-1 and 3-3 are positioned away from the fusion
areas between the weld and the base material. Tests have demonstrated that the stress
on this fusion area is not critical in determining the shear strength of fillet welds
(Preece, 1968).
The shear planes for plug and PJP groove welds are shown in Figure C-J2.11 for the
weld and base metal. Generally the base metal will govern the shear strength.
Fig. C-J2.10. Shear planes for fillet welds loaded in longitudinal shear.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 397

16.1–398 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
When weld groups are loaded in shear by an external load that does not act through
the center of gravity of the group, the load is eccentric and will tend to cause a rela-
tive rotation and translation between the parts connected by the weld. The point
about which rotation tends to take place is called the instantaneous center of rotation.
Its location is dependent upon the load eccentricity, geometry of the weld group, and
deformation of the weld at different angles of the resultant elemental force relative
to the weld axis.
The individual strength of each unit weld element can be assumed to act on a line
perpendicular to a ray passing through the instantaneous center and that element’s
location (see Figure C-J2.12).
The ultimate shear strength of weld groups can be obtained from the load deforma-
tion relationship of a single-unit weld element. This relationship was originally
given by Butler et al. (1972) for E60 (E43) electrodes. Curves for E70 (E48) elec-
trodes were reported in Lesik and Kennedy (1990).
Unlike the load-deformation relationship for bolts, strength and deformation per-
formance in welds are dependent on the angle that the resultant elemental force
makes with the axis of the weld element as shown in Figure C-J2.12. The actual load
deformation relationship for welds is given in Figure C-J2.13, taken from Lesik and
Kennedy (1990). Conversion of the SI equation to U.S. customary units results in the
following weld strength equation for R
n:
(b) Partial-joint-penetration groove welds
Fig. C-J2.11. Shear planes for plug and partial-joint-penetration groove welds.
(a) Plug welds
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 398

Comm. J2.] WELDS 16.1–399
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-J2-1)
Because the maximum strength is limited to 0.60F
EXXfor longitudinally loaded
welds (θ=0º), the Specification provision provides, in the reduced equation coeffi-
cient, a reasonable margin for any variation in welding techniques and procedures.
To eliminate possible computational difficulties, the maximum deformation in the
weld elements is limited to 0.17w. For design convenience, a simple elliptical for-
mula is used for f (p) to closely approximate the empirically derived polynomial in
Fig. C-J2.12. Weld element nomenclature.
Fig. C-J2.13. Load deformation relationship.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
0.0 0.1 0.2 0.3 0.4
Normalized Weld Deformation, '/w
Normalized Weld Load, P/P
0
0
15
30
45
60
75
90
q
q
q
q
q
q
q
RF An EXX w=+ ( )0852 10 050
15
...sin
.
θ
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 399

16.1–400 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Lesik and Kennedy (1990). Previous to 2010, the increase in fillet weld strength was
restricted to weld groups loaded in the plane of the weld group elements. Testing by
Gomez et al. (2008) indicated that the strength increase defined in Equation J2-5
does not have to be restricted to loads in-plane.
The total strength of all the weld elements combine to resist the eccentric load
and, when the correct location of the instantaneous center has been selected, the three
in-plane equations of statics (ΣF
x= 0, ΣF y=0, ΣM=0) will be satisfied. Numerical
techniques, such as those given in Brandt (1982), have been developed to locate the
instantaneous center of rotation subject to convergent tolerances.
5. Combination of Welds
When determining the strength of a combination PJP groove weld and fillet weld
contained within the same joint, the total throat dimension is not the simple addition
of the fillet weld throat and the groove weld throat. In such cases, the resultant throat
of the combined weld (shortest dimension from the root to face of the final weld)
must be determined and the design based upon this dimension.
6. Filler Metal Requirements
Applied and residual stresses and geometrical discontinuities from backing bars with
associated notch effects contribute to sensitivity to fracture. Additionally, some weld
metals in combination with certain procedures result in welds with low notch tough-
ness. Accordingly, this Specification requires a minimum specified toughness for
weld metals in those joints that are subject to more significant applied stresses and
toughness demands. The level of toughness required is selected as one level more
conservative than the base metal requirement for hot-rolled shapes with a flange
thickness exceeding 2 in. (50 mm).
7. Mixed Weld Metal
Problems can occur when incompatible weld metals are used in combination and
notch-tough composite weld metal is required. For instance, tack welds deposited
using a self-shielded process with aluminum deoxidizers in the electrodes and sub-
sequently covered by SAW weld passes can result in a composite weld metal with
low notch-toughness, despite the fact that each process by itself could provide notch-
tough weld metal.
Potential concern about intermixing weld metal types is limited to situations where
one of the two weld metals is deposited by the self-shielded flux-cored arc welding
(FCAW-s) process. Changes in tensile and elongation properties have been demon-
strated to be of insignificant consequence. Notch toughness is the property that can
be affected the most. Many compatible combinations of FCAW-s and other processes
are commercially available.
J3. BOLTS AND THREADED PARTS
1. High-Strength Bolts
In general, except as provided in this Specification, the use of high-strength bolts is
required to conform to the provisions of the Specification for Structural Joints
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 400

Comm. J3.] BOLTS AND THREADED PARTS 16.1–401
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Using High-Strength Bolts (RCSC, 2009) as approved by the Research Council on
Structural Connections. Kulak (2002) provides an overview of the properties and
use of high-strength bolts.
Occasionally the need arises for the use of high-strength bolts of diameters in excess
of those permitted for ASTM A325 or A325M and ASTM A490 or A490M bolts (or
lengths exceeding those available in these grades). For joints requiring diameters in
excess of 1½ in. (38 mm) or lengths in excess of about 8 in. (200 mm), Section J3.1
permits the use of ASTM A449 bolts and ASTM A354 Grade BC and BD threaded
rods. Note that anchor rods are more preferably specified as ASTM F1554 material.
High-strength bolts have been grouped by strength levels into two categories:
Group A bolts which have a strength similar to ASTM A325 bolts
Group B bolts which have a strength similar to ASTM A490 bolts
Snug-tightened installation is the most economical installation procedure and is per-
mitted for bolts in bearing type connections except where pretensioning is required
in the Specification. Only Group A bolts in tension or combined shear and tension
and Group B bolts in shear, where loosening or fatigue are not design considerations,
are permitted to be installed snug tight. Two studies have been conducted to investi-
gate possible reductions in strength because of varying levels of pretension in bolts
within the same connection. The studies found that no significant loss of strength
resulted from having different pretensions in bolts within the same connection, even
with ASTM A490 fasteners. See Commentary Section J3.6 for more details.
There are no specified minimum or maximum pretensions for snug-tight installation
of bolts. The only requirement is that the bolts bring the plies into firm contact.
Depending on the thickness of material and the possible distortion due to welding,
portions of the connection may not be in contact.
There are practical cases in the design of structures where slip of the connection is
desirable to allow for expansion and contraction of a joint in a controlled manner.
Regardless of whether force transfer is required in the direction normal to the slip
direction, the nuts should be hand-tightened with a spud wrench and then backed off
one-quarter turn. Furthermore, it is advisable to deform the bolt threads or use a lock-
ing nut or jamb nut to ensure that the nut does not back off further under service
conditions. Thread deformation is commonly accomplished with a cold chisel and
hammer applied at one location. Note that tack-welding of the nut to the bolt threads
is not recommended.
2. Size and Use of Holes
Standard holes orshort slotted holes transverse to the direction of load are now per-
mitted for all applications complying with the requirements of this Specification. In
addition, to provide some latitude for adjustment in plumbing a frame during erec-
tion, three types of enlarged holes are permitted, subject to the approval of the
designer. The nominal maximum sizes of these holes are given in Table J3.3 or
J3.3M. The use of these enlarged holes is restricted to connections assembled with
high-strength bolts and is subject to the provisions of Sections J3.3 and J3.4.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 401

16.1–402 BOLTS AND THREADED PARTS [Comm. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Minimum Spacing
The minimum spacing dimensions of 2
2
/3times and 3 times the nominal diameter are
to facilitate construction and do not necessarily satisfy the bearing and tearout
strength requirements in Section J3.10.
4. Minimum Edge Distance
In previous editions of the Specification, separate minimum edge distances were
given in Tables J3.4 and J3.4M for sheared edges and for rolled or thermally cut
edges. Sections J3.10 and J4 are used to prevent exceeding bearing and tearout lim-
its, are suitable for use with both thermally cut, sawed and sheared edges, and must
be met for all bolt holes. Accordingly, the edge distances in Tables J3.4 and J3.4M
are workmanship standards and are no longer dependent on edge condition or fabri-
cation method.
5. Maximum Spacing and Edge Distance
Limiting the edge distance to not more than 12 times the thickness of an outside
connected part, but not more than 6 in. (150 mm), is intended to provide for the
exclusion of moisture in the event of paint failure, thus preventing corrosion
between the parts that might accumulate and force these parts to separate. More
restrictive limitations are required for connected parts of unpainted weathering steel
exposed to atmospheric corrosion.
The longitudinal spacing applies only to elements consisting of a shape and a plate
or two plates. For elements such as back-to-back angles not subject to corrosion, the
longitudinal spacing may be as required for structural requirements.
6. Tension and Shear Strength of Bolts and Threaded Parts
Tension loading of fasteners is usually accompanied by some bending due to the
deformation of the connected parts. Hence, the resistance factor, φ,and the safety
factor, Ω, are relatively conservative. The nominal tensile strength values in Table
J3.2 were obtained from the equation
F
nt =0.75F u (C-J3-2)
The factor of 0.75 included in this equation accounts for the approximate ratio of the
effective tension area of the threaded portion of the bolt to the area of the shank of
the bolt for common sizes. Thus A
bis defined as the area of the unthreaded body of
the bolt and the value reported for F
ntin Table J3.2 is calculated as 0.75F u.
The tensile strength given by Equation C-J3-2 is independent of whether the bolt was
initially installed pretensioned or snug-tightened. Tests confirm that the performance
of ASTM A325 and A325M bolts in tension not subjected to fatigue are unaffected
by the original installation condition (Amrine and Swanson, 2004; Johnson, 1996;
Murray et al., 1992). While the equation was developed for bolted connections, it
was also conservatively applied to threaded parts (Kulak et al., 1987).
For ASTM A325 or A325M bolts, no distinction is made between small and large
diameters, even though the minimum tensile strength, F
u, is lower for bolts with
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 402

Comm. J3.] BOLTS AND THREADED PARTS 16.1–403
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
diameters in excess of 1 in. (25 mm). Such a refinement is not justified, particularly
in view of the conservative resistance factor, φ, and safety factor, Ω, the increasing
ratio of tensile area to gross area, and other compensating factors.
The values of nominal shear strength in Table J3.2 were obtained from the following
equations rounded to the nearest whole ksi:
(a) When threads are excluded from the shear planes
F
nv=0.563F u (C-J3-3)
(b) When threads are not excluded from the shear plane
F
nv=0.450F u (C-J3-4)
The factor 0.563 accounts for the effect of a shear/tension ratio of 0.625 and a 0.90
length reduction factor. The factor of 0.450 is 80% of 0.563, which accounts for the
reduced area of the threaded portion of the fastener when the threads are not excluded
from the shear plane. The initial reduction factor of 0.90 is imposed on connections
with lengths up to and including 38 in. (965 mm). The resistance factor, φ, and the
safety factor, Ω, for shear in bearing-type connections in combination with the initial
0.90 factor accommodate the effects of differential strain and second-order effects in
connections less than or equal to 38 in. (965 mm) in length.
In connections consisting of only a few fasteners and length not exceeding approx-
imately 16 in. (406 mm), the effect of differential strain on the shear in bearing
fasteners is negligible (Kulak et al., 1987; Fisher et al., 1978; Tide, 2010). In longer
tension and compression joints, the differential strain produces an uneven distribu-
tion of load between fasteners, those near the end taking a disproportionate part of
the total load, so that the maximum strength per fastener is reduced. This
Specification does not limit the length but requires that the initial 0.90 factor be
replaced by 0.75 when determining bolt shear strength for connections longer than
38 in. (965 mm). In lieu of another column of design values, the appropriate val-
ues are obtained by multiplying the tabulated values by 0.75/0.90=0.833.
The ongoing discussion is primarily applicable to end-loaded tension and compres-
sion connections, but for connection lengths less than or equal to 38 in. (965 mm) it
is applied to all connections to maintain simplicity. For shear type connections used
in beams and girders, with lengths greater than 38 in. (965 mm), there is no need to
make the second reduction. Examples of end-loaded and non-end-loaded connec-
tions are shown in Figure C-J3.1.
When determining the shear strength of a fastener, the area, A
b, is multiplied by the
number of shear planes. While developed for bolted connections, the equations were
also conservatively applied to threaded parts. The value given for ASTM A307 bolts
was obtained from Equation C-J3-4 but is specified for all cases regardless of the
position of threads.
Additional information regarding the development of the provisions in this section
can be found in the Commentary to the RCSC Specification(RCSC, 2009).
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:52 PM Page 403

16.1–404 BOLTS AND THREADED PARTS [Comm. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
In Table J3.2, footnote c, the specified reduction of 1% for each
1
/16in. over 5 diam-
eters for ASTM A307 bolts is a carryover from the reduction that was specified for
long rivets. Because the material strengths are similar, it was decided a similar reduc-
tion was appropriate.
7. Combined Tension and Shear in Bearing-Type Connections
Tests have shown that the strength of bearing fasteners subject to combined shear and
tension resulting from externally applied forces can be closely defined by an ellipse
(Kulak et al., 1987). The relationship is expressed as:
For design according to Section B3.3 (LRFD):
(C-J3-5a)
For design according to Section B3.4 (ASD):
(C-J3-5b)
where
f
v=required shear stress, ksi (MPa)
f
t=required tensile stress, ksi (MPa)
f
F
f
Ft
nt
v
nv
φφ






+






=
22
1
ΩΩf
F
f
Ft
nt
v
nv⎛





+






=
22
1
Fig. C-J3.1. End loaded and non-end-loaded connection examples;
l
pl=fastener pattern length.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 404

Comm. J3.] BOLTS AND THREADED PARTS 16.1–405
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fnv=nominal shear stress, ksi (MPa)
F
nt=nominal tensile stress, ksi (MPa)
The elliptical relationship can be replaced, with only minor deviations, by three
straight lines as shown in Figure C-J3.2. The sloped portion of the straight-line rep-
resentation follows.
For design according to Section B3.3 (LRFD):
(C-J3-6a)
For design according to Section B3.4 (ASD):
(C-J3-6b)
which results in Equations J3-3a and J3-3b (Carter et al., 1997).
This latter representation offers the advantage that no modification of either type of
stress is required in the presence of fairly large magnitudes of the other type. Note
that Equations J3-3a and J3-3b can be rewritten so as to find the nominal shear
strength per unit area, F
nv′, as a function of the required tensile stress, f t. These for-
mulations are:
f
F
f
Ft
nt
v
nv
φφ






+






=13.
ΩΩf
F
f
Ft
nt
v
nv⎛





+






=13.
Fig. C-J3.2. Straight-line representation of elliptical solution.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 405

16.1–406 BOLTS AND THREADED PARTS [Comm. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For design according to Section B3.3 (LRFD):
(C-J3-7a)
For design according to Section B3.4 (ASD):
(C-J3-7b)
The linear relationship was adopted for use in Section J3.7; generally, use of the
elliptical relationship is acceptable (see Figure C-J3.2). A similar formulation using
the elliptical solution is:
For design according to Section B3.3 (LRFD):
(C-J3-8a)
For design according to Section B3.4 (ASD):
(C-J3-8b)
8. High-Strength Bolts in Slip-Critical Connections
The design provisions for slip critical connections have remained substantially
the same for many years. The original provisions, using standard holes with
1
/16in.
clearance, were based on a 10% probability of slip at code loads when tightened by
calibrated wrench methods. This was comparable to a design for slip at approxi-
mately 1.4 to 1.5 times code loads. Because slip resistance was considered to be a
serviceability design limit state, this was determined to be an adequate safety fac-
tor. Per the RCSC Guide to the Design Criteria for Bolted and Riveted Joints (Kulak
et al., 1987) the provisions were revised to include oversized and slotted holes
(Allan and Fisher, 1968). The revised provisions included a reduction in the allow-
able strength of 15% for oversize holes, 30% for long slots perpendicular, and 40%
for long slots parallel to the direction of the load.
Except for minor changes and adding provisions for LRFD, the design of slip-criti-
cal connections were unchanged until the 2005 AISC Specification added a higher
reliability level for slip-critical connections designed for use where selected by the
engineer of record. The reason for this added provision was twofold. First, the use of
slip-critical connections with oversize holes had become very popular because of the
economy they afforded, especially with large bolted trusses and heavy vertical brac-
ing systems. While the Commentary to the RCSC Specificationindicated that only
the engineer of record can determine if potential slippage at service loads could
reduce the ability of the frame to resist factored loads, it did not give any guidance
FF
F
F
fFnv nv
nv
nt
tnv
′=− ≤13.
Ω
FF
f
Fnv nt
v
nv
′=−






1
2
φ
FF
f
Fnv nt
v
nv
′=−






1
2
Ω
FF
F
F
fFnv nv
nv
nt
tnv
′=− ≤13.
φ
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 406

Comm. J3.] BOLTS AND THREADED PARTS 16.1–407
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
on how to do this. The 2005 Specification provided a procedure to design to resist
slip at factored loads if slip at service loads could reduce the ability of the structure
to support factored loads.
Second, many of these connection details require large filler plates. There was a
question about the need to develop these fills and how to do it. The 1999 LRFD
Specification stated that as an alternative to developing the filler “the joint shall
be designed as slip critical.” The RCSC Specification stated, “The joint shall be
designed as a slip-critical joint. The slip resistance of the joint shall not be reduced
for the presence of fillers or shims.” Both specifications required the joint to be
checked as a bearing connection, which normally would require development of
large fillers.
The answer to both of these issues seemed to provide a method for designing a con-
nection with oversize holes to resist slip at the strength level and not require the
bearing strength check for the connection. In order to do this, it was necessary to first
determine as closely as possible what the slip resistance currently was for oversize
holes. Then it was necessary to establish what would be an adequate level of slip
resistance to be able to say the connection could resist slip at factored loads.
Three major research projects formed the primary sources for the development of the
2010 Specification provisions for slip-critical connections:
(1) Dusicka and Iwai (2007) evaluated slip-critical connections with fills for the
Research Council on Structural Connections. The work provides results relevant
to all slip-critical connections with fills.
(2) Grondin et al. (2007) is a two-part study that assembles slip resistance data from
all known sources and analyzes reliability of SC connections indicated by that
data. A structural system configuration—a long span roof truss—is evaluated to
see if slip required more reliability in slip-critical connections.
(3) Borello et al. (2009) conducted 16 large-scale tests of slip-critical connections in
both standard and oversize holes with and without thick fillers.
Deliberations considered in development and investigation of the 2010 Specification
slip-critical provisions include the following:
Slip Coefficient for Class A Surfaces. Grondin et al. (2007) rigorously evaluated
the test procedures and eliminated a substantial number of tests that did not meet the
required protocol. The result was a recommended slip coefficient for Class A sur-
faces between 0.31 and 0.32. Part of the problem is the variability of what is
considered to be clean mill scale. Current data on galvanized surfaces indicated more
research was required and the American Galvanizers Association is sponsoring a
series of tests to determine if further changes in the slip coefficient for these types of
surfaces is needed.
Slip Coefficient for Class B Surfaces. Based on a review of slip tests by paint man-
ufacturers and the results of the slip resistance of the connections (Borello et al.,
2009), a slight increase in the slip coefficient for Class B surfaces might be possible,
but the available data is insufficient to make a change in the 2010 Specification.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 407

16.1–408 BOLTS AND THREADED PARTS [Comm. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Oversized Holes and Loss of Pretension. Borello et al. (2009) confirms that there
is no additional loss of pretension and that connections with oversized holes had sim-
ilar slip resistance to the control group with standard holes.
Higher Pretension with Turn-of-Nut Method. The difficulty in knowing in
advance what method of pretensioning would be used resulted in leaving the value
of D
uat 1.13 as established for the calibrated wrench method. The Specification
does, however, allow the use of a higher D
uvalue when approved by the engineer of
record.
Shear/Bearing Strength. Borello et al. (2009) verified that connections with over-
sized holes, regardless of fill size, can develop the available bearing strength when
the fill is developed. There was some variation in shear strength with filler size but
the maximum reduction for thick fillers was approximately 15% when undeveloped.
Fillers in Slip-Critical Connections. Borello et al. (2009) indicated that filler thick-
ness did not reduce the slip resistance of the connection. Borello et al. (2009) and
Dusicka and Iwai (2007) indicated that the multiple fillers, as shown in Figure C-
J3.3, reduced the slip resistance. It was determined that a factor for the number of
fillers should be included in the design equation. A plate welded to the connected
member or connection plate is not a filler plate and does not require this reduction
factor.
The 2010 Specification provisions for slip-critical connections are based on the fol-
lowing conclusions:
• The mean and coefficient of variation in Class A slip-critical connections supports
the use of a μ=0.31, not 0.33 or 0.35. It was expected that the use of μ=0.30
would achieve more consistent reliability while using the same resistance factors
for both slip classes. The value of μ = 0.30 was selected and the resistance and
safety factors reflect this value.
• A factor, h
f, to reflect the use of multiple filler plates was added to the equation for
nominal slip resistance resulting in
R
n=μD uhfTbns (C-J3-9)
where
h
f=factor for fillers; coefficient to reflect the reduction in slip due to multiple
fills
Fig C-J3.3. Single and multiple filler plate configurations.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 408

Turn-of-Nut Method Other Methods
Standard Oversized Standard Oversized
Group Class Holes Holes Holes Holes
Group A (A325) Class A 2.39 2.92 1.21 1.80
(μ=0.30)
Class B 2.78 3.52 1.48 2.16
(μ=0.50)
Group B (A490) Class A 2.01 2.63 1.31 1.90
(μ=0.30)
Class B 2.47 3.20 1.60 2.28
(μ=0.50)
Comm. J3.] BOLTS AND THREADED PARTS 16.1–409
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
•Duis defined as a parameter derived from statistical analysis to calculate nominal
slip resistance from statistical means developed as a function of installation method
and minimum specified pretension and the level of slip probability selected.
• The surfaces of fills must be prepared to the same or higher slip coefficient as the
other faying surfaces in the connection.
• The reduction in design slip resistance for oversized and slotted holes is not due to
a reduction in tested slip resistance but is a factor used to reflect the consequence
of slip. It was continued at the 0.85 level but clearly documented as a factor
increasing the slip resistance of the connection.
The Specification also recognizes a special type of slip-resistant connection for use
in built-up compression members in Section E6 where pretensioned bolts and a min-
imum of Class A surfaces are required but the connection is designed using the
bearing strength of the bolts. This is based on the need to prevent relative movement
between elements of the compression member at the ends.
Reliability levels for slip resistance in oversized holes and slots parallel to the load
(given in Table C-J3.1) exceed reliability levels associated with the nominal
strength of main members in the Specification when turn-of-nut pretensioning is
used. Reliability of slip resistance when other tightening methods are used exceeds
previous levels and is sufficient to prevent slip at load levels where inelastic defor-
mation of the connected parts is expected. Since the effect of slip in standard holes
is less than that of slip in oversized holes, the reliability factors permitted for stan-
dard holes are lower than those for oversized holes. This increased data on the
reliability of these connections allowed the return to a single design level of slip
resistance similar to the RCSC Specification(RCSC, 2009) and previous AISC
Specifications.
TABLE C-J3.1
Reliability Factors, β, for Slip Resistance
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 409

16.1–410 BOLTS AND THREADED PARTS [Comm. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
9. Combined Tension and Shear in Slip-Critical Connections
The slip resistance of a slip-critical connection is reduced if there is applied tension.
The factor, k
sc, is a multiplier that reduces the nominal slip resistance given by
Equation J3-4 as a function of the applied tension load.
10. Bearing Strength at Bolt Holes
Provisions for bearing strength of pins differ from those for bearing strength of bolts;
refer to Section J7.
Bearing strength values are provided as a measure of the strength of the material
upon which a bolt bears, not as a protection to the fastener, which needs no such pro-
tection. Accordingly, the same bearing value applies to all joints assembled by bolts,
regardless of fastener shear strength or the presence or absence of threads in the bear-
ing area.
Material bearing strength may be limited either by bearing deformation of the hole
or by tearout (a bolt-by-bolt block shear rupture) of the material upon which the bolt
bears. Kim and Yura (1996) and Lewis and Zwerneman (1996) confirmed the bear-
ing strength provisions for the bearing case wherein the nominal bearing strength, R
n,
is equal to CdtF
uand C is equal to 2.4, 3.0 or 2.0 depending upon hole type and/or
acceptability of hole ovalization at ultimate load, as indicated in Section J3.10.
However, this same research indicated the need for different bearing strength provi-
sions when tearout failure would control. Appropriate equations for bearing strength
as a function of clear distance, L
c, are therefore provided and this formulation is con-
sistent with that in the RCSCSpecification (RCSC, 2009).
Frank and Yura (1981) demonstrated that hole elongation greater than
1
/4in.
(6 mm) will generally begin to develop as the bearing force is increased beyond
2.4dtF
u, especially if it is combined with high tensile stress on the net section, even
though rupture does not occur. For a long-slotted hole with the slot perpendicular to
the direction of force, the same is true for a bearing force greater than 2.0dtF
u. An
upper bound of 3.0dtF
uanticipates hole ovalization [deformation greater than
1
/4in.
(6 mm)] at maximum strength.
Additionally, to simplify and generalize such bearing strength calculations, the
current provisions have been based upon a clear-distance formulation. Previous pro-
visions utilized edge distances and bolt spacings measured to hole centerlines with
adjustment factors to account for varying hole type and orientation, as well as mini-
mum edge distance requirements.
A User Note has been added to this section pointing out that the effective strength of
an individual bolt in shear may also be limited by the available shear strength per
Section J3.6 or by the bearing per Section J3.10. The effective strength of the con-
nection is the sum of the effective strengths of the individual bolts. This typically
occurs when the effective strength of the end bolts in a connection is limited by tear-
out as described above. While the effective strength of some bolts in the connection
may be less than others, the connection has enough ductility to allow all of the bolts
to reach their individual effective strengths.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 410

Comm. J4.] AFFECTED ELEMENTS OF MEMBERS 16.1–411
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
12. Tension Fasteners
With any connection configuration where the fasteners transmit a tensile force to
the HSS wall, a rational analysis must be used to determine the appropriate limit
states. These may include a yield-line mechanism in the HSS wall and/or pull-out
through the HSS wall, in addition to applicable limit states for the fasteners sub-
ject to tension.
J4. AFFECTED ELEMENTS OF MEMBERS AND CONNECTING
ELEMENTS
1. Strength of Elements in Tension
Tests have shown that for bolted splice plates yielding will occur on the gross section
before the tensile strength of the net section is reached if the ratio A
n/Agis greater than
or equal to 0.85 (Kulak et al., 1987). Since the length of connecting elements is small
compared to the member length, inelastic deformation of the gross section is limited.
Hence, the effective net area, A
e, of the connecting element is limited to 0.85A gin
recognition of the limited capacity for inelastic deformation, and to provide a reserve
capacity. Tests have also shown than A
emay be limited by the ability of the stress to
distribute in the member. Analysis procedures such as the Whitmore section should be
used to determine A
ein these cases.
2. Strength of Elements in Shear
Prior to 2005, the resistance factor for shear yielding had been 0.90, which was
equivalent to a safety factor of 1.67. In ASD Specifications, the allowable shear
yielding stress was 0.4F
y, which was equivalent to a safety factor of 1.5. To make the
LRFD approach in the 2005 Specification consistent with prior editions of the ASD
Specification, the resistance and safety factors for shear yielding became 1.0 and 1.5,
respectively. The resulting increase in LRFD design strength of approximately 10%
is justified by the long history of satisfactory performance of ASD use.
3. Block Shear Strength
Tests on coped beams indicated that a tearing failure mode (rupture) can occur
along the perimeter of the bolt holes as shown in Figure C-J4.1 (Birkemoe and
Gilmor, 1978). This block shear mode combines tensile failure on one plane and
shear failure on a perpendicular plane. The failure path is defined by the centerlines
of the bolt holes.
The block shear failure mode is not limited to coped ends of beams; other examples
are shown in Figures C-J4.1 and C-J4.2. The block shear failure mode must also be
checked around the periphery of welded connections.
This Specification has adopted a conservative model to predict block shear
strength. The mode of failure in coped beam webs and angles is different than that
of gusset plates because the shear resistance is present on only one plane, in which
case there must be some rotation of the block of material that is providing the total
resistance.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 411

16.1–412 AFFECTED ELEMENTS OF MEMBERS [Comm. J4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-J4.1. Failure surface for block shear rupture limit state.
Fig. C-J4.2. Block shear tensile stress distributions.
(a) Cases for which U
bs=1.0
(b) Cases for which U
bs=0.5
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 412

Comm. J7.] BEARING STRENGTH 16.1–413
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Although tensile failure is observed through the net section on the end plane, the
distribution of tensile stresses is not always uniform (Ricles and Yura, 1983; Kulak
and Grondin, 2001; Hardash and Bjorhovde, 1985). A reduction factor, U
bs, has
been included in Equation J4-5 to approximate the nonuniform stress distribution on
the tensile plane. The tensile stress distribution is nonuniform in the two row con-
nection in Figure C-J4.2(b) because the rows of bolts nearest the beam end pick up
most of the shear load. For conditions not shown in Figure C-J4.2, U
bsmay be taken
as (1 λ e/l) where e /l is the ratio of the eccentricity of the load to the centroid of
the resistance divided by the block length. This fits data reported by Kulak and
Grondin (2001), Kulak and Grondin (2002), and Yura et al. (1982).
Block shear is a rupture or tearing phenomenon, not a yielding limit state. However,
gross yielding on the shear plane can occur when tearing on the tensile plane com-
mences if 0.6F
uAnvexceeds 0.6F yAgv. Hence, Equation J4-5 limits the term
0.6F
uAnvto not greater than 0.6F yAgv(Hardash and Bjorhovde, 1985). Equation J4-
5 is consistent with the philosophy in Chapter D for tension members where the
gross area is used for the limit state of yielding and the net area is used for the limit
state of rupture.
4. Strength of Elements in Compression
To simplify connection calculations, the nominal strength of elements in compres-
sion when the element slenderness ratio is not greater than 25 is F
yAg. This is a very
slight increase over that obtained if the provisions of Chapter E are used. For more
slender elements, the provisions of Chapter E apply.
J5. FILLERS
As noted in Commentary Section J3.8, research reported in Borello et al. (2009)
resulted in significant changes in the design of bolted connections with fillers. In the
2010 Specification, bearing connections with fillers over
3
/4-in. thick are no longer
required to be developed provided the bolts are designed by multiplying the shear
strength by a 0.85 factor.
Slip-critical connections with a single filler of any thickness with proper surface
preparation may be designed without any reduction in slip resistance. Slip-critical
connections with multiple fillers may be designed without any reduction in slip
resistance provided the joint has either all faying surfaces with Class B surfaces or
Class A surfaces with turn-of-nut tensioning. This provision for multiple fillers is
based on the additional reliability of Class B surface or on the higher pretension
achieved with the turn-of-nut tensioning.
Filler plates may be used in lap joints of welded connections that splice parts of dif-
ferent thickness, or where there may be an offset in the joint.
J7. BEARING STRENGTH
In general, the bearing strength design of finished surfaces is governed by the limit
state of bearing (local compressive yielding) at nominal loads. The nominal bearing
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 413

16.1–414 BEARING STRENGTH [Comm. J7.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
strength of milled contact surfaces exceeds the yield strength because adequate
safety is provided by post-yield strength as deformation increases. Tests on pin con-
nections (Johnston, 1939) and rockers (Wilson, 1934) have confirmed this behavior.
J8. COLUMN BASES AND BEARING ON CONCRETE
The provisions of this section are identical to equivalent provisions in ACI 318
(ACI, 2008).
J9. ANCHOR RODS AND EMBEDMENTS
The term “anchor rod” is used for threaded rods embedded in concrete to anchor
structural steel. The term “rod” is intended to clearly indicate that these are threaded
rods, not structural bolts, and should be designed as threaded parts per Table J3.2
using the material specified in Section A3.4.
Generally, the largest tensile force for which anchor rods must be designed is that
produced by bending moment at the column base and augmented by any uplift
caused by the overturning tendency of a building under lateral load.
Shear at the base of a column is seldom resisted by bearing of the column base plate
against the anchor rods. Even considering the lowest conceivable slip coefficient, the
friction due to the vertical load on a column is generally more than sufficient to trans-
fer the shear from the column base to the foundation. The possible exception is at the
base of braced frames and moment frames where larger shear forces may require that
shear transfer be accomplished by embedding the column base or providing a shear
key at the top of the foundation.
The anchor rod hole sizes listed in Tables C-J9.1 and C-J9.1M are recommended to
accommodate the variations that are common for setting anchor rods cast in concrete.
These larger hole sizes are not detrimental to the integrity of the supported structure
when used with proper washers. The slightly conical hole that results from punching
operations or thermal cutting is acceptable.
If plate washers are utilized to resolve horizontal shear, bending in the anchor rod
must be considered in the design, and the layout of anchor rods must accommodate
plate washer clearances. In this case special attention must be given to weld clear-
ances, accessibility, edge distances on plate washers, and the effect of the tolerances
between the anchor rod and the edge of the hole.
It is important that the placement of anchor rods be coordinated with the placement
and design of reinforcing steel in the foundations as well as the design and overall
size of base plates. It is recommended that the anchorage device at the anchor rod
bottom be as small as possible to avoid interference with the reinforcing steel
in the foundation. A heavy-hex nut or forged head is adequate to develop the con-
crete shear cone. See AISC Design Guide 1, Base Plate and Anchor Rod Design
(Fisher and Kloiber, 2006) for design of base plates and anchor rods. See also ACI
318 (ACI, 2008) and ACI 349 (ACI, 2001) for embedment design; and OSHA
Safety and Health Regulations for Construction, Standards—29 CFR 1926 Subpart
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 414

Comm. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–415
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
R—Steel Erection (OSHA, 2001) for anchor rod design and construction require-
ments for erection safety.
J10. FLANGES AND WEBS WITH CONCENTRATED FORCES
This Specification separates flange and web strength requirements into distinct cate-
gories representing different limit states: flange local bending (Section J10.1), web
local yielding (Section J10.2), web crippling (Section J10.3), web sidesway buckling
(Section J10.4), web compression buckling (Section J10.5), and web panel-zone
shear (Section J10.6). These limit state provisions are applied to two distinct types of
concentrated forces normal to member flanges:
TABLE C-J9.1
Anchor Rod Hole Diameters, in.
Anchor Rod Diameter Anchor Rod Hole Diameter
1
/2 1
1
/16
5
/8 1
3
/16
3
/4 1
5
/16
7
/8 1
9
/16
11
13
/16
1
1
/4 2
1
/16
1
1
/2 2
5
/16
1
3
/4 2
3
/4
≥2 db+1
1
/4 TABLE C-J9.1M
Anchor Rod Hole Diameters, mm
Anchor Rod Diameter Anchor Rod Hole Diameter
18 32
22 36
24 42
27 48
30 51
33 54
36 60
39 63
42 74
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 415

16.1–416 FLANGES AND WEBS WITH CONCENTRATED FORCES [Comm. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) Single concentrated forces may be tensile (such as those delivered by tension
hangers) or compressive (such as those delivered by bearing plates at beam inte-
rior positions, reactions at beam ends, and other bearing connections).
(2) Double concentrated forces, one tensile and one compressive, form a couple on
the same side of the loaded member, such as that delivered to column flanges
through welded and bolted moment connections.
Flange local bending applies only for tensile forces, web local yielding applies to
both tensile and compressive forces, and the remainder of these limit states apply
only to compressive forces.
Transverse stiffeners, also called continuity plates, and web doubler plates are only
required when the concentrated force exceeds the available strength given for the
applicable limit state. It is often more economical to choose a heavier member than
to provide such reinforcement (Carter, 1999; Troup, 1999). The demand may
be determined as the largest flange force from the various load cases, although the
demand may also be taken as the gross area of the attachment delivering the force
multiplied by the specified minimum yield strength, F
y. Stiffeners and/or doublers
and their attaching welds are sized for the difference between the demand and the
applicable limit state strength. Detailing and other requirements for stiffeners are
provided in Section J10.7 and Section J10.8; requirements for doublers are provided
in Section J10.9.
1. Flange Local Bending
Where a tensile force is applied through a plate welded across a flange, that flange
must be sufficiently rigid to prevent deformation of the flange and the corresponding
high stress concentration in the weld in line with the web.
The effective column flange length for local flange bending is 12t
f(Graham et al.,
1960). Thus, it is assumed that yield lines form in the flange at 6t
fin each direction
from the point of the applied concentrated force. To develop the fixed edge consis-
tent with the assumptions of this model, an additional 4t
f, and therefore a total of
10t
f, is required for the full flange-bending strength given by Equation J10-1. In the
absence of applicable research, a 50% reduction has been introduced for cases
wherein the applied concentrated force is less than 10t
ffrom the member end.
The strength given by Equation J10-1 was originally developed for moment connec-
tions but also applies to single concentrated forces such as tension hangers consisting
of a plate welded to the bottom flange of a beam and transverse to the beam web. In
the original tests, the strength given by Equation J10-1 was intended to provide a
lower bound to the force required for weld fracture, which was aggravated by the
uneven stress and strain demand on the weld caused by the flange deformation
(Graham et al., 1959).
Recent tests on welds with minimum Charpy V-notch (CVN) toughness require-
ments show that weld fracture is no longer the failure mode when the strength given
by Equation J10-1 is exceeded. Rather, it was found that the strength given by
Equation J10-1 is consistently less than the force required to separate the flanges in
typical column sections by
1
/4in. (6 mm) (Hajjar et al., 2003; Prochnow et al.,
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 416

Comm. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–417
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2000). This amount of flange deformation is on the order of the tolerances in ASTM
A6, and it is believed that if the flange deformation exceeded this level it could be
detrimental to other aspects of the performance of the member, such as flange local
buckling. Although this deformation could also occur under compressive normal
forces, it is customary that flange local bending is checked only for tensile forces
(because the original concern was weld fracture). Therefore it is not required to
check flange local bending for compressive forces.
The provision in Section J10.1 is not applicable to moment end-plate and tee-stub
type connections. For these connections, see Carter (1999) or the AISC Steel
Construction Manual (AISC, 2005b).
2. Web Local Yielding
The web local yielding provisions (Equations J10-2 and J10-3) apply to both com-
pressive and tensile forces of bearing and moment connections. These provisions are
intended to limit the extent of yielding in the web of a member into which a force is
being transmitted. The provisions are based on tests on two-sided directly welded
girder-to-column connections (cruciform tests) (Sherbourne and Jensen, 1957) and
were derived by considering a stress zone that spreads out with a slope of 2:1.
Graham et al. (1960) report pull-plate tests and suggest that a 2.5:1 stress gradient is
more appropriate. Recent tests confirm that the provisions given by Equations J10-2
and J10-3 are slightly conservative and that the yielding is confined to a length con-
sistent with the slope of 2.5:1 (Hajjar et al., 2003; Prochnow et al., 2000).
3. Web Crippling
The web crippling provisions (Equations J10-4 and J10-5) apply only to compressive
forces. Originally, the term “web crippling” was used to characterize a phenomenon
now called local web yielding, which was then thought to also adequately predict
web crippling. The first edition of the AISC LRFD Specification (AISC, 1986) was
the first AISC Specification to distinguish between local web yielding and local web
crippling. Web crippling was defined as crumpling of the web into buckled waves
directly beneath the load, occurring in more slender webs, whereas web local yield-
ing is yielding of that same area, occurring in stockier webs.
Equations J10-4 and J10-5 are based on research reported in Roberts (1981). The
increase in Equation J10-5b for l
b/d >0.2 was developed after additional testing to
better represent the effect of longer bearing lengths at ends of members (Elgaaly and
Salkar, 1991). All tests were conducted on bare steel beams without the expected
beneficial contributions of any connection or floor attachments. Thus, the resulting
provisions are considered conservative for such applications. Kaczinski et al. (1994)
reported tests on cellular box beams with slender webs and confirmed that these pro-
visions are appropriate in this type of member as well.
The equations were developed for bearing connections but are also generally appli-
cable to moment connections.
The web crippling phenomenon has been observed to occur in the web adjacent to
the loaded flange. For this reason, a half-depth stiffener (or stiffeners) or a half-depth
doubler plate is needed to eliminate this limit state.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 417

16.1–418 FLANGES AND WEBS WITH CONCENTRATED FORCES [Comm. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4. Web Sidesway Buckling
The web sidesway buckling provisions (Equations J10-6 and J10-7) apply only to
compressive forces in bearing connections and do not apply to moment connections.
The web sidesway buckling provisions were developed after observing several unex-
pected failures in tested beams (Summers and Yura, 1982; Elgaaly, 1983). In those
tests the compression flanges were braced at the concentrated load, the web was sub-
jected to compression from a concentrated load applied to the flange and the tension
flange buckled (see Figure C-J10.1).
Web sidesway buckling will not occur in the following cases:
(a) For flanges restrained against rotation (such as when connected to a slab), when
(C-J10-1)
(b) For flanges not restrained against rotation, when
(C-J10-2)
where L
bis as shown in Figure C-J10.2.
Web sidesway buckling can be prevented by the proper design of lateral bracing or
stiffeners at the load point. It is suggested that local bracing at both flanges be
designed for 1% of the concentrated force applied at that point. If stiffeners are used,
they must extend from the load point through at least one-half the beam or girder
depth. In addition, the pair of stiffeners must be designed to carry the full load. If
flange rotation is permitted at the loaded flange, neither stiffeners nor doubler plates
are effective.
5. Web Compression Buckling
The web compression buckling provision (Equation J10-8) applies only when there
are compressive forces on both flanges of a member at the same cross section, such
as might occur at the bottom flange of two back-to-back moment connections under
gravity loads. Under these conditions, the slenderness of the member web must be
ht
Lbw
bf/
/
.>23
ht
Lbw
bf/
/
.>17
Fig. C-J10.1. Web sidesway buckling.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 418

Comm. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–419
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
limited to avoid the possibility of buckling. Equation J10-8 is applicable to a pair of
moment connections, and to other pairs of compressive forces applied at both flanges
of a member, for which L
b/d is approximately less than 1. When L b/d is not small,
the member web should be designed as a compression member in accordance with
Chapter E.
Equation J10-8 is predicated on an interior member loading condition. In the absence
of applicable research, a 50% reduction has been introduced for cases wherein the
compressive forces are close to the member end.
6. Web Panel-Zone Shear
Column web shear stresses may be significant within the boundaries of the rigid con-
nection of two or more members with their webs in a common plane. Such webs
must be reinforced when the required force ΣR
ufor LRFD or ΣR afor ASD along
plane A-A in Figure C-J10.3 exceeds the column web available strength, φR
nor
R
n/Ω, respectively.
For design according to Section B3.3 (LRFD):
(C-J10-3a)
Fig. C-J10.2. Unbraced flange length for web sidesway buckling.
ΣR
M
d
M
d
Vu
u
m
u
m
u=+−
1
1
2
2
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 419

16.1–420 FLANGES AND WEBS WITH CONCENTRATED FORCES [Comm. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
M
u1 =Mu1L+Mu1G
=sum of the moments due to the factored lateral loads, M u1L, and the
moments due to factored gravity loads, M
u1G, on the windward side of
the connection, kip-in. (N-mm)
M
u2 =Mu2L−Mu2G
=difference between the moments due to the factored lateral loads M u2L
and the moments due to factored gravity loads, M u2G, on the leeward
side of the connection, kip-in. (N-mm)
d
m1, dm2=distance between flange forces in the moment connection, in. (mm)
For design according to Section B3.4 (ASD):
(C-J10-3b)
where
M
a1=Ma1L+Ma1G
=sum of the moments due to the nominal lateral loads, M a1L, and the
moments due to nominal gravity loads, M
a1G, on the windward side of the
connection, kip-in. (N-mm)
M
a2=Ma2LΣMa2G
=difference between the moments due to the nominal lateral loads, M a2L, and
the moments due to nominal gravity loads, M
a2G, on the leeward side of the
connection, kip-in. (N-mm)
Historically (and conservatively), 0.95 times the beam depth has been used for d
m.
If, for LRFD Σ R
u≤φR n, or for ASD Σ R a≤Rn/Ω, no reinforcement is necessary;
in other words, t
req≤tw, where t wis the column web thickness.
ΣR
M
d
M
d
Va
a
m
a
m
a=+−
1
1
2
2
Fig. C-J10.3. LRFD forces in panel zone (ASD forces are similar).
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:53 PM Page 420

Comm. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16 .1–421
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Equations J10-9 and J10-10 limit panel-zone behavior to the elastic range. While
such connection panels possess large reserve capacity beyond initial general shear
yielding, the corresponding inelastic joint deformations may adversely affect the
strength and stability of the frame or story (Fielding and Huang, 1971; Fielding and
Chen, 1973). Panel-zone shear yielding affects the overall frame stiffness and,
therefore, the resulting second-order effects may be significant. The shear/axial
interaction expression of Equation J10-10, as shown in Figure C-J10.4, provides
elastic panel behavior.
If adequate connection ductility is provided and the frame analysis considers the
inelastic panel-zone deformations, the additional inelastic shear strength is recog-
nized in Equations J10-11 and J10-12 by the factor
This increase in shear strength due to inelasticity has been most often utilized for the
design of frames in high seismic applications and should be used when the panel
zone is designed to develop the strength of the members from which it is formed.
The shear/axial interaction expression incorporated in Equation J10-12 (see Figure
C-J10.5) recognizes that when the panel-zone web has completely yielded in shear,
the axial column load is resisted by the flanges.
7. Unframed Ends of Beams and Girders
Full-depth stiffeners are required at unframed ends of beams and girders not other-
wise restrained to avoid twisting about their longitudinal axes. These stiffeners are
full depth but not fitted. They connect to the restrained flange but do not need to con-
tinue beyond the toe of the fillet at the far flange unless connection to the far flange
is necessary for other purposes, such as resisting compression from a concentrated
load on the far flange.
Fig. C-J10.4. Interaction of shear and axial force—elastic.
1
3
2
+






bt
ddt
cf cf
bcw
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 421

16.1–422 FLANGES AND WEBS WITH CONCENTRATED FORCES [Comm. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
8. Additional Stiffener Requirements for Concentrated Forces
See Carter (1999), Troup (1999), and Murray and Sumner (2004) for guidelines on
column stiffener design.
For rotary-straightened W-shapes, an area of reduced notch toughness is sometimes
found in a limited region of the web immediately adjacent to the flange, referred to
as the “k -area,” as illustrated in Figure C-J10.6 (Kaufmann et al., 2001). The k -area
is defined as the region of the web that extends from the tangent point of the web
and the flange-web fillet (AISC k dimension) a distance 1
1
/2in. (38 mm) into the
web beyond the kdimension. Following the 1994 Northridge Earthquake, there was
a tendency to specify thicker transverse stiffeners that were groove welded to the
web and flange, and thicker doubler plates that were often groove welded in the gap
Fig. C-J10.5. Interaction of shear and axial force—inelastic.
Fig. C-J10.6. Representative “k-area” of a wide-flange shape.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 422

Comm. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–423
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-J10.7. Recommended placement of stiffener fillet welds
to avoid contact with “k-area.”
between the doubler plate and the flanges. These welds were highly restrained and
may have caused cracking during fabrication in some cases (Tide, 1999). AISC
(1997b) recommended that the welds for continuity plates terminate away from the
k-area.
Recent pull-plate tests (Dexter and Melendrez, 2000; Prochnow et al., 2000; Hajjar
et al., 2003) and full-scale beam-column joint testing (Bjorhovde et al., 1999; Dexter
et al., 2001; Lee et al., 2002a) have shown that this problem can be avoided if the
column stiffeners are fillet welded to both the web and the flange, the corner is
clipped at least 1
1
/2in. (38 mm), and the fillet welds are stopped short by a weld leg
length from the edges of the cutout, as shown in Figure C-J10.7. These tests also
show that groove welding the stiffeners to the flanges or the web is unnecessary, and
that the fillet welds performed well with no problems. If there is concern regarding
the development of the stiffeners using fillet welds, the corner clip can be made so
that the dimension along the flange is
3
/4in. (20 mm) and the dimension along the
web is 1
1
/2in. (38 mm).
Recent tests have also shown the viability of fillet welding doubler plates to the
flanges, as shown in Figure C-J10.8 (Prochnow et al., 2000; Dexter et al., 2001; Lee
et al., 2002a; Hajjar et al., 2003). It was found that it is not necessary to groove weld
the doubler plates and that they do not need to be in contact with the column web to
be fully effective.
9. Additional Doubler Plate Requirements for Concentrated Forces
When required, doubler plates are to be designed using the appropriate limit state
requirements for the type of loading. The sum of the strengths of the member ele-
ment and the doubler plate(s) must exceed the required strength and the doubler plate
must be welded to the member element.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 423

16.1–424 FLANGES AND WEBS WITH CONCENTRATED FORCES [Comm. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-J10.8. Example of fillet welded doubler plate and stiffener details.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 424

16.1–425
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER K
DESIGN OF HSS AND BOX MEMBER
CONNECTIONS
Chapter K addresses the strength of HSS and box member welded connections. The provi-
sions are based on failure modes that have been reported in international research on
HSS, much of which has been sponsored and synthesized by CIDECT (International
Committee for the Development and Study of Tubular Construction) since the 1960s. This
work has also received critical review by the International Institute of Welding (IIW)
Subcommission XV-E on “Tubular Structures.” The HSS connection design recommenda-
tions are generally in accord with the design recommendations by this Subcommission
(IIW, 1989). Some minor modifications to the IIW recommended provisions for some limit
states have been made by the adoption of the formulations for the same limit states else-
where in this Specification. The IIW connection design recommendations referred to above
have also been implemented and supplemented in later design guides by CIDECT
(Wardenier et al., 1991; Packer et al., 1992), in the design guide by the Canadian Institute
of Steel Construction (Packer and Henderson, 1997) and in CEN (2005). Parts of these IIW
design recommendations are also incorporated in AWS (2010). A large amount of research
data generated by CIDECT research programs up to the mid-1980s is summarized in
CIDECT Monograph No. 6 (Giddings and Wardenier, 1986). Further information on
CIDECT publications and reports can be obtained from their website: www.cidect.com.
The scopes of Sections K2 and K3 note that the centerlines of the branch member(s) and the
chord members must lie in a single plane. For other configurations, such as multi-planar
connections, connections with partially or fully flattened branch member ends, double chord
connections, connections with a branch member that is offset so that its centerline does not
intersect with the centerline of the chord or connections with round branch members joined
to a square or rectangular chord member, the provisions of IIW (1989), CIDECT (Wardenier
et al., 1991; Packer et al., 1992), CISC (Packer and Henderson, 1997; Marshall, 1992; AWS,
2010), or other verified design guidance or tests can be used.
K1. CONCENTRATED FORCES ON HSS
1. Definitions of Parameters
Some of the notation used in Chapter K is illustrated in Figure C-K1.1.
2. Round HSS
See Commentary Section K1.3.
3. Rectangular HSS
The limits of applicability in Table K1.1A stem primarily from limitations on tests
conducted to date.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 425

Sections K1.2 and K1.3, although pertaining to all concentrated forces on HSS, are
particularly oriented towards plate-to-HSS welded connections. Most of the equa-
tions (after application of appropriate resistance factors for LRFD) conform to
CIDECT Design Guides 1 and 3 (Wardenier et al., 1991; Packer et al., 1992) with
updates in accordance with CIDECT Design Guide 9 (Kurobane et al., 2004). The
latter includes revisions for longitudinal plate-to-rectangular HSS connections
(Equation K1-12) based on extensive experimental and numerical studies reported in
Kosteski and Packer (2003). The provisions for the limit state of sidewall crippling
of rectangular HSS, Equations K1-10 and K1-11, conform to web crippling expres-
sions elsewhere in this Specification, and not to CIDECT or IIW recommendations.
If a longitudinal plate-to-rectangular HSS connection is made by passing the plate
through a slot in the HSS and then welding the plate to both the front and back HSS
faces to form a “through-plate connection,” the nominal strength can be taken as
twice that given by Equation K1-12 (Kosteski and Packer, 2003), and is given in
Equation K1-13.
16.1–426 CONCENTRATED FORCES ON HSS [Comm. K1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-K1.1. Common notation for HSS connections.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 426

Comm. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–427
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The equations given for transverse plate-to-HSS connections can also be adapted for
wide-flange beam-to-HSS PR moment connections, by treating the beam flanges as
a pair of transverse plates and ignoring the beam web. For such wide-flange beam
connections, the beam moment is thus produced by a force couple in the beam
flanges. The connection flexural strength is then given by the plate-to-HSS connec-
tion strength multiplied by the distance between the beam flange centers. In Table
K1.2 there is no check for the limit state of chord wall plastification for transverse
plate-to-rectangular HSS connections, because this will not govern the design in
practical cases. However, if there is a major compression load in the HSS, such as
when it is used as a column, one should be aware that this compression load in the
main member has a negative influence on the yield line plastification failure mode of
the connecting chord wall (via a Q
f factor). In such a case, the designer can utilize
guidance in CIDECT Design Guide No. 9 (Kurobane et al., 2004).
Tables K1.1 and K1.2 include limit states for HSS to longitudinal plate connections
loaded in shear. These recommendations are based on Sherman and Ales (1991) and
Sherman (1995b, 1996), where a large number of simple framing connections
between wide-flange beams and rectangular HSS columns are investigated, in
which the load transferred was predominantly shear. A review of costs also showed
that single-plate and single-angle connections were the most economical, with dou-
ble-angle and fillet-welded tee connections being more expensive. Through-plate
and flare-bevel welded tee connections were among the most expensive (Sherman,
1995b). Over a wide range of connections tested, only one limit state was identified
for the rectangular HSS column: punching shear failure related to end rotation of the
beam, when a thick shear plate was joined to a relatively thin-walled HSS.
Compliance with the inequality given by Equation K1-3 precludes this HSS failure
mode. This design rule is valid providing the HSS wall is not classified as a slender
element. An extrapolation of the inequality given by Equation K1-3 has also been
made for round HSS columns, subject to the round HSS cross section not being clas-
sified as a slender element.
In Table K1.2, two limit states are given for the strength of a square or rectangular
HSS wall with load transferred through a cap plate (or the flange of a T-stub), as
shown in Figure C-K1.2. In general, the rectangular HSS could have dimensions of
B ×H, but the illustration shows the bearing length (or width), l
b,oriented for lateral
load dispersion into the wall of dimension B. A conservative distribution slope can
be assumed as 2.5:1 from each face of the tee web (Wardenier et al., 1991;
Kitipornchai and Traves, 1989), which produces a dispersed load width of (5t
p +lb).
If this is less than B,only the two side walls of dimension B are effective in resisting
the load, and even they will both be only partially effective. If (5t
p +lb) ≥B, all four
walls of the rectangular HSS will be engaged, and all will be fully effective; how-
ever, the cap plate (or T-stub flange) must be sufficiently thick for this to happen.
In Equations K1-14 and K1-15 the size of any weld legs has been conservatively
ignored. If the weld leg size is known, it is acceptable to assume load dispersion from
the toes of the welds. The same load dispersion model as shown in Figure C-K1.2
can also be applied to round HSS-to-cap plate connections.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 427

K2. HSS-TO-HSS TRUSS CONNECTIONS
The classification of HSS truss-type connections as K- (which includes N-), Y-
(which includes T-), or cross- (also known as X-) connections is based on the method
of force transfer in the connection, not on the physical appearance of the connection.
Examples of such classification are shown in Figure C-K2.1.
As noted in Section K2, when branch members transmit part of their load as K-con-
nections and part of their load as T-, Y- or cross-connections, the adequacy of each
branch is determined by linear interaction of the proportion of the branch load
involved in each type of load transfer. One K-connection, shown in Figure C-
K2.1(b), illustrates that the branch force components normal to the chord member
may differ by as much as 20% and still be deemed to exhibit K-connection behavior.
This is to accommodate slight variations in branch member forces along a typical
truss, caused by a series of panel point loads. The N-connection in Figure C-K2.1(c),
however, has a ratio of branch force components normal to the chord member of 2:1.
In this case, the connection is analyzed as both a “pure” K-connection (with balanced
branch forces) and a cross-connection (because the remainder of the diagonal branch
load is being transferred through the connection), as shown in Figure C-K2.2. For the
diagonal tension branch in that connection, the following check is also made:
(0.5Psinθ/K-connection available strength)
+(0.5Psinθ/cross-connection available strength) ≤ 1.0
If the gap size in a gapped K- (or N-) connection [for example, Figure C-K2.1(a)]
becomes large and exceeds the value permitted by the eccentricity limit, the K-con-
nection should be treated as two independent Y-connections. In cross-connections,
such as Figure C-K2.1(e), where the branches are close together or overlapping, the
16.1–428 HSS-TO-HSS TRUSS CONNECTIONS [Comm. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-K1.2. Load dispersion from a concentrated force through a cap plate.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 428

Comm. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–429
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-K2.1. Examples of HSS connection classification.
gap
T T
P
100%
K
P
T T
1.2P
100%
K
P
0.2P sinT
within tolerance
for:
T
100%
K
P
50% K
50% X
+e
0.5P sinT
0.5P sinT
T
P
100%
Y
0
T
P
100%
X
T
P
T T
P
100%
X
P
T T
P
100%
X P
T
P
100%
X
P
2P sinT
T
gap
T T
P 100%
K
P
100%
K
0
+e
T T
1.2P
100%
K
P
T T
P
100%
K 1.2P
(a)
(c)
(d)
(f)
(h)
(b)
(e)
(g)
(i)
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 429

16.1–430 HSS-TO-HSS TRUSS CONNECTIONS [Comm. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.5P sinT
0.5P sinT
T
P
P cosT
=
0.5P sinT
T
0.5P
0.5P cosT
0.5P sinT
T
+
0.5P
0.5P cos
T

Fig. C-K2.2. Checking of K-connection with imbalanced branch member loads.


(a) Chord plastification (b) Punching shear failure of the chord


(c) Uneven load distribution in the (d) Uneven load distribution in the
tension branch compression branch

Fig. C-K2.3. Typical limit states for HSS-to-HSS truss connections.
(e) Shear yielding of the chord (f) Chord sidewall failure
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 430

Comm. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–431
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
combined “footprint” of the two branches can be taken as the loaded area on the chord
member. In K-connections such as Figure C-K2.1(d), where a branch has very little or
no loading, the connection can be treated as a Y-connection, as shown.
The design of welded HSS connections is based on potential limit states that may
arise for a particular connection geometry and loading, which in turn represent pos-
sible failure modes that may occur within prescribed limits of applicability. Some
typical failure modes for truss-type connections, shown for rectangular HSS, are
given in Figure C-K2.3.
1. Definitions of Parameters
Some parameters are defined in Figure C-K1.1.
2. Round HSS
The limits of applicability in Table K2.1A generally represent the parameter range
over which the equations have been verified in experiments. The following limita-
tions bear explanation.
The minimum branch angle is a practical limit for good fabrication. Smaller branch
angles are possible, but prior agreement with the fabricator should be made.
The wall slenderness limit for the compression branch is a restriction so that con-
nection strength is not reduced by branch local buckling.
The minimum width ratio limit for gapped K-connections is based on Packer (2004),
who showed that for width ratios less than 0.4, Equation K2-4 may be potentially
unconservative when evaluated against proposed equations for the design of such
connections by the American Petroleum Institute (API, 1993).
The restriction on the minimum gap size is only stated so that adequate space is avail-
able to enable welding at the toes of the branches to be satisfactorily performed.
The restriction on the minimum overlap is applied so that there is an adequate inter-
connection of the branches, to enable effective shear transfer from one branch to the
other.
The provisions given in Table K2.1 for T-, Y-, cross- and K-connections are gener-
ally based, with the exception of the punching shear provision, on semi-empirical
“characteristic strength” expressions, which have a confidence of 95%, taking into
account the variation in experimental test results as well as typical variations in
mechanical and geometric properties. These “characteristic strength” expressions are
then multiplied by resistance factors for LRFD or divided by safety factors for ASD
to further allow for the relevant failure mode.
In the case of the chord plastification failure mode a φof 0.90 or Ω of 1.67 is applied,
whereas in the case of punching shear a φ of 0.95 or a Ω of 1.58 is applied. The lat-
ter φis 1.00 (equivalent to Ωof 1.50) in many recommendations or specifications
[for example, IIW (1989), Wardenier et al. (1991), and Packer and Henderson
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 431

(1997)], to reflect the large degree of reserve strength beyond the analytical nominal
strength expression, which is itself based on the shear yield (rather than ultimate)
strength of the material. In this Specification, however, a φof 0.95 or Ω of 1.58 is
applied to maintain consistency with the factors for similar failure modes in Table
K2.2.
If the tensile stress, F
u, were adopted as a basis for a punching shear rupture crite-
rion, the accompanying φwould be 0.75 and Ω would be 2.00, as elsewhere in this
Specification. Then, 0.75(0.6F
u)=0.45F u would yield a very similar value to
0.95(0.6F
y)=0.57F y , and in fact the latter is even more conservative for HSS with
specified nominal F
y/Fu ratios less than 0.79. Equation K2-1 need not be checked
when D
b>D – 2tbecause this is the physical limit at which the branch can punch
into (or out of) the main tubular member.
With round HSS in axially loaded K-connections, the size of the compression
branch dominates the determination of the connection strength. Hence, the term
D
bcompin Equation K2-4 pertains only to the compression branch and is not an
average of the two branches. Thus, if one requires the connection strength expressed
as a force in the tension branch, one can resolve the answer from Equation K2-4 into
the direction of the tension branch, using Equation K2-5. That is, it is not necessary
to repeat a calculation similar to Equation K2-4 with D
bas the tension branch. Note
that the K-connection section in Table K2.2 deals with branches subject to axial load-
ing only. This is because there should only be axial forces in the branches of a typical
planar K-connection if the truss structural analysis is performed according to one of
the recommended methods, which are:
(a) pin-jointed analysis; or
(b) analysis using web members pin-connected to continuous chord members, as
shown in Figure C-K2.4.
16.1–432 HSS-TO-HSS TRUSS CONNECTIONS [Comm. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Noding condition
for most overlap
connections
Extremely stiff members Pin
Extremely stiff
members
Noding condition
for most gap
connections
Fig. C-K2.4. Modeling assumption using web members pin-connected
to continuous chord members.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 432

Comm. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–433
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Rectangular HSS
The limits of validity in Table K2.2A are established similarly to the limits for round
HSS in Table K2.1A.
The restriction on the minimum gap ratio in Table K2.2A is modified from IIW
(1989), according to Packer and Henderson (1997), to be more practical. In Table
K2.2A there are two limits for the minimum gap dimension. The gap ratio (g/B) limit
serves to ensure that sufficient load from a branch is transferred to the chord mem-
ber sidewalls and to ensure that the demand for load transfer through the gap region
is not excessive. The limit on gbeing at least the sum of the branch thicknesses is
specified so that adequate space is available to enable welding at the toes of the
branches to be satisfactorily performed.
Equation K2-7 represents an analytical yield line solution for flexure of the con-
necting chord face. This nominal strength equation serves to limit connection
deformations and is known to be well below the ultimate connection strength. A φ
of 1.00 or Ω of 1.50 is thus appropriate. When the branch width exceeds 85% of the
chord width this yield line failure mechanism will result in a noncritical design load.
The limit state of punching shear, evident in Equations K2-8 and K2-15, is based on
the effective punching shear perimeter around the branch, with the total branch
perimeter being an upper limit on this length. The term β
eop represents the chord face
effective punching shear width ratio, adjacent to one (Equation K2-15) or two
(Equation K2-8) branch walls transverse to the chord axis. This β
eop term incorporates
a φof 0.80 or Ω of 1.88. Applying to generally one dimension of the rectangular
branch footprint, this was deemed by AWS to be similar to a global φ of 0.95 or Ω of
1.58 for the whole expression, so this expression for punching shear appears in AWS
(2010) with an overall φ of 0.95. This φ of 0.95 or Ω of 1.58 has been carried over to
this Specification, and this topic is discussed further in Section C-K2.2. Limitations
given above Equations K2-8 and K2-15 in Table K2.2 indicate when this failure mode
is either physically impossible or noncritical. In particular, note that Equation K2-15
is noncritical for square HSS branches.
Equation K2-9 is generally in accord with a limit state given in IIW (1989), but with
the k term [simply t in IIW (1989)] modified to be compatible with Equation
K1-9, which in turn is derived from loads on I-shaped members. Equations K2-10
and K2-11 are in a format different than used internationally [for example, IIW
(1989)] for this limit state and are unique to this Specification, having been replicated
from Equations K1-10 and K1-11, along with their associated φ’s and Ω’s. These lat-
ter equations in turn are HSS versions (for two webs) of equations for I-shaped
members with a single web.
The limit state of “uneven load distribution,” which is manifested by local buckling
of a compression branch or premature yield failure of a tension branch, represented
by Equations K2-12 and K2-16, is checked by summing the effective areas of the
four sides of the branch member. For T-, Y- and cross-connections the two walls of
the branch transverse to the chord are likely to be only partially effective (Equation
K2-12), whereas for gapped K-connections one wall of the branch transverse to
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 433

the chord is likely to be only partially effective (Equation K2-16). This reduced
effectiveness is primarily a result of the flexibility of the connecting face of the
chord, as incorporated in Equations K2-13. The effective width term, b
eoi,has been
derived from research on transverse plate-to-HSS connections (as cited below for
overlapped K-connections) and incorporates a φ factor of 0.80 or Ω factor of 1.88.
Applying the same logic described above for the limit state of punching shear, a
global φfactor of 0.95 or Ω factor of 1.58 has been adopted in AWS D1.1/D1.1M
(AWS, 2010), and this has been carried over to this Specification [although, as noted
previously, a φfactor of 1.0 is used in IIW (1989)].
For T-, Y- and cross-connections with β≤0.85, the connection strength is determined
by Equation K2-7 only.
For axially loaded, gapped K-connections, plastification of the chord connecting
face under the “push-pull” action of the branches is by far the most prevalent and
critical failure mode. Indeed, if all the HSS members are square, this failure mode
is critical and Equation K2-14 is the only one to be checked. This formula for chord
face plastification is a semi-empirical “characteristic strength” expression, which
has a confidence of 95%, taking into account the variation in experimental test
results as well as typical variations in mechanical and geometric properties.
Equation K2-14 is then multiplied by a φfactor for LRFD or divided by an Ω fac-
tor for ASD to further allow for the failure mode and provide an appropriate safety
margin. A reliability calibration (Packer et al., 1984) for this equation, using a data-
base of 263 gapped K-connections and the exponential expression for the resistance
factor (with a safety index of 3.0 and a coefficient of separation of 0.55) derived a
φfactor of 0.89 (Ω factor of 1.69), while also imposing the parameter limits of
validity. Since this failure mode dominates the test database, there is insufficient
supporting test data to calibrate Equations K2-15 and K2-16.
For the limit state of shear yielding of the chord in the gap of gapped K-
connections, Table K2.2 differs from international practice [for example, IIW (1989)]
by recommending application of another section of this Specification, Section G5.
This limit state need only be checked if the chord member is rectangular, not square,
and is also oriented such that the shorter wall of the chord section lies in the plane of
the truss, hence providing a more critical chord shear condition due to the short
“webs.” The axial force present in the gap region of the chord member may also have
an influence on the shear strength of the chord webs in the gap region.
For K-connections, the scope covers both gapped and overlapped connections. Note
that the latter are generally more difficult and more expensive to fabricate than K-
connections with a gap. However, an overlapped connection will, in general, produce
a connection with a higher static strength and fatigue resistance, as well as a stiffer
truss than its gapped connection counterpart.
Table K2.2 provisions for gapped and overlapped K-connections deal with branches
subject to axial loading only. This is because there should only be axial forces in the
branches of a typical planar K-connection if the truss structural analysis is performed
according to one of the recommended methods, which are:
16.1–434 HSS-TO-HSS TRUSS CONNECTIONS [Comm. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 434

Comm. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–435
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(a) pin-jointed analysis, or
(b) analysis using web members pin-connected to continuous chord members, as
shown in Figure C-K2.4.
For rectangular HSS, the sole failure mode to be considered for design of overlapped
connections is the limit state of “uneven load distribution” in the branches, mani-
fested by either local buckling of the compression branch or premature yield failure
of the tension branch. The design procedure presumes that one branch is welded
solely to the chord and hence only has a single cut at its end. This can be considered
“good practice” and the “thru member” is termed the overlapped member. For par-
tial overlaps of less than 100%, the other branch is then double-cut at its end and
welded to both the thru branch as well as the chord.
The branch to be selected as the “thru” or overlapped member should be the one with
the larger overall width. If both branches have the same width, the thicker branch
should be the overlapped branch.
For a single failure mode to be controlling (and not have failure by one branch
punching into or pulling out of the other branch, for example), limits are placed on
various connection parameters, including the relative width and relative thickness of
the two branches. The foregoing fabrication advice for rectangular HSS also pertains
to round HSS overlapped K-connections, but the latter involves more complicated
profiling of the branch ends to provide good saddle fits.
Overlapped rectangular HSS K-connection strength calculations (Equations
K2-17, K2-18 and K2-19) are performed initially just for the overlapping branch,
regardless of whether it is in tension or compression, and then the resistance of the
overlapped branch is determined from that. The equations for connection strength,
expressed as a force in a branch, are based on the load-carrying contributions of the
four side walls of the overlapping branch and follow the design recommendations
of the International Institute of Welding (IIW, 1989; Packer and Henderson, 1997;
AWS, 2010). The effective widths of overlapping branch member walls transverse
to the chord (b
eoiand b eov) depend on the flexibility of the surface on which they
land, and are derived from plate-to-HSS effective width measurements (Rolloos,
1969; Wardenier et al., 1981; Davies and Packer, 1982). The constant of 10 in the
b
eoiand b eovterms has already been reduced from values determined in tests and
incorporates a φ factor of 0.80 or Ω factor of 1.88 in those terms. Applying the same
logic described above for the limit state of punching shear in T-, Y- and cross-con-
nections, a global φ factor of 0.95 or Ω factor of 1.58 was adopted by AWS D1.1/
D1.1M and this has been carried over to this Specification [although as noted pre-
viously a φ factor of 1.0 is used by IIW (1989)].
The applicability of Equations K2-17, K2-18 and K2-19 depends on the amount of
overlap, O
v, where O v=(q/p) ×100%. It is important to note that pis the projected
length (or imaginary footprint) of the overlapping branch on the connecting face of
the chord, even though it does not physically contact the chord. Also, qis the over-
lap length measured along the connecting face of the chord beneath the region of
overlap of the branches. This is illustrated in Figure C-K1.1.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 435

A maximum overlap of 100% occurs when one branch sits completely on the other
branch. In such cases, the overlapping branch is sometimes moved slightly up the
overlapped branch so that the heel of the overlapping branch can be fillet welded to
the face of the overlapped branch. If the connection is fabricated in this manner, an
overlap slightly greater than 100% is created. In such cases, the connection strength
for a rectangular HSS connection can be calculated by Equation K2-19 but with the
B
biterm replaced by another b eovterm. Also, with regard to welding details, it has
been found experimentally that it is permissible to just tack weld the “hidden toe” of
the overlapped branch, providing that the components of the two branch member
forces normal to the chord substantially balance each other and providing that the
welds are designed for the yield capacity of the connected branch walls. The “hidden
toe” should be fully welded to the chord if the normal components of the two branch
forces differ by more than 20% or the welds to the branches are designed using an
effective length approach. More discussion is provided in Commentary Section K4.
If the components of the two branch forces normal to the chord do in fact differ sig-
nificantly, the connection should also be checked for behavior as a T-, Y- or
cross-connection, using the combined footprint and the net force normal to the chord
(see Figure C-K2.2).
K3. HSS-TO-HSS MOMENT CONNECTIONS
Section K3 on HSS-to-HSS connections under moment loading is applicable to
frames with PR or FR moment connections, such as Vierendeel girders. The provi-
sions of Section K3 are not generally applicable to typical planar triangulated trusses,
which are covered by Section K2, since the latter should be analyzed in a manner that
results in no bending moments in the web members (see Commentary Section K2).
Thus, K-connections with moment loading on the branches are not covered by this
Specification.
Available testing for HSS-to-HSS moment connections is much less extensive than
that for axially-loaded T-, Y-, cross- and K-connections. Hence, the governing limit
states to be checked for axially loaded connections have been used as a basis for the
possible limit states in moment-loaded connections. Thus, the design criteria for
round HSS moment connections are based on the limit states of chord plastification
and punching shear failure, with φand Ωfactors consistent with Section K2, while
the design criteria for rectangular HSS moment connections are based on the limit
states of plastification of the chord connecting face, chord side wall crushing,
uneven load distribution, and chord distortional failure, with φand Ωfactors con-
sistent with Section K2. The “chord distortional failure” mode is applicable only to
rectangular HSS T-connections with an out-of-plane bending moment on the
branch. Rhomboidal distortion of the branch can be prevented by the use of stiffen-
ers or diaphragms to maintain the rectangular cross-sectional shape of the chord.
The limits of applicability of the equations in Section K3 are predominantly repro-
duced from Section K2. The basis for the equations in Section K3 is Eurocode 3
(CEN, 2005), which represents one of the consensus specifications on welded HSS-
to-HSS connections. The equations in Section K3 have also been adopted in
CIDECT Design Guide No. 9 (Kurobane et al., 2004).
16.1–436 HSS-TO-HSS TRUSS CONNECTIONS [Comm. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 436

Comm. K4.] WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS 16.1–437
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
K4. WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS
Section K4 consolidates all the welding rules for plates and branch members to the
face of an HSS into one section. In addition to reformatting the design rules for
welds of plates and gapped connections (both unchanged) into a tabular format, the
weld design rules have been expanded for T-, Y- and cross-connections to include
moments, as well as axial loads, and added “fit for purpose” design rules for over-
lapped connections.
The design of welds to branches may be performed using either of two design
philosophies:
(a) The welds may be proportioned to develop the strength of the connected branch
wall, at all points along the weld length. This may be appropriate if the branch
loading is complex or if the loading is not known by the weld designer. Welds
sized in this manner represent an upper limit on the required weld size and may
be excessively conservative in some situations.
(b) The welds may be designed as “fit for purpose,” to resist branch forces that are typ-
ically known in HSS truss-type connections by using what is known as the
“effective length concept.” Many HSS truss web members are subjected to low
axial loads and, in such situations, this weld design philosophy is ideal. However,
the nonuniform loading of the weld perimeter due to the flexibility of the connect-
ing HSS face must be taken into account by using weld effective lengths. Suitable
effective lengths for plates and various rectangular HSS connections subject to
branch axial loading (and/or moment loading in some cases) are given in Table
K4.1. Several of these provisions are similar to those given in AWS (2010) and are
based on full-scale HSS connection and truss tests that studied weld failures (Frater
and Packer, 1992a, 1992b; Packer and Cassidy, 1995). Others (the newly added
rules for moments in T-, Y- and cross-connections and axial forces in overlapped
connections) are based on a rational extrapolation of the effective length concept
used for design of the member itself. Diagrams which show the locations of the
effective weld lengths (most of which are less than 100% of the total weld length)
are shown in Table K4.1. This effective length approach to weld design recognizes
that a branch to main member connection becomes stiffer along its edges, relative
to the center of the HSS face, as the angle of the branch to the connecting face
and/or the width ratio (the width of a branch member relative to the connecting
face) increase. Thus, the effective length used for sizing the weld may decrease as
either the angle of the branch member (when over 50°relative to the connecting
face) or the branch member width (creating width ratios over 0.85) increase. Note
that for ease of calculation and because the error is insignificant, the weld corners
were assumed as square for determination of the weld line section properties in cer-
tain cases.
As noted in Commentary Section K2, when the welds in overlapped joints are ade-
quate to develop the strength of the remaining member walls, it has been found
experimentally that it is permissible to tack weld the “hidden toe” of the overlapped
branch, providing that the components of the two branch member forces normal to
the chord substantially balance each other. The “hidden toe” should be fully welded
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 437

to the chord if the normal components of the two branch forces differ by more than
20%. If the “fit for purpose” weld design philosophy is used in an overlapped joint
the hidden weld should be completed even though the effective weld length may be
much less than the perimeter of the tube. This helps account for the moments that can
occur in typical HSS connections due to joint rotations and face deformations but are
not directly accounted for in design.
Until further investigation proves otherwise, directional strength increases typically
used in the design of fillet welds are not allowed in Section K4 when welding to the
face of HSS members in truss-type connections. Additionally, the design weld size in
all cases shown in Table K4.1, including the hidden weld underneath an overlapped
member as discussed above, is the smallest weld throat around the connection
perimeter; adding up the strengths of individual sections of a weld group with vary-
ing throat sizes around the perimeter of the cross section is not a viable approach to
HSS connection design.
16.1–438 WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS [Comm. K4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 438

16.1–439
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER L
DESIGN FOR SERVICEABILITY
L1. GENERAL PROVISIONS
Serviceability limit states are conditions in which the functions of a building are
impaired because of local damage, deterioration or deformation of building compo-
nents, or occupant discomfort. While serviceability limit states generally do not
involve collapse of a building, loss of life or injury, they can seriously impair the
building’s usefulness and lead to costly repairs and other economic consequences.
Serviceability provisions are essential to provide satisfactory performance of build-
ing structural systems. Neglect of serviceability may result in structures that are
excessively flexible or otherwise perform unacceptably in service.
The three general types of structural behavior that are indicative of impaired serv-
iceability in steel structures are:
(1) Excessive deflections or rotations that may affect the appearance, function or
drainage of the building or may cause damaging transfer of load to nonstructural
components and attachments;
(2) Excessive vibrations produced by the activities of the building occupants,
mechanical equipment or wind effects, which may cause occupant discomfort or
malfunction of building service equipment; and
(3) Excessive local damage (local yielding, buckling, slip or cracking) or deteriora-
tion (weathering, corrosion and discoloration) during the service life of the
structure.
Serviceability limit states depend on the occupancy or function of the building, the
perceptions of its occupants, and the type of structural system. Limiting values of
structural behavior intended to provide adequate levels of serviceability should be
determined by a team consisting of the building owner/developer, the architect and
the structural engineer after a careful analysis of all functional and economic require-
ments and constraints. In arriving at serviceability limits, the team should recognize
that building occupants are able to perceive structural deformations, motions, crack-
ing or other signs of distress at levels that are much lower than those that would
indicate impending structural damage or failure. Such signs of distress may be
viewed as an indication that the building is unsafe and diminish its economic value,
and therefore must be considered at the time of design.
Service loads that may require consideration in checking serviceability include: (1)
static loads from the occupants, snow or rain on the roof, or temperature fluctuations;
and (2) dynamic loads from human activities, wind effects, the operation of mechan-
ical or building service equipment, or traffic near the building. Service loads are
loads that act on the structure at an arbitrary point in time, and may be only a frac-
tion of the corresponding nominal load. The response of the structure to service loads
generally can be analyzed assuming elastic behavior. Members that accumulate
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 439

16.1–440 GENERAL PROVISIONS [Comm. L1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
residual deformations under service loads also may require examination with respect
to this long-term behavior.
Serviceability limit states and appropriate load combinations for checking
conformance to serviceability requirements can be found in ASCE/SEI 7, Minimum
Design Loads for Buildings and Other Structures, Appendix C, and the
Commentary Appendix C (ASCE, 2010).
L2. CAMBER
Camber is frequently specified in order to provide a level surface under permanent
loads, for reasons of appearance or for alignment with other work. In normal cir-
cumstances camber does nothing to prevent excessive deflection or vibration.
Camber in trusses is normally created by adjustment of member lengths prior to mak-
ing shop connections. It is normally introduced in beams by controlled heating of
selected portions of the beam or by cold bending, or both. Designers should be aware
of practical limits presented by normal fabricating and erection practices. The Code
of Standard Practice for Steel Buildings and Bridges(AISC, 2010a) provides toler-
ances on actual camber and recommends that all cambers be measured in the
fabricating shop on unstressed members, along general guidelines. Further informa-
tion on camber may be found in Ricker (1989) and Bjorhjovde (2006).
L3. DEFLECTIONS
Excessive vertical deflections and misalignment arise primarily from three sources:
(1) gravity loads, such as dead, live and snow loads; (2) effects of temperature, creep
and differential settlement; and (3) construction tolerances and errors. Such defor-
mations may be visually objectionable; cause separation, cracking or leakage of
exterior cladding, doors, windows and seals; and cause damage to interior compo-
nents and finishes. Appropriate limiting values of deformations depend on the type
of structure, detailing and intended use (Galambos and Ellingwood, 1986).
Historically, common deflection limits for horizontal members have been 1/360 of
the span for floors subjected to reduced live load and 1/240 of the span for roof mem-
bers. Deflections of about 1/300 of the span (for cantilevers, 1/150 of the length) are
visible and may lead to general architectural damage or cladding leakage.
Deflections greater than 1/200 of the span may impair operation of moveable com-
ponents such as doors, windows and sliding partitions.
Deflection limits depend very much on the function of the structure and the nature of
the supported construction. Traditional limits expressed as a fraction of the span
length should not be extrapolated beyond experience. For example, the traditional
limit of 1/360 of the span worked well for controlling cracks in plaster ceilings with
spans common in the first half of the twentieth century. Many structures with more
flexibility have performed satisfactorily with the now common, and more forgiving,
ceiling systems. On the other hand, with the advent of longer structural spans, serv-
iceability problems have been observed with flexible grid ceilings where actual
deflections were far less than 1/360 of the span, because the distance between parti-
tions or other elements that may interfere with ceiling deflection are far less than the
span of the structural member. Proper control of deflections is a complex subject
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 440

Comm. L4.] DRIFT 16.1–441
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
requiring careful application of professional judgment. West and Fisher (2003) pro-
vide an extensive discussion of the issues.
Deflection computations for composite beams should include an allowance for slip,
creep and shrinkage (see Commentary Section I3).
In certain long-span floor systems, it may be necessary to place a limit, independent
of span, on the maximum deflection to minimize the possibility of damage of adja-
cent nonstructural elements (ISO, 1977). For example, damage to nonload-bearing
partitions may occur if vertical deflections exceed more than about
3
/8in. (10 mm)
unless special provision is made for differential movement (Cooney and King, 1988);
however, many components can and do accept larger deformations.
Load combinations for checking static deflections can be developed using first-order
reliability analysis (Galambos and Ellingwood, 1986). Current static deflection
guidelines for floor and roof systems are adequate for limiting superficial damage in
most buildings. A combined load with an annual probability of being exceeded of 5%
is appropriate in most instances. For serviceability limit states involving visually
objectionable deformations, repairable cracking or other damage to interior finishes,
and other short-term effects, the suggested load combinations are:
D+L
D+0.5S
For serviceability limit states involving creep, settlement or similar long-term or per-
manent effects, the suggested load combination is:
D+0.5L
The dead load effect, D, may be that portion of dead load that occurs following
attachment of nonstructural elements. For example, in composite construction, the
dead load effects frequently are taken as those imposed after the concrete has cured.
For ceiling related calculations, the dead load effects may include only those loads
placed after the ceiling structure is in place.
L4. DRIFT
Drift (lateral deflection) in a steel building is a serviceability issue primarily from
the effects of wind. Drift limits are imposed on buildings to minimize damage to
cladding and to nonstructural walls and partitions. Lateral frame deflection is eval-
uated for the building as a whole, where the applicable parameter is the total
building drift, defined as the lateral frame deflection at the top of the most occupied
floor divided by the height of the building to that level, Δ/H. For each floor, the
applicable parameter is interstory drift, defined as the lateral deflection of a floor
relative to the lateral deflection of the floor immediately below, divided by the dis-
tance between floors, (δ
nλδn-1)/h.
Typical drift limits in common usage vary from H/100 to H/600 for total building
drift and h/200 to h/600 for interstory drift, depending on building type and the type
of cladding or partition materials used. The most widely used values are H(or h)/400
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 441

16.1–442 DRIFT [Comm. L4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
to H (or h)/500 (ASCE Task Committee on Drift Control of Steel Building
Structures, 1988). An absolute limit on interstory driftis sometimes imposed by
designers in light of evidence that damage to nonstructural partitions, cladding and
glazing may occur if the interstory drift exceeds about
3
/8in. (10 mm), unless special
detailing practices are employed to accommodate larger movements (Cooney and
King, 1988; Freeman, 1977). Many components can accept deformations that are
significantly larger. More specific information on the damage threshold for building
materials is available in the literature (Griffis, 1993).
It is important to recognize that frame racking or shear distortion (in other words,
strain) is the real cause of damage to building elements such as cladding and parti-
tions. Lateral drift only captures the horizontal component of the racking and does
not include potential vertical racking, as from differential column shortening in tall
buildings, which also contributes to damage. Moreover, some lateral drift may be
caused by rigid body rotation of the cladding or partition which by itself does not
cause strain and therefore damage. A more precise parameter, the drift damage index,
used to measure the potential damage, has been proposed (Griffis, 1993).
It must be emphasized that a reasonably accurate estimate of building drift is
essential to controlling damage. The structural analysis must capture all significant
components of potential frame deflection including flexural deformation of beams
and columns, axial deformation of columns and braces, shear deformation of beams
and columns, beam-column joint rotation (panel-zone deformation), the effect of
member joint size, and the P-Δeffect (Charney, 1990). For many low-rise steel
frames with normal bay widths of 30 to 40 ft (9 to 12 m), use of center-to-center
dimensions between columns without consideration of actual beam column joint
size and panel zone effects will usually suffice for checking drift limits. The stiff-
ening effect of nonstructural cladding, walls and partitions may be taken into
account if substantiating information (stress versus strain behavior) regarding their
effect is available.
The level of wind load used in drift limit checks varies among designers depending
upon the frequency with which the potential damage can be tolerated. Some design-
ers use the same nominal wind load (wind load specified by the building code
without a load factor) as used for the strength design of the members (typically a 50
or 100 year mean recurrence interval wind load). Other designers use a 10 year or 20
year mean recurrence interval wind load (Griffis, 1993; ASCE, 2010). Use of fac-
tored wind loads (nominal wind load multiplied by the wind load factor) is generally
considered to be very conservative when checking serviceability.
It is important to recognize that drift control limits by themselves in wind-sensitive
buildings do not provide comfort of the occupants under wind load. See Section
L6 for additional information regarding perception of motion in wind sensitive
buildings.
L5. VIBRATION
The increasing use of high-strength materials with efficient structural systems and
open plan architectural layouts leads to longer spans and more flexible floor systems
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 442

Comm. L6.] WIND-INDUCED MOTION 16.1–443
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
having less damping. Therefore, floor vibrations have become an important design
consideration. Acceleration is the recommended standard for evaluation.
An extensive treatment of vibration in steel-framed floor systems and pedestrian
bridges is found in Design Guide 11, Floor Vibrations Due to Human Activity
(Murray et al., 1997). This guide provides basic principles and simple analytical tools
to evaluate steel-framed floor systems and footbridges for vibration serviceability
due to human activities, including walking and rhythmic activities. Both human com-
fort and the need to control movement for sensitive equipment are considered.
L6. WIND-INDUCED MOTION
Designers of wind-sensitive buildings have long recognized the need for controlling
annoying vibrations under the action of wind to protect the psychological well-
being of the occupants (Chen and Robertson, 1972). The perception of building
motion under the action of wind may be described by various physical quantities
including maximum displacement, velocity, acceleration, and rate of change of
acceleration (sometimes called “jerk”). Acceleration has become the standard for
evaluation because it is readily measured in the field and can be easily calculated
analytically. Human response to building motion is a complex phenomenon involv-
ing many psychological and physiological factors. Perception and tolerance
thresholds of acceleration as a measure of building motion are known to depend on
factors such as frequency of the building, occupant gender, age, body posture (sit-
ting, standing or reclining), body orientation, expectation of motion, body
movement, visual cues, acoustic clues, and the type of motion (translational or tor-
sional) (ASCE, 1981). Different thresholds and tolerance levels exist for different
people and responses can be very subjective. It is known that some people can
become accustomed to building motion and tolerate higher levels than others.
Limited research exists on this subject but certain standards have been applied for
design as discussed below.
Acceleration in wind-sensitive buildings may be expressed as either root mean
square (RMS) or peak acceleration. Both measures are used in practice and there is
no clear agreement as to which is the more appropriate measure of motion percep-
tion. Some researchers believe that peak acceleration during wind storms is a better
measure of actual perception but that RMS acceleration during the entire course of
a wind storm is a better measure of actual discomfort. Target peak accelerations of
21 milli-g (0.021 times the acceleration of gravity) for commercial buildings (occu-
pied mostly during daylight hours) and 15 milli-g for residential buildings
(occupied during the entire day) under a 10-year mean recurrence interval wind
storm have been successfully used in practice for many tall building designs
(Griffis, 1993). The target is generally more strict for residential buildings because
of the continuous occupancy, the perception that people are less sensitive and more
tolerant at work than at home, the fact that there is more turnover in commercial
buildings, and the fact that commercial buildings are more easily evacuated for peak
wind events. Peak acceleration and RMS acceleration in wind-sensitive buildings
are related by the “peak factor” best determined in a wind tunnel study and gener-
ally in the range of 3.5 for tall buildings (in other words, peak acceleration=peak
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 443

16.1–444 WIND-INDUCED MOTION [Comm. L6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
factor τRMS acceleration). Guidance for design acceleration levels used in build-
ing design may be found in the literature (Chen and Robertson, 1972; Hansen et al.,
1973; Irwin, 1986; NRCC, 1990; Griffis, 1993;).
It is important to recognize that perception to building motion is strongly influenced
by building mass and available damping as well as stiffness (Vickery et al., 1983).
For this reason, building drift limits by themselves should not be used as the sole
measure of controlling building motion (Islam et al., 1990). Damping levels for use
in evaluating building motion under wind events are generally taken as approxi-
mately 1% of critical damping for steel buildings.
L7. EXPANSION AND CONTRACTION
The satisfactory accommodation of expansion and contraction cannot be reduced to
a few simple rules, but must depend largely upon the judgment of a qualified engi-
neer.
The problem is likely to be more serious in buildings with masonry walls than with
prefabricated units. Complete separation of the framing at widely spaced expansion
joints is generally more satisfactory than more frequently located devices that depend
upon the sliding of parts in bearing, and usually less expensive than rocker or roller
expansion bearings.
Creep and shrinkage of concrete and yielding of steel are among the causes, other
than temperature, for dimensional changes. Conditions during construction, such as
temperature effects before enclosure of the structure, should also be considered.
Guidelines for the recommended size and spacing of expansion joints in buildings
may be found in NRC (1974).
L8. CONNECTION SLIP
In bolted connections with bolts in holes having only small clearances, such as stan-
dard holes and slotted holes loaded transversely to the axis of the slot, the amount of
possible slip is small. Slip at these connections is not likely to have serviceability
implications. Possible exceptions include certain unusual situations where the effect
of slip is magnified by the configuration of the structure, such as a connection at the
base of a shallow cantilever beam or post where a small amount of bolt slip may pro-
duce unacceptable rotation and deflection.
This Specification requires that connections with oversized holes or slotted holes
loaded parallel to the axis of the slot be designed as slip-critical connections. For a
discussion of slip at these connections, see the Commentary Section J3.8. Where slip
at service loads is a realistic possibility in these connections, the effect of connection
slip on the serviceability of the structure must be considered.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 444

16.1–445
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER M
FABRICATION AND ERECTION
M1. SHOP AND ERECTION DRAWINGS
Supplementary information relevant to shop drawing documentation and associated
fabrication, erection and inspection practices may be found in the Code of Standard
Practice for Steel Buildings and Bridges(AISC, 2010a) and in Schuster (1997).
M2. FABRICATION
1. Cambering, Curving and Straightening
In addition to mechanical means, local application of heat is permitted for curving,
cambering and straightening. Maximum temperatures are specified to avoid metal-
lurgical damage and inadvertent alteration of mechanical properties. For ASTM
A514/A514M and A852/A852M steels, the maximum is 1,100 °F (590 °C). For other
steels, the maximum is 1,200 °F (650 °C). In general, these should not be viewed
as absolute maximums; they include an allowance for a variation of about 100 °F
(38 °C), which is a common range achieved by experienced fabricators (FHWA,
1999).
Temperatures should be measured by appropriate means, such as temperature-
indicating crayons and steel color. Precise temperature measurements are seldom
called for. Also, surface temperature measurements should not be made immediately
after removing the heating torch because it takes a few seconds for the heat to soak
into the steel.
Local application of heat has long been used as a means of straightening or camber-
ing beams and girders. With this method, selected zones are rapidly heated and tend
to expand. But the expansion is resisted by the restraint provided by the surrounding
unheated areas. Thus, the heated areas are “upset” (increase in thickness) and, upon
cooling, they shorten to effect a change in curvature. In the case of trusses and gird-
ers, cambering can be built in during assembly of the component parts.
Although the desired curvature or camber can be obtained by these various methods,
including at room temperature (cold cambering) (Bjorhovde, 2006), it must be real-
ized that some deviation due to workmanship considerations, as well as some
permanent change due to handling, is inevitable. Camber is usually defined by one
mid-ordinate, because control of more than one point is difficult and not normally
needed. Reverse cambers are difficult to achieve and are discouraged. Long can-
tilevers are sensitive to camber and may deserve closer control.
2. Thermal Cutting
Thermal cutting is preferably done by machine. The requirement in ASTM A6/A6M
for a positive preheat of 150 °F (66 °C) minimum when beam copes and weld access
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 445

16.1–446 FABRICATION [Comm. M2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
holes are thermally cut in hot-rolled shapes with a flange thickness exceeding 2 in.
(50 mm) and in built-up shapes made of material more than 2 in. (50 mm) thick tends
to minimize the hard surface layer and the initiation of cracks. This requirement for
preheat for thermal cutting does not apply when the radius portion of the access hole
or cope is drilled and the thermally cut portion is essentially linear. Such thermally
cut surfaces are required to be ground and inspected in accordance with Section J1.6.
4. Welded Construction
To avoid weld contamination, the light oil coating that is generally present after
manufacturing an HSS should be removed with a suitable solvent in locations where
welding will be performed. In cases where an external coating has been applied at
the mill, the coating should be removed at the location of welding or the manufac-
turer should be consulted regarding the suitability of welding in the presence of the
coating.
5. Bolted Construction
In most connections made with high-strength bolts, it is only required to install the
bolts to the snug-tight condition. This includes bearing-type connections where slip
is permitted and, for ASTM A325 or A325M bolts only, tension (or combined shear
and tension) applications where loosening or fatigue due to vibration or load fluctu-
ations are not design considerations.
It is suggested that snug-tight bearing-type connections with ASTM A325 or A325M
or ASTM A490 or A490M bolts be used in applications where ASTM A307 bolts are
permitted.
This section provides rules for the use of oversized and slotted holes paralleling the
provisions that have been in the RCSCSpecification for High-Strength Boltssince
1972 (RCSC, 2009), extended to include ASTM A307 bolts, which are outside the
scope of the RCSC Specification.
The Specification previously limited the methods used to form holes, based on com-
mon practice and equipment capabilities. Fabrication methods have changed and will
continue to do so. To reflect these changes, this Specification has been revised to
define acceptable quality instead of specifying the method used to form the holes,
and specifically to permit thermally cut holes. AWS C4.1, Sample 3, is useful as an
indication of the thermally cut profile that is acceptable (AWS, 1977). The use of
numerically controlled or mechanically guided equipment is anticipated for the form-
ing of thermally cut holes. To the extent that the previous limits may have related to
safe operation in the fabrication shop, fabricators are referred to equipment manu-
facturers for equipment and tool operating limits.
10. Drain Holes
Because the interior of an HSS is difficult to inspect, concern is sometimes expressed
regarding internal corrosion. However, good design practice can eliminate the con-
cern and the need for expensive protection.
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:55 PM Page 446

Comm. M2.] FABRICATION 16.1–447
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Corrosion occurs in the presence of oxygen and water. In an enclosed building, it is
improbable that there would be sufficient reintroduction of moisture to cause severe
corrosion. Therefore, internal corrosion protection is a consideration only in HSS
that are exposed to weather.
In a sealed HSS, internal corrosion cannot progress beyond the point where the oxy-
gen or moisture necessary for chemical oxidation is consumed (AISI, 1970). The
oxidation depth is insignificant when the corrosion process must stop, even when a
corrosive atmosphere exists at the time of sealing. If fine openings exist at connec-
tions, moisture and air can enter the HSS through capillary action or by aspiration
due to the partial vacuum that is created if the HSS is cooled rapidly (Blodgett,
1967). This can be prevented by providing pressure-equalizing holes in locations
that make it impossible for water to flow into the HSS by gravity.
Situations where an internal protective coating may be required include: (1) open
HSS where changes in the air volume by ventilation or direct flow of water is
possible; and (2) open HSS subject to a temperature gradient that causes conden-
sation. In such instances it may also be prudent to use a minimum
5
/16in. (8 mm)
wall thickness.
HSS that are filled or partially filled with concrete should not be sealed. In the event
of fire, water in the concrete will vaporize and may create pressure sufficient to burst
a sealed HSS. Care should be taken to ensure that water does not remain in the HSS
during or after construction, since the expansion caused by freezing can create pres-
sure that is sufficient to burst an HSS.
Galvanized HSS assemblies should not be completely sealed because rapid pressure
changes during the galvanizing process tend to burst sealed assemblies.
11. Requirements for Galvanized Members
Cracking has been observed in steel members during hot-dip galvanizing. The
occurrence of these cracks has been correlated to several characteristics including,
but not limited to, highly restrained details, base material chemistry, galvanizing
practices, and fabrication workmanship. The requirement to grind beam copes
before galvanizing will not prevent all cope cracks from occurring during galva-
nizing. However, it has been shown to be an effective means to reduce the
occurrence of this phenomenon.
Galvanizing of structural steel and hardware such as fasteners is a process that
depends on special design, detailing and fabrication to achieve the desired level of
corrosion protection. ASTM publishes a number of standards relating to galvanized
structural steel:
ASTM A123 (ASTM, 2009e) provides a standard for the galvanized coating and its
measurement and includes provisions for the materials and fabrication of the prod-
ucts to be galvanized.
ASTM A153/153M (ASTM, 2009a) is a standard for galvanized hardware such as
fasteners that are to be centrifuged.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 447

16.1–448 FABRICATION [Comm. M2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASTM A384/384M (ASTM, 2007a) is the Standard Practice for Safeguarding
Against Warpage and Distortion During Hot-Dip Galvanizing of Steel Assemblies. It
includes information on factors that contribute to warpage and distortion as well as
suggestions for correction for fabricated assemblies.
ASTM A385/385M (ASTM, 2009b) is the Standard Practice for Providing High
Quality Zinc Coatings (Hot-Dip). It includes information on base materials, venting,
treatment of contacting surfaces, and cleaning. Many of these provisions should be
indicated on the design and detail drawings.
ASTM A780/A780M (ASTM, 2009c) provides for repair of damaged and uncoated
areas of hot-dip galvanized coatings.
M3. SHOP PAINTING
1. General Requirements
The surface condition of unpainted steel framing of long-standing buildings that have
been demolished has been found to be unchanged from the time of its erection,
except at isolated spots where leakage may have occurred. Even in the presence of
leakage, the shop coat is of minor influence (Bigos et al., 1954).
This Specification does not define the type of paint to be used when a shop coat is
required. Final exposure and individual preference with regard to finish paint are fac-
tors that determine the selection of a proper primer. A comprehensive treatment of
the subject is found in various SSPC publications.
3. Contact Surfaces
Special concerns regarding contact surfaces of HSS should be considered. As a
result of manufacturing, a light oil coating is generally present on the outer surface
of the HSS. If paint is specified, HSS must be cleaned of this oil coating with a
suitable solvent.
5. Surfaces Adjacent to Field Welds
This Specification allows for welding through surface materials, including appropri-
ate shop coatings that do not adversely affect weld quality nor create objectionable
fumes.
M4. ERECTION
2. Stability and Connections
For information on the design of temporary lateral support systems and components
for low-rise buildings, see Fisher and West (1997).
4. Fit of Column Compression Joints and Base Plates
Tests on spliced full-size columns with joints that had been intentionally milled out-
of-square, relative to either strong or weak axis, demonstrated that the load-carrying
capacity was the same as that for similar columns without splices (Popov and
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 448

Comm. M4.] ERECTION 16.1–449
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Stephen, 1977). In the tests, gaps of
1
/16in. (2 mm) were not shimmed; gaps of
1
/4in.
(6 mm) were shimmed with nontapered mild steel shims. Minimum size partial-joint-
penetration groove welds were used in all tests. No tests were performed on
specimens with gaps greater than
1
/4in. (6 mm).
5. Field Welding
The Specification incorporates AWS D1.1/D1.1M (AWS, 2010) by reference. Surface
preparation requirements are defined in that code. The erector is responsible for repair
of routine damage and corrosion occurring after fabrication. Welding on coated sur-
faces demands consideration of quality and safety. Wire brushing has been shown to
result in adequate quality welds in many cases. Erector weld procedures accommo-
date project site conditions within the range of variables normally used on structural
steel welding. Welds to material in contact with concrete and welded assemblies in
which shrinkage may add up to a substantial dimensional variance may be improved
by judicious selection of weld procedure variables and fit up. These conditions are
dependent on other variables such as the condition and content of the concrete and the
design details of the welded joint. The range of variables permitted in the class of weld
procedures considered to be prequalified in the process used by the erector is the range
normally used.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 449

Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER N
QUALITY CONTROL AND
QUALITY ASSURANCE
N1. SCOPE
Chapter N of the 2010 AISC Specification provides minimum requirements for qual-
ity control (QC), quality assurance (QA) and nondestructive testing (NDT) for
structural steel systems and steel elements of composite members for buildings and
other structures. Minimum observation and inspection tasks deemed necessary to
ensure quality structural steel construction are defined.
Chapter N defines a comprehensive system of “Quality Control” requirements on the
part of the steel fabricator and erector and similar requirements for “Quality
Assurance” on the part of the project owner’s representatives when such is deemed
necessary to complement the contractor’s quality control function. These require-
ments exemplify recognized principles of developing involvement of all levels of
management and the workforce in the quality control process as the most effective
method of achieving quality in the constructed product. Chapter N supplements these
quality control requirements with quality assurance responsibilities as are deemed
suitable for a specific task. The Chapter N requirements follow the same require-
ments for inspections utilized in the AISC Specification referenced Structural
Welding Code—Steel (AWS, 2010), hereafter referred to as AWS D1.1/D1.1M, and
the RCSC Specification for Structural Joints Using High-Strength Bolts(RCSC,
2009), hereafter referred to as the RCSC Specification.
Under Section 8 of the AISC Code of Standard Practice for Steel Buildings and
Bridges(AISC, 2010a), hereafter referred to as the Code of Standard Practice, the
fabricator or erector is to implement a QC system as part of their normal operations.
Those that participate in AISC Quality Certification or similar programs are required
to develop QC systems as part of those programs. The engineer of record should
evaluate what is already a part of the fabricator’s or erector’s QC system in deter-
mining the quality assurance needs for each project. Where the fabricator’s or
erector’s QC system is considered adequate for the project, including compliance
with any specific project needs, the special inspection or quality assurance plan may
be modified to reflect this. Similarly, where additional needs are identified, supple-
mentary requirements should be specified.
The terminology adopted for use in Chapter N is intended to provide a clear dis-
tinction of fabricator and erector requirements and the requirements of others. The
definitions of QC and QA used here are consistent with usage in related industries
such as the steel bridge industry and they are used for the purposes of this
Specification. It is recognized that these definitions are not the only definitions
in use. For example, QC and QA are defined differently in the AISC Quality
16.1–450
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 450

Comm. N2.] FABRICATOR AND ELECTOR QUALITY CONTROL PROGRAM 16.1–451
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Certification program in a fashion that is useful to that program and are consistent
with the International Standards Organization (ISO) and the American Society for
Quality (ASQ).
For the purposes of this Specification, quality control includes those tasks performed
by the steel fabricator and erector that have an effect on quality or are performed to
measure or confirm quality. Quality assurance tasks performed by organizations
other than the steel fabricator and erector are intended to provide a level of assurance
that the product meets the project requirements.
The terms quality control and quality assurance are used throughout this Chapter to
describe inspection tasks required to be performed by the steel fabricator and erector
and project owner’s representatives respectively. The quality assurance tasks are
inspections often performed when required by the applicable building code (ABC) or
authority having jurisdiction (AHJ), and designated as “Special Inspections,” or as
otherwise required by the project owner or engineer of record.
Chapter N defines two inspection levels for required inspection tasks and labels them
as either “observe” or “perform.” This is in contrast to common building code termi-
nology which use or have used the terms “periodic” or “continuous.” The reason for
this change in terminology reflects the multi-task nature of welding and high-strength
bolting operations, and the required inspections during each specific phase. The 2009
International Building Code(IBC) (ICC, 2009) requirements for special inspection of
structural steel refer in very general terms to “inspection of welding” and “inspection
of high-strength bolting.” However, welding and high-strength bolting operations are
each comprised of multiple tasks. The IBC does not specifically define what the scope
of these inspections is to entail during any particular phase of those operations.
Instead, Table 1704.3 in the 2009 IBC references AWS D1.1/D1.1M for weld inspec-
tions, and the 2005 AISC Specification for Structural Steel Buildings (AISC, 2005a)
Section M2.5 for high-strength bolting inspection. These referenced documents do
provide requirements pertaining to specific inspection tasks.
N2. FABRICATOR AND ERECTOR QUALITY CONTROL PROGRAM
Many quality requirements are common from project to project. Many of the
processes used to produce structural steel have an effect on quality and are funda-
mental and integral to the fabricator’s or erector’s success. Consistency in imposing
quality requirements between projects facilitates more efficient procedures for both.
The construction documents referred to in this Chapter are, of necessity, the versions
of the design drawings, specifications, and approved shop and erection drawings that
have been released for construction, as defined in the Code of Standard Practice.
When responses to requests for information (RFI) and change orders exist that mod-
ify the construction documents, these also are part of the construction documents.
When a building information model is used on the project, it also is a part of the con-
struction documents.
Elements of a quality control program can include a variety of documentation such
as policies, internal qualification requirements, and methods of tracking production
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 451

16.1–452 FABRICATOR AND ELECTOR QUALITY CONTROL PROGRAM [Comm. N2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
progress. Any procedure that is not apparent subsequent to the performance of the
work should be considered important enough to be part of the written procedures.
Any documents and procedures made available to the quality assurance inspector
(QAI) should be considered proprietary and not distributed inappropriately.
The inspection documentation should include the following information:
(1) The product inspected
(2) The inspection that was conducted
(3) The name of the inspector and the time period within which the inspection was
conducted
(4) Nonconformances and corrections implemented
Records can include marks on pieces, notes on drawings, process paperwork, or elec-
tronic files. A record showing adherence to a sampling plan for pre-welding
compliance during a given time period may be sufficient for pre-welding observation
inspection.
The level of detail recorded should result in confidence that the product is in com-
pliance with the requirements.
N3. FABRICATOR AND ERECTOR DOCUMENTS
1. Submittals for Steel Construction
The documents listed must be submitted so that the engineer of record (EOR) or the
EOR’s designee can evaluate that the items prepared by the fabricator or erector
meet the EOR’s design intent. This is usually done through the submittal of shop
and erection drawings. In many cases digital building models are produced in order
to develop drawings for fabrication and erection. In lieu of submitting shop and
erection drawings, the digital building model can be submitted and reviewed by the
EOR for compliance with the design intent. For additional information concerning
this process, refer to the Code of Standard Practice Appendix A, Digital Building
Product Models.
2. Available Documents for Steel Construction
The documents listed must be available for review by the EOR. Certain items are of
a nature that submittal of substantial volumes of documentation is not practical, and
therefore it is acceptable to have these documents reviewed at the fabricator’s or
erector’s facility by the engineer or designee, such as the QA agency. Additional
commentary on some of the documentation listed in this section follows:
(4) This section requires documentation to be available for the fastening of deck. For
deck fasteners, such as screws and power fasteners, catalog cuts and/or manu-
facturers installation instructions are to be available for review. There is no
requirement for certification of any deck fastening products.
(8) Because the selection and proper use of welding filler metals is critical to achiev-
ing the necessary levels of strength, notch toughness, and quality, the availability
for review of welding filler metal documentation and welding procedure specifi-
cations (WPSs) is required. This allows a thorough review on the part of the
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 452

Comm. N4.] INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL 16.1–453
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
engineer, and allows the engineer to have outside consultants review these doc-
uments, if needed.
(11) The fabricator and erector maintain written records of welding personnel quali-
fication testing. Such records should contain information regarding date of
testing, process, WPS, test plate, position, and the results of the testing. In order
to verify the six-month limitation on welder qualification, the fabricator and
erector should also maintain a record documenting the dates that each welder has
used a particular welding process.
(12) The fabricator should consider Code of Standard Practice Section 6.1, in estab-
lishing material control procedures for structural steel.
N4. INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL
1. Quality Control Inspector Qualifications
The fabricator or erector determines the qualifications, training and experience
required for personnel conducting the specified inspections. Qualifications should be
based on the actual work to be performed and should be incorporated into the fabri-
cator’s or erector’s QC program. Inspection of welding should be performed by an
individual who, by training and/or experience in metals fabrication, inspection and
testing, is competent to perform inspection of the work. This is in compliance with
AWS D1.1/D1.1M subclause 6.1.4. Recognized certification programs are a method
of demonstrating some qualifications but they are not the only method nor are they
required by Chapter N for quality control inspectors (QCI).
2. Quality Assurance Inspector Qualifications
The quality assurance agency determines the qualifications, training and experience
required for personnel conducting the specified QA inspections. This may be based
on the actual work to be performed on any particular project. AWS D1.1/D1.1M sub-
clause 6.1.4.1(3) states “An individual who, by training or experience, or both, in
metals fabrication, inspection and testing, is competent to perform inspection of the
work.” Qualification for the QA inspector may include experience, knowledge and
physical requirements. These qualification requirements are documented in the QA
agency’s written practice. AWS B5.1 (AWS, 2003) is a resource for qualifications of
a welding inspector.
The use of associate welding inspectors under direct supervision is as permitted in
AWS D1.1/D1.1M subclause 6.1.4.3.
3. NDT Personnel Qualifications
NDT personnel should have sufficient education, training and experience in those
NDT methods they will perform. ASNT SNT-TC-1a (ASNT, 2006a) and ASNT CP-
189 (ASNT, 2006b) prescribe visual acuity testing, topical outlines for training,
written knowledge, hands-on skills examinations, and experience levels for the NDT
methods and levels of qualification.
As an example, under the provisions of ASNT SNT-TC-1a, an NDT Level II indi-
vidual should be qualified to set up and calibrate equipment and to interpret and
evaluate results with respect to applicable codes, standards and specifications. The
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 453

16.1–454 INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL [Comm. N4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
NDT Level II individual should be thoroughly familiar with the scope and limita-
tions of the methods for which they are qualified and should exercise assigned
responsibility for on-the-job training and guidance of trainees and NDT Level I per-
sonnel. The NDT Level II individual should be able to organize and report the
results of NDT tests.
N5. MINIMUM REQUIREMENTS FOR INSPECTION OF STRUCTURAL
STEEL BUILDINGS
1. Quality Control
The welding inspection tasks listed in Tables N5.4-1 through N5.4-3 are inspection
items contained in AWS D1.1/D1.1M, but have been organized in the tables in a
more rational manner for scheduling and implementation using categories of before
welding, during welding and after welding. Similarly, the bolting inspection tasks
listed in Tables N5.6-1 through N5.6-3 are inspection items contained in the RCSC
Specification, but have been organized in a similar manner for scheduling and
implementation using traditional categories of before bolting, during bolting and
after bolting. The details of each table are discussed in Commentary Sections N5.4
and N5.6.
The 2009 International Building Code (IBC) (ICC, 2009) makes specific statements
about inspecting to “approved construction documents” the original and revised
design drawings and specifications as approved by the building official or authority
having jurisdiction (AHJ). Code of Standard Practice Section 4.2(a), requires the
transfer of information from the contract documents (design drawings and project
specifications) into accurate and complete shop and erection drawings. Therefore,
relevant items in the design drawings and project specifications that must be fol-
lowed in fabrication and erection should be placed on the shop and erection
drawings, or in typical notes issued for the project. Because of this provision, QC
inspection may be performed using shop drawings and erection drawings, not the
original design drawings.
The applicable referenced standards in construction documents are commonly
this standard, the Specification for Structural Steel Buildings(ANSI/AISC 360-10),
Code of Standard Practice(AISC 303-10) (AISC, 2010a), AWS D1.1/D1.1M (AWS,
2010), and the RCSC Specification(RCSC, 2009).
2. Quality Assurance
Code of Standard PracticeSection 8.5.2 contains the following provisions regard-
ing the scheduling of shop fabrication inspection: “Inspection of shop work by the
Inspector shall be performed in the Fabricator’s shop to the fullest extent possible.
Such inspections shall be timely, in-sequence and performed in such a manner as
will not disrupt fabrication operations and will permit the repair of nonconforming
work prior to any required painting while the material is still in-process in the fab-
rication shop.”
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 454

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–455
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Similarly, Code of Standard PracticeSection 8.5.3 states “Inspection of field work
shall be promptly completed without delaying the progress or correction of the work.”
Code of Standard PracticeSection 8.5.1 states that, “The Fabricator and the Erector
shall provide the Inspector with access to all places where the work is being per-
formed. A minimum of 24 hours notification shall be given prior to the
commencement of work.” However, the inspector’s timely inspections are necessary
for this to be achieved, while the scaffolding, lifts or other means provided by the
fabricator or erector for their personnel are still in place or are readily available.
IBC Table 1703.3 item 3 requires material verification of structural steel, including
identification markings to conform to the 2005 AISC Specification for Structural
Steel Buildings(ANSI/AISC 360-05) (AISC, 2005a) Section M5.5 and manufactur-
ers’ certified mill (material) test reports. Additionally, the IBC Section 2203.1 states
“Identification of structural steel members shall comply with the requirements con-
tained in AISC 360-05. … Steel that is not readily identifiable as to grade from
marking and test records shall be tested to determine conformity to such standards.”
The 2005 AISC Specification for Structural Steel Buildings Section M5.5 states:
“Identification of Steel. The fabricator shall be able to demonstrate by a written pro-
cedure and by actual practice a method of material identification, visible at least
through the ‘fit-up’ operation, for the main structural elements of each shipping
piece.” Code of Standard PracticeSection 6.1.1 contains similar language, with
more detailed options.
Code of Standard PracticeSection 8.2 states “Material test reports shall constitute
sufficient evidence that the mill product satisfies material order requirements. The
Fabricator shall make a visual inspection of material that is received from the mill,
…“ Code of Standard Practice, Sections 5.2 and 6.1, address the traceability of mate-
rial test reports to individual pieces of steel, and the identification requirements for
structural steel in the fabrication stage.
The IBC makes specific statements about inspecting to “approved construction
documents,” and the original and revised design drawings and specifications as
approved by the building official or the authority having jurisdiction (AHJ). Because
of these IBC provisions, the QAI should inspect using the original and revised design
drawings and project specifications. The QAI may also use the shop drawings and
erection drawings to assist in the inspection process.
3. Coordinated Inspection
Coordination of inspection tasks may be needed for fabricators in remote locations
or distant from the project itself, or for erectors with projects in locations, where
inspection by a local firm or individual may not be feasible or where tasks are
redundant.
The approval of both the AHJ and EOR is required for quality assurance to rely upon
quality control, so there must be a level of assurance provided by the quality activi-
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 455

16.1–456 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ties that are accepted. It may also serve as an intermediate step short of waiving qual-
ity assurance as described in Section N7.
4. Inspection of Welding
AWS D1.1/D1.1M requires inspection, and any inspection task should be done by the
fabricator or erector (termed contractor within AWS D1.1/D1.1M) under the terms of
subclause 6.1.2.1, as follows:
Contractor’s Inspection. This type of inspection and test shall be performed
as necessary prior to assembly, during assembly, during welding, and after
welding to ensure that materials and workmanship meet the requirements
of the contract documents. Fabrication/erection inspection and testing shall
be the responsibility of the Contractor unless otherwise provided in the con-
tract documents.
This is further clarified in subclause 6.1.3.3, which states:
Inspector(s). When the term inspector is used without further qualification
as to the specific inspector category described above, it applies equally to
inspection and verification within the limits of responsibility described in
6.1.2.
The basis of Tables N5.4-1, N5.4-2 and N5.4-3 are inspection tasks, quality require-
ments, and related detailed items contained within AWS D1.1/D1.1M. Commentary
Tables C-N5.4-1, C-N5.4-2 and C-N5.4-3 provide specific references to subclauses
in AWS D1.1/D1.1M: 2010. In the determination of the task lists, and whether the
task is designated “observe” or “perform,” the pertinent terms of the following AWS
D1.1/D1.1M clauses were used:
6.5 Inspection of Work and Records
6.5.1 Size, Length, and Location of Welds. The Inspector shall ensure that
the size, length, and location of all welds conform to the requirements of
this code and to the detail drawings and that no unspecified welds have
been added without the approval of the Engineer.
6.5.2 Scope of Examinations. The Inspector shall, at suitable intervals,
observe joint preparation, assembly practice, the welding techniques, and
performance of each welder, welding operator, and tack welder to ensure
that the applicable requirements of this code are met.
6.5.3 Extent of Examination. The Inspector shall examine the work to
ensure that it meets the requirements of this code. … Size and contour of
welds shall be measured with suitable gages. …
C-6.5 Inspection of Work and Records. Except for final visual inspection,
which is required for every weld, the Inspector shall inspect the work at
suitable intervals to ensure that the requirements of the applicable sections
of the code are met. Such inspections, on a sampling basis, shall be prior to
assembly, during assembly, and during welding. …
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 456

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–457
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Observe tasks are as described in subclauses 6.5.2 and 6.5.3. Subclause 6.5.2 uses the
term observe and also defines the frequency to be “at suitable intervals.” The
Commentary to subclause 6.5.2 further explains that “a sampling basis” is appropri-
ate. Perform tasks are required for each weld by AWS D1.1/D1.1M, as stated in
subclause 6.5.1 or 6.5.3, or are necessary for final acceptance of the weld or item.
The use of the term perform is based upon the use in AWS D1.1/D1.1M of the
phrases “shall examine the work” and “size and contour of welds shall be measured,”
hence perform items are limited to those functions typically performed at the com-
pletion of each weld.
The words “all welds” in subclause 6.5.1 clearly indicate that all welds are required
to be inspected for size, length and location in order to ensure conformity. Chapter N
follows the same principle in labeling these tasks perform, which is defined as
“Perform these tasks for each welded joint or member.”
TABLE C-N5.4-1
Inspection Tasks Prior to Welding
Inspection Tasks Prior to Welding AWS D1.1/D1.1M References*
Welding procedure specifications (WPSs)
available 6.3
Manufacturer certifications for welding 6.2
consumables available
Material identification (type/grade) 6.2
Welder identification system 6.4
(welder qualification)
(identification system not required by
AWS D1.1/D1.1M)
Fit-up of groove welds (including joint
geometry)
Joint preparation 6.5.2
Dimensions (alignment, root opening, 5.22
root face, bevel)
Cleanliness (condition of steel surfaces) 5.15
Tacking (tack weld quality and location) 5.18
Backing type and fit (if applicable) 5.10, 5.22.1.1
Configuration and finish of access holes 6.5.2, 5.17
(also see Section J1.6)
Fit-up of fillet welds
Dimensions (alignment, gaps at root) 5.22.1
Cleanliness (condition of steel surfaces) 5.15
Tacking (tack weld quality and location) 5.18
Check welding equipment 6.2, 5.11
*AWS (2010)
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 457

16.1–458 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-N5.4-2
Inspection Tasks During Welding
Inspection Tasks During Welding AWS D1.1/D1.1M References*
Use of qualified welders 6.4
Control and handling of welding consumables 6.2
Packaging 5.3.1
Exposure control 5.3.2 (for SMAW), 5.3.3 (for SAW)
No welding over cracked tack welds 5.18
Environmental conditions
Wind speed within limits 5.12.1
Precipitation and temperature 5.12.2
WPS followed 6.3.3, 6.5.2, 5.5, 5.21
Settings on welding equipment
Travel speeed
Selected welding materials
Shielding gas type/flow rate
Preheat applied 5.6, 5.7
Interpass temperature maintained
(min/max.)
Proper position (F, V, H, OH)
Welding techniques 6.5.2, 6.5.3, 5.24
Interpass and final cleaning 5.30.1
Each pass within profile limitations
Each pass meets quality requirements
*AWS (2010)
The words “suitable intervals” used in subclause 6.5.2 characterize that it is not nec-
essary to inspect these tasks for each weld, but as necessary to ensure that the
applicable requirements of AWS D1.1/D1.1M are met. Following the same principles
and terminology, Chapter N labels these tasks as “observe,” which is defined as
“Observe these items on a random basis.”
The selection of suitable intervals as used in AWS D1.1/D1.1M subclause 6.5.2, or a
suitable “sampling basis” as used in subclause C-6.5, is not defined within AWS
D1.1/D1.1M, nor is it defined within the IBC or the Specification, other than the
AWS statement “to ensure that the applicable requirements of this code are met.” The
establishment of “at suitable intervals” and an appropriate “sampling basis” is
dependent upon the quality control program of the fabricator or erector, the skills and
knowledge of the welders themselves, the type of weld, and the importance of the
weld. During the initial stages of a project, it may be advisable to have increased lev-
els of observation to establish the effectiveness of the fabricator’s or erector’s quality
control program, but such increased levels need not be maintained for the duration
of the project, nor to the extent of inspectors being on site. Rather, an appropriate
level of observation intervals can be used which is commensurate with the observed
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 458

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–459
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
performance of the contractor and their personnel. More inspection may be war-
ranted for weld fit-up and monitoring of welding operations for CJP and PJP groove
welds loaded in transverse tension, compared to the time spent on groove welds
loaded in compression or shear, or time spent on fillet welds. More time may be war-
ranted observing welding operations for multi-pass fillet welds, where poor quality
root passes and poor fit-up may be obscured by subsequent weld beads, when com-
pared to single pass fillet welds.
The terms perform and observe are not to be confused with periodic and continuous
used in the 2009 IBC. Both sets of terms establish two levels of inspection. The IBC
terms specify whether the inspector is present at all times or not during the course of
the work. Chapter N establishes inspection levels for specific tasks within each major
inspection area. Perform indicates each item is to be inspected and observe indicates
samples of the work are to be inspected. It is likely that the number of inspection
tasks will determine whether an inspector has to be present full time but it is not in
accordance with Chapter N to let the time an inspector is on site determine how many
inspection tasks are done.
AWS D1.1/D1.1M subclause 6.3 states that the contractor’s (fabricator/erector)
inspector is specifically responsible for the WPS, verification of prequalification or
proper qualification, and performance in compliance with the WPS. Quality assur-
TABLE C-N5.4-3
Inspection Tasks After Welding
Inspection Tasks After Welding AWS D1.1/D1.1M References**
Welds cleaned 5.30.1
Size, length and location of welds 6.5.1
Welds meet visual acceptance criteria 6.5.3
Crack prohibition Table 6.1(1)
Weld/base-metal fusion Table 6.1(2)
Crater cross section Table 6.1(3)
Weld profiles Table 6.1(4), 5.24
Weld size Table 6.1(6)
Undercut Table 6.1(7)
Porosity Table 6.1(8)
Arc strikes 5.29
k-area* not addressed in AWS
Backing removed and weld tabs removed (if required) 5.10, 5.31
Repair activities 6.5.3, 5.26
Document acceptance or rejection of 6.5.4, 6.5.5
welded joint or member
*k-area issues were identified in AISC (1997b). See Commentary Section A3.1c and Section J10.8.
** AWS (2010)
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 459

16.1–460 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ance inspectors monitor welding to make sure QC is effective. For this reason, Tables
N5.4-1 and N5.4-2 maintain an inspection task for the QA for these functions. For
welding to be performed, and for this inspection work to be done, the WPS must be
available to both welder and inspector.
IBC Table 1704.3 item 4 requires material verification of weld filler materials. This
is accomplished by observing that the consumable markings correspond to those in
the WPS and that certificates of compliance are available for consumables used.
The footnote to Table N5.4-1 states that “The fabricator or erector, as applicable,
shall maintain a system by which a welder who has welded a joint or member can
be identified. Stamps, if used, shall be the low-stress type.” AWS D1.1/D1.1M does
not require a welding personnel identification system. However, the inspector must
verify the qualifications of welders, including identifying those welders whose work
“appears to be below the requirements of this code.” Also, if welds are to receive
nondestructive testing (NDT), it is essential to have a welding personnel identifica-
tion system to (a) reduce the rate of NDT for good welders, and (2) increase the rate
of NDT for welders whose welds frequently fail NDT. This welder identification
system can also benefit the contractor by clearly identifying welders who may need
additional training.
The proper fit-up for groove welds and fillet welds prior to welding should first be
checked by the fitter and/or welder. Such detailed dimensions should be provided on
the shop or erection drawings, as well as included in the WPS. Fitters and welders
must be equipped with the necessary measurement tools to ensure proper fit-up prior
to welding.
AWS D1.1/D1.1M subclause 6.2 on Inspection of Materials and Equipment states
that, “The Contractor’s Inspector shall ensure that only materials and equipment con-
forming to the requirements of this code shall be used.” For this reason, the check of
welding equipment is assigned to QC only, and is not required for QA.
5. Nondestructive Testing of Welded Joints
5a. Procedures
Buildings are subjected to static loading, unless fatigue is specifically addressed as
prescribed in Appendix 3. Specification Section J2 provisions contain exceptions to
AWS D1.1/D1.1M.
5b. CJP Groove Weld NDT
For statically loaded structures, AWS D1.1/D1.1M and the Specification have no
specific nondestructive testing (NDT) requirements, leaving it to the engineer to
determine the appropriate NDT method(s), locations or categories of welds to be
tested, and the frequency and type of testing (full, partial or spot), in accordance with
AWS D1.1/D1.1M subclause 6.15.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 460

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–461
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-N5.4-4
Descriptions of Risk Categories for
Buildings and Other Structures from
ASCE/SEI 7*
Risk Category I
Buildings and other structures that represent a low risk to human life in the event of failure
Risk Category II
All buildings and other structures except those listed in Risk Categories I, III and IV
Risk Category III
Buildings and other structures, the failure of which could pose a substantial risk to
human life
Buildings and other structures, not included in Risk Category IV, with potential to cause a
substantial economic impact and/or mass disruption of day-to-day civilian life in the event
of failure
Buildings and other structures not included in Risk Category IV (including, but not limited
to, facilities that manufacture, process, handle, store, use, or dispose of such substances
as hazardous fuels, hazardous chemicals, hazardous waste, or explosives) containing
toxic or explosive substances where their quantity exceeds a threshold quantity
established by the authority having jurisdiction and is sufficient to pose a threat to the
public if released.
Risk Category IV
Buildings and other structures designated as essential facilities
Buildings and other structures, the failure of which could pose a substantial hazard to
the community.
Buildings and other structures (including, but not limited to, facilities that manufacture,
process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous
chemicals, or hazardous waste) containing sufficient quantities of highly toxic substances
where the quantity exceeds a threshold quantity established by the authority having
jurisdiction to be dangerous to the public if released and is sufficient to pose a threat to
the public if released.
Buildings and other structures required to maintain the functionality of other Risk Category
IV structures
*ASCE (2010)
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 12:57 PM Page 461

16.1–462 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The Specification implements a selection of NDT methods and a rate of ultrasonic
testing (UT) based upon a rational system of risk of failure. ASCE Minimum Design
Loads for Buildings and Other Structures, (ASCE/SEI 7-10), (ASCE, 2010) provides
a recognized system of assigning risk to various types of structures.
Complete-joint-penetration (CJP) groove welds loaded in tension applied trans-
versely to their axis are assumed to develop the capacity of the smaller steel element
being joined, and therefore have the highest demand for quality. CJP groove welds
in compression or shear are not subjected to the same crack propagation risks as
welds subjected to tension. Partial-joint-penetration (PJP) groove welds are designed
using a limited design strength when in tension, based upon the root condition, and
therefore are not subjected to the same high stresses and subsequent crack propaga-
tion risk as a CJP groove weld. PJP groove welds in compression or shear are
similarly at substantially less risk of crack propagation than CJP groove welds.
Fillet welds are designed using limited strengths, similar to PJP groove welds, and
are designed for shear stresses regardless of load application, and therefore do not
warrant NDT.
The selection of joint type and thickness ranges for ultrasonic testing (UT) are based
upon AWS D1.1/D1.1M subclause 6.20.1, which limits the procedures and standards
as stated in Part F of AWS D1.1/D1.1M to groove welds and heat affected zones
(HAZ) between the thicknesses of
5
/16in. and 8 in. (8 mm and 200 mm), inclusive.
ASCE/SEI 7-10, Table 1.5-1, provides four risk categories for buildings and other
structures. Commentary Table C-N5.4-4, taken from Table 1-1 (ASCE/SEI 7-10),
describes the various risk categories in general terms. The example structures are
drawn from the 2005 ASCE Minimum Design Loads for Buildings and Other
Structures(ASCE, 2005b), which used the term “occupancy category” for a similar
purpose, and provided prescriptive definitions of building types and occupancies.
5c. Access Hole NDT
The web-to-flange intersection and the web center of heavy hot-rolled shapes, as well
as the interior portions of heavy plates, may contain a coarser grain structure and/or
lower notch toughness than other areas of these products. Grinding to bright metal is
required by Section M2.2 to remove the hard surface layer, and testing using mag-
netic particle or dye penetrate methods is performed to assure smooth transitions free
of notches or cracks.
5d. Welded Joints Subjected to Fatigue
CJP groove welds in butt joints so designated in Specification Table A-3.1, Sections
5 and 6.1, require that internal soundness be verified using ultrasonic testing (UT) or
radiographic testing (RT), meeting the acceptance requirements of AWS
D1.1/D1.1M (AWS, 2010) subclause 6.12 or 6.13, as appropriate.
5e. Reduction of Rate of Ultrasonic Testing
For statically loaded structures in Risk Categories III and IV, reduction of the rate of
UT from 100% is permitted for individual welders who have demonstrated a high
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 462

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–463
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
level of skill, proven after a significant number of their welds have been tested. This
provision has been adapted from similar provisions used in the Uniform Building
Code (ICBO, 1997) for UT inspection of CJP groove welds in moment frames in
areas of high seismic risk.
5f. Increase in Rate of Ultrasonic Testing
For Risk Category II, where 10% of CJP groove welds loaded in transverse tension
are tested, an increase in the rate of UT is required for individual welders who have
failed to demonstrate a high level of skill, established as a failure rate of more than
5%, after a sufficient number of their welds have been tested. To implement this
effectively, and not necessitate the retesting of welds previously deposited by a
welder who has a high reject rate established after the 20 welds have been tested, it
is suggested that at the start of the work, a higher rate of UT be performed on each
welder’s completed welds.
6. Inspection of High-Strength Bolting
The 2009 IBC, similar to Section M2.5 of the Specification, incorporates the RCSC
Specification(RCSC, 2009) by reference. The RCSC Specification, like the refer-
enced welding standard, defines bolting inspection requirements in terms of
inspection tasks and scope of examinations. The RCSC Specificationuses the term
“routine observation” for the inspection of all pretensioned bolts, further validating
the choice of the term “observe” in this chapter of the Specification.
Snug-tightened joints are required to be inspected to ensure that the proper fastener
components are used and that the faying surfaces are brought into firm contact dur-
ing installation of the bolts. The magnitude of the clamping force that exists in a
snug-tightened joint is not a consideration and need not be verified.
Pretensioned joints and slip-critical joints are required to be inspected to ensure that
the proper fastener components are used and that the faying surfaces are brought into
firm contact during the initial installation of the bolts. Pre-installation verification
testing is required for all pretensioned bolt installations, and the nature and scope of
installation verification will vary based on the installation method used. The follow-
ing provisions from the RCSC Specification serve as the basis for Tables N5.6-1,
N5.6-2 and N5.6-3 (underlining added for emphasis of terms):
9.2.1. Turn-of-Nut Pretensioning: The inspector shall observe
the pre-
installation verification testing required in Section 8.2.1. Subsequently, it shall be insured by routine observation
that the bolting crew properly
rotates the turned element relative to the unturned element by the amount specified in Table 8.2. Alternatively, when fastener assemblies are match- marked after the initial fit-up of the joint, but prior to pretensioning; visual inspection after pretensioning is permitted in lieu of routine observation.
9.2.2. Calibrated Wrench Pretensioning: The inspectorshall observe
the
pre-installation verification testing required in Section 8.2.2. Subsequently,
it shall be ensured by routine observationthat the bolting crew properly
applies the calibrated wrench to the turned element. No further evidence of conformity is required.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 463

16.1–464 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
9.2.3. Twist-Off-Type Tension Control Bolt Pretensioning: The inspec-
tor shall observethe pre-installation verification testing required in Section
8.2.3. Subsequently, it shall be ensured by routine observationthat the
splined ends are properly severed during installation by the bolting crew.
9.2.4. Direct-Tension Indicator Pretensioning:The inspector shall
observethe pre-installation verification testing required in Section 8.2.4.
Subsequently, but prior to pretensioning, it shall be ensured by routine
observationthat the appropriate feeler gage is accepted in at least half of
the spaces between the protrusions of the direct tension indicator and that
the protrusions are properly oriented away from the work.
2009 IBC Table 1704.3 item 1 requires material verification of high-strength bolts,
nuts and washers, including manufacturer’s certificates of compliance, and verifica-
tion of the identification markings to conform to the ASTM fastener standards
specified in the approved construction documents.
2009 IBC Section 1704.3.3 contains extensive discussion of the requirements
for bolting inspection, including verifying fastener components, bolted parts and
installation. It includes observation of the fabricator’s or erector’s pre-installation
verification test, and observation of the calibration of wrenches if the calibrated
wrench method is being used. It requires verification that the snug-tight condition
has been achieved for all joints, and monitoring of installation to verify the proper
use of the installation procedure by the bolting crew for pretensioned bolts. The
presence of the inspector is dependent upon whether the installation method pro-
vides visual evidence of completed installation. Turn-of-nut installation with
matchmarking, installation using twist-off bolts, and installation using direct ten-
sion indicators provides visual evidence of a completed installation, and therefore
“periodic” special inspection is permitted for these methods. Turn-of-nut installa-
tion without matchmarking and calibrated wrench installation provides no such
visual evidence, and therefore “continuous” special inspection is required, such that
the inspector needs to be onsite, although not necessarily watching every bolt or
joint as it is being pretensioned.
The concepts of 2009 IBC, as stated above, serve as the basis of the bolting inspection
requirements of Section N5.6, along with the provisions of the RCSC Specification. In
lieu of “continuous” inspection as defined by the IBC, Chapter N uses the term “shall
be engaged” to indicate a higher level of observation for these methods.
The inspection provisions of the RCSC Specificationrely upon observation of
the work, hence all tables use Observe for the designated tasks. Commentary Tables
C-N5.6-1, C-N5.6-2 and C-N5.6-3 provide the applicable RCSC Specificationrefer-
ences for inspection tasks prior to, during and after bolting.
7. Other Inspection Tasks
2009 IBC Section 1704A.3.2 requires that the steel frame be inspected to verify com-
pliance with the details shown on the approved construction documents, such as
bracing, stiffening, member locations and proper application of joint details at each
connection. This is repeated in 2009 IBC Table 1704.3 item 6.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 464

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–465
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-N5.6-1
Inspection Tasks Prior to Bolting
Inspection Tasks Prior to Bolting Applicable RCSC SpecificationReferences*
Manufacturer’s certifications available for 2.1, 9.1
fastener materials
Fasteners marked in accordance with ASTM Figure C-2.1, 9.1
requirements (also see ASTM standards)
Proper fasteners selected for the joint detail 2.3.2, 2.7.2, 9.1
(grade, type, bolt length if threads to be
excluded from shear plane)
Proper bolting procedure selected for 4, 8
joint detail
Connecting elements, including the 3, 9.1, 9.3
appropriate faying surface condition and hole
preparation, if specified, meet applicable
requirements
Pre-installation verification testing by 7, 9.2
installation personnel observed and
documented for fastener assemblies and
methods used
Proper storage provided for bolts, nuts, 2.2, 8, 9.1
washers, and other fastener components
*RCSC (2009)
TABLE C-N5.6-2
Inspection Tasks During Bolting
Inspection Tasks During Bolting Applicable RCSC SpecificationReferences*
Fastener assemblies, of suitable condition, 8.1, 9.1 placed in all holes and washers (if required) are positioned as required
Joint brought to the snug tight condition 8.1, 9.1
prior to the pretensioning operation
Fastener component not turned by the 8.2, 9.2
wrench prevented from rotating
Fasteners are pretensioned in accordance 8.2, 9.2
with a method approved by RCSC and
progressing systematically from most rigid
point toward free edges
*RCSC (2009)
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 465

16.1–466 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2009 IBC Section 2204.2.1 on anchor rods for steel requires that they be set accu-
rately to the pattern and dimensions called for on the plans. In addition, it is required
that the protrusion of the threaded ends through the connected material be sufficient
to fully engage the threads of the nuts, but not be greater than the length of the
threads on the bolts.
Code of Standard Practice, Section 7.5.1, states that anchor rods, foundation bolts,
and other embedded items are to be set by the owner’s designated representative for
construction. The erector is likely not on site to verify placement, therefore it is
assigned solely to the quality assurance inspector (QAI). Because it is not possible to
verify proper anchor rod materials and embedment following installation, it is
required that the QAI be onsite when the anchor rods are being set.
N6. MINIMUM REQUIREMENTS FOR INSPECTION
OF COMPOSITE CONSTRUCTION
This section addresses the inspection of only those elements of composite construc-
tion that are structural steel or are frequently within the scope of the fabricator and/
or erector (steel deck and field-installed shear stud connectors). The inspection
requirements for the other elements of composite construction, such as concrete,
formwork, reinforcement, and the related dimensional tolerances, are addressed else-
where. Three publications of the American Concrete Institute may be applicable.
These are Specifications for Tolerances for Concrete Construction and Commentary
(ACI 117-06) (ACI, 2006), Specifications for Structural Concrete(ACI 301-05)
(ACI, 2005), and Building Code Requirements for Structural Concrete and
Commentary(ACI 318-08) (ACI, 2008).
N7. APPROVED FABRICATORS AND ERECTORS
The 2009 IBC Section 1704.2.2 (ICC, 2009) states that:
Special inspections required by this code are not required where the work
is done on the premises of a fabricator registered and approved to perform
such work without special inspection.
Approval shall be based upon review of the fabricator’s written procedural
and quality control manuals and periodic auditing of fabrication practices
by an approved special inspection agency.
TABLE C-N5.6-3
Inspection Tasks After Bolting
Inspection Tasks After Bolting Applicable RCSC SpecificationReferences*
Document acceptance or rejection of bolted not addressed by RCSC
connections
*RCSC (2009)
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 466

Comm. N7.] APPROVED FABRICATORS AND ERECTORS 16.1–467
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
An example of how these approvals may be made by the building official or author-
ity having jurisdiction (AHJ) is the use of the AISC Certification program. A
fabricator certified to the AISC Certification Program for Structural Steel
Fabricators, Standard for Steel Building Structures(AISC, 2006b), meets the criteria
of having a quality control manual, written procedures, and annual onsite audits con-
ducted by AISC’s independent auditing company, Quality Management Company,
LLC. Similarly, steel erectors may be an AISC Certified Erector or AISC Advanced
Certified Steel Erector. The audits confirm that the company has the personnel,
knowledge, organization, equipment, experience, capability, procedures and com-
mitment to produce the required quality of work for a given certification category.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 467

16.1–468
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 1
DESIGN BY INELASTIC ANALYSIS
Appendix 1 contains provisions for the inelastic analysis and design of structural steel
systems, including continuous beams, moment frames, braced frames and combined sys-
tems. The Appendix has been modified from the previous Specification to allow for the
use of a wider range of inelastic analysis methods, varying from the traditional plastic
design approaches to the more advanced nonlinear finite element analysis methods. In
several ways, this Appendix represents a logical extension of the direct analysis method
of Chapter C, in which second-order elastic analysis is used. The provision for moment
redistribution in continuous beams, which is permitted for elastic analysis only, is pro-
vided in Section B3.7.
The provisions of this Appendix permit the use of analysis methods that are more sophis-
ticated than those required by Chapter C. The provisions also permit the use of
computational analysis (e.g., the finite element method) to replace the Specification
equations used to evaluate limit states covered by Chapters D through K. The application
of these provisions requires a complete understanding of the provisions of this Appendix
as well as the equations they supersede. It is the responsibility of any engineer using these
provisions to fully verify the completeness and accuracy of analysis software used for
this purpose.
1.1. GENERAL REQUIREMENTS
These requirements directly parallel the general requirements of Chapter C and are
further discussed in Commentary Section C1.
Various levels of inelastic analysis are available to the designer (Ziemian, 2010;
Chen and Toma, 1994). All are intended to account for the potential redistribution of
member and connection forces and moments that are a result of localized yielding as
a structural system reaches a strength limit state. At the higher levels they have the
ability to model complex forms of nonlinear behavior and detect member and/or
frame instabilities well before the formation of a plastic mechanism. Many of the
strength design equations used in the Specification for members subject to compres-
sion, flexure and combinations thereof were developed using refined methods of
inelastic analysis; along with experimental results and engineering judgment (Yura et
al., 1978; Kanchanalai and Lu, 1979; Bjorhovde, 1988; Ziemian, 2010). Also,
research over the past twenty years has yielded significant advances in procedures
for the direct application of second-order inelastic analysis in design (Ziemian, et al.,
1992; White and Chen, 1993; Liew, et al., 1993; Ziemian and Miller, 1997; Chen and
Kim, 1997). Correspondingly, there has been a steady increase in the inclusion of
provisions for inelastic analysis in commercial steel design software, but the level
varies widely. Use of any analysis software requires an understanding of the aspects
of structural behavior it simulates, the quality of its methods, and whether or not the
software’s ductility and analysis provisions are equivalent to those of Sections 1.2
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 468

Comm. 1.1.] GENERAL REQUIREMENTS 16.1–469
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
and 1.3. There are numerous studies available for verifying the accuracy of the
inelastic analysis (Kanchanlai, 1977, El-Zanaty et al., 1980; White and Chen, 1993;
Surovek-Maleck and White, 2003; Martinez-Garcia and Ziemian, 2006; Ziemian,
2010).
With this background, it is the intent of this Appendix to allow certain levels of inelas-
tic analysis to be used in place of the Specification design equations as a basis for
confirming the adequacy of a member or system. In all cases, the strength limit state
behavior being addressed by the corresponding provisions of the Specification needs
to be considered. For example, Section E3 provides equations that define the nominal
compressive strength corresponding to the flexural buckling of members without slen-
der elements. The strengths determined by these equations account for many factors,
which primarily include the initial out-of-straightness of the compression member,
residual stressesthat result from the fabrication process, and the reduction of flexural
stiffness due to second-order effects and partial yielding of the cross section. If these
factors are directly incorporated within the inelastic analysis and a comparable or
higher level of reliability can be assured, then the specific strength equations of
Section E3 need not be evaluated. In other words, the inelastic analysis will indicate
the limit state of flexural buckling and the design can be evaluated accordingly. On
the other hand, suppose that the same inelastic analysis is not capable of modeling
flexural-torsional buckling. In this case, the provisions of Section E4 would need to
be evaluated. Other examples of strength limit states not detected by the analysis may
include, but are not limited to, lateral-torsional buckling strength of flexural members,
connection strength, and shear yielding or buckling strengths.
Item 5 in the second paragraph of Section 1.1, General Requirements, states that
“…uncertainty in system, member, and connection strength and stiffness…” shall be
taken into account. Member and connection reliability requirements are fulfilled by
the probabilistically derived resistance factors and load factors of load and resistance
factor design of this Specification. System reliability considerations at this time
(2010) are still a project-by-project exercise, and no overall methods have as yet been
developed for steel building structures. Introduction to the topic of system reliability
can be found in textbooks, for example, Ang and Tang (1984), Thoft-Christensen and
Murotsu (1986), and Nowak and Collins (2000), as well as in many publications, for
example, Buonopane and Schafer (2006).
Because this type of analysis is inherently conducted at ultimate load levels, the pro-
visions of this Appendix are limited to the design basis of Section B3.3 (LRFD).
Per Section B3.9, the serviceability of the design should be assessed with specific
requirements given in Chapter L. In satisfying these requirements in conjunction
with a design method based on inelastic analysis, consideration should be given to
the degree of steel yielding permitted at service loads. Of particular concern are: (a)
permanent deflections that may occur due to steel yielding, and (b) stiffness degra-
dation due to yielding and whether this is modeled in the inelastic analysis.
Although the use of inelastic analysis has great potential in earthquake engineering,
the specific provisions beyond the general requirements of this Appendix do not
apply to seismic design. The two primary reasons for this are:
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 469

16.1–470 GENERAL REQUIREMENTS [Comm. 1.1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) In defining “equivalent” static loads for use in elastic seismic design procedures,
a significant level of yielding and inelastic force redistribution has been assumed
and hence, it would not be appropriate to use these loads with a design approach
based on inelastic analysis.
(2) The ductility requirements for seismic design based on inelastic analysis are
more stringent than those provided in this Specification for nonseismic loads.
Guidelines for the use of inelastic analysis and design for seismic applications are
provided in Chapter 16 of the Minimum Design Loads for Buildings and Other
Structures(ASCE/SEI 7-10) (ASCE, 2010) and Seismic Rehabilitation of Existing
Buildings(ASCE/SEI 41-06) (ASCE, 2006).
Connections adjacent to plastic hinges must be designed with sufficient strength and
ductility to sustain the forces and deformations imposed under the required loads.
The practical implementation of this rule is that the applicable requirements of
Section B3.6 and Chapter J must be strictly adhered to. These provisions for con-
nection design have been developed from plasticity theory and verified by extensive
testing, as discussed in ASCE (1971) and in many books and papers. Thus the con-
nections that meet these provisions are inherently qualified for use in designing
structures based on inelastic analysis.
Any method of design that is based on inelastic analysis and satisfies the given gen-
eral requirements is permitted. These methods may include the use of nonlinear finite
element analyses (Crisfield, 1991; Bathe, 1995) that are based on continuum ele-
ments to design a single structural component such as a connection, or the use of
second-order inelastic frame analyses (Clarke et al., 1992; McGuire et al., 2000) to
design a structural system consisting of beams, columns and connections.
Sections 1.2 and 1.3 collectively define provisions that can be used to satisfy the duc-
tility and analysis requirements of Section 1.1. They provide the basis for an
approved second-order inelastic frame analysis method. These provisions are not
intended to preclude other approaches meeting the requirements of Section 1.1.
1.2. DUCTILITY REQUIREMENTS
Because an inelastic analysis will provide for the redistribution of internal forces due
to yielding of structural components such as members and connections, it is impera-
tive that these components have adequate ductility and be capable of maintaining
their design strength while accommodating inelastic deformation demands. Factors
that affect the inelastic deformation capacity of components include the material
properties, the slenderness of cross-sectional elements, and the unbraced length.
There are two general methods for assuring adequate ductility: (1) limiting the afore-
mentioned factors, and (2) making direct comparisons of the actual inelastic
deformation demands with predefined values of inelastic deformation capacities. The
former is provided in Appendix 1. It essentially decouples inelastic local buckling
from inelastic lateral-torsional buckling. It has been part of the plastic design provi-
sions for several previous editions of the Specification. Examples of the latter
approach in which ductility demands are compared with defined capacities appear in
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 470

Comm. 1.2.] DUCTILITY REQUIREMENTS 16.1–471
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Galambos (1968b), Kato (1990), Kemp (1996), Gioncu and Petcu (1997), FEMA-
350 (FEMA, 2000), ASCE 41-06 (ASCE, 2006), and Ziemian (2010).
1. Material
Extensive past research on the plastic and inelastic behavior of continuous beams,
rigid framesand connections has amply demonstrated the suitability of steel with
yield stress levels up to 65 ksi (450 MPa) (ASCE, 1971).
2. Cross Section
Design by inelastic analysis requires that, up to the peak of the load-deflection curve
of the structure, the moments at the plastic hinge locations remain at the level of the
plastic moment, which itself should be reduced for the presence of axial force. This
implies that the member must have sufficient inelastic rotation capacity to permit
the redistribution of additional moments. Sections that are designated as compact in
Section B4 have a minimum rotation capacity of approximately R
cap=3 (see Figure
C-A-1.1) and are suitable for developing plastic hinges. The limiting width-to-
thickness ratio designated as λ
pin Table B4.1b and designated as λ pdin this
Appendix is the maximum slenderness ratio that will permit this rotation capacity
to be achieved. Further discussion of the antecedents of these provisions is given in
the Commentary Section B4.
The additional slenderness limits in Equations A-1-1 through A-1-4 apply to cases
not covered in Table B4.1b. Equations A-1-1 and A-1-2, which define height-to-
thickness ratio limits of webs of wide-flange members and rectangular HSS under
combined flexure and compression, have been part of the plastic design requirements
since the 1969 Specification and are based on research documented in Plastic Design
in Steel, A Guide and a Commentary(ASCE, 1971). The equations for the flanges
of HSS and other boxed sections (Equation A-1-3) and for circular HSS (Equation
A-1-4) are from the Specification for the Design of Steel Hollow Structural Sections
(AISC, 2000a).
Fig. C-A-1.1. Definition of rotation capacity.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 471

16.1–472 DUCTILITY REQUIREMENTS [Comm. 1.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Limiting the slenderness of elements in a cross section to ensure ductility at plastic
hinge locations is permissible only for doubly symmetric shapes. In general, single-
angle, tee and double-angle sections are not permitted for use in plastic design
because the inelastic rotation capacity in the regions where the moment produces
compression in an outstanding leg will typically not be sufficient.
3. Unbraced Length
The ductility of structural members with plastic hinges can be significantly reduced
by the possibility of inelastic lateral-torsional buckling. In order to provide adequate
rotation capacity, such members may need more closely spaced bracing than would
be otherwise needed for design in accordance with elastic theory. Equations A-1-5
and A-1-7 define the maximum permitted unbraced length in the vicinity of plastic
hinges for wide-flange shapes bent about their major axis, and for rectangular
shapes and symmetric box beams, respectively. These equations are a modified ver-
sion of those appearing in the 2005 AISC Specification (AISC, 2005a), which were
based on research reported by Yura et al. (1978). The intent of these equations is to
ensure a minimum rotation capacity, R
cap≥3, where R capis defined as shown in
Figure C-A-1.1.
Equations A-1-5 and A-1-7 have been modified to account for nonlinear moment dia-
grams and for situations in which a plastic hinge does not develop at the brace
location corresponding to the larger end moment. The moment M
2in these equations
is the larger moment at the end of the unbraced length, taken as positive in all cases.
The moment M
1′is the moment at the opposite end of the unbraced length corre-
sponding to an equivalent linear moment diagram that gives the same target rotation
capacity. This equivalent linear moment diagram is defined as follows:
(a) For cases in which the magnitude of the bending moment at any location within
the unbraced length, M
max, exceeds M 2, the equivalent linear moment diagram is
taken as a constant (uniform) moment diagram with a value equal to M
max[see
Figure C-A-1.2(a)]. Since the equivalent moment diagram is uniform, the appro-
priate value for L
pdcan be obtained by using M′ 1/M 2=+1.
(b) For cases in which the internal moment distribution along the unbraced length of
the beam is indeed linear, or when a linear moment diagram between M
2and the
actual moment, M
1, at the opposite end of the unbraced length gives a larger
magnitude moment in the vicinity of M
2[see Figure C-A-1.2(b)], M ′ 1is taken
equal to the actual moment M
1.
(c) For all other cases in which the internal moment distribution along the unbraced
length of the beam is nonlinear and a linear moment diagram between M
2and the
actual moment, M
1, underestimates the moment in the vicinity of M 2, M′1is
defined as the opposite end moment for a line drawn between M
2and the moment
at the middle of the unbraced length, M
mid[see Figure C-A-1.2(c)].
The moments M
1and M midare individually taken as positive when they cause com-
pression in the same flange as the moment M
2and negative otherwise.
For conditions in which lateral-torsional buckling cannot occur, such as members
with square and round cross sections and members of doubly symmetric shapes
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 472

Comm. 1.3.] ANALYSIS REQUIREMENTS 16.1–473
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
subjected to minor axis bending or sufficient tension, the ductility of the member is
not a factor of the unbraced length.
4. Axial Force
The provision in this section restricts the axial force in a compression member to
0.75F
yAgor approximately 80% of the design yield load, φ cFyA. This provision is a
cautionary limitation because insufficient research has been conducted to ensure that
sufficient inelastic rotation capacity remains in members subject to high levels of
axial force.
1.3. ANALYSIS REQUIREMENTS
For all structural systems with members subject to axial force, the equations of equi-
librium must be formulated on the geometry of the deformed structure. The use of
second-order inelastic analysis to determine load effects on members and connec-
tions is discussed in the Guide to Stability Design Criteria for Metal Structures
(Ziemian, 2010). Textbooks [for example, Chen and Lui (1991), Chen and Sohal
(1995), and McGuire et al. (2000)] present basic approaches to inelastic analysis, as
well as worked examples and computer software for detailed study of the subject.
(a) M maxoccurs within L b
(b) M mid≤(M1+M2)/2
(c) M
mid>(M1+M2)/2
Fig. C-A-1.2. Equivalent linear moment diagram used to calculate M′
1.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 473

16.1–474 ANALYSIS REQUIREMENTS [Comm. 1.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Continuous, braced beams not subject to axial loads can be designed by first-order
inelastic analysis (traditional plastic analysis and design). First-order plastic analy-
sisis treated in ASCE (1971), in steel design textbooks [for example, Salmon et al.
(2008)], and in textbooks dedicated entirely to plastic design [for example, Beedle
(1958), Horne and Morris (1982), Bruneau et al. (1998), and Wong (2009)]. Tools for
plastic analysis of continuous beams are readily available to the designer from these
and other books that provide simple ways of calculating plastic mechanism loads. It
is important to note that such methods use LRFD load combinations, either directly
or implicitly, and therefore should be modified to include a reduction in the plastic
moment capacity of all members by a factor of 0.9. First-order inelastic analysis may
also be used in the design of continuous steel-concrete composite beams. Design lim-
its and ductility criteria for both the positive and negative plastic moments are given
by Oehlers and Bradford (1995).
1. Material Properties and Yield Criteria
This section provides an accepted method for including uncertainty in system,
member, and connection strength and stiffness. The reduction in yield strength and
member stiffness is equivalent to the reduction of member strength associated with
the AISC resistance factors used in elastic design. In particular, the factor of 0.90
is based on the member and component resistance factors of Chapters E and F,
which are appropriate when the structural system is composed of a single member
and in cases where the system resistance depends critically on the resistance of a
single member. For systems where this is not the case, the use of such a factor is
conservative. The reduction in stiffness will contribute to larger deformations and
in turn, increased second-order effects.
The inelastic behavior of most structural members is primarily the result of normal
stresses in the direction of the longitudinal axis of the member equaling the yield
strength of the material. Therefore the normal stresses produced by the axial force
and major and minor axis bending moments should be included in defining the plas-
tic strength of member cross sections (Chen and Atsuta, 1976).
Modeling of strain hardeningthat results in strengths greater than the plastic strength
of the cross section is not permitted.
2. Geometric Imperfections
Because initial geometric imperfections may affect the nonlinear behavior of a
structural system, it is imperative that they be included in the second-order analy-
sis. Discussion on how frame out-of-plumbness may be modeled is provided in
Commentary Section C2.2. Additional information is provided in ECCS (1984),
Bridge and Bizzanelli (1997), Bridge (1998), and Ziemian (2010).
Member out-of-straightness should be included in situations in which it can have a
significant impact on the inelastic behavior of the structural system. The significance
of such effects is a function of (1) the relative magnitude of the member’s applied
axial force and bending moments, (2) whether the member is subject to single or
reverse curvature bending, and (3) the slenderness of the member.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 474

Comm. 1.3.] ANALYSIS REQUIREMENTS 16.1–475
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
In all cases, initial geometric imperfections should be modeled to represent the
potential maximum destabilizing effects.
3. Residual Stresses and Partial Yielding Effects
Depending on the ratio of a member’s plastic section modulus, Z, to its elastic sec-
tion modulus, S, the partial yielding that occurs before the formation of a plastic
hinge may significantly reduce the flexural stiffness of the member. This is particu-
larly the case for minor axis bending of I-shapes. Any change to bending stiffness
may result in force redistribution and increased second-order effects, and thus needs
to be considered in the inelastic analysis.
The impact of partial yielding is further accentuated by the presence of thermal resid-
ual stresses, which are due to nonuniform cooling during the manufacturing and
fabrication processes. Because the relative magnitude and distribution of these
stresses is dependent on the process and the member’s cross-section geometry, it is not
possible to specify a single idealized pattern for use in all levels of inelastic analysis.
Residual stress distributions used for common hot-rolled doubly symmetric shapes are
provided in the literature, including ECCS (1984) and Ziemian (2010). In most cases,
the maximum compressive residual stress is 30% to 50% of the yield stress.
The effects of partial yielding and residual stresses may either be included directly in
inelastic distributed-plasticity analyses or by modifying plastic hinge based methods
of analysis. An example of the latter is provided by Ziemian and McGuire (2002) and
Ziemian et al. (2008), in which the flexural stiffness of members are reduced accord-
ing to the amount of axial force and major and minor axis bending moments being
resisted. The Specification permits the use of a similar strategy, which is provided in
Section C2.3 and described in the Commentary to that section. If the residual stress
effect is not included in the analysis and the provisions of Section C2.3 are
employed, the stiffness reduction factor of 0.9 specified in Section 1.3.1 (which
accounts for uncertainty in strength and stiffness) must be changed to 0.8. The rea-
son for this is that the equations given in Section C2.3 assume that the analysis does
not account for partial yielding. Also, to avoid cases in which the use of Section C2.3
may be unconservative, it is further required that the yield or plastic hinge criterion
used in the inelastic analysis be defined by the interaction Equations H1-1a and H1-
1b. This condition on cross section strength does not have to be met when the
residual stress and partial yielding effects are accounted for in the analysis.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 475

16.1–476
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 2
DESIGN FOR PONDING
Ponding stability is determined by ascertaining that the conditions of Equations A-2-1 and
A-2-2 of Appendix 2 are fulfilled. These equations provide a conservative evaluation of the
stiffness required to avoid runaway deflection, giving a safety factor of four against pond-
ing instability.
Since Equations A-2-1 and A-2-2 yield conservative results, it may be advantageous to per-
form a more detailed stress analysis to check whether a roof system that does not meet the
above equations is still safe against ponding failure.
For the purposes of Appendix 2,secondary membersare the beams or joists that directly
support the distributed ponding loads on the roof of the structure, and primary membersare
the beams or girders that support the concentrated reactions from the secondary members
framing into them. Representing the deflected shape of the primary and critical secondary
member as a half-sine wave, the weight and distribution of the ponded water can be esti-
mated, and, from this, the contribution that the deflection of each of these members makes
to the total ponding deflection can be expressed as follows (Marino, 1966):
For the primary member
(C-A-2-1)
For the secondary member
(C-A-2-2)
In these expressions Δ
oand δ oare, respectively, the primary and secondary beam
deflections due to loading present at the initiation of ponding, and
Using the above expressions for Δ
wand δ w, the ratios Δ w/Δoand δ w/δocan
be computed for any given combination of primary and secondary beam framing
using the computed values of coefficients C
pand C s, respectively, defined in the
Specification.
Δ
Δw
po s s
ps=
++ +
[]

απαπρα
πα α
1025 025 1
1025
..()
.
δ
αδ
π
α
π
ρ
αααw
sppsp=
++++






o1
32 8
1 0 185
1
32
().
−−025.πα α ps
αα ρ δpp pss s spCC CC CC=−( )=−( ) ==/, /, / /1 1 and ooΔ
α
ss sCC=−( )/1
ρδ==
oo//ΔCC sp
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 476

Comm. 2.] DESIGN FOR PONDING 16.1–477
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Even on the basis of unlimited elastic behavior, it is seen that the ponding deflections
would become infinitely large unless
(C-A-2-3)
Since elastic behavior is not unlimited, the effective bending strength available in
each member to resist the stress caused by ponding action is restricted to the differ-
ence between the yield stress of the member and the stress, f
o, produced by the total
load supported by it before consideration of ponding is included.
Note that elastic deflection is directly proportional to stress. The admissible amount
of ponding in either the primary or critical (midspan) secondary member, in terms of
the applicable ratio, Δ
w/Δoand δ w/δo, can be represented as (0.8F yπfo)/fo, assum-
ing a safety factor of 1.25 against yielding under the ponding load. Substituting this
expression for Δ
w/Δoand δ w/δo, and combining with the foregoing expressions for
Δ
wand δ w, the relationship between the critical values for C pand C sand the avail-
able elastic bending strength to resist ponding is obtained. The curves presented in
Figures A-2.1 and A-2.2 are based upon this relationship. They constitute a design
aid for use when a more exact determination of required flat roof framing stiffness is
needed than given by the Specification provision that C
p+0.9C s≤0.25.
Given any combination of primary and secondary framing, the stress index is com-
puted as follows:
For the primary member
(C-A-2-4)
For the secondary member
(C-A-2-5)
where
f
o=the stress due to D +R(D=nominal dead load, R=nominal load due to rain-
water or ice exclusive of the ponding contribution), ksi (MPa)
Depending upon geographic location, this loading should include such amount of
snow as might also be present, although ponding failures have occurred more fre-
quently during torrential summer rains when the rate of precipitation exceeded the
rate of drainage runoff and the resulting hydraulic gradient over large roof areas
caused substantial accumulation of water some distance from the eaves.
Given the size, spacing and span of a tentatively selected combination of primary and
secondary beams, for example, one may enter Figure A-2.1 at the level of the com-
puted stress index, U
p, determined for the primary beam; move horizontally to the
computed C
svalue of the secondary beams; then move downward to the abscissa
C
C
C
Cp
p
s
s
11
4














<
π
U
Ff
fp
yo
o
p=
−⎛





08.
U
Ff
fs
yo
o
s=
−⎛





08.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 477

16.1–478 DESIGN FOR PONDING [Comm. 2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
scale. The combined stiffness of the primary and secondary framing is sufficient to
prevent ponding if the flexibility coefficient read from this latter scale is larger than
the value of C
pcomputed for the given primary member; if not, a stiffer primary or
secondary beam, or combination of both, is required.
If the roof framing consists of a series of equally spaced wall-bearing beams, the
beams would be considered as secondary members, supported on an infinitely stiff
primary member. For this case, one would use Figure A-2.2. The limiting value of C
s
would be determined by the intercept of a horizontal line representing the U svalue
and the curve for C
p=0.
The ponding deflection contributed by a metal deck is usually such a small part
of the total ponding deflection of a roof panel that it is sufficient merely to limit
its moment of inertia to 0.000025 (3 940) times the fourth power of its span length
[in.
4
per foot (mm
4
per meter) of width normal to its span], as provided in Equation
A-2-2. However, the stability against ponding of a roof consisting of a metal roof
deck of relatively slender depth-to-span ratio, spanning between beams supported
directly on columns, may need to be checked. This can be done using Figures A-2.1
or A-2.2 with the following computed values:
U
p=stress index for the supporting beam
U
s=stress index for the roof deck
C
p=flexibility coefficient for the supporting beams
C
s=flexibility coefficient for 1-ft (0.305-m) width of the roof deck (S=1.0)
Since the shear rigidity of the web system is less than that of a solid plate, the
moment of inertia of steel joists and trusses should be taken as somewhat less than
that of their chords (Heinzerling, 1987).
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 478

16.1–479
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 3
DESIGN FOR FATIGUE
When the limit state of fatigue is a design consideration, its severity is most significantly
affected by the number of load applications, the magnitude of the stress range, and the sever-
ity of the stress concentrations associated with particular details. Issues of fatigue are not
normally encountered in building design; however, when encountered and if the severity is
great enough, fatigue is of concern and all provisions of Appendix 3 must be satisfied.
3.1. GENERAL PROVISIONS
In general, members or connections subject to less than a few thousand cycles of
loading will not constitute a fatigue condition except possibly for cases involving full
reversal of loading and particularly sensitive categories of details. This is because the
applicable cyclic allowable stress range will be limited by the static allowable stress.
At low levels of cyclic tensile stress, a point is reached where the stress range is so
low that fatigue cracking will not initiate regardless of the number of cycles of load-
ing. This level of stress is defined as the fatigue threshold, F
TH.
Extensive test programs using full-size specimens, substantiated by theoretical stress
analysis, have confirmed the following general conclusions (Fisher et al., 1970;
Fisher et al., 1974):
(1) Stress range and notch severity are the dominant stress variables for welded
details and beams;
(2) Other variables such as minimum stress, mean stress and maximum stress are not
significant for design purposes; and
(3) Structural steels with a specified minimum yield stress of 36 to 100 ksi (250 to
690 MPa) do not exhibit significantly different fatigue strengths for given welded
details fabricated in the same manner.
3.2. CALCULATION OF MAXIMUM STRESSES AND STRESS RANGES
Fluctuation in stress that does not involve tensile stress does not cause crack propa-
gation and is not considered to be a fatigue situation. On the other hand, in elements
of members subject solely to calculated compressive stress, fatigue cracks may initi-
ate in regions of high tensile residual stress. In such situations, the cracks generally
do not propagate beyond the region of the residual tensile stress, because the resid-
ual stress is relieved by the crack. For this reason, stress ranges that are completely
in compression need not be investigated for fatigue. For cases involving cyclic rever-
sal of stress, the calculated stress range must be taken as the sum of the compressive
stress and the tensile stress caused by different directions or patterns of the applied
live load.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 479

16.1–480 PLAIN MATERIAL AND WELDED JOINTS [Comm. 3.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3.3. PLAIN MATERIAL AND WELDED JOINTS
Fatigue resistance has been derived from an exponential relationship between the
number of cycles to failure, N, and the stress range, S
r, called an S-Nrelationship, of
the form
(C-A-3-1)
The general relationship is often plotted as a linear log-log function (LogN =
A – n Log S
r). Figure C-A-3.1 shows the family of fatigue resistance curves identi-
fied as Categories A, B, B′, C, C ′, D, E and E′. These relationships were established
based on an extensive database developed in the United States and abroad (Keating
and Fisher, 1986). The allowable stress range has been developed by adjusting the
coefficient, C
f, so that a design curve is provided that lies two standard deviations of
the standard error of estimate of the fatigue cycle life below the mean S-N relation-
ship of the actual test data. These values of C
fcorrespond to a probability of failure
of 2.5% of the design life.
Prior to the 1999 AISC Load and Resistance Factor Design Specification for
Structural Steel Buildings(AISC, 2000b), stepwise tables meeting the above criteria
of cycles of loading, stress categories, and allowable stress ranges were provided in
the Specifications. A single table format (Table A-3.1) was introduced in the 1999
AISC LRFD Specification that provides the stress categories, ingredients for the
applicable equation, and information and examples including the sites of concern for
potential crack initiation (AISC, 2000b).
Table A-3.1 is organized into eight sections of general conditions for fatigue design,
as follows:
N
C
S
f
r
n
=
Fig. C-A-3.1. Fatigue resistance curves.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 480

Comm. 3.4.] BOLTS AND THREADED PARTS 16.1–481
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
• Section 1 provides information and examples for the steel material at copes, holes,
cutouts or as produced.
• Section 2 provides information and examples for various types of mechanically
fastened joints including eyebars and pin plates.
• Section 3 provides information related to welded connections used to join built-up
members, such as longitudinal welds, access holes and reinforcements.
• Section 4 deals only with longitudinal load carrying fillet welds at shear splices.
• Section 5 provides information for various types of groove and fillet welded joints
that are transverse to the applied cyclic stress.
• Section 6 provides information on a variety of groove welded attachments to flange
tips and web plates as well as similar attachments connected with either fillet or
partial-joint-penetration groove welds.
• Section 7 provides information on several short attachments to structural members.
• Section 8 collects several miscellaneous details such as shear connectors, shear on the
throat of fillet, plug and slot welds, and their impact on base metal. It also provides
for tension on the stress area of various bolts, threaded anchor rods, and hangers.
A similar format and consistent criteria are used by other specifications.
When fabrication details involving more than one stress category occur at the same
location in a member, the stress range at that location must be limited to that of the
most restrictive category. The need for a member larger than required by static load-
ing will often be eliminated by locating notch-producing fabrication details in
regions subject to smaller ranges of stress.
A detail not explicitly covered before 1989 (AISC, 1989) was added in the 1999
AISC LRFD Specification to cover tension-loaded plate elements connected at their
end by transverse partial-joint-penetration groove or fillet welds in which there
is more than a single site for the initiation of fatigue cracking, one of which will be
more critical than the others depending upon welded joint type and size and material
thickness (Frank and Fisher, 1979). Regardless of the site within the joint at which
potential crack initiation is considered, the allowable stress range provided is appli-
cable to connected material at the toe of the weld.
3.4. BOLTS AND THREADED PARTS
The fatigue resistance of bolts subject to tension is predictable in the absence of
pretension and prying action; provisions are given for such nonpretensioned details
as hanger rods and anchor rods. In the case of pretensioned bolts, deformation of
the connected parts through which pretension is applied introduces prying action,
the magnitude of which is not completely predictable (Kulak et al., 1987). The
effect of prying is not limited to a change in the average axial tension on the bolt
but includes bending in the threaded area under the nut. Because of the uncertain-
ties in calculating prying effects, definitive provisions for the allowable stress
range for bolts subject to applied axial tension are not included in this
Specification. To limit the uncertainties regarding prying action on the fatigue of
pretensioned bolts in details which introduce prying, the allowable stress range
provided in Table A-3.1 is appropriate for extended cyclic loadingonly if the pry-
ing induced by the applied load is small.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 481

16.1–482 BOLTS AND THREADED PARTS [Comm. 3.4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Nonpretensioned fasteners are not permitted under this Specification for joints sub-
ject to cyclic shear forces. Bolts installed in joints meeting all the requirements for
slip-critical connections survive unharmed when subject to cyclic shear stresses suf-
ficient to fracture the connected parts; provisions for such bolts are given in Section
2 of Table A-3.1.
3.5. SPECIAL FABRICATION AND ERECTION REQUIREMENTS
It is essential that when longitudinal backing bars are to be left in place, they be con-
tinuous or spliced using flush-ground complete-joint-penetration groove welds
before attachment to the parts being joined. Otherwise, the transverse nonfused sec-
tion constitutes a crack-like defect that can lead to premature fatigue failure or even
brittle fractureof the built-up member.
In transverse joints subjected to tension a lack-of-fusion plane in T-joints acts
as an initial crack-like condition. In groove welds, the root at the backing bar
often has discontinuities that can reduce the fatigue resistance of the connection.
Removing the backing, back gouging the joint and rewelding eliminates the unde-
sirable discontinuities.
The addition of contoured fillet welds at transverse complete-joint-penetration
groove welds in T- and corner joints and at reentrant corners reduces the stress con-
centration and improves fatigue resistance.
Experimental studies on welded built-up beams demonstrated that if the surface
roughness of flame-cut edges was less than 1,000 μin. (25 μm), fatigue cracks would
not develop from the flame-cut edge but from the longitudinal fillet welds connect-
ing the beam flanges to the web (Fisher et al., 1970, 1974). This provides stress
category B fatigue resistance without the necessity for grinding flame-cut edges.
Reentrant corners at cuts, copes and weld access holes provide a stress concentration
point that can reduce fatigue resistance if discontinuities are introduced by punching
or thermal cutting. Reaming sub-punched holes and grinding the thermally cut sur-
face to bright metal prevents any significant reduction in fatigue resistance.
The use of run-off tabs at transverse butt-joint groove welds enhances weld sound-
ness at the ends of the joint. Subsequent removal of the tabs and grinding of the ends
flush with the edge of the member removes discontinuities that are detrimental to
fatigue resistance.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 482

16.1–483
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 4
STRUCTURAL DESIGN FOR FIRE CONDITIONS
4.1. GENERAL PROVISIONS
Appendix 4 provides structural engineers with criteria for designing steel-framed
building systems and components, including columns, and floor and truss assem-
blies, for fire conditions. Additional guidance is provided in this Commentary.
Compliance with the performance objective in Section 4.1.1 can be demonstrated
by either structural analysis or component qualification testing.
Thermal expansion and progressive decrease in strength and stiffness are the pri-
mary structural responses to elevated temperatures that may occur during fires. An
assessment of a design of building components and systems based on structural
mechanics that allows designers to address the fire-induced restrained thermal
expansions, deformations and material degradation at elevated temperatures can
lead to a more robust structural design for fire conditions.
4.1.1. Performance Objective
The performance objective underlying the provisions in this Specification is that
of life safety. Fire safety levels should depend on the building occupancy, height
of the building, the presence of active fire mitigation measures, and the effec-
tiveness of fire-fighting. Three limit states exist for elements serving as fire
barriers (compartment walls and floors): (1) heat transmission leading to unac-
ceptable rise of temperature on the unexposed surface; (2) breach of barrier due
to cracking or loss of integrity; and (3) loss of load-bearing capacity. In general,
all three must be considered by the engineer to achieve the desired performance.
These three limit states are interrelated in fire-resistant design. For structural ele-
ments that are not part of a separating element, the governing limit state is loss of
load-bearing capacity.
Specific performance objectives for a facility are determined by the stakeholders
in the building process, within the context of the above general performance objec-
tive and limit states. In some instances, applicable building codes may stipulate
that steel in buildings of certain occupancies and heights be protected by fire-
resistant materials or assemblies to achieve specified performance goals.
4.1.2. Design by Engineering Analysis
The strength design criteria for steel beams and columns at elevated temperatures
have been revised from the 2005 Specification for Structural Steel Buildings
(AISC, 2005a) to reflect recent research (Tagaki and Deierlein, 2007). These
strength equations do not transition smoothly to the strength equations used to
design steel members under ambient conditions. The practical implications of the
discontinuity are minor, as the temperatures in the structural members during a
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 483

16.1–484 GENERAL PROVISIONS [Comm. 4.1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
fully developed fire are far in excess of the temperatures at which this disconti-
nuity might otherwise be of concern in design. Nevertheless, to avoid the
possibility of misinterpretation, the scope of applicability of the analysis methods
in Section 4.2 of Appendix 4 is limited to temperatures above 400 °F (204 ° C).
Structural behavior under severe fire conditions is highly nonlinear in nature as a
result of the constitutive behavior of materials at elevated temperatures and the rel-
atively large deformations that may develop in structural systems at sustained
elevated temperatures. As a result of this behavior, it is difficult to develop design
equations to ensure the necessary level of structural performance during severe
fires using elastically based ASD methods. Accordingly, structural design for fire
conditions by analysis should be performed using LRFD methods, in which the
nonlinear structural actions arising during severe fire exposures and the tempera-
ture-dependent design strengths can be properly taken into account.
4.1.4. Load Combinations and Required Strength
Fire safety measures are aimed at three levels: (1) to prevent the outbreak of fires
through elimination of ignition sources or hazardous practices; (2) to prevent
uncontrolled fire development and flashover through early detection and suppres-
sion; and (3) to prevent loss of life or structural collapse through fire protection
systems, compartmentation, exit ways, and provision of general structural integrity
and other passive measures. Specific structural design provisions to check struc-
tural integrity and risk of progressive failure due to severe fires can be developed
from principles of structural reliability theory (Ellingwood and Leyendecker,
1978; Ellingwood and Corotis, 1991).
The limit state probability of failure due to fire can be written as
P(F) =P(F|D,I) P(D|I) P(I) (C-A-4-1)
where P(I)=probability of ignition, P(D|I) =probability of development of a
structurally significant fire, and P(F|D,I)=probability of failure, given the occur-
rence of the two preceding events. Measures taken to reduce P(I) and P(D|I)are
mainly nonstructural in nature. Measures taken by the structural engineer to design
fire resistance into the structure impact the termP(F|D,I).
The development of structural design requirements requires a target reliability
level, reliability being measured by P(F)in Equation C-A-4-1. Analysis of relia-
bility of structural systems for gravity dead and live load (Galambos et al., 1982)
suggests that the limit state probability of individual steel members and connec-
tions is on the order of 10
−5
to 10
−4
per year. For redundant steel frame systems,
P(F) is on the order of 10
−6
to 10
−5
. The de minimisrisk, that is, the level below
which the risk is of regulatory or legal concern and the economic or social bene-
fits of risk reduction are small, is on the order of 10
−7
to 10
−6
per year
(Pate-Cornell, 1994). If P(I) is on the order of 10
−4
per year for typical buildings
and P(D|I)is on the order of 10
−2
for office or commercial buildings in urban areas
with suppression systems or other protective measures, then P(F|D,I) should be
approximately 0.1 to ascertain that the risk due to structural failure caused by fire
is socially acceptable.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 484

Comm. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–485
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The use of first-order structural reliability analysis based on this target (condi-
tional) limit state probability leads to the gravity load combination presented as
Equation A-4-1. Load combination Equation A-4-1 is similar to Equation 2.5-1
that appears in ASCE/SEI 7-10 (ASCE, 2010), where the probabilistic bases for
load combinations for extraordinary events is explained in detail. The factor 0.9 is
applied to the dead load when the effect of the dead load is to stabilize the struc-
ture; otherwise, the factor 1.2 is applied. The companion action load factors on L
and Sin that equation reflect the fact that the probability of a coincidence of the
peak time-varying load with the occurrence of a fire is negligible (Ellingwood and
Corotis, 1991).
The overall stability of the structural system is checked by considering the effect
of a small notional lateral load equal to 0.2% of the story gravity force, as defined
in Section C2.2, acting in combination with the gravity loads. The required
strength of the structural component or system designed using load combination
A-4-1 is on the order of 60% to 70% of the required strength under full gravity or
wind load at normal temperature.
4.2. STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS
4.2.1. Design-Basis Fire
Once a fuel load has been agreed upon for the occupancy, the designer should
demonstrate the effect of various fires on the structure by assessing the tempera-
ture-time relationships for various ventilation factors. These relations may result
in different structural responses, and it is useful to demonstrate the capability of
the structure to withstand such exposures. The effects of a localized fire should
also be assessed to ascertain that local damage is not excessive. Based on these
results, connections and edge details can be specified to provide a structure that is
sufficiently robust.
4.2.1.1. Localized Fire
Localized fires may occur in large open spaces, such as the pedestrian area of
covered malls, concourses of airport terminals, warehouses, and factories, where
fuel packages are separated by large aisles or open spaces. In such cases, the radi-
ant heat flux can be estimated by a point source approximation, requiring the heat
release rate of the fire and separation distance between the center of the fuel pack-
age and the closest surface of the steelwork. The heat release rate can be
determined from experimental results or may be estimated if the mass loss rate
per unit floor area occupied by the fuel is known. Otherwise, a steady-state fire
may be assumed.
4.2.1.2. Post-Flashover Compartment Fires
Caution should be exercised when determining temperature-time profiles for
spaces with high aspect ratios, for example, 5:1 or greater, or for large spaces;
for example, those with an open (or exposed) floor area in excess of 5,000 ft
2
(465 m
2
). In such cases, it is unlikely that all combustibles will burn in the space
simultaneously. Instead, burning will be most intense in, or perhaps limited to,
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 485

16.1–486 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [Comm. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the combustibles nearest to a ventilation source. For modest-sized compartments
with low aspect ratios, the temperature history of the design fire can be determined
by algebraic equations or computer models, such as those described in the SFPE
Handbook of Fire Protection Engineering(SFPE, 2002).
Caution should be exercised when determining the fire duration for spaces with
high aspect ratios, for example, 5:1 or greater, or for large spaces, for example,
those with a floor area in excess of 5,000 ft
2
(465 m
2
). The principal difficulty lies
in obtaining a realistic estimate for the mass loss rate, given that all combustibles
within the space may not be burning simultaneously. Failure to recognize uneven
burning will result in an overestimation of the mass burning rate and an underes-
timation of the fire duration by a significant margin. Note: some computation
methods may implicitly determine the duration of the fire, in which case the cal-
culation of mass loss rate is unnecessary.
Where a parametric curve is used to define a post-flashover fire, the duration is
determined by means of the fuel versus ventilation provisions, not explicitly by
loss of mass. This clause should not limit the use of temperature-time relationships
to those where duration is calculated, as stated above, as these tend to be localized
fires and external fire.
4.2.1.3. Exterior Fires
A design guide is available for determining the exposure resulting from an exte-
rior fire (AISI, 1979).
4.2.1.4. Active Fire Protection Systems
Due consideration should be given to the reliability and effectiveness of active fire
protection systems when describing the design-basis fire. When an automatic
sprinkler system is installed, the total fuel load may be reduced by up to 60%
[Eurocode 1 (CEN, 1991)]. The maximum reduction in the fuel load should be
considered only when the automatic sprinkler system is considered to be of the
highest reliability; for example, reliable and adequate water supply, supervision of
control valves, regular schedule for maintenance of the automatic sprinkler system
developed in accordance with NFPA (2002a), or alterations of the automatic sprin-
kler system are considered any time alterations for the space are considered.
For spaces with automatic smoke and heat vents, computer models are available to
determine the smoke temperature (SFPE, 2002). Reduction in the temperature pro-
file as a result of smoke and heat vents should only be considered for reliable
installations of smoke and heat vents. As such, a regular maintenance schedule for
the vents needs to be established in accordance with NFPA (2002b).
4.2.2. Temperatures in Structural Systems under Fire Conditions
The heat transfer analysis may range from one-dimensional analyses where the
steel is assumed to be at uniform temperature to three-dimensional analyses. The
uniform temperature assumption is appropriate in a “lumped heat capacity analy-
sis” where a steel column, beam or truss element is uniformly heated along the
entire length and around the entire perimeter of the exposed section and the
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 486

protection system is uniform along the entire length and around the entire perime-
ter of the section. In cases with nonuniform heating or where different protection
methods are used on different sides of the column, a one-dimensional analysis
should be conducted for steel column assemblies. Two-dimensional analyses are
appropriate for beams, bar joists or truss elements supporting floor or roof slabs.
Heat transfer analyses should consider changes in material properties with increas-
ing temperature for all materials included in the assembly. This may be done in the
lumped heat capacity analysis using an effective property value, determined at a
temperature near the estimated mid-point of the temperature range expected to be
experienced by that component over the duration of the exposure. In the one- and
two-dimensional analyses, the variation in properties with temperature should be
explicitly included.
The boundary conditions for the heat transfer analysis shall consider radiation heat
transfer in all cases and convection heat transfer if the exposed element is sub-
merged in the smoke or is being subjected to flame impingement. The presence of
fire resistive materials in the form of insulation, heat screens, or other protective
measures shall be taken into account, if appropriate.
Lumped Heat Capacity Analysis. This first-order analysis to predict the tempera-
ture rise of steel structural members can be conducted using algebraic equations
iteratively. This approach assumes that the steel member has a uniform tempera-
ture, applicable to cases where the steel member is unprotected or uniformly
protected (on all sides), and is exposed to fire around the entire perimeter of the
assembly containing the steel member. Caution should be used when applying this
method to steel beams supporting floor and roof slabs, as the approach will over-
estimate the temperature rise in the beam. In addition, where this analysis is used
as input for the structural analysis of a fire-exposed steel beam supporting a floor
and roof slab, the thermally induced moments will not be simulated as a result of
the uniform temperature assumption.
Unprotected Steel Members.The temperature rise in an unprotected steel section
in a short time period is determined by:
(C-A-4-2)
The heat transfer coefficient, a, is determined from
a =a
c+ar (C-A-4-3)
where
a
c=convective heat transfer coefficient
a
r=radiative heat transfer coefficient, given as:
(C-A-4-4)
Comm. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–487
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ΔΔT
a
c
W
D
TTts
s
Fs=






− ( )
a
TT
TTr
F
FS
Fs=
×

− ( )

567 10
8
44
. ε
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 487

16.1–488 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [Comm. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For the standard exposure, the convective heat transfer coefficient, a c, can be
approximated as 25 W/m²-°C [4.4 Btu/(ft
2
-hr-°F)]. The parameter, ε F, accounts for
the emissivity of the fire and the view factor. Estimates for ε
F, are suggested in
Table C-A-4.1.
For accuracy reasons, a maximum limit for the time step, Δ t, is suggested as 5 s.
The fire temperature needs to be determined based on the results of the design fire
analysis. As alternatives, the standard time-temperature curves indicated in ASTM
E119 (ASTM, 2009d) for building fires or ASTM E1529 (ASTM, 2006) for petro-
chemical fires may be selected.
Protected Steel Members.This method is most applicable for steel members with
contour protection schemes, in other words, where the insulating or (protection)
material follows the shape of the section. Application of this method for box pro-
tection methods will generally result in the temperature rise being overestimated.
The approach assumes that the outside insulation temperature is approximately
equal to the fire temperature. Alternatively, a more complex analysis may be con-
ducted which determines the exterior insulation temperature from a heat transfer
analysis between the assembly and the exposing fire environment.
If the thermal capacity of the insulation is much less than that for the steel, such
that the following inequality is satisfied:
c
sW/D >2d pρpcp (C-A-4-5)
Then, Equation C-A-4-6 can be applied to determine the temperature rise in the
steel:
(C-A-4-6)
TABLE C-A-4.1
Guidelines for Estimating ε
F
Type of Assembly ε F
Column, exposed on all sides 0.7
Floor beam: Embedded in concrete floor slab, with only bottom
flange of beam exposed to fire 0.5
Floor beam, with concrete slab resting on top flange of beam
Flange width-to-beam depth ratio ≥ 0.5 0.5
Flange width-to-beam depth ratio < 0.5 0.7
Box girder and lattice girder 0.7
ΔΔT
k
cd
W
D
TTts
p
sp
Fs=






− ( )
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 488

Comm. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–489
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
If the thermal capacity of the insulation needs to be considered (such that the
inequality in Equation C-A-4-5 is not satisfied), then Equation C-A-4-7 should be
applied:
(C-A-4-7)
The maximum limit for the time step, Δt, should be 5 s.
Ideally, material properties should be considered as a function of temperature.
Alternatively, material properties may be evaluated at a mid-range temperature
expected for that component. For protected steel members, the material properties
may be evaluated at 572 °F (300 °C), and for protection materials, a temperature
of 932 °F (500 °C) may be considered.
External Steelwork.Temperature rise can be determined by applying the follow-
ing equation:
(C-A-4-8)
where q′′is the net heat flux incident on the steel member.
Advanced Calculation Methods.The thermal response of steel members may be
assessed by application of a computer model. A computer model for analyzing the
thermal response of the steel members should consider the following:
(1) Exposure conditions established based on the definition of a design fire. The
exposure conditions need to be stipulated either in terms of a time-temperature
history, along with radiation and convection heat transfer parameters associ-
ated with the exposure, or as an incident heat flux. The incident heat flux is
dependent on the design fire scenario and the location of the structural assem-
bly. The heat flux emitted by the fire or smoke can be determined from a fire
hazard analysis. Exposure conditions are established based on the definition of
a design fire. The exposure conditions are stipulated either in terms of a time-
temperature history, along with radiation and convection heat transfer
parameters associated with the exposure, or as an incident heat flux.
(2) Temperature-dependent material properties.
(3) Temperature variation within the steel member and any protection compo-
nents, especially where the exposure varies from side-to-side.
Nomenclature:
D=heat perimeter, in. (m)
T=temperature, °F (°C)
W=weight (mass) per unit length, lb/ft (kg/m)
a=heat transfer coefficient, Btu/ft
2
-sec-°F (W/m
2
-°C)
ΔΔT
k
d
TT
c
W
D
cd
ts
p
p
Fs
s
ppp=






⎟+












ρ
2
ΔΔT
q
c
W
D
ts
s=
′′






AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 489

16.1–490 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [Comm. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
c=specific heat, Btu/lb·°F (J/kg-°C)
d=thickness, in. (m)
k=thermal conductivity, Btu/ft-sec-°F (W/m-°C)
Δt=time interval, s
ρ=density, lb/ft
3
(kg/m
3
)
Subscripts:
c=convection
p=fire protection material
r=radiation
s=steel
4.2.3. Material Strengths at Elevated Temperatures
The properties for steel and concrete at elevated temperatures are adopted from the
ECCS Model Code on Fire Engineering(ECCS, 2001), Section III.2, “Material
Properties.” These generic properties are consistent with those in Eurocode 3
(CEN, 2005) and Eurocode 4 (CEN, 2003), and reflect the consensus of the inter-
national fire engineering and research community. The background information for
the mechanical properties of structural steel at elevated temperatures can be found
in Cooke (1988) and Kirby and Preston (1988).
The stress-strain response of steel at elevated temperatures is more nonlinear
than at room temperature and experiences less strain hardening. As shown in
Figure C-A-4.1, at elevated temperatures the deviation from linear behavior is
represented by the proportional limit, F
p(T),and the yield strength, F y(T), is
defined at a 2% strain. At 1,000 °F (538 ° C), the yield strength, F
y(T),reduces
to about 66% of its value at room temperature, and the proportional limit F
p(T)
occurs at 29% of the elevated temperature yield strength F
y(T). Finally, at
Fig. C-A-4.1. Parameters of idealized stress-strain curve at elevated temperatures
(Takagi and Deierlein, 2007).

TE
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 490

Comm. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–491
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
temperatures above 750 °F (399 ° C), the elevated temperature ultimate strength
is essentially the same as the elevated temperature yield strength; in other words,
F
y(T) is equal to F u(T).
4.2.4. Structural Design Requirements
The resistance of the structural system in the design basis fire may be determined
by:
(a) Structural analysis of individual elements where the effects of restraint to
thermal expansion and bowing may be ignored but the reduction in strength
and stiffness with increasing temperature is incorporated
(b) Structural analysis of assemblies/subframes where the effects of restrained
thermal expansion and thermal bowing are considered by incorporating geo-
metric and material nonlinearities
(c) Global structural analysis where restrained thermal expansion, thermal bow-
ing, material degradation, and geometric nonlinearity are considered
4.2.4.1. General Structural Integrity
The requirement for general structural integrity is consistent with that appearing
in Section 1.4 of ASCE (2010). Structural integrity is the ability of the structural
system to absorb and contain local damage or failure without developing into a
progressive collapse that involves the entire structure or a disproportionately large
part of it.
The Commentary C1.4 to Section 1.4 of ASCE (2010) contains guidelines for the
provision of general structural integrity. Compartmentation (subdivision of build-
ings/stories in a building) is an effective means of achieving resistance to
progressive collapse as well as preventing fire spread, as a cellular arrangement
of structural components that are well tied together provides stability and integrity
to the structural system as well as insulation.
4.2.4.2. Strength Requirements and Deformation Limits
As structural elements are heated, their expansion is restrained by adjacent ele-
ments and connections. Material properties degrade with increasing temperature.
Load transfer can occur from hotter elements to adjacent cooler elements.
Excessive deformation may be of benefit in a fire as it allows release of thermally
induced stresses. Deformation is acceptable once horizontal and vertical separa-
tion as well as the overall load bearing capacity of the structural system is
maintained.
4.2.4.3. Methods of Analysis
4.2.4.3a. Advanced Methods of Analysis
Advanced methods are required when the overall structural system response to
fire, the interaction between structural members and separating elements in
fire, or the residual strength of the structural system following a fire must be
considered.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 491

16.1–492 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [Comm. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.2.4.3b. Simple Methods of Analysis
Simple methods may suffice when a structural member or component can be
assumed to be subjected to uniform heat flux on all sides and the assumption of a
uniform temperature is reasonable as, for example, in a free-standing column.
In the 2005 Specification, nominal member strengths at elevated temperatures
were calculated using the standard strength equations of the Specification with
steel properties (E, F
yand F u) reduced for elevated temperatures by appropriate
factors. Recent research (Takagi and Deierlein, 2007) has shown this procedure
to over-estimate considerably the strengths of members that are sensitive to sta-
bility effects. To reduce these unconservative errors, new equations, developed by
Takagi and Deierlein (2007) are introduced in the 2010 edition of the
Specification to more accurately calculate the strength of compression members
subjected to flexural buckling and flexural members subjected to lateral-torsional
buckling. As shown in Figure C-A-4.2, the 2010 Specification equations are much
more accurate in comparison to detailed finite element method analyses (repre-
sented by the square symbol in the figure), which have been validated against test
data, and to equations from the Eurocode (ECCS, 2001).
4.2.4.4. Design Strength
The design strength for structural steel members and connections is calculated as
φR
n, in which R n=nominal strength, when the deterioration in strength at ele-
vated temperature is taken into account, and φis the resistance factor. The
nominal strength is computed as in Chapters C through K and Appendix 4 of the
Specification, using material strength and stiffnesses at elevated temperatures
defined in Tables A-4.2.1 and A-4.2.2. While ECCS (2001) and Eurocode 1
(CEN, 1991) specify partial material factors as equal to 1.0 for “accidental” limit
states, the uncertainties in strength at elevated temperatures are substantial and in
some cases are unknown. Accordingly, the resistance factors herein are the same
as those at ordinary conditions.
Fig. C-A-4.2 Comparison of compression and flexural strengths
at 500 °C (932 °F) (Takagi and Deierlein, 2007).
(a) Compression strength (b) Flexural strength
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 492

Comm. 4.3.] DESIGN BY QUALIFICATION TESTING 16.1–493
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.3. DESIGN BY QUALIFICATION TESTING
4.3.1. Qualification Standards
Qualification testing is an acceptable alternative to design by analysis for provid-
ing fire resistance. Fire resistance ratings of building elements are generally
determined in accordance with procedures set forth in ASTM E119, Standard Test
Methods for Fire Tests of Building Construction and Materials(ASTM, 2009d).
Tested building element designs, with their respective fire resistance ratings, may
be found in special directories and reports published by testing agencies.
Additionally, calculation procedures based on standard test results may be used as
specified in Standard Calculation Methods for Structural Fire Protection(ASCE,
2005a).
For building elements that are required to prevent the spread of fire, such as walls,
floors and roofs, the test standard provides for measurement of the transmission of
heat. For loadbearing building elements, such as columns, beams, floors, roofs and
loadbearing walls, the test standard also provides for measurement of the load-car-
rying ability under the standard fire exposure.
For beam, floor and roof specimens tested under ASTM E119, two fire resistance
classifications—restrained and unrestrained—may be determined, depending on the
conditions of restraint and the acceptance criteria applied to the specimen.
4.3.2. Restrained Construction
The ASTM E119 standard provides for tests of loaded beam specimens only in the
restrained condition, where the two ends of the beam specimen (including slab ends
for composite steel-concrete beam specimens) are placed tightly against the test
frame that supports the beam specimen. Therefore, during fire exposure, the ther-
mal expansion and rotation of the beam specimen ends are resisted by the test
frame. Similar restrained condition is provided in the ASTM E119 tests on
restrained loaded floor or roof assemblies, where the entire perimeter of the assem-
bly is placed tightly against the test frame.
The practice of restrained specimens dates back to the early fire tests (over 100
years ago), and it is predominant today in the qualification of structural steel
framed and reinforced concrete floors, roofs and beams in North America. While
the current ASTM E119 standard does provide for an option to test loaded floor and
roof assemblies in the unrestrained condition, this testing option is rarely used for
structural steel and concrete. However, unrestrained loaded floor and roof speci-
mens, with sufficient space around the perimeter to allow for free thermal
expansion and rotation, are common in the tests of wood and cold-formed-steel
framed assemblies.
Gewain and Troup (2001) provide a detailed review of the background research
and practices in the qualification fire resistance testing and rating of structural
steel (and composite steel/concrete) girders, beams, and steel framed floors and
roofs. The restrained assembly fire resistance ratings (developed from tests on
loaded restrained floor or roof specimens) and the restrained beam fire resistance
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 493

16.1–494 DESIGN BY QUALIFICATION TESTING [Comm. 4.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ratings (developed from tests on loaded restrained beam specimens) are com-
monly applicable to all types (with minor exceptions) of steel framed floors, roofs,
girders and beams, as recommended in Table X3.1 of ASTM E119, especially
where they incorporate or support cast-in-place or prefabricated concrete slabs.
Ruddy et al. (2003) provides several detailed examples of steel framed floor and
roof designs by qualification testing.
4.3.3. Unrestrained Construction
An unrestrained condition is one in which thermal expansion at the support of load-
carrying elements is not resisted by forces external to the element and the supported
ends are free to expand and rotate.
However, in the common practice for structural steel (and composite steel-con-
crete) beams and girders, the unrestrained beam ratings are developed from ASTM
E119 tests on loaded restrained beam specimens or from ASTM E119 tests on
loaded restrained floor or roof specimens, based only on temperature measurements
on the surface of structural steel members. For steel framed floors and roofs, the
unrestrained assembly ratings are developed from ASTM E119 tests on loaded
restrained floor and roof specimens, based only on temperature measurements on
the surface of the steel deck (if any) and on the surface of structural steel members.
As such, the unrestrained fire resistance ratings are temperature-based ratings
indicative of the time when the steel reaches specified temperature limits. These
unrestrained ratings do not bear much direct relevance to the unrestrained condition
or the load-bearing functions of the specimens in fire tests.
Nevertheless, unrestrained ratings provide useful supplementary information, and
they are used as a conservative estimate of fire resistance (in lieu of the restrained
ratings) in cases where the surrounding or supporting construction cannot be
expected to accommodate the thermal expansion of steel beams or girders. For
instance, as recommended in Table X3.1 of ASTM E119, a steel member bearing
on a wall in a single span or at the end span of multiple spans should be consid-
ered unrestrained when the wall has not been designed and detailed to resist
thermal thrust.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 494

Comm. 4.] BIBLIOGRAPHY 16.1–495
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
BIBLIOGRAPHY
The following references provide further information on key issues related to fire-resistant
design of steel building systems and components, and are representative of the extensive
literature on the topic. The references were selected because they are archival in nature or
otherwise easily accessible by engineers seeking to design fire-resistance into building
structures.
AISI (1980), Designing Fire Protection for Steel Columns, American Iron and Steel
Institute, Washington, DC.
Bailey, C.G. (2000), “The Influence of the Thermal Expansion of Beams on the Structural
Behavior of Columns in Steel-Framed Structures During a Fire,” Engineering Structures,
Vol. 22, No. 7, pp. 755–768.
Bennetts, I.D. and Thomas, I.R. (2002), “Design of Steel Structures under Fire Conditions,”
Progress in Structural Engineering and Materials, Vol. 4, No. 1, pp. 6–17.
Boring, D.F., Spence, J.C. and Wells, W.G. (1981), Fire Protection Through Modern
Building Codes, 5th Ed., American Iron and Steel Institute, Washington, DC.
Brozzetti, J., Law, M., Pettersson, O. and Witteveen, J. (1983), “Safety Concepts and Design
for Fire Resistance of Steel Structures,” IABSE Surveys S-22/83, IABSE Periodica
1/1983, ETH-Honggerberg, Zurich, Switzerland.
Chalk, P.L. and Corotis, R.B. (1980), “Probability Model for Design Live Loads,” Journal
of the Structures Division, ASCE, Vol. 106, No. ST10, pp. 2,017–2,033.
Chan, S.L. and Chan, B.H.M. (2001), “Refined Plastic Hinge Analysis of Steel Frames
under Fire,” Steel and Composite Structures , Vol. 1, No. 1, pp. 111–130.
CIB W14 (1983), “A Conceptual Approach Towards a Probability Based Design Guide on
Structural Fire Safety,” Fire Safety Journal, Vol. 6, No. 1, pp. 1–79.
CIB W14 (2001), “Rational Safety Engineering Approach to Fire Resistance of Buildings,”
CIB Report No. 269, International Council for Research and Innovation in Building
and Construction, Rotterdam, The Netherlands.
Culver, C.G. (1978), “Characteristics of Fire Loads in Office Buildings,” Fire Technology,
Vol. 1,491, pp. 51–60.
Huang, Z., Burgess, I.W. and Plank, R.J. (2000), “Three-Dimensional Analysis of
Composite Steel-Framed Buildings in Fire,” Journal of Structural Engineering , ASCE,
Vol. 126, No. 3, pp. 389–397.
Jeanes, D.C. (1985), “Application of the Computer in Modeling Fire Endurance of
Structural Steel Floor Systems,” Fire Safety Journal, Vol. 9, pp. 119–135.
Kruppa, J. (2000), “Recent Developments in Fire Design,” Progress in Structures
Engineering and Materials, Vol. 2, No. 1, pp. 6–15.
Lane, B. (2000), “Performance-Based Design for Fire Resistance,” Modern Steel
Construction, AISC, December, pp. 54–61.
Lawson, R.M. (2001), “Fire Engineering Design of Steel and Composite Buildings,”
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 495

16.1–496 BIBLIOGRAPHY [Comm. 4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Journal of Constructional Steel Research, Vol. 57, pp. 1,233–1,247.
Lie, T.T. (1978), “Fire Resistance of Structural Steel,” Engineering Journal , AISC, Vol. 15,
No. 4, pp. 116–125.
Lie, T.T. and Almand, K.H. (1990), “A Method to Predict the Fire Resistance of Steel
Building Columns,” Engineering Journal, AISC, Vol. 27, pp. 158–167.
Magnusson, S.E. and Thelandersson, S. (1974), “A Discussion of Compartment Fires,” Fire
Technology, Vol. 10, No. 4, pp. 228–246.
Milke, J.A. (1985), “Overview of Existing Analytical Methods for the Determination of Fire
Resistance,” Fire Technology, Vol. 21, No. 1, pp. 59–65.
Milke, J.A. (1992), “Software Review: Temperature Analysis of Structures Exposed to
Fire,” Fire Technology, Vol. 28, No. 2, pp. 184–189.
Newman, G. (1999), “The Cardington Fire Tests,” Proceedings of the North American Steel
Construction Conference, Toronto, Canada, AISC, Chicago, IL, pp. 28.1–28.22.
Nwosu, D.I. and Kodur, V.K.R. (1999), “Behavior of Steel Frames Under Fire Conditions,”
Canadian Journal of Civil Engineering, Vol. 26, pp. 156–167.
Sakumoto, Y. (1992), “High-Temperature Properties of Fire-Resistant Steel for Buildings,”
Journal of Structural Engineering, ASCE, Vol. 18, No. 2, pp. 392–407.
Sakumoto, Y. (1999), “Research on New Fire-Protection Materials and Fire-Safe Design,”
Journal of Structural Engineering, ASCE, Vol. 125, No. 12, pp. 1,415–1,422.
Toh, W.S., Tan, K.H. and Fung, T.C. (2001), “Strength and Stability of Steel Frames in
Fire: Rankine Approach,” Journal of Structural Engineering , ASCE, Vol. 127, No. 4, pp.
461–468.
Usmani, A.S., Rotter, J.M., Lamont, S., Sanad, A.M. and Gillie, M. (2001), “Fundamental
Principles of Structural Behaviour Under Thermal Effects,” Fire Safety Journal, Vol. 36,
No. 8.
Wang, Y.C. and Moore, D.B. (1995), “Steel Frames in Fire: Analysis,” Engineering
Structures, Vol. 17, No. 6, pp. 462–472.
Wang, Y.C. and Kodur, V.K.R. (2000), “Research Toward Use of Unprotected Steel
Structures,” Journal of Structural Engineering, ASCE, Vol. 120, No. 12, pp. 1,442–1,450.
Wang, Y.C. (2000), “An Analysis of the Global Structural Behavior of the Cardington Steel-
Framed Building During the Two BRE Fire Tests,” Engineering Structures, Vol. 22,
pp. 401–412.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 496

16.1–497
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 5
EVALUATION OF EXISTING STRUCTURES
5.1. GENERAL PROVISIONS
The load combinations referred to in this chapter pertain to gravity loading because
it is the most prevalent condition encountered. If other loading conditions are a con-
sideration, such as lateral loads, the appropriate load combination from ASCE/SEI 7
(ASCE, 2010) or from the applicable building code should be used.
For seismic evaluation of existing buildings, ASCE/SEI 31 (ASCE, 2003) provides
a three-tiered process for determination of the design and construction adequacy of
existing buildings to resist earthquakes. The standard defines evaluation require-
ments as well as detailed evaluation procedures. Buildings may be evaluated in
accordance with this standard for life safety or immediate occupancy performance
levels. Where seismic rehabilitation of existing structural steel buildings is required,
engineering of seismic rehabilitation work may be performed in accordance with the
ASCE/SEI 41 (ASCE, 2006) standard or other standards. Use of the above two stan-
dards for seismic evaluation and seismic rehabilitation of existing structural steel
buildings is subject to the approval of the authority having jurisdiction.
5.2. MATERIAL PROPERTIES
1. Determination of Required Tests
The extent of tests required depends on the nature of the project, the criticality of the
structural system or member evaluated, and the availability of records pertinent to the
project. Thus, the engineer of record has the responsibility to determine the specific
tests required and the locations from which specimens are to be obtained.
2. Tensile Properties
Samples required for tensile tests should be removed from regions of reduced stress,
such as at flange tips at beam ends and external plate edges, to minimize the effects
of the reduced area. The number of tests required will depend on whether they are
conducted to merely confirm the strength of a known material or to establish the
strength of some other steel.
It should be recognized that the yield stress determined by standard ASTM methods
and reported by mills and testing laboratories is somewhat greater than the static
yield stress because of dynamic effects of testing. Also, the test specimen location
may have an effect. These effects have already been accounted for in the nominal
strength equations in the Specification. However, when strength evaluation is done
by load testing, this effect should be accounted for in test planning because yield-
ing will tend to occur earlier than otherwise anticipated. The static yield stress, F
ys,
can be estimated from that determined by routine application of ASTM methods, F
y,
by the following equation (Galambos, 1978, 1998):
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 497

16.1–498 MATERIAL PROPERTIES [Comm. 5.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fys=R(F yπ4) (C-A-5-1)
[S.I.: F
ys=R(F yπ27)] (C-A-5-1M)
where
F
ys=static yield stress, ksi (MPa)
F
y=reported yield stress, ksi (MPa)
R=0.95 for tests taken from web specimens
=1.00 for tests taken from flange specimens
The Rfactor in Equation C-A-5-1 accounts for the effect of the coupon location on
the reported yield stress. Prior to 1997, certified material test reports for structural
shapes were based on specimens removed from the web, in accordance with ASTM
A6/A6M (ASTM, 2009f). Subsequently the specified coupon location was changed
to the flange.
4. Base Metal Notch Toughness
The engineer of record shall specify the location of samples. Samples shall be cored,
flame cut or saw cut. The engineer of record will determine if remedial actions are
required, such as the possible use of bolted splice plates.
5. Weld Metal
Because connections typically are more reliable than structural members, strength
testing of weld metal is not usually necessary. However, field investigations have
sometimes indicated that complete-joint-penetration groove welds, such as at beam-
to-column connections, were not made in accordance with AWS D1.1/D1.1M (AWS,
2010). The specified provisions in AWS D1.1/D1.1M Section 5.24 provide a means
for judging the quality of such a weld. Where feasible, any samples removed should
be obtained from compression splices rather than tension splices, because the effects
of repairs to restore the sampled area are less critical.
6. Bolts and Rivets
Because connections typically are more reliable than structural members, removal
and strength testing of fasteners is not usually necessary. However, strength testing
of bolts is required where they can not be properly identified otherwise. Because
removal and testing of rivets is difficult, assuming the lowest rivet strength grade
simplifies the investigation.
5.3. EVALUATION BY STRUCTURAL ANALYSIS
2. Strength Evaluation
Resistance and safety factors reflect variations in determining strength of members
and connections, such as uncertainty in theory and variations in material properties
and dimensions. If an investigation of an existing structure indicates that there are
variations in material properties or dimensions significantly greater than those antic-
ipated in new construction, the engineer of record should consider the use of more
conservative values.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 498

Comm. 5.4.] EVALUATION BY LOAD TESTS 16.1–499
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5.4. EVALUATION BY LOAD TESTS
1. Determination of Load Rating by Testing
Generally, structures that can be designed according to the provisions of this
Specification need no confirmation of calculated results by testing. However, special
situations may arise when it is desirable to confirm by tests the results of calcula-
tions. Minimal test procedures are provided to determine the live load rating of a
structure. However, in no case is the live load rating determined by testing to exceed
that which can be calculated using the provisions of this Specification. This is not
intended to preclude testing to evaluate special conditions or configurations that are
not adequately covered by this Specification.
It is essential that the engineer of record take all necessary precautions to ascertain
that the structure does not fail catastrophically during testing. A careful assessment
of structural conditions before testing is a fundamental requirement. This includes
accurate measurement and characterization of the size and strength of members, con-
nections and details. All safety regulations of OSHA and other pertinent bodies must
be strictly followed. Shoring and scaffolding should be used as required in the prox-
imity of the test area to mitigate against unexpected circumstances. Deformations
must be carefully monitored and structural conditions must be continually evaluated.
In some cases it may be desirable to monitor strains as well.
The engineer of record must use judgment to determine when deflections are becom-
ing excessive and terminate the tests at a safe level even if the desired loading has
not been achieved. Incremental loading is specified so that deformations can be accu-
rately monitored and the performance of the structure carefully observed. Load
increments should be small enough initially so that the onset of significant yielding
can be determined. The increment can be reduced as the level of inelastic behavior
increases, and the behavior at this level carefully evaluated to determine when to
safely terminate the test. Periodic unloading after the onset of inelastic behavior will
help the engineer of record determine when to terminate the test to avoid excessive
permanent deformation or catastrophic failure.
It must be recognized that the margin of safety at the maximum load level used in the
test may be very small, depending on such factors as the original design, the purpose
of the tests, and the condition of the structure. Thus, it is imperative that all appro-
priate safety measures be adopted. It is recommended that the maximum live load
used for load tests be selected conservatively. It should be noted that experience in
testing more than one bay of a structure is limited.
The provision limiting increases in deformations for a period of one hour is given so
as to have positive means to confirm that the structure is stable at the loads evaluated.
2. Serviceability Evaluation
In certain cases serviceability performance must be determined by load testing. It
should be recognized that complete recovery (in other words, return to initial
deflected shape) after removal of maximum load is unlikely because of phenomena
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 499

16.1–500 EVALUATION BY LOAD TESTS [Comm. 5.4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
such as local yielding, slip at the slab interface in composite construction, creep in
concrete slabs, localized crushing or deformation at shear connections in slabs, slip
in bolted connections, and effects of continuity. Because most structures exhibit
some slack when load is first applied, it is appropriate to project the load-deforma-
tion curve back to zero load to determine the slack and exclude it from the recorded
deformations. Where desirable, the applied load sequence can be repeated to demon-
strate that the structure is essentially elastic under service loads and that the
permanent set is not detrimental.
5.5. EVALUATION REPORT
Extensive evaluation and load testing of existing structures is often performed when
appropriate documentation no longer exists or when there is considerable disagree-
ment about the condition of a structure. The resulting evaluation is only effective if
well documented, particularly when load testing is involved. Furthermore, as time
passes, various interpretations of the results can arise unless all parameters of the
structural performance, including material properties, strength, and stiffness, are
well documented.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 500

16.1–501
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 6
STABILITY BRACING FOR COLUMNS AND BEAMS
6.1. GENERAL PROVISIONS
Winter (1958, 1960) developed the concept of a dual requirement for bracing design,
which involves criteria for both strength and stiffness. The design requirements of
Appendix 6 are based upon this approach [for more discussion, see Ziemian (2010)]
and consider two general types of bracing systems, relative and nodal, as shown in
Figure C-A-6.1.
(b) Beam bracing
Fig. C-A-6.1. Types of bracing.
(a) Column bracing
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 501

16.1–502 GENERAL PROVISIONS [Comm. 6.1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
A relative brace for a column (such as diagonal bracing or shear walls) is attached to
two locations along the length of the column. The distance between these locations
is the unbraced length, L, of the column, for which K =1.0 can be used. The relative
bracing system shown in Figure C-A-6.1(a) consists of the diagonals and struts that
control the movement at one end of the unbraced length, A, with respect to the other
end of the unbraced length, B. The forces in these bracing elements are resolved by
the forces in the beams and columns in the frame that is braced. The diagonal and
strut both contribute to the strength and stiffness of the relative bracing system.
However, when the strut is a floor beam and the diagonal a brace, the floor beam
stiffness is usually large compared to the stiffness of the brace. In such a case, the
brace strength and stiffness often controls the strength and stiffness of the relative
bracing system.
A nodal brace for a column controls movement only at the point it braces, and with-
out direct interaction with adjacent braced points. The distance between adjacent
braced points is the unbraced length, L, of the column, for which K =1.0 can be used.
The nodal bracing system shown in Figure C-A-6.1(a) consists of a series of inde-
pendent braces, which connect to a rigid abutment, from braced points, including C
and D. The forces in these bracing elements are resolved by other structural elements
not part of the frame that is braced.
As illustrated in Figure C-A-6.1(b), a relative bracing system for a beam commonly
consists of a system with diagonals; a nodal bracing system commonly exists when
there is a link to an external support or a cross-frame between two adjacent beams.
The cross-frame prevents twist (not lateral displacement) of the beams only at the
particular cross frame location. With the required lateral and rotational restraint pro-
vided at the beam ends, the unbraced length, L
b, in all of these cases is the distance
from the support to the braced point.
The bracing requirements stipulated for columns in this Section enable the column
to sustain its maximum load based on the unbraced length, L, between the brace
points and the use of K=1.0. This is not the same as the no-sideswaycase. As illus-
trated in Figure C-A-6.2 for a cantilevered column with a brace of variable stiffness
Fig. C-A-6.2. Cantilevered column with brace at top.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 502

Comm. 6.1.] GENERAL PROVISIONS 16.1–503
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
at the top, the critical stiffness with K =1.0 is P e/L. However, a brace with five times
this stiffness only reaches 95% of the value required for the use of K =0.7, and an
infinitely stiff brace would be required to reach the no-sway limit, in theory.
Similarly, the determination of bracing required to reach specified rotation capacities
or ductility limits is beyond the scope of these recommendations.
The provisions for required brace stiffness, β
br, in Sections 6.2 and 6.3 for columns
and beams, respectively, have been selected equal to twice the critical stiffness, and
all bracing stiffness provisions have φ=0.75 and Ω = 2.00. The required brace
strength, P
rb, is a function of the initial out-of-straightness, Δ o, and the brace stiff-
ness, β. φand Ωare not involved in the calculation of required brace strength; they
are applied when the provisions in other chapters of this Specification are applied to
design the members and connections provided to resist these forces.
For a relative bracing system, the relationship between column load, brace stiffness
and sway displacement is shown in Figure C-A-6.3. If the bracing stiffness, β, is
equal to the critical brace stiffness for a perfectly plumb member, β
i, Papproaches
P
eas the sway deflection increases. However, such large displacements would pro-
duce large bracing forces, and Δmust be kept small for practical design.
For the relative bracing system shown in Figure C-A-6.3, the use of β
br=2βiand an
initial displacement of Δ
o=L/500 results in P rbequal to 0.4% of P e. In the forego-
ing, Lis the distance between adjacent braced points as shown in Figure C-A-6.4,
and Δ
ois the displacement from the straight position at the braced points caused by
lateral loads, erection tolerances, column shortening, and other sources, but not
including brace elongations from gravity loads.
As stated in the Chapter C, the use of Δ
o=L/500 is based upon the maximum frame
out-of-plumbness specified in the AISC Code of Standard Practice for Steel
Buildings and Bridges(AISC, 2010a). Similarly, for torsional bracing of beams an
initial rotation, θ
o=L/(500h o), is assumed, where h ois the distance between flange
centroids. For other values of Δ
oand θ o, it is permissible to modify the bracing
required strengths, P
rband M rb, by direct proportion. For cases where it is unlikely
that all columns in a story will be out-of-plumb in the same direction, Chen and Tong
(1994) recommend an average initial displacement of , where n
o
Fig. C-A-6.3. Effect of initial out-of-plumbness.
Δoo=()Ln/ 500
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 503

16.1–504 GENERAL PROVISIONS [Comm. 6.1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is the number of columns, each with a randomΔ o, stabilized by the bracing system.
This reduced Δ
owould be appropriate when combining the stability brace forces
with wind and seismic forces.
If the actual bracing stiffness provided, β
act, is larger than β br, the required brace
strength, P
rb(or M rbin the case of a torsional brace), can be multiplied by the fol-
lowing factor:
(C-A-6-1)
Connections in the bracing system, if they are flexible or can slip, should be consid-
ered in the evaluation of the bracing stiffness as follows:
(C-A-6-2)
The resulting bracing system stiffness, β
act, is less than the smaller of the connection
stiffness, β
conn, and the brace stiffness, β brace. Slip in connections with standard holes
need not be considered, except when only a few bolts are used.
When evaluating the bracing of rows of columns or beams, consideration must be
given to the accumulation of the bracing forces, which may result in a different dis-
placement at each column or beam location. In general, bracing forces can be
minimized by increasing the number of braced bays and using stiff braces.
Member inelasticity has no significant effect on stability bracing requirements (Yura,
1995).
6.2. COLUMN BRACING
For nodal column bracing, the critical stiffness is a function of the number of inter-
mediate braces (Winter, 1958, 1960). For one intermediate brace, β
i=2Pr/Lb, and for
many braces, β
i=4Pr/Lb. The relationship between the critical stiffness and the num-
ber of braces, n, can be approximated (Yura, 1995) as:
1
2−
β
β
br
act
11 1
ββ β
act conn brace
=+
Fig. C-A-6.4. Definitions of initial displacements for relative and nodal braces.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 504

Comm. 6.3.] BEAM BRACING 16.1–505
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-A-6-3)
The most severe case (many braces) was adopted for the brace stiffness requirement,
β
br=2 ×4P/L b. The brace stiffness in Equation A-6-4 can be multiplied by the fol-
lowing ratio to account for the actual number of braces:
(C-A-6-4)
The unbraced length, L
b, in Equation A-6-4 is assumed equal to the length, KL, that
enables the column to reach P
r. When the actual brace spacing is less than the value
of KLso determined, the calculated required stiffness may become quite conserva-
tive since the stiffness equations are inversely proportional to L
b. In such cases, L b
can be taken equal to KL. This substitution is also permitted for the beam nodal brac-
ing formulations given in Equations A-6-8 and A-6-9.
For example, a W12×53 (W310×79) with P
u=400 kips (1 780 kN) for LRFD
or P
a=267 kips (1 190 kN) for ASD can have a maximum unbraced length of 18 ft
(5.5 m) for ASTM A992 steel. If the actual brace spacing is 8 ft (2.4 m), 18 ft (5.5
m) may be used in Equation A-6-4 to determine the required stiffness. The use of L
b
equal to the value of KLin Equation A-6-4 provides reasonable estimates of the brace
stiffness requirements; however, the solution can still result in conservative estimates
of the stiffness requirements. Improved accuracy can be obtained by treating the sys-
tem as a continuous bracing system (Lutz and Fisher, 1985; Ziemian, 2010).
With regard to the brace strength requirements, Winter’s rigid model only accounts
for force effects from lateral displacements and would derive a brace force equal to
0.8% of P
r, which accounts only for lateral displacement force effects. To account for
the additional force due to member curvature, this theoretical force has been
increased to 1% of P
r.
6.3. BEAM BRACING
Beam bracing must control twist of the section, but need not prevent lateral dis-
placement. Both lateral bracing, such as a steel joists attached to the compression
flange of a simply supported beam, and torsional bracing, such as a cross-frame or
diaphragm between adjacent girders, can be used to control twist. Note, however,
that lateral bracing systems that are attached only near the beam centroid are gener-
ally ineffective in controlling twist.
For beams subject to reverse-curvature bending, an unbraced inflection point cannot
be considered a braced point because twist can occur at that point (Ziemian, 2010).
If bracing is needed, lateral bracing provided near an inflection point must be
attached to both flanges to prevent twist; alternatively, torsional bracing can be pro-
vided. A lateral brace on one flange near the inflection point is ineffective.
The beam bracing requirements in this Section are based on the recommendations of
Yura (2001).
βi
r
b
n
P
L
=−





⎟4
2
21
2
n
n
−⎛





AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 505

16.1–506 BEAM BRACING [Comm. 6.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Lateral Bracing
For lateral bracing, the following stiffness requirement is derived following Winter’s
approach:
β
br=2NiCt(CbPf) Cd/φLb (C-A-6-5)
where
N
i=1.0 for relative bracing
=(4-2/n) for nodal bracing
C
t=1.0 for centroidal loading
=1 +(1.2/n) for top-flange loading
n=number of intermediate braces
P
f=beam compressive flange force, kips (N)

2
EIyc/Lb
2
Iyc=out-of-plane moment of inertia of the compression flange, in.
4
(mm
4
)
C
b=lateral-torsional buckling modification factor from Chapter F
C
d=double curvature factor (compression in both flanges)
=1 + (M
S/ML)
2
MS=smallest moment causing compression in either flange, kip-ft (N-mm)
M
L=largest moment causing compression in each flange, kip-ft (N-mm)
The C
dfactor varies between 1 and 2, and is applied only to the brace closest to the
inflection point. The term (2N
iCt) can be conservatively approximated as 10 for any
number of nodal braces and 4 for relative bracing, and (C
bPf) can be approximated
by M
r/ho, which simplifies Equation C-A-6-5 to the stiffness requirements given by
Equations A-6-6 and A-6-8. Equation C-A-6-5 can be used in lieu of Equations A-
6-6 and A-6-8.
The brace strength requirement for relative bracing is
P
rb=0.004M rCtCd/ho (C-A-6-6a)
and for nodal bracing
P
rb=0.01M rCtCd/h o (C-A-6-6b)
They are based on an assumed initial lateral displacement of the compression flange
of 0.002L
b. The brace strength requirements of Equations A-6-5 and A-6-7 are
derived from Equations C-A-6-6a and C-A-6-6b assuming top flange loading (C
t=
2). Equations C-A-6-6a and C-A-6-6b can be used in lieu of Equations A-6-5 and A-
6-7, respectively.
2. Torsional Bracing
Torsional bracing can either be attached continuously along the length of the beam
(for example, metal deck or slabs) or be located at discrete points along the length of
the member (for example, cross frames). With respect to the girder response, tor-
sional bracing attached to the tension flange is just as effective as a brace attached at
mid-depth or to the compression flange. Although the girder response is generally not
sensitive to the brace location, the position of the brace on the cross section does
have an effect on the stiffness of the brace itself. For example, a torsional brace
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 506

Comm. 6.3.] BEAM BRACING 16.1–507
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
attached on the bottom flange will often bend in single curvature (for example, with
a flexural stiffness of 2EI/L based on the brace properties), while a brace attached on
the top flange will often bend in reverse curvature (for example, with a flexural stiff-
ness of 6EI/Lbased on the brace properties). Partially restrained connections can be
used if their stiffness is considered in evaluating the torsional brace stiffness.
The torsional brace requirements are based on the buckling strength of a beam with
a continuous torsional brace along its length presented in Taylor and Ojalvo (1966)
and modified for cross section distortion in Yura (2001), as follows.
(C-A-6-7)
The term C
buMois the buckling strength of the beam without torsional bracing. C tt=
1.2 when there is top flange loading and C
tt=1.0 for centroidal loading. β
– T=nβT/L
is the continuous torsional brace stiffness per unit length or its equivalent when n
nodal braces, each with a stiffness β
T, are used along the span, L, and the 2 accounts
for initial out-of-straightness. Neglecting the unbraced beam buckling term gives a
conservative estimate of the torsional brace stiffness requirement (Equation A-6-11).
The strength requirements for beam torsional bracing were developed based upon an
assumed initial twist imperfection of θ
o=0.002L b/ho, where h ois equal to the depth
of the beam. Providing at least twice the ideal stiffness results in a brace force, M
rb
=βTθo. Using the formulation of Equation A-6-11 (without φ or Ω), the strength
requirement for the torsional bracing is
(C-A-6-8)
To obtain Equation A-6-9, the equation was simplified as follows:
(C-A-6-9)
The term M
r/hocan be approximated as the flange force, P f, and the term
L
b
2
/Cbπ
2
EIycan be represented as the reciprocal of twice the buckling strength of the
flange [1/(2P
f)]. Substituting for these terms and evaluating the constants results in
(C-A-6-10)
which is the expression given in Equation A-6-9.
Equations A-6-9 and A-6-12 give the strength and stiffness requirements for doubly
symmetric beams. For singly symmetric sections these equations will generally be
MM CM
CEI
Crcr buo
by T
tt≤= ( )+
2
2
2
β
M
LM
nEI C
L
hrb T o
r
yb
b
o=
=












βθ
24
500
2
2
.
M
LM
nEI C
L
h
Lrb
r
yb
b
o
b=












24
500
2
2
22
. π
π222
2
24
500
L
ML
nC L
M
h
b
r
bb
r
o






=












⎟⎟






L
CEI
b
by
2
2
π
M
ML
nC Lrb
r
bb=
0 024.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 507

16.1–508 BEAM BRACING [Comm. 6.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
conservative. Better estimates of the strength requirements for torsional bracing of
singly symmetric sections can be obtained with Equation C-A-6-8 by replacing I
y
with I effas given in the following expression:
(C-A-6-11)
where
t =distance from the neutral axis to the extreme tensile fibers, in. (mm)
c =distance from the neutral axis to the extreme compressive fibers, in.
(mm)
I
ycand I yt=respective moments of inertia of compression and tension flanges
about an axis through the web, in.
4
(mm
4
)
Good estimates of the stiffness requirements of torsional braces for singly symmet-
ric I-shaped beams may be obtained using Equation A-6-11 and replacing I
ywith I eff
given in Equation C-A-6-11.
The β
secterm in Equations A-6-10, A-6-12 and A-6-13 accounts for cross section dis-
tortion. A web stiffener at the brace point reduces cross-sectional distortion and
improves the effectiveness of a torsional brace. When a cross frame is attached near
both flanges or a diaphragm is approximately the same depth as the girder, then web
distortion will be insignificant so β
secequals infinity. The required bracing stiffness,
β
Tb, given by Equation A-6-10 was obtained by solving the following expression that
represents the brace system stiffness including distortion effects:
(C-A-6-12)
Parallel chord trusses with both chords extended to the end of the span and attached
to supports can be treated like beams. In Equations A-6-5 through A-6-9, M
umay be
taken as the maximum compressive chord force times the depth of the truss to deter-
mine the brace strength and stiffness requirements. Cross-section distortion effects,
β
sec, need not be considered when full-depth cross frames are used for bracing. When
either chord does not extend to the end of the span, consideration should be given to
control twist near the ends of the span by the use of cross frames or ties.
6.4. BEAM-COLUMN BRACING
The section on bracing for beam-columns was introduced in the 2010 edition. The
bracing requirements for compression and those for flexure are, in effect, super-
imposed to arrive at the requirements for beam-columns. This approach will tend
to be conservative and a more refined solution obtained by rational analysis may
be desirable.
111
ββ β
TTbsec
=+
II
t
c
Ieff yc yt=+






AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 508

16.1–509
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 7
ALTERNATIVE METHODS OF DESIGN
FOR STABILITY
The effective length method and first-order analysis method are addressed in this Appendix
as alternatives to the direct analysis method, which is presented in Chapter C. These alter-
native methods of design for stability can be used when the limits on their use as defined in
Appendix Sections 7.2.1 and 7.3.1, respectively, are satisfied.
Both methods in this Appendix utilize the nominal geometry and the nominal elastic stiff-
nesses (EI, EA) in the analysis. Accordingly, it is important to note that the sidesway
amplification (Δ
2nd-order/Δ1st-orderor B2) limits specified in Chapter C and Appendix 7 are
different. For the direct analysis method in Chapter C, the limit of 1.7 for certain require-
ments is based upon the use of reduced stiffnesses (EI* and EA*). For the effective length
method and first-order analysis method, the equivalent limit of 1.5 is based upon the use of
unreduced stiffnesses (EI and EA).
7.2. EFFECTIVE LENGTH METHOD
The effective length method (though it was not formally identified by this name) has
been used in various forms in the AISC Specification since 1961. The current provi-
sions are essentially the same as those in Chapter C of the 2005 Specification for
Structural Steel Buildings(AISC, 2005a), with the following exceptions:
These provisions, together with the use of a column effective length greater than the
actual length for calculating available strength in some cases, account for the effects
of initial out-of-plumbness and member stiffness reductions due to the spread of
plasticity. No stiffness reduction is required in the analysis.
The effective length, KL, for column buckling based upon elastic (or inelastic)
stability theory, or alternatively the equivalent elastic column buckling load, F
e=
π
2
EI/(KL)
2
, is used to calculate an axial compressive strength, P c, through an empir-
ical column curvethat accounts for geometric imperfections and distributed yielding
(including the effects of residual stresses). This column strength is then combined
with the flexural strength, M
c,and second-order member forces, P rand M r,in the
beam-column interaction equations.
Braced Frames
Braced frames are commonly idealized as vertically cantilevered pin-connected truss
systems, ignoring any secondary moments within the system. The effective length
factor, K, of components of the braced frame is normally taken as 1.0, unless a
smaller value is justified by structural analysis and the member and connection
design is consistent with this assumption. If connection fixity is modeled in the
analysis, the resulting member and connection moments must be accommodated in
the design.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 509

16.1–510 EFFECTIVE LENGTH METHOD [Comm. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
If K<1 is used for the calculation of P nin braced frames, the additional demands on
the stability bracing systems and the influence on the second-order moments in
beams providing restraint to the columns must be considered. The provisions in
Appendix 6 do not address the additional demands on bracing members from the use
of K <1. Generally, a rigorous second-order elastic analysis is necessary for calcu-
lation of the second-order moments in beams providing restraint to column members
designed based on K<1. Therefore, design using K =1 is recommended, except in
those special situations where the additional calculations are deemed justified.
Moment Frames
Moment frames rely primarily upon the flexural stiffness of the connected beams and
columns. Stiffness reductions due to shear deformations may require consideration
when bay sizes are small and/or members are deep.
When the effective length methodis used, the design of all beam-columns in moment
frames must be based on an effective length, KL, greater than the actual length, L,
except when specific exceptions based upon high structural stiffness are met. When
the sidesway amplification (Δ
2nd-order/Δ1st-orderor B2) is equal to or less than 1.1, the
frame design may be based on the use of K =1.0 for the columns. This simplifica-
tion for stiffer structures results in a 6% maximum error in the in-plane beam-column
strength checks of Chapter H (White and Hajjar, 1997a). When the sidesway ampli-
fication is larger, Kmust be calculated.
A wide range of methods has been suggested in the literature for the calculation
of K-factors (Kavanagh, 1962; Johnston, 1976; LeMessurier, 1977; ASCE Task
Committee on Effective Length, 1997; White and Hajjar, 1997b). These range from
simple idealizations of single columns as shown in Table C-A-7.1 to complex buck-
ling solutions for specific frames and loading conditions. In some types of frames,
K-factors are easily estimated or calculated, and are a convenient tool for stability
design. In other types of structures, the determination of accurate K-factors is deter-
mined by tedious hand procedures, and system stability may be assessed more
effectively with the direct analysis method.
The most common method for determining Kis through use of the alignment charts,
which are shown in Figure C-A-7.1 for frames with sidesway inhibited and Figure
C-A-7.2 for frames with sidesway uninhibited (Kavanagh, 1962). These charts are
based on assumptions of idealized conditions, which seldom exist in real structures,
as follows:
(1) Behavior is purely elastic.
(2) All members have constant cross section.
(3) All joints are rigid.
(4) For columns in frames with sidesway inhibited, rotations at opposite ends of the
restraining beams are equal in magnitude and opposite in direction, producing
single curvature bending.
(5) For columns in frames with sidesway uninhibited, rotations at opposite ends of
the restraining beams are equal in magnitude and direction, producing reverse
curvature bending.
(6) The stiffness parameter of all columns is equal.
LPEI/
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 510

(7) Joint restraint is distributed to the column above and below the joint in propor-
tion to EI/L for the two columns.
(8) All columns buckle simultaneously.
(9) No significant axial compression force exists in the girders.
The alignment chart for sidesway inhibited frames shown in Figure C-A-7.1 is based
on the following equation:
(C-A-7-1)
The alignment chart for sidesway uninhibited frames shown in Figure C-A-7.2 is
based on the following equation:
(C-A-7-2)
Comm. 7.2.] EFFECTIVE LENGTH METHOD 16.1–511
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Buckled shape of
column is shown by
dashed line
(a)

(b)

(c)

(d)

(e)

(f)

Theoretical K value 0.5 0.7 1.0 1.0 2.0 2.0
Recommended design value when ideal conditions are approximated
0.65 0.80 1.2 1.0 2.1 2.0
End condition code
























)a(























)b( )c(























)d( )e(























)f(























delkcuB
inmuloc
ldehsad























foepahs
ybnwohss
enil




























































































iteroehT
mmoceR
hweulav
noitidnoc
mixorppa
nocdnE























lacK eulav 5.0
giseddednem n
laedineh
erasn
detam
56.0
edocnoitid























7.0 0.1
08.0 2.1























0.1 0.2
0.1 1.2























0.2
0.2























nocdnE























edocnoitid





































































TABLE C-A-7.1
Approximate Values of Effective
Length Factor,
K
GG
K
GG K
KAB A B
42
1
2
2
π
π
π
/
/
tan /
ta()+
+⎛




⎟−
()






+nn/
/
π
π
2
10
K
K( )
()
−=
GG K
GG
K
KAB
ABππ
π
//
tan /()−
+
( )

()
()
=
2
36
6
0
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 511

16.1–512 EFFECTIVE LENGTH METHOD [Comm. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
(C-A-7-3)
The subscripts A and Brefer to the joints at the ends of the column being considered.
The symbol Σ indicates a summation of all members rigidly connected to that joint
and located in the plane in which buckling of the column is being considered. E
cis
the elastic modulus of the column, I
cis the moment of inertia of the column, and L c
is the unsupported length of the column. E gis the elastic modulus of the girder, I gis
the moment of inertia of the girder, and L
gis the unsupported length of the girder or
other restraining member. I
cand I gare taken about axes perpendicular to the plane of
buckling being considered. The alignment charts are valid for different materials if
an appropriate effective rigidity, EI, is used in the calculation of G.
It is important to remember that the alignment charts are based on the assumptions
of idealized conditions previously discussed and that these conditions seldom exist
in real structures. Therefore, adjustments are often required, such as:
Fig. C-A-7.1. Alignment chart—sidesway inhibited (braced frame).
G
EI L
EI L
EI L
EI L
cc c
gg g
c
g
=
( )
( )
=
( )
( )
Σ
Σ
Σ
Σ
/
/
/
/
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 512

Comm. 7.2.] EFFECTIVE LENGTH METHOD 16.1–513
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Adjustments for Columns With Differing End Conditions.For column ends supported
by, but not rigidly connected to, a footing or foundation, Gis theoretically infinity
but unless designed as a true friction-free pin, may be taken as 10 for practical
designs. If the column end is rigidly attached to a properly designed footing, Gmay
be taken as 1.0. Smaller values may be used if justified by analysis.
Adjustments for Girders With Differing End Conditions.For sidesway inhibited
frames, these adjustments for different girder end conditions may be made:
(a) If the far end of a girder is fixed, multiply the (EI/L)
gof the member by 2.
(b) If the far end of the girder is pinned, multiply the (EI/L )
gof the member by 1
1
/2.
For sidesway uninhibited frames and girders with different boundary conditions, the
modified girder length, L′
g, should be used in place of the actual girder length, where
L′
g=Lg(2 πM F/MN) (C-A-7-4)
M
Fis the far end girder moment and M Nis the near end girder moment from a first-
order lateral analysis of the frame. The ratio of the two moments is positive if the
girder is in reverse curvature. If M
F/MNis more than 2.0, then L′ gbecomes negative,
Fig. C-A-7.2. Alignment chart sidesway—uninhibited (moment frame).
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 513

16.1–514 EFFECTIVE LENGTH METHOD [Comm. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
in which case Gis negative and the alignment chart equation must be used. For side-
sway uninhibited frames, the following adjustments for different girder end
conditions may be made:
(a) If the far end of a girder is fixed, multiply the (EI/L)
gof the member by
2
/3.
(b) If the far end of the girder is pinned, multiply the (EI/L) gof the member by
1
/2.
Adjustments for Girders with Significant Axial Load.For both sidesway conditions,
multiply the (EI/L)
gby the factor (1–Q/Q cr), where Q is the axial load in the girder
and Q
cris the in-plane buckling load of the girder based on K =1.0.
Adjustments for Column Inelasticity.For both sidesway conditions, replace (E
cIc)
with τ
b(EcIc) for all columns in the expression for G Aand G B.
Adjustments for Connection Flexibility.One important assumption in the develop-
ment of the alignment charts is that all beam-column connections are fully restrained
(FR connections). As seen above, when the far end of a beam does not have an FR
connection that behaves as assumed, an adjustment must be made. When a beam con-
nection at the column under consideration is a shear-only connection, that is, there is
no moment, then that beam cannot participate in the restraint of the column and it
cannot be considered in the Σ(EI/L)
gterm of the equation for G. Only FR connec-
tions can be used directly in the determination of G. PR connections with a
documented moment-rotation response can be utilized, but the (EI/L)
gof each beam
must be adjusted to account for the connection flexibility. The ASCE Task
Committee on Effective Length (1997) provides a detailed discussion of frame sta-
bility with PR connections.
Combined Systems
When combined systems are used, all the systems must be included in the structural
analysis. Consideration must be given to the variation in stiffness inherent in con-
crete or masonry shear walls due to various degrees to which these elements may
experience cracking. This applies to load combinations for serviceability as well as
strength. It is prudent for the designer to consider a range of possible stiffnesses, as
well as the effects of shrinkage, creep and load history, in order to envelope the likely
behavior and provide sufficient strength in all interconnecting elements between sys-
tems. Following the analysis, the available strength of compression members in
moment frames must be assessed with effective lengths calculated as required for
moment frame systems; other compression members may be assessed using K=1.0.
Leaning Columns and Distribution of Sidesway Instability Effects
Columns in gravity framing systems can be designed as pin-ended columns with
K=1.0. However, the destabilizing effects (P-Δeffects) of the gravity loads on all
such columns, and the load transfer from these columns to the lateral-load-resisting
system, must be accounted for in the design of the lateral-load-resisting system.
It is important to recognize that sidesway instability of a building is a story phenom-
enon involving the sum of the sway resistances of all the lateral load-resisting
elements in the story and the sum of the factored gravity loads in the columns in that
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 514

Comm. 7.2.] EFFECTIVE LENGTH METHOD 16.1–515
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
story. No individual column in a story can buckle in a sidesway mode without the
entire story buckling.
If every column in a story is part of a moment frame and each column is designed
to support its own axial load, Pand P-Δmoment such that the contribution of each
column to the lateral stiffness or to the story buckling load is proportional to the
axial load supported by the column, all the columns will buckle simultaneously.
Under this idealized condition, there is no interaction among the columns in the
story; column sway instability and frame instability occur at the same time. Typical
framing, however, does not meet this idealized condition, and real systems redistrib-
ute the story P-Δeffects to the lateral load-resisting elements in that story in
proportion to their stiffnesses. This redistribution can be accomplished using such
elements as floor diaphragms or horizontal trusses.
In a building that contains columns that contribute little or nothing to the sway stiff-
ness of the story, such columns are referred to as leaning columns. These columns
can be designed using K=1.0, but the lateral load-resisting elements in the story
must be designed to support the destabilizing P-Δeffects developed from the loads
on these leaning columns. The redistribution of P-Δeffects among columns must be
considered in the determination of Kand F
efor all the columns in the story for the
design of moment frames. The proper K-factor for calculation of P
cin moment
frames, accounting for these effects, is denoted in the following by the symbol K
2.
Effective Length for Story Stability
Two approaches for evaluating story stability are recognized: the story stiffness
approach (LeMessurier, 1976, 1977) and the story buckling approach (Yura, 1971).
Additionally, a simplified approach proposed by LeMessurier is also discussed.
The column effective length factor associated with lateral story buckling is expressed
as K
2in the following discussions. The value of K 2determined from Equation C-A-
7-5 or Equation C-A-7-8 may be used directly in the equations of Chapter E.
However, it is important to note that this equation is not appropriate for use when cal-
culating the story buckling mode as the summation of π
2
EI/(K 2L)
2
. Also, note that
the value of P
ccalculated using K 2by either method cannot be taken greater than the
value of P
cdetermined based on sidesway-inhibited buckling.
Story Stiffness Approach.For the story stiffness approach, K
2 is defined as
(C-A-7-5)
It is possible that certain columns, having only a small contribution to the lateral load
resistance in the overall frame, will have a K
2value less than 1.0 based on the term
to the left of the inequality. The limit on the right-hand side is a minimum value for
K
2that accounts for the interaction between sidesway and non-sidesway buckling
(ASCE Task Committee on Effective Length, 1997; White and Hajjar, 1997b). The
term H is the shear in the column under consideration, produced by the lateral forces
used to compute Δ
H.
K
P
RP
EI
L HL
r
Lr
H
2
2
2
2
085 015
=
+( )











⎟≥
ΣΔ
Σ..
ππEEI
L HL H
2
17
Δ
.






AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 515

16.1–516 EFFECTIVE LENGTH METHOD [Comm. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Equation C-A-7-5 can be reformulated to obtain the column buckling load, P e2, as
(C-A-7-6)
R
Lis the ratio of the vertical column load for all leaning columns in the story to the
vertical load of all the columns in the story:
(C-A-7-7)
The purpose of R
Lis to account for the influence of P-δ effects on the sidesway stiff-
ness of the columns in a story. ΣP
rin Equations C-A-7-5 and C-A-7-6 includes all
columns in the story, including any leaning columns, and P
ris for the column under
consideration. The column buckling load, P
e2, calculated from Equation C-A-7-6
may be larger than π
2
EI/L
2
but may not be larger than the limit on the righthand side
of this equation.
The story stiffness approach is the basis for the B
2calculation (for P-Δ effects) in
Appendix 8. In Equation A-8-7 in Appendix 8, the buckling load for the story is
expressed in terms of the story drift ratio, Δ
H/L,from a first-order lateral load analy-
sis at a given applied lateral load level. In preliminary design, Δ
H/Lmay be taken in
terms of a target maximum value for this drift ratio. This approach focuses the engi-
neer’s attention on the most fundamental stability requirement in building frames:
providing adequate overall story stiffness in relation to the total vertical load, αΣP
r,
supported by the story. The elastic story stiffness expressed in terms of the drift ratio
and the total horizontal load acting on the story is H/(Δ
H/L).
Story Buckling Approach. For the story buckling approach, K
2 is defined as
(C-A-7-8)
where K
n2is defined as the value of K determined directly from the alignment chart
in Figure C-A-7.2.
The value of K
2calculated from the above equation may be less than 1.0. The limit
on the righthand side is a minimum value for K
2 that accounts for the interaction
between sidesway and non-sidesway buckling (ASCE Task Committee on Effective
Length, 1997; White and Hajjar, 1997b; Geschwindner, 2002; AISC-SSRC, 2003a).
Other approaches to calculating K
2are given in previous editions of this
Commentary and the foregoing references.
Equation C-A-7-8 can be reformulated to obtain the column buckling load, P
e2, as
(C-A-7-9)
K
EI
L
P
P
EI
KL
K
r
r
n
n2
2
2
2
2
2
2
5
8
=
( )













π
π
Σ
Σ
P
P
P
EI
KL
EI
KLe
r
r
n n
2
2
2
2
2
2
2
16=






( )

( )Σ
Σ
ππ
.
R
P
PL
r leaning columns
r all columns=
Σ
Σ


P
HL P
P
RHLe
H
r
r
LH2 085 015 17=






+( )≤
Σ
ΔΣ
Δ.. ./
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 516

Comm. 7.2.] EFFECTIVE LENGTH METHOD 16.1–517
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ΣPr in Equations C-A-7-8 and C-A-7-9 includes all columns in the story, including
any leaning columns, and P
ris for the column under consideration. The column
buckling load, P
e2, calculated from Equation C-A-7-9 may be larger than π
2
EI/L
2
but
may not be larger than the limit on the righthand side of this equation.
LeMessurier Approach:Another simple approach for the determination of K
2
(LeMessurier, 1995), based only on the column end moments, is:
(C-A-7-10)
In this equation, M
1and M 2are the smaller and larger end moments, respectively, in
the column. These moments are determined from a first-order analysis of the frame
under lateral load. Column inelasticity is considered in the derivation of this equa-
tion. The unconservative error in P
c using the above equation is less than 3%, as long
as the following inequality is satisfied:
(C-A-7-11)
Some Conclusions Regarding K
Column design using K-factors can be tedious and confusing for complex building
structures containing leaning columns and/or combined framing systems, particu-
larly where column inelasticity is considered. This confusion can be avoided if the
direct analysis method of Chapter C is used, where P
cis always based on K =1.0.
Also, the first-order analysis method of Appendix 7, Section 7.3 is based on the
direct analysis method, and hence also uses K =1.0 in the determination of P
c.
Furthermore, under certain circumstances where Δ
2nd-order/Δ1st-orderor B2is suffi-
ciently low, K=1.0 may be assumed in the effective length method as specified in
Appendix 7, Section 7.2.3(b).
Comparison of the Effective Length Method and the Direct Analysis Method
Figure C-C2.5(a) shows a plot of the in-plane interaction equation for the effective
length method, where the anchor point on the vertical axis, P
nKL, is determined using
an effective length, KL. Also shown in this plot is the same interaction equation with
the first term based on the yield load, P
y. For W-shapes, this in-plane beam-column
interaction equation is a reasonable estimate of the internal force state associated
with full cross-section plastification.
The Pversus Mresponse of a typical member, obtained from second-order spread-
of-plasticity analysis and labeled “actual response,” indicates the maximum axial
force, P
r, that the member can sustain prior to the onset of instability. The load-
deflection response from a second-order elastic analysis using the nominal geometry
and elastic stiffness, as conducted with the effective length method, is also shown.
The “actual response” curve has larger moments than the above second-order elastic
curve due to the combined effects of distributed yielding and geometric imperfec-
tions, which are not included in the second-order elastic analysis.
K
M
M
P
r leaning colum
2
1
2
4
11 1
5
6
=+−














+
Σ

nns
r nonleaning columns

Σ
ΣΔ
ΣP
HL
Py nonleaning columns
H
r all colum
/






nns
r nonleaning columns







≤045.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 517

16.1–518 EFFECTIVE LENGTH METHOD [Comm. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
In the effective length method, the intersection of the second-order elastic analysis
curve with theP
nKLinteraction curve determines the member strength. The plot in
Figure C-C2.5(a) shows that the effective length method is calibrated to give a result-
ant axial strength, P
c, consistent with the actual response. For slender columns, the
calculation of the effective length, KL, (and P
nKL) is critical to achieving an accurate
solution when using the effective length method.
One consequence of the procedure is that it underestimates the actual internal
moments under the factored loads, as shown in Figure C-C2.5(a). This is inconse-
quential for the beam-column in-plane strength check since P
nKLreduces the
effective strength in the correct proportion. However, the reduced moment can
affect the design of the beams and connections, which provide rotational restraint to
the column. This is of greatest concern when the calculated moments are small and
axial loads are large, such that P-Δmoments induced by column out-of-plumbness
can be significant.
The important difference between the direct analysis method and the effective length
method is that where the former uses reduced stiffness in the analysis and
K= 1.0 in the beam-column strength check, the latter uses nominal stiffness in the
analysis and K from a sidesway buckling analysis in the beam-column strength
check. The direct analysis method can be more sensitive to the accuracy of the sec-
ond-order elastic analysis since analysis at reduced stiffness increases the magnitude
of second-order effects. However, this difference is important only at high sidesway
amplification levels; at those levels the accuracy of the calculation of Kfor the effec-
tive length method also becomes important.
7.3. FIRST-ORDER ANALYSIS METHOD
This section provides a method for designing frames using a first-order elastic
analysis with K =1.0, provided the limitations in Appendix 7, Section 7.3.1 are sat-
isfied. This method is derived from the direct analysis method by mathematical
manipulation (Kuchenbecker et al., 2004) so that the second-order internal forces
and moments are determined directly as part of the first-order analysis. It is based
upon a target maximum drift ratio, Δ/L, and assumptions, including:
(1) The sidesway amplification Δ
2nd order/Δ1st order(orB 2) is assumed equal to 1.5.
(2) The initial out-of-plumbness in the structure is assumed as Δ
o/L=1/500, but the
initial out-of-plumbness does not need to be considered in the calculation of Δ.
The first-order analysis is performed using the nominal (unreduced) stiffness; stiff-
ness reduction is accounted for solely within the calculation of the amplification
factors. The nonsway amplification of beam-column moments is addressed within
the procedure specified in this Section by applying the B
1amplifier of Appendix 8,
Section 8.2.1 conservatively to the total member moments. In many cases involving
beam-columns not subject to transverse loading between supports in the plane of
bending, B
1=1.0.
The target maximum drift ratio, corresponding to drifts under either the LRFD
strength load combinations or 1.6 times the ASD strength load combinations, can
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 518

Comm. 7.3.] FIRST-ORDER ANALYSIS METHOD 16.1–519
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
be assumed at the start of design to determine the additional lateral load, N i. As
long as that drift ratio is not exceeded at any strength load level, the design will be
conservative.
Kuchenbecker et al. (2004) present a general form of this method. If the above
approach is employed, it can be shown that for B
2≤1.5 and τ b=1.0 the required
additional lateral load to be applied with other lateral loads in a first-order analysis
of the structure, using the nominal (unreduced) stiffness, is:
(C-A-7-12)
where these variables are as defined in Chapter C, Appendix 7 and Appendix 8.Note
that if B
2(based on the unreduced stiffness) is set to the 1.5 limit prescribed in
Chapter C, then,
(C-A-7-13)
This is the additional lateral load required in Appendix 7, Section 7.3.2. The mini-
mum value of N
iof 0.0042Y iis based on the assumption of a minimum first-order
drift ratio due to any effects of Δ /L =1/500.
N
B
BL
Y
B
B
Yii i=















2
2
2
2
102 102
0 002
..
.
Δ
N
L
YYiii=





⎟≥2 1 0 0042..α
Δ
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 519

16.1–520
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 8
APPROXIMATE SECOND-ORDER ANALYSIS
Section C2.1(2) states that a second-order analysis that captures both P-Δand P-δeffects is
required. As an alternative to a rigorous second-order analysis, the amplification of first-
order analysis forces and moments by the approximate procedure in this Appendix is
permitted. The main approximation in this technique is that it evaluates P-Δand P-δeffects
separately, through separate multipliers B
2and B 1, respectively, considering the influence of
P-δeffects on the overall response of the structure (which, in turn, influences P-Δ) only
indirectly, through the factor R
M. A rigorous second-order elastic analysis is recommended
for accurate determination of the frame internal forces when B
1is larger than 1.2 in mem-
bers that have a significant effect on the response of the overall structure.
This procedure uses a first-order elastic analysis with amplification factors that are applied
to the first-order forces and moments so as to obtain an estimate of the second-order forces
and moments. In the general case, a member may have first-order load effects not associ-
ated with sideswaythat are multiplied by a factor B
1, and first-order load effects produced
by sidesway that are multiplied by a factor B
2. The factor B 1 estimates the P-δeffects on the
nonsway moments in compression members. The factor B
2estimates the P-Δeffects on the
forces and moments in all members. These effects are shown graphically in Figures C-C2.1
and C-A-8.1.
The factor B
2applies only to internal forces associated with sidesway and is calculated for
an entire story. In building frames designed to limit Δ
H/L to a predetermined value, the fac-
tor B
2 may be found in advance of designing individual members by using the target
Fig. C-A-8.1. Moment amplification.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 520

Comm. 8.] APPROXIMATE SECOND-ORDER ANALYSIS 16.1–521
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
maximum limit on Δ H/Lwithin Equation A-8-7. Drift limits may also be set for design of
various categories of buildings so that the effect of secondary bending is reduced (ATC,
1978; Kanchanalai and Lu, 1979). However, drift limits alone are not sufficient to allow sta-
bility effects to be neglected (LeMessurier, 1977).
In determining B
2and the second-order effects on the lateral load resisting system, it is
important that Δ
H include not only the interstory displacement in the plane of the lateral load
resisting system, but also any additional displacement in the floor or roof diaphragm or hor-
izontal framing system that may increase the overturning effect of columns attached to and
“leaning” against the horizontal system. Either the maximum displacement or a weighted
average displacement, weighted in proportion to column load, should be considered.
The current Specification provides only one equation (Equation A-8-7) for determining the
elastic bucking strength of a story; this formula is based on the lateral stiffness of the story
as determined from a first-order analysis and is applicable to all buildings. The 2005 AISC
Specification for Structural Steel Buildings(AISC, 2005a) offered a second formula
(Equation C2-6a in that edition), based on the lateral buckling strength of individual
columns, applicable only to buildings in which lateral stiffness is provided entirely by
moment frames. That equation is:
(C-A-8-1)
where
ΣP
e2=elastic buckling strength of the story, kips (N)
L=story height, in. (mm)
K
2=effective length factor in the plane of bending, calculated from a sidesway buck-
linganalysis
This equation for the story elastic buckling strength was eliminated from the 2010
Specification because of its limited applicability, the difficulty involved in calculating
K
2correctly, and the greater ease of application of the story stiffness-based formula.
Additionally, with the deletion of this equation, the symbol ΣP
e2was changed to P estory
since the story buckling strength is not the summation of the strengths of individual
columns, as implied by the earlier symbol.
First-order member forces and moments with the structure restrained against sidesway are
labeled P
ntand M nt; the first-order effects of lateral translation are labeled P ltand M lt. For
structures where gravity load causes negligible lateral translation, P
ntand M ntare the effects
of gravity load and P
ltand M ltare the effects of lateral load. In the general case, P ntand M nt
are the results of an analysis with the structure restrained against sidesway; P ltand M ltare
from an analysis with the lateral reactions from the first analysis (as used to find P
ntand M nt)
applied as lateral loads. Algebraic addition of the two sets of forces and moments after appli-
cation of multipliers B
1and B 2as specified in Equations A-8-1 and A-8-2 gives reasonably
accurate values of the overall second-order forces and moments.
The B
2multiplier is applicable to forces and moments P ltand M ltin all members (includ-
ing beams, columns, bracing diagonals and shear walls) that participate in resisting lateral
load. P
ltand M ltwill be zero in members that do not participate in resisting lateral load;
ΣΣP
EI
KLe2
2
2
2=
()
π
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 521

16.1–522 APPROXIMATE SECOND-ORDER ANALYSIS [Comm. 8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
hence B 2will have no effect on them. The B 1multiplier is applicable only to compression
members.
If B
2for a particular direction of translation does not vary significantly among the stories of
a building, it will be convenient to use the maximum value for all stories, leading to just two
B
2values, one for each direction, for the entire building. Where B 2does vary significantly
between stories, the multiplier for beams between stories should be the larger value.
When first-order end moments in columns are magnified by B
1and B 2factors, equilibrium
requires that they be balanced by moments in the beams that connect to them (for example,
see Figure C-A-8.1). The B
2multiplier does not cause any difficulty in this regard, since it
is applied to all members. The B
1multiplier, however, is applied only to compression mem-
bers; the associated second-order internal moments in the connected members can be
accounted for by amplifying the moments in those members by the B
1value of the com-
pression member (using the largest B
1value if there are two or more compression members
at the joint). Alternatively, the difference between the magnified moment (considering B
1
only) and the first-order moment in the compression member(s) at a given joint may be dis-
tributed to any other moment-resisting members attached to the compression member (or
members) in proportion to the relative stiffness of those members. Minor imbalances may
be neglected, based upon engineering judgment. Complex conditions may be treated more
expediently with a rigorous second-order analysis.
In braced frames and moment frames, P
cis governed by the maximum slenderness ratio
regardless of the plane of bending, if the member is subject to significant biaxial bending,
or the provisions in Section H1.3 are not utilized. Section H1.3 is an alternative approach
for checking beam-column strength that provides for the separate checking of beam-column
in-plane and out-of-plane stability in members predominantly subject to bending within the
plane of the frame. However, P
e1 expressed by Equation A-8-5 is always calculated using
the slenderness ratio in the plane of bending. Thus, when flexure in a beam-column is about
the strong axis only, two different values of slenderness ratio may be involved in the ampli-
fied first-order elastic analysis and strength check calculations.
The factor R
Min Equation A-8-7 accounts for the influence of P-δ effects on sidesway
amplification. R
Mcan be taken as 0.85 as a lower bound value for stories that include
moment frames (LeMessurier, 1977); R
M=1 if there are no moment frames in the story.
Equation A-8-8 can be used for greater precision between these extreme values.
Second-order internal forces from separate structural analyses cannot normally be combined
by superposition since second-order amplification is a nonlinear effect based on the total
axial forces within the structure; therefore, a separate analysis must be conducted for each
load combination considered in the design. However, in the amplified first-order elastic
analysis procedure of Appendix 8, the first-order internal forces, calculated prior to ampli-
fication may be superimposed to determine the total first-order internal forces.
Coefficient C
mand Effective Length Factor K
Equations A-8-3 and A-8-4 are used to approximate the maximum second-order moments
in compression members with no relative joint translation and no transverse loads between
the ends of the member. Figure C-A-8.2 compares the approximation for C
min Equation
A-8-4 to the exact theoretical solution for beam-columns subjected to applied end moments
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 522

Comm. 8.] APPROXIMATE SECOND-ORDER ANALYSIS 16.1–523
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(Chen and Lui, 1987). The approximate and analytical values of C mare plotted versus the
end-moment ratio M
1/M2for several values of P/P e (Pe=Pe1with K=1). The correspon-
ding approximate and analytical solutions are shown in Figure C-A-8.3 for the maximum
second-order elastic moment within the member, M
r, versus the axial load level, P/P e, for
several values of the end moment ratio, M
1/M2.
For beam-columns with transverse loadings, the second-order moment can be approxi-
mated for simply supported members with
(C-A-8-2)
where
ψ (C-A-8-3)
δ
o=maximum deflection due to transverse loading, in. (mm)
M
o=maximum first-order moment within the member due to the transverse loading, kip-
in. (N-mm)
α=1.0 (LRFD) or 1.6 (ASD)
For restrained ends, some limiting cases are given in Table C-A-8.1 together with two
cases of simply supported beam-columns (Iwankiw, 1984). These values of C
mare always
Fig. C-A-8.2. Equivalent moment factor, C m, for beam-columns
subjected to applied end moments.
=−
πδ
2
2
1
o
oEI
ML
C
P
Pm
r
e=+






1
1
Ψ
α
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 523

16.1–524 APPROXIMATE SECOND-ORDER ANALYSIS [Comm. 8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
used with the maximum moment in the member. For the restrained-end cases, the values of
B
1are most accurate if values of K<1.0, corresponding to the member end conditions, are
used in calculating P
e1.
In lieu of using the equations above, the use of C
m=1.0 is conservative for all transversely
loaded members. It can be shown that the use of C
m=0.85 for members with restrained ends,
specified in previous Specifications, can sometimes result in a significant underestimation of
the internal moments. Therefore, the use of C
m=1.0 is recommended as a simple conserva-
tive approximation for all cases involving transversely loaded members.
In second-order analysis by amplification of the results of first-order analysis, the effective
length factor, K, is used in the determination of the elastic critical buckling load, P
e1, for a
member. This elastic critical buckling load is then used for calculation of the corresponding
amplification factor B
1.
B
1is used to estimate the P-δ effects on the nonsway moments, M nt, in compression mem-
bers. K
1is calculated in the plane of bending on the basis of no translation of the ends of
the member and is normally set to 1.0, unless a smaller value is justified on the basis of
analysis.
Fig. C-A-8.3. Maximum second-order moments, M r, for beam-columns
subjected to applied end moments.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 524

Case π Cm
01 .0
π0.4
π0.4
π0.2
π0.3
π0.2
Comm. 8.] APPROXIMATE SECOND-ORDER ANALYSIS 16.1–525
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-A-8.1
Amplification Factors ψand
Cm
10.4−
αP
P
r
e1
10.4−
αP
P
r
e1
10.2−
αP
P
r
e1
10.3−
αP
P
r
e1
10.2−
αP
P
r
e1
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 525

16.1–526 APPROXIMATE SECOND-ORDER ANALYSIS [Comm. 8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Since the amplified first-order elastic analysis involves the calculation of elastic buckling
loads as a measure of frame and column stiffness, only elastic K factors are appropriate for
this use.
Summary—Application of Multipliers B
1and B2
There is a single B 2value for each story and each direction of lateral translation of the
story, say B
2Xand B 2Yfor the two global directions. Multiplier B 2Xis applicable to all axial
and shear forces and moments produced by story translation in the global Xdirection. Thus,
in the common case where gravity load produces no lateral translation and all Xtranslation
is the result of lateral load in the X direction, B
2Xis applicable to all axial forces and
moments produced by lateral load in the global Xdirection. Similarly, B
2Yis applicable in
the Ydirection.
Note that B
2Xand B 2Yare associated with global axes Xand Yand the direction of story
translation or loading, but are completely unrelated to the direction of bending of individual
members. Thus, for example, if lateral load or translation in the global Xdirection causes
moments M
xand M yabout member axes xand yin a particular member, B 2Xmust be applied
to both M
xand M y.
There is a separate B
1value for every member subject to compression and flexure
and each direction of bending of the member, say B
1xand B 1yfor the two member axes.
Multiplier B
1xis applicable to the member x-axis moment, regardless of the load that causes
that moment. Similarly, B
1yis applicable to the member y-axis moment, regardless of the
load that causes that moment.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 526

16.1–527
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
REFERENCES
AASHTO (2002), Standard Specifications for Highway Bridges, 17th Ed., American
Association of State Highway and Transportation Officials, Washington, DC.
AASHTO (2010),LRFD Bridge Design Specifications, 5th Ed., American Association of
State Highway and Transportation Officials, Washington, DC.
ACI (1997), Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,
ACI 209R-92, American Concrete Institute, Farmington Hills, MI.
ACI (2001), Code Requirements for Nuclear Safety Related Concrete Structures, ACI 349-
01, American Concrete Institute, Farmington Hills, MI.
ACI (2002), Building Code Requirements for Structural Concrete , ACI 318-02 and ACI
318M-02, American Concrete Institute, Farmington Hills, MI.
ACI (2005), Specification for Structural Concrete , ACI 301-05, American Concrete
Institute, Farmington Hills, MI.
ACI (2006), Specifications for Tolerances for Concrete Construction and Materials, ACI
117-06, American Concrete Institute, Farmington Hills, MI.
ACI (2008), Building Code Requirements for Structural Concrete , ACI 318-08 and ACI
318M-08, American Concrete Institute, Farmington Hills, MI.
AISC (1969), Specification for the Design, Fabrication, and Erection of Structural Steel for
Buildings, American Institute of Steel Construction, Chicago, IL.
AISC (1973), “Commentary on Highly Restrained Welded Connections,” Engineering
Journal, American Institute of Steel Construction, Vol. 10, No. 3, 3rd Quarter, pp. 61–73.
AISC (1975), Australian Standard AS1250 , Australian Institute of Steel Construction,
Sydney, Australia.
AISC (1978), Specification for the Design, Fabrication, and Erection of Structural Steel for
Buildings, American Institute of Steel Construction, Chicago, IL.
AISC (1986), Load and Resistance Factor Design Specification for Structural Steel
Buildings, American Institute of Steel Construction, Chicago, IL.
AISC (1989), Specification for Structural Steel Buildings—Allowable Stress Design and
Plastic Design, American Institute of Steel Construction, Chicago, IL.
AISC (1993), Load and Resistance Factor Design Specification for Structural Steel
Buildings, American Institute of Steel Construction, Chicago, IL.
AISC (1997a), A Guide to Engineering and Quality Criteria for Steel Structures, American
Institute of Steel Construction, Chicago, IL.
AISC (1997b), “AISC Advisory Statement on Mechanical Properties Near the Fillet of
Wide Flange Shapes and Interim Recommendations, January 10, 1997,” Modern Steel
Construction, American Institute of Steel Construction, Chicago, IL, February, p. 18.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 527

16.1–528 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC (2000a), Specification for the Design of Steel Hollow Structural Sections, American
Institute of Steel Construction, Chicago, IL.
AISC (2000b), Load and Resistance Factor Design Specification for Structural Steel Buildings,
December 27, 1999, American Institute of Steel Construction, Chicago, IL.
AISC (2005a), Specification for Structural Steel Buildings, ANSI/AISC 360-05, American
Institute of Steel Construction, Chicago, IL.
AISC (2005b), Steel Construction Manual, 13th Ed., American Institute of Steel Construction,
Chicago, IL.
AISC (2005c), Design Examples, V13.1, www.aisc.org.
AISC (2006a), Seismic Design Manual, American Institute of Steel Construction, Chicago, IL.
AISC (2006b), Standard for Steel Building Structures , AISC 201-06, Certification Program
for Structural Steel Fabricators, American Institute of Steel Construction, Chicago, IL.
AISC (2010a),Code of Standard Practice for Steel Buildings and Bridges,AISC 303-
10, American Institute of Steel Construction, Chicago, IL.
AISC (2010b), Seismic Provisions for Structural Buildings, American Institute of Steel
Construction, Chicago, IL.
AISC-SSRC (2003a), “Basic Design for Stability: Lecture 3—Frame Stability—Alignment
Charts and Modifications,” American Institute of Steel Construction and Structural
Stability Research Council, Chicago, IL.
AISC-SSRC (2003b), “Background and Illustrative Examples on Proposed Direct Analysis
Method for Stability Design of Moment Frames,” Technical White Paper, AISC Technical
Committee 10, AISC-SSRC Ad Hoc Committee on Frame Stability, American Institute of
Steel Construction, Chicago, IL.
AISI (1969), Specification for the Design of Cold-Formed Steel Structural Members,
American Iron and Steel Institute, Washington, DC.
AISI (1970), “Interior Corrosion of Structural Steel Closed Sections,” Bulletin 18, February,
American Iron and Steel Institute, Washington, DC.
AISI (1979), Fire-Safe Structural Design A Design Guide, American Iron and Steel
Institute, Washington, DC.
AISI (2001), North American Specification for the Design of Cold-Formed Steel Structural
Members, American Iron and Steel Institute, Washington, DC.
AISI (2007), North American Specification for the Design of Cold-Formed Steel Structural
Members, ANSI/AISI Standard S100 2007, Washington, DC.
Allan, R.N. and Fisher, J.W. (1968), “Bolted Joints with Oversize and Slotted Holes,”
Journal of the Structural Division, ASCE, Vol. 94, No. ST9, September, pp. 2061–2080.
Amrine, J.J. and Swanson, J.A. (2004), “Effects of Variable Pretension on Bolted Connection
Behavior,” Engineering Journal, AISC, Vol. 41, No. 3, 3rd Quarter, pp. 107–116.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 528

REFERENCES 16.1–529
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ang, A.H-S. and Tang, H.T. (1984), Probability Concepts in Engineering Planning and
Design, Vol.II: Decision, Risk and Reliability, John Wiley & Sons Inc., New York, NY.
Ang, K.M. and Morris, G.A. (1984), “Analysis of Three-Dimensional Frames with Flexible
Beam-Column Connections,” Canadian Journal of Civil Engineering, Vol. 11, No. 2,
pp. 245–254.
API (1993), Recommended Practice for Planning, Designing and Constructing Fixed Offshore
Platforms—Load and Resistance Factor Design, 1st Ed., American Petroleum Institute,
Washington, DC, July.
ASCE (1971), Plastic Design in Steel, A Guide and a Commentary , ASCE Manuals and
Reports on Engineering Practice No. 41, American Society of Civil Engineers, New York,
NY.
ASCE (1979), Structural Design of Tall Steel Buildings, American Society of Civil Engineers,
New York, NY.
ASCE (1981), “Planning and Environmental Criteria for Tall Buildings, A Monograph on
Planning and Design of Tall Buildings,” Vol. PC, Chapter PC-13, American Society of
Civil Engineers, New York, NY.
ASCE (1999),Specification for Structural Steel Beams with Web Openings, ASCE/SEI 23-
97, American Society of Civil Engineers, Reston, VA.
ASCE (2000), Design of Latticed Steel Transmission Structures , ASCE 10-97, American
Society of Civil Engineers, Reston, VA.
ASCE (2003), Seismic Evaluation of Existing Buildings, ASCE/SEI 31-03, American Society
of Civil Engineers, Reston, VA.
ASCE (2005a), Standard Calculation Methods for Structural Fire Protection, ASCE/SEI/
SFPE 29-05, American Society of Civil Engineers, Reston, VA.
ASCE (2005b), Minimum Design Loads for Buildings and Other Structures , ASCE/SEI
7-05, American Society of Civil Engineers, Reston, VA.
ASCE (2006), Seismic Rehabilitation of Existing Buildings, ASCE/SEI 41-06, American
Society of Civil Engineers, Reston, VA.
ASCE (2010), Minimum Design Loads for Buildings and Other Structures , ASCE/SEI 7-10,
American Society of Civil Engineers, Reston, VA.
ASCE Task Committee on Design Criteria for Composite Structures in Steel and
Concrete (1992a), “Proposed Specification for Structural Steel Beams with Web
Openings,” Journal of Structural Engineering, ASCE, Vol. 118, No. ST12, December,
pp. 3,315–3,324.
ASCE Task Committee on Design Criteria for Composite Structures in Steel and Concrete
(1992b), “Commentary on Proposed Specification for Structural Steel Beams with Web
Openings,” Journal of Structural Engineering, ASCE, Vol. 118, No. ST12, December, pp.
3,325–3,349.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 529

16.1–530 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASCE Task Committee on Drift Control of Steel Building Structures (1988), “Wind Drift
Design of Steel-Framed Buildings: State of the Art,”Journal of the Structural Division,
ASCE, Vol. 114, No. 9, pp. 2,085–2,108.
ASCE Task Committee on Effective Length (1997), Effective Length and Notional Load
Approaches for Assessing Frame Stability: Implications for American Steel Design,
American Society of Civil Engineers, New York, NY.
Aslani, F. and Goel, S.C. (1991), “An Analytical Criteria for Buckling Strength of Built-
Up Compression Members,” Engineering Journal , AISC, Vol. 28, No. 4, 4th Quarter,
pp. 159–168.
ASNT (2006a), Personnel Qualification and Certification in Nondestructive Testing, ASNT
SNT-TC-1A-2003, American Society of Nondestructive Testing, Columbus, OH.
ASNT (2006b), Standard for Qualification and Certification of Nondestructive Testing
Personnel, ANSI/ASNT CP-189-2006, American Society of Nondestructive Testing,
Columbus, OH.
ASTM (2006), Standard Test Methods for Determining Effects of Large Hydrocarbon Pool
Fires on Structural Members and Assemblies, ASTM E1529-06, American Society for
Testing and Materials, West Conshohocken, PA.
ASTM (2007a), Standard Practice for Safeguarding Against Warpage and Distortion
During Hot-Dip Galvanizing of Steel Assemblies, ASTM A384/A384M-07, American
Society for Testing and Materials, West Conshohocken, PA.
ASTM (2007b), Standard Practice for Castings, Carbon, Low-Alloy, and Martensitic
Stainless Steel, Ultrasonic Examination Thereof, ASTM A609/A609M-91(2007),
American Society for Testing and Materials, West Conshohocken, PA.
ASTM (2007c), Standard Specification for Carbon Steel Bolts and Studs, 60 000 PSI Tensile
Strength, ASTM A307-07b, American Society for Testing and Materials, West
Conshohocken, PA.
ASTM (2007d), Standard Specification for Cold-Formed Welded and Seamless Carbon
Steel Structural Tubing in Rounds and Shapes, ASTM A500/A500M-07, American
Society for Testing and Materials, West Conshohocken, PA.
ASTM (2009a), Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel
Hardware, ASTM A153/153M-09, American Society for Testing and Materials, West
Conshohocken, PA.
ASTM (2009b), Standard Practice for Providing High-Quality Zinc Coatings (Hot-
Dip), ASTM A385/A385M-09, American Society for Testing and Materials, West
Conshohocken, PA.
ASTM (2009c), Standard Practice for Repair of Damaged and Uncoated Areas of Hot-Dip
Galvanized Coatings, ASTM A780/A780M-09, American Society for Testing and
Materials, West Conshohocken, PA.
ASTM (2009d), Standard Test Methods for Fire Tests of Building Construction and
Materials, ASTM E119-09c, American Society for Testing and Materials, West
Conshohocken, PA.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 530

REFERENCES 16.1–531
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASTM (2009e), Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and
Steel Products, ASTM A123/A123M-09, American Society for Testing and Materials,
West Conshohocken, PA.
ATC (1978), “Tentative Provisions for the Development of Seismic Regulations for
Buildings,” Publication 3-06, Applied Technology Council, Redwood City, CA, June.
Austin, W.J. (1961), “Strength and Design of Metal Beam-Columns,” Journal of the Structural
Division, ASCE, Vol. 87, No. ST4, April, pp. 1–32.
AWS (1977), Criteria for Describing Oxygen-Cut Surfaces , AWS C4.1-77, American
Welding Society, Miami, FL.
AWS (2003), Specification For The Qualification Of Welding Inspectors, AWS B5.1:03,
American Welding Society, Miami, FL.
AWS (2010), Structural Welding Code—Steel, AWS D1.1/D1.1M:2010, American Welding
Society, Miami, FL.
Bartlett, R.M., Dexter, R.J., Graeser, M.D., Jelinek, J.J., Schmidt, B.J. and Galambos, T.V.
(2003), “Updating Standard Shape Material Properties Database for Design and
Reliability,” Engineering Journal, AISC, Vol. 40, No. 1, pp. 2–14.
Basler, K. (1961), “Strength of Plate Girders in Shear,” Journal of the Structural Division ,
ASCE, Vol. 104, No. ST9, October, pp. 151–180.
Basler, K., Yen, B.T., Mueller, J.A. and Thürlimann, B. (1960), “Web Buckling Tests on Welded
Plate Girders,” Welding Research Council Bulletin No. 64, September, New York, NY.
Basler, K. and Thürlimann, B. (1963), “Strength of Plate Girders in Bending,” Transactions
of the American Society of Civil Engineers, Vol. 128, Part II, pp. 655–682.
Bathe, K. (1995), Finite Element Procedures, Prentice-Hall, Upper Saddle River, NJ.
Beedle, L.S. (1958), Plastic Design of Steel Frames, John Wiley & Sons Inc., New York, NY.
Bigos, J., Smith, G.W., Ball, E.F. and Foehl, P.J. (1954), “Shop Paint and Painting Practice,”
Proceedings of AISC National Engineering Conference, Milwaukee, WI, American
Institute of Steel Construction, Chicago, IL.
Bijlaard, F.S.K., Gresnigt, A.M. and van der Vegte, G.J. (eds.) (2005), Connections in Steel
Structures V, Bouwen met Staal, Delft, the Netherlands.
Birkemoe, P.C. and Gilmor, M.I. (1978), “Behavior of Bearing-Critical Double-Angle Beam
Connections,” Engineering Journal, AISC, Vol. 15, No. 4, 4th Quarter, pp. 109–115.
Birnstiel, C. and Iffland, J.S.B. (1980), “Factors Influencing Frame Stability,” Journal of the
Structural Division, ASCE, Vol. 106, No. 2, pp. 491–504.
Bjorhovde, R. (1972), “Deterministic and Probabilistic Approaches to the Strength of Steel
Columns,” Ph.D. Dissertation, Lehigh University, Bethlehem, PA, May.
Bjorhovde, R. (1978), “The Safety of Steel Columns,” Journal of the Structural Division,
ASCE, Vol. 104, No. ST9, September, pp. 1371–1387.
Bjorhovde, R. and Birkemoe, P.C. (1979), ”Limit States Design of HSS Columns,” Canadian
Journal of Civil Engineering, Vol. 6, No. 2, pp. 276–291.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 531

16.1–532 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Bjorhovde, R., Brozzetti, J. and Colson, A. (eds.) (1988), Connections in Steel Structures:
Behaviour, Strength and Design, Elsevier Applied Science, London, England.
Bjorhovde, R. (1988), “Columns: From Theory to Practice,” Engineering Journal, AISC,
Vol. 25, No. 1, 1st Quarter, pp. 21–34.
Bjorhovde, R., Colson, A. and Brozzetti, J. (1990), “Classification System for Beam-to-
Column Connections,” Journal of Structural Engineering, ASCE, Vol. 116, No. 11,
pp. 3,059–3,076.
Bjorhovde, R., Colson, A., Haaijer, G. and Stark, J.W.B. (eds.) (1992), Connections in Steel
Structures II: Behavior, Strength and Design, American Institute of Steel Construction,
Chicago, IL.
Bjorhovde, R., Colson, A. and Zandonini, R. (eds.) (1996), Connections in Steel Structures
III: Behaviour, Strength and Design, Pergamon Press, London, England.
Bjorhovde, R., Goland, L.J. and Benac, D.J. (1999), “Tests of Full-Scale Beam-to-Column
Connections,” Southwest Research Institute, San Antonio, TX and Nucor-Yamato Steel
Company, Blytheville, AR.
Bjorhovde, R. (2006), “Cold Bending of Wide-Flange Shapes for Construction,” Engineering
Journal, AISC, Vol. 43, No. 4, 4th Quarter, pp. 271–286.
Bjorhovde, R., Bijlaard, F.S.K. and Geschwindner, L.F. (eds.) (2008), Connections in Steel
Structures VI, AISC, Chicago, IL.
Bleich, F. (1952), Buckling Strength of Metal Structures, McGraw-Hill, New York, NY.
Blodgett, O.W. (1967), “The Question of Corrosion in Hollow Steel Sections,” Welding
Design Studies in Steel Structures, Lincoln Electric Company, D610.163, August,
Cleveland, OH.
Borello, D.J., Denavit, M.D. and Hajjar, J.F. (2009), “Behavior of Bolted Steel Slip-Critical
Connections with Fillers,” Report No. NSEL-017, Department of Civil and
Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL,
August.
Bradford, M.A., Wright, H.D. and Uy, B. (1998), “Local Buckling of the Steel Skin in
Lightweight Composites Induced by Creep and Shrinkage,” Advances in Structural
Engineering, Vol. 2, No. 1, pp. 25–34.
Bradford, M.A., Loh, H.Y. and Uy, B. (2002), “Slenderness Limits for Filled Circular Steel
Tubes,” Journal of Constructional Steel Research, Vol. 58, No. 2, pp. 243–252.
Brandt, G.D. (1982), “A General Solution for Eccentric Loads on Weld Groups,”
Engineering Journal, AISC, Vol. 19, No. 3, 3rd Quarter, pp. 150–159.
Bridge, R.Q. (1998), “The Inclusion of Imperfections in Probability-Based Limit States
Design,” Proceedings of the 1998 Structural Engineering World Congress, San Francisco,
CA, July.
Bridge, R.Q. and Bizzanelli, P. (1997), Imperfections in Steel Structures, Proceedings—
1997 Annual Technical Session, and Meeting, Structural Stability Research Council,
pp. 447–458.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 532

REFERENCES 16.1–533
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Brockenbrough, R.B. and Johnston, B.G. (1981), USS Steel Design Manual, United States
Steel Corporation, Pittsburgh, PA.
Brockenbrough, R.L. (1983), “Considerations in the Design of Bolted Joints for Weathering
Steel,” Engineering Journal, AISC, Vol. 20, No. 1, 1st Quarter, pp. 40–45.
Brosnan, D.P. and Uang, C.M. (1995), “Effective Width of Composite L-Beams in
Buildings,” Engineering Journal, AISC, Vol. 30, No. 2, 2nd Quarter, pp. 73–81.
Bruneau, M., Uang, C.-M. and Whittaker, A. (1998), Ductile Design of Steel Structures,
McGraw Hill, New York, NY.
BSSC (2003), NEHRP Recommended Provisions for Seismic Regulations for New
Buildings and Other Structures, FEMA 450-1, Building Seismic Safety Council,
Washington, DC.
BSSC (2009), NEHRP Recommended Seismic Provisions for New Buildings and Other
Structures, FEMA P-750, Building Seismic Safety Council, Washington, DC.
Buonopane, S.G. and Schafer, B.W. (2006), “Reliability of Steel Frames Designed
with Advanced Analysis,” Journal of Structural Engineering, ASCE, Vol. 132, No. 2,
pp. 267–276.
Butler, L.J., Pal, S. and Kulak, G.L. (1972), “Eccentrically Loaded Welded Connections,”
Journal of the Structural Division, ASCE, Vol. 98, No. ST5, May, pp. 989–1,005.
Carter, C.J., Tide, R.H. and Yura, J.A. (1997), “A Summary of Changes and Derivation of
LRFD Bolt Design Provisions,” Engineering Journal, AISC, Vol. 34, No. 3, 3rd Quarter,
pp. 75–81.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind
and Seismic Applications, Design Guide 13, AISC, Chicago, IL.
CEN (1991), Eurocode 1: Basis of Design and Actions on Structures, EC1 1991-2-2, Comite
Européen de Normalisation, Brussels, Belgium.
CEN (2003), Eurocode 4: Design of Composite Steel and Concrete Structures, Comite
Européen de Normalisation, Brussels, Belgium.
CEN (2005), Eurocode 3: Design of Steel Structures, Comite Européen de Normalisation,
Brussels, Belgium.
Charney, F.A. (1990), “Wind Drift Serviceability Limit State Design of Multi-story
Buildings,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 36,
pp. 203–212.
Chen, W.F. and Kim, S.E. (1997), LRFD Steel Design Using Advanced Analysis, CRC Press,
Boca Raton, FL.
Chen, P.W. and Robertson, L.E. (1972), “Human Perception Thresholds of Horizontal
Motion,” Journal of the Structural Division, ASCE, Vol. 98, No. ST8, August,
pp. 1681–1695.
Chen, S. and Tong, G. (1994), “Design for Stability: Correct Use of Braces,” Steel
Structures, Journal of the Singapore Structural Steel Society, Vol. 5, No. 1, December,
pp. 15–23.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 533

16.1–534 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Chen, W.F. and Atsuta, T. (1976), Theory of Beam-Columns, Volume I: In-Plane
Behavior and Design, and Volume II: Space Behavior and Design, McGraw-Hill, New
York, NY.
Chen, W.F. and Atsuta, T. (1977), Theory of Beam Columns, Volume II: Space Behavior and
Design, McGraw-Hill, New York, NY.
Chen, W.F. and Lui, E.M. (1987), Structural Stability: Theory and Implementation, Elsevier,
New York, NY.
Chen, W.F. and Lui, E.M. (1991), Stability Design of Steel Frames, CRC Press, Boca Raton,
FL.
Chen, W.F. and Toma, S. (eds.) (1994), Advanced Analysis of Steel Frames: Theory,
Software and Applications, CRC Press, Boca Raton, FL.
Chen, W.F. and Sohal, I. (1995), Plastic Design and Second-Order Analysis of Steel Frames,
Springer Verlag, New York, NY.
Chen, W.F., Goto, Y. and Liew, J.Y.R. (1995), Stability Design of Semi-Rigid Frames, John
Wiley & Sons, Inc., New York, NY.
Cheng, J.J.R. and Kulak, G.L. (2000), “Gusset Plate Connection to Round HSS Tension
Members,” Engineering Journal, AISC, Vol. 37, No. 4, 4
th
Quarter, pp. 133–139.
Chien, E.Y.L. and Ritchie, J.K. (1984), Composite Floor Systems, Canadian Institute of
Steel Construction, Willowdale, Ontario, Canada.
Clarke, M.J., Bridge, R.Q., Hancock, G.J. and Trahair, N.S. (1992), “Advanced Analysis
of Steel Building Frames,” Journal of Constructional Steel Research , Vol. 23, No. 1–3,
pp. 1–29.
Cooke, G.M.E. (1988), “An Introduction to the Mechanical Properties of Structural Steel at
Elevated Temperatures,” Fire Safety Journal, Vol. 13, pp. 45–54.
Cooney, R.C. and King, A.B. (1988), “Serviceability Criteria for Buildings,” BRANZ
Report SR14, Building Research Association of New Zealand, Porirua, New Zealand.
Cooper, P.B., Galambos, T.V. and Ravindra, M.K. (1978), “LRFD Criteria for Plate
Girders,” Journal of the Structural Division, ASCE, Vol. 104, No. ST9, September,
pp. 1389–1407.
Crisfield, M.A. (1991), Nonlinear Finite Element Analysis of Solids and Structures, John
Wiley & Sons, Inc., NY.
CSA (2004), General Requirements for Rolled or Welded Structural Quality Steel/
Structural Quality Steel, CAN/CSA-G40.20/G40.21-04, Canadian Standards Association,
Mississauga, Ontario, Canada.
CSA (2009), Limit States Design of Steel Structures, CSA Standard S16-09, Canadian
Standards Association, Rexdale, Ontario, Canada
Darwin, D. (1990), Steel and Composite Beams with Web Openings , Design Guide 2, AISC,
Chicago, IL.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 534

REFERENCES 16.1–535
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Davies, G. and Packer, J.A. (1982), “Predicting the Strength of Branch Plate—RHS Connections
for Punching Shear,” Canadian Journal of Civil Engineering , Vol. 9, pp. 458–467.
Dekker, N.W., Kemp, A.R. and Trinchero, P. (1995), “Factors Influencing the Strength of
Continuous Composite Beams in Negative Bending,” Journal of Constructional Steel
Research, Vol. 34, Nos. 2–3, pp. 161–185.
Dexter, R.J. and Melendrez, M.I. (2000), “Through-Thickness Properties of Column
Flanges in Welded Moment Connections,” Journal of Structural Engineering, ASCE, Vol.
126, No. 1, pp. 24–31.
Dexter, R.J., Hajjar, J.F., Prochnow, S.D., Graeser, M.D., Galambos, T.V. and Cotton, S.C.
(2001), “Evaluation of the Design Requirements for Column Stiffeners and Doublers and
the Variation in Properties of A992 Shapes,” Proceedings of the North American Steel
Construction Conference, Fort Lauderdale, FL, May 9-12, 2001, AISC, Chicago, IL, pp.
14.1–14.21.
Dexter, R.J. and Altstadt, S.A. (2004), “Strength and Ductility of Tension Flanges in
Girders,” Recent Developments in Bridge Engineering, Proceedings of the Second New
York City Bridge Conference, October 20-21, 2003, New York, NY, Mahmoud, K.M.
(ed.), A.A. Balkema/Swets & Zeitlinger, Lisse, the Netherlands, pp. 67–81.
Disque, R.O. (1964), “Wind Connections with Simple Framing,” Engineering Journal,
AISC, Vol. 1, No. 3, July, pp. 101-103.
Dusicka, P. and Iwai, R. (2007), “Development of Linked Column Frame Lateral Load
Resisting System,” 2nd Progress Report for AISC and Oregon Iron Works, Portland State
University, Portland, OR.
Earls, C.J. and Galambos, T.V. (1997), “Design Recommendations for Equal Leg Single
Angle Flexural Members,” Journal of Constructional Steel Research , Vol. 43, Nos. 1-3,
pp. 65–85.
Easterling, W.S., Gibbings, D.R. and Murray, T.M. (1993), “Strength of Shear Studs in Steel
Deck on Composite Beams and Joists,” Engineering Journal, AISC, Vol. 30, No. 2, 2nd
Quarter, pp. 44–55.
Easterling, W.S. and Gonzales, L. (1993), “Shear Lag Effects in Steel Tension Members,”
Engineering Journal, AISC, Vol. 30, No. 3, 3rd Quarter, pp. 77–89.
ECCS (1984), Ultimate Limit States Calculations of Sway Frames With Rigid Joints ,
Publications No. 33, European Convention for Constructional Steelwork, Rotterdam,
the Netherlands.
ECCS (2001),Model Code on Fire Engineering, 1st Ed., European Convention for
Constructional Steelwork Technical Committee 3, Brussels, Belgium.
Elgaaly, M. (1983), “Web Design under Compressive Edge Loads,” Engineering Journal ,
AISC, Vol. 20, No. 4, 4th Quarter, pp. 153–171.
Elgaaly, M. and Salkar, R. (1991), “Web Crippling Under Edge Loading,” Proceedings of
AISC National Steel Construction Conference, Washington, DC.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 535

16.1–536 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ellifritt, D.S., Wine, G., Sputo, T. and Samuel, S. (1992), “Flexural Strength of WT
Sections,” Engineering Journal, AISC, Vol. 29, No. 2, 2nd Quarter, pp. 67–74.
Ellingwood, B. and Leyendecker, E.V. (1978), “Approaches for Design Against Progressive
Collapse,” Journal of the Structural Division, ASCE, Vol. 104, No. 3, pp. 413–423.
Ellingwood, B.E., MacGregor, J.G., Galambos, T.V., and Cornell, C.A. (1982), “Probability-
Based Load Criteria: Load Factors and Load Combinations,” Journal of the Structural
Division, ASCE, Vol. 108, No. 5, pp. 978–997.
Ellingwood, B., and Corotis, R.B. (1991), “Load Combinations for Building Exposed to
Fires,” Engineering Journal, AISC, Vol. 28, No. 1, pp. 37–44.
El-Zanaty, M.H., Murray, D.W. and Bjorhovde, R. (1980), “Inelastic Behavior Of Multistory
Steel Frames,” Structural Engineering Report No. 83, University of Alberta, Alberta, BC.
Felton, L.P. and Dobbs, M.W. (1967), “Optimum Design of Tubes for Bending and Torsion,”
Journal of the Structural Division, ASCE, Vol. 93, No. ST4, pp. 185–200.
FEMA (1995), Interim Guidelines: Evaluation, Repair, Modification and Design of Welded
Steel Moment Frame Structures, Bulletin No. 267, Federal Emergency Management
Agency, Washington, DC.
FEMA (1997), “Seismic Performance of Bolted and Riveted Connections” Background
Reports; Metallurgy, Fracture Mechanics, Welding, Moment Connections and Frame
Systems Behavior, Bulletin No. 288, Federal Emergency Management Agency,
Washington, DC.
FEMA (2000), Steel Moment-Frame Buildings: Design Criteria for New Buildings, FEMA-
350, Prepared by the SAC Joint Venture for the Federal Emergency Management Agency,
Washington, DC.
FHWA (1999), “FHWA Demonstration Project Heat Straightening Repair for Damaged
Steel Bridges,” FHWA Report No. FHWA-IF-99-004, Federal Highway Administration,
Washington, DC.
Fielding, D.J. and Huang, J.S. (1971), “Shear in Steel Beam-to-Column Connections,” The
Welding Journal, AWS, Vol. 50, No. 7, Research Supplement, pp. 313–326.
Fielding, D.J. and Chen, W.F. (1973), “Steel Frame Analysis and Connection Shear
Deformation,” Journal of the Structural Division, ASCE, Vol. 99, No. ST1, January,
pp. 1–18.
Fisher, J.M. and West, M.A. (1997), Erection Bracing of Low-Rise Structural Steel
Buildings, Design Guide 10, AISC, Chicago, IL.
Fisher, J.M. and Kloiber, L.A. (2006), Base Plate and Anchor Rod Design, 2nd Edition,
Design Guide 1, AISC, Chicago, IL.
Fisher, J.W., Frank, K.H., Hirt, M.A. and McNamee, B.M. (1970), “Effect of Weldments on
the Fatigue Strength of Beams,” Report 102, National Cooperative Highway Research
Program, Washington, DC.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 536

REFERENCES 16.1–537
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fisher, J.W., Albrecht, P.A., Yen, B.T., Klingerman, D.J. and McNamee, B.M. (1974),
“Fatigue Strength of Steel Beams with Welded Stiffeners and Attachments,” Report 147,
National Cooperative Highway Research Program, Washington, DC.
Fisher, J.W., Galambos, T.V., Kulak, G.L. and Ravindra, M.K. (1978), “Load and Resistance
Factor Design Criteria for Connectors,” Journal of the Structural Division, ASCE, Vol.
104, No. ST9, September, pp. 1,427–1,441.
Frank, K.H. and Fisher, J.W. (1979), “Fatigue Strength of Fillet Welded Cruciform Joints,”
Journal of the Structural Division, ASCE, Vol. 105, No. ST9, September.
Frank, K.H. and Yura, J.A. (1981), “An Experimental Study of Bolted Shear Connections,”
FHWA/RD-81/148, Federal Highway Administration, Washington, DC, December.
Frater, G.S. and Packer, J.A. (1992a), “Weldment Design for RHS Truss Connections.
I: Applications,” Journal of Structural Engineering, ASCE, Vol. 118, No. 10,
pp. 2,784–2,803.
Frater, G.S. and Packer, J.A. (1992b), “Weldment Design for RHS Truss Connections.
II: Experimentation,” Journal of Structural Engineering , ASCE, Vol. 118, No. 10,
pp. 2,804–2,820.
Freeman, F.R. (1930), “The Strength of Arc-Welded Joints,” Proceedings of the Institution
of Civil Engineers, Vol. 231, London, England.
Freeman, S. (1977), “Racking Tests of High Rise Building Partitions,” Journal of the
Structural Division, ASCE, Vol. 103, No. 8, pp. 1,673–1,685.
Galambos, T.V. (1968a), Structural Members and Frames, Prentice-Hall, Englewood Cliffs,
NJ.
Galambos, T.V. (1968b), “Deformation and Energy Absorption Capacity of Steel Structures
in the Inelastic Range,” Steel Research for Construction Bulletin No. 8, American Iron
and Steel Institute.
Galambos. T.V. (1978), “Proposed Criteria for Load and Resistance Factor Design of Steel
Building Structures,” AISI Bulletin No. 27, American Iron and Steel Institute,
Washington, DC, January.
Galambos, T.V., Ellingwood, B., MacGregor, J.G. and Cornell, C.A. (1982), “Probability-
Based Load Criteria: Assessment of Current Design Practice,” Journal of the Structural
Division, ASCE, Vol. 108, No. ST5, May, pp. 959–977.
Galambos, T.V. (1983), “Reliability of Axially Loaded Columns,” Engineering Structures,
Vol. 5, No. 1, pp. 73–78.
Galambos, T.V. and Ellingwood, B. (1986), “Serviceability Limit States: Deflections,”
Journal of the Structural Division, ASCE, Vol. 112, No. 1, pp. 67–84.
Galambos, T.V. (1991), “Design of Axially Loaded Compressed Angles,” Proceedings of the
Annual Technical Session and Meeting, Chicago, IL, April 15-17, 1991, Structural
Stability Research Council, Bethlehem, PA, pp. 353–367.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 537

16.1–538 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Galambos, T.V. (ed.) (1998), Guide to Stability Design Criteria for Metal Structures, 5th
Ed., Structural Stability Research Council, John Wiley & Sons, Inc., New York, NY.
Galambos, T.V. (2001), “Strength of Singly Symmetric I-Shaped Beam-Columns,”
Engineering Journal, AISC, Vol. 38, No. 2, 2nd Quarter, pp. 65–77.
Galambos, T.V. and Surovek, A.E. (2008), Structural Stability of Steel—Concepts and
Applications for Structural Engineers, John Wiley & Sons, Inc., New York, NY.
Geschwindner, L.F. (2002), “A Practical Approach to Frame Analysis, Stability and Leaning
Columns,” Engineering Journal,AISC, Vol. 39, No. 4, 4th Quarter, pp. 167–181.
Geschwindner, L.F. and Disque, R.O. (2005), “Flexible Moment Connections for Unbraced
Frames Subject to Lateral Forces—A Return to Simplicity,” Engineering Journal,AISC,
Vol. 42, No. 2, 2nd Quarter, pp. 99–112.
Geschwindner, L.F. (2010a), “Notes on the Impact of Hole Reduction on the Flexural
Strength of Rolled Beams,” Engineering Journal , AISC, Vol. 47, No. 1, 1st Quarter,
pp. 37–40.
Geschwindner, L.F. (2010b), “Discussion of Limit State Response of Composite Columns
and Beam-Columns Part II: Application of Design Provisions for the 2005 AISC
Specification,” Engineering Journal, AISC, Vol. 47, No. 2, 2nd Quarter, pp. 131–139.
Geschwindner, L.F and Gustafson, K. (2010), “Single-Plate Shear Connection Design to
Meet Structural Integrity Requirements,” Engineering Journal, AISC, Vol. 47, No. 4,
3rd Quarter.
Gewain, R.G. and Troup, E.W.J. (2001), “Restrained Fire Resistance Ratings in Structural
Steel Buildings,” Engineering Journal , Vol. 38, No. 2, pp. 78–89.
Gibson, G.T. and Wake, B.T. (1942), “An Investigation of Welded Connections for Angle
Tension Members,” The Welding Journal , AWS, January, p. 44.
Giddings, T.W. and Wardenier, J. (1986), “The Strength and Behaviour of Statically Loaded
Welded Connections in Structural Hollow Sections,” CIDECT Monograph No. 6,
Sections 1-10, British Steel Corporation Tubes Division, Corby, England.
Gioncu, V. and Petcu, D. (1997), “Available Rotation Capacity of Wide-Flange Beams
and Beam-Columns, Part 1. Theoretical Approaches, and Part 2. Experimental and
Numerical Tests,” Journal of Constructional Steel Research, Vol. 43, Nos. 1-3,
pp. 161–244.
Gjelsvik, A. (1981), The Theory of Thin-Walled Bars, John Wiley & Sons, Inc., New York, NY.
Goble, G.G. (1968), “Shear Strength of Thin Flange Composite Specimens,” Engineering
Journal, AISC, Vol. 5, No. 2, 2nd Quarter, pp. 62–65.
Gomez, I., Kanvinde, A., Kwan, Y.K. and Grondin, G. (2008), “Strength and Ductility of
Welded Joints Subjected to Out-of-Plane Bending,” Final Report to AISC, University of
California, Davis, and University of Alberta, July.
Goverdhan, A.V. (1983), “A Collection of Experimental Moment Rotation Curves:
Evaluation of Predicting Equations for Semi-Rigid Connections,” M.S. Thesis, Vanderbilt
University, Nashville, TN.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 538

REFERENCES 16.1–539
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Graham, J.D., Sherbourne, A.N. and Khabbaz, R.N. (1959), “Welded Interior Beam-to-
Column Connections,” American Institute of Steel Construction, Chicago, IL.
Graham, J.D., Sherbourne, A.N., Khabbaz, R.N. and Jensen, C.D. (1960), “Welded Interior
Beam-to-Column Connections,” Welding Research Council, Bulletin No. 63, pp. 1–28.
Grant, J.A., Fisher, J.W. and Slutter, R.G. (1977), “Composite Beams with Formed Steel
Deck,” Engineering Journal, AISC, Vol. 14, No. 1, 1
st
Quarter, pp. 24-43.
Griffis, L.G. (1992), Load and Resistance Factor Design of W-Shapes Encased in Concrete,
Design Guide 6, AISC, Chicago, IL.
Griffis, L.G. (1993), “Serviceability Limit States Under Wind Load,” Engineering Journal ,
AISC, Vol. 30, No. 1, 1st Quarter, pp. 1–16.
Grondin, G., Jin, M. and Josi, G. (2007), “Slip Critical Bolted Connections A Reliability
Analysis for the Design at the Ultimate Limit State,” Preliminary Report prepared for
AISC, University of Alberta, Edmonton, Alberta, CA.
Hajjar, J.F. (2000), “Concrete-Filled Steel Tube Columns under Earthquake Loads,”
Progress in Structural Engineering and Materials, Vol. 2, No. 1, pp. 72–82.
Hajjar, J.F., Dexter, R.J., Ojard, S.D., Ye, Y. and Cotton, S.C. (2003), “Continuity Plate
Detailing for Steel Moment-Resisting Connections,” Engineering Journal , AISC, No. 4,
4th Quarter, pp. 81–97.
Hansen, R.J., Reed, J.W., and Vanmarcke, E.H. (1973), “Human Response to Wind-Induced
Motion of Buildings,” Journal of the Structural Division , ASCE, Vol. 99, No. ST7,
pp. 1,589-1,606.
Hardash, S.G. and Bjorhovde, R. (1985), “New Design Criteria for Gusset Plates in
Tension”, Engineering Journal, AISC, Vol. 22, No. 2, 2nd Quarter, pp. 77–94.
Heinzerling, J.E. (1987), “Structural Design of Steel Joist Roofs to Resist Ponding Loads,”
Technical Digest No. 3, Steel Joist Institute, Myrtle Beach, SC.
Helwig, T.A., Frank, K.H. and Yura, J.A. (1997), “Lateral-Torsional Buckling of Singly-
Symmetric I-Beams,” Journal of Structural Engineering, ASCE, Vol. 123, No. 9,
September, pp. 1,172–1,179.
Higgins, T.R. and Preece, F.R. (1968), “AWS-AISC Fillet Weld Study, Longitudinal and
Transverse Shear Tests,” Internal Report, Testing Engineers, Inc., Oakland, CA, May 31.
Horne, M.R. and Morris, L.J. (1982), Plastic Design of Low-Rise Frames, MIT Press,
Cambridge, MA.
Horne, M.R. and Grayson, W.R. (1983), “Parametric Finite Element Study of Transverse
Stiffeners for Webs in Shear,” Instability and Plastic Collapse of Steel Structures,
Proceedings of the Michael R. Horne Conference, L.J. Morris (ed.), Granada Publishing,
London, pp. 329–341.
Hsieh, S.H. and Deierlein, G.G. (1991), “Nonlinear Analysis of Three-Dimensional Steel
Frames with Semi-Rigid Connections,” Computers and Structures , Vol. 41, No. 5, pp.
995–1,009.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 539

16.1–540 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ICBO (1997), Uniform Building Code , International Conference of Building Officials,
Whittier, CA.
ICC (2009), International Building Code , International Code Council, Falls Church, VA.
IIW (1989), “Design Recommendations for Hollow Section Joints—Predominantly Statically
Loaded,” 2nd Ed., IIW Document XV-701-89, IIW Annual Assembly, Subcommission
XV-E, International Institute of Welding, Helsinki, Finland.
Irwin, A.W. (1986), “Motion in Tall Buildings,” Second Century of the Skyscraper, L.S.
Beedle (ed.), Van Nostrand Reinhold Co., New York, NY.
Islam, M.S., Ellingwood, B. and Corotis, R.B. (1990), “Dynamic Response of Tall Buildings
to Stochastic Wind Load,” Journal of Structural Engineering , ASCE, Vol. 116, No. 11,
November, pp. 2,982–3,002.
ISO (1977), “Bases for the Design of Structures—Deformations of Buildings at the
Serviceability Limit States,” ISO 4356, International Standards Organization, Geneva,
Switzerland.
Iwankiw, N. (1984), “Note on Beam-Column Moment Amplification Factor,” Engineering
Journal, AISC, Vol. 21, No. 1, 1st Quarter, pp. 21-23.
Jacobs, W.J. and Goverdhan, A.V. (2010), “Review and Comparison of Encased Composite
Steel-Concrete Column Detailing Requirements,” Composite Construction in Steel and
Concrete VI, R. Leon et al. (eds.), ASCE, Reston, VA.
Jayas, B.S. and Hosain, M.U. (1988a), “Composite Beams with Perpendicular Ribbed Metal
Deck,” Composite Construction in Steel and Concrete II, C.D. Buckner and I.M. Viest,
(eds.), American Society of Civil Engineers, New York, NY, pp. 511–526.
Jayas, B.S. and Hosain, M.U. (1988b), “Behaviour of Headed Studs in Composite Beams:
Push-Out Tests,” Canadian Journal of Civil Engineering, Vol. 15, pp. 240–253.
JCRC (1971), Handbook of Structural Stability, Japanese Column Research Council,
English translation, pp. 3–22.
Johnson, D.L. (1985), “An Investigation into the Interaction of Flanges and Webs in
Wide-Flange Shapes,” Proceedings of the Annual Technical Session and Meeting ,
Cleveland, OH, April 16-17, 1985, Structural Stability Research Council, Bethlehem, PA,
pp. 397–405.
Johnson, D.L. (1996), “Final Report on Tee Stub Tests,” Butler Corporation Research
Report, Grandview, MO, May.
Johnson, R.P. and Yuan, H. (1998), “Existing Rules and New Tests for Stud Shear
Connectors in Troughs of Profiled Sheeting,” Proceedings of the Institution of Civil
Engineers: Structures and Buildings, Vol. 128, No. 3, pp. 244–251.
Johnston, B.G. (1939), “Pin-Connected Plate Links,” Transactions of the ASCE, Vol. 104,
pp. 314–339.
Johnston, B.G. and Green, L.F. (1940), “Flexible Welded Angle Connections,” The Welding
Journal, AWS, October.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 540

REFERENCES 16.1–541
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Johnston, B.G. and Deits, G.R. (1942), “Tests of Miscellaneous Welded Building
Connections,” The Welding Journal, AWS, November, p. 5.
Johnston, B.G. (ed.) (1976), Guide to Stability Design for Metal Structures, 3rd Ed.,
Structural Stability Research Council, John Wiley & Sons, Inc., New York, NY.
Kaczinski, M.R., Schneider, C.R., Dexter, R.J. and Lu, L.-W. (1994), “Local Web
Crippling of Unstiffened Multi-Cell Box Sections,” Proceedings of the ASCE Structures
Congress ’94, Atlanta, GA, Vol. 1, American Society of Civil Engineers, New York, NY,
pp. 343–348.
Kaehler, R.C., White, D.W. and Kim, Y.D. (2010), Frame Design Using Web-Tapered Members,
Design Guide 25, Metal Building Manufacturers Association and AISC, Chicago, IL.
Kanchanalai, T. (1977), The Design and Behavior of Beam-Columns in Unbraced Steel
Frames, AISI Project No. 189, Report No. 2, Civil Engineering/Structures Research Lab.,
University of Texas, Austin, TX.
Kanchanalai, T. and Lu, L.-W. (1979), “Analysis and Design of Framed Columns under
Minor Axis Bending,”Engineering Journal, AISC, Vol. 16, No. 2, 2nd Quarter,
pp. 29–41.
Kato, B. (1990), “Deformation Capacity of Steel Structures,”Journal of Constructional
Steel Research,Vol. 17, No. 1–2, pp. 33–94.
Kaufmann, E.J., Metrovich, B., Pense, A.W. and Fisher, J.W. (2001), “Effect of
Manufacturing Process on k-Area Properties and Service Performance,” Proceedings of
the North American Steel Construction Conference, Fort Lauderdale, FL, May 9-12,
2001, American Institute of Steel Construction, Chicago, IL, pp. 17.1–17.24.
Kavanagh, T.C. (1962), “Effective Length of Framed Columns,” Transactions of the
American Society of Civil Engineers, Vol. 127, pp. 81–101.
Keating, P.B. and Fisher, J.W. (1986), “Evaluation of Fatigue Tests and Design Criteria on
Welded Details,” NCHRP Report No. 286, Transportation Research Board, Washington
DC, September.
Kemp, A.R. (1996), “Inelastic Local and Lateral Buckling in Design Codes,” Journal of
Structural Engineering, ASCE, Vol. 122, No. 4, pp. 374–382.
Kim, H.J. and Yura, J.A. (1996), “The Effect of End Distance on the Bearing Strength of
Bolted Connections,” PMFSEL Report No. 96-1, University of Texas, Austin, TX.
Kim, Y.D., Jung, S.-K. and White, D.W. (2007), “Transverse Stiffener Requirements in
Straight and Horizontally Curved Steel I-Girders,” Journal of Bridge Engineering , ASCE,
Vol. 12, No. 2, pp. 174–183.
Kirby, B.R. and Preston, R.R. (1988), “High Temperature Properties of Hot-Rolled
Structural Steels for Use in Fire Engineering Design Studies,” Fire Safety Journal , Vol.
13, pp. 27–37.
Kirby, P.A. and Nethercot, D.A. (1979), Design for Structural Stability, John Wiley & Sons,
Inc., New York, NY.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 541

16.1–542 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Kishi, N. and Chen, W.F. (1986), “Data Base of Steel Beam-to-Column Connections,” Vol.
1 and 2, Structural Engineering Report No. CE-STR-86-26, School of Civil Engineering,
Purdue University, West Lafayette, IN.
Kitipornchai, S. and Trahair, N.S. (1980), “Buckling Properties of Monosymmetric
I-Beams,” Journal of the Structural Division, ASCE, Vol. 106, No. ST5, May,
pp. 941–957.
Kitipornchai, S. and Traves, W.H. (1989), “Welded-Tee End Connections for Circular
Hollow Tubes,” Journal of Structural Engineering, ASCE, Vol. 115, No.12,
pp. 3,155–3,170.
Klöppel, K. and Seeger, T. (1964), “Dauerversuche Mit Einschnittigen HV-Verbindurgen
Aus ST37,” Der Stahlbau, Vol. 33, No. 8, August, pp. 225–245 and Vol. 33, No. 11,
November, pp. 335–346.
Kosteski, N. and Packer, J.A. (2003), “Longitudinal Plate and Through Plate-to-HSS
Welded Connections,” Journal of Structural Engineering, ASCE, Vol. 129, No. 4,
pp. 478–486.
Kuchenbecker, G.H., White, D.W. and Surovek-Maleck, A.E. (2004), “Simplified Design of
Building Frames Using First-Order Analysis and K =1,” Proceedings of the Annual
Technical Session and Meeting, Long Beach, CA, March 24-27, 2004, Structural Stability
Research Council, Rolla, MO, pp. 119–138.
Kulak, G.L., Fisher, J.W. and Struik, J.H.A. (1987), Guide to Design Criteria for Bolted and
Riveted Joints, 2nd Ed., John Wiley & Sons, Inc., New York, NY.
Kulak, G.L. and Grondin, G.Y. (2001), “AISC LRFD Rules for Block Shear—A Review,”
Engineering Journal, AISC, Vol. 38, No. 4, 4th Quarter, pp. 199–203.
Kulak, G.L. and Grondin, G.Y. (2002), “Closure: AISC LRFD Rules for Block Shear—A
Review,” Engineering Journal, AISC, Vol. 39, No. 4, 4th Quarter, p. 241.
Kulak, G.L. and Grondin, G.Y. (2003), “Strength of Joints that Combine Bolts and Welds,”
Engineering Journal, AISC, Vol. 40, No. 2, 2nd Quarter, pp. 89–98.
Kulak, G.L. (2002), High Strength Bolts: A Primer for Structural Engineers, Design Guide
17, AISC, Chicago, IL.
Kurobane, Y., Packer, J.A., Wardenier, J. and Yeomans, N.F. (2004), “Design Guide for
Structural Hollow Section Column Connections,” CIDECT Design Guide No. 9,
CIDECT (ed.) and Verlag TÜV Rheinland, Köln, Germany.
Lawson, R.M. (1992), “Shear Connection in Composite Beams,” Composite Construction
in Steel and Concrete II, W.S. Easterling and W.M.K. Roddis, (eds.), American Society
of Civil Engineers, New York, NY.
Lee, D., Cotton, S., Dexter, R.J., Hajjar, J.F., Ye, Y. and Ojard, S.D. (2002a), “Column
Stiffener Detailing and Panel Zone Behavior of Steel Moment Frame Connections,”
Report No. ST-01-3.2, Department of Civil Engineering, University of Minnesota,
Minneapolis, MN.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 542

REFERENCES 16.1–543
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Lee, S.C., Yoo, C.H. and Yoon, D.Y. (2002b), “Behavior of Intermediate Transverse
Stiffeners Attached on Web Panels,” Journal of Structural Engineering , ASCE, Vol. 128,
No. 3, pp. 337–345.
Leigh, J.M. and Lay, M.G. (1978), “Laterally Unsupported Angles with Equal and Unequal
Legs,” Report MRL 22/2, July, Melbourne Research Laboratories, Clayton, Victoria,
Australia.
Leigh, J.M. and Lay, M.G. (1984), “The Design of Laterally Unsupported Angles,” Steel
Design Current Practice, Section 2, Bending Members, American Institute of Steel
Construction, Chicago, IL, January.
LeMessurier, W.J. (1976), “A Practical Method of Second Order Analysis, Part 1—Pin-
Jointed Frames,” Engineering Journal, AISC, Vol. 13, No. 4, 4th Quarter, pp. 89–96.
LeMessurier, W.J. (1977), “A Practical Method of Second Order Analysis, Part 2—Rigid
Frames,” Engineering Journal, AISC, Vol. 14, No. 2, 2nd Quarter, pp. 49–67.
LeMessurier, W.J. (1995), “Simplified K Factors for Stiffness Controlled Designs,”
Restructuring: America and Beyond, Proceedings of ASCE Structures Congress XIII,
Boston, MA, April 2-5, 1995, American Society of Civil Engineers, New York, NY,
pp. 1,797–1,812.
Leon, R.T. (1990), “Serviceability of Composite Floor,” Proceedings of the 1990 National
Steel Construction Conference, AISC, pp. 18:1–18:23.
Leon, R.T. and Alsamsam, I. (1993), Performance and Serviceability of Composite Floors,
Structural Engineering in Natural Hazards Mitigation, Proceedings of the ASCE
Structures Congress, ASCE, pp. 1,479–1,484.
Leon, R.T. (1994), “Composite Semi-Rigid Construction,” Engineering Journal, AISC, Vol.
31. No. 2, 2nd Quarter, pp. 57–67.
Leon, R.T., Hoffman, J. and Staeger, T. (1996), Design of Partially-Restrained Composite
Connections, Design Guide 8, AISC, Chicago, IL.
Leon, R.T. and Easterling, W.S. (eds.) (2002), Connections in Steel Structures IV Behavior,
Strength and Design, American Institute of Steel Construction, Chicago, IL.
Leon, R.T., Kim, D.K. and Hajjar, J.F. (2007), “Limit State Response of Composite
Columns and Beam-Columns Part 1: Formulation of Design Provisions for the
2005 AISC Specification,” Engineering Journal, AISC, Vol. 44, No. 4, 4th Quarter,
pp. 341–358.
Leon, R.T. and Hajjar, J.F. (2008), “Limit State Response of Composite Columns and
Beam-Columns Part 2: Application of Design Provisions for the 2005 AISC
Specification,” Engineering Journal, AISC, Vol. 45, No. 1, 1st Quarter, pp. 21–46.
Lesik, D.F. and Kennedy, D.J.L. (1990), “Ultimate Strength of Fillet Welded Connections
Loaded in Plane,” Canadian Journal of Civil Engineering , Vol. 17, No. 1, pp. 55–67.
Lewis, B.E. and Zwerneman, F.J. (1996), “Edge Distance, Spacing, and Bearing in Bolted
Connections,” Research Report, Department of Civil and Environmental Engineering,
Oklahoma State University, Stillwater, OK, July.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 543

16.1–544 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Liew, J.Y., White, D.W. and Chen, W.F. (1993), “Second-Order Refined Plastic-Hinge
Analysis for Frame Design, Parts I and II,” Journal of Structural Engineering , ASCE, Vol.
119, No. 11, pp. 3,196–3,237.
Lorenz, R.F., Kato, B. and Chen, W.F. (eds.) (1993), Semi-Rigid Connections in Steel
Frames, Council for Tall Buildings and Urban Habitat, Bethlehem, PA.
Lu, Y.O. and Kennedy, D.J.L. (1994), “The Flexural Behaviour of Concrete-Filled
Hollow Structural Sections,” Canadian Journal of Civil Engineering, Vol. 21, No. 1,
pp. 111–130.
Lui, Z. and Goel, S.C. (1987), “Investigation of Concrete-Filled Steel Tubes Under Cyclic
Bending and Buckling,” UMCE Report 87-3, Department of Civil and Environmental
Engineering, University of Michigan, Ann Arbor, MI.
Lutz, L.A. and Fisher, J.M. (1985), “A Unified Approach for Stability Bracing
Requirements, Engineering Journal, AISC, Vol. 22, No. 4, 4th Quarter, pp. 163–167.
Lutz, L.A. (1992), “Critical Slenderness of Compression Members with Effective Lengths
about Non-Principal Axes,” Proceedings of the Annual Technical Session and Meeting ,
April 6-7, 1992, Pittsburgh, PA, Structural Stability Research Council, Bethlehem, PA.
Lyse, I. and Schreiner, N.G. (1935), “An Investigation of Welded Seat Angle Connections,”
The Welding Journal, AWS, February, p. 1.
Lyse, I. and Gibson, G.J. (1937), “Effect of Welded Top Angles on Beam-Column
Connections,” The Welding Journal, AWS, October.
Madugula, M.K.S. and Kennedy, J.B. (1985), Single and Compound Angle Members,
Elsevier Applied Science, New York, NY.
Marino, F.J. (1966), “Ponding of Two-Way Roof Systems,” Engineering Journal, AISC, Vol.
3, No. 3, 3rd Quarter, pp. 93–100.
Marshall, P.W. (1992), Design of Welded Tubular Connections: Basis and Use of AWS Code
Provisions,Elsevier, Amsterdam, the Netherlands.
Martinez-Garcia, J.M. and Ziemian, R.D. (2006), “Benchmark Studies to Compare Frame
Stability Provisions,” Proceedings—Annual Technical Session and Meeting, Structural
Stability Research Council, San Antonio, TX, pp. 425–442.
McGuire, W. (1992), “Computer-Aided Analysis,” Constructional Steel Design: An
International Guide, P.J. Dowling, J.E. Harding and R. Bjorhovde (eds.), Elsevier
Applied Science, New York, NY, pp. 915–932.
McGuire, W., Gallagher, R.H. and Ziemian, R.D. (2000), Matrix Structural Analysis, 2nd
Ed., John Wiley & Sons, Inc., New York, NY.
Mottram, J.T. and Johnson, R.P. (1990), “Push Tests on Studs Welded Through Profiled
Steel Sheeting,” The Structural Engineer, Vol. 68, No. 10, pp. 187–193.
Munse, W.H. and Chesson, Jr., E., (1963), “Riveted and Bolted Joints: Net Section Design,”
Journal of the Structural Division, ASCE, Vol. 89, No. ST1, February, pp. 49–106.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 544

REFERENCES 16.1–545
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Murray, T.M., Kline, D.P. and Rojani, K.B. (1992), “Use of Snug-Tightened Bolts in End-
Plate Connections,” Connections in Steel Structures II , R. Bjorhovde, A. Colson, G.
Haaijer and J.W.B. Stark, (eds.), AISC, Chicago, IL.
Murray, T.M., Allen, D.E. and Ungar, E.E. (1997), Floor Vibrations Due to Human Activity,
Design Guide 11, AISC, Chicago, IL.
Murray, T.M. and Sumner, E.A. (2004), End-Plate Moment Connections— Wind and Seismic
Applications, Design Guide 4, 2nd Ed., AISC, Chicago, IL.
Nethercot, D.A. (1985), “Steel Beam to Column Connections—A Review of Test Data and
Their Applicability to the Evaluation of the Joint Behaviour of the Performance of Steel
Frames,” CIRIA, London, England.
NFPA (2002a), Standard for the Inspection, Testing, and Maintenance of Water-Based Fire
Protection Systems, NFPA 25, National Fire Protection Association, Quincy, MA.
NFPA (2002b), Standard on Smoke and Heat Venting , NFPA 204, National Fire Protection
Association, Quincy, MA.
Nowak, A.S. and Collins, K. R. (2000), Reliability of Structures, McGraw-Hill, New York, NY.
NRC (1974), “Expansion Joints in Buildings,” Technical Report No. 65, Standing
Committee on Structural Engineering of the Federal Construction Council, Building
Research Advisory Board, Division of Engineering, National Research Council, National
Academy of Sciences, Washington, DC.
NRCC (1990), National Building Code of Canada, National Research Council of Canada,
Ottawa, Ontario, Canada.
Oehlers, D.J. and Bradford, M.A. (1995), Composite Steel and Concrete Members, Elsevier
Science, Inc., Tarrytown, NY.
Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), “Shear Strength of Stud Shear
Connections in Lightweight and Normal Weight Concrete,” Engineering Journal, AISC,
Vol. 8, No. 2, 2nd Quarter, pp. 55–64.
OSHA (2001), Safety and Health Regulations for Construction , Standards—29 CFR 1926
Subpart R—Steel Erection, Occupational Safety and Health Administration, Washington,
DC.
Packer, J.A., Birkemoe, P.C., and Tucker, W.J. (1984), “Canadian Implementation of
CIDECT Monograph No. 6,” CIDECT Report No. 5AJ-84/9-E, University of Toronto,
Toronto, Canada.
Packer, J.A. and Cassidy, C.E. (1995), “Effective Weld Length for HSS T, Y and X
Connections,” Journal of Structural Engineering, ASCE, Vol. 121, No. 10, pp. 1,402–1,408.
Packer, J.A. and Henderson, J.E. (1997), Hollow Structural Section Connections and Trusses—
A Design Guide, 2nd Ed., Canadian Institute of Steel Construction, Toronto, Canada.
Packer, J.A. (2004), “Reliability of Welded Tubular K-Connection Resistance Expressions,”
International Institute of Welding (IIW) Document XV-E-04-291, University of Toronto,
Toronto, Canada.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 545

16.1–546 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Packer, J.A. and Wardenier, J. (2010), “Design Guide for Rectangular Hollow Section (RHS)
Joints under Predominantly Static Loading,” Design Guide No. 3, CIDECT, 2nd Ed., LSS
Verlag, Köln, Germany.
Pallarés, L. and Hajjar, J.F. (2010a), “Headed Steel Stud Anchors in Composite Structures:
Part II. Tension and Interaction,” Journal of Constructional Steel Research , Vol. 66, No.
2, February, pp. 213–228.
Pallarés, L. and Hajjar, J.F. (2010b), “Headed Steel Stud Anchors in Composite Structures:
Part I. Shear,” Journal of Constructional Steel Research , Vol. 66, No. 2, February, pp.
198–212.
Pate-Cornell, E. (1994), “Quantitative Safety Goals for Risk Management of Industrial
Facilities,” Structural Safety, Vol. 13, No. 3, pp. 145–157.
Popov, E.P. and Stephen, R.M. (1977), “Capacity of Columns with Splice Imperfections,”
Engineering Journal, AISC, Vol. 14, No. 1, 1st Quarter, pp. 16–23.
Popov, E.P. (1980), “An Update on Eccentric Seismic Bracing,” Engineering Journal , AISC,
Vol. 17, No. 3, 3rd Quarter, pp. 70–71.
Preece, F.R. (1968), “AWS-AISC Fillet Weld Study—Longitudinal and Transverse Shear
Tests,” Testing Engineers, Inc., Los Angeles, CA, May.
Prion, H.G.L. and Boehme, J. (1994), “Beam-column behaviour of steel tubes filled
with high strength concrete,” Canadian Journal of Civil Engineering , Vol. 21, No. 2,
pp. 207–218.
Prochnow, S.D., Ye, Y., Dexter, R.J., Hajjar, J.F. and Cotton, S.C. (2000), “Local Flange
Bending and Local Web Yielding Limit States in Steel Moment Resisting Connections,”
Connections in Steel Structures IV Behavior, Strength and Design, R.T. Leon and W.S.
Easterling (eds.), AISC, Chicago, IL, pp. 318–328.
Rahal, K.N. and Harding, J.E. (1990a), “Transversely Stiffened Girder Webs Subjected to
Shear Loading—Part 1: Behaviour,” Proceedings of the Institution of Civil Engineers,
Part 2, 1989, March, pp. 47–65.
Rahal, K.N. and Harding, J.E. (1990b), “Transversely Stiffened Girder Webs Subjected to
Shear Loading—Part 2: Stiffener Design,” Proceedings of the Institution of Civil
Engineers, Part 2, 1989, March, pp. 67–87.
Rahal, K.N. and Harding, J.E. (1991), “Transversely Stiffened Girder Webs Subjected to
Combined In-Plane Loading,” Proceedings of the Institution of Civil Engineers, Part 2,
1991, June, pp. 237–258.
Ravindra, M.K. and Galambos, T.V. (1978), “Load and Resistance Factor Design for Steel,”
Journal of the Structural Division, ASCE, Vol. 104, No. ST9, September, pp. 1,337–1,353.
RCSC (2009), Specification for Structural Joints Using High Strength Bolts, Research Council
on Structural Connections, American Institute of Steel Construction, Chicago, IL.
Ricker, D.T. (1989), “Cambering Steel Beams,” Engineering Journal , AISC, Vol. 26, No. 4,
4th Quarter, pp. 136–142.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 546

REFERENCES 16.1–547
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ricles, J.M. and Yura, J.A. (1983), “Strength of Double-Row Bolted Web Connections,”
Journal of the Structural Division, ASCE, Vol. 109, No. ST 1, January, pp. 126–142.
Roberts, T.M. (1981), “Slender Plate Girders Subjected to Edge Loading,” Proceedings of
the Institution of Civil Engineers, Part 2, No. 71, September.
Robinson, H. (1967), “Tests of Composite Beams with Cellular Deck,” Journal of the
Structural Division, ASCE, Vol. 93, No. ST4, pp. 139–163.
Roddenberry, M.R., Easterling, W.S. and Murray, T.M. (2002a) “Behavior and Strength of
Welded Stud Shear Connectors,” Report No. CE/VPI–02/04, Virginia Polytechnic
Institute and State University, Blacksburg, VA.
Roddenberry, M.R., Lyons, J.C., Easterling, W.S. and Murray, T.M. (2002b), “Performance
and Strength of Welded Shear Studs,” Composite Construction in Steel and Concrete IV,
J.F. Hajjar, M. Hosain, W.S. Easterling and B.M. Shahrooz (eds.), American Society of
Civil Engineers, Reston, VA, pp. 458–469.
Roeder, C.W., Cameron, B. and Brown, C.B. (1999), “Composite Action in Concrete Filled
Tubes,” Journal of Structural Engineering, ASCE, Vol. 125, No. 5, May, pp. 477–484.
Roik, K. and Bergmann, R. (1992), “Composite Column,” Constructional Steel Design: An
International Guide, P.J. Dowling, J.E. Harding and R. Bjorhovde, (eds.), Elsevier
Applied Science, London, United Kingdom.
Rolloos, A. (1969), “The Effective Weld Length of Beam to Column Connections without
Stiffening Plates,” Stevin Report 6-69-7-HL, Delft University of Technology, Delft, the
Netherlands.
Ruddy, J. (1986), “Ponding of Concrete Deck Floors,” Engineering Journal, AISC, Vol. 23,
No. 3, 3rd Quarter, pp. 107–115.
Ruddy, J.L., Marlo, J.P., Ioannides, S.A. and Alfawakhiri, F. (2003), Fire Resistance of
Structural Steel Framing, Design Guide 19, AISC, Chicago, IL.
Salmon, C.G. and Johnson, J.E. (1996), Steel Structures, Design and Behavior, 4th Ed.,
HarperCollins College Publishers, New York, NY.
Salmon, C.G., Johnson, J.E. and Malhas, F.A. (2008), Steel Structures: Design and
Behavior, Prentice-Hall, Upper Saddle River, NJ.
Salvadori, M. (1956), “Lateral Buckling of Eccentrically Loaded I-Columns,” Transactions
of the ASCE, Vol. 122, No. 1.
Sato, A. and Uang, C.-M. (2007), “Modified Slenderness Ratio for Built-up Members,”
Engineering Journal, AISC, pp. 269–280.
Schilling, C.G. (1965), Buckling Strength of Circular Tubes, Journal of the Structural
Division, ASCE, Vol. 91, No. ST5, pp. 325–348.
Schuster, J.W. (1997), Structural Steel Fabrication Practices, McGraw-Hill, New York, NY.
SDI (2001), Standard Practice Details, Steel Deck Institute, Fox River Grove, IL.
SDI (2004), Diaphragm Design Manual , Steel Deck Institute, Fox River Grove, IL.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 547

16.1–548 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Seaburg, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members,
Design Guide 9, AISC, Chicago, IL.
SFPE (2002), Handbook of Fire Protection Engineering , 3rd Ed., P.J. DiNenno (ed.),
National Fire Protection Association, Quincy, MA.
SFSA (1995), Steel Castings Handbook , Steel Founders Society of America, Crystal Lake, IL.
Shanmugam, N.E. and Lakshmi, B. (2001), “State of the Art Report on Steel-Concrete
Composite Columns,” Journal of Constructional Steel Research , Vol. 57, No. 10, October,
pp. 1,041–1,080.
Sherbourne, A.N. and Jensen, C.D. (1957), “Direct Welded Beam Column Connections,”
Report. No. 233.12, Fritz Engineering Laboratory, Lehigh University, Bethlehem, PA.
Sherman, D.R. (1976), “Tentative Criteria for Structural Applications of Steel Tubing and
Pipe,” American Iron and Steel Institute, Washington, DC, August.
Sherman, D.R. and Tanavde, A.S. (1984), “Comparative Study of Flexural Capacity of
Pipes,” Internal Report, Department of Civil Engineering, University of Wisconsin-
Milwaukee, WI, March.
Sherman, D.R. and Ales, J.M. (1991), “The Design of Shear Tabs with Tubular Columns,”
Proceedings of the National Steel Construction Conference, Washington, DC, American
Institute of Steel Construction, Chicago, IL, pp. 1.2–1.22.
Sherman, D.R. (1992), “Tubular Members,” Constructional Steel Design—An International
Guide,P.J. Dowling, J.H. Harding and R. Bjorhovde (eds.), Elsevier Applied Science,
London, England, pp. 91–104.
Sherman, D.R. (1995a), “Stability Related Deterioration of Structures,” Proceedings of the
Annual Technical Session and Meeting, Kansas City, MO, March 27-28, 1995, Structural
Stability Research Council, Bethlehem, PA.
Sherman, D.R. (1995b), “Simple Framing Connections to HSS Columns,” Proceedings of
the National Steel Construction Conference, San Antonio, Texas, American Institute of
Steel Construction, Chicago, IL, pp. 30.1–30.16.
Sherman, D.R. (1996), “Designing with Structural Tubing,” Engineering Journal, AISC,
Vol. 33, No. 3, 3rd Quarter, pp. 101–109.
Slutter, R.G. and Driscoll, G.C. (1965), “Flexural Strength of Steel-Concrete Composite
Beams,” Journal of the Structural Division, ASCE, Vol. 91, No. ST2, April, pp. 71–99.
Sourochnikoff, B. (1950), “Wind Stresses in Semi-Rigid Connections of Steel Framework,”
Transactions of the ASCE, Vol. 115, pp. 382–402.
Stang, A.H. and Jaffe, B.S. (1948), Perforated Cover Plates for Steel Columns, Research
Paper RP1861, National Bureau of Standards, Washington, DC.
Stanway, G.S., Chapman, J.C. and Dowling, P.J. (1993), “Behaviour of a Web Plate in Shear
with an Intermediate Stiffener,” Proceedings of the Institution of Civil Engineers,
Structures and Buildings, Vol. 99, August, pp. 327–344.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 548

REFERENCES 16.1–549
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Stanway, G.S., Chapman, J.C. and Dowling, P.J. (1996), “A Design Model for Intermediate
Web Stiffeners,” Proceedings of the Institution of Civil Engineers, Structures and
Buildings, Vol. 116, February, pp. 54–68.
Summers, P.A. and Yura, J.A. (1982), “The Behavior of Beams Subjected to Concentrated
Loads,” Report No. 82-5, Phil M. Ferguson Structural Engineering Laboratory, University
of Texas, Austin, TX, August.
Surovek-Maleck, A.E. and White, D.W. (2003). “Direct Analysis Approach for the
Assessment of Frame Stability: Verification Studies,” Proceedings— Annual Technical
Session and Meeting,Structural Stability Research Council,Baltimore, MD,
pp. 423–441.
Surovek-Maleck, A., White, D.W. and Leon, R.T. (2004), “Direct Analysis and Design of
Partially-Restrained Steel Framing Systems,”Journal of Structural Engineering, ASCE,
Vol. 131, No. 9, pp. 1376–1389.
Takagi, J. and Deierlein, G.G. (2007), “Strength Design Criteria for Steel Members at
Elevated Temperatures,” Journal of Constructional Steel Research, Vol. 63,
pp. 1036–1050.
Taylor, A.C. and Ojalvo, M. (1966), “Torsional Restraint of Lateral Buckling,” Journal of
the Structural Division, ASCE, Vol. 92, No. ST2, pp. 115–129.
Thoft-Christensen, P. and Murotsu, Y. (1986) Application of Structural System Reliability
Theory, Springer Verlag, Berlin.
Tide, R.H.R. (1985), “Reasonable Column Design Equations,” Proceedings of the Annual
Technical Session and Meeting, Cleveland, OH, April 16-17, 1985, Structural Stability
Research Council, Bethlehem, PA.
Tide, R.H.R. (1999), “Evaluation of Steel Properties and Cracking in the ‘k’-area of W
Shapes,” Engineering Structures, Vol. 22, pp. 128-124.
Tide, R.H.R. (2001), “A Technical Note: Derivation of the LRFD Column Design
Equations,” Engineering Journal, AISC, Vol. 38, No. 3, 3rd Quarter, pp. 137–139.
Tide, R.H.R. (2010), “Bolt Shear Design Considerations,” Engineering Journal, AISC, Vol.
47, No. 1, 1st Quarter, pp. 47–64.
Timoshenko, S.P. (1956), Strength of Materials, Vol. II, 3rd Ed., D. Van Nostrand, New
York, NY.
Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill Book
Company, New York, NY.
Troup, E.W. (1999), “Effective Contract and Shop Drawings for Structural Steel,”
Proceedings of the AISC National Steel Construction Conference, Toronto, Ontario, May
19-21, 1999, American Institute of Steel Construction, Chicago, IL pp. 37-1–37-15.
Van der Sanden, P.G.F.J. (1995), “The Behaviour of a Headed Stud Connection in a ‘New’
Push Test including a Ribbed Slab. Tests: Main Report,” BKO Report No. 95-16,
Eindhoven University of Technology, Eindhoven, the Netherlands, March.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 549

16.1–550 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.-W. (2002), “Experimental Behavior of High
Strength Square Concrete Filled Steel Tube (CFT) Columns,” Journal of Structural
Engineering, ASCE, Vol. 128, No. 3, pp. 309–318.
Varma, A.H. and Zhang, K. (2009), “Slenderness Limits for Noncompact/Slender Filled
Members,” Bowen Laboratory Report No. 2009-01, School of Civil Engineering, Purdue
University, West Lafayette, IN, August.
Vickery, B.J., Isyumov, N. and Davenport, A.G. (1983), “The Role of Damping, Mass and
Stiffness in the Reduction of Wind Effects on Structures,” Journal of Wind Engineering
and Industrial Aerodynamics, Vol. 11, Nos. 1-3, pp. 285–294.
Viest, I.M., Siess, C.P., Appleton, J.H. and Newmark, N. (1952), “Full-Scale Tests of
Channel Shear Connectors and Composite T-Beams,” Bulletin Series No. 405, Vol. 50,
No. 29, University of Illinois Engineering Experiment Station, University of Illinois,
Urbana, IL.
Viest, I.M., Colaco, J.P., Furlong, R.W., Griffis, L.G., Leon, R.T. and Wyllie, L.A., Jr.
(1997), Composite Construction: Design for Buildings, McGraw-Hill, New York, NY.
von Kármán, T., Sechler, E.E. and Donnell, L.H. (1932), “The Strength of Thin Plates in
Compression,” Transactions of the ASME, Vol. 54.
Wardenier, J., Davies, G. and Stolle, P. (1981), “The Effective Width of Branch Plate to RHS
Chord Connections in Cross Joints,” Stevin Report 6-81-6, Delft University of
Technology, Delft, the Netherlands.
Wardenier, J., Kurobane, Y., Packer, J.A., Dutta, D. and Yeomans, N. (1991), Design Guide
for Circular Hollow Section (CHS) Joints under Predominantly Static Loading,CIDECT
Design Guide No. 1, CIDECT (ed.) and Verlag TÜV Rheinland, Köln, Germany.
West, M.A., Fisher, J.M. and Griffis, L.G. (2003), Serviceability Design Considerations for
Steel Buildings, Design Guide 3, 2nd Ed., AISC, Chicago, IL.
Wheeler, A. and Bridge, R. (2006), “The Behaviour of Circular Concrete-Filled Thin-
Walled Steel Tubes in Flexure,” Proceedings of the 5th International Conference on
Composite Construction in Steel and Concrete V, R.T. Leon and J. Lange (eds.), ASCE,
Reston, Virginia, pp. 413–423.
White, D.W. and Chen, W.F. (ed.) (1993), Plastic Hinge Based Methods for Advanced
Analysis and Design of Steel Frames: An Assessment of State-of-the-Art, Structural
Stability Research Council, Bethlehem, PA.
White, D.W. and Hajjar, J.F. (1997a), “Design of Steel Frames without Consideration of
Effective Length,” Engineering Structures, Vol. 19, No. 10, pp. 797–810.
White, D.W. and Hajjar, J.F. (1997b), “Buckling Models and Stability Design of Steel
Frames: a Unified Approach,” Journal of Constructional Steel Research, Vol. 42, No. 3,
pp. 171–207.
White, D.W. (2003), “Improved Flexural Design Provisions for I-Shaped Members and
Channels,” Structural Engineering, Mechanics and Materials Report No. 23, School of
Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 550

REFERENCES 16.1–551
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
White, D.W. and Jung, S.K (2003), “Simplified Lateral-Torsional Buckling Equations for
Singly-Symmetric I-Section Members,” Structural Engineering, Mechanics and
Materials Report No. 24b, School of Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, GA.
White, D.W. (2004), “Unified Flexural Resistance Equations for Stability Design of Steel I-
Section Members Overview,” Structural Engineering, Mechanics and Materials Report
No. 24a, School of Civil and Environmental Engineering, Georgia Institute of
Technology, Atlanta, GA.
White, D.W. and Barker, M. (2008), “Shear Resistance of Transversely-Stiffened Steel I-
Girders,” Journal of Structural Engineering, ASCE, Vol. 134, No. 9, pp. 1,425–1,436.
White, D.W. and Goverdhan, A.V. (2008), “Design of PR Frames Using the AISC Direct
Analysis Method,” in Connections in Steel Structures VI, R. Bjorhovde, F.S.K. Bijlaard
and L.F. Geschwindner (eds.), AISC, Chicago, IL, pp. 255–264.
Wilkinson, T. and Hancock, G.J. (1998), “Tests to Examine Compact Web Slenderness of
Cold-Formed RHS,” Journal of Structural Engineering , ASCE, Vol. 124, No. 10,
October, pp. 1,166–1,174.
Wilkinson, T. and Hancock, G.J. (2002), “Predicting the Rotation Capacity of Cold-Formed
RHS Beams Using Finite Element Analysis,” Journal of Constructional Steel Research ,
Vol. 58, No. 11, November, pp. 1,455–1,471.
Wilson, W.M. (1934), “The Bearing Value of Rollers,” Bulletin No. 263, University of
Illinois Engineering Experiment Station, Urbana, IL.
Winter, G. (1947), “Strength of Thin Steel Compression Flanges,” Transactions of the
ASCE, Vol. 112, p. 547.
Winter, G. (1958), “Lateral Bracing of Columns and Beams,” Journal of the Structural
Division, ASCE, Vol. 84, No. ST3, March, pp. 1,561-1–1,561-22.
Winter, G. (1960), “Lateral Bracing of Columns and Beams,” Transactions of the ASCE,
Vol. 125, Part 1, pp. 809–825.
Winter, G. (1968), Commentary on the Specification for the Design of Cold-Formed Steel
Members, American Iron and Steel Institute, Washington, DC.
Winter, G. (1970),Light Gage Cold-Formed Steel Design Manual: Commentary of the 1968
Edition, American Iron and Steel Institute, Washington, DC.
Wong, M.B. (2009), Plastic Analysis and Design of Steel Structures , Butterworth-
Heinemann, Burlington, MA.
Xie, M. and Chapman, J.C. (2003), “Design of Web Stiffeners: Axial Forces,” Journal of
Constructional Steel Research, Vol. 59, pp. 1,035–1,056.
Yuan, H. (1996), “The Resistances of Stud Shear Connectors with Profiled Sheeting,” Ph.D.
Dissertation, Department of Engineering, The University of Warwick, Coventry, England.
Yuan, Q., Swanson, J. and Rassati, G.A. (2004), “An Investigation of Hole Making Practices
in the Fabrication of Structural Steel,” Internal Report, Department of Civil and
Environmental Engineering, University of Cincinnati, Cincinnati, OH.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 551

16.1–552 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Yura, J.A. (1971), “The Effective Length of Columns in Unbraced Frames,” Engineering
Journal, AISC, Vol. 8, No. 2, 2nd Quarter, pp. 37–42.
Yura, J.A., Galambos, T.V. and Ravindra, K. (1978), “The Bending Resistance of Steel
Beams,” Journal of the Structural Division, ASCE, Vol. 104, No. ST9, pp. 1,355–1,370.
Yura, J.A., Birkemoe, P.C. and Ricles, J.M. (1982), “Beam Web Shear Connections: An
Experimental Study,” Journal of the Structural Division, ASCE, Vol. 108, No. ST2,
February, pp. 311–326.
Yura, J.A. (1995), “Bracing for Stability—State-of-the-Art,” Proceedings of the ASCE
Structures Congress XIII, Boston, MA, April 2-5, 1995, American Society of Civil
Engineers, New York, NY, pp. 88–103.
Yura, J.A., Kanchanalai, T. and Chotichanathawenwong, S. (1996), “Verification of Steel
Beam-Column Design Based on the AISC–LRFD Method,” Proceedings— 5th
International Colloquium on the Stability of Metal Structures, SSRC, Bethelem, PA,
pp. 21–30.
Yura, J.A. (2001), “Fundamentals of Beam Bracing,” Engineering Journal, AISC, Vol. 38,
No.1, 1st Quarter, pp. 11–26.
Yura, J.A. and Helwig, T.A. (2009), “Bracing for Stability,” Short Course Notes, Structural
Stability Research Council, North American Steel Construction Conference, Phoenix,
AZ, April.
Zahn, C.J. and Haaijer, G. (1987), “Effect of Connector Spacing on Double Angle
Compressive Strength,” Materials and Member Behavior, Proceedings, Structures
Congress 1987, ASCE, Orlando, FL, pp. 199–212.
Zandonini, R. (1985), “Stability of Compact Built-Up Struts: Experimental Investigation
and Numerical Simulation,” Costruzioni Metalliche, No. 4.
Ziemian, R.D, McGuire, W. and Deierlein, G. (1992), “Inelastic Limit States Design, Part I:
Planar Frame Studies, and Part II: Three-Dimensional Frame Study,” Journal of
Structural Engineering, ASCE, Vol. 118, No. 9, pp. 2532–2567.
Ziemian, R.D. and Miller, A.R. (1997), “Inelastic Analysis and Design: Frames With
Members in Minor-Axis Bending,” Journal of Structural Engineering , ASCE, Vol. 123,
No. 2, pp. 151–157.
Ziemian, R.D. and McGuire, W. (2002), “Modified Tangent Modulus Approach, a
Contribution to Plastic Hinge Analysis,” Journal of Structural Engineering , ASCE, Vol.
128, No. 10, October, pp. 1301–1307.
Ziemian, R.D., McGuire, W. and Seo, D.W. (2008), “On the Inelastic Strength of Beam-
Columns under Biaxial Bending,” Proceedings—Annual Stability Conference, Structural
Stability Research Council, Nashville, TN.
Ziemian, R.D. (ed.) (2010), Guide to Stability Design Criteria for Metal Structures , 6th Ed.,
John Wiley & Sons, Inc., Hoboken, NJ.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 552

Unit Multiply by to obtain
length inch (in.) 25.4 millimeters (mm)
length foot (ft) 0.304 8 meters (m)
mass pound-mass (lbm) 0.453 6 kilogram (kg)
stress ksi 6.895
megapascals
(MPa), N/mm
2
moment kip-in 113 000 N-mm
energy ft-lbf 1.356 joule (J)
force kip (1 000 lbf) 4 448 newton (N)
force psf 47.88 pascal (Pa), N/m
2
force plf 14.59 N/m
temperature To convert °F to °C:
tc° = (tf° −32)/1.8
force in lbf or N = mass × g
where g, acceleration due to gravity = 32.2 ft /sec
2
=9.81 m/sec
2
Metric Conversion Factors for
Common Steel Design Units Used in the
AISC Specification
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 553

AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 554

Specification for
Structural Joints Using
High-Strength Bolts



December 31, 2009


Supersedes the June 30, 2004 Specification for
Structural Joints Using ASTM A325 or A490 Bolts.

Prepared by RCSC Committee A.1—Specifications and
approved by the Research Council on Structural Connections.








www.boltcouncil.org
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
c/o AISC, One East Wacker Drive, Suite 700, Chicago, Illinois 60601

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-ii







RCSC © 2010
by
Research Council on Structural Connections




All rights reserved. This book or any part thereof must not be reproduced in any form
without the written permission of the publisher.

The information presented in this publication has been prepared in accordance with
recognized engineering principles and is for general information only. While it is
believed to be accurate, this information should not be used or relied upon for any
specific application without competent professional examination and verification of
its accuracy, suitability, and applicability by a licensed professional engineer,
designer, or architect. The publication of the material contained herein is not
intended as a representation or warranty on the part of the Research Council on
Structural Connections or of any other person named herein, that this information
is suitable for any general or particular use or of freedom from infringement of any
patent or patents. Anyone making use of this information assumes all liability
arising from such use.

Caution must be exercised when relying upon other specifications and codes
developed by other bodies and incorporated by reference herein since such material
may be modified or amended from time to time subsequent to the printing of this
edition. The Institute bears no responsibility for such material other than to refer to
it and incorporate it by reference at the time of the initial publication of this edition.


Printed in the United States of America

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-iii
PREFACE


The purpose of the Research Council on Structural Connections (RCSC) is:

(1) To stimulate and support such investigation as may be deemed necessary and
valuable to determine the suitability, strength and behavior of various types of
structural connections;
(2) To promote the knowledge of economical and efficient practices relating to such
structural connections; and,
(3) To prepare and publish related specifications and such other documents as necessary
to achieving its purpose.

The Council membership consists of qualified structural engineers from academic and
research institutions, practicing design engineers, suppliers and manufacturers of fastener
components, fabricators, erectors and code-writing authorities.
The first Specification approved by the Council, called the Specification
for Assembly of Structural Joints Using High Tensile Steel Bolts, was published in
January 1951. Since that time the Council has published sixteen successive editions.
Each was developed through the deliberations and approval of the full Council
membership and based upon past successful usage, advances in the state of knowledge
and changes in engineering design practice. This edition of the Council’s Specification
for Structural Joints Using High-Strength Bolts continues the tradition of earlier editions.
The major changes are:

• ASTM F2280 bolt assemblies were added to the Specification.
• ASTM F1136 coating usage was added to the Specification.
• References to ASTM A153 have been replaced with an updated reference to ASTM
F2329.
• Section 3.3 was modified to provide a clarification on thermally-cut holes.
• Section 3.4 was modified in regard to burrs over z in. high.
• Table 5.1 was modified to show new shear design values for joints based on overall
joint length.
• Sections 7 and 8 had a number of clarifications added in relation to pre-installation
testing and installation practices. Table 7.1 was added to clarify the minimum bolt
pretension for pre-installation verification.
• The “snug-tight” definition and references have been modified to make this
terminology less subjective in its application.
• Appendix B Tables were brought into consistency with equivalent provisions in
Section 5.

In addition, typographical changes have been made throughout this Specification.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-iv
By the Research Council on Structural Connections,

Charles J. Carter
Chairman
Gregory S. Miazga
Vice Chairman
Chad M. Larson
Secretary/Treasurer
Abolhassan Astaneh-Asl
Joseph G. Bahadrian
Rodney L. Baxter
John J. Biel
Peter C. Birkemoe
David W. Bogaty
Salim V. Brahimi
Richard C. Brown
Frank M.A. Buck
Bruce M. Butler
Helen H. Chen
Robert J. Connor
Bastiaan E. Cornelissen
Chris Curven
Nick E. Deal
James M. Doyle
Dean G. Droddy
Peter Dusicka
Douglas B. Ferrell
John W. Fisher
Patrick J. Fortney
Danilo M. Francisco
Karl H. Frank
Michael C. Friel
James B. Gialamas
Rodney D. Gibble
Michael I. Gilmor
Joe Greeenslade
Gilbert Y. Grondin
Jerome F. Hajjar
Allen J. Harrold
Robert A. Hay III
Ian C. Hodgson
Charles E. Hundley
Kaushik A. Iyer
Emmanuel P. Jefferson
Suja G. John
Donald L. Johnson
Ronald B. Johnson
Peter F. Kasper
Daniel J. Kaufman
James S. Kennedy
Lawrence A. Kloiber
Richard F. Knoblock
Lawrence Kruth
Geoffrey L. Kulak
Bill R. Lindley, II
Kenneth B. Lohr
Hussam N. Mahmoud
Curtis Mayes
Jonathan C. McGormley
David L. McKenzie
Neil L. McMillan
Jinesh K. Mehta
William A. Milek, Jr.
Eugene R. Mitchell
Heath E. Mitchell
Scott Munter
Thomas M. Murray
Gian A. Rassati
James M. Ricles
Thomas J. Schlafly
Gerald E. Schroeder
David F. Sharp
Robert E. Shaw, Jr.
Victor Shneur
W. Lee Shoemaker
James A. Swanson
Arun A. Syam
Thomas S. Tarpy, Jr.
William A. Thornton
Raymond H.R. Tide
Todd C. Ude
Amit H. Varma
M. Blane Vines
Floyd J. Vissat
I. Wayne Wallace
Charles J. Wilson
Alfred F. Wong
Joseph A. Yura

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-v
TABLE OF CONTENTS


Symbols ......................................................................................................................... vii
Glossary ......................................................................................................................... ix

Section 1. General Requirements .................................................................................. 1
1.1. Scope ......................................................................................................................... 1
1.2. Loads, Load Factors and Load Combinations ........................................................... 1
1.3. Referenced Standards and Specifications ................................................................. 2
1.4. Drawing Information ................................................................................................. 3

Section 2. Fastener Components ................................................................................... 5
2.1. Manufacturer Certification of Fastener Components ................................................ 5
2.2. Storage of Fastener Components .............................................................................. 5
2.3. Heavy-Hex Structural Bolts ...................................................................................... 6
2.4. Heavy-Hex Nuts ...................................................................................................... 13
2.5. Washers ................................................................................................................... 14
2.6. Washer-Type Indicating Devices ............................................................................ 14
2.7. Twist-Off-Type Tension-Control Bolt Assemblies ................................................. 15
2.8. Alternative-Design Fasteners .................................................................................. 16

Section 3. Bolted Parts ................................................................................................. 17
3.1. Connected Plies ....................................................................................................... 17
3.2. Faying Surfaces ....................................................................................................... 17
3.3. Bolt Holes ............................................................................................................... 21
3.4. Burrs ........................................................................................................................ 24

Section 4. Joint Type .................................................................................................... 26
4.1. Snug-Tightened Joints ............................................................................................. 28
4.2. Pretensioned Joints .................................................................................................. 29
4.3. Slip-Critical Joints ................................................................................................... 30

Section 5. Limit States in Bolted Joints ...................................................................... 31
5.1. Design Shear and Tensile Strength ......................................................................... 32
5.2. Combined Shear and Tension ................................................................................. 35
5.3. Design Bearing Strength at Bolt Holes ................................................................... 36
5.4. Design Slip Resistance ............................................................................................ 38
5.5. Tensile Fatigue ........................................................................................................ 42

Section 6. Use of Washers ............................................................................................ 44
6.1. Snug-Tightened Joints ............................................................................................. 44
6.2. Pretensioned Joints and Slip-Critical Joints ............................................................ 44

Section 7. Pre-Installation Verification ...................................................................... 47
7.1. Tension Calibrator ................................................................................................... 47
7.2. Required Testing ..................................................................................................... 49

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-vi
Section 8. Installation ................................................................................................... 51
8.1. Snug-Tightened Joints ............................................................................................. 51
8.2. Pretensioned Joints and Slip-Critical Joints............................................................. 51

Section 9. Inspection .................................................................................................... 59
9.1. Snug-Tightened Joints ............................................................................................. 59
9.2. Pretensioned Joints .................................................................................................. 59
9.3. Slip-Critical Joints ................................................................................................... 62

Section 10. Arbitration ................................................................................................ 63

Appendix A. Testing Method to Determine the Slip
Coefficient for Coatings Used in Bolted Joints ........................................................... 65
A1. General Provisions .................................................................................................. 65
A2. Test Plates and Coating of the Specimens ............................................................... 66
A3. Slip Tests ................................................................................................................. 69
A4. Tension Creep Tests ................................................................................................ 73

Appendix B. Allowable Stress Design (ASD) Alternative .......................................... 75

References....................................................................................................................... 80

Index................................................................................................................................ 82

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-vii
SYMBOLS


The following symbols are used in this Specification.

A
b
Cross-sectional area based upon the nominal diameter of bolt, in.
2


D Slip probability factor as described in Section 5.4.2

D
u
Multiplier that reflects the ratio of the mean installed bolt pretension to the
specified minimum bolt pretension, T
m, as described in Section 5.4.1

F
n
Nominal strength (per unit area), ksi

F
u
Specified minimum tensile strength (per unit area), ksi

I Moment of inertia of the built-up member about the axis of buckling (see
the Commentary to Section 5.4), in.
4


L Total length of the built-up member (see the Commentary to Section 5.4), in.

L
s Length of a connection measured between extreme bolt hole centers parallel
to the line of force (see Table 5.1), in.

L
c Clear distance, in the direction of load, between the edge of the hole and the
edge of the adjacent hole or the edge of the material, in.

N
b Number of bolts in the joint

P
u Required strength in compression, kips; Axial compressive force in the
built-up member (see the Commentary to Section 5.4), kips

Q First moment of area of one component about the axis of buckling of the
built-up member (see the Commentary to Section 5.4), in.
3


R
n Nominal strength, kips

R
s Service-load slip resistance, kips

T Applied service load in tension, kips

T
m Specified minimum bolt pretension (for pretensioned joints as specified in Table
8.1), kips

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-viii

T
u Required strength in tension (factored tensile load), kips

V
u Required strength in shear (factored shear load), kips

d
b Nominal diameter of bolt, in.

t Thickness of the connected material, in.

t´ Total thickness of fillers or shims (see Section 5.1), in.

k
s Slip coefficient for an individual specimen determined in accordance with
Appendix A

φ Resistance factor

φR
n Design strength, kips

µ Mean slip coefficient

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-ix
GLOSSARY


The following terms are used in this Specification. Where used, they are italicized to alert
the user that the term is defined in this Glossary.

Coated Faying Surface. A faying surface that has been primed, primed and painted or
protected against corrosion, except by hot-dip galvanizing.

Connection. An assembly of one or more joints that is used to transmit forces between two
or more members.

Contractor. The party or parties responsible to provide, prepare and assemble the fastener
components and connected parts described in this Specification.

Design Strength. φR
n, the resistance provided by an element or connection; the product of
the nominal strength, R
n, and the resistance factor φ.

Engineer of Record. The party responsible for the design of the structure and for the
approvals that are required in this Specification (see Section 1.4 and the corresponding
Commentary).

Fastener Assembly. An assembly of fastener components that is supplied, tested and
installed as a unit.

Faying Surface. The plane of contact between two plies of a joint.

Firm Contact. The condition that exists on a faying surface when the plies are solidly
seated against each other, but not necessarily in continuous contact.

Galvanized Faying Surface. A faying surface that has been hot-dip galvanized.

Grip. The total thickness of the plies of a joint through which the bolt passes, exclusive
of washers or direct-tension indicators.

Guide. The Guide to Design Criteria for Bolted and Riveted Joints, 2
nd
Edition (Kulak
et al., 1987).

High-Strength Bolt. An ASTM A325 or A490 bolt, an ASTM F1852 or F2280 twist-
off-type tension-control bolt or an alternative-design fastener that meets the requirements
in Section 2.8.

Inspector. The party responsible to ensure that the contractor has satisfied the provisions
of this Specification in the work.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-x

Joint. A bolted assembly with or without collateral materials that is used to join two
structural elements.

Lot. In this Specification, the term lot shall be taken as that given in the ASTM Standard
as follows:

Product ASTM Standard
See Lot Definition
in ASTM Section
A325 9.4
Conventional bolts
A490 11.4
F1852 13.4
Twist-off-type tension-control
bolt assemblies
F2280 3.1.1
Nuts A563 9.2
Washers F436 9.2
Compressible-washer-type
direct tension indicators
F959 10.2.2
Manufacturer. The party or parties that produce the components of the fastener assembly.
Mean Slip Coefficient. µ, the ratio of the frictional shear load at the faying surface to the
total normal force when slip occurs. Nominal Strength. The capacity of a structure or component to resist the effects of loads,
as determined by computations using the specified material strengths and dimensions and
equations derived from accepted principles of structural mechanics or by field tests or
laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions. Pretensioned Joint. A joint that transmits shear and/or tensile loads in which the bolts have
been installed in accordance with Section 8.2 to provide a pretension in the installed bolt.
Protected Storage. The continuous protection of fastener components in closed containers
in a protected shelter as described in the Commentary to Section 2.2. Prying Action. Lever action that exists in connections in which the line of application of
the applied load is eccentric to the axis of the bolt, causing deformation of the fitting and
an amplification of the axial tension in the bolt. Required Strength. The load effect acting on an element or connection determined by
structural analysis from the factored loads using the most appropriate critical load
combination. Routine Observation. Periodic monitoring of the work in progress.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-xi

Shear/Bearing Joint. A snug-tightened joint or pretensioned joint with bolts that transmit
shear loads and for which the design criteria are based upon the shear strength of the
bolts and the bearing strength of the connected materials.

Slip-Critical Joint. A joint that transmits shear loads or shear loads in combination with
tensile loads in which the bolts have been installed in accordance with Section 8.2 to
provide a pretension in the installed bolt (clamping force on the faying surfaces), and
with faying surfaces that have been prepared to provide a calculable resistance against
slip.

Snug-Tightened Joint. A joint in which the bolts have been installed in accordance with
Section 8.1. Snug tight is the condition that exists when all of the plies in a connection
have been pulled into firm contact by the bolts in the joint and all of the bolts in the joint
have been tightened sufficiently to prevent the removal of the nuts without the use of a
wrench.

Start of Work. Any time prior to the installation of high-strength bolts in structural
connections in accordance with Section 8.

Sufficient Thread Engagement. Having the end of the bolt extending beyond or at least
flush with the outer face of the nut; a condition that develops the strength of the bolt.

Supplier. The party that sells the fastener components to the party that will install them
in the work.

Tension Calibrator. A calibrated tension-indicating device that is used to verify the
acceptability of the pretensioning method when a pretensioned joint or slip-critical joint
is specified.

Uncoated Faying Surface. A faying surface that has neither been primed, painted, nor
galvanized and is free of loose scale, dirt and other foreign material.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-xii

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-1
SPECIFICATION FOR STRUCTURAL JOINTS
USING HIGH-STRENGTH BOLTS



SECTION 1. GENERAL REQUIREMENTS

1.1. Scope
This Specification covers the design of bolted joints and the installation and
inspection of the assemblies of fastener components listed in Section 1.3, the
use of alternative-design fasteners as permitted in Section 2.8 and alternative
washer-type indicating devices as permitted in Section 2.6.2, in structural steel
joints. This Specification relates only to those aspects of the connected
materials that bear upon the performance of the fastener components. The
Symbols, Glossary and Appendices are a part of this Specification.

Commentary:
This Specification deals principally with two strength grades of high-strength
bolts, ASTM A325 and A490, and with their design, installation and inspection
in structural steel joints. Equivalent fasteners, however, such as ASTM F1852
(equivalent to ASTM A325) and F2280 (equivalent to ASTM A490) twist-off-
type tension-control bolt assemblies, are also covered. These provisions may
not be relied upon for high-strength fasteners of other chemical composition,
mechanical properties, or size. These provisions do not apply when material
other than steel is included in the grip; nor are they applicable to anchor rods.
This Specification relates only to the performance of fasteners in
structural steel joints and those few aspects of the connected material that affect
this performance. Many other aspects of connection design and fabrication are of
equal importance and must not be overlooked. For more general information on
design and issues relating to high-strength bolting and the connected material,
refer to current steel design textbooks and the Guide to Design Criteria for
Bolted and Riveted Joints, 2
nd
Edition (Kulak et al., 1987).

1.2. Loads, Load Factors and Load Combinations
The design and construction of the structure shall conform to an applicable load
and resistance factor design specification for steel structures. Because factored
load combinations account for the reduced probabilities of maximum loads
acting concurrently, the design strengths given in this Specification shall not be
increased. Appendix B is included as an alternative approach.

Commentary:
This Specification is written in the load and resistance factor design (LRFD)
format, which provides a method of proportioning structural components such
that no applicable limit state is exceeded when the structure is subject to all

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-2
appropriate load combinations. When a structure or structural component ceases
to fulfill the intended purpose in some way, it is said to have exceeded a limit
state. Strength limit states concern maximum load-carrying capability, and are
related to safety. Serviceability limit states are usually related to performance
under normal service conditions, and usually are not related to strength or
safety. The term “resistance” includes both strength limit states and
serviceability limit states.
The design strength φ R n
is the nominal strength R
n
multiplied by the
resistance factor φ. The factored load is the sum of the nominal loads multiplied
by load factors, with due recognition of load combinations that account for the
improbability of simultaneous occurrence of multiple transient load effects at
their respective maximum values. The design strength φ R n
of each structural
component or assemblage must equal or exceed the required strength ( V u, Tu,
etc.).
Although loads, load factors and load combinations are not explicitly
specified in this Specification, the resistance factors herein are based upon those
specified in ASCE 7. When the design is governed by other load criteria, the
resistance factors specified herein should be adjusted as appropriate.
1.3. Referenced Standards and Specifications
The following standards and specifications are referenced herein:

American Institute of Steel Construction
Specification for Structural Steel Buildings, June 22, 2010

American National Standards Institute
ANSI/ASME B18.2.6-06 Fasteners for Use in Structural Applications

American Society for Testing and Materials
ASTM A123-09 Standard Specification for Zinc (Hot-Dip Galvanized)
Coatings on Iron and Steel Products
ASTM A194-09 Specification for Carbon and Alloy Steel Nuts for Bolts for
High Pressure or High-Temperature Service, or Both
ASTM A325-09a Standard Specification for Structural Bolts, Steel, Heat
Treated, 120/105 ksi Minimum Tensile Strength
ASTM A490-09 Standard Specification for Heat-Treated Steel Structural
Bolts, 150 ksi Minimum Tensile Strength
ASTM A563-07a Standard Specification for Carbon and Alloy Steel Nuts
ASTM B695-04(2009)

Standard Specification for Coatings of Zinc
Mechanically Deposited on Iron and Steel
ASTM F436-09 Standard Specification for Hardened Steel Washers
ASTM F959-09 Standard Specification for Compressible-Washer-Type
Direct Tension Indicators for Use with Structural Fasteners

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-3
ASTM F1136-04 Standard Specification for Zinc/Aluminum Corrosion
Protective Coatings for Fasteners
ASTM F1852-08 Standard Specification for “Twist Off” Type Tension
Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated,
120/105 ksi Minimum Tensile Strength
ASTM F2280-08e1 Standard Specification for “Twist Off” Type Tension
Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 150 ksi
Minimum Tensile Strength
ASTM F2329-05 Standard Specification for Zinc Coating, Hot-Dip,
Requirements for Application to Carbon and Alloy Steel Bolts, Screws,
Washers, Nuts, and Special Threaded Fasteners

American Society of Civil Engineers
ASCE 7-05 Minimum Design Loads for Buildings and Other Structures

IFI: Industrial Fastener Institute
IFI 144 Test Evaluation Procedures for Coating Qualification Intended for Use
on High-Strength Structural Bolts

SSPC: The Society for Protective Coatings
SSPC-PA2-04 Measurement of Dry Coating Thickness With Magnetic Gages

Commentary:
Familiarity with the referenced AISC, ASCE, ASME, ASTM and SSPC
specification requirements is necessary for the proper application of this
Specification. The discussion of referenced specifications in this Commentary is
limited to only a few frequently overlooked or misunderstood items.

1.4. Drawing Information
The Engineer of Record shall specify the following information in the
contract documents:

(1) The ASTM designation and type (Section 2) of bolt to be used;
(2) The joint type (Section 4);
(3) The required class of slip resistance if slip-critical joints are specified
(Section 4); and,
(4) Whether slip is checked at the factored-load level or the service-load level, if
slip-critical joints are specified (Section 5).

Commentary:
A summary of the information that the Engineer of Record is required to
provide in the contract documents is provided in this Section. The parenthetical
reference after each listed item indicates the location of the actual requirement

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-4
in this Specification. In addition, the approval of the Engineer of Record is
required in this Specification in the following cases:

(1) For the reuse of non-galvanized ASTM A325 bolts (Section 2.3.3);
(2) For the use of alternative washer-type indicating devices that differ from
those that meet the requirements of ASTM F959, including the
corresponding installation and inspection requirements that are provided by
the manufacturer (Section 2.6.2);
(3) For the use of alternative-design fasteners, including the corresponding
installation and inspection requirements that are provided by the
manufacturer (Section 2.8);
(4) For the use of faying-surface coatings in slip-critical joints that provide a
mean slip coefficient determined per Appendix A, but differing from Class A
or Class B (Section 3.2.2(b));
(5) For the use of thermal cutting in the production of bolt holes (Section 3.3);
(6) For the use of oversized (Section 3.3.2), short-slotted (Section 3.3.3) or
long slotted holes (Section 3.3.4) in lieu of standard holes;
(7) For the use of a value of D u
other than 1.13 (Section 5.4.1); and,
(8) For the use of a value of D other than 0.80 (Section 5.4.2).

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-5
SECTION 2. FASTENER COMPONENTS

2.1. Manufacturer Certification of Fastener Components
Manufacturer certifications documenting conformance to the applicable
specifications required in Sections 2.3 through 2.8 for all fastener
components used in the fastener assemblies shall be available to the Engineer of
Record and inspector prior to assembly or erection of structural steel.

Commentary:
Certification by the manufacturer or supplier of high-strength bolts, nuts,
washers and other components of the fastener assembly is required to ensure
that the components to be used are identifiable and meet the requirements of the
applicable ASTM Specifications.

2.2. Storage of Fastener Components
Fastener components shall be protected from dirt and moisture in closed
containers at the site of installation. Only as many fastener components as are
anticipated to be installed during the work shift shall be taken from protected
storage. Fastener components that are not incorporated into the work shall be
returned to protected storage at the end of the work shift. Fastener components
shall not be cleaned or modified from the as-delivered condition.
Fastener components that accumulate rust or dirt shall not be
incorporated into the work unless they are requalified as specified in Section 7.
ASTM F1852 and F2280 twist-off-type tension-control bolt assemblies and
alternative-design fasteners that meet the requirements in Section 2.8 shall not
be relubricated, except by the manufacturer.

Commentary:
Protected storage requirements are specified for high-strength bolts, nuts,
washers and other fastener components with the intent that the condition of the
components be maintained as nearly as possible to the as-manufactured
condition until they are installed in the work. This involves:

(1) The storage of the fastener components in closed containers to protect from
dirt and corrosion;
(2) The storage of the closed containers in a protected shelter;
(3) The removal of fastener components from protected storage only as
necessary; and,
(4) The prompt return of unused fastener components to protected storage .

To facilitate manufacture, prevent corrosion and facilitate installation,
the manufacturer may apply various coatings and oils that are present in the as-
manufactured condition. As such, the condition of supplied fastener components

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-6
or the fastener assembly should not be altered to make them unsuitable for
pretensioned installation.
If fastener components become dirty, rusty, or otherwise have their as-
received condition altered, they may be unsuitable for pretensioned
installation. It is also possible that a fastener assembly may not pass the pre-
installation verification requirements of Section 7. Except for ASTM F1852
and F2280 twist-off-type tension-control bolt assemblies (Section 2.7) and
some alternative-design fasteners (Section 2.8), fastener components can be
cleaned and lubricated by the fabricator or the erector. Because the acceptability
of their installation is dependent upon specific lubrication, ASTM F1852 and
F2280 twist-off-type tension-control bolt assemblies and some alternative-
design fasteners are suitable only if the manufacturer lubricates them.

2.3. Heavy-Hex Structural Bolts
2.3.1. Specifications: Heavy-hex structural bolts shall meet the requirements of
ASTM A325 or ASTM A490. The Engineer of Record shall specify the ASTM
designation and type of bolt (see Table 2.1) to be used.

2.3.2. Geometry: Heavy-hex structural bolt dimensions shall meet the requirements of
ANSI/ASME B18.2.6. The bolt length used shall be such that the end of the
bolt extends beyond or is at least flush with the outer face of the nut when
properly installed.

2.3.3 Reuse: ASTM A490 bolts, ASTM F1852 and F2280 twist-off-type tension-
control bolt assemblies, and galvanized or Zn/Al Inorganic coated ASTM A325
bolts shall not be reused. When approved by the Engineer of Record, black
ASTM A325 bolts are permitted to be reused. Touching up or re-tightening
bolts that may have been loosened by the installation of adjacent bolts shall not
be considered to be a reuse.

Commentary:
ASTM A325 and ASTM A490 currently provide for two types (according to
metallurgical classification) of high-strength bolts, supplied in diameters
from 2 in. to 12 in. inclusive. Type 1 covers medium carbon steel for ASTM
A325 bolts and alloy steel for ASTM A490 bolts. Type 3 covers high-strength
bolts that have improved atmospheric corrosion resistance and weathering
characteristics. (Reference to Type 2 ASTM A325 and Type 2 A490 bolts,
which appeared in previous editions of this Specification, has been removed
following the removal of similar reference within the ASTM A325 and A490
Specifications). When the bolt type is not specified, either Type 1 or Type 3
may be supplied at the option of the manufacturer. Note that ASTM F1852
and ASTM F2280 twist-off-type tension-control bolt assemblies may be
manufactured with a button head or hexagonal head; other requirements for
these fastener assemblies are found in Section 2.7.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-7
Table 2.1. Acceptable ASTM A563 Nut Grade and Finish
and ASTM F436 Washer Type and Finish

ASTM
Desig.
Bolt
Type
Bolt Finish
d

ASTM A563 Nut
Grade and Finish d

ASTM F436 Washer
Type and Finish
a,d

Plain (uncoated)
C, C3, D, DH
c
and DH3;
plain
1; plain
Galvanized
DH
c
; galvanized and
lubricated
1; galvanized
1
Zn/Al Inorganic, per
ASTM F1136 Grade 3
DH
c
; Zn/Al Inorganic, per
ASTM F1136 Grade 5
1; Zn/Al Inorganic, per
ASTM F1136 Grade 3
A325
3 Plain C3 and DH3; plain 3; plain
Plain (uncoated)
C, C3, DH
c
and DH3;
plain
1; plain
b

Mechanically Galvanized
DH
c
; mechanically
galvanized and lubricated
1; mechanically
galvanized
b

1
Zn/Al Inorganic, per
ASTM F1136 Grade 3
DH
c
; Zn/Al Inorganic, per
ASTM F1136 Grade 5
1; Zn/Al Inorganic, per
ASTM F1136 Grade 3
b

F1852
3 Plain C3 and DH3; plain 3; plain
b

Plain DH
c
and DH3; plain 1; plain
1
Zn/Al Inorganic, per
ASTM F1136 Grade 3
DH c
; Zn/Al Inorganic, per
ASTM F1136 Grade 5
1; Zn/Al Inorganic, per
ASTM F1136 Grade 3
A490
3 Plain DH3; plain 3; plain
1 Plain DH
c
and DH3; plain 1; plain
b

F2280
3 Plain DH3; plain 3; plain
b


a
Applicable only if washer is required in Section 6.

b
Required in all cases under nut per Section 6.

c
The substitution of ASTM A194 grade 2H nuts in place of ASTM A563 grade DH nuts is
permitted.

d
“Galvanized” as used in this table refers to hot-dip galvanizing in accordance with ASTM F2329 or
mechanical galvanizing in accordance with ASTM B695.

e
"Zn/Al Inorganic" as used in this table refers to application of a Zn/Al Corrosion Protective
Coating in accordance with ASTM F1136 which has met all the requirements of IFI-144.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-8

Regular heavy-hex structural bolts and twist-off-type tension-control
bolt assemblies are required by ASTM Specifications to be distinctively
marked. Certain markings are mandatory. In addition to the mandatory
markings, the manufacturer may apply additional distinguishing markings. The
mandatory and sample optional markings are illustrated in Figure C-2.1.
ASTM Specifications permit the galvanizing of ASTM A325 bolts but
not ASTM A490 bolts. Similarly, the application of zinc to ASTM A490 bolts
by metallizing or mechanical coating is not permitted because the effect of
mechanical galvanizing on embrittlement and delayed cracking of ASTM
A490 bolts has not been fully investigated to date.

Bolt/Nut Type 1 Type 3
ASTM A325 bolt

Three radial lines 120°
apart are optional

ASTM F1852 bolt

Three radial lines 120°
apart are optional

ASTM A490 bolt

ASTM F2280 bolt


Arcs indicate
Grade C

Arcs with “3” indicate
Grade C3

Grade D
ASTM A563 nut

Grade DH

Grade DH3
Notes:
1. XYZ represents the manufacturer’s identification mark.
2. ASTM F1852 and ASTM F2280 twist-off-type tension-control bolt assemblies are
also produced with a heavy-hex head that has similar markings.
Figure C-2.1. Required marks for acceptable bolt and nut assemblies.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-9
An extensive investigation conducted in accordance with IFI-144 was
completed in 2006 and presented to the ASTM F16 Committee on Fasteners
(F16 Research Report RR: F16-1001). The investigation demonstrated that
Zn/Al Inorganic Coating, when applied per ASTM F1136 Grade 3 to ASTM
A490 bolts, does not cause delayed cracking by internal hydrogen
embrittlement, nor does it accelerate environmental hydrogen embrittlement by
cathodic hydrogen absorption. It was determined that this is an acceptable finish
to be used on Type 1 ASTM A325 and A490 bolts and F1852 and F2280 twist-
off-type tension-control bolt assemblies.
Although these bolts are typically not used in this manner, prior to
embedding bolts coated with Zn/Al Inorganic Coating in concrete, it should be
confirmed that there is no negative impact (to the bolt or the concrete) caused by
the reaction of the intended concrete mix and the aluminum in the coating.
Galvanized high-strength bolts and nuts must be considered as a
manufactured fastener assembly. Insofar as the hot-dip galvanized bolt and nut
assembly is concerned, four principal factors must be considered so that the
provisions of this Specification are understood and properly applied. These are:

(1) The effect of the hot-dip galvanizing process on the mechanical properties
of high-strength steels;
(2) The effect of over-tapping for hot-dip galvanized coatings on the nut
stripping strength;
(3) The effect of galvanizing and lubrication on the torque required for
pretensioning; and,
(4) Shipping requirements.

Birkemoe and Herrschaft (1970) showed that, in the as-galvanized
condition, galvanizing increases the friction between the bolt and nut threads as
well as the variability of the torque-induced pretension. A lower required
torque and more consistent results are obtained if the nuts are lubricated. Thus,
it is required in ASTM A325 that a galvanized bolt and lubricated galvanized
or Zn/Al Inorganic coated nut be assembled in a steel joint with an equivalently
coated washer and tested by the supplier prior to shipment. This testing must
show that the galvanized or Zn/Al Inorganic coated nut with the lubricant
provided may be rotated from the snug-tight condition well in excess of the
rotation required for pretensioned installation without stripping. This
requirement applies to hot-dip galvanized, mechanically galvanized, and Zn/Al
Inorganic coated fasteners. The above requirements clearly indicate that:

(1) Galvanized and Zn/Al Inorganic coated high-strength bolts and nuts must
be treated as a fastener assembly;
(2) The supplier must supply nuts that have been lubricated and tested with the
supplied high-strength bolts;

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-10
(3) Nuts and high-strength bolts must be shipped together in the same shipping
container; and,
(4) The purchase of galvanized high-strength bolts and galvanized nuts from
separate suppliers is not in accordance with the intent of the ASTM
Specifications because the control of over-tapping, the testing and
application of lubricant and the supplier responsibility for the performance
of the assembly would clearly not have been provided as required.

Because some of the lubricants used to meet the requirements of
ASTM Specifications are water soluble, it is advisable that galvanized high-
strength bolts and nuts be shipped and stored in plastic bags or in sealed wood
or metal containers. Containers of fasteners with hot-wax-type lubricants should
not be subjected to heat that would cause depletion or change in the properties
of the lubricant.
Both the hot-dip galvanizing process (ASTM F2329) and the
mechanical galvanizing process (ASTM B695) are recognized in ASTM A325.
The effects of the two processes upon the performance characteristics and
requirements for proper installation are distinctly different. Therefore,
distinction between the two must be noted in the comments that follow. In
accordance with ASTM A325, all threaded components of the fastener
assembly must be galvanized by the same process and the supplier’s option is
limited to one process per item with no mixed processes in a lot. Mixing high-
strength bolts that are galvanized by one proce ss with nuts that are galvanized
by the other may result in an unworkable assembly.
Steels in the 200 ksi and higher tensile-strength range are subject to
embrittlement if hydrogen is permitted to remain in the steel and the steel is
subjected to high tensile stress. The minimum tensile strength of ASTM A325
bolts is 105 ksi or 120 ksi, depending upon the diameter, and maximum
hardness limits result in production tensile strengths well below the critical
range. The maximum tensile strength for ASTM A490 bolts was set at 170 ksi
to provide a little more than a ten-percent margin below 200 ksi. However,
because manufacturers must target their production slightly higher than the
required minimum, ASTM A490 bolts close to the critical range of tensile
strength must be anticipated. For black high-strength bolts, this is not a cause
for concern. However, if the bolt is hot-dip galvanized, delayed brittle fracture
in service is a concern because of the possibility of the introduction of
hydrogen during the pickling operation of the hot-dip galvanizing process and
the subsequent “sealing-in” of the hydrogen by the zinc coating. There also exists
the possibility of cathodic hydrogen absorption arising from the corrosion
process in certain aggressive environments.
ASTM A325 and A490 bolts are manufactured to dimensions as
specified in ANSI/ASME B18.2.6. The basic dimensions, as defined in Figure
C-2.2, are shown in Table C-2.1.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-11
Table C-2.1. Bolt and Nut Dimensions

Heavy-
Hex Bolt Dimensions, in. Heavy-Hex Nut Dims., in.
Nominal Bolt
Diameter,
db, in. Width across
flats,
F
Height,
H1
Thread
Length, T
Width across
flats,
W
Height,
H2
2 d c 1 d
31
64

s 1z
25
64

14 1 z
39
64

w 14 I 1a 1 4
47
64

d 1v
35
64
12 1 v
55
64

1 1s
39
64
1w 1 s
63
64

18 1m n 2 1m 1
7
64

14 2 G 2 2 1
7
32

1a 2x H 24 2 x 1
11
32

12 2a , 24 2 a 1
15
32



The principal geometric features of heavy-hex structural bolts that
distinguish them from bolts for general application are the size of the head and
the unthreaded body length. The head of the heavy-hex structural bolt is
specified to be the same size as a heavy-hex nut of the same nominal diameter
so that the ironworker may use the same wrench or socket either on the bolt
head and/or on the nut. With the specific exception of fully threaded ASTM
A325T bolts as discussed below, heavy-hex structural bolts have shorter
threaded lengths than bolts for general applications. By making the body length
of the bolt the control dimension, it has been possible to exclude the thread from
all shear planes when desirable, except for the case of thin outside parts
adjacent to the nut.



Figure C-2.2. Heavy-hex structural bolt and heavy-hex nut.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-12
The shorter threaded lengths provided with heavy-hex structural bolts
tend to minimize the threaded portion of the bolt within the grip. Accordingly,
care must also be exercised to provide adequate threaded length between the nut
and the bolt head to enable appropriate installation without jamming the nut on
the thread run-out.
Depending upon the increments of supplied bolt lengths, the full thread
may extend into the grip for an assembly without washers by as much as a in.
for 2, s, w, d, 14, and 12 in. diameter high-strength bolts and as much as 2
in. for 1, 18, and 1a in. diameter high-strength bolts. When the thickness of
the ply closest to the nut is less than the a in. or 2 in. dimensions given
above, it may still be possible to exclude the threads from the shear plane,
when required, depending upon the specific combination of bolt length, grip
and number of washers used under the nut (Carter, 1996). If necessary, the next
increment of bolt length can be specified with ASTM F436 washers in
sufficient number to both exclude the threads from the shear plane and
ensure that the assembly can be installed with adequate threads included in the
grip for proper installation.
At maximum accumulation of tolerances from all components in the
fastener assembly, the thread run-out will cross the shear plane for the critical
combination of bolt length and grip used to select the foregoing rules of thumb
for ply thickness required to exclude the threads. This condition is not of
concern, however, for two reasons. First, it is too unlikely that all component
tolerances will accumulate at their maximum values to warrant consideration.
Second, even if the maximum accumulation were to occur, the small reduction
in shear strength due to the presence of the thread run-out (not a full thread)
would be negligible.
There is an exception to the foregoing thread length requirements for
ASTM A325 bolts, but not for ASTM A490 bolts, ASTM F1852 or ASTM
F2280 twist-off-type tension-control bolt assemblies. Supplementary
requirements in ASTM A325 permit the purchaser to specify a bolt that is
threaded for the full length of the shank, when the bolt length is equal to or less
than four times the nominal diameter. This exception is provided to increase
economy through simplified ordering and inventory control in the fabrication
and erection of some structures. It is particularly useful in those structures in
which the strength of the connection is dependent upon the bearing strength of
relatively thin connected material rather than the shear strength of the bolt,
whether with threads in the shear plane or not. As required in ASTM A325,
high-strength bolts ordered to such supplementary requirements must be
marked with the symbol A325T.
To determine the required bolt length, the value shown in Table C-2.2
should be added to the grip (i.e., the total thickness of all connected material,
exclusive of washers). For each ASTM F436 washer that is used, add E in.; for
each beveled washer, add c in. The tabulated values provide appropriate
allowances for manufacturing tolerances and also provide sufficient thread

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-13
Table C-2.2. Bolt Length Selection Increment

Nominal Bolt
Diameter, d
b, in.
To Determine the
Required Bolt Length,
Add to Grip, in.

2 n
s d
w 1
d 18
1 14
18 12
14 1s
1a 1w
12 1d

engagement with an installed heavy-hex nut. The length determined by the use
of Table C-2.2 should be adjusted to the nearest 4-in. length increment (2-in.
length increment for lengths exceeding 6 in.). A more extensive table for bolt
length selection based upon these rules is available (Carter, 1996).
Pretensioned installation involves the inelastic elongation of the
portion of the threaded length between the nut and the thread run-out. ASTM
A490 bolts and galvanized ASTM A325 bolts possess sufficient ductility to
undergo one pretensioned installation, but are not consistently ductile enough to
undergo a second pretensioned installation. Black ASTM A325 bolts, however,
possess sufficient ductility to undergo more than one pretensioned installation
as suggested in the Guide (Kulak et al., 1987). As a simple rule of thumb, a
black ASTM A325 bolt is suitable for reuse if the nut can be run up the threads
by hand.

2.4. Heavy-Hex Nuts
2.4.1. Specifications: Heavy-hex nuts shall meet the requirements of ASTM A563.
The grade and finish of such nuts shall be as given in Table 2.1.

2.4.2. Geometry: Heavy-hex nut dimensions shall meet the requirements of
ANSI/ASME B18.2.6.

Commentary:
Heavy-hex nuts are required by ASTM Specifications to be distinctively
marked. Certain markings are mandatory. In addition to the mandatory
markings, the manufacturer may apply additional distinguishing markings. The

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-14
mandatory markings and sample optional markings are illustrated in Figure C-
2.1.
Hot-dip galvanizing affects the stripping strength of the bolt-nut
assembly because, to accommodate the relatively thick zinc coatings of non-
uniform thickness on bolt threads, it is usual practice to hot-dip galvanize the
blank nut and then to tap the nut over-size. This results in a reduction of thread
engagement with a consequent reduction of the stripping strength. Only the
stronger hardened nuts have adequate strength to meet ASTM thread strength
requirements after over-tapping. Therefore, as specified in ASTM A325, only
ASTM A563 grade DH are suitable for use as galvanized nuts. This requirement
should not be overlooked if non-galvanized nuts are purchased and then sent to a
local galvanizer for hot-dip galvanizing. Because the mechanical galvanizing
process results in a more uniformly distributed and smooth zinc coating, nuts
may be tapped over-size before galvanizing by an amount that is less than that
required for the hot-dip process before galvanizing.
Despite the thin-film of the Zn/Al Inorganic Coating, tapping the nuts
over-size may be necessary. Similar to mechanical galvanizing, the process
results in a comparatively uniform and evenly distributed coating.
In earlier editions, this Specification permitted the use of ASTM A194
grade 2H nuts in the same finish as that permitted for ASTM A563 nuts in the
following cases: with ASTM A325 Type 1 plain, Type 1 galvanized and Type 3
plain bolts and with ASTM A490 Type 1 plain bolts. Reference to ASTM A194
grade 2H nuts has been removed following the removal of similar reference
within the ASTM A325 and A490 Specifications. However, it should be noted
that ASTM A194 grade 2H nuts remain acceptable in these applications as
indicated by footnote in Table 2.1, should they be available.
ASTM A563 nuts are manufactured to dimensions as specified in
ANSI/ASME B18.2.6. The basic dimensions, as defined in Figure C-2.2, are
shown in Table C-2.1

2.5. Washers
Flat circular washers and square or rectangular beveled washers shall meet the
requirements of ASTM F436, except as provided in Table 6.1. The type and
finish of such washers shall be as given in Table 2.1.

2.6. Washer-Type Indicating Devices
The use of washer-type indicating devices is permitted as described in
Sections 2.6.1 and 2.6.2.

2.6.1. Compressible-Washer-Type Direct Tension Indicators: Compressible-washer-
type direct tension indicators shall meet the requirements of ASTM F959.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-15
2.6.2. Alternative Washer-Type Indicating Devices: When approved by the Engineer
of Record, the use of alternative washer-type indicating devices that differ from
those that meet the requirements of ASTM F959 is permitted.
Detailed installation instructions shall be prepared by the manufacturer
in a supplemental specification that is approved by the Engineer of Record and
shall provide for:

(1) The required character and frequency of pre-installation verification;
(2) The alignment of bolt holes to permit insertion of the bolt without undue
damage to the threads;
(3) The placement of fastener assemblies in all types and sizes of holes,
including placement and orientation of the alternative and regular washers;
(4) The systematic assembly of the joint, progressing from the most rigid part
of the joint until the connected plies are in firm contact; and,
(5) The subsequent systematic pretensioning of all bolts in the joint,
progressing from the most rigid part of the joint in a manner that will
minimize relaxation of previously pretensioned bolts.

Detailed inspection instructions shall be prepared by the manufacturer
in a supplemental specification that is approved by the Engineer of Record and
shall provide for:

(1) Observation of the required pre-installation verification testing; and,
(2) Subsequent routine observation to ensure the proper use of the alternative
washer-type indicating device.

2.7. Twist-Off-Type Tension-Control Bolt Assemblies
2.7.1. Specifications: Twist-off-type tension-control bolt assemblies shall meet the
requirements of ASTM F1852 or F2280. The Engineer of Record shall specify
the type of bolt (Table 2.1) to be used.

2.7.2. Geometry: Twist-off-type tension-control bolt assembly dimensions shall meet
the requirements of ASTM F1852 or ASTM F2280. The bolt length used shall
be such that the end of the bolt extends beyond or is at least flush with the outer
face of the nut when properly installed.

Commentary:
It is the policy of the Research Council on Structural Connections to directly
recognize only those fastener components that are manufactured to meet the
requirements in an approved ASTM specification. Prior to this edition, the
RCSC Specification provided for the use of ASTM A325 and A490 bolts, and
F1852 twist-off-type tension-control bolt assemblies directly and alternative-
design fasteners meeting detailed requirements similar to those in Section 2.8
when approved by the Engineer of Record . With this edition, ASTM F2280

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-16
twist-off-type tension-control bolt assemblies are now recognized directly.
Essentially, ASTM F2280 relates an ASTM A490-equivalent product to a
specific method of installation that is suitable for use in all joint types as
described in Section 8. Provision has also been retained for approval by the
Engineer of Record of other alternative-design fasteners that meet the detailed
requirements in Section 2.8.
If galvanized, ASTM F1852 twist-off-type tension-control bolt
assemblies are required in ASTM F1852 to be mechanically galvanized.

2.8. Alternative-Design Fasteners
When approved by the Engineer of Record, the use of alternative-design
fasteners is permitted if they:

(1) Meet the materials, manufacturing and chemical composition requirements of ASTM A325 or ASTM A490, as applicable;
(2) Meet the mechanical property requirements of ASTM A325 or ASTM A490 in full-size tests;
(3) Have a body diameter and bearing area under the bolt head and nut that is equal to or greater than those provided by a bolt and nut of the same nominal dimensions specified in Sections 2.3 and 2.4; and,
(4) Are supplied and used in the work as a fastener assembly .

Such alternative-design fasteners are permitted to differ in other dimensions from those of the specified high-strength bolts and nuts.
Detailed installation instructions shall be prepared by the manufacturer
in a supplemental specification that is approved by the Engineer of Record and
shall provide for:

(1) The required character and frequency of pre-installation verification;
(2) The alignment of bolt holes to permit insertion of the alternative-design fastener without undue damage;
(3) The placement of fastener assemblies in all holes, including any washer
requirements as appropriate;
(4) The systematic assembly of the joint, progressing from the most rigid part
of the joint until the connected plies are in firm contact; and,
(5) The subsequent systematic pretensioning of all fastener assemblies in the
joint, progressing from the most rigid part of the joint in a manner that will
minimize relaxation of previously pretensioned bolts.
Detailed inspection instructions shall be prepared by the manufacturer
in a supplemental specification that is approved by the Engineer of Record and
shall provide for:

(1) Observation of the required pre-installation verification testing; and,
(2) Subsequent routine observation to ensure the proper use of the
alternative-design fastener.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-17
SECTION 3. BOLTED PARTS

3.1. Connected Plies
All connected plies that are within the grip of the bolt and any materials that are
used under the head or nut shall be steel with faying surfaces that are uncoated,
coated or galvanized as defined in Section 3.2. Compressible materials shall not
be placed within the grip of the bolt. The slope of the surfaces of parts in
contact with the bolt head and nut shall be equal to or less than 1:20 with
respect to a plane that is normal to the bolt axis.

Commentary:
The presence of gaskets, insulation or any compressible materials other than the
specified coatings within the grip would preclude the development and/or
retention of the installed pretensions in the bolts, when required.
ASTM A325, A490, F1852, and F2280 bolt assemblies are ductile
enough to deform to a surface with a slope that is less than or equal to 1:20 with
respect to a plane normal to the bolt axis. Greater slopes are undesirable because
the resultant localized bending decreases both the strength and the ductility of
the bolt.

3.2. Faying Surfaces
Faying surfaces and surfaces adjacent to the bolt head and nut shall be free of
dirt and other foreign material. Additionally, faying surfaces shall meet the
requirements in Sections 3.2.1 or 3.2.2.

3.2.1. Snug-Tightened Joints and Pretensioned Joints: The faying surfaces of snug-
tightened joints and pretensioned joints as defined in Sections 4.1 and 4.2 are
permitted to be uncoated, coated with coatings of any formulation or
galvanized.

Commentary:
In both snug-tightened joints and pretensioned joints, the ultimate strength is
dependent upon shear transmitted by the bolts and bearing of the bolts against
the connected material. It is independent of any frictional resistance that may
exist on the faying surfaces. Consequently, since slip resistance is not an issue,
the faying surfaces are permitted to be uncoated, coated, or galvanized without
regard to the resulting slip coefficient obtained.
For pretensioned joints, caution should be used in the specification and
application of thick coatings within the faying surface. Although slip resistance
is not required, fastener assemblies in joints with thick or multi-layer coatings
may exhibit significant loss of pretension because of compressive creep in softer
coatings such as epoxies, alkyds, vinyls, acrylics, and urethanes. Previous bolt
relaxation studies have been conducted using uncoated steel with black bolts or
galvanized steel with galvanized bolts. Galvanized surfaces ranged up to

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-18
approximately 4 mils of thickness, of which approximately half the thickness
was the compressible soft pure zinc surface layer. The underlying zinc-iron
layers are very hard and would exhibit little creep. See Guide, Section 4.4. Tests
have indicated that significant bolt pretension may be lost when the total coating
thickness within the joint approaches 15 mils per surface, and that surface
coatings beneath the bolt head and nut can contribute to additional reduction in
pretension.
3.2.2 Slip-Critical Joints: The faying surfaces of slip-critical joints as defined in
Section 4.3, including those of filler plates and finger shims, shall meet the following requirements:

(a) Uncoated Faying Surfaces: Uncoated faying surfaces shall be free of scale,
except tight mill scale, and free of coatings, including inadvertent overspray, in areas closer than one bolt diameter but not less than 1 in. from the edge
of any hole and in all areas within the bolt pattern or shall be blast cleaned (Class B).
(b) Coated Faying Surfaces: Coated faying surfaces shall first be blast cleaned
and subsequently coated with a coating that is qualified in accordance with
the requirements in Appendix A as a Class A or Class B coating as defined in Section 5.4. Alternatively, when approved by the Engineer of Record,
coatings that provide a mean slip coefficient that differs from Class A or
Class B are permitted when:

(1) The mean slip coefficient µ is established by testing in accordance
with the requirements in Appendix A; and,
(2) The design slip resistance is determined in accordance with Section
5.4 using this coefficient, except that, for design purposes, a value of µ
greater than 0.50 shall not be used.

The plies of slip-critical joints with coated faying surfaces shall not be
assembled before the coating has cured for the minimum time that was used
in the qualifying tests.

(c) Galvanized Faying Surfaces: Galvanized faying surfaces shall first be hot
dip galvanized in accordance with the requirements of ASTM A123 and
subsequently roughened by means of hand wire brushing. Power wire
brushing is not permitted. When prepared by roughening, the galvanized
faying surface is designated as Class C for design.

Commentary:
Slip-critical joints are those joints that have specified faying surface conditions
that, in the presence of the clamping force provided by pretensioned fasteners,
resist a design load solely by friction and without displacement at the faying

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-19
surfaces. Consequently, it is necessary to prepare the faying surfaces in a
manner so that the desired slip performance is achieved.
Clean mill scale steel surfaces (Class A, see Section 5.4.1) and blast-
cleaned steel surfaces (Class B, see Section 5.4.1) can be used within slip-
critical joints. When used, it is necessary to keep the faying surfaces free of
coatings, including inadvertent overspray.
Corrosion often occurs on uncoated blast-cleaned steel surfaces
(Class B, see Section 5.4.1) due to exposure between the time of fabrication and
subsequent erection. In normal atmospheric exposures, this corrosion is not
detrimental and may actually increase the slip resistance of the joint. Yura et al.
(1981) found that the Class B slip coefficient could be maintained for up to one
year prior to joint assembly.
Polyzois and Frank (1986) demonstrated that, for plate material with
thickness in the range of a in. to w in., the contact pressure caused by bolt
pretension is concentrated on the faying surfaces in annular rings around and
close to the bolts. In this study, unqualified paint on the faying surfaces away
from the edge of the bolt hole by not less than 1 in. nor the bolt diameter did not
reduce the slip resistance. However, this would not likely be the case for
joints involving thicker material, particularly those with a large number of bolts
on multiple gage lines; the Table 8.1 minimum bolt pretension might not be
adequate to completely flatten and pull thicker material into tight contact
around every bolt. Instead, the bolt pretension would be balanced by contact
pressure on the regions of the faying surfaces that are in contact. To account
for both possibilities, it is required in this Specification that all areas between
the bolts be free of coatings, including overspray, as illustrated in Figure C-3.1.
As a practical matter, the smaller coating-free area can be laid out and
protected more easily using masking located relative to the bolt-hole pattern
than relative to the limits of the complete area of faying surface contact with
varying and uncertain edge distance. Furthermore, the narrow coating strip
around the perimeter of the faying surface minimizes the required field touch-up
of uncoated material outside of the joint.
Polyzois and Frank (1986) also investigated the effect of various
degrees of inadvertent overspray on slip resistance. It was found that even a
small amount of overspray of unqualified paint (that is, not qualified as a Class
A or Class B coating) within the specified coating-free area on clean mill scale
can reduce the slip resistance significantly. On blast-cleaned surfaces, however,
the presence of a small amount of overspray was not as detrimental. For
simplicity, this Specification requires that all overspray be prohibited from areas
that are required to be free of coatings in slip-critical joints regardless of
whether the surface is clean mill scale steel or blast-cleaned steel.
In the 1980 edition of this Specification, generic names for coatings
applied to faying surfaces were the basis for categories of allowable working
stresses in slip-critical (friction) joints . Frank and Yura (1981) demonstrated
that the slip coefficients for coatings described by a generic type are not unique

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-20
values for a given generic coating description or product, but rather depend also
upon the type of vehicle used. Small differences in formulation from
manufacturer to manufacturer or from lot to lot with a single manufacturer can
significantly affect slip coefficients if certain essential variables within a generic
type are changed. Consequently, it is unrealistic to assign coatings to categories
with relatively small incremental differences between categories based solely
upon a generic description.


Figure C-3.1. Faying surfaces of slip-critical
connections painted with unqualified paints.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-21
When the faying surfaces of a slip-critical joint are to be protected
against corrosion, a qualified coating must be used. A qualified coating is one
that has been tested in accordance with Appendix A, the sole basis for
qualification of any coating to be used in conjunction with this Specification.
Coatings can be qualified as follows:

(1) As a Class A coating as defined in Section 5.4.1;
(2) As a Class B coating as defined in Section 5.4.1; or,
(3) As a coating with a mean slip coefficient µ other than 0.33 (Class A) but not
greater than 0.50 (Class B).

Requalification is required if any essential variable associated with surface
preparation, paint manufacture, application method or curing requirements is
changed. See Appendix A.
For slip-critical joints, coating testing as prescribed in Appendix A
includes creep tests, which incorporate relaxation in the fastener and the effect
of the coating itself. Users should verify the coating thicknesses used in the
Appendix A testing and ensure that the actual coating thickness does not exceed
that tested. See Appendix A, Commentary to Section A3.
Frank and Yura (1981) also investigated the effect of varying the time
between coating the faying surfaces and assembly of the joint and pretensioning
the bolts in order to ascertain if partially cured paint continued to cure within the
assembled joint over a period of time. The results indicated that all curing
effectively ceased at the time the joint was assembled and paint that was not
fully cured at that time acted as a lubricant. The slip resistance of a joint that
was assembled after a time less than the curing time used in the qualifying tests
was severely reduced. Thus, the curing time prior to mating the faying surfaces
is an essential parameter to be specified and controlled during construction.
The mean slip coefficient for clean hot-dip galvanized surfaces is on
the order of 0.19 as compared with a factor of about 0.33 for clean mill scale.
Birkemoe and Herrschaft (1970) showed that this mean slip coefficient can be
significantly improved by treatments such as hand wire brushing or light
“brush-off” grit blasting. In either case, the treatment must be controlled to
achieve visible roughening or scoring. Power wire brushing is unsatisfactory
because it may polish rather than roughen the surface, or remove the coating.
Field experience and test results have indicated that galvanized
assemblies may continue to slip under sustained loading (Kulak et al., 1987; pp.
198-208). Tests of hot-dip galvanized joints subjected to sustained loading show
a creep-type behavior that was not observed in short-duration or fatigue-type
load application. See also the Commentary to Appendix A.

3.3. Bolt Holes
The nominal dimensions of standard, oversized, short-slotted and long-slotted
holes for high-strength bolts shall be equal to or less than those shown in

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-22
Table 3.1. Holes larger than those shown in Table 3.1 are permitted when specified or
approved by the Engineer of Record. Where thermally cut holes are permitted, the
surface roughness profile of the hole shall not exceed 1,000 microinches as
defined in ASME B46.1. Occasional gouges not more than z in. in depth are
permitted.
Thermally cut holes produced by mechanically guided means are
permitted in statically loaded joints. Thermally cut holes produced free hand
shall be permitted in statically loaded joints if approved by the Engineer of
Record. For cyclically loaded joints, thermally cut holes shall be permitted if
approved by the Engineer of Record.

Commentary:
The footnotes in Table 3.1 provide for slight variations in the dimensions of
bolt holes from the nominal dimensions. When the dimensions of bolt holes are
such that they exceed these permitted variations, the bolt hole must be treated as
the next larger type.
Slots longer than standard long slots may be required to accommodate
construction tolerances or expansion joints. Larger oversized holes may be
necessary to accommodate construction tolerances or misalignments. In the
latter two cases, the Specification provides no guidance for further reduction of
design strengths or allowable loads. Engineering design considerations should
include, as a minimum, the effects of edge distance, net section, reduction in
clamping force in slip-critical joints, washer requirements, bearing capacity, and
hole deformation.
For thermally cut holes produced free hand, it is usually necessary to
grind the hole surface after thermal cutting in order to achieve a maximum
surface roughness profile of 1,000 microinches.
Slotted holes in statically loaded joints are often produced by punching
or drilling the hole ends and thermally cutting the sides of the slots by
mechanically guided means. The sides of such slots should be ground smooth,
particularly at the junctures of the thermal cuts to the hole ends.
For cyclically loaded joints, test results have indicated that when no
major slip occurs in the joint, fretting fatigue failure usually occurs in the gross
section prior to fatigue failure in the net section (Kulak et al., 1987, pp. 116,
117). Conversely, when slip occurs in the joints of cyclically loaded
connections, failure usually occurs in the net section and the edge of a bolt hole
becomes the point of crack initiation (Kulak et al., 1987, pp. 118). Therefore,
for cyclically loaded joints designed as slip critical, the method used to produce
bolt holes (either thermal cutting or drilling) should not influence the ultimate
failure load, as failure usually occurs in the gross section when no major slip
occurs.
3.3.1. Standard Holes: In the absence of approval by the Engineer of Record for the
use of other hole types, standard holes shall be used in all plies of bolted joints.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-23

Table 3.1. Nominal Bolt Hole Dimensions

Nominal Bolt Hole Dimensions
a,b
, in.
Nominal
Bolt
Diameter,
d
b, in.
Standard
(diameter)

Oversized
(diameter)

Short-slotted
(width × length)
Long-slotted
(width × length)
2 b s b × n b × 14
s n m n × d n × 1b
w m , m × 1 m × 1d
d , 1 z , × 18 , × 2x
1 1z 1 4 1 z × 1c 1 z × 22
≥18 d b + z d b + c (d b + z) × (d b + a) ( d b + z) × (2.5d b)
a
The upper tolerance on the tabulated nominal dimensions shall not exceed Q in. Exception: In
the width of slotted holes, gouges not more than z in. deep are permitted.
b
The slightly conical hole that naturally results from punching operations with properly matched
punches and dies is acceptable.

Commentary:
The use of bolt holes z in. larger than the bolt installed in them has been
permitted since the first publication of this Specification. Allen and Fisher
(1968) showed that larger holes could be permitted for high-strength bolts
without adversely affecting the bolt shear or member bearing strength.
However, the slip resistance can be reduced by the failure to achieve adequate
pretension initially or by the relaxation of the bolt pretension as the highly
compressed material yields at the edge of the hole or slot. The provisions for
oversized and slotted holes in this Specification are based upon these findings
and the additional concern for the consequences of a slip of significant
magnitude if it should occur in the direction of the slot. Because an increase
in hole size generally reduces the net area of a connected part, the use of
oversized holes or of slotted holes is subject to approval by the Engineer of
Record.
3.3.2. Oversized Holes: When approved by the Engineer of Record , oversized holes
are permitted in any or all plies of slip-critical joints as defined in Section 4.3.

Commentary:
See the Commentary to Section 3.3.1.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-24
3.3.3. Short-Slotted Holes: When approved by the Engineer of Record , short-
slotted holes are permitted in any or all plies of snug-tightened joints as defined
in Section 4.1, and pretensioned joints as defined in Section 4.2, provided the
applied load is approximately perpendicular (between 80 and 100 degrees) to
the axis of the slot. When approved by the Engineer of Record, short-slotted
holes are permitted in any or all plies of slip-critical joints as defined in Section
4.3 without regard for the direction of the applied load.

Commentary:
See the Commentary to Section 3.3.1.

3.3.4. Long-Slotted Holes: When approved by the Engineer of Record , long-slotted
holes are permitted in only one ply at any individual faying surface of snug-
tightened joints as defined in Section 4.1, and pretensioned joints as defined in
Section 4.2, provided the applied load is approximately perpendicular (between
80 and 100 degrees) to the axis of the slot. When approved by the
Engineer of Record, long-slotted holes are permitted in one ply only at any
individual faying surface of slip-critical joints as defined in Section 4.3 without
regard for the direction of the applied load. Fully inserted finger shims between
the faying surfaces of load-transmitting elements of bolted joints are not
considered a long-slotted element of a joint; nor are they considered to be a ply
at any individual faying surface. However, finger shims must have the same
faying surface as the rest of the plies.

Commentary:
See the Commentary to Section 3.3.1.
Finger shims are devices that are often used to permit the alignment
and plumbing of structures. When these devices are fully and properly
inserted, they do not have the same effect on bolt pretension relaxation or the
connection performance, as do long-slotted holes in an outer ply. When fully
inserted, the shim provides support around approximately 75 percent of the
perimeter of the bolt in contrast to the greatly reduced area that exists with a
bolt that is centered in a long slot. Furthermore, finger shims are always
enclosed on both sides by the connected material, which should be effective in
bridging the space between the fingers.

3.4. Burrs
Burrs less than or equal to z in. in height are permitted to remain on faying
surfaces of all joints . Burrs larger than z in. in height shall be removed or
reduced to z in. or less from the faying surfaces of all joints.

Commentary:
Polyzois and Yura (1985) and McKinney and Zwerneman (1993) demonstrated
that the slip resistance of joints was either unchanged or slightly improved by

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-25
the presence of burrs. Therefore, small (z in. or less) burrs need not be
removed. On the other hand, parallel tests in the same program demonstrated
that large burrs (over z in.) could cause a small increase in the required nut
rotation from the snug-tight condition to achieve the specified pretension with
the turn-of-nut pretensioning method. Therefore, the Specification requires that
all large burrs be removed or reduced in height.
Note that prior to pretensioning, the snug-tightening procedure is
required to bring the plies into firm contact. If firm contact has not been
achieved after snugging due to the presence of burrs, additional snugging is
required to flatten the burrs, bringing the plies into firm contact.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-26
SECTION 4. JOINT TYPE

For joints with fasteners that are loaded in shear or combined shear and tension, the
Engineer of Record shall specify the joint type in the contract documents as snug-
tightened, pretensioned or slip-critical. For slip-critical joints, the required class of slip
resistance in accordance with Section 5.4 shall also be specified. For joints with fasteners
that are loaded in tension only, the Engineer of Record shall specify the joint type in the
contract documents as snug-tightened or pretensioned. Table 4.1 summarizes the
applications and requirements of the three joint types.

Table 4.1. Summary of Applications and Requirements for Bolted Joints

Load
Transfer

Application
Joint
Type
a,b

Faying
Surface
Prep.?
Install
per
Section
Inspect
per
Section

Arbitrate
per Section
10?

Resistance to shear load by
shear/bearing
ST No 8.1 9.1 No
Resistance to shear by
shear/bearing. Bolt pretension
is required, but for
reasons
other than
slip resistance.
PT No 8.2 9.2 No
Shear only
Shear-load resistance by friction
on faying surfaces is required.
SC Yes
d
8.2 9.3
If req’d to
resolve
dispute
Resistance to shear load by
shear/bearing. Tension load is
static only.
c

ST No 8.1 9.1 No
Resistance to shear by
shear/bearing. Bolt pretension
is required, but for
reasons
other than
slip resistance.
PT No 8.2 9.2
If req’d to
resolve
dispute
Combined
shear
and
tension

Shear-load resistance by friction
on faying surfaces is required.
SC Yes
d
8.2 9.3
If req’d to
resolve
dispute
Static loading only.
c
ST No 8.1 9.1 No
Tension only
All other conditions of tension-
only
loading.
PT No 8.2 9.2
If req’d to
resolve
dispute
a
Under Joint Type: ST = snug-tightened, PT = pretensioned and SC = slip-critical; See Section 4.
b
See Sections 4 and 5 for the design requirements for each joint type.
c
Per Section 4.2, the use of ASTM A490 or F2280 bolts in snug-tightened joints with tensile loads is
not permitted.
d
See Section 3.2.2.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-27
Commentary:
When first approved by the Research Council on Structural Connections, in January, 195l,
the “Specification for Assembly of Structural Joints Using High-Strength Bolts” merely
permitted the substitution of a like number of ASTM A325 bolts for hot driven ASTM
A141
1
steel rivets of the same nominal diameter. Additionally, it was required that all bolts
be pretensioned and that all faying surfaces be free of paint; hence, satisfying the
requirements for a slip-critical joint by the present-day definition. As revised in 1954, the
omission of paint was required to apply only to “joints subject to stress reversal, impact
or vibration, or to cases where stress redistribution due to joint slippage would be
undesirable.” This relaxation of the earlier provision recognized the fact that, in many
applications, movement of the connected parts that brings the bolts into bearing against
the sides of their holes is in no way detrimental. Bolted joints were then designated as
“bearing type,” “friction type,” or “direct tension.” With the 1985 edition of this
Specification, these designations were changed to “shear/bearing,” “slip-critical,” and
“direct tension,” respectively, and snug-tightened installation was permitted for many
shear/bearing joints. Snug-tightened joints are also permitted for qualified applications
involving ASTM A325 bolts in direct tension.
If non-pretensioned bolts are used in the type of joint that places the bolts in
shear, load is transferred by shear in the bolts and bearing stress in the connected
material. At the ultimate limit state, failure will occur by shear failure of the bolts, by
bearing failure of the connected material or by failure of the member itself. On the other
hand, if pretensioned bolts are used in such a joint, the frictional force that develops
between the connected plies will initially transfer the load. Until the frictional force is
exceeded, there is no shear in the bolts and no bearing stress in the connected
components. Further increase of load places the bolts into sh ear and against the
connected material in bearing, just as was the case when non-pretensioned bolts were
used. Since it is known that the pretension in bolts will have been dissipated by the time
bolt shear failure takes place (Kulak et al., 1987; p. 49), the ultimate limit state of a
pretensioned bolted joint is the same as an otherwise identical joint that uses non-
pretensioned bolts.
Because the consequences of slip into bearing vary from application to
application, the determination of whether a joint can be designated as snug-tightened or
as pretensioned or rather must be designated as slip-critical is best left to judgment and a
decision on the part of the Engineer of Record. In the case of joints with three or more
bolts in holes with only a small clearance, the freedom to slip generally does not exist. It
is probable that normal fabrication tolerances and erection procedures are such that one or
more bolts are in bearing even before additional load is applied. Such is the case for
standard holes and for slotted holes loaded transverse to the axis of the slot.
Joints that are required to be slip-critical joints include:

(1) Those cases where slip movement could theoretically exceed an amount deemed by
the Engineer of Record to affect the serviceability of the structure or through

1
ASTM A141 (discontinued in 1967) became identified as A502 Grade 1 (discontinued 1999).

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-28
excessive distortion to cause a reduction in strength or stability, even though the
resistance to fracture of the connection and yielding of the member may be
adequate; and,
(2) Those cases where slip of any magnitude must be prevented, such as in joints
subject to significant load reversal and joints between elements of built-up
compression members in which any slip could cause a reduction of the flexural
stiffness required for the stability of the built-up member.

In this Specification, the provisions for the design, installation and inspection of bolted
joints are dependent upon the type of joint that is specified by the Engineer of Record.
Consequently, it is required that the Engineer of Record identify the joint type in the
contract documents.

4.1. Snug-Tightened Joints
Except as required in Sections 4.2 and 4.3, snug-tightened joints are permitted.
Bolts in snug-tightened joints shall be designed in accordance with the
applicable provisions of Sections 5.1, 5.2 and 5.3, installed in accordance with
Section 8.1 and inspected in accordance with Section 9.1. As indicated in
Section 4 and Table 4.1, requirements for faying surface condition shall not
apply to snug-tightened joints.

Commentary:
Recognizing that the ultimate strength of a connection is independent of the bolt
pretension and slip movement, there are numerous practical cases in the design
of structures where, if slip occurs, it will not be detr imental to the serviceability
of the structure. Additionally, there are cases where slip of the joint is desirable
to permit rotation in a joint or to minimize the transfer of moment. To provide
for these cases while at the same time making use of the shear strength of high-
strength bolts, snug-tightened joints are permitted.
The maximum amount of slip that can occur in a joint is, theoretically,
equal to twice the hole clearance. In practical terms, it is observed in laboratory
and field experience to be much less; usually, about one-half the hole clearance.
Acceptable inaccuracies in the location of holes within a pattern of bolts usually
cause one or more bolts to be in bearing in the initial, unloaded condition.
Furthermore, even with perfectly positioned holes, the usual method of erection
causes the weight of the connected elements to put some of the bolts into direct
bearing at the time the member is supported on loose bolts and the lifting crane
is unhooked. Additional loading in the same direction would not cause
additional joint slip of any significance.
Snug-tightened joints are also permitted for statically loaded
applications involving ASTM A325 bolts and ASTM F1852 twist-off-type
tension-control bolt assemblies in direct tension. However, snug-tightened
installation is not permitted for these fasteners in applications involving non-

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-29
static loading, nor for applications involving ASTM A490 bolts and ASTM
F2280 twist-off-type tension-control bolt assemblies.

4.2. Pretensioned Joints
Pretensioned joints are required in the following applications:

(1) Joints in which fastener pretension is required in the specification or code
that invokes this Specification;
(2) Joints that are subject to significant load reversal;
(3) Joints that are subject to fatigue load with no reversal of the loading
direction;
(4) Joints with ASTM A325 or F1852 bolts that are subject to tensile fatigue;
and,
(5) Joints with ASTM A490 or F2280 bolts that are subject to tension or
combined shear and tension, with or without fatigue.

Bolts in pretensioned joints subject to shear shall be designed in
accordance with the applicable provisions of Sections 5.1 and 5.3, installed in
accordance with Section 8.2 and inspected in accordance with Section 9.2. Bolts
in pretensioned joints subject to tension or combined shear and tension shall be
designed in accordance with the applicable provisions of Sections 5.1, 5.2, 5.3
and 5.5, installed in accordance with Section 8.2 and inspected in accordance
with Section 9.2. As indicated in Section 4 and Table 4.1, requirements for
faying surface condition shall not apply to pretensioned joints.

Commentary:
Under the provisions of some other specifications, certain shear connections are
required to be pretensioned, but are not required to be slip-critical. Several cases
are given, for example, in AISC Specification Section J1.10 (AISC, 2010)
wherein certain bolted joints in bearing connections are to be pretensioned
regardless of whether or not the potential for slip is a concern. The AISC
Specification requires that joints be pretensioned in the following
circumstances:

(1) Column splices in buildings with high ratios of height to width;
(2) Connections of members that provide bracing to columns in tall buildings;
(3) Various connections in buildings with cranes over 5-ton capacity; and,
(4) Connections for supports of running machinery and other sources of impact
or stress reversal.

When pretension is desired for reasons other than the necessity to prevent slip,
a pretensioned joint should be specified in the contract documents.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-30
4.3. Slip-Critical Joints
Slip-critical joints are required in the following applications involving shear or
combined shear and tension:

(1) Joints that are subject to fatigue load with reversal of the loading
direction;
(2) Joints that utilize oversized holes;
(3) Joints that utilize slotted holes, except those with applied load
approximately normal (within 80 to 100 degrees) to the direction of the
long dimension of the slot; and,
(4) Joints in which slip at the faying surfaces would be detrimental to
the performance of the structure.

Bolts in slip-critical joints shall be designed in accordance with the
applicable provisions of Sections 5.1, 5.2, 5.3, 5.4 and 5.5, installed in
accordance with Section 8.2 and inspected in accordance with Section 9.3.

Commentary:
In certain cases, slip of a bolted joint in shear under service loads would be
undesirable or must be precluded. Clearly, joints that are subject to reversed
fatigue load must be slip-critical since slip may result in back-and-forth
movement of the joint and the potential for accelerated fatigue failure. Unless
slip is intended, as desired in a sliding expansion joint, slip in joints with long-
slotted holes that are parallel to the direction of the applied load might be large
enough to invalidate structural analyses that are based upon the assumption of
small displacements.
For joints subject to fatigue load with respect to shear of the bolts that
does not involve a reversal of load direction, there are two alternatives for
fatigue design. The designer can provide either a slip-critical joint that is
proportioned on the basis of the applied stress range on the gross section, or a
pretensioned joint that is proportioned on the basis of applied stress range on
the net section.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-31
SECTION 5. LIMIT STATES IN BOLTED JOINTS

The design shear strength and design tensile strength of bolts shall be determined in
accordance with Section 5.1. The interaction of combined shear and tension on bolts
shall be limited in accordance with Section 5.2. The design bearing strength of the
connected parts at bolt holes shall be determined in accordance with Section 5.3.
Each of these design strengths shall be equal to or greater than the required strength .
The axial load in bolts that are subject to tension or combined shear and tension shall be
calculated with consideration of the effects of the externally applied tensile load
and any additional tension resulting from prying action produced by deformation of the
connected parts.
When slip resistance is required at the faying surfaces subject to shear or
combined shear and tension, slip resistance shall be checked at either the factored-load
level or service-load level, at the option of the Engineer of Record. When slip of the joint
under factored loads would affect the ability of the structure to support the factored
loads, the design strength determined in accordance with Section 5.4.1 shall be equal to
or greater than the required strength. When slip resistance under service loads is the
design criterion, the strength determined in accordance with Section 5.4.2 shall be equal
to or greater than the effect of the service loads. In addition, slip-critical
connections
must meet the strength requirements to resist the factored loads as shear/bearing joints.
Therefore, the strength requirements of Sections 5.1, 5.2 and 5.3 shall also be met.
When bolts are subject to cyclic application of axial tension, the stress
determined in accordance with Section 5.5 shall be equal to or greater than the
stress due to the effect of the service loads, including any additional tension resulting
from prying action
produced by deformation of the connected parts.

Commentary:
This section of the Specification provides the design requirements for high-strength bolts
in bolted joints . However, this information is not intended to provide comprehensive
coverage of the design of high-strength bolted connections. Other design
considerations of importance to the satisfactory performance of the connected material,
such as block shear rupture, shear lag, prying action and connection stiffness and its
effect on the performance of the structure, are beyond the scope of this Specification and
Commentary.
The design of bolted joints that transmit shear requires consideration of the
shear strength of the bolts and the bearing strength of the connected material. If such
joints are designated as slip-critical joints, the slip resistance must also be checked. This
serviceability check can be made at the factored-load level (Section 5.4.1) or at the
service-load level (Section 5.4.2). Regardless of which load level is selected for the
check of slip resistance, the prevention of slip in the service-load range is the design
criterion.
Parameters that influence the shear strength of bolted joints include:

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-32
(1) Geometric parameters – the ratio of the net area to the gross area of the connected
parts, the ratio of the net area of the connected parts to the total shear-resisting area
of the bolts and the length of the joint; and,
(2) Material parameter – the ratio of the yield strength to the tensile strength of the
connected parts.

Using both mathematical models and physical testing, it was possible to study the
influences of these parameters (Kulak et al., 1987; pp. 89-116 and 126-132). These
showed that, under the rules that existed at that time the longest (and often the most
important) joints had the lowest factor of safety, about 2.0 based on ultimate strength.
In general, bolted joints that are designed in accordance with the provisions of
this Specification will have a higher reliability than will the members they connect.
This occurs primarily because the resistance factors used in limit states for the design of
bolted joints were chosen to provide a reliability higher than that used for member
design. Additionally, the controlling strength limit state in the structural member, such as
yielding or deflection, is usually reached well before the strength limit state in the
connection, such as bolt shear strength or bearing strength of the connected material. The
installation requirements vary with joint type and influence the behavior of the joints
within the service-load range, however, this influence is ignored in all strength
calculations. Secondary tensile stresses that may be produced in bolts in shear/bearing
joints, such as through the flexing of double-angle connections to accommodate the
simple-beam end rotation, need not be considered.
It is sometimes necessary to use high-strength bolts and fillet welds in the same
connection, particularly as the result of remedial work. When these fastening elements
act in the same shear plane, the combined strength is a function of whether the bolts
are snug-tightened or pretensioned, the location of the bolts relative to the holes in
which they are located and the orientation of the fillet welds. The fillet welds can be
parallel or transverse to the direction of load. Manuel and Kulak (1999) provide an
approach that can be used to calculate the design strength of such joints.

5.1. Design Shear and Tensile Strengths
Shear and tensile strengths shall not be reduced by the installed bolt
pretension. For joints, the design shear and tensile strengths shall be taken as
the sum of the strengths of the individual bolts.
The design strength in shear or the design strength in tension for an
ASTM A325, A490, F1852 or F2280 bolt is φR
n, where φ= 0.75 and:


nnb
RFA= (Equation 5.1)

where

R
n = nominal strength (shear strength per shear plane or tensile strength)
of a bolt, kips;

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-33
Table 5.1. Nominal Strengths per Unit Area of Bolts

Nominal Strength per Unit Area, F
n, ksi
Applied Load Condition
ASTM A325 or F1852 ASTM A490 or F2280
Static 90 113
Tension
a

Fatigue See Section 5.5
Ls M 38 in. 54 68
Threads
included in
shear plane
L
s > 38 in. 45 56 Ls M 38 in. 68 84
Shear
a,b

Threads
excluded from
shear plane L
s > 38 in. 56 70
a
Except as required in Section 5.2.
b
Reduction for values for L s > 38 in. applies only when the joint is end loaded, such as splice plates on a
beam or column flange.

F
n = nominal strength per unit area from Table 5.1 for the appropriate
applied load conditions, ksi, adjusted for the presence of fillers as
required below, and,
A
b = cross-sectional area based upon the nominal diameter of bolt, in.
2


When a bolt that carries load passes through fillers or shims in a
shear plane that are equal to or less than 4 in. thick, F
n from Table 5.1 shall
be used without reduction. When a bolt that carries load passes through fillers
or shims that are greater than 4 in. thick, they shall be designed in accordance
with one of the following procedures:
(1) For fillers or shims that are equal to or less than w in. thick, F
n from Table
5.1 shall be multiplied by the factor [1 - 0.4(t´ - 0.25)], where t´ is the total
thickness of fillers or shims, in., up to w in.;
(2) The fillers or shims shall be extended beyond the joint and the filler or shim
extension shall be secured with enough bolts to uniformly distribute the total
force in the connected element over the combined cross-section of the
connected element and the fillers or shims;
(3) The size of the joint shall be increased to accommodate a number of bolts
that is equivalent to the total number required in (2) above; or,
(4) The joint shall be designed as a slip-critical joint. The slip resistance of the
joint shall not be reduced for the presence of fillers or shims.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-34
Commentary:
The nominal shear and tensile strengths of ASTM A325, F1852, A490 and F2280
bolts are given in Table 5.1. These values are based upon the work of a large
number of researchers throughout the world, as reported in the Guide (Kulak et
al., 1987; Tide, 2010). The design strength equals the nominal strength
multiplied by a resistance factor φ.
The nominal shear strength is based upon the observation that the shear
strength of a single high-strength bolt is about 0.62 times the tensile strength of
that bolt (Kulak et al., 1987; pp. 44-50). In addition, a reduction factor of 0.90 is
applied to joints up to 38 in. in length to account for an increase in bolt force
due to minor secondary effects resulting from simplifying assumptions made in
the modeling of structures that are commonly accepted in practice (e.g. truss
bolted connections assumed pinned in the analysis model). Second order effects
such as those resulting from the action of the applied loads on the deformed
structure, should be accounted for through a second order analysis of the
structure. As noted in Table 5.1, the average shear strength of bolts in joints
longer than 38 in. in length is reduced by a factor of 0.75 instead of 0.90. This
factor accounts for both the non-uniform force distribution between the bolts in
a long joint and the minor secondary effects discussed above. Note that the 0.75
reduction factor does not apply in cases where the distribution of force is
essentially uniform along the joint, such as the bolted joints in a shear
connection at the end of a deep plate girder.
The average ratio of nominal shear strength for bolts with threads
included in the shear plane to the nominal shear strength for bolts with threads
excluded from the shear plane is 0.83 with a standard deviation of 0.03
(Frank and Yura, 1981). Conservatively, a reduction factor of 0.80 is used to
account for the reduction in shear strength for a bolt with threads included in the
shear plane but calculated with the area corresponding to the nominal bolt
diameter. The case of a bolt in double shear with a non-threaded section in one
shear plane and a threaded section in the other shear plane is not covered in this
Specification for two reasons. First, the manner in which load is shared between
these two dissimilar shear areas is uncertain. Second, the detailer's lack of
certainty as to the orientation of the bolt placement might leave both shear
planes in the threaded section. Thus, if threads are included in one shear plane,
the conservative assumption is made that threads are included in all shear
planes.
The tensile strength of a high-strength bolt is the product of its ultimate
tensile strength per unit area and some area through the threaded portion. This
area, called the tensile stress area, is a derived quantity that is a function of the
relative thread size and pitch. For the usual sizes of structural bolts, it is about
75 percent of the nominal cross-sectional area of the bolt. Hence, the nominal
tensile strengths per unit area given in Table 5.1 are 0.75 times the tensile
strength of the bolt material. According to Equation 5.1, the nominal area of the
bolt is then used to calculate the design strength in tension. The nominal

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-35
strengths so-calculated are intended to form the basis for comparison with the
externally applied bolt tension plus any additional tension that results from
prying action that is produced by deformati on of the connected elements.
If pretensioned bolts are used in a joint that loads the bolts in tension,
the question arises as to whether the pretension and the applied tension are
additive. Because the compressed parts are being unloaded during the
application of the external tensile force, the increase in bolt tension is minimal
until the parts separate (Kulak et al., 1987; pp. 263-266). Thus, there will be
little increase in bolt force above the pretension load under service loads. After
the parts separate, the bolt acts as a tension member, as expected, and its design
strength is that given in Equation 5.1 multiplied by the resistance factor φ.
Pretensioned bolts have torsion present during the installation process.
Once the installation is completed, any residual torsion is quite small and will
disappear entirely when the fastener is loaded to the point of plate separation.
Hence, there is no question of torsion-tension interaction when considering the
ultimate tensile strength of a high-strength bolt (Kulak et al., 1987; pp. 41-47).
When required, pretension is induced in a bolt by imposing a small
axial elongation during installation, as described in the Commentary to Section
8. When the joint is subsequently loaded in shear, tension or combined shear
and tension, the bolts will undergo significant deformations prior to failure that
have the effect of overriding the small axial elongation that was introduced
during installation, thereby removing the pretension. Measurements taken in
laboratory tests confirm that the pretension that would be sustained if the
applied load were removed is essentially zero before the bolt fails in shear
(Kulak et al., 1987; pp. 93-94). Thus, the shear and tensile strengths of a
bolt are not affected by the presence of an initial pretension in the bolt.
See also the Commentary to Section 5.5.

5.2. Combined Shear and Tension
When combined shear and tension loads are transmitted by an ASTM A325,
A490, F1852 or F2280 bolt, the ultimate limit-state interaction shall be:


()
()
22
1
uu
nntv
TV
RR

+≤
φφ

(Equation 5.2)


where

T
u = required strength in tension (factored tensile load) per bolt,
kips;
V
u
= required strength in shear (factored shear load) per bolt, kips;
(φR
n)t
= design strength in tension determined in accordance with
Section 5.1, kips; and,

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-36
(
φRn)v

= design strength in shear determined in accordance with
Section 5.1, kips.

Commentary:
When both shear forces and tensile forces act on a bolt, the interaction can be
conveniently expressed as an elliptical solution (Chesson et al., 1965) that
includes the elements of the bolt acting in shear alone and the bolt acting in
tension alone. Although the elliptical solution provides the best estimate of the
strength of bolts subject to combined shear and tension and is thus used in this
Specification, the nature of the elliptical solution is such that it can be
approximated conveniently using three straight lines (Carter et al., 1997). Earlier
editions of this specification have used such linear representations for the
convenience of design calculations. The elliptical interaction equation in effect
shows that, for design purposes, significant interaction does not occur until
either force component exceeds 20 percent of the limiting strength for that
component.

5.3. Design Bearing Strength at Bolt Holes
For joints, the design bearing strength shall be taken as the sum of the strengths
of the connected material at the individual bolt holes.
The design bearing strength of the connected material at a standard bolt
hole, oversized bolt hole, short-slotted bolt hole independent of the direction of
loading or long-slotted bolt hole with the slot parallel to the direction of the
bearing load is φR
n, where φ = 0.75 and:

(1) when deformation of the bolt hole at service load is a design
consideration;


1.2 2.4
ncu bu
RLtFdtF=≤ (Equation 5.3)

(2) when deformation of the bolt hole at service load is not a design
consideration;


1.5 3
ncubu
RLtFdtF=≤ (Equation 5.4)

The design bearing strength of the connected material at a long-slotted bolt
hole with the slot perpendicular to the direction of the bearing load is φR
n,
where φ = 0.75 and:


2
ncu bu
RLtF dtF=≤ (Equation 5.5)

In Equations 5.3, 5.4 and 5.5,

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-37

R
n
= nominal strength (bearing strength of the connected material),
kips;
F
u
= specified minimum tensile strength per unit area of the connected
material, ksi;
L
c
= clear distance, in the direction of load, between the edge of the
hole and the edge of the adjacent hole or the edge of the material,
in.;
d
b = nominal diameter of bolt, in.; and,
t = thickness of the connected material, in.

Commentary:
The contact pressure at the interface between a bolt and the connected material
can be expressed as a bearing stress on the bolt or on the connected material.
The connected material is always critical. For simplicity, the bearing area is
expressed as the bolt diameter times the thickness of the connected material in
bearing. The governing value of the bearing stress has been determined from
extensive experimental research and a further limitation on strength was derived
from the case of a bolt at the end of a tension member or near another fastener.
The design equations are based upon the models presented in the Guide
(Kulak et al., 1987; pp. 141-143), except that the clear distance to another hole
or edge is used in the Specification formulation rather than the bolt spacing or
end distance as used in the Guide (see Figure C-5.1). Equation 5.3 is derived
from tests (Kulak et al., 1987; pp. 112-116) that showed that the total
elongation, including local bearing deformation, of a standard hole that is
loaded to obtain the ultimate strength equal to 3d btFu in Equation 5.4 was on the
order of the diameter of the bolt.
This apparent hole elongation results largely from bearing
deformation of the material that is immediately adjacent to the bolt. The lower
value of 2.4d btFu in Equation 5.3 provides a bearing strength limit-state that is
attainable at reasonable deformation (4 in.). Strength and deformation limits
were thus used to jointly evaluate bearing strength test results for design.
When long-slotted holes are oriented with the long dimension
perpendicular to the direction of load, the bending component of the
deformation in the material between adjacent holes or between the hole and the
edge of the plate is increased. The nominal bearing strength is limited to 2d btFu,
which again provides a bearing strength limit-state that is attainable at
reasonable deformation.
The design bearing strength has been expressed as that of a single bolt,
although it is really that of the connected material that is immediately adjacent
to the bolt. In calculating the design bearing strength of a connected part, the
total bearing strength of the connected part can be taken as the sum of the
bearing strengths of the individual bolts.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-38

Figure. C-5.1. Bearing strength formulation.

5.4. Design Slip Resistance
5.4.1. At the Factored-Load Level: The design slip resistance is φR
n, where φ is
as defined below and:


1
u
numb
um b
T
RDTN
DTN

=μ − 

(Equation 5.6)

where

φ = 1.0 for standard holes
= 0.85 for oversized and short-slotted holes
= 0.70 for long-slotted holes perpendicular to the direction of load
= 0.60 for long-slotted holes parallel to the direction of load;
R
n = nominal strength (slip resistance) of a slip plane, kips;
µ = mean slip coefficient for Class A, B or C faying surfaces , as
applicable, or as established by testing in accordance with
Appendix A (see Section 3.2.2(b))
= 0.33 for Class A faying surfaces (uncoated clean mill scale steel
surfaces or surfaces with Class A coatings on blast-cleaned steel)
= 0.50 for Class B surfaces (uncoated blast-cleaned steel surfaces or
surfaces with Class B coatings on blast-cleaned steel)

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-39
= 0.35 for Class C surfaces (roughened hot-dip galvanized surfaces);
D
u
= 1.13, a multiplier that reflects the ratio of the mean installed bolt
pretension to the specified minimum bolt pretension T
m; the use of
other values of D
u
shall be approved by the Engineer of Record;
T
m
= specified minimum bolt pretension (for pretensioned joints as
specified in Table 8.1), kips;
N
b = number of bolts in the joint; and,
T
u = required strength in tension (tensile component of applied factored
load for combined shear and tension loading), kips
= zero if the joint is subject to shear only

5.4.2. At the Service-Load Level: The service-load slip resistance is φR
s, where φ is
as defined in Section 5.4.1 and:


1
nmb
mb
T
RDTNDTN

=μ − 

(Equation 5.7)

where

D = 0.80, a slip probability factor that reflects the distribution of actual
slip coefficient values about the mean, the ratio of mean installed
bolt pretension to the specified minimum bolt pretension, T
m, and a
slip probability level; the use of other values of D must be
approved by the Engineer of Record ; and,
T = applied service load in tension (tensile component of applied
service load for combined shear and tension loading), kips
= zero if the joint is subject to shear only

and all other variables are as defined for Equation 5.6.

Commentary:
The design check for slip resistance can be made either at the factored-load level (Section
5.4.1) or at the service-load level (Section 5.4.2). These alternatives are based upon
different design philosophies, which are discussed below. They have been calibrated to
produce results that are essentially the same. The factored-load level approach is
provided for the expedience of only working with factored loads. Irrespective of the
approach, the limit state is based upon the prevention of slip at service-load levels.
If the factored-load provision is used, the nominal strength R n
represents the
mean resistance, which is a function of the mean slip coefficient µ and the specified
minimum bolt pretension (clamping force) T m. The 1.13 multiplier in Equation 5.6
accounts for the expected 13 percent higher mean value of the installed bolt pretension
provided by the calibrated wrench pretensioning method compared to the specified

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-40
minimum bolt pretension T m
used in the calculation. In the absence of other field test
data, this value is used for all methods.
If the service-load approach is used, a probability of slip is identified. It implies
that there is 90 percent reliability that slip will not occur at the calculated slip load if the
calibrated wrench pretensioning method is used, or that there is 95 percent reliability that
slip will not occur at the calculated slip load if the turn-of-nut pretensioning method is
used. The probability of loading occurrence was not considered in developing these
slip probabilities (Kulak et al., 1987; p. 135).
For most applications, the assumption that the slip resistance at each fastener is
equal and additive with that at the other fasteners is based on the fact that all locations
must develop the slip force before a total joint slip can occur at that plane. Similarly, the
forces developed at various slip planes do not necessarily develop simultaneously, but
one can assume that the full slip resistances must be mobilized at each plane before full
joint slip can occur. Equations 5.6 and 5.7 are formulated for the general case of a single
slip plane. The total slip resistance of a joint with multiple slip planes can be calculated
as that for a single slip plane multiplied by the number of slip planes.
Only the Engineer of Record can determine whether the potential slippage of a
joint is critical at the service-load level as a serviceability consideration only or whether
slippage could result in distortions of the frame such that the ability of the frame to resist
the factored loads would be reduced. The following comments reflect the collective
thinking of the Council and are provided as guidance and an indication of the intent of
the Specification (see also the Commentary to Sections 4.2 and 4.3):

(1) If joints with standard holes have only one or two bolts in the direction of the
applied load, a small slip may occur. In this case, joints subject to vibration should
be proportioned to resist slip at the service-load level;
(2) In built-up compression members, such as double-angle struts in trusses, a small
relative slip between the elements especially at the end connections can increase the
effective length of the combined cross-section to that of the individual components
and significantly reduce the compressive strength of the strut. Therefore, the
connection between the elements at the ends of built-up members should be checked
at the factored-load level, whether or not a slip-critical joint is required for
serviceability. As given by Sherman and Yura (1998), the required slip resistance is
0.008P uLQ/I, where P u
is the axial compressive force in the built-up member, kips, L
is the total length of the built-up member, in., Q is the first moment of area of one
component about the axis of buckling of the built-up member, in.
3
, and I is the
moment of inertia of the built-up member about the axis of buckling, in.
4
;
(3) In joints with long-slotted holes that are parallel to the direction of the applied
load, the designer has two alternatives. The joint can be designed to prevent slip in
the service-load range using either the factored-load-level provision in Section
5.4.1 or the service-load-level provision in Section 5.4.2. In either case, however,
the effect of the factored loads acting on the deformed structure (deformed by the
maximum amount of slip in the long slots at all locations) must be included in the
structural analysis; and,

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-41
(4) In joints subject to fatigue, design should be based upon service-load criteria and the
design slip resistance of Section 5.4.2 because fatigue is a function of the service
load performance rather than that of the factored load.

Extensive data developed through research sponsored by the Council and others
during the past twenty years has been statistically analyzed to provide improved
information on slip probability of joints in which the bolts have been pretensioned to the
requirements of Table 8.1. Two variables, the mean slip coefficient of the faying surfaces
and the bolt pretension, were found to affect the slip resistance of joints. Field studies
(Kulak and Birkemoe, 1993) of installed bolts in various structural applications indicate
that the Table 8.1 pretensions have been achieved as anticipated in the laboratory
research.
An examination of the slip-coefficient data for a wide range of surface
conditions indicates that the data are distributed normally and the standard deviation is
essentially the same for each surface condition class. This means that different reduction
factors should be applied to classes of surfaces with different mean slip coefficients—the
smaller the mean value of the coefficient of friction, the smaller (more severe) the
appropriate reduction factor—to provide equivalent reliability of slip resistance.
The bolt clamping force data indicate that bolt pretensions are distributed
normally for each pretensioning method. However, the data also indicate that the mean
value of the bolt pretension is different for each method. As noted previously, if the
calibrated wrench method is used to pretension ASTM A325 bolts, the mean value of
bolt pretension is about 1.13 times the specified minimum pretension in Table 8.1. If the
turn-of-nut pretensioning method is used, the mean pretension is about 1.35 times the
specified minimum pretension for ASTM A325 bolts and about 1.26 for ASTM A490
bolts.
The combined effects of the variability of the mean slip coefficient and bolt
pretension have been accounted for approximately in the single value of the slip
probability factor D in the equation for nominal slip resistance in Section 5.4.2. This
implies 90 percent reliability that slip will not occur if the calibrated wrench
pretensioning method is used and 95 percent reliability if the turn-of-nut pretensioning
method is used. For values of D that are appropriate for other mean slip coefficients and
slip probabilities, refer to the Guide (Kulak et al., 1987; p. 135). The values given
therein are suitable for direct substitution into the formula for slip resistance in Section
5.4.2.
The calibrated wrench installation method targets a specific bolt pretension,
which is 5 percent greater than the specified minimum value given in Table 8.1. Thus,
regardless of the actual strength of production bolts, this target value is unique for a
given fastener grade. On the other hand, the turn-of-nut installation method imposes an
elongation on the fastener. Consequently, the inherent strength of the bolts being installed
will be reflected in the resulting pretension because this elongation will bring the fastener
to its proportional limit under combined torsion and tension. As a result of these
differences, the mean value and nature of the frequency distribution of pretensions for
the two installation methods differ. Turn-of-nut installations result in higher mean levels

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-42
of pretension than do calibrated wrench installations. These differences were taken into
account when the design criteria for slip-critical joints were developed.
Statistical information on the pretension characteristics of bolts installed in the
field using direct tension indicators and twist-off-type tension-control bolts is limited.
In any of the foregoing installation methods, it can be expected that a
portion of the bolt assembly (the threaded portion of the bolt within the grip length and/or
the engaged threads of the nut and bolt) will reach the inelastic region of behavior. This
permanent distortion has no undesirable effect on the subsequent performance of the
bolt.
Because of the greater likelihood that significant deformation can occur in joints
with oversized or slotted holes, lower values of design slip resistance are provided for
joints with these hole types through a modification of the resistance factor φ. For the case
of long-slotted holes, even though the slip load is the same for loading transverse or
parallel to the axis of the slot, the value for loading parallel to the axis has been further
reduced, based upon judgment, in recognition of the greater consequences of slip.
Although the design philosophy for slip-critical joints presumes that they do not
slip into bearing when subject to loads in the service range, it is mandatory that slip-
critical joints also meet the requirements of Sections 5.1, 5.2 and 5.3. Thus, they must
meet the strength requirements to resist the factored loads as shear/bearing joints.
Section 3.2.2(b) permits the Engineer of Record to authorize the use of faying
surfaces with a mean slip coefficient µ that is less than 0.50 (Class B) and other than 0.33
(Class A). This authorization requires that the following restrictions are met:

(1) The mean slip coefficient µ must be determined in accordance with Appendix A;
and,
(2) The appropriate slip probability factor D must be selected from the Guide (Kulak
et al., 1987) for design at the service-load level.

Prior to the 1994 edition of this Specification, µ for Class C surfaces was taken
as 0.40. This value was reduced to 0.35 in the 1994 edition for better agreement with the
available research (Kulak et al., 1987; pp. 78-82).


5.5. Tensile Fatigue
The tensile stress in the bolt that results from the cyclic application of externally
applied service loads and the prying force, if any, but not the pretension, shall
not exceed the stress in Table 5.2. The nominal diameter of the bolt shall be
used in calculating the bolt stress. The connected parts shall be proportioned so
that the calculated prying force does not exceed 30 percent of the externally
applied load. Joints that are subject to tensile fatigue loading shall be specified
as pretensioned in accordance with Section 4.2 or slip-critical in accordance
with Section 4.3.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-43
Table 5.2. Maximum Tensile Stress for Fatigue Loading

Maximum Bolt Stress for Design at Service Loads
a
, ksi
Number of Cycles
ASTM A325 or F1852 ASTM A490 or F2280
Not more than 20,000 45 57
From 20,000 to 500,000 40 49
More than 500,000 31 38
a
Including the effects of prying action, if any, but excluding the pretension.


Commentary:
As described in the Commentary to Section 5.1, high-strength bolts in
pretensioned joints that are nominally loaded in tension will experience little, if
any, increase in axial stress under service loads. For this reason, pretensioned
bolts are not adversely affected by repeated application of service-load tensile
stress. However, care must be taken to ensure that the calculated prying force is
a relatively small part of the total applied bolt tension (Kulak et al., 1987; p.
272). The provisions that cover bolt fatigue in tension are based upon research
results where various single-bolt assemblies and joints with bolts in tension
were subjected to repeated external loads that produced fatigue failure of the
pretensioned fasteners. A limited range of prying effects was investigated in
this research.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-44
SECTION 6. USE OF WASHERS

6.1. Snug-Tightened Joints
Washers are not required in snug-tightened joints, except as required in
Sections 6.1.1 and 6.1.2.

6.1.1. Sloping Surfaces: When the outer face of the joint has a slope that is greater
than 1:20 with respect to a plane that is normal to the bolt axis, an ASTM
F436 beveled washer shall be used to compensate for the lack of parallelism.

6.1.2. Slotted Hole: When a slotted hole occurs in an outer ply, an ASTM F436
washer or c in. thick common plate washer shall be used as required to
completely cover the hole.

6.2. Pretensioned Joints and Slip-Critical Joints
Washers are not required in pretensioned joints and slip-critical joints, except
as required in Sections 6.1.1, 6.1.2, 6.2.1, 6.2.2, 6.2.3, 6.2.4 and 6.2.5.

6.2.1. Specified Minimum Yield Strength of Connected Material Less Than 40
ksi: When ASTM A490 or F2280 bolts are pretensioned in connected material
of specified minimum yield strength less than 40 ksi, ASTM F436 washers shall
be used under both the bolt head and nut, except that a washer is not needed
under the head of an ASTM F2280 round head twist-off bolt.

6.2.2. Calibrated Wrench Pretensioning: When the calibrated wrench
pretensioning method is used, an ASTM F436 washer shall be used under the
turned element.

6.2.3. Twist-Off-Type Tension-Control Bolt Pretensioning: When the twist-off-
type tension-control bolt pretensioning method is used, an ASTM F436 washer
shall be used under the nut as part of the fastener assembly.

6.2.4. Direct-Tension-Indicator Pretensioning: When the direct-tension-indicator
pretensioning method is used, an ASTM F436 washer shall be used as follows:

(1) When the nut is turned and the direct tension indicator is located under the
bolt head, an ASTM F436 washer shall be used under the nut;
(2) When the nut is turned and the direct tension indicator is located under the
nut, an ASTM F436 washer shall be used between the nut and the direct
tension indicator;
(3) When the bolt head is turned and the direct tension indicator is located
under the nut, an ASTM F436 washer shall be used under the bolt head;
and,

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-45

Table 6.1. Washer Requirements for Pretensioned and Slip-Critical
Bolted Joints with Oversized and Slotted Holes in the Outer Ply

Hole Type in Outer Ply
ASTM
Designation
Nominal Bolt
Diameter, d
b,
in. Oversized Short-Slotted Long-Slotted
A325 or F1852 2 - 12
≤ 1
ASTM F436
a

c in. thick plate
washer or
continuous bar
b,c

A490 or F2280
> 1
ASTM F436
with c in.
thickness
a,b,d

ASTM F436 washer
with either a a in.
thick plate washer
or continuous bar b,c a
This requirement shall not apply to heads of round head tension-control bolt assemblies that
meet the requirements in Section 2.7 and provide a bearing circle diameter that meets the
requirements of ASTM F1852 or F2280.
b
Multiple washers with a combined thickness of c in. or larger do not satisfy this requirement.
c
The plate washer or bar shall be of structural-grade steel material, but need not be hardened.
d
Alternatively, a a in. thick plate washer and an ordinary thickness F436 washer may be used.
The plate washer need not be hardened.

(4) When the bolt head is turned and the direct tension indicator is located
under the bolt head, an ASTM F436 washer shall be used between the bolt
head and the direct tension indicator.

6.2.5. Oversized or Slotted Hole: When an oversized or slotted hole occurs in an
outer ply, the washer requirements shall be as given in Table 6.1. The
washer used shall be of sufficient size to completely cover the hole.

Commentary:
It is important that shop drawings and connection details clearly reflect the number
and disposition of washers when they are required, especially the thick hardened washers
or plate washers that are required for some slotted hole applications. The total thickness
of washers in the grip affects the length of bolt that must be supplied and used.
The primary function of washers is to provide a hardened non-galling surface
under the turned element, particularly for torque-based pretensioning methods such as the
calibrated wrench pretensioning method and twist-off-type tension-control bolt
pretensioning method. Circular flat washers that meet the requirements of ASTM F436
provide both a hardened non-galling surface and an increase in bearing area that is
approximately 50 percent larger than that provided by a heavy-hex bolt head or nut.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-46
However, tests have shown that washers of the standard E in. thickness have a minor
influence on the pressure distribution of the induced bolt pretension. Furthermore, they
showed that a larger thickness is required when ASTM A490 bolts are used with material
that has a minimum specified yield strength that is less than 40 ksi. This is necessary to
mitigate the effects of local yielding of the material in the vicinity of the contact area of
the head and nut. The requirement for standard thickness hardened washers, when such
washers are specified, is waived for alternative design fasteners that incorporate a bearing
surface under the head of the same diameter as the hardened washer.
Heat-treated washers not less than c in. thick are required to cover
oversized and short-slotted holes in external plies, when ASTM A490 or F2280 bolts of
diameter larger than 1 in. are used, except per Table 6.1 footnote d. This was found
necessary to distribute the high clamping pressure so as to prevent collapse of the hole
perimeter and enable the development of the desired clamping force. Preliminary
investigation has shown that a similar but less severe deformation occurs when oversized
or slotted holes are in the interior plies. The reduction in clamping force may be offset
by “keying,” which tends to increase the resistance to slip. These effects are accentuated
in joints of thin plies. When long-slotted holes occur in an outer ply, ⅜ in. thick plate
washers or continuous bars and one ASTM F436 washer are required in Table 6.1. This
requirement can be satisfied with material of any structural grade. Alternatively, either
of the following options can be used:

(1) The use of material with F y greater than 40 ksi will eliminate the need to also
provide ASTM F436 washers in accordance with the requirements in Section
6.2.1 for ASTM A490 or F2280 bolts of any diameter; or,
(2) Material with F y equal to or less than 40 ksi can be used with ASTM F436
washers in accordance with the requirements in Section 6.2.1.

This specification previously required a washer under bolt heads with a
bearing area smaller than that provided by an ASTM F436 washer. Tests indicate that
the pretension achieved with a bolt having the minimum ASTM F1852 or F2280
bearing circle diameter is the same as that of a bolt with the larger bearing circle
diameter equal to the size of an ASTM F436 washer, provided that the hole size meets
the RCSC Specification limitations (Schnupp, 2003).

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-47
SECTION 7. PRE-INSTALLATION VERIFICATION

The requirements in this Section shall apply only as indicated in Section 8.2 to verify that
the fastener assemblies and pretensioned installation procedures perform as required prior
to installation.

7.1. Tension Calibrator
A tension calibrator shall be used where bolts are to be installed in
pretensioned joints and slip-critical joints to:

(1) Confirm the suitability of the complete fastener assembly , including
lubrication, for pretensioned installation; and,
(2) Confirm the procedure and proper use by the bolting crew of the
pretensioning method to be used.

The accuracy of a hydraulic tension calibrator shall be confirmed through
calibration at least annually.

Commentary:
A tension calibrator is a device that indicates the pretension that is developed
in a bolt. It must be readily available whenever high-strength bolts are to be
pretensioned. A bolt tension calibrator is essential for:

(1) The pre-installation verification of the suitability of the fastener assembly,
including the lubrication that is applied by the manufacturer or specially
applied, to develop the specified minimum pretension;
(2) Verifying the adequacy and proper use of the specified pretensioning method
to be used;
(3) Determining the installation torque for the calibrated wrench pretensioning
method; and,
(4) Determining an arbitration torque as specified in Section 10, if required to
resolve dispute.

Hydraulic tension calibrators undergo a slight deformation during bolt
pretensioning. Hence, when bolts are pretensioned according to Section 8.2.1,
the nut rotation corresponding to a given pretension reading may be somewhat
larger than it would be if the same bolt were pretensioned in a solid steel
assembly. Stated differently, the reading of a hydraulic tension calibrator tends
to underestimate the pretension that a given rotation of the turned element
would induce in a bolt in a pretensioned joint.
Direct tension indicators (DTIs) may be used as tension calibrators,
except in the case of turn-of-nut installation. This method is especially useful
for, but not restricted to, bolts that are too short to fit into a hydraulic tension
calibrator. The DTIs to be used for verification testing must first have the

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-48
Table 7.1 Minimum Bolt Pretension for Pre-Installation Verification

Minimum Bolt Pretension for
Pre-Installation Verification, kips
a
Nominal Bolt
Diameter, d
b, in.
ASTM A325
and F1852
ASTM A490
and F2280
2 13 16
s 20 25
w 29 37
d 41 51
1 54 67
18 59 84
14 75 107
1a 89 127
12 108 155
a
Equal to 1.05 times the specified minimum bolt pretension
required in Table 8.1, rounded to the nearest kip.


average gap determined for the specific level of pretension required by Table
7.1, measured to the nearest 0.001 in. This is termed the “calibrated gap.” Such
measurements should be made for each lot of DTIs being used for verification
testing, termed the “verification lot.” The fastener assembly may then be
installed in a standard size hole with the additional verification DTI. The
prescribed pretensioning procedure is followed, and it is verified that the
average gap in the verification DTI is equal to or less than the calibrated gap for
the verification lot. For calibrated wrench installation, the verification DTI
should be placed at the fastener end opposite the installation wrench. For twist-
off bolt installation, the verification DTI must be placed beneath the bolt head,
with an additional ASTM F436 washer between bolt head and verification DTI,
and the bolt head is not permitted to turn. For DTI installation, the verification
DTI must be placed at the end opposite the placement of the production DTI.
This technique cannot be used for the turn-of-nut method because the
deformation of the DTI consumes a portion of the turns provided. For turn-of-
nut pre-installation verification of bolts too short to fit into a hydraulic
calibration device, installing the fastener assembly in a solid plate with the
proper size hole and applying the required turns is adequate. No verification is
required for achieved pretension to meet Table 7.1.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-49
7.2. Required Testing
A representative sample of not fewer than three complete fastener assemblies
of each combination of diameter, length, grade and lot to be used in the work
shall be checked at the site of installation in a tension calibrator to verify that
the pretensioning method develops a pretension that is equal to or greater than
that specified in Table 7.1. Washers shall be used in the pre-installation
verification assemblies as required in the work in accordance with the
requirements in Section 6.2.
If the actual pretension developed in any of the fastener assemblies is
less than that specified in Table 7.1, the cause(s) shall be determined and
resolved before the fastener assemblies are used in the work. Cleaning,
lubrication and retesting of these fastener assemblies, except ASTM F1852 or
F2280 twist-off-type tension-control bolt assemblies, (see Section 2.2) are
permitted, provided that all assemblies are treated in the same manner.
Impact wrenches, if used, shall be of adequate capacity and supplied
with sufficient air to perform the required pretensioning of each bolt within
approximately 10 seconds for bolts to 14-in. diameter, and within
approximately 15 seconds for larger bolts.

Commentary:
The fastener components listed in Section 1.3 are manufactured under separate
ASTM specifications, each of which includes tolerances that are appropriate for
the individual component covered. While these tolerances are intended to
provide for a reasonable and workable fit between the components when used
in an assembly, the cumulative effect of the individual tolerances permits a
significant variation in the installation characteristics of the complete fastener
assembly. It is the intent in this Specification that the responsibility rests with
the supplier for proper performance of the fastener assembly, the components of
which may have been produced by more than one manufacturer.
When pretensioned installation is required, it is essential that the effects
of the accumulation of tolerances, surface condition and lubrication be taken
into account. Hence, pre-installation verification testing of the complete fastener
assembly is required as indicated in Section 8 to ensure that the fastener
assemblies and installation method to be used in the work will provide a
pretension that exceeds those specified in Table 8.1. It is not, however, intended
simply to verify conformance with the individual ASTM specifications.
It is recognized in this Specification that a natural scatter is found in
the results of the pre-installation verification testing that is required in Section 8.
Furthermore, it is recognized that the pretensions developed in tests of a
representative sample of the fastener components that will be installed in the
work must be slightly higher to provide confidence that the majority of fastener
assemblies will achieve the minimum required pretension as given in Table 8.1.
Accordingly, the minimum pretension to be used in pre-installation verification

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-50
is 1.05 times that required for installation and inspection, rounded to the nearest
kip.
Pre-installation verification testing of as-received bolts and nuts is also
a requirement in this Specification because of instances of under-strength and
counterfeit bolts and nuts. Pre-installation verification testing provides a
practical means for ensuring that non-conforming fastener assemblies are not
incorporated into the work. Experience on many projects has shown that bolts
and/or nuts not meeting the requirements of the applicable ASTM Specification
would have been identified prior to installation if they had been tested as an
assembly in a tension calibrator. The expense of replacing bolts installed in
the structure when the non-conforming bolts were discovered at a later date
would have been avoided.
Additionally, pre-installation verification testing clarifies for the
bolting crew and the inspector the proper implementation of the selected
pretensioning method and the adequacy of the installation equipment. It will
also identify potential sources of problems, such as the need for lubrication to
prevent failure of bolts by combined high torque with tension, under-strength
assemblies resulting from excessive over-tapping of hot-dip galvanized nuts or
other failures to meet strength or geometry requirements of applicable ASTM
specifications.
The pre-installation verification requirements in this Section presume
that fastener assemblies so verified will be pretensi oned before the condition of
the fastener assemblies, the equipment and the steelwork have changed
significantly. Research by Kulak and Undershute (1998) on twist-off-type
tension-control bolt assemblies from various manufacturers showed that
installed pretensions could be a function of the time and environmental
conditions of storage and exposure. The reduced performance of these bolts was
caused by a deterioration of the lubricity of the assemblies. Furthermore, all bolt
pretensioning that is achieved through rotation of the nut (or the head) is
affected by the presence of torque, the excess of which has been demonstrated
to adversely affect the development of the desired pretension. Thus, it is
required that the condition of the fastener assemblies must be replicated in pre-
installation verification. When time of exposure between the placement of
fastener assemblies in the field work and the subsequent pretensioning of those
fastener assemblies is of concern, pre-installation verification can be performed
on fastener assemblies removed from the work or on extra fastener assemblies
that, at the time of placement, were set aside to experience the same degree of
exposure.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-51
SECTION 8. INSTALLATION

Prior to installation, the fastener components shall be stored in accordance with Section
2.2. For joints that are designated in the contract documents as snug-tightened joints, the
bolts shall be installed in accordance with Section 8.1. For joints that are designated in
the contract documents as pretensioned or slip-critical, the bolts shall be installed in
accordance with Section 8.2.

8.1. Snug-Tightened Joints
All bolt holes shall be aligned to permit insertion of the bolts without undue
damage to the threads. Bolts shall be placed in all holes with washers positioned
as required in Section 6.1 and nuts threaded to complete the assembly.
Compacting the joint to the snug-tight condition shall progress systematically
from the most rigid part of the joint . Snug tight is the condition that exists when
all of the plies in a connection have been pulled into firm contact by the bolts in
the joint and all of the bolts in the joint have been tightened sufficiently to
prevent the removal of the nuts without the use of a wrench.

Commentary:
As discussed in the Commentary to Section 4, the bolted joints in most shear
connections and in many tension connections can be specified as snug-tightened
joints. The snug tightened condition is typically achieved with a few impacts of
an impact wrench, application of an electric torque wrench until the wrench
begins to slow or the full effort of a worker on an ordinary spud wrench. More
than one cycle through the bolt pattern may be required to achieve the snug-
tightened joint.
The actual pretensions that result in individual fasteners in snug-
tightened joints will vary from joint to joint depending upon the thickness,
flatness, and degree of parallelism of the connected plies, as well as the effort
applied. In most joints, plies of joints involving material of ordinary thickness
and flatness can be drawn into complete contact at relatively low levels of
pretension. However, in some joints in thick material or in material with large
burrs, it may not be possible to reach continuous contact throughout the faying
surface area as is commonly achieved in joints of thinner plates. This is
generally not detrimental to the performance of the joint.
As used in Section 8.1, the term “undue damage” is intended to mean
damage that would be sufficient to render the product unfit for its intended use.

8.2. Pretensioned Joints and Slip-Critical Joints
One of the pretensioning methods in Sections 8.2.1 through 8.2.4 shall be used,
except when alternative-design fasteners that meet the requirements of Section
2.8 or alternative washer-type indicating devices that meet the requirements of
Section 2.6.2 are used, in which case, installation instructions provided by the
manufacturer and approved by the Engineer of Record shall be followed.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-52
Table 8.1. Minimum Bolt Pretension, Pretensioned and Slip-Critical Joints

Specified Minimum Bolt
Pretension, T
m, kips
a
Nominal Bolt
Diameter, d
b, in.
ASTM A325
and F1852
ASTM A490
and F2280
2 12 15
s 19 24
w 28 35
d 39 49
1 51 64
18 56 80
14 71 102
1a 85 121
12 103 148
a
Equal to 70 percent of the specified minimum tensile strength
of bolts as specified in ASTM Specifications for tests of full-size
ASTM A325 and A490 bolts with UNC threads loaded in axial
tension, rounded to the nearest kip.


When it is impractical to turn the nut, pretensioning by turning the bolt
head is permitted while rotation of the nut is prevented, provided that the washer
requirements in Section 6.2 are met. A pretension that is equal to or greater than
the value in Table 8.1 shall be provided. The pre-installation verification
procedures specified in Section 7 shall be performed using fastener assemblies
that are representative of the condition of those that will be pretensioned in the
work.
Pre-installation testing shall be performed for each fastener assembly
lot prior to the use of that assembly lot in the work. The testing shall be done at
the start of the work. For calibrated wrench pretensioning, this testing shall be
performed daily for the calibration of the installation wrench.

Commentary:
The minimum pretension for ASTM A325 and A490 bolts is equal to 70
percent of the specified minimum tensile strength. As tabulated in Table 8.1,
the values have been rounded to the nearest kip.
Four pretensioning methods are provided without preference in this
Specification. Each method may be relied upon to provide satisfactory results
when conscientiously implemented with the specified fastener assembly

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-53
components in good condition. However, it must be recognized that misuse or
abuse is possible with any method. With all methods, it is important to first
install bolts in all holes of the joint and to compact the joint until the connected
plies are in firm contact. Only after completion of this operation can the joint be
reliably pretensioned. Both the initial phase of compacting the joint and the
subsequent phase of pretensioning should begin at the most rigidly fixed or
stiffest point.
In some joints in thick material, it may not be possible to reach
continuous contact throughout the faying surface area, as is commonly achieved
in joints of thinner plates. This is not detrimental to the performance of the
joint. If the specified pretension is present in all bolts of the completed joint, the
clamping force, which is equal to the total of the pretensions in all bolts, will be
transferred at the locations that are in contact and the joint will be fully effective
in resisting slip through friction.
If individual bolts are pretensioned in a single continuous operation in
a joint that has not first been properly compacted or fitted up, the pretension in
the bolts that are pretensioned first may be relaxed or removed by the
pretensioning of adjacent bolts. The resulting reduction in total clamping force
will reduce the slip resistance.
In the case of hot-dip galvanized coatings, especially if the joint
consists of many plies of thickly coated material, relaxation of bolt pretension
may be significant and re-pretensioning of the bolts may be required subsequent
to the initial pretensioning. Munse (1967) showed that a loss of pretension of
approximately 6.5 percent occurred for galvanized plates and bolts due to
relaxation as compared with 2.5 percent for uncoated joints. This loss of bolt
pretension occurred in five days; loss recorded thereafter was negligible. Either
this loss can be allowed for in design, or pretension may be brought back to the
prescribed level by re-pretensioning the bolts after an initial period of “settling-
in.”
As stated in the Guide (Kulak et al 1987; p. 61), “…it seems
reasonable to expect an increase in bolt force relaxation as the grip length is
decreased. Similarly, increasing the number of plies for a constant grip length
might also lead to an increase in bolt relaxation.”
8.2.1. Turn-of-Nut Pretensioning: All bolts shall be installed in accordance with the
requirements in Section 8.1, with washers positioned as required in Section 6.2.
Subsequently, the nut or head rotation specified in Table 8.2 shall be applied to all fastener assemblies in the joint, progressing systematically from the most
rigid part of the joint in a manner that will minimize relaxation of previously
pretensioned bolts. The part not turned by the wrench shall be prevented from rotating during this operation. Upon completion of the application of the required nut rotation for pretensioning, it is not permitted to turn the nut in the loosening direction except for the purpose of complete removal of the individual

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-54
Table 8.2. Nut Rotation from Snug-Tight Condition
for Turn-of-Nut Pretensioning
a,b

Disposition of Outer Faces of Bolted Parts
Bolt Length
c
Both faces
normal to bolt
axis
One face normal
to bolt axis, other
sloped not more
than 1:20
d

Both faces sloped
not more than 1:20
from normal to bolt
axis
d

Not more
than 4d
b
3 turn 2 turn q turn
More than 4d b
but not more
than 8d
b
2 turn q turn y turn
More than 8d b
but not more
than 12d
b
q turn y turn 1 turn
a
Nut rotation is relative to bolt regardless of the element (nut or bolt) being turned. For
required nut rotations of 2 turn and less, the tolerance is plus or minus 30 degrees; for
required nut rotations of q turn and more, the tolerance is plus or minus 45 degrees.
b
Applicable only to joints in which all material within the grip is steel.
c
When the bolt length exceeds 12d b, the required nut rotation shall be determined by
actual testing in a suitable tension calibrator that simulates the conditions of solidly
fitting steel.
d
Beveled washer not used.


fastener assembly. Such fastener assemblies shall not be reused except as
permitted in Section 2.3.3.

Commentary:
The turn-of-nut pretensioning method results in more uniform bolt pretensions
than is generally provided with torque-controlled pretensioning methods.
Strain-control that reaches the inelastic region of bolt behavior is inherently
more reliable than a method that is dependent upon torque control. However,
proper implementation is dependent upon ensuring that the joint is properly
compacted prior to application of the required partial turn and that the bolt head
(or nut) is securely held when the nut (or bolt head) is being turned.
Match-marking of the nut and protruding end of the bolt after snug-
tightening can be helpful in the subsequent installation process and is certainly
an aid to inspection.
As indicated in Table 8.2, there is no available research that establishes
the required nut rotation for bolt lengths exceeding 12d b. The required turn for
such bolts can be established on a case-by-case basis using a tension calibrator.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-55
8.2.2. Calibrated Wrench Pretensioning: The pre-installation verification procedures
specified in Section 7 shall be performed daily for the calibration of the
installation wrench. Torque values determined from tables or from equations that
claim to relate torque to pretension without verification shall not be used.
All bolts shall be installed in accordance with the requirements in
Section 8.1, with washers positioned as required in Section 6.2. Subsequently,
the installation torque determined in the pre-installation verification of the
fastener assembly (Section 7) shall be applied to all bolts in the joint ,
progressing systematically from the most rigid part of the joint in a manner that
will minimize relaxation of previously pretensioned bolts. The part not turned
by the wrench shall be prevented from rotating during this operation.
Application of the installation torque need not produce a relative rotation
between the bolt and nut that is greater than the rotation specified in Table 8.2.

Commentary:
The scatter in installed pretension can be significant when torque-controlled
methods of installation are used. The variables that affect the relationship
between torque and pretension include:

(1) The finish and tolerance on the bolt and nut threads;
(2) The uniformity, degree and condition of lubrication;
(3) The shop or job-site conditions that contribute to dust and dirt or corrosion
on the threads;
(4) The friction that exists to a varying degree between the turned element (the
nut face or bearing area of the bolt head) and the supporting surface;
(5) The variability of the air supply parameters on impact wrenches that results
from the length of air lines or number of wrenches operating from the same
source;
(6) The condition, lubrication and power supply for the torque wrench, which
may change within a work shift; and,
(7) The repeatability of the performance of any wrench that senses or responds
to the level of the applied torque.

In the first edition of this Specification, which was published in 1951, a
table of torque-to-pretension relationships for bolts of various diameters was
included. It was soon demonstrated in research that a variation in the
torque-to-pretension of as high as ±40 percent must be anticipated unless the
relationship is established individually for each bolt lot, diameter, and fastener
condition. Hence, in the 1954 edition of this Specification, recognition of
relationships between torque and pretension in the form of tabulated values or
equations was withdrawn. Recognition of the calibrated wrench pretensioning
method was retained however until 1980, but with the requirement that the
torque required for installation be determined specifically for the bolts being
installed on a daily basis. Recognition of the method was withdrawn in 1980

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-56
because of the continuing controversy that resulted from the failure of users to
adhere to the requirements for the valid use of the method during both
installation and inspection.
In the 1985 edition of this Specification, the calibrated wrench
pretensioning method was reinstated, but with more emphasis on detailed
requirements that must be carefully followed. For calibrated wrench
pretensioning, wrenches must be calibrated:

(1) Daily;
(2) When the lot of any component of the fastener assembly is changed;
(3) When the lot of any component of the fastener assembly is relubricated;
(4) When significant differences are noted in the surface condition of the bolt
threads, nuts or washers; or,
(5) When any major component of the wrench including lubrication, hose and
air supply are altered.

It is also important that:

(1) Fastener components be protected from dirt and moisture at the shop or job
site as required in Section 2;
(2) Washers be used as specified in Section 6; and,
(3) The time between removal from protected storage and wrench calibration
and final pretensioning be minimal.
8.2.3. Twist-Off-Type Tension-Control Bolt Pretensioning: Twist-off-type tension-
control bolt assemblies that meet the requirements of ASTM F1852 or F2280
shall be used.
All fastener assemblies shall be installed in accordance with the
requirements in Section 8.1 without severing the splined end and with washers
positioned as required in Section 6.2. If a splined end is severed during this
operation, the fastener assembly shall be removed and replaced. Subsequently,
all bolts in the joint shall be pretensioned with the twist-off-type tension-control
bolt installation wrench, progressing systematically from the most rigid part of the joint in a manner that will minimize relaxation of previously pretensioned
bolts.

Commentary:
ASTM F1852 and F2280 twist-off-type tension-control bolt assemblies have
a splined end that extends beyond the threaded portion of the bolt. During
installation, this splined end is gripped by a specially designed wrench chuck
and provides a means for turning the nut relative to the bolt. This product
is, in fact, based upon a torque-controlled installation method to which the
fastener assembly variables affecting torque that were discussed in the

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-57
Commentary to Section 8.2.2 apply, except for wrench calibration, because
torque is controlled within the fastener assembly.
Twist-off-type tension-control bolt assemblies must be used in the as-
delivered, clean, lubricated condition as specified in Section 2. Adherence to
the requirements in this Specification, especially those for storage, cleanliness
and verification, is necessary for their proper use.
8.2.4. Direct-Tension-Indicator Pretensioning: Direct tension indicators that meet the
requirements of ASTM F959 shall be used. The pre-installation verification procedures specified in Section 7 shall demonstrate that, when the pretension in
the bolt reaches that required in Table 7.1, the gap is not less than the job
inspection gap in accordance with ASTM F959.
All bolts shall be installed in accordance with the requirements in
Section 8.1, with washers positioned as required in Section 6.2. The installer shall verify that the direct-tension-indicator protrusions have not been compressed to a gap that is less than the job inspection gap during this operation, and if this has occurred, the direct tension indicator shall be removed and replaced. Subsequently, all bolts in the joint shall be pretensioned, progressing
systematically from the most rigid part of the joint in a manner that will
minimize relaxation of previously pretensioned bolts. The installer shall verify that the direct tension indicator protrusions have been compressed to a gap that is less than the job inspection gap.

Commentary:
ASTM F959 direct tension indicators are recognized in this Specification as
a bolt-tension-indicating device. Direct tension indicators are hardened, washer-
shaped devices incorporating small arch-like protrusions on the bearing surface
that are designed to deform in a controlled manner when subjected to
compressive load.
During installation, care must be taken to ensure that the direct-tension-
indicator arches are oriented to bear against the hardened bearing surface of the
bolt head or nut, or against a hardened flat washer if used under turned element,
whether that turned element is the nut or the bolt. Proper use and orientation is
illustrated in Figure C-8.1.
In some cases, more than a single cycle of systematic partial
pretensioning may be required to deform the direct-tension-indicator protrusions
to the gap that is specified by the manufacturer. If the gaps fail to close or when
the washer lot is changed, another verification procedure using the tension
calibrator must be performed.
Provided the connected plies are in firm contact, partial compression of
the direct tension indicator protrusions is commonly taken as an indication that
the snug-tight condition has been achieved.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-58




Figure C-8.1. Proper use and orientation of ASTM F959 direct-tension indicator

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-59
SECTION 9. INSPECTION

When inspection is required in the contract documents, the inspector shall ensure while
the work is in progress that the requirements in this Specification are met. When
inspection is not required in the contract documents, the contractor shall ensure while
the work is in progress that the requirements in this Specification are met.
For joints that are designated in the contract documents as snug-tightened joints,
the inspection shall be in accordance with Section 9.1. For joints that are designated in
the contract documents as pretensioned, the inspection shall be in accordance with
Section 9.2. For joints that are designated in the contract documents as slip-critical, the
inspection shall be in accordance with Section 9.3.

9.1. Snug-Tightened Joints
Prior to the start of work, it shall be ensured that all fastener components to be
used in the work meet the requirements in Section 2. Subsequently, it shall be
ensured that all connected plies meet the requirements in Section 3.1 and all bolt
holes meet the requirements in Sections 3.3 and 3.4. After the connections
have been assembled, it shall be visually ensured that the plies of the connected
elements have been brought into firm contact and that washers have been used
as required in Section 6. It shall be determined that all of the bolts in the joint
have been tightened sufficiently to prevent the turning of the nuts without the
use of a wrench. No further evidence of conformity is required for snug-
tightened joints. Where visual inspection indicat es that the fastener may not
have been sufficiently tightened to prevent the removal of the nut by hand, the
inspector shall physically check for this condition for the fastener.

Commentary:
Inspection requirements for snug-tightened joints consist of verification that the
proper fastener components were used, the connected elements were fabricated
properly, the bolted joint was drawn into firm contact, and that the nuts could
not be removed without the use of a wrench. Because pretension, beyond what
is required to ensure that the nut cannot be removed from the bolt without the
use of a wrench, is not required for the proper performance of a snug-tightened
joint, the installed bolts should not be inspected to determine the actual installed
pretension. Likewise, the arbitration procedures described in Section 10 are not
applicable.

9.2. Pretensioned Joints
For pretensioned joints, the following inspection shall be performed in addition
to that required in Section 9.1:

(1) When the turn-of-nut pretensioning method is used for installation, the
inspection shall be in accordance with Section 9.2.1;

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-60
(2) When the calibrated wrench pretensioning method is used for installation,
the inspection shall be in accordance with Section 9.2.2;
(3) When the twist-off-type tension-control bolt pretensioning method is used
for installation, the inspection shall be in accordance with Section 9.2.3;
(4) When the direct-tension-indicator pretensioning method is used for
installation, the inspection shall be in accordance with Section 9.2.4; and,
(5) When alternative-design fasteners that meet the requirements of Section 2.8
or alternative washer-type indicating devices that meet the requirements of
Section 2.6.2 are used, the inspection shall be in accordance with inspection
instructions provided by the manufacturer and approved by the Engineer of
Record.

Commentary:
When joints are designated as pretensioned, they are not subject to the same
faying-surface-treatment inspection requirements as is specified for slip-critical
joints in Section 9.3.
9.2.1. Turn-of-Nut Pretensioning: The inspector shall observe the pre-installation
verification testing required in Section 8.2.1. Subsequently, it shall be ensured
by routine observation that the bolting crew properly rotates the turned element
relative to the unturned element by the amount specified in Table 8.2. Alternatively, when fastener assemblies are match-marked after the initial fit-
up of the joint but prior to pretensioning, visual inspection after pretensioning is
permitted in lieu of routine observation. No further evidence of conformity is required. A pretension that is greater than the value specified in Table 8.1 shall
not be cause for rejection.
Commentary:
Match-marking of the assembly during installation as discussed in the
Commentary to Section 8.2.1 improves the ability to inspect bolts that have been
pretensioned with the turn-of-nut pretensioning method. The sides of nuts and
bolt heads that have been impacted sufficiently to induce the Table 8.1
minimum pretension will appear slightly peened.
The turn-of-nut pretensioning method, when properly applied and
verified during the construction, provides more reliable installed pretensions
than after-the-fact inspection testing. Therefore, proper inspection of the method
is for the inspector to observe the required pre-installation verification testing of
the fastener assemblies and the method to be used, followed by monitoring of
the work in progress to ensure that the method is routinely and properly applied,
or visual inspection of match-marked assemblies.
Some problems with the turn-of-nut pretensioning method have been
encountered with hot-dip galvanized bolts. In some cases, the problems have
been attributed to an especially effective lubricant applied by the
manufacturer to ensure that bolts and nuts from stock will meet the ASTM

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-61
Specification requirements for minimum turns testing of galvanized fasteners.
Job-site testing in the tension calibrator demonstrated that the lubricant reduced
the coefficient of friction between the bolt and nut to the degree that “the full
effort of an ironworker using an ordinary spud wrench” to snug-tighten the joint
actually induced the full required pretension. Also, because the nuts could be
removed with an ordinary spud wrench, they were erroneously judged by the
inspector to be improperly pretensioned. Excessively lubricated high-strength
bolts may require significantly less torque to induce the specified pretension.
The required pre-installation verification will reveal this potential problem.
Conversely, the absence of lubrication or lack of proper over-tapping
can cause seizing of the nut and bolt threads, which will result in a twist failure
of the bolt at less than the specified pretension. For such situations, the use of a
tension calibrator to check the bolt assemblies to be installed will be helpful in
establishing the need for lubrication.
9.2.2. Calibrated Wrench Pretensioning: The inspector shall observe the pre-
installation verification testing required in Section 8.2.2. Subsequently, it shall
be ensured by routine observation that the bolting crew properly applies the
calibrated wrench to the turned element. No further evidence of conformity is
required. A pretension that is greater than the value specified in Table 8.1 shall
not be cause for rejection.
Commentary:
For proper inspection of the method, it is necessary for the inspector to observe
the required pre-installation verification testing of the fastener assemblies and
the method to be used, followed by monitoring of the work in progress to ensure
that the method is routinely and properly applied within the limits on time
between removal from protected storage and final pretensioning.
9.2.3. Twist-Off-Type Tension-Control Bolt Pretensioning: The inspector shall
observe the pre-installation verification testing required in Section 8.2.3.
Subsequently, it shall be ensured by routine observation that the splined ends
are properly severed during installation by the bolting crew. No further evidence of conformity is required. A pretension that is greater than the value specified in
Table 8.1 shall not be cause for rejection.
Commentary:
The sheared-off splined end of an installed twist-off-type tension-control bolt
assembly merely signifies that at some time the bolt was subjected to a torque
that was adequate to cause the shearing. If in fact all fasteners are
individually pretensioned in a single continuous operation without first properly
snug-tightening all fasteners, they may give a misleading indication that the
bolts have been properly pretensioned. Therefore, it is necessary that the
inspector observe the required pre-installation verification testing of the fastener

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-62
assemblies, and the ability to apply partial tension prior to twist-off is
demonstrated. This is followed by monitoring of the work in progress to ensure
that the method is routinely and properly applied within the limits on time
between removal from protected storage and final twist-off of the splined end.
9.2.4. Direct-Tension-Indicator Pretensioning: The inspector shall observe the pre-
installation verification testing required in Section 8.2.4. Subsequently, but
prior to pretensioning, it shall be ensured by routine observation that the
appropriate feeler gage is accepted in at least half of the spaces between the
protrusions of the direct tension indicator and that the protrusions are properly oriented away from the work. If the appropriate feeler gage is accepted in fewer
than half of the spaces, the direct tension indicator shall be removed and
replaced. After pretensioning, it shall be ensured by routine observation that the
appropriate feeler gage is refused entry into at least half of the spaces between
the protrusions. No further evidence of conformity is required. A pretension that is greater than that specified in Table 8.1 shall not be cause for rejection.

Commentary:
When the joint is initially snug tightened, the direct tension indicator arch-like
protrusions will generally compress partially. Whenever the snug-tightening
operation causes one-half or more of the gaps between these arch-like
protrusions to close to 0.015 in. or less (0.005 in. or less for coated direct
tension indicators), the direct tension indicator should be replaced. Only after
this initial operation should the bolts be pretensioned in a systematic manner. If
the bolts are installed and pretensioned in a single continuous operation, direct
tension indicators may give the inspector a misleading indication that the bolts
have been properly pretensioned. Therefore, it is necessary that the inspector
observe the required pre-installation verification testing of the fastener
assemblies with the direct-tension indicators properly located and the method to
be used. Following this operation, the inspector should monitor the work in
progress to ensure that the method is routinely and properly applied.

9.3. Slip-Critical Joints
Prior to assembly, it shall be visually verified that the faying surfaces of slip-
critical joints meet the requirements in Section 3.2.2. Subsequently, the
inspection required in Section 9.2 shall be performed.

Commentary:
When joints are specified as slip-critical, it is necessary to verify that the faying
surface condition meets the requirements as specified in the contract documents
prior to assembly of the joint and that the bolts are properly pretensioned after
they have been installed. Accordingly, the inspection requirements for slip-
critical joints are identical to those specified in Section 9.2, with additional
faying surface condition inspection requirements.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-63
SECTION 10. ARBITRATION

When it is suspected after inspection in accordance with Section 9.2 or Section 9.3 that
bolts in pretensioned or slip-critical joints do not have the proper pretension, the
following arbitration procedure is permitted.

(1) A representative sample of five bolt and nut assemblies of each combination of
diameter, length, grade and lot in question shall be installed in a tension calibrator.
The material under the turned element shall be the same as in the actual
installation, that is, structural steel or hardened washer. The bolt shall be partially
pretensioned to approximately 15 percent of the pretension specified in Table
8.1. Subsequently, the bolt shall be pretensioned to the minimum value specified in
Table 8.1;
(2) A manual torque wrench that indicates torque by means of a dial, or one that may be
adjusted to give an indication that a defined torque has been reached, shall be
applied to the pretensioned bolt. The torque that is necessary to rotate the nut or bolt
head five degrees (approximately 1 in. at 12 in. radius) relative to its mating
component in the tightening direction shall be determined. The arbitration torque
shall be determined by rejecting the high and low values and averaging the
remaining three; and,
(3) Bolts represented by the above sample shall be tested by applying, in the tightening
direction, the arbitration torque to 10 percent of the bolts, but no fewer than two
bolts, selected at random in each joint in question. If no nut or bolt head is turned
relative to its mating component by application of the arbitration torque, the joint
shall be accepted as properly pretensioned.

If verification of bolt pretension is required after the passage of a period of time and
exposure of the completed joints, an alternative arbitration procedure that is appropriate
to the specific situation shall be used.
If any nut or bolt is turned relative to its mating component by an attempted
application of the arbitration torque, all bolts in the joint shall be tested. Those bolts whose
nut or head is turned relative to its mating component by application of the arbitration
torque shall be re-pretensioned by the Fabricator or Erector and reinspected. Alternatively,
the Fabricator or Erector, at their option, is permitted to re-pretension all of the bolts in
the joint and subsequently resubmit the joint for inspection.

Commentary:
When bolt pretension is arbitrated using torque wrenches after pretensioning, such
arbitration is subject to all of the uncertainties of torque-controlled calibrated wrench
installation that are discussed in the Commentary to Section 8.2.2. Additionally, the
reliability of after-the-fact torque wrench arbitration is reduced by the absence of many of
the controls that are necessary to minimize the variability of the torque-to-pretension
relationship, such as:

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-64
(1) The use of hardened washers
2
;
(2) Careful attention to lubrication; and,
(3) The uncertainty of the effect of passage of time and exposure in the installed
condition.

Furthermore, in many cases such arbitration may have to be based upon an arbitration
torque that is determined either using bolts that can only be assumed to be representative
of the bolts used in the actual job or using bolts that are removed from completed joints.
Ultimately, such arbitration may wrongly reject bolts that were subjected to a properly
implemented installation procedure. The arbitration procedure contained in this
Specification is provided, in spite of its limitations, as the most feasible available at this
time.
Arbitration using an ultrasonic extensometer or a mechanical one capable of
measuring changes in bolt length can be performed on a sample of bolts that is
representative of those that have been installed in the work. Several manufacturers
produce equipment specifically for this application. The use of appropriate techniques,
which includes calibration, can produce a very accurate measurement of the actual
pretension. The method involves measurement of the change in bolt length during the
release of the nut, combined with either a load calibration of the removed fastener
assembly or a theoretical calculation of the force corresponding to the measured elastic
release or “stretch.” Reinstallation of the released bolt or installation of a replacement
bolt is required.
The required release suggests that the direct use of extensometers as an
inspection tool be used in only the most critical cases. The problem of reinstallation may
require bolt replacement unless torque can be applied slowly using a manual or hydraulic
wrench, which will permit the restoration of the original elongation.

2
For example, because the reliability of the turn-of-nut pretensioning method is not dependent
upon the presence or absence of washers under the turned element, washers are not generally
required, except for other reasons as indicated in Section 6. Thus, in the absence of washers, after-
the-fact, torque-based arbitration is particularly unreliable when the turn-of-nut pretensioning
method has been used for installation.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-65
APPENDIX A. TESTING METHOD TO DETERMINE THE SLIP
COEFFICIENT FOR COATINGS USED IN BOLTED JOINTS

SECTION A1. GENERAL PROVISIONS

A1.1. Purpose and Scope
The purpose of this testing procedure is to determine the mean slip coefficient
of a coating for use in the design of slip-critical joints. Adherence to this
testing method provides that the creep deformation of the coating due to both
the clamping force of the bolt and the service-load joint shear are such
that the coating will provide satisfactory performance under sustained loading.

Commentary:
The Research Council on Structural Connections on June 14, 1984, first
approved the testing method developed by Yura and Frank (1985). It has since
been revised to incorporate changes resulting from the intervening years of
experience with the testing method, and is now included as an appendix to this
Specification.
The slip coefficient under short-term static loading has been found to
be independent of the magnitude of the clamping force, variations in coating
thickness and bolt hole diameter.
The proposed test methods are designed to provide the necessary
information to evaluate the suitability of a coating for slip-critical joints and to
determine the mean slip coefficient to be used in the design of the joints. The
initial testing of the compression specimens provides a measure of the scatter of the
slip coefficient.
The creep tests are designed to measure the creep behavior of the
coating under the service loads, determined by the slip coefficient of the coating
based upon the compression test results. The slip test conducted at the
conclusion of the creep test is to ensure that the loss of clamping force in the
bolt does not reduce the slip load below that associated with the design slip
coefficient. ASTM A490 bolts are specified, since the loss of clamping force is
larger for these bolts than that for ASTM A325 bolts. Qualification of the
coating for use in a structure at an average thickness of 2 mils less than that to
be used for the test specimen is to ensure that a casual buildup of the coating
due to overspray and other causes does not jeopardize the coating's
performance.

A1.2. Definition of Essential Variables
Essential variables are those that, if changed, will require retesting of the
coating to determine its mean slip coefficient. The essential variables and the
relationship of these variables to the limitations of application of the coating for
structural joints are given below. The slip coefficient testing shall be repeated if
there is any change in these essential variables.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-66
A1.2.1. Time Interval: The time interval between application of the coating and the time
of testing is an essential variable. The time interval must be recorded in hours
and any special curing procedures detailed. Curing according to published
manufacturer’s recommendations would not be considered a special curing
procedure. The coatings are qualified for use in structural connections that are
assembled after coating for a time equal to or greater than the interval used in
the test specimens. Special curing conditions used in the test specimens will also
apply to the use of the coating in the structural connections.

A1.2.2. Coating Thickness: The coating thickness is an essential variable. The
maximum average coating thickness, as per SSPC PA2 (SSPC 1993; SSPC
1991), allowed on the faying surfaces is 2 mils less than the average thickness,
rounded to the nearest whole mil, of the coating that is used on the test
specimens.

A1.2.3. Coating Composition and Method of Manufacture: The composition of the
coating, including the thinners used, and its method of manufacture are essential
variables.

A1.3. Retesting
A coating that fails to meet the creep or the post-creep slip test requirements in
Section A4 may be retested in accordance with methods in Section A4 at a
lower slip coefficient without repeating the static short-term tests specified in
Section A3. Essential variables shall remain unchanged in the retest.

SECTION A2. TEST PLATES AND COATING OF THE SPECIMENS

A2.1. Test Plates
The test specimen plates for the short-term static tests are shown in Figure A1.
The plates are 4 in. × 4 in. × s in. thick, with a 1 in. diameter hole drilled 12
in. ± z in. from one edge. The test specimen plates for the creep tests are
shown in Figure A2. The plates are 4 in. × 7 in. × s in. thick with two 1 in.
diameter holes drilled 12 in. ± z in. from each end. The edges of the plates
may be milled, as-rolled or saw-cut; thermally cut edges are not permitted. The
plates shall be flat enough to ensure that they will be in reasonably full
contact over the faying surface. All burrs, lips or rough edges shall be
removed. The arrangement of the specimen plates for the testing is shown in
Figure A2. The plates shall be fabricated from a steel with a specified minimum
yield strength that is between 36 and 50 ksi.
If specimens with more than one bolt are desired, the contact surface
per bolt shall be 4 in. × 3 in. as shown for the single-bolt specimen in Figure
A1.

Commentary:
The use of 1 in.-diameter bolt holes in the specimens is to ensure that adequate
clearance is available for slip. Fabrication tolerances, coating buildup on the
holes, and assembly tolerances tend to reduce the apparent clearances.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-67
A2.2. Specimen Coating
Coatings are to be applied to the specimens in a manner that is consistent with
that to be used in the actual intended structural application. The method of
applying the coating and the surface preparation shall be given in the test report.
The specimens are to be coated to an average thickness that is 2 mils greater
than the maximum thickness to be used in the structure on both of the
plate surfaces (the faying and outer surfaces). The thickness of the total
coating and the primer, if used, shall be measured on the contact surface of the
specimens. The thickness shall be measured in accordance with SSPC-PA2
(SSPC, 1993; SSPC, 1991). Two spot readings (six gage readings) shall be
made for each contact surface. The overall average thickness from the three
plates comprising a specimen is the average thickness for the specimen. This
value shall be reported for each specimen. The average coating thickness of the
creep specimens shall be calculated and reported.
The time between application of the coating and specimen assembly
shall be the same for all specimens within ±4 hours. The average time shall be
calculated and reported.



Figure A-1. Compression slip test specimen.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-68



Figure A-2. Creep test specimen assembly.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-69
SECTION A3. SLIP TESTS

The methods and procedures described herein are used to experimentally determine the
mean slip coefficient under short-term static loading for high-strength bolted joints. The
mean slip coefficient shall be determined by testing one set of five specimens.

Commentary:
The slip load measured in this setup yields the slip coefficient directly since the clamping
force is controlled and measured directly. The resulting slip coefficient has been found to
correlate with both tension and compression tests of bolted specimens. However, tests of
bolted specimens revealed that the clamping force may not be constant but decreases with
time due to the compressive creep of the coating on the faying surfaces and under the nut
and bolt head. The reduction in clamping force can be considerable for joints with high
clamping force and thick coatings (as much as a 20 percent loss). This reduction in
clamping force causes a corresponding reduction in the slip load. The resulting reduction
in slip load must be considered in the procedure used to determine the design allowable
slip loads for the coating.
The loss in clamping force is a characteristic of the coating. Consequently,
it cannot be accounted for by an increase in the factor of safety or a reduction in the
clamping force used for design without unduly penalizing coatings that do not exhibit this
behavior.

A3.1. Compression Test Setup
The test setup shown in Figure A3 has two major loading components, one to apply a clamping force to the specimen plates and another to apply a compressive load to the specimen so that the load is transferred across the faying surfaces by
friction.

A3.1.1. Clamping Force System: The clamping force system consists of a ⅞ in.
diameter threaded rod that passes through the specimen and a centerhole compression ram. An ASTM A563 grade DH nut is used at both ends of the rod and a hardened washer is used at each side of the test specimen.
Between the ram and the specimen is a specially modified ⅞ in. diameter
ASTM A563 grade DH nut in which the threads have been drilled out so that
it will slide with little resistance along the rod. When oil is pumped into the
centerhole ram, the piston rod extends, thus forcing the special nut against one of the outside plates of the specimen. This action puts tension in the threaded
rod and applies a clamping force to the specimen, thereby simulating the
effect of a pretensioned bolt. If the diameter of the centerhole ram is greater
than 1 in., additional plate washers will be necessary at the ends of the ram.
The clamping force system shall have a capability to apply a load of at least 49 kips and shall maintain this load during the test with an accuracy of 0.5 kips.

Commentary:
The slip coefficient can be easily determined using the hydraulic bolt test setup
included in this Specification. The clamping force system simulates the

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-70
clamping action of a pretensioned high-strength bolt. The centerhole ram
applies a clamping force to the specimen, simulating that due to a pretensioned
bolt.

A3.1.2. Compressive Load System: A compressive load shall be applied to the
specimen until slip occurs. This compressive load shall be applied with a compression test machine or a reaction frame using a hydraulic loading device. The loading device and the necessary supporting elements shall be able to support a force of 120 kips. The compression loading system shall have a minimum accuracy of 1 percent of the slip load.



Figure A-3. Compression slip test setup.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-71
A3.2. Instrumentation

A3.2.1. Clamping Force: The clamping force shall be measured within 0.5 kips. This is
accomplished by measuring the pressure in the calibrated ram or placing a load
cell in series with the ram.

A3.2.2. Compression Load: The compression load shall be measured during the test by
direct reading from a compression testing machine, a load cell in series with the
specimen and the compression loading device or pressure readings on a
calibrated compression ram.

A3.2.3. Slip Deformation: The displacement of the center plate relative to the two
outside plates shall be measured. This displacement, called “slip” for simplicity,
shall be the average or that which occurs at the centerline of the specimen. This
can be accomplished by using the average of two gages placed on the two
exposed edges of the specimen or by monitoring the movement of the loading
head relative to the base. If the latter method is used, due regard shall be taken
for any slack that may be present in the loading system prior to application of
the load. Deflections shall be measured by dial gages or any other calibrated
device that has an accuracy of at least 0.001 in.

A3.3. Test Procedure
The specimen shall be installed in the test setup as shown in Figure A3.
Before the hydraulic clamping force is applied, the individual plates shall be
positioned so that they are in, or close to, full bearing contact with the ⅞ in.
threaded rod in a direction that is opposite to the planned compressive loading to
ensure obvious slip deformation. Care shall be taken in positioning the two
outside plates so that the specimen is perpendicular to the base with both
plates in contact with the base. After the plates are positioned, the centerhole
ram shall be engaged to produce a clamping force of 49 kips. The applied
clamping force shall be maintained within ±0.5 kips during the test until slip
occurs.
The spherical head of the compression loading machine shall be
brought into contact with the center plate of the specimen after the clamping
force is applied. The spherical head or other appropriate device ensures
concentric loading. When 1 kip or less of compressive load is applied, the slip
gages shall be engaged or attached. The purpose of engaging the deflection
gage(s), after a slight load is applied, is to eliminate initial specimen settling
deformation from the slip reading.
When the slip gages are in place, the compression load shall be applied
at a rate that does not exceed 25 kips per minute nor 0.003 in. of slip
displacement per minute until the slip load is reached. The test should be
terminated when a slip of 0.05 in. or greater is recorded. The load-slip
relationship should preferably be monitored continuously on an X-Y plotter

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-72
throughout the test, but in lieu of continuous data, sufficient load-slip data shall
be recorded to evaluate the slip load defined below.

A3.4. Slip Load
Typical load-slip response is shown in Figure A4. Three types of curves are
usually observed and the slip load associated with each type is defined as
follows:

Curve (a) Slip load is the maximum load, provided this maximum occurs before
a slip of 0.02 in. is recorded.
Curve (b) Slip load is the load at which the slip rate increases suddenly.
Curve (c) Slip load is the load corresponding to a deformation of 0.02 in. This
definition applies when the load vs. slip curves show a gradual
change in response.


Figure A-4. Definition of slip load.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-73
A3.5. Slip Coefficient
The slip coefficient for an individual specimen k
s
shall be calculated as follows:


2
s
slip load
k
clamping force
=
×
(Equation A3.1)

The mean slip coefficient µ for one set of five specimens shall be reported.

A3.6. Alternative Test Methods
Alternative test methods to determine slip are permitted, provided the accuracy
of load measurement and clamping satisfies the conditions presented in the
previous sections. For example, the slip load may be determined from a tension-
type test setup rather than the compression-type test setup as long as the contact
surface area per bolt of the test specimen is the same as that shown in Figure
A1. The clamping force of at least 49 kips may be applied by any means,
provided the force can be established within ± 1 percent.

Commentary:
Alternative test procedures and specimens may be used as long as the accuracy
of load measurement and specimen geometry are maintained as prescribed. For
example, strain-gaged bolts can usually provide the desired accuracy. However,
bolts that are pretensioned by the turn-of-nut, calibrated wrench, alternative-
design fastener, or direct-tension-indicator pretensioning method usually show
too much variation to meet the ± 1 percent requirement of the slip test.

SECTION A4. TENSION CREEP TEST

The test method outlined is intended to ensure that the coating will not undergo
significant creep deformation under sustained service loading. The test also indicates the loss in clamping force in the bolt due to the compression or creep of the coating. Three
replicate specimens are to be tested.

Commentary:
The creep deformation of the bolted joint under the applied shear loading is also an
important characteristic and a function of the coating applied. Thicker coatings tend to
creep more than thinner coatings. Rate of creep deformation increases as the applied load
approaches the slip load. Extensive testing has shown that the rate of creep is not constant
with time, rather it decreases with time. After about 1,000 hours of loading, the
additional creep deformation is negligible.

A4.1. Test Setup
Tension-type specimens, as shown in Figure A2, are to be used. The replicate
specimens are to be linked together in a single chain-like arrangement, using
loose pin bolts, so the same load is applied to all specimens. The specimens

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-74
shall be assembled so the specimen plates are bearing against the bolt in a
direction opposite to the applied tension loading. Care shall be taken in the
assembly of the specimens to ensure the centerline of the holes used to accept the
pin bolts is in line with the bolts used to assemble the joint. The load level,
specified in Section A4.2, shall be maintained constant within ±1 percent by
springs, load maintainers, servo controllers, dead weight or other suitable
equipment. The bolts used to clamp the specimens together shall be ⅞ in.
diameter ASTM A490 bolts. All bolts shall come from the same lot.
The clamping force in the bolts shall be a minimum of 49 kips. The
clamping force shall be determined by calibrating the bolt force with bolt
elongation, if standard bolts are used. Alternatively, special fastener assemblies
that control the clamping force by other means, such as calibrated bolt torque or
strain gages, are permitted. A minimum of three bolt calibrations shall be
performed using the technique selected for bolt force determination. The
average of the three-bolt calibration shall be calculated and reported. The
method of measuring bolt force shall ensure the clamping force is within ±2
kips of the average value.
The relative slip between the outside plates and the center plates shall
be measured to an accuracy of 0.001 in. These slips are to be measured on both
sides of each specimen.

A4.2. Test Procedure
The load to be placed on the creep specimens is the service load permitted by
Equation 5.7 for ⅞
in. diameter ASTM A490 bolts in slip-critical joints for
the particular slip coefficient category under consideration. The load shall be
placed on the specimen and held for 1,000 hours. The creep deformation of a
specimen is calculated using the average reading of the two displacements on
either side of the specimen. The difference between the average after 1,000
hours and the initial average reading taken within one-half hour after loading
the specimens is defined as the creep deformation of the specimen. This value
shall be reported for each specimen. If the creep deformation of any specimen
exceeds 0.005 in., the coating has failed the test for the slip coefficient used.
The coating may be retested using new specimens in accordance with this
Section at a load corresponding to a lower value of slip coefficient.
If the value of creep deformation is less than 0.005 in. for all
specimens, the specimens shall be loaded in tension to a load that is equal to the
average clamping force times the design slip coefficient times 2, since there are
two slip planes. The average slip deformation that occurs at this load shall
be less than 0.015 in. for the three specimens. If the deformation is greater than
this value, the coating is considered to have failed to meet the requirements for
the particular mean slip coefficient used. The value of deformation for each
specimen shall be reported.

Commentary:
See Commentary in Section A1.1.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-75
APPENDIX B. ALLOWABLE STRESS DESIGN (ASD) ALTERNATIVE

As an alternative to the load and resistance factor design provisions given in Sections 1
through 10, the following allowable stress design provisions are permitted. The
provisions in Sections 1 through 10 in this Specification shall apply to ASD,
except as follows:

SECTION B1. GENERAL REQUIREMENTS

B1.2. Loads, Load Factors and Load Combinations
The design and construction of the structure shall conform to an applicable
allowable stress design specification for steel structures. When permitted in the
applicable building code or specification, the allowable stresses in Section B5
are permitted to be increased to account for the effects of multiple transient
loads in combination. When a load reduction factor is used to account for the
effects of multiple transient loads in combination, the allowable stresses in
Section B5 shall not be increased.

Commentary:
Although loads, load factors and load combinations are not explicitly specified
in this Specification, the allowable stresses herein are based upon those
specified in ASCE 7. When the design is governed by other load criteria, the
allowable stresses specified herein shall be adjusted as appropriate.

SECTION B5. LIMIT STATES IN BOLTED JOINTS

The allowable shear strength and the allowable tensile strength of bolts shall be determined in accordance with Section B5.1. The interaction of combined shear and
tension on bolts shall be limited in accordance with Section B5.2. The allowable bearing
strength of the connected parts at bolt holes shall be determined in accordance with
Section B5.3. Each of these allowable strengths shall be equal to or greater than the
effect of the service loads. The axial load in bolts that are subject to tension or
combined shear and tension shall be calculated with consideration of the externally applied tensile load and any additional tension resulting from prying action produced by
deformation of the connected parts. When slip resistance is required at the faying surfaces subject to shear or
combined shear and tension, the slip resistance determined in accordance with Section
B5.4 shall be equal to or greater than the effect of the service loads. In addition, the
strength requirements in Sections B5.1, B5.2 and B5.3 shall also be met.
When bolts are subject to cyclic application of axial tension, the allowable stress
determined in accordance with Section B5.5 shall be equal to or greater than the stress
due to the effect of the service loads, including any additional tension resulting from
prying action produced by deformation of the connected parts. In addition, the strength
requirements in Sections B5.1, B5.2 and B5.3 shall also be met.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-76
Table B5.1. Allowable Stresses in Bolts

Allowable Stress, F
a, ksi
Applied Load Condition
ASTM A325 or F1852 ASTM A490 or F2280
Static 45 57
Tension
a

Fatigue See Section 5.5
Ls M 38 in. 27 34
Threads
included in
shear plane
L
s > 38 in. 23 28
Ls M 38 in. 34 42
Shear
a,b

Threads
excluded from
shear plane
L
s > 38 in. 28 35
a
Except as required in Section 5.2.
b
Reduction for values for L s > 38 in. applies only when the joint is end loaded, such as splice plates on a
beam or column flange.

B5.1. Allowable Shear and Tensile Stresses
Shear and tensile strengths shall not be reduced by the installed bolt pretension.
For joints, the allowable strength shall be based upon the allowable shear
and tensile stresses of the individual bolts and shall be taken as the sum of the
allowable strengths of the individual bolts.
The allowable shear strength or allowable tensile strength for an
ASTM A325, A490, F1852 or F2280 bolt is R
a, where:


aab
RFA= (Equation B5.1)

where

R
a
= allowable shear strength per shear plane or allowable tensile
strength of a bolt, kips;
F
a
= allowable stress from Table B5.1 for the appropriate applied
load conditions, ksi, adjusted for the presence of fillers or shims as
required below; and,
A
b
= cross-sectional area based upon the nominal diameter of bolt, in.
2


When a bolt that carries load passes through fillers or shims in a shear
plane that are equal to or less than 4 in. thick, F
a from Table B5.1 shall be used
without reduction. When a bolt that carries load passes through fillers or

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-77
shims that are greater than 4 in. thick, one of the following requirements shall
apply:

(1) For fillers or shims that are equal to or less than w in. thick, F a from Table
B5.1 shall be multiplied by the factor [1 - 0.4(t´ - 0.25)], where t´ is the total
thickness of fillers or shims, in., up to w in.;
(2) The fillers or shims shall be extended beyond the joint and the filler
extension shall be secured with enough bolts to uniformly distribute the total
force in the connected element over the combined cross-section of the
connected element and the fillers or shims;
(3) The size of the joint shall be increased to accommodate a number of bolts
that is equivalent to the total number required in (2) above; or,
(4) The joint shall be designed as a slip-critical joint. The slip resistance of the
joint shall not be reduced for the presence of fillers or shims.

B5.2. Combined Shear and Tension Stress
When combined shear and tension loads are transmitted by an ASTM A325,
A490, F1852 or F2280 bolt, the bolt shall be proportioned so that the tensile
stress F
t, ksi, on the cross-sectional area based upon the nominal diameter of
bolt A
b
produced by forces applied to the connected parts, shall not exceed the
values computed from the equations in Table B5.2, where f
v, the shear stress
produced by the same forces, shall not exceed the value for shear determined in
accordance with the requirements in Section B5.1.


B5.3. Allowable Bearing at Bolt Holes
For joints, the allowable bearing strength shall be taken as the sum of the
strengths of the connected material at the individual bolt holes.
The allowable bearing strength of the connected material at a standard
bolt hole, oversized bolt hole, short-slotted bolt hole independent of the
direction of loading or long-slotted bolt hole with the slot parallel to the
direction of the bearing load is R
a, where:

(1) when deformation of the bolt hole at service load is a design consideration;

0.6 1.2
acubu
RLtFdtF=≤ (Equation B5.2)

(2) when deformation of the bolt hole at service load is not a design
consideration;

0.75 1.5
acubu
RLtFdtF=≤ (Equation B5.3)

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-78
Table B5.2. Allowable Tensile Stress, F
t, for Bolts
Subject to Combined Shear and Tension

Allowable Tensile Stress F
t
, ksi
Thread Condition
ASTM A325 or F1852 ASTM A490 or F2280
Ls M 38 in. ()
2
2
45 2.78−
v
f ()
2
2
57 2.81−
v
f
Threads included
in shear plane
L
s > 38 in. ()
2
2
45 3.82−
v
f ()
2
2
57 4.14−
v
f
Ls M 38 in. ()
2
2
45 1.75−
v
f ()
2
2
57 1.84−
v
f
Threads excluded
from shear plane
L
s > 38 in. ()
2
2
45 2.58−
v
f ()
2
2
57 2.65−
v
f

The allowable bearing strength of the connected material at a long-slotted bolt hole with the slot perpendicular to the direction of the bearing load is R
a
,
where:

0.5
acubu
RLtFdtF=≤ (Equation B5.4)

In Equations B5.2, B5.3 and B5.4,

R a = allowable bearing strength of the connected material, kips;
F
u = specified minimum tensile strength (per unit area) of the connected
material, ksi;
L
c
= clear distance, in the direction of load, between the edge of the
hole and the edge of the adjacent hole or the edge of the material,
in.;
D
b = nominal bolt diameter, in.; and,
t = thickness of the connected material, in.

B5.4. Allowable Slip Resistance
The allowable slip resistance is R
a, where:


1
nm b
mb
T
RHDTNDTN

=μ − 

(Equation B5.5)

where

H = 1.0 for standard holes
= 0.85 for oversized and short-slotted holes
= 0.70 for long-slotted holes perpendicular to the direction of load
= 0.60 for long-slotted holes parallel to the direction of load;

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-79
Table B5.3. Allowable Stress for Fatigue Loading

Max. Bolt Stress for Design at Service Loads
a
, ksi
Number of Cycles
ASTM A325 or F1852 ASTM A490 or F2280
Not more than 20,000 45 57
From 20,000 to 500,000 40 49
More than 500,000 31 38
a
Including the effects of prying action, if any, but excluding the pretension.

µ = mean slip coefficient for Class A, B or C faying surfaces, as
applicable, or as established by testing in accordance with Appendix A (see Section 3.2.2(b))
= 0.33 for Class A faying surfaces (uncoated clean mill scale
steel surfaces or surfaces with Class A coatings on blast cleaned steel)
= 0.50 for Class B surfaces (uncoated blast-cleaned steel surfaces or
surfaces with Class B coatings on blast-cleaned steel)
= 0.35 for Class C surfaces (roughened hot-dip galvanized surfaces);
D = 0.80, a slip probability factor that reflects the distribution of
actual slip coefficient values about the mean, the ratio of measured bolt tensile strength to the specified minimum values, and a slip probability level; the use of other values of D shall be approved by
the Engineer of Record;
T
m
= specified minimum bolt pretension (for pretensioned joints as
specified in Table 8.1), kips;
N
b = number of bolts in the joint; and,
T = applied service load in tension (tensile component of applied
service load for combined shear and tension loading), kips
= zero if the joint is subject to shear only

B5.5. Tensile Fatigue
The tensile stress in the bolt that results from the cyclic application of externally applied service loads and the prying force, if any, but not the pretension, shall not exceed the stress in Table B5.3. The nominal diameter of the bolt shall be
used in calculating the bolt stress. The connected parts shall be proportioned so that the calculated prying force does not exceed 30 percent of the externally
applied load. Joints that are subject to tensile fatigue loading shall be
pretensioned in accordance with Section 4.2 or slip-critical in accordance with
Section 4.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-80
REFERENCES

Allen, R.N. and J.W. Fisher, 1968, “Bolted Joints With Oversize or Slotted Holes,”
Journal of the Structural Division, Vol. 94, No. ST9, September, ASCE, Reston,
VA .

American Institute of Steel Construction, 2010, Specification for Structural Steel
Buildings, AISC, Chicago, IL.

Birkemoe, P.C. and D.C. Herrschaft, 1970, “Bolted Galvanized Bridges—Engineering
Acceptance Near,” Civil Engineering, April, ASCE, Reston, VA.

Brahimi, Salim, 2006, “Qualification of DACROMET
®
for use with ASTM A490 High-
Strength Structural Bolts,” IBECA Technologies Corp., ASTM F16 Research
Report RR: F16-1001.

Carter, C.J., R.H.R. Tide and J.A. Yura, 1997, “A Summary of Changes and Derivation of
LRFD Bolt Design Provisions,” Engineering Journal, Vol. 34, No. 3, (3rd Qtr.),
AISC, Chicago, IL.

Carter, C.J., 1996, “Specifying Bolt Length for High-Strength Bolts,” Engineering
Journal, Vol. 33, No. 2, (2nd Qtr.), AISC, Chicago, IL.

Chesson, Jr., E, N.L. Faustino and W.H. Munse, 1965, “High-Strength Bolts Subjected
to Tension and Shear,” Journal of the Structural Division, Vol. 91, No. ST5,
October, ASCE, Reston, VA.

Fisher, J.W. and J.L. Rumpf, 1965, “Analysis of Bolted Butt Joints,” Journal of the
Structural Division, Vol. 91, No. ST5, October, ASCE, Reston, VA.

Frank, K.H. and J.A. Yura, 1981, “An Experimental Study of Bolted Shear Connections,”
FHWA/RD-81/148, December, Federal Highway Administration, Washington, D.C.

Kulak, G.L., J.W. Fisher and J.H.A. Struik, 1987, Guide to Design Criteria for Bolted and
Riveted Joints, Second Edition, John Wiley & Sons, New York, NY.

Kulak, G.L. and P.C. Birkemoe, 1993, “Field Studies of Bolt Pretension,” Journal of
Constructional Steel Research, No. 25, pp. 95-106.

Kulak, G.L. and S.T. Undershute, 1998, “Tension Control Bolts: Strength and
Installation,” Journal of Bridge Engineering, Vol. 3 No. 1, February, ASCE,
Reston, VA.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-81
Manuel, T.J. and G.L. Kulak, 2000, “Strength of Joints that Combine Bolts and Welds,”
Journal of Structural Engineering, Vol. 126, No. 3, March, ASCE, Reston, VA.

McKinney, M. and F.J. Zwerneman, 1993, “The Effect of Burrs on the Slip Capacity in
Multiple Bolt Connections,” Final Report to the Research Council on Structural
Connections, August.

Munse, W. H., 1967, “Structural Behavior of Hot Galvanized Bolted Connections,”
Proceedings of the 8th International Conference on Hot-dip Galvanizing, June,
London, England.

Polyzois, D. and K.H. Frank, 1986, “Effect of Overspray and Incomplete Masking of
Faying Surfaces on the Slip Resistance of Bolted Connections,” Engineering
Journal, Vol. 23, No. 2, (2nd Qtr), AISC, Chicago, IL.

Polyzois, D. and J.A. Yura, 1985, “Effect of Burrs on Bolted Friction Connections,”
Engineering Journal, Vol.22, No. 3, (3rd Qtr), AISC, Chicago, IL.

Schnupp, K. O.; Murray, T. M. (2003), “Effects of Head Size on the Performance of
Twist-Off Bolts,” Virginia Polytechnic Institute and State University, CC/VTI-ST
03/09, July 2003.

Sherman, D.R. and J.A. Yura, 1998, “Bolted Double-Angle Compression Members,”
Journal of Constructional Steel Research, 46:1-3, Paper No. 197, Elsevier Science
Ltd., Kidlington, Oxford, UK.

SSPC, 1993, Steel Structures Painting Manual, Vol. 1, Third Edition, SSPC: The Society
for Protective Coatings, Pittsburgh, PA.

SSPC, 1991, Steel Structures Painting Manual, Vol. 2, Sixth Edition, SSPC: The Society
for Protective Coatings, Pittsburgh, PA.

Tide, R.H.R., 2010, “Bolt Shear Design Considerations,” Engineering Journal, Vol. 47,
No. 1, (1
st
Qtr.), AISC, Chicago, IL.

Yura, J.A. and K.H. Frank, 1985, “Testing Method to Determine Slip Coefficient for
Coatings Used in Bolted Joints,” Engineering Journal , Vol. 22, No. 3, (3rd Qtr.),
AISC, Chicago, IL.

Yura, J.A., K.H. Frank and L. Cayes, 1981, “Bolted Friction Connections with
Weathering Steel,” Journal of the Structural Division, Vol. 107, No. ST11,
November, ASCE, Reston, VA.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-82
INDEX

Alternative-design fasteners.......................................................................................... 16
Alternative washer-type indicating device................................................................... 15
Arbitration...................................................................................................................... 63

Bearing strength............................................................................................................. 36
Bolt holes
Bearing strength at ........................................................................................................... 36
Use of............................................................................................................................... 21
Bolt pretensioning .......................................................................................................... 51
Using calibrated wrench pretensioning............................................................................ 55
Using direct-tension-indicator pretensioning................................................................... 57
Using turn-of-nut pretensioning....................................................................................... 53
Using twist-off-type tension-control bolt pretensioning.................................................. 56
Bolted joints, limit states in........................................................................................... 31
Bolted parts..................................................................................................................... 17
Bolts
Alternative-design fasteners............................................................................................. 16
Geometry............................................................................................................................ 6
Heavy-hex structural.......................................................................................................... 6
Reuse.................................................................................................................................. 6
Specifications..................................................................................................................... 6
Twist-off-type tension-control bolt assemblies................................................................ 15
Burrs................................................................................................................................ 24

Calibrated wrench pretensioning
Inspection of .................................................................................................................... 61
Installation using.............................................................................................................. 55
Use of washers in............................................................................................................. 44
Calibrator, tension ......................................................................................................... 47
Certification of fastener components, manufacturer.................................................... 5
Coatings
On faying surfaces ........................................................................................................... 17
Testing method to determine the slip coefficient for ....................................................... 65
Combined shear and tension......................................................................................... 35
Components, fastener ...................................................................................................... 5
Compressible-washer-type direct tension indicators .................................................. 14
Connected plies............................................................................................................... 17

Design
Bearing strength at bolt holes .......................................................................................... 36
Combined shear and tension ............................................................................................ 35
General............................................................................................................................. 31

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-83
Shear strength................................................................................................................... 32
Slip resistance .................................................................................................................. 38
At the factored-load level ................................................................................................ 38
At the service-load level .................................................................................................. 39
Tensile fatigue.................................................................................................................. 42
Tensile strength ................................................................................................................ 32
Direct tension indicators
Compressible-washer-type, general ................................................................................. 14
Inspection of .................................................................................................................... 62
Installation using.............................................................................................................. 57
Use of washers with......................................................................................................... 44
Drawing information ....................................................................................................... 3

Fasteners
Alternative-design............................................................................................................ 16
Manufacturer certification of ............................................................................................. 5
Storage of........................................................................................................................... 5
Fatigue, tensile................................................................................................................ 42
Faying surfaces............................................................................................................... 17
Coated .............................................................................................................................. 18
Galvanized ....................................................................................................................... 18
In pretensioned joints....................................................................................................... 17
In slip-critical joints ......................................................................................................... 18
In snug-tightened joints ................................................................................................... 17
Uncoated .......................................................................................................................... 18

Galvanized faying surfaces............................................................................................ 18
General requirements ...................................................................................................... 1
Geometry
Bolts ................................................................................................................................... 6
Nuts.................................................................................................................................. 13
Twist-off-type tension-control bolt assemblies................................................................ 15

Heavy-hex nuts............................................................................................................... 13
Heavy-hex structural bolts.............................................................................................. 6
Holes
Bolt................................................................................................................................... 21
Long-slotted ..................................................................................................................... 24
Oversized ......................................................................................................................... 23
Oversized, use of washers with ....................................................................................... 45
Short-slotted..................................................................................................................... 24
Slotted, use of washers with ....................................................................................... 44,45
Standard ........................................................................................................................... 22

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-84
Indicating devices
Alternative washer-type ................................................................................................... 15
Twist-off-type tension-control bolt assemblies................................................................ 15
Washer-type...................................................................................................................... 14
Inspection........................................................................................................................ 59
Of calibrated wrench pretensioning................................................................................. 61
Of direct-tension-indicator pretensioning ........................................................................ 62
Of pretensioned joints...................................................................................................... 59
Of slip-critical joints ........................................................................................................62
Of snug-tightened joints................................................................................................... 59
Of turn-of-nut pretensioning............................................................................................ 60
Of twist-off-type tension-control bolt pretensioning ....................................................... 61
Installation ...................................................................................................................... 51
In pretensioned joints....................................................................................................... 51
In slip-critical joints ......................................................................................................... 51
In snug-tightened joints ................................................................................................... 51
Using calibrated wrench pretensioning............................................................................ 55
Using direct-tension-indicator pretensioning................................................................... 57
Using turn-of-nut pretensioning....................................................................................... 53
Using twist-off-type tension-control bolt pretensioning.................................................. 56

Joints
Limit states in................................................................................................................... 31
Pretensioned..................................................................................................................... 29
Faying surfaces in......................................................................................................... 17
Inspection of................................................................................................................. 59
Installation in................................................................................................................51
Slip-critical....................................................................................................................... 30
Faying surfaces in......................................................................................................... 18
Inspection of................................................................................................................. 62
Installation in................................................................................................................51
Snug-tightened .................................................................................................................28
Faying surfaces............................................................................................................. 17
Inspection of................................................................................................................. 59
Installation in................................................................................................................51
Type.................................................................................................................................. 26

Limit states in bolted joints........................................................................................... 31
Loads ................................................................................................................................. 1
Combinations ..................................................................................................................... 1
Factors................................................................................................................................ 1
Long-slotted holes
General............................................................................................................................. 24
Use of washers with .................................................................................................... 44,45

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-85
Manufacturer certification of fastener components ..................................................... 5

Nuts
Geometry.......................................................................................................................... 13
Heavy-hex ........................................................................................................................ 13
Specifications................................................................................................................... 13

Oversized holes
General............................................................................................................................. 23
Use of washers with......................................................................................................... 45

Parts, bolted.................................................................................................................... 17
Plies, connected .............................................................................................................. 17
Pre-installation verification........................................................................................... 47
Pretensioned joints
Faying surfaces in ............................................................................................................ 17
General............................................................................................................................. 29
Inspection of..................................................................................................................... 59
Installation in ................................................................................................................... 51
Use of washers in............................................................................................................. 44
Using calibrated wrench pretensioning............................................................................ 55
Using direct-tension-indicator pretensioning................................................................... 57
Using turn-of-nut pretensioning....................................................................................... 53
Using twist-off-type tension-control bolt pretensioning.................................................. 56

References ....................................................................................................................... 80
Requirements, general ..................................................................................................... 1
Reuse, bolts ....................................................................................................................... 6

Shear, design strength.................................................................................................... 32
Short-slotted holes
General............................................................................................................................. 24
Use of washers with.................................................................................................... 44,45
Slip coefficient for coatings, testing to determine ....................................................... 65
Slip-critical joints
Faying surfaces in ............................................................................................................ 18
General............................................................................................................................. 30
Inspection of .................................................................................................................... 62
Installation in ................................................................................................................... 51
Use of washers in............................................................................................................. 44
Slip resistance ................................................................................................................. 38
Slotted hole, use of washers with............................................................................. 44,45
Snug-tightened joints
Faying surfaces in ............................................................................................................ 17

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-86
General............................................................................................................................. 28
Inspection of .................................................................................................................... 59
Installation in ................................................................................................................... 51
Use of washers in............................................................................................................. 44
Specifications
Bolts ................................................................................................................................... 6
General............................................................................................................................... 2
Nuts.................................................................................................................................. 13
Twist-off-type tension-control bolt assemblies................................................................ 15
Washers ............................................................................................................................ 14
Standard holes ................................................................................................................ 22
Standards .......................................................................................................................... 2
Storage of fastener components...................................................................................... 5
Strength
Combined shear and tension ............................................................................................ 35
Bearing............................................................................................................................. 36
Shear ................................................................................................................................ 32
Slip resistance .................................................................................................................. 38
Tensile .............................................................................................................................. 32
Tensile fatigue.................................................................................................................. 42
Surfaces, faying .............................................................................................................. 17

Tensile design strength................................................................................................... 32
Tensile fatigue................................................................................................................. 42
Tension calibrator .......................................................................................................... 47
Testing, slip coefficient for coatings.............................................................................. 65
Turn-of-nut pretensioning
Inspection of .................................................................................................................... 60
Installation using.............................................................................................................. 53
Twist-off-type tension-control bolt assemblies
Geometry.......................................................................................................................... 15
Inspection of .................................................................................................................... 61
Installation using.............................................................................................................. 56
Specifications................................................................................................................... 15
Use of washers in............................................................................................................. 44

Uncoated faying surfaces............................................................................................... 18
Use of washers ................................................................................................................ 44

Verification, pre-installation ......................................................................................... 47

Washers
General............................................................................................................................. 14
Use of............................................................................................................................... 44
Washer-type indicating devices..................................................................................... 14

www.boltcouncil.org
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
c/o AISC, One East Wacker Drive, Suite 700, Chicago, Illinois 60601

AISC 348-09 (2M910)

AISC 303-10





Code of Standard Practice
for Steel Buildings
and Bridges



April 14, 2010


Supersedes the March 18, 2005 AISC Code of Standard Practice
for Steel Buildings and Bridges and all previous versions.

Prepared by the American Institute of Steel Construction
under the di
rection of the AISC Committee
on the Code of Standard Practice.








AMERICAN INSTITUTE OF STEEL CONSTRUCTION
One East Wacker Drive, Suite 700, Chicago, Illinois 60601

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-ii







AISC © 2010
by
American Institute of Steel Construction




All rights reserved. This book or any part thereof must not be reproduced in any form
without the written permission of the publisher. The AISC logo is a registered trademark
of AISC.

The information presented in this publication has been prepared in accordance with
recognized engineering principles and is for general information only. While it is
believed to be accurate, this information should not be used or relied upon for any
specific application without competent professional examination and verification of
its accuracy, suitability, and applicability by a licensed professional engineer,
designer, or architect. The publication of the material contained herein is not
intended as a representation or warranty on the part of the American Institute of
Steel Construction or of any other person named herein, that this information is
suitable for any general or particular use or of freedom from infringement of any
patent or patents. Anyone making use of this information assumes all liability
arising from such use.

Caution must be exercised when relying upon other specifications and codes
developed by other bodies and incorporated by reference herein since such material
may be modified or amended from time to time subsequent to the printing of this
edition. The Institute bears no responsibility for such material other than to refer to
it and incorporate it by reference at the time of the initial publication of this edition.


Printed in the United States of America

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-iii
PREFACE


As in any industry, trade practices have developed among those that are involved in the
design, purchase, fabrication and erection of structural steel. This Code provides a useful
framework for a common understanding of the acceptable standards when contracting for
structural steel. As such, it is useful for owners, architects, engineers, general contractors,
construction managers, fabricators, steel detailers, erectors and others that are associated
with construction in structural steel. Unless specific provisions to the contrary are
contained in the contract documents, the existing trade practices that are contained herein
are considered to be the standard custom and usage of the industry and are thereby
incorporated into the relationships between the parties to a contract.
The Symbols and Glossary are an integral part of this Code. In many sections of
this Code, a non-mandatory Commentary has been prepared to provide background and
further explanation for the corresponding Code provisions. The user is encouraged to
consult it.
Since the first edition of this Code was published in 1924, AISC has
continuously surveyed the structural steel design community and construction industry to
determine standard trade practices. Since then, this Code has been periodically updated to
reflect new and changing technology and industry practices.
The 2000 edition was the fifth complete revision of this Code since it was first
published. Like the 2005 edition, the 2010 edition is not a complete revision but does add
important changes and updates. It is the result of the deliberations of a fair and balanced
Committee, the membership of which included structural engineers, architects, a code
official, a general contractor, fabricators, a steel detailer, erectors, inspectors, and an
attorney. The following changes have been made in this revision:

• The scope in Section 1.1 has been revised to cover buildings and other structures in a
manner that is consistent with how buildings and other structures are treated in AISC
360 (the AISC Specification for Structural Steel Buildings ). A similar and
corresponding revision has been made in Section 1.4.
• The list of referenced documents in Section 1.2 has been editorially updated.
• Section 1.9 has been added to emphasize that not all tolerances are explicitly covered
in the Code, and that tolerances not covered are not to be assumed as zero.
• Clarification has been added in Section 2 that base plates and bearing plates are
considered structural steel if they are attached to the structural frame, but not if they
are loose items that do not attach to the structural steel frame.
• Editorial improvements have been made in the Commentary to Section 3.1 to
improve upon the list of items that should be provided in the contract documents, as
well as to link column differential shortening and anticipated deflections to
information that has been added in the Commentary to Section 7.13.
• Explicit requirements have been added in Section 3.1.2 as “option 3” for when
connection design work is delegated by the Structural Engineer of Record (SER) to
be performed by another engineer. Provisions covering connection design by the

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-iv
SER (option 1) and selection or completion of basic tabular connections by a steel
detailer (option 2) also have been revised for consistency with and distinction from
option 3. Additionally, the defined term substantiating connection information has
been added to the Glossary, and revisions also have been made in Section 4 to
correspond with the addition of option 3 in Section 3.1.2.
• Information has been added to the Commentary in Section 4.1 to summarize the
importance and benefits of holding a pre-detailing conference to open lines of
communication and develop a common understanding about the project.
• Section 4.7 has been added to address requirements for erection drawings.
• Section 6.4.3 has been modified to better address incidental camber in trusses.
• Information has been added in the Commentary to Section 7.10.1 to better describe
the provisions that relate to special erection conditions or other considerations that
are required by the design concept, as well as to highlight special considerations in
the erection of cantilevered members.
• The intent in Section 7.13.1.2(d) has been clarified in the text as well as with the
relocation of supporting Commentary.
• The intent in Section 10.2.5 has been editorially clarified for groove welds in butt
joints and outside corner joints.
• The document has been editorially revised for consistency with current terms and
other related documents.

The Committee thanks Glenn Bishop, the Council of American Structural Engineers
(CASE), and its Guidelines Committee for their assistance and partnership in the
development of Section 3.1.2 in this edition of the Code. Also, the Committee thanks
Rex I. Lewis and Homer R. Peterson, II for their contributions as memb
ers of the
Committee for part of this cycle of development, and honors Comm
ittee member
Leonard R. Middleton, who passed away during this cycle.

By the AISC Committee on the Code of Standard Practice,

James A. Stori, Chairman
Barry L. Barger, Vice Chairman
William A. Andrews
Paul M. Brosnahan
Richard B. Cook
William B. Cooper
William R. Davidson
Theodore L. Droessler
Donald T. Engler
Lawrence G. Griffis
D. Kirk Harman
Viji Kuruvilla
Keith G. Landwehr
James L. Larson
H. Scott Metzger
Donald G. Moore
David B. Ratterman
David I. Ruby
Rex D. Smith
Thomas S. Tarpy, Jr.
James G. Thompson
Michael J. Tylk
Michael A. West
Charles J. Carter, Secretary
Amanuel Gebremeskel, Asst. Secretary

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-v
TABLE OF CONTENTS


Glossary ........................................................................................................................ vii

Section 1. General Provisions ........................................................................................ 1
1.1. Scope ......................................................................................................................... 1
1.2. Referenced Specifications, Codes and Standards ..................................................... 1
1.3. Units .......................................................................................................................... 2
1.4. Design Criteria .......................................................................................................... 3
1.5. Responsibility for Design .......................................................................................... 3
1.6. Patents and Copyrights .............................................................................................. 3
1.7. Existing Structures .................................................................................................... 3
1.8. Means, Methods and Safety of Erection ................................................................... 4
1.9. Tolerances ................................................................................................................. 4

Section 2. Classification of Materials ........................................................................... 5
2.1. Definition of Structural Steel .................................................................................... 5
2.2. Other Steel, Iron or Metal Items ............................................................................... 6

Section 3. Design Drawings and Specifications ........................................................... 9
3.1. Structural Design Drawings and Specifications ........................................................ 9
3.2. Architectural, Electrical and Mechanical Design Drawings and Specifications ..... 15
3.3. Discrepancies .......................................................................................................... 15
3.4. Legibility of Design Drawings ................................................................................ 16
3.5. Revisions to the Design Drawings and Specifications ............................................ 16
3.6. Fast-Track Project Delivery .................................................................................... 17

Section 4. Shop and Erection Drawings ..................................................................... 18
4.1. Owner Responsibility .............................................................................................. 18
4.2. Fabricator Responsibility ........................................................................................ 19
4.3. Use of CAD Files and/or Copies of Design Drawings ............................................ 20
4.4. Approval ................................................................................................................. 21
4.5. Shop and/or Erection Drawings Not Furnished by the Fabricator .......................... 23
4.6. The RFI Process ...................................................................................................... 23
4.7. Erection Drawings ................................................................................................... 24

Section 5. Materials ...................................................................................................... 25
5.1. Mill Materials .......................................................................................................... 25
5.2. Stock Materials ....................................................................................................... 26

Section 6. Shop Fabrication and Delivery .................................................................. 28
6.1. Identification of Material ........................................................................................ 28
6.2. Preparation of Material ........................................................................................... 29
6.3. Fitting and Fastening ............................................................................................... 29
6.4. Fabrication Tolerances ............................................................................................ 30
6.5. Shop Cleaning and Painting .................................................................................... 33
6.6. Marking and Shipping of Materials ........................................................................ 35

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-vi
6.7. Delivery of Materials .............................................................................................. 35

Section 7. Erection ........................................................................................................ 37
7.1. Method of Erection ................................................................................................. 37
7.2. Job-Site Conditions ................................................................................................. 37
7.3. Foundations, Piers and Abutments .......................................................................... 37
7.4. Lines and Bench Marks ........................................................................................... 38
7.5. Installation of Anchor Rods, Foundation Bolts and Other Embedded Items .......... 38
7.6. Installation of Bearing Devices ............................................................................... 39
7.7. Grouting .................................................................................................................. 40
7.8. Field Connection Material ....................................................................................... 40
7.9. Loose Material ........................................................................................................ 41
7.10. Temporary Support of Structural Steel Frames ..................................................... 41
7.11. Safety Protection ................................................................................................... 44
7.12. Structural Steel Frame Tolerances ........................................................................ 45
7.13. Erection Tolerances ............................................................................................... 46
7.14. Correction of Errors .............................................................................................. 56
7.15. Cuts, Alterations and Holes for Other Trades ....................................................... 56
7.16. Handling and Storage ............................................................................................ 56
7.17. Field Painting ........................................................................................................ 57
7.18. Final Cleaning Up ................................................................................................. 57

Section 8. Quality Control ........................................................................................... 58
8.1. General .................................................................................................................... 58
8.2. Inspection of Mill Material ...................................................................................... 59
8.3. Non-Destructive Testing ......................................................................................... 59
8.4. Surface Preparation and Shop Painting Inspection ................................................. 59
8.5. Independent Inspection ........................................................................................... 59

Section 9. Contracts ..................................................................................................... 61
9.1. Types of Contracts .................................................................................................. 61
9.2. Calculation of Weights ............................................................................................ 61
9.3. Revisions to the Contract Documents ..................................................................... 62
9.4. Contract Price Adjustment ...................................................................................... 63
9.5. Scheduling ............................................................................................................... 63
9.6. Terms of Payment ................................................................................................... 64

Section 10. Architecturally Exposed Structural Steel ............................................... 65
10.1. General Requirements ........................................................................................... 65
10.2. Fabrication ............................................................................................................ 65
10.3. Delivery of Materials ............................................................................................ 66
10.4. Erection ................................................................................................................. 67

Appendix A. Digital Building Product Models ........................................................... 68

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-vii
GLOSSARY


The following abbreviations and terms are used in this Code. Where used, terms are
italicised to alert the user that the term is defined in this Glossary.

AASHTO. American Association of State Highway and Transportation Officials.

Adjustable Items. See Section 7.13.1.3.

AESS. See architecturally exposed structural steel.

AISC. American Institute of Steel Construction.

Anchor Bolt. See anchor rod.

Anchor Rod. A mechanical device that is either cast or drilled and chemically adhered,
grouted or wedged into concrete and/or masonry for the purpose of the subsequent
attachment of structural steel.

Anchor-Rod Group. A set of anchor rods that receives a single fabricated structural steel
shipping piece.

ANSI. American National Standards Institute.

Architect. The entity that is professionally qualified and duly licensed to perform
architectural services.

Architecturally Exposed Structural Steel. See Section 10.

AREMA. American Railway Engineering and Maintenance of Way Association.

ASME. American Society of Mechanical Engineers.

ASTM. American Society for Testing and Materials.

AWS. American Welding Society.

Bearing Devices. Shop-attached base and bearing plates, loose base and bearing plates
and leveling devices, such as leveling plates, leveling nuts and washers and leveling
screws.

CASE. Council of American Structural Engineers.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-viii
Clarification. An interpretation, of the design drawings or specifications that have been
released for construction, made in response to an RFI or a note on an approval
drawing and providing an explanation that neither revises the information that has
been released for construction nor alters the cost or schedule of performance of the
work.

the Code, this Code. This document, the AISC Code of Standard Practice for Steel
Buildings and Bridges as adopted by the American Institute of Steel Construction.

Column line. The grid line of column centers set in the field based on the dimensions
shown on the structural design drawings and using the building layout provided by
the owners designated representative for construction. Column offsets are taken
from the column line . The column line may be straight or curved as shown in the
structural design drawings.

Connection. An assembly of one or more joints that is used to transmit forces between
two or more members and/or connection elements.

Contract Documents. The documents that define the responsibilities of the parties that
are involved in bidding, fabricating and erecting structural steel. These documents
normally include the design drawings, the specifications and the contract.

Design Drawings. The graphic and pictorial portions of the contract documents showing
the design, location and dimensions of the work. These documents generally include
plans, elevations, sections, details, schedules, diagrams and notes.

Embedment Drawings. Drawings that show the location and placement of items that are
installed to receive structural steel.

EOR, Engineer, Engineer of Record. See structural engineer of record.

Erection Bracing Drawings. Drawings that are prepared by the erector to illustrate the
sequence of erection, any requirements for temporary supports and the requirements
for raising, bolting and/or welding. These drawings are in addition to the erection
drawings.

Erection Drawings. Field-installation or member-placement drawings that are prepared
by the fabricator to show the location and attachment of the individual shipping
pieces.

Erector. The entity that is responsible for the erection of the structural steel.

Established Column Line. The actual field line that is most representative of the erected
column centers along a line of columns placed using the dimensions shown in the

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-ix
structural design drawings and the lines and bench marks established by the owner’s
designated representative for construction, to be used in applying the erection
tolerances given in this Code for column shipping pieces.

Fabricator. The entity that is responsible for fabricating the structural steel.

Hazardous Materials. Components, compounds or devices that are either encountered
during the performance of the contract work or incorporated into it containing
substances that, not withstanding the application of reasonable care, present a threat
of harm to persons and/or the environment.

Inspector. The owner’s testing and inspection agency.

MBMA. Metal Building Manufacturers Association.

Mill Material. Steel mill products that are ordered expressly for the requirements of a
specific project.

Owner. The entity that is identified as such in the contract documents.

Owner’s Designated Representative for Construction. The owner or the entity that is
responsible to the owner for the overall construction of the project, including its
planning, quality, and completion. This is usually the general contractor, the
construction manager or similar authority at the job site.

Owner’s Designated Representative for Design. The owner or the entity that is
responsible to the owner for the overall structural design of the project, including the
structural steel frame. This is usually the structural engineer of record.

Plans. See design drawings.

RCSC. Research Council on Structural Connections.

Released for Construction. The term that describes the status of contract documents that
are in such a condition that the fabricator and the erector can rely upon them for the
performance of their work, including the ordering of material and the preparation of
shop and erection drawings.

Revision. An instruction or directive providing information that differs from information
that has been released for construction. A revision may, but does not always, impact
the cost or schedule of performance of the work.

RFI. A written request for information or clarification generated during the construction
phase of the project.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-x

SER. See structural engineer of record.

Shop Drawings. Drawings of the individual structural steel shipping pieces that are to be
produced in the fabrication shop.

SJI. Steel Joist Institute.

Specifications. The portion of the contract documents that consists of the written
requirements for materials, standards and workmanship.

SSPC. SSPC: The Society for Protective Coatings, which was formerly known as the
Steel Structures Painting Council.

Standard Structural Shapes. Hot-rolled W-, S-, M- and HP-shapes, channels and angles
listed in ASTM A6/A6M; structural tees split from the hot-rolled W-, S- and M-
shapes listed in ASTM A6/A6M; hollow structural sections produced to ASTM
A500, A501, A618 or A847; and, steel pipe produced to ASTM A53/A53M.

Steel Detailer. The entity that produces the shop and erection drawings.

Structural Engineer of Record. The licensed professional who is responsible for sealing
the contract documents, which indicates that he or she has performed or supervised
the analysis, design and document preparation for the structure and has knowledge
of the load-carrying structural system.

Structural Steel. The elements of the structural frame as given in Section 2.1.

Substantiating Connection Information. Information submitted by the fabricator, if
requested by the owner’s designated representative for design in the contract
documents, when option (2) or option (3) is designated for connections per Section
3.1.2.

Tier. The structural steel framing defined by a column shipping piece.

Weld Show-Through. In architecturally exposed structural steel, visual indication of the
presence of a weld or welds on the side of the member opposite the weld.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-1
CODE OF STANDARD PRACTICE
FOR STEEL BUILDINGS AND BRIDGES



SECTION 1. GENERAL PROVISIONS

1.1. Scope
This Code sets forth criteria for the trade practices involved in steel buildings,
bridges, and other structures, where other structures are defined as those
structures designed, fabricated, and erected in a manner similar to buildings,
with building-like vertical and lateral load resisting elements. In the absence of
specific instructions to the contrary in the contract documents, the trade
practices that are defined in this Code shall govern the fabrication and erection
of structural steel.

Commentary:
The practices defined in this Code are the commonly accepted standards of
custom and usage for structural steel fabrication and erection, which generally
represent the most efficient approach. This Code is not intended to define a
professional standard of care for the owners designated representative for
design, change the duties and responsibilities of the owner, contractor, architect
or structural engineer of record from those set forth in the contract documents,
or assign to the owner, architect or structural engineer of record any duty or
authority to undertake responsibility inconsistent with the provisions of the
contract documents.

This Code is not applicable to steel joists or metal building systems, which are
addressed by SJI and MBMA, respectively.

1.2. Referenced Specifications, Codes and Standards
The following documents are referenced in this Code:

AASHTO Specification—The 2010 AASHTO LRFD Bridge Design
Specifications, 5
th
Edition.
AISC Seismic Provisions—AISC 341-10, the 2010 AISC Seismic Provisions for
Structural Steel Buildings.
AISC Specification—AISC 360-10, the 2010 AISC Specification for Structural
Steel Buildings.
ASME B46.1—ASME B46.1-02, Su rface Texture (Surface Roughness,
Waviness and Lay).
AREMA Specification—The 2010 AREMA Manual for Railway Engineering,
Volume II—Structures, Chapter 15.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-2
ASTM A6/A6M—09, Standard Specification for General Requirements for
Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling.
ASTM A53/A53M—07, Standard Specification for Pi pe, Steel, Black and Hot-
Dipped, Zinc-Coated, Welded and Seamless.
ASTM A325—09, Standard Specification for Structural Bolts, Steel, Heat
Treated, 120/105 ksi Minimum Tensile Strength.
ASTM A325M—09, Standard Specification for High-Strength Bolts for
Structural Steel Joints (Metric).
ASTM A490—08b, Standard Specification for Heat-Treated Steel Structural
Bolts, 150 ksi Minimum Tensile Strength.
ASTMA490M—08, Standard Specification for High-Strength Steel Bolts,
Classes 10.9 and 10.9.3, for Structural Steel Joints (Metric).
ASTM A500/A500M—07, Standard Specification for Cold-Formed Welded
and Seamless Carbon Steel Structural Tubing in Rounds and Shapes.
ASTM A501—07, Standard Specification for Hot-Formed Welded and
Seamless Carbon Steel Structural Tubing. No metric equivalent exists.
ASTM A618/A618M—04, Standard Specification for Hot-Formed Welded and
Seamless High-Strength Low-Alloy Structural Tubing.
ASTM A847/A847M—05, Standard Specification for Cold-Formed Welded
and Seamless High-Strength, Low-Alloy Structural Tubing with Improved
Atmospheric Corrosion Resistance.
ASTM F1852/F1852M—08, Standard Specification for "Twist-Off" Type
Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat
Treated, 120/105 ksi Minimum Tensile Strength.
AWS D1.1—The AWS D1.1 Structural Welding Code—Steel, 2008.
CASE Document 11—An Agreement Between Structural Engineer of Record
and Contractor for Transfer of Computer Aided Drafting (CAD) files on
Electronic Media, 2000
CASE Document 962—The National Practice Guidelines for the Structural
Engineer of Record, Fourth Edition, 2000.
RCSC Specification—The Specification for Structural Joints Using High-
Strength Bolts, 2009.
SSPC SP2—SSPC Surface Preparation Specification No. 2, Hand Tool
Cleaning, 2004.
SSPC SP6—SSPC Surface Preparation Specification No. 6, Commercial Blast
Cleaning, 2004.

1.3. Units
In this Code, the values stated in either U.S. customary units or metric units
shall be used. Each system shall be used independently of the other.

Commentary:
In this Code, dimensions, weights and other measures are given in U.S.
customary units with rounded or rationalized metric-unit equivalents in

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-3
brackets. Because the values stated in each system are not exact equivalents, the
selective combination of values from each of the two systems is not permitted.

1.4. Design Criteria
For buildings and other structures, in the absence of other design criteria, the
provisions in the AISC Specification shall govern the design of the structural
steel. For bridges, in the absence of other design criteria, the provisions in the
AASHTO Specification and AREMA Specification shall govern the design of
the structural steel, as applicable.

1.5. Responsibility for Design

1.5.1. When the owner’s designated representative for design provides the design,
design drawings and specifications, the fabricator and the erector are not
responsible for the suitability, adequacy or building-code conformance of the
design.

1.5.2. When the owner enters into a direct contract with the fabricator to both design
and fabricate an entire, completed steel structure, the fabricator shall be
responsible for the suitability, adequacy, conformance with owner-established
performance criteria, and building-code conformance of the structural steel
design. The owner shall be responsible for the suitability, adequacy and
building-code conformance of the non-structural steel elements and shall
establish the performance criteria for the structural steel frame.

1.6. Patents and Copyrights
The entity or entities that are responsible for the specification and/or selection of
proprietary structural designs shall secure all intellectual property rights
necessary for the use of those designs.

1.7. Existing Structures

1.7.1. Demolition and shoring of any part of an existing structure are not within the
scope of work that is provided by either the fabricator or the erector. Such
demolition and shoring shall be performed in a timely manner so as not to
interfere with or delay the work of the fabricator and the erector.

1.7.2. Protection of an existing structure and its contents and equipment, so as to
prevent damage from normal erection processes, is not within the scope of work
that is provided by either the fabricator or the erector. Such protection shall be
performed in a timely manner so as not to interfere with or delay the work of the
fabricator or the erector .

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-4
1.7.3. Surveying or field dimensioning of an existing structure is not within the scope
of work that is provided by either the fabricator or the erector. Such surveying
or field dimensioning, which is necessary for the completion of shop and
erection drawings and fabrication, shall be performed and furnished to the
fabricator in a timely manner so as not to interfere with or delay the work of the
fabricator or the erector .

1.7.4. Abatement or removal of hazardous materials is not within the scope of work
that is provided by either the fabricator or the erector. Such abatement or
removal shall be performed in a timely manner so as not to interfere with or
delay the work of the fabricator and the erector.

1.8. Means, Methods and Safety of Erection

1.8.1. The erector shall be responsible for the means, methods and safety of erection
of the structural steel frame.

1.8.2. The structural engineer of record shall be responsible for the structural
adequacy of the design of the structure in the completed project. The structural
engineer of record shall not be responsible for the means, methods and safety of
erection of the structural steel frame. See also Sections 3.1.4 and 7.10.

1.9. Tolerances
Tolerances for materials, fabrication and erection shall be as stipulated in
Sections 5, 6, 7, and 10.

Commentary:
Tolerances are not necessarily specified in this Code for every possible variation
that could be encountered. For most projects, where a tolerance is not specified
or covered in this Code, it is not needed to ensure that the fabricated and erected
structural steel complies with the requirements in Section 6 and 7. If a special
design concept or system component requires a tolerance that is not specified in
this Code, the necessary tolerance should be specified in the contract
documents. If a tolerance is not shown and is deemed by the fabricator and/or
erector to be important to the successful fabrication and erection of the
structural steel, it should be requested from the owner’s designated
representative for design. The absence of a tolera nce in this Code for a
particular condition does not mean that the tolerance is zero; rather, it means
that no tolerance has been established. In any case, the default tolerance is not
zero.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-5
SECTION 2. CLASSIFICATION OF MATERIALS

2.1. Definition of Structural Steel
Structural steel shall consist of the elements of the structural frame that are
shown and sized in the structural design drawings, essential to support the
design loads and described as:

Anchor rods that will receive structural steel.
Base plates, if part of the structural steel frame.
Beams, including built-up beams, if made from standard structural shapes
and/or plates.
Bearing plates, if part of the structural steel frame.
Bearings of steel for girders, trusses or bridges.
Bracing, if permanent.
Canopy framing, if made from standard structural shapes and/or plates.
Columns, including built-up columns, if made from standard structural
shapes and/or plates.
Connection materials for framing structural steel to structural steel.
Crane stops, if made from standard structural shapes and/or plates.
Door frames, if made from standard structural shapes and/or plates and if
part of the structural steel frame.
Edge angles and plates, if attached to the structural steel frame or steel
(open-web) joists.
Embedded structural steel parts, other than bearing plates, that will receive
structural steel.
Expansion joints, if attached to the structural steel frame.
Fasteners for connecting structural steel items: permanent shop bolts, nuts
and washers; shop bolts, nuts and washers for shipment; field bolts,
nuts and washers for permanent connections; and, permanent pins.
Floor-opening frames, if made from standard structural shapes and/or
plates and attached to the structural steel frame or steel (open-web)
joists.
Floor plates (checkered or plain), if attached to the structural steel frame.
Girders, including built-up girders, if made from standard structural shapes
and/or plates.
Girts, if made from standard structural shapes.
Grillage beams and girders.
Hangers, if made from standard structural shapes, plates and/or rods and
framing structural steel to structural steel.
Leveling nuts and washers.
Leveling plates.
Leveling screws.
Lintels, if attached to the structural steel frame.
Marquee framing, if made from standard structural shapes and/or plates.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-6
Machinery supports, if made from standard structural shapes and/or plates
and attached to the structural steel frame.
Monorail elements, if made from standard structural shapes and/or plates
and attached to the structural steel frame.
Posts, if part of the structural steel frame.
Purlins, if made from standard structural shapes.
Relieving angles, if attached to the structural steel frame.
Roof-opening frames, if made from standard structural shapes and/or
plates and attached to the structural steel frame or steel (open-web)
joists.
Roof-screen support frames, if made from standard structural shapes.
Sag rods, if part of the structural steel frame and connecting structural steel
to structural steel.
Shear stud connectors, if specified to be shop attached.
Shims, if permanent.
Struts, if permanent and part of the structural steel frame.
Tie rods, if part of the structural steel frame.
Trusses, if made from standard structural shapes and/or built-up members.
Wall-opening frames, if made from standard structural shapes and/or
plates and attached to the structural steel frame.
Wedges, if permanent.

Commentary:
The fabricator normally fabricates the items listed in Section 2.1. Such items
must be shown, sized and described in the structural design drawings. Bracing
includes vertical bracing for resistance to wind and seismic load and structural
stability, horizontal bracing for floor and roof systems and permanent stability
bracing for components of the structural steel frame.

2.2. Other Steel, Iron or Metal Items
Structural steel shall not include other steel, iron or metal items that are not
generally described in Section 2.1, even where such items are shown in the
structural design drawings or are attached to the structural steel frame. Other
steel, iron or metal items include but are not limited to:

Base plates, if not part of the structural steel frame.
Bearing plates, if not part of the structural steel frame.
Bearings, if non-steel.
Cables for permanent bracing or suspension systems.
Castings.
Catwalks.
Chutes.
Cold-formed steel products.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-7
Cold-rolled steel products, except those that are specifically covered in the
AISC Specification.
Corner guards.
Crane rails, splices, bolts and clamps.
Crane stops, if not made from standard structural shapes or plates.
Door guards.
Embedded steel parts, other than bearing plates, that do not receive
structural steel or that are embedded in precast concrete.
Expansion joints, if not attached to the structural steel frame.
Flagpole support steel.
Floor plates (checkered or plain), if not attached to the structural steel
frame.
Forgings.
Gage-metal products.
Grating.
Handrail.
Hangers, if not made from standard structural shapes, plates and/or rods or
not framing structural steel to structural steel.
Hoppers.
Items that are required for the assembly or erection of materials that are
furnished by trades other than the fabricator or erector.
Ladders.
Lintels, if not attached to the structural steel frame.
Masonry anchors.
Miscellaneous metal.
Ornamental metal framing.
Pressure vessels.
Reinforcing steel for concrete or masonry.
Relieving angles, if not attached to the structural steel frame.
Roof screen support frames, if not made from standard structural shapes.
Safety cages.
Shear stud connectors, if specified to be field installed.
Stacks.
Stairs.
Steel deck.
Steel (open-web) joists.
Steel joist girders.
Tanks.
Toe plates.
Trench or pit covers.

Commentary:
Section 2.2 includes many items that may be furnished by the fabricator if
contracted to do so by specific notation and detail in the contract documents.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-8
When such items are contracted to be provided by the fabricator, coordination
will normally be required between the fabricator and other material suppliers
and trades. The provisions in this Code are not intended to apply to items in
Section 2.2.
In previous editions of this Code, provisions regarding who should
normally furnish field-installed shear stud connectors and cold-formed steel
deck support angles were included in Section 7.8. These provisions have been
eliminated since field-installed shear stud connectors and steel deck support
angles are not defined as structural steel in this Code.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-9
SECTION 3. DESIGN DRAWINGS AND SPECIFICATIONS

3.1. Structural Design Drawings and Specifications
Unless otherwise indicated in the contract documents, the structural design
drawings shall be based upon consideration of the design loads and forces to be
resisted by the structural steel frame in the completed project.
The structural design drawings shall clearly show the work that is to be
performed and shall give the following information with sufficient dimensions
to accurately convey the quantity and nature of the structural steel to be
fabricated:

(a) The size, section, material grade and location of all members;
(b) All geometry and working points necessary for layout;
(c) Floor elevations;
(d) Column centers and offsets;
(e) The camber requirements for members;
(f) Joining requirements between elements of built-up members; and,
(g) The information that is required in Sections 3.1.1 through 3.1.6.

The structural steel specifications shall include any special requirements for the
fabrication and erection of the structural steel.
The structural design drawings, specifications and addenda shall be
numbered and dated for the purposes of identification.

Commentary:
Contract documents vary greatly in complexity and completeness. Nonetheless,
the fabricator and the erector must be able to rely upon the accuracy and
completeness of the contract documents. This allows the fabricator and the
erector to provide the owner with bids that are adequate and complete. It also
enables the preparation of the shop and erection drawings, the ordering of
materials and the timely fabrication and erection of shipping pieces.
In some cases, the owner can benefit when reasonable latitude is
allowed in the contract documents for alternatives that can reduce cost without
compromising quality. However, critical requirements that are necessary to
protect the owner’s interest, that affect the integrity of the structure or that are
necessary for the fabricator and the erector to proceed with their work must be
included in the contract documents. Some examples of critical information may
include, when applicable:

Standard specifications and codes that govern structural steel design and
construction, including bolting and welding.
Material specifications.
Special material requirements to be reported on the material test reports.
Welded-joint configuration.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-10
Weld-procedure qualification.
Special requirements for work of other trades.
Final disposition of backing bars and runoff tabs.
Lateral bracing.
Stability bracing.
Connections or data for connection selection and/or completion.
Restrictions on connection types.
Column stiffeners (also known as continuity plates).
Column web doubler plates.
Bearing stiffeners on beams and girders.
Web reinforcement.
Openings for other trades.
Surface preparation and shop painting requirements.
Shop and field inspection requirements.
Non-destructive testing requirements, including acceptance criteria.
Special requirements on delivery.
Special erection limitations.
Identification of non-structural steel elements that interact with the
structural steel frame to provide for the lateral stability of the
structural steel frame (see Section 3.1.4).
Column differential shortening information (see Commentary to Section
7.13).
Anticipated deflections and the associated loading conditions for major
structural elements, such as transfer girders and trusses, supporting
columns and hangers (see Commentary to Section 7.13).
Special fabrication and erection tolerances for AESS.
Special pay-weight provisions.
3.1.1. Permanent bracing, column stiffeners, column web doubler plates, bearing
stiffeners in beams and girders, web reinforcement, openings for other trades
and other special details, where required, shall be shown in sufficient detail in the structural design drawings so that the quantity, detailing and fabrication
requirements for these items can be readily understood.
3.1.2. The owner’s designated representative for design shall indicate one of the
following options for each connection:
(1) The complete connection design shall be shown in the structural design
drawings;
(2) In the structural design drawings or specifications, the connection shall be
designated to be selected or completed by an experienced steel detailer; or,
(3) In the structural design drawings or specifications, the connection shall be
designated to be designed by a licensed professional engineer working for
the fabricator.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-11

In all of the above options,

(a) The requirements of Section 3.1.1 shall apply; and,
(b) The approvals process in Section 4.4 shall be followed.

When option (2) above is specified, the experienced steel detailer shall
utilize tables or schematic information provided in the structural design
drawings in the selection or completion of the connections. When such
information is not provided, tables in the AISC Steel Construction Manual, or
other reference information as approved by the owner’s designated
representative for design, shall be used.
When option (2) or (3) above is specified, the owner’s designated
representative for design shall provide the following information in the
structural design drawings and specifications:

(a) Any restrictions on the types of connections that are permitted;
(b) Data concerning the loads, including shears, moments, axial forces and
transfer forces, that are to be resisted by the individual members and their
connections, sufficient to allow the selection, completion, or design of the
connection details while preparing the shop and erection drawings;
(c) Whether the data required in (b) is given at the service-load level or the
factored-load level;
(d) Whether LRFD or ASD is to be used in the selection, completion, or design
of connection details; and,
(e) What substantiating connection information, if any, is to be provided with
the shop and erection drawings to the owner’s designated representative
for design.

When option (3) above is specified:

(a) The fabricator shall submit in a timely manner representative samples of
the required substantiating connection information to the owner’s
designated representatives for design and construction. The owner’s
designated representative for design shall confirm in writing in a timely
manner that these representative samples are consistent with the
requirements in the contract documents , or shall advise what modifications
are required to bring the representative samples into compliance with the
requirements in the contract documents . This initial submittal and review is
in addition to the requirements in Section 4.4.
(b) The licensed professional engineer in responsible charge of the connection
design shall revi
ew and confirm in writing as part of the substantiating
connection information, that the shop and erection drawings properly
incorporate the connection designs. However, this review by the licensed

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-12
professional engineer in responsible charge of the connection design does
not replace the approval process of the shop and erection drawings by the
owner’s designated representative for design in Section 4.4.
(c) The fabricator shall provide a means by which the substantiating
connection information is referenced to the related connections on the shop
and erection drawings for the purpose of review.

Commentary:
There are three options covered in Section 3.1.2:

(1) When the owner’s designated representative for design shows the complete
design of the connections in the structural design drawings , the following
information is included:

(a) All weld types, sizes, and lengths;
(b) All bolt sizes, locations, quantities, and grades;
(c) All plate and angle sizes, thicknesses and dimensions; and,
(d) All work point locations and related information.

The intent of this approach is that complete design information necessary
for detailing the connection is shown in the structural design drawings.
Typical details are shown for each connection type, set of geometric
parameters and adjacent framing conditions. The steel detailer will then be
able to transfer this information to the shop and erection drawings, applying
it to the individual pieces being detailed.
(2) When the owner’s designated representative for design allows an
experienced steel detailer to select or complete the connections , this is
commonly done by referring to tables or schematic information in the
structural design drawings, tables in the AISC Steel Construction Manual,
or other reference information approved by the owner’s designated
representative for design, such as journal papers and recognized software
output. Tables and schematic information in the structural design drawings
should provide such information as weld types and sizes, plate thicknesses
and quantities of bolts. However, there may be some geometry and
dimensional information that the steel detailer must develop. The steel
detailer will then configure the connections based upon the design loads
and other information given in the structural design drawings and
specifications.
The intent of this method is that the steel detailer will select the
connection materials and configuration from the referenced tables or
complete the specific connection configuration (e.g., dimensions, edge
distances and bolt spacing) based upon the connection details that are
shown in the structural design drawings.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-13
The steel detailer must be experienced and familiar with the AISC
requirements for connection configurations, the use of the connection tables
in the AISC Steel Construction Manual, the calculation of dimensions and
adaptation of typical connection details to similar situations. Notations of
loadings in the structural design drawings are only to facilitate selection of
the connections from the referenced tables. It is not the intent that this
method be used when the practice of engineering is required.
(3) Option 3 reflects a practice in some areas of the U.S. to have a licensed
professional engineer working for or retained by the fabricator design the
connections, and recognizes the information required by the fabricator to
do this work. The owner’s designated representative for design, who has
the knowledge of the structure as a whole, must review and approve the
shop and erection drawings, and take such action on substantiating
connection information as the owner’s designated representative for design
deems appropriate. See Section 4.4 for the approval process.
When, under Section 3.1.2, the owner’s designated representative for
design designates that connections be designed by a licensed professional
engineer employed or retained by the fabricator, this work is incidental to,
and part of, the overall means and methods of fabricating and constructing
the steel frame. The licensed professional engineer performing the
connection design is not providing a peer-review of the contract documents.

The owner’s designated representative for design reviews the shop and
erection drawings during the approvals process as specified in Section 4.4
for conformance with the specified criteria and compatibility with the
design of the primary structure.

One of these options should be indicated for each connection in a project. It is
acceptable to group connection types and utilize a combination of these options
for the various connection types involved in a project. Option (3) is not
normally specified for connections that can be selected or completed as noted in
Option (2) without practicing engineering.
If there are any restrictions as to the types of connections to be used, it
is required that these limitations be set forth in the structural design drawings
and specifications. There are a variety of connections available in the AISC
Steel Construction Manual for a given situation. Preference for a particular type
will vary between fabricators and erectors. Stating these limitations, if any, in
the structural design drawings and specifications will help to avoid repeated
changes to the shop and erection drawings due to the selection of a connection
that is not acceptable to the owner’s designated representative for design,
thereby avoiding additional cost and/or delay for the redrawing of the shop and
erection drawings.
The structural design drawings must indicate the method of design
used as LRFD or ASD. In order to conform to the spirit of the AISC

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-14
Specification, the connections must be selected using the same method and the
corresponding references.
Substantiating connection information, when required, can take many
forms. When option (2) is designated, shop and erection drawings may suffice
with no additional substantiating connection information required. When option
(3) is designated, the substantiating connection information may take the form
of hand calculations and/or software output.
When substantiating connection information is required, it is
recommended that representative samples of that information be agreed upon
prior to preparation of shop and erection drawings, in order to avoid additional
cost and/or delay for the connection redesign and/or redrawing that might
otherwise result.
The owner’s designated representative for design may require that the
substantiating connection information be signed and sealed for option (3). The
signing and sealing of the cover letter transmitting the shop and erection
drawings and substantiating connection information may suffice. This signing
and sealing indicates that a professional engineer performed the work but does
not replace the approval process provided in Section 4.4.
A requirement to sign and seal each sheet of the shop and erection
drawings is discouraged as it may serve to confuse the design responsibility
between the owner’s designated representative for design and the licensed
professional engineer’s work in performing the connection design.
3.1.3. When leveling plates are to be furnished as part of the contract requirements,
their locations and required thickness and sizes shall be specified in the contract
documents.
3.1.4. When the structural steel frame, in the completely erected and fully connected
state, requires interaction with non-structural steel elements (see Section 2) for
strength and/or stability, those non-structural steel elements shall be identified
in the contract documents as required in Section 7.10.

Commentary:
Examples of non-structural steel elements include diaphragms made of steel
deck, diaphragms made of concrete on steel deck and masonry and/or concrete
shear walls.
3.1.5. When camber is required, the magnitude, direction and location of camber shall
be specified in the structural design drawings.

Commentary:
For cantilevers, the specified camber may be up or down, depending upon the
framing and loading.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-15
3.1.6. Specific members or portions thereof that are to be left unpainted shall be
identified in the contract documents. When shop painting is required, the
painting requirements shall be specified in the contract documents, including the
following information:

(a) The identification of specific members or portions thereof to be painted;
(b) The surface preparation that is required for these members;
(c) The paint specifications and manufacturer’s product identification that are
required for these members; and,
(d) The minimum dry-film shop-coat thickness that is required for these
members.

Commentary:
Some members or portions thereof may be required to be left unpainted, such as
those that will be in contact and acting compositely with concrete, or those that
will receive spray-applied fire protection materials.

3.2. Architectural, Electrical and Mechanical
Design Drawings and Specifications
All requirements for the quantities, sizes and locations of structural steel shall
be shown or noted in the structural design drawings. The use of architectural,
electrical and/or mechanical design drawings as a supplement to the structural
design drawings is permitted for the purposes of defining detail configurations
and construction information.

3.3. Discrepancies
When discrepancies exist between the design drawings and specifications, the
design drawings shall govern. When discrepancies exist between scale
dimensions in the design drawings and the figures written in them, the figures
shall govern. When discrepancies exist between the structural design drawings
and the architectural, electrical or mechanical design drawings or design
drawings for other trades, the structural design drawings shall govern.
When a discrepancy is discovered in the contract documents in the
course of the fabricator’s work, the fabricator shall promptly notify the owner’s
designated representative for construction so that the discrepancy can be
resolved by the owner’s designated representative for design . Such resolution
shall be timely so as not to delay the fabricator’s work. See Sections 3.5 and
9.3.

Commentary:
While it is the fabricator’s responsibility to report any discrepancies that are
discovered in the contract documents, it is not the fabricator’s responsibility to
discover discrepancies, including those that are associated with the coordination

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-16
of the various design disciplines. The quality of the contract documents is the
responsibility of the entities that produce those documents.

3.4. Legibility of Design Drawings
Design drawings shall be clearly legible and drawn to an identified scale that is
appropriate to clearly convey the information.

Commentary:
Historically, the most commonly accepted scale for structural steel plans has
been 8 in. per ft [10 mm per 1 000 mm]. There are, however, situations where a
smaller or larger scale is appropriate. Ultimately, consideration must be given to
the clarity of the drawing.
The scaling of the design drawings to determine dimensions is not an
accepted practice for detailing the shop and erection drawings. However, it
should be remembered when preparing design drawings that scaling may be the
only method available when early-submission drawings are used to determine
dimensions for estimating and bidding purposes.
3.5. Revisions to the Design Drawings and Specifications
Revisions to the design drawings and specifications shall be made either by
issuing new design drawings and specifications or by reissuing the existing
design drawings and specifications. In either case, all revisions , including
revisions that are communicated through responses to RFIs or the annotation of
shop and/or erection drawings (see Section 4.4.2), shall be clearly and
individually indicated in the contract documents. The contract documents shall
be dated and identified by revision number. Each design drawings shall be
identified by the same drawing number throughout the duration of the project,
regardless of the revision. See also Section 9.3.

Commentary:
Revisions to the design drawings and specifications can be made by issuing
sketches and supplemental information separate from the design drawings and
specifications. These sketches and supplemental information become
amendments to the design drawings and specifications and are considered new
contract documents. All sketches and supplemental information must be
uniquely identified with a number and date as the latest instructions until such
time as they may be superseded by new information.
When revisions are made by revising and re-issuing the existing
structural design drawings and/or specifications, a unique revision number and
date must be added to those documents to identify that information as the latest
instructions until such time as they may be superseded by new information. The
same unique drawing number must identify each design drawings throughout
the duration of the project so that revisions can be properly tracked, thus

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-17
avoiding confusion and miscommunication among the various entities involved
in the project.
When revisions are communicated through the annotation of shop or
erection drawings or contractor submissions, such changes must be confirmed
in writing by one of the aforementioned methods. This written confirmation is
imperative to maintain control of the cost and schedule of a project and to avoid
potential errors in fabrication.

3.6. Fast-Track Project Delivery
When the fast-track project delivery system is selected, release of the structural
design drawings and specifications shall constitute a release for construction,
regardless of the status of the architectural, electrical, mechanical and other
interfacing designs and contract documents . Subsequent revisions, if any, shall
be the responsibility of the owner and shall be made in accordance with Sections
3.5 and 9.3.

Commentary:
The fast-track project delivery system generally provides for a condensed
schedule for the design and construction of a project. Under this delivery
system, the owner elects to release for construction the structural design
drawings and specifications, which may be partially complete, at a time that
may precede the completion of and coordination with architectural, mechanical,
electrical and other design work and contract documents . The release of these
structural design drawings and specifications may also precede the release of the
General Conditions and Division 1 Specifications.
Release of the structural design drawings and specifications to the
fabricator for ordering of material constitutes a release for construction.
Accordingly, the fabricator and the erector may begin their work based upon
those partially complete documents. As the architectural, mechanical, electrical
and other design elements of the project are completed, revisions may be
required in design and/or construction. Thus, when considering the fast-track
project delivery system, the owner should balance the potential benefits to the
project schedule with the project cost contingency that may be required to allow
for these subsequent revisions.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-18
SECTION 4. SHOP AND ERECTION DRAWINGS

4.1. Owner Responsibility
The owner shall furnish, in a timely manner and in accordance with the contract
documents, complete structural design drawings and specifications that have
been released for construction. Unless otherwise noted, design drawings that
are provided as part of a contract bid package shall constitute authorization by
the owner that the design drawings are released for construction.

Commentary:
When the owner issues design drawings and specifications that are released for
construction, the fabricator and the erector rely on the fact that these are the
owner’s requirements for the project. This release is required by the fabricator
prior to the ordering of material and the preparation and completion of shop and
erection drawings.
To ensure the orderly flow of material procurement, detailing,
fabrication and erection activities, on phased construction projects, it is essential
that designs are not continuously revised after they have been released for
construction. In essence, once a portion of a design is released for construction,
the essential elements of that design should be “frozen” to ensure adherence to
the contract price and construction schedule. Alternatively, all parties should
reach a common understanding of the effects of future changes, if any, as they
affect scheduled deliveries and added costs.
A pre-detailing conference, held after the structural steel fabrication
contract is awarded, can benefit the project. Typical attendees may include the
owner’s designated representative for construction, the owner’s designated
representative for design, the fabricator, the steel detailer, and the erector .
Topics of the meeting should relate to the specifics of the project, and might
include:

• Contract document review and general project overview, including
clarifications of scope of work, tolerances, layouts and sequences, and
special considerations.
• Detailing and coordination needs, such as bolting, welding, and connection
considerations, constructability considerations, OSHA requirements,
coordination with other trades, and the advanced bill of materials.
• The project communication system, including distribution of contact
information for relevant parties to the contract, identification of the primary
and alternate contacts in the general contractor’s office, and the RFI system
to be used on the project.
• The submittal schedule, including how many copies of documents are
required, connection submittals, and identification of schedule-critical areas
of the project, if any.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-19
• Review of quality and inspection requirements, including the approvals
process for corrective work.

Record of the meeting should be written and distributed to all parties.
Subsequent meetings to discuss progress and issues that arise during
construction also can be helpful, particularly when they are held on a regular
schedule.

4.2. Fabricator Responsibility
Except as provided in Section 4.5, the fabricator shall produce shop and
erection drawings for the fabrication and erection of the structural steel and is
responsible for the following:

(a) The transfer of information from the contract documents into accurate and
complete shop and erection drawings; and,
(b) The development of accurate, detailed dimensional information to provide
for the fit-up of parts in the field.

Each shop and erection drawing shall be identified by the same drawing number
throughout the duration of the project and shall be identified by revision number
and date, with each specific revision clearly identified.
When the fabricator submits a request to change connection details
that are described in the contract documents, the fabricator shall notify the
owner’s designated representatives for design and construction in writing in
advance of the submission of the shop and erection drawings. The owner’s
designated representative for design shall review and approve or reject the
request in a timely manner.
When requested to do so by the owner’s designated representative for
design, the fabricator shall provide to the owner’s designated representatives
for design and construction its schedule for the submittal of shop and erection
drawings so as to facilitate the timely flow of information between all parties.

Commentary:
The fabricator is permitted to use the services of independent steel detailers to
produce shop and erection drawings, and to perform other support services such
as producing advanced bills of material and bolt summaries.
As the fabricator develops the detailed dimensional information for
production of the shop and erection drawings, there may be discrepancies,
missing information or conflicts discovered in the contract documents. See
Section 3.3.
When the fabricator intends to make a submission of alternative
connection details to those shown in the contract documents, the fabricator
must notify the owner’s designated representatives for design and construction
in advance. This will allow the parties involved to plan for the increased effort

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-20
that may be required to review the alternative connection details. In addition, the
owner will be able to evaluate the potential for cost savings and/or schedule
improvements against the additional design cost for review of the alternative
connection details by the owner’s designated representative for design. This
evaluation by the owner may result in the rejection of the alternative connection
details or acceptance of the submission for review based upon cost savings,
schedule improvements and/or job efficiencies.
The owner’s designated representative for design may request the
fabricator’s schedule for the submittal of shop and erection drawings. This
process is intended to allow the parties to plan for the staffing demands of the
submission schedule. The contract documents may address this issue in more
detail. In the absence of the requirement to provide this schedule, none need be
provided.
When the fabricator provides a schedule for the submission of the shop
and erection drawings, it must be recognized that this schedule may be affected
by revisions and the response time to requests for missing information or the
resolution of discrepancies.

4.3. Use of CAD Files and/or Copies of Design Drawings
The fabricator shall neither use nor reproduce any part of the design drawings
as part of the shop or erection drawings without the written permission of the
owner’s designated representative for design. When CAD files or copies of the
design drawings are made available for the fabricator’s use, the fabricator shall
accept this information under the following conditions:

(a) All information contained in the CAD files or copies of the design drawings
shall be considered instruments of service of the owner’s designated
representative for design and shall not be used for other projects, additions
to the project or the completion of the project by others. CAD files and
copies of the design drawings shall remain the property of the owner’s
designated representative for design and in no case shall the transfer of
these CAD files or copies of the design drawings be considered a sale.
(b) The CAD files or copies of the design drawings shall not be considered to
be contract documents. In the event of a conflict between the design
drawings and the CAD files or copies thereof, the design drawings shall
govern;
(c) The use of CAD files or copies of the design drawings shall not in any way
obviate the fabricator’s responsibility for proper checking and coordination
of dimensions, details, member sizes and fit-up and quantities of materials
as required to facilitate the preparation of shop and erection drawings that
are complete and accurate as required in Section 4.2; and,
(d) The fabricator shall remove information that is not required for the
fabrication or erection of the structural steel from the CAD files or copies
of the design drawings.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-21

Commentary:
With the advent of electronic media and the internet, electronic copies of design
drawings are readily available to the fabricator. As a result, the owner’s
designated representative for design may have reduced control over the
unauthorized use of the design drawings. There are many copyright and other
legal issues to be considered.
The owner’s designated representative for design may choose to make
CAD files or copies of the design drawings available to the fabricator , and may
charge a service or licensing fee for this convenience. In doing so, a carefully
negotiated agreement should be established to set out the specific
responsibilities of both parties in view of the liabilities involved for both parties.
For a sample contract, see CASE Document 11.
The CAD files and/or copies of the design drawings are provided to the
fabricator for convenience only. The information therein should be adapted for
use only in reference to the placement of structural steel members during
erection. The fabricator should treat this information as if it were fully produced
by the fabricator and undertake the same level of checking and quality
assurance. When amendments or revisions are made to the contract documents,
the fabricator must update this reference material.
When CAD files or copies of the design drawings are provided to the
fabricator, they often contain other information, such as architectural
backgrounds or references to other contract documents. This additional material
should be removed when producing shop and erection drawings to avoid the
potential for confusion.

4.4. Approval
Except as provided in Section 4.5, the shop and erection drawings shall be
submitted to the owner’s designated representatives for design and construction
for review and approval. The shop and erection drawings shall be returned to
the fabricator within 14 calendar days.

Final substantiating connection information, if any, shall also be submitted with
the shop and erection drawings. The owner’s designated representative for
design is the final authority in the event of a disagreement between parties
regarding connection design.

Approved shop and erection drawings shall be individually annotated by the
owner’s designated representatives for design and construction as either
approved or approved subject to corrections noted. When so required, the
fabricator shall subsequently make the corrections noted and furnish corrected
shop and erection drawings to the owner’s designated representatives for design
and construction.

Commentary:

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-22
As used in this Code, the 14-day allotment for the return of shop and erection
drawings is intended to represent the fabricator’s portal-to-portal time. The
intent in this Code is that, in the absence of information to the contrary in the
contract documents, 14 days may be assumed for the purposes of bidding,
contracting and scheduling. When additional time is desired, such as when
substantiating connection information is part of the submittals, the modified
allotment should be specified in the contract documents. A submittal schedule is
commonly used to facilitate the approval process.
If a shop or erection drawing is approved subject to corrections noted,
the owner’s designated representative for design may or may not require that it
be re-submitted for record purposes following correction. If a shop or erection
drawing is not approved, revisions must be made and the drawing re-submitted
until approval is achieved.
4.4.1. Approval of the shop and erection drawings, approval subject to corrections
noted and similar approvals shall constitute the following:

(a) Confirmation that the fabricator has correctly interpreted the contract
documents in the preparation of those submittals;
(b) Confirmation that the owner’s designated representative for design has
reviewed and approved the connection details shown on the shop and
erection drawings and submitted in accordance with Section 3.1.2, if
applicable; and,
(c) Release by the owner’s designated representatives for design and
construction for the fabricator to begin fabrication using the approved
submittals.
Such approval shall not relieve the fabricator of the responsibility for either the
accuracy of the detailed dimensions in the shop and erection drawings or the
general fit-up of parts that are to be assembled in the field.
The fabricator shall determine the fabrication schedule that is
necessary to meet the requirements of the contract.

Commentary:
When considering the current language in this Section, the Committee sought
language that would parallel the practices of CASE. In CASE Document 962,
CASE indicates that when the design of some element of the primary structural
system is left to someone other than the structural engineer of record, “…such
elements, including connections designed by others, should be reviewed by the
structural engineer of record. He [or she] should review such designs and
details, accept or reject them and be responsible for their effects on the primary
structural system.” Historically, this Code has embraced this same concept.
From the inception of this Code, AISC and the industry in general have
recognized that only the owner’s designated representative for design has all the

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-23
information necessary to evaluate the total impact of connection details on the
overall structural design of the project. This authority traditionally has been
exercised during the approval process for shop and erection drawings. The
owner’s designated representative for design has thus retained responsibility for
the adequacy and safety of the entire structure since at least the 1927 edition of
this Code.
4.4.2. Unless otherwise noted, any additions, deletions or revisions that are indicated
in responses to RFIs or on the approved shop and erection drawings shall
constitute authorization by the owner that the additions, deletions or revisions
are released for construction. The fabricator and the erector shall promptly
notify the owner’s designated representative for construction when any direction or notation in responses to RFIs or on the shop or erection drawings or
other information will result in an additional cost and/or a delay. See Sections 3.5 and 9.3.

Commentary:
When the fabricator notifies the owner’s designated representative for
construction that a direction or notation in responses to RFIs or on the shop or
erection drawings will result in an additional cost or a delay, it is then normally
the responsibility of the owner’s designated representative for construction to
subsequently notify the owner’s designated representative for design.

4.5. Shop and/or Erection Drawings Not Furnished by the Fabricator
When the shop and erection drawings are not prepared by the fabricator , but are
furnished by others, they shall be delivered to the fabricator in a timely manner.
These shop and erection drawings shall be prepared, insofar as is practical, in
accordance with the shop fabrication and detailing standards of the fabricator.
The fabricator shall neither be responsible for the completeness or accuracy of
shop and erection drawings so furnished, nor for the general fit-up of the
members that are fabricated from them.

4.6. The RFI Process
When requests for information (RFIs) are issued, the process shall include the
maintenance of a written record of inquiries and responses related to
interpretation and implementation of the contract documents, including the
clarifications and/or revisions to the contract documents that result, if any. RFIs
shall not be used for the incremental release for construction of design
drawings. When RFIs involve discrepancies or revisions, see Sections 3.3, 3.5,
and 4.4.2.

Commentary:
The RFI process is most commonly used during the detailing process, but can
also be used to forward inquiries by the erector or to inform the owner’s

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-24
designated representative for design in the event of a fabricator or erector error
and to develop corrective measures to resolve such errors.
The RFI process is intended to provide a written record of inquiries and
associated responses but not to replace all verbal communication between the
parties on the project. RFIs should be prepared and responded to in a timely
fashion so as not to delay the work of the steel detailer, fabricator, and erector.
Discussion of the RFI issues and possible solutions between the fabricator,
erector, and owner’s designated representatives for design and construction
often can facilitate timely and practical resolution. Unlike shop and erection
drawing submittals in Section 4.2, RFI response time can vary depending on the
urgency of the issue, the amount of work required by the owner’s designated
representatives for design and construction to develop a complete response, and
other circumstances such as building official approval.
RFIs should be prepared in a standardized format, including RFI
number and date, identity of the author, reference to a specific design drawing
number (and specific detail as applicable) or specification section, the needed
response date, a description of a suggested solution (graphic depictions are
recommended for more complex issues), and an indication of possible schedule
and cost impacts. RFIs should be limited to one question each (unless multiple
questions are interrelated to the same issue) to facilitate the resolution and
minimize response time. Questions and proposed solutions presented in RFIs
should be clear and complete. RFI responses should be equally clear and
complete in the depictions of the solutions, and signed and dated by the
responding party.
Unless otherwise noted, the fabricator and erector can assume that a
response to an RFI constitutes a release for construction. However, if the
response will result in an increase in cost or a delay in schedule, Section 4.4.2
requires that the fabricator and/or erector promptly inform the owner’s
designated representatives for design and construction.

4.7 Erection Drawings

Erection drawings shall be provided to the erector in a timely manner so as to
allow the erector to properly plan and perform the work.

Commentary:
For planning purposes, this may include release of preliminary erection
drawings, if requested by the erector .

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-25
SECTION 5. MATERIALS

5.1. Mill Materials
Unless otherwise noted in the contract documents , the fabricator is permitted to
order the materials that are necessary for fabrication when the fabricator
receives contract documents that have been released for construction.

Commentary:
The fabricator may purchase materials in stock lengths, exact lengths or
multiples of exact lengths to suit the dimensions shown in the structural design
drawings. Such purchases will normally be job-specific in nature and may not
suitable for use on other projects or returned for full credit if subsequent design
changes make these materials unsuitable for their originally intended use. The
fabricator should be paid for these materials upon delivery from the mill,
subject to appropriate additional payment or credit if subsequent unanticipated
modification or reorder is required. Purchasing materials to exact lengths is not
considered fabrication.

5.1.1. Unless otherwise specified by means of special testing requirements in the
contract documents, mill testing shall be limited to those tests that are required
for the material in the ASTM specifications indicated in the contract documents.
Materials ordered to special material requirements shall be marked by the
supplier as specified in ASTM A6/A6M Section 12 prior to delivery to the
fabricator’s shop or other point of use. Such material not so marked by the
supplier, shall not be used until:

(a) Its identification is established by means of testing in accordance with the
applicable ASTM specifications; and,
(b) A fabricator’s identification mark, as described in Section 6.1.2 and 6.1.3,
has been applied.

5.1.2. When mill material does not satisfy ASTM A6/A6M tolerances for camber,
profile, flatness or sweep, the fabricator shall be permitted to perform corrective
procedures, including the use of controlled heating and/or mechanical
straightening, subject to the limitations in the AISC Specification.

Commentary:
Mill dimensional tolerances are completely set forth in ASTM A6/A6M.
Normal variations in the cross-sectional geometry of standard structural shapes
must be recognized by the designer, the fabricator , the steel detailer, and the
erector (for example, see Figure C–5.1). Such tolerances are mandatory because
roll wear, thermal distortions of the hot cross-section immediately after leaving
the forming rolls and differential cooling distortions that take place on the
cooling beds are all unavoidable. Geometric perfection of the cross-section is

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-26
not necessary for either structural or architectural reasons, if the tolerances are
recognized and provided for.
ASTM A6/A6M also stipulates tolerances for straightness that are
adequate for typical construction. However, these characteristics may be
controlled or corrected to closer tolerances during the fabrication process when
the added cost is justified by the special requirements for an atypical project.
5.1.3. When variations that exceed ASTM A6/A6M tolerances are discovered or occur
after the receipt of mill material the fabricator shall, at the fabricator’s option,
be permitted to perform the ASTM A6/A6M corrective procedures for mill reconditioning of the surface of structural steel shapes and plates.
5.1.4. When special tolerances that are more restrictive than those in ASTM A6/A6M
are required for mill materials , such special tolerances shall be specified in the
contract documents. The fabricator shall, at the fabricator’s option, be
permitted to order material to ASTM A6/A6M tolerances and subsequently perform the corrective procedures described in Sections 5.1.2 and 5.1.3.

5.2. Stock Materials

5.2.1. If used for structural purposes, materials that are taken from stock by the
fabricator shall be of a quality that is at least equal to that required in the ASTM
specifications indicated in the contract documents.

5.2.2. Material test reports shall be accepted as sufficient record of the quality of
materials taken from stock by the fabricator. The fabricator shall review and
retain the material test reports that cover such stock materials. However, the
fabricator need not maintain records that identify individual pieces of stock
material against individual material test reports, provided the fabricator
purchases stock materials that meet the requirements for material grade and
quality in the applicable ASTM specifications.

5.2.3. Stock materials that are purchased under no particular specification, under a
specification that is less rigorous than the applicable ASTM specifications or
without material test reports or other recognized test reports shall not be used
without the approval of the owner’s designated representative for design.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-27

Figure C-5.1. Mill tolerances on the cross-section of a W-shape.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-28
SECTION 6. SHOP FABRICATION AND DELIVERY

6.1. Identification of Material

6.1.1. The fabricator shall be able to demonstrate by written procedure and actual
practice a method of material identification, visible up to the point of
assembling members as follows:

(a) For shop-standard material, identification capability shall include shape
designation. Representative material test reports shall be furnished by the
fabricator if requested to do so by the owner’s designated representative
for design, either in the contract documents or in separate written
instructions given to the fabricator prior to ordering mill materials .
(b) For material of grade other than shop-standard material, identification
capability shall include shape designation and material grade.
Representative material test reports shall be furnished by the fabricator if
requested to do so by the owner’s designated representative for design ,
either in the contract documents or in separate written instructions given to
the fabricator prior to ordering mill materials .
(c) For material ordered in accordance with an ASTM supplement or other
special material requirements in the contract documents, identification
capability shall include shape designation, material grade, and heat number.
The corresponding material test reports shall be furnished by the fabricator
if requested to do so by the owner’s designated representative for design ,
either in the contract documents or in separate written instructions given to
the fabricator prior to ordering mill materials .

Unless an alternative system is established in the fabricator’s written
procedures, shop-standard material shall be as follows:

Material Shop-standard material grade
W and WT ASTM A992
M, S, MT and ST ASTM A36
HP ASTM A36
L ASTM A36
C and MC ASTM A36
HSS ASTM A500 grade B
Steel Pipe ASTM A53 grade B
Plates and Bars ASTM A36

Commentary:
The requirements in Section 6.1.1(a) will suffice for most projects. When
material is of a strength level that differs from the shop-standard grade, the
requirements in Section 6.1.1(b) apply. When special material requirements

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-29
apply, such as ASTM A6/A6M supplement S5 or S30 for CVN testing, ASTM
A6/A6M supplement S8 for ultrasonic testing, or ASTM A588/A588M for
atmospheric corrosion resistance, the requirements in Section 6.1.1(c) are
applicable.
6.1.2. During fabrication, up to the point of assembling members, each piece of
material that is ordered to special material requirements shall carry a
fabricator’s identification mark or an original supplier’s identification mark.
The fabricator’s identification mark shall be in accordance with the fabricator’s
established material identification system, which shall be on record and available prior to the start of fabrication for the information of the owner’s
designated representative for construction, the building-code authority and the
inspector.
6.1.3. Members that are made of material that is ordered to special material
requirements shall not be given the same assembling or erection mark as
members made of other material, even if they are of identical dimensions and
detail.

6.2. Preparation of Material

6.2.1. The thermal cutting of structural steel by hand-guided or mechanically guided
means is permitted.

6.2.2. Surfaces that are specified as “finished” in the contract documents shall have a
roughness height value measured in accordance with ASME B46.1 that is equal
to or less than 500 μ in. The use of any fabricating technique that produces such
a finish is permitted.

Commentary:
Most cutting processes, including friction sawing and cold sawing, and milling
processes meet a surface roughness limitation of 500 μin per ASME B46.1.

6.3. Fitting and Fastening

6.3.1. Projecting elements of connection materials need not be straightened in the
connecting plane, subject to the limitations in the AISC Specification.

6.3.2. Backing bars and runoff tabs shall be used in accordance with AWS D1.1 as
required to produce sound welds. The fabricator or erector need not remove
backing bars or runoff tabs unless such removal is specified in the contract
documents. When the removal of backing bars is specified in the contract
documents, such removal shall meet the requirements in AWS D1.1. When the
removal of runoff tabs is specified in the contract documents, hand flame-

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-30
cutting close to the edge of the finished member with no further finishing is
permitted, unless other finishing is specified in the contract documents.

Commentary:
In most cases, the treatment of backing bars and runoff tabs is left to the
discretion of the owner’s designated representative for design. In some cases,
treatment beyond the basic cases described in this Section may be required. As
one example, special treatment is required for backing bars and runoff tabs in
beam-to-column moment connections when the requirements in the AISC
Seismic Provisions must be met. In all cases, the owner’s designated
representative for design should specify the required treatments in the contract
documents.
6.3.3. Unless otherwise noted in the shop drawings, high-strength bolts for shop-
attached connection material shall be installed in the shop in accordance with
the requirements in the AISC Specification.

6.4. Fabrication Tolerances
The tolerances on structural steel fabrication shall be in accordance with the
requirements in Section 6.4.1 through 6.4.6.

Commentary:
Fabrication tolerances are stipulated in several specifications and codes, each
applicable to a specialized area of construction. Basic fabrication tolerances are
stipulated in this Section. For architecturally exposed structural steel, see
Section 10. Other specifications and codes are also commonly incorporated by
reference in the contract documents, such as the AISC Specification, the RCSC
Specification, AWS D1.1, and the AASHTO Specification.
6.4.1. For members that have both ends finished (see Section 6.2.2) for contact
bearing, the variation in the overall length shall be equal to or less than Q in. [1
mm]. For other members that frame to other structural steel elements, the
variation in the detailed length shall be as follows:

(a) For members that are equal to or less than 30 ft [9 000 mm] in length, the
variation shall be equal to or less than z in. [2 mm].
(b) For members that are greater than 30 ft [9 000 mm] in length, the variation
shall be equal to or less than 8 in. [3 mm].

6.4.2. For straight structural members other than compression members, whether of a
single standard structural shape or built-up, the variation in straightness shall
be equal to or less than that specified for wide-flange shapes in ASTM
A6/A6M, except when a smaller variation in straightness is specified in the
contract documents. For straight compression members, whether of a standard

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-31
structural shape or built-up, the variation in straightness shall be equal to or less
than 1/1000 of the axial length between points that are to be laterally supported.
For curved structural members, the variation from the theoretical curvature shall
be equal to or less than the variation in sweep that is specified for an equivalent
straight member of the same straight length in ASTM A6/A6M.
In all cases, completed members shall be free of twists, bends and open
joints. Sharp kinks or bends shall be cause for rejection.

6.4.3. For beams that are detailed without specified camber, the member shall be
fabricated so that, after erection, any incidental camber due to rolling or shop
fabrication is upward. For trusses that are detailed without specified camber, the
components shall be fabricated so that, after erection, any incidental camber in
the truss due to rolling or shop fabrication is upward.

6.4.4. For beams that are specified in the contract documents with camber, beams
received by the fabricator with 75% of the specified camber shall require no
further cambering. Otherwise, the variation in camber shall be as follows:

(a) For beams that are equal to or less than 50 ft [15 000 mm] in length, the
variation shall be equal to or less than minus zero / plus 2 in. [13 mm].
(b) For beams that are greater than 50 ft [15 000 mm] in length, the variation
shall be equal to or less than minus zero / plus 2 in. plus 8 in. for each 10
ft or fraction thereof [13 mm plus 3 mm for each 3 000 mm or fraction
thereof] in excess of 50 ft [15 000 mm] in length.

For the purpose of inspection, camber shall be measured in the fabricator’s shop
in the unstressed condition.

Commentary:
There is no known way to inspect beam camber after the beam is received in the
field because of factors that include:

(a) The release of stresses in members over time and in varying applications;
(b) The effects of the dead weight of the member;
(c) The restraint caused by the end connections in the erected state; and,
(d) The effects of additional dead load that may ultimately be intended to be
applied, if any.

Therefore, inspection of the fabricator’s work on beam camber must be done in
the fabrication shop in the unstressed condition.
6.4.5. For fabricated trusses that are specified in the contract documents with camber,
the variation in camber at each specified camber point shall be equal to or less
than plus or minus 1/800 of the distance to that point from the nearest point of

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-32
support. For the purpose of inspection, camber shall be measured in the fabricator’s shop in the unstressed condition. For fabricated trusses that are
specified in the contract documents without indication of camber, the foregoing
requirements shall be applied at each panel point of the truss with a zero camber
ordinate.

Commentary:
There is no known way to inspect truss camber after the truss is received in the
field because of factors that include:

(a) The effects of the dead weight of the member;
(b) The restraint caused by the truss connections in the erected state; and,
(c) The effects of additional dead load that may ultimately be intended to be
applied, if any.

Therefore, inspection of the fabricator’s work on truss camber must be done in
the fabrication shop in the unstressed condition. See Figure C–6.1.

6.4.6. When permissible variations in the depths of beams and girders result in abrupt
changes in depth at splices, such deviations shall be accounted for as follows:

(a) For splices with bolted joints, the variations in depth shall be taken up with filler plates; and,
(b) For splices with welded joints, the weld profile shall be adjusted to conform to the variations in depth, the required cross-section of weld shall be provided and the slope of the weld surface shall meet the requirements in
AWS D1.1.
Figure C-6.1. Illustration of the tolerance on camber
for fabricated trusses with specified camber.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-33
6.5. Shop Cleaning and Painting (see also Section 3.1.6)
Structural steel that does not require shop paint shall be cleaned of oil and
grease with solvent cleaners, and of dirt and other foreign material by sweeping
with a fiber brush or other suitable means. For structural steel that is required to
be shop painted, the requirements in Sections 6.5.1 through 6.5.4 shall apply.

Commentary:
Extended exposure of unpainted structural steel that has been cleaned for the
subsequent application of fire protection materials can be detrimental to the
fabricated product. Most levels of cleaning require the removal of all loose mill
scale, but permit some amount of tightly adhering mill scale. When a piece of
structural steel that has been cleaned to an acceptable level is left exposed to a
normal environment, moisture can penetrate behind the scale, and some “lifting”
of the scale by the oxidation process is to be expected. Cleanup of “lifted” mill
scale is not the responsibility of the fabricator, but is to be assigned by contract
requirement to an appropriate contractor.
Section 6.5.4 of this Code is not applicable to weathering steel, for
which special cleaning specifications are always required in the contract
documents.

6.5.1. The fabricator is not responsible for deterioration of the shop coat that may
result from exposure to ordinary atmospheric conditions or corrosive conditions
that are more severe than ordinary atmospheric conditions.

Commentary:
The shop coat of paint is the prime coat of the protective system. It is intended
as protection for only a short period of exposure in ordinary atmospheric
conditions, and is considered a temporary and provisional coating.
6.5.2. Unless otherwise specified in the contract documents, the fabricator shall, as a
minimum, hand clean the structural steel of loose rust, loose mill scale, dirt and
other foreign matter, prior to painting, by means of wire brushing or by other methods elected by the fabricator, to meet the requirements of SSPC-SP2. If the
fabricator’s workmanship on surface preparation is to be inspected by the
inspector, such inspection shall be performed in a timely manner prior to the
application of the shop coat.

Commentary:
The selection of a paint system is a design decision involving many factors
including:

(a) The owner’s preference;
(b) The service life of the structure;
(c) The severity of environmental exposure;

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-34
(d) The cost of both initial application and future renewals; and,
(e) The compatibility of the various components that comprise the paint system
(surface preparation, shop coat and subsequent coats).

Because the inspection of shop painting must be concerned with
workmanship at each stage of the operation, the fabricator provides notice of
the schedule of operations and affords the inspector access to the work site.
Inspection must then be coordinated with that schedule so as to avoid delay of
the scheduled operations.
Acceptance of the prepared surface must be made prior to the
application of the shop coat because the degree of surface preparation cannot be
readily verified after painting. Time delay between surface preparation and the
application of the shop coat can result in unacceptable deterioration of a
properly prepared surface, necessitating a repetition of surface preparation. This
is especially true with blast-cleaned surfaces. Therefore, to avoid potential
deterioration of the surface, it is assumed that surface preparation is accepted
unless it is inspected and rejected prior to the scheduled application of the shop
coat.
The shop coat in any paint system is designed to maximize the wetting
and adherence characteristics of the paint, usually at the expense of its
weathering capabilities. Deterioration of the shop coat normally begins
immediately after exposure to the elements and worsens as the duration of
exposure is extended. Consequently, extended exposure of the shop coat will
likely lead to its deterioration and may necessitate repair, possibly including the
repetition of surface preparation and shop coat application in limited areas. With
the introduction of high-performance paint systems, avoiding delay in the
application of the shop coat has become more critical. High-performance paint
systems generally require a greater degree of surface preparation, as well as
early application of weathering protection for the shop coat.
Since the fabricator does not control the selection of the paint system,
the compatibility of the various components of the total paint system, or the
length of exposure of the shop coat, the fabricator cannot guarantee the
performance of the shop coat or any other part of the system. Instead, the
fabricator is responsible only for accomplishing the specified surface
preparation and for applying the shop coat (or coats) in accordance with the
contract documents.
This Section stipulates that the structural steel is to be cleaned to meet
the requirements in SSPC-SP2. This stipulation is not intended to represent an
exclusive cleaning level, but rather the level of surface preparation that will be
furnished unless otherwise specified in the contract documents if the structural
steel is to be painted.
6.5.3. Unless otherwise specified in the contract documents, paint shall be applied by
brushing, spraying, rolling, flow coating, dipping or other suitable means, at the

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-35
election of the fabricator. When the term “shop coat”, “shop paint” or other
equivalent term is used with no paint system specified, the fabricator’s standard
shop paint shall be applied to a minimum dry-film thickness of one mil [25 μm].

6.5.4. Touch-up of abrasions caused by handling after painting shall be the
responsibility of the contractor that performs touch-up in the field or field
painting.

Commentary:
Touch-up in the field and field painting are not normally part of the fabricator’s
or the erector’s contract.

6.6. Marking and Shipping of Materials

6.6.1. Unless otherwise specified in the contract documents, erection marks shall be
applied to the structural steel members by painting or other suitable means.

6.6.2. Bolt assemblies and loose bolts, nuts and washers shall be shipped in separate
closed containers according to length and diameter, as applicable. Pins and other
small parts and packages of bolts, nuts and washers shall be shipped in boxes,
crates, kegs or barrels. A list and description of the material shall appear on the
outside of each closed container.

Commentary:
In most cases bolts, nuts and other components in a fastener assembly can be
shipped loose in separate containers. However, ASTM F1852/F1852M twist-
off-type tension-control bolt assemblies and galvanized ASTM A325, A325M
and F1852/F1852M bolt assemblies must be assembled and shipped in the same
container according to length and diameter.

6.7. Delivery of Materials

6.7.1. Fabricated structural steel shall be delivered in a sequence that will permit
efficient and economical fabrication and erection, and that is consistent with
requirements in the contract documents. If the owner or owner’s designated
representative for construction wishes to prescribe or control the sequence of
delivery of materials, that entity shall specify the required sequence in the
contract documents. If the owner’s designated representative for construction
contracts separately for delivery and for erection, the owner’s designated
representative for construction shall coordinate planning between contractors.

6.7.2. Anchor rods, washers, nuts and other anchorage or grillage materials that are to
be built into concrete or masonry shall be shipped so that they will be available
when needed. The owner’s designated representative for construction shall

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-36
allow the fabricator sufficient time to fabricate and ship such materials before
they are needed.

6.7.3. If any shortage is claimed relative to the quantities of materials that are shown in
the shipping statements, the owner’s designated representative for construction
or the erector shall promptly notify the fabricator so that the claim can be
investigated.

Commentary:
The quantities of material that are shown in the shipping statement are
customarily accepted as correct by the owner’s designated representative for
construction, the fabricator and the erector.
6.7.4. Unless otherwise specified in the contract documents, and subject to the
approved shop and erection drawings, the fabricator shall limit the number of
field splices to that consistent with minimum project cost.

Commentary:
This Section recognizes that the size and weight of structural steel assemblies
may be limited by shop capabilities, the permissible weight and clearance
dimensions of available transportation or job-site conditions.
6.7.5. If material arrives at its destination in damaged condition, the receiving entity
shall promptly notify the fabricator and carrier prior to unloading the material,
or promptly upon discovery prior to erection.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-37
SECTION 7. ERECTION

7.1. Method of Erection
Fabricated structural steel shall be erected using methods and a sequence that
will permit efficient and economical performance of erection, and that is
consistent with the requirements in the contract documents. If the owner or
owner’s designated representative for construction wishes to prescribe or
control the method and/or sequence of erection, or specifies that certain
members cannot be erected in their normal sequence, that entity shall specify the
required method and sequence in the contract documents. If the owner’s
designated representative for construction contracts separately for fabrication
services and for erection services, the owner’s designated representative for
construction shall coordinate planning between contractors.

Commentary:
Design modifications are sometimes requested by the erector to allow or
facilitate the erection of the structural steel frame. When this is the case, the
erector should notify the fabricator prior to the preparation of shop and erection
drawings so that the fabricator may refer the erector’s request to the owner’s
designated representatives for design and construction for resolution.

7.2. Job-Site Conditions
The owner’s designated representative for construction shall provide and
maintain the following for the fabricator and the erector:

(a) Adequate access roads into and through the job site for the safe delivery
and movement of the material to be erected and of derricks, cranes, trucks
and other necessary equipment under their own power;
(b) A firm, properly graded, drained, convenient and adequate space at the job
site for the operation of the erector’s equipment, free from overhead
obstructions, such as power lines, telephone lines or similar conditions; and,
(c) Adequate storage space, when the structure does not occupy the full
available job site, to enable the fabricator and the erector to operate at
maximum practical speed.

Otherwise, the owner’s designated representative for construction shall inform
the fabricator and the erector of the actual job-site conditions and/or special
delivery requirements prior to bidding.

7.3. Foundations, Piers and Abutments
The accurate location, strength and suitability of, and access to, all foundations,
piers and abutments shall be the responsibility of the owner’s designated
representative for construction.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-38
7.4. Lines and Bench Marks
The owner’s designated representative for construction shall be responsible for
the accurate location of lines and benchmarks at the job site and shall furnish the
erector with a plan that contains all such information. The owner’s designated
representative for construction shall establish offset lines and reference
elevations at each level for the erector’s use in the positioning of adjustable
items (see Section 7.13.1.3), if any.

7.5. Installation of Anchor Rods, Foundation Bolts and Other Embedded Items

7.5.1. Anchor rods, foundation bolts and other embedded items shall be set by the
owner’s designated representative for construction in accordance with
embedment drawings that have been approved by the owner’s designated
representatives for design and construction. The variation in location of these
items from the dimensions shown in the embedment drawings shall be as
follows:

(a) The variation in dimension between the centers of any two anchor rods
within an anchor-rod group shall be equal to or less than 8 in. [3 mm].
(b) The variation in dimension between the centers of adjacent anchor-rod
groups shall be equal to or less than 4 in. [6 mm].
(c) The variation in elevation of the tops of anchor rods shall be equal to or
less than plus or minus 2 in. [13 mm].
(d) The accumulated variation in dimension between centers of anchor-rod
groups along the column line through multiple anchor-rod groups shall be
equal to or less than 4 in. per 100 ft [2 mm per 10 000 mm], but not to
exceed a total of 1 in. [25 mm].
(e) The variation in dimension from the center of any anchor-rod group to the
column line through that group shall be equal to or less than 4 in. [6 mm].

The tolerances that are specified in (b), (c) and (d) shall apply to offset
dimensions shown in the structural design drawings, measured parallel and
perpendicular to the nearest column line, for individual columns that are shown
in the structural design drawings as offset from
column lines.

Commentary:
The tolerances established in this Section have been selected for compatibility
with the holes sizes that are recommended for base plates in the AISC Steel
Construction Manual. If special conditions require more restrictive tolerances,
the contractor responsible for setting the anchor rods should be so informed in
the contract documents. When the anchor rods are set in sleeves, the adjustment
provided may be used to satisfy the required anchor-rod setting tolerances.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-39
7.5.2. Unless otherwise specified in the contract documents, anchor rods shall be set
with their longitudinal axis perpendicular to the theoretical bearing surface.

7.5.3. Embedded items and connection materials that are part of the work of other
trades, but that will receive structural steel , shall be located and set by the
owner’s designated representative for construction in accordance with an
approved embedment drawing. The variation in location of these items shall be
limited to a magnitude that is consistent with the tolerances that are specified in
Section 7.13 for the erection of the structural steel.

7.5.4. All work that is performed by the owner’s designated representative for
construction shall be completed so as not to delay or interfere with the work of
the fabricator and the erector. The owner’s designated representative for
construction shall conduct a survey of the as-built locations of anchor rods,
foundation bolts and other embedded items, and shall verify that all items
covered in Section 7.5 meet the corresponding tolerances. When corrective
action is necessary, the owner’s designated representative for construction shall
obtain the guidance and approval of the owner’s designated representative for
design.

Commentary:
Few fabricators or erectors have the capability to provide this survey. Under
standard practice, it is the responsibility of others.

7.6. Installation of Bearing Devices
All leveling plates, leveling nuts and washers and loose base and bearing plates
that can be handled without a derrick or crane are set to line and grade by the
owner’s designated representative for construction. Loose base and bearing
plates that require handling with a derrick or crane shall be set by the erector to
lines and grades established by the owner’s designated representative for
construction. The fabricator shall clearly scribe loose base and bearing plates
with lines or other suitable marks to facilitate proper alignment.
Promptly after the setting of bearing devices, the owner’s designated
representative for construction shall check them for line and grade. The
variation in elevation relative to the established grade for all bearing devices
shall be equal to or less than plus or minus 8 in. [3 mm]. The final location of
bearing devices shall be the responsibility of the owner’s designated
representative for construction.

Commentary:
The 8 in. [3 mm] tolerance on elevation of bearing devices relative to
established grades is provided to permit some variation in setting bearing
devices, and to account for the accuracy that is attainable with standard
surveying instruments. The use of leveling plates larger than 22 in. by 22 in.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-40
[550 mm by 550 mm] is discouraged and grouting is recommended with larger
sizes. For the purposes of erection stability, the use of leveling nuts and washers
is discouraged when base plates have less than four anchor rods.

7.7. Grouting
Grouting shall be the responsibility of the owner’s designated representative for
construction. Leveling plates and loose base and bearing plates shall be
promptly grouted after they are set and checked for line and grade. Columns
with attached base plates, beams with attached bearing plates and other similar
members with attached bearing devices that are temporarily supported on
leveling nuts and washers, shims or other similar leveling devices, shall be
promptly grouted after the structural steel frame or portion thereof has been
plumbed.

Commentary:
In the majority of structures the vertical load from the column bases is
transmitted to the foundations through structural grout. In general, there are
three methods by which support is provided for column bases during erection:

(a) Pre-grouted leveling plates or loose base plates;
(b) Shims; and,
(c) Leveling nuts and washers on the anchor rods beneath the column base.

Standard practice provides that loose base plates and leveling plates are to be
grouted as they are set. Bearing devices that are set on shims or leveling nuts are
grouted after plumbing, which means that the weight of the erected structural
steel frame is supported on the shims or washers, nuts and anchor rods. The
erector must take care to ensure that the load that is transmitted in this
temporary condition does not exceed the strength of the shims or washers, nuts
and anchor rods. These considerations are presented in greater detail in AISC
Design Guides No. 1 and 10.

7.8. Field Connection Material

7.8.1. The fabricator shall provide field connection details that are consistent with the
requirements in the contract documents and that will, in the fabricator’s
opinion, result in economical fabrication and erection.

7.8.2. When the fabricator is responsible for erecting the structural steel, the
fabricator shall furnish all materials that are required for both temporary and
permanent connection of the component parts of the structural steel frame.

7.8.3. When the erection of the structural steel is not performed by the fabricator, the
fabricator shall furnish the following field connection material:

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-41

(a) Bolts, nuts and washers of the required grade, type and size and in
sufficient quantity for all structural steel-to-structural steel field
connections that are to be permanently bolted, including an extra 2 percent
of each bolt size (diameter and length);
(b) Shims that are shown as necessary for make-up of permanent structural
steel-to-structural steel field connections; and,
(c) Backing bars and run-off tabs that are required for field welding.

7.8.4. The erector shall furnish all welding electrodes, fit-up bolts and drift pins used
for the erection of the structural steel.

Commentary:
See the Commentary for Section 2.2.

7.9. Loose Material
Unless otherwise specified in the contract documents, loose structural steel
items that are not connected to the structural steel frame shall be set by the
owner’s designated representative for construction without assistance from the
erector.

7.10. Temporary Support of Structural Steel Frames

7.10.1. The owner’s designated representative for design shall identify the following in
the contract documents:

(a) The lateral-load-resisting system and connecting diaphragm elements that
provide for lateral strength and stability in the completed structure; and,
(b) Any special erection conditions or other considerations that are required by
the design concept, such as the use of shores, jacks or loads that must be
adjusted as erection progresses to set or maintain camber, position within
specified tolerances or prestress.

Commentary:
The intent of Section 7.10.1 of the Code is to alert the owner’s designated
representative for construction and the erector of the means for lateral load
resistance in the completed structure so that appropriate planning can occur for
construction of the building. Examples of a description of the lateral load
resisting system as required by 7.10.1(a) are shown below.
Example 1 is an all-steel building with a composite metal deck and
concrete floor system. All lateral load resistance is provided by welded moment
frames in each orthogonal building direction. One suitable description of this
lateral load resisting system is:

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-42
All lateral load resistance and stability of the building in the completed
structure is provided by moment frames with welded beam to column
connections framed in each orthogonal direction (see plan sheets for locations).
The composite metal deck and concrete floors serve as horizontal diaphragms
that distribute the lateral wind and seismic forces horizontally to the vertical
moment frames. The vertical moment frames carry the applied lateral loads to
the building foundation.
Example 2 is a steel-framed building with a composite metal deck and
concrete floor system. All beam-to-column connections are simple connections
and all lateral load resistance is provided by reinforced concrete shear walls in
the building core and in the stair wells. One suitable description of this lateral
load resisting system is:
All lateral load resistance and stability of the building in the completed
structure is provided exclusively by cast-in-place reinforced concrete shear
walls in the building core and stair wells (see plan sheets for locations). These
walls provide all lateral load resistance in each orthogonal building direction.
The composite metal deck and concrete floors serve as horizontal diaphragms
that distribute the lateral wind and seismic forces horizontally to the concrete
shear walls. The concrete shear walls carry the applied lateral loads to the
building foundation.
See also Commentary Section 7.10.3.

Section 7.10.1(b) is intended to apply to special requirements inherent in the
design concept that could not otherwise be known by the erector. Such
conditions might include designs that require the use of shores or jacks to impart
a load or to obtain a specific elevation or position in a subsequent step of the
erection process in a sequencially erected structure or member. These
requirements would not be apparent to an erector, and must be identified so the
erector can properly bid, plan and perform the erection.

The erector is responsible for installation of all members (including cantilevered
members) to the specified plumbness, elevation, and alignment within the
erection tolerances specified in this Code. The erector must provide all
temporary supports and devices to maintain elevation or position within these
tolerances. These works are part of the means and methods of the erector and
the owner’s designated representative for design need not specify these methods
or related equipement.
7.10.2. The owner’s designated representative for construction shall indicate to the
erector prior to bidding, the installation schedule for non-structural steel
elements of the lateral-load-resisting system and connecting diaphragm elements
identified by the owner’s designated representative for design in the contract
documents.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-43

Commentary:
See Commentary Section 7.10.3.
7.10.3. Based upon the information provided in accordance with Sections 7.10.1 and
7.10.2, the erector shall determine, furnish and install all temporary supports,
such as temporary guys, beams, falsework, cribbing or other elements required for the erection operation. These temporary supports shall be sufficient to secure the bare structural steel framing or any portion thereof against loads that are
likely to be encountered during erection, including those due to wind and those that result from erection operations.
The erector need not consider loads during erection that result from the
performance of work by, or the acts of, others, except as specifically identified
by the owner’s designated representatives for design and construction, nor
those that are unpredictable, such as loads due to hurricane, tornado, earthquake, explosion or collision.
Temporary supports that are required during or after the erection of the
structural steel frame for the support of loads caused by non-structural steel
elements, including cladding, interior partitions and other such elements that will induce or transmit loads to the structural steel frame during or after
erection, shall be the responsibility of others.
Commentary:
Many structural steel frames have lateral-load-resisting systems that are
activated during the erection process. Such lateral-load-resisting systems may
consist of welded moment frames, braced frames or, in some instances, columns
that cantilever from fixed-base foundations. Such frames are normally braced
with temporary guys that, together with the steel deck floor and roof
diaphragms, or other diaphragm bracing that may be included as part of the
design, provide stability during the erection process. The guy cables are also
commonly used to plumb the structural steel frame. The erector normally
furnishes and installs the required temporary supports and bracing to secure the
bare structural steel frame, or portion thereof, during the erection process.
When erection bracing drawings are required in the contract documents, those
drawings show this information.
If the owner’s designated representative for construction determines
that steel decking is not installed by the erector, temporary diaphragm bracing
may be required if a horizontal diaphragm is not available to distribute loads to
the vertical and lateral load resisting system. If the steel deck will not be
available as a diaphragm during structural steel erection, the owner’s designated
representative for construction must communicate this condition to the erector
prior to bidding. If such diaphragm bracing is required, it must be furnished and
installed by the erector.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-44
Sometimes structural systems that are employed by the owner’s
designated representative for design rely upon other elements besides the
structural steel frame for lateral-load resistance. For instance, concrete or
masonry shear walls or precast spandrels may be used to provide resistance to
vertical and lateral loads in the completed structure. Because these situations
may not be obvious to the contractor or the erector, it is required in this Code
that the owner’s designated representative for design must identify such
situations in the contract documents. Similarly, if a structure is designed so that
special erection techniques are required, such as jacking to impose certain loads
or position during erection, it is required in this Code that such requirements be
specifically identified in the contract documents.
In some instances, the owner’s designated representative for design
may elect to show erection bracing in the structural design drawings. When this
is the case, the owner’s designated representative for design should then
confirm that the bracing requirements were understood by review and approval
of the erection drawings during the submittal process.
Sometimes during construction of a building, collateral building
elements, such as exterior cladding, may be required to be installed on the bare
structural steel frame prior to completion of the lateral-load-resisting system.
These elements may increase the potential for lateral loads on the temporary
supports. Such temporary supports may also be required to be left in place after
the structural steel frame has been erected. Special provisions should be made
by the owner’s designated representative for construction for these conditions.
7.10.4. All temporary supports that are required for the erection operation and furnished
and installed by the erector shall remain the property of the erector and shall not
be modified, moved or removed without the consent of the erector. Temporary
supports provided by the erector shall remain in place until the portion of the
structural steel frame that they brace is complete and the lateral-load-resisting
system and connecting diaphragm elements identified by the owner’s designated
representative for design in accordance with Secti on 7.10.1 are installed.
Temporary supports that are required to be left in place after the completion of
structural steel erection shall be removed when no longer needed by the
owner’s designated representative for construction and returned to the erector
in good condition.

7.11. Safety Protection

7.11.1. The erector shall provide floor coverings, handrails, walkways and other safety
protection for the erector’s personnel as required by law and the applicable
safety regulations. Unless otherwise specified in the contract documents, the
erector is permitted to remove such safety protection from areas where the
erection operations are completed.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-45
7.11.2. When safety protection provided by the erector is left in an area for the use of
other trades after the structural steel erection activity is completed, the owner’s
designated representative for construction shall:

(a) Accept responsibility for and maintain this protection;
(b) Indemnify the fabricator and the erector from damages that may be
incurred from the use of this protection by other trades;
(c) Ensure that this protection is adequate for use by other affected trades;
(d) Ensure that this protection complies with applicable safety regulations when
being used by other trades; and,
(e) Remove this protection when it is no longer required and return it to the
erector in the same condition as it was received.

7.11.3. Safety protection for other trades that are not under the direct employment of the
erector shall be the responsibility of the owner’s designated representative for
construction.

7.11.4. When permanent steel decking is used for protective flooring and is installed by
the owner’s designated representative for construction, all such work shall be
scheduled and performed in a timely manner so as not to interfere with or delay
the work of the fabricator or the erector. The sequence of installation that is
used shall meet all safety regulations.

7.11.5. Unless the interaction and safety of activities of others, such as construction by
others or the storage of materials that belong to others, are coordinated with the
work of the erector by the owner’s designated representative for construction,
such activities shall not be permitted until the erection of the structural steel
frame or portion thereof is completed by the erector and accepted by the
owner’s designated representative for construction.

7.12. Structural Steel Frame Tolerances
The accumulation of the mill tolerances and fabrication tolerances shall not
cause the erection tolerances to be exceeded.

Commentary:
In editions of this Code previous to the 2005 edition, it was stated that
“…variations are deemed to be within the limits of good practice when they do
not exceed the cumulative effect of rolling tolerances, fabricating tolerances and
erection tolerances.” It is recognized in the current provision in this Section that
accumulations of mill tolerances and fabrication tolerances generally occur
between the locations at which erection tolerances are applied, and not at the
same locations.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-46
7.13. Erection Tolerances
Erection tolerances shall be defined relative to member working points and
working lines, which shall be defined as follows:

(a) For members other than horizontal members, the member work point shall
be the actual center of the member at each end of the shipping piece.
(b) For horizontal members, the working point shall be the actual centerline of
the top flange or top surface at each end.
(c) The member working line shall be the straight line that connects the
member working points.

The substitution of other working points is permitted for ease of reference,
provided they are based upon the above definitions.
The tolerances on structural steel erection shall be in accordance with
the requirements in Sections 7.13.1 through 7.13.3.

Commentary:
The erection tolerances defined in this Section have been developed through
long-standing usage as practical criteria for the erection of structural steel.
Erection tolerances were first defined in the 1924 edition of this Code in Section
7(f), “Plumbing Up.” With the changes that took place in the types and use of
materials in building construction after World War II, and the increasing
demand by architects and owners for more specific tolerances, AISC adopted
new standards for erection tolerances in Section 7(h) of the March 15, 1959
edition of this Code. Experience has proven that those tolerances can be
economically obtained.
Differential column shortening may be a consideration in design and
construction. In some cases, it may occur due to variability in the accumulation
of dead load among different columns (see Figure C–7.1). In other cases, it may
be characteristic of the structural system that is employed in the design.
Consideration of the effects of differential column shortening may be very
important, such as when the slab thickness is reduced, when electrical and other
similar fittings mounted on the structural steel are intended to be flush with the
finished floor and when there is little clearance between bottoms of beams and
the tops of door frames or ductwork.
The effects of the deflection of transfer girders and trusses on the
position of columns and hangers supported from them may be a consideration in
design and construction. As in the case of differential column shortening, the
deflecton of these supporting members during and after construction will affect
the position and alignment of the framing tributary to these transfer members.

(Commentary continues after figures)

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-47
Figure C-7.1. Effects of differential column shortening.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-48






Figure C-7.2. Tolerances in plan location of column.
Figure C-7.3.Clearance required to accommodate fascia.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-49
Expansion and contraction in a structural steel frame may be a
consideration in design and construction. Steel will expand or contract
approximately 8 in. per 100 ft for each change of 15°F [2 mm per 10 000 mm
for each change of 15°C] in temperature. This change in length can be assumed
to act about the center of rigidity. When anchored to their foundations, end
columns will be plumb only when the steel is at normal temperature (see Figure
C–7.2). It is therefore necessary to correct field measurements of offsets to the
structure from established baselines for the expansion or contraction of the
exposed structural steel frame. For example, a 200-ft-long [60 000-m-long]
building that is plumbed up at 100°F [38°C] should have working points at the
tops of the end columns positioned 2 in. [14 mm] further apart than the
working points at the corresponding bases in order for the columns to be plumb
at 70°F [21°C]. Differential temperature effects on column length should also be
taken into account in plumbing surveys when tall structural steel frames are
subjected to sun exposure on one side.
The alignment of lintels, spandrels, wall supports and similar members
that are used to connect other building construction units to the structural steel
frame should have an adjustment of sufficient magnitude to allow for the
accumulation of mill tolerances and fabrication tolerances, as well as the
erection tolerances. See Figure C–7.3.

7.13.1. The tolerances on position and alignment of member working points and
working lines shall be as described in Sections 7.13.1.1 through 7.13.1.3.

7.13.1.1. For an individual column shipping piece, the angular variation of the working
line from a plumb line shall be equal to or less than 1/500 of the distance between working points, subject to the following additional limitations:

(a) For an individual column shipping piece that is adjacent to an elevator
shaft, the displacement of member working points shall be equal to or less
than 1 in. [25 mm] from the established column line in the first 20 stories.
Above this level, an increase in the displacement of Q in. [1 mm] is
permitted for each additional story up to a maximum displacement of 2 in. [50 mm] from the established column line.
(b) For an exterior individual column shipping piece, the displacement of
member working points from the established column line in the first 20
stories shall be equal to or less than 1 in. [25 mm] toward and 2 in. [50 mm] away from the building line. Above this level, an increase in the
displacement of z in. [2 mm] is permitted for each additional story up to a
maximum displacement of 2 in. [50 mm] toward and 3 in. [75 mm] away
from the building line.

Commentary:
The limitations that are described in this Section and illustrated in Figures
C–7.4 and C–7.5 make it possible to maintain built-in-place or

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-50
prefabricated facades in a true vertical plane up to the 20th story, if
connections that provide for 3 in. [75 mm] of adjustment are used. Above
the 20th story, the facade may be maintained within z in. [2 mm] per story
with a maximum total deviation of 1 in. [25 mm] from a true vertical plane,
if connections that provide for 3 in. [75 mm] of adjustment are used.
Connections that permit adjustments of plus 2 in. [50 mm] to minus 3 in.
[75 mm] (5 in. [125 mm] total) will be necessary in cases where it is desired
to construct the facade to a true vertical plane above the 20th story.
(c) For an exterior individual column shipping piece, the member working
points at any splice level for multi-tier buildings and at the tops of columns
for single-tier buildings shall fall within a horizontal envelope, parallel to
the building line, that is equal to or less than 12 in. [38 mm] wide for
buildings up to 300 ft [90 000 mm] in length. An increase in the width of
this horizontal envelope of 2 in. [13 mm] is permitted for each additional
100 ft [30 000 m] in length up to a maximum width of 3 in. [75 mm].

Commentary:
This Section limits the position of exterior column working points at any
given splice elevation to a narrow horizontal envelope parallel to the
building line (see Figure C–7.6). This envelope is limited to a width of 12
in. [38 mm], normal to the building line, in up to 300 ft [90 000 mm] of
building length. The horizontal location of this envelope is not necessarily
directly above or below the corresponding envelope at the adjacent splice
elevations, but should be within the limitation of the 1 in 500 plumbness
tolerance specified for the controlling columns (see Figure C–7.5).

(d) For an exterior column shipping piece, the displacement of member
working points from the established column line, parallel to the building
line, shall be equal to or less than 2 in. [50 mm] in the first 20 stories. Above this level, an increase in the displacement of z in. [2 mm] is
permitted for each additional story up to a maximum displacement of 3 in.
[75 mm] parallel to the building line.

7.13.1.2. For members other than column shipping pieces, the following limitations shall
apply:

(a) For a member that consists of an individual, straight shipping piece without
field splices, other than a cantilevered member, the variation in alignment
shall be acceptable if it is caused solely by variations in column alignment
and/or primary supporting member alignment that are within the
permissible variations for the fabrication and erection of such members.
(b) For a member that consists of an individual, straight shipping piece that
connects to a column, the variation in the distance from the member
working point to the upper finished splice line of the column shall be equal
to or less than plus x in. [5 mm] and minus c in. [8 mm].

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-51
Figure C-7.4. Clearance required to accommodate accumulated column tolerance.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-52

Figure C-7.5.Exterior column plumbness tolerances normal to building line.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-53






Figure C-7.6. Tolerances in plan at any splice elevation of exterior columns.
Figure C-7.7. Alignment tolerances for members with field splices.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-54

(c) For a member that consists of an individual shipping piece that does not
connect to a column, the variation in elevation shall be acceptable if it is
caused solely by the variations in the elevations of the supporting members
within the permissible variations for the fabrication and erection of those
members.
(d) For a member that consists of an individual, straight shipping piece and that
is a segment of a field assembled unit containing field splices between
points of support, the plumbness, elevation and alignment shall be
acceptable if the angular variation, vertically and horizontally, of the
working line from a straight line between points of support is equal to or
less than 1/500 of the distance between working points.

Commentary:
The angular misalignment of the working line of all fabricated shipping
pieces relative to the line between support points of the member as a whole
in erected position must not exceed 1 in 500. Note that the tolerance is not
stated in terms of a linear displacement at any point and is not to be taken as
the overall length between supports divided by 500. Typical examples are
shown in Figure C–7.7. Numerous conditions within tolerance for these and
other cases are possible. The condition described in (d) applies to both plan
and elevation tolerances.
(e) For a cantilevered member that consists of an individual, straight shipping
piece, the plumbness, elevation and alignment shall be acceptable if the
angular variation of the working line from a straight line that is extended in the plan direction from the working point at its supported end is equal to or less than 1/500 of the distance from the working point at the free end.
(f) For a member of irregular shape, the plumbness, elevation and alignment
shall be acceptable if the fabricated member is within its tolerances and the
members that support it are within the tolerances specified in this Code.
(g) For a member that is fully assembled in the field in an unstressed condition,
the same tolerances shall apply as if fully assembled in the shop.
(h) For a member that is field-assembled, element-by-element in place,
temporary support shall be used or an alternative erection plan shall be submitted to the owner’s designated representatives for design and
construction. The tolerance in Section 7.13.1.2(d) shall be met in the
supported condition with working points taken at the point(s) of temporary
support.

Commentary:
Trusses fabricated and erected as a unit or as an assembly of truss segments
normally have excellent controls on vertical position regardless of
fabrication and erection techniques. However, a truss fabricated and erected
by assembling individual components in place in the field is potentially

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-55
more sensitive to deflections of the individual truss components and the
partially completed work during erection, particularly the chord members.
In such a case, the erection process should follow an erection plan that
addresses this issue.

7.13.1.3. For members that are identified as adjustable items by the owner’s designated
representative for design in the contract documents, the fabricator shall provide
adjustable connections for these members to the supporting structural steel
frame. Otherwise, the fabricator is permitted to provide non-adjustable
connections. When adjustable items are specified, the owner's designated
representative for design shall indicate the total adjustability that is required for the proper alignment of these supports for other trades. The variation in the position and alignment of adjustable items shall be as follows:

(a) The variation in the vertical distance from the upper finished splice line of
the nearest column to the support location specified in the structural design
drawings shall be equal to or less than plus or minus a in. [10 mm].
(b) The variation in the horizontal distance from the established finish line at
the particular floor shall be equal to or less than plus or minus a in. [10
mm].
(c) The variation in vertical and horizontal alignment at the abutting ends of
adjustable items shall be equal to or less than plus or minus x in. [5 mm].

Commentary:
When the alignment of lintels, wall supports, curb angles, mullions and similar
supporting members for the use of other trades is required to be closer than that
permitted by the foregoing tolerances for structural steel, the owner's
designated representative for design must identify such items in the contract
documents as adjustable items.
7.13.2. In the design of steel structures, the owner's designated representative for
design shall provide for the necessary clearances and adjustments for material
furnished by other trades to accommodate the mill tolerances, fabrication
tolerances and erection tolerances in this Code for the structural steel frame.

Commentary:
In spite of all efforts to minimize inaccuracies, deviations will still exist;
therefore, in addition, the designs of prefabricated wall panels, partition panels,
fenestrations, floor-to-ceiling door frames and similar elements must provide for
clearance and details for adjustment as described in Section 7.13.2. Designs
must provide for adjustment in the vertical dimension of prefabricated facade
panels that are supported by the structural steel frame because the accumulation
of shortening of loaded steel columns will result in the unstressed facade
supported at each floor level being higher than the structural steel framing to

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-56
which it must be attached. Observations in the field have shown that where a
heavy facade is erected to a greater height on one side of a multistory building
than on the other, the structural steel framing will be pulled out of alignment.
Facades should be erected at a relatively uniform rate around the perimeter of
the structure.

7.13.3. Prior to placing or applying any other materials, the owner's designated
representative for construction shall determine that the location of the structural
steel is acceptable for plumbness, elevation and alignment. The erector shall be
given either timely notice of acceptance by the owner's designated
representative for construction, or a listing of specific items that are to be
corrected in order to obtain acceptance. Such notice shall be rendered promptly upon completion of any part of the work and prior to the start of work by other trades that may be supported, attached or applied to the structural steel frame.

7.14. Correction of Errors
The correction of minor misfits by moderate amounts of reaming, grinding, welding or cutting, and the drawing of elements into line with drift pins, shall be considered to be normal erection operations. Errors that cannot be corrected using the foregoing means, or that require major changes in member or connection configuration, shall be promptly reported to the owner's designated
representatives for design and construction and the fabricator by the erector , to
enable the responsible entity to either correct the error or approve the most
efficient and economical method of correction to be used by others.

Commentary:
As used in this Section, the term “moderate” refers to the amount of reaming,
grinding, welding or cutting that must be done on the project as a whole, not the
amount that is required at an individual location. It is not intended to address
limitations on the amount of material that is removed by reaming at an
individual bolt hole, for example, which is limited by the bolt-hole size and
tolerance requirements in the AISC and RCSC Specifications.

7.15. Cuts, Alterations and Holes for Other Trades
Neither the fabricator nor the erector shall cut, drill or otherwise alter their
work, nor the work of other trades, to accommodate other trades, unless such
work is clearly specified in the contract documents. When such work is so
specified, the owner's designated representatives for design and construction
shall furnish complete information as to materials, size, location and number of alterations in a timely manner so as not to delay the preparation of shop and
erection drawings.

7.16. Handling and Storage
The erector shall take reasonable care in the proper handling and storage of the
structural steel during erection operations to avoid the accumulation of excess
dirt and foreign matter. The erector shall not be responsible for the removal
from the structural steel of dust, dirt or other foreign matter that may

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-57
accumulate during erection as the result of job-site conditions or exposure to the
elements. The erector shall handle and store all bolts, nuts, washers and related
fastening products in accordance with the requirements of the RCSC
Specification.

Commentary:
During storage, loading, transport, unloading and erection, blemish marks
caused by slings, chains, blocking, tie-downs, etc., occur in varying degrees.
Abrasions caused by handling or cartage after painting are to be expected. It
must be recognized that any shop-applied coating, no matter how carefully
protected, will require touching-up in the field. Touching-up of these blemished
areas is the responsibility of the contractor performing the field touch-up or field
painting.
The erector is responsible for the proper storage and handling of
fabricated structural steel at the job site during erection. Shop-painted structural
steel that is stored in the field pending erection should be kept free of the ground
and positioned so as to minimize the potential for water retention. The owner or
owner's designated representative for construction is responsible for providing
suitable job-site conditions and proper access so that the fabricator and the
erector may perform their work.
Job-site conditions are frequently muddy, sandy, dusty or a
combination thereof during the erection period. Under such conditions it may be
impossible to store and handle the structural steel in such a way as to
completely avoid any accumulation of mud, dirt or sand on the surface of the
structural steel, even though the fabricator and the erector manages to proceed
with their work.
Repairs of damage to painted surfaces and/or removal of foreign
materials due to adverse job-site conditions are outside the scope of
responsibility of the fabricator and the erector when reasonable attempts at
proper handling and storage have been made.

7.17. Field Painting
Neither the fabricator nor the erector is responsible to paint field bolt heads and
nuts or field welds, nor to touch up abrasions of the shop coat, nor to perform
any other field painting.

7.18. Final Cleaning Up
Upon the completion of erection and before final acceptance, the erector shall
remove all of the erector’s falsework, rubbish and temporary buildings.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-58
SECTION 8. QUALITY CONTROL

8.1. General

8.1.1. The fabricator shall maintain a quality control program to ensure that the work
is performed in accordance with the requirements in this Code, the AISC
Specification and the contract documents. The fabricator shall have the option
to use the AISC Quality Certification Program to establish and administer the
quality control program.

Commentary:
The AISC Quality Certification Program confirms to the construction industry
that a certified structural steel fabrication shop has the capability by reason of
commitment, personnel, organization, experience, procedures, knowledge and
equipment to produce fabricated structural steel of the required quality for a
given category of work. The AISC Quality Certification Program is not intended
to involve inspection and/or judgment of product quality on individual projects.
Neither is it intended to guarantee the quality of specific fabricated structural
steel products.
8.1.2. The erector shall maintain a quality control program to ensure that the work is
performed in accordance with the requirements in this Code, the AISC
Specification and the contract documents. The erector shall be capable of
performing the erection of the structural steel , and shall provide the equipment,
personnel and management for the scope, magnitude and required quality of
each project. The erector shall have the option to use the AISC Erector
Certification Program to establish and administer the quality control program.

Commentary:
The AISC Erector Certification Program confirms to the construction industry
that a certified structural steel erector has the capability by reason of
commitment, personnel, organization, experience, procedures, knowledge and
equipment to erect fabricated structural steel to the required quality for a given
category of work. The AISC Erector Certification Program is not intended to
involve inspection and/or judgment of product quality on individual projects.
Neither is it intended to guarantee the quality of specific erected structural steel
products.
8.1.3. When the owner requires more extensive quality control procedures, or
independent inspection by qualified personnel, or requires that the fabricator
must be certified under the AISC Quality Certification Program and/or requires
that the erector must be certified under the AISC Erector Certification Program,
this shall be clearly stated in the contract documents, including a definition of
the scope of such inspection.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-59

8.2. Inspection of Mill Material
Material test reports shall constitute sufficient evidence that the mill product
satisfies material order requirements. The fabricator shall make a visual
inspection of material that is received from the mill, but need not perform any
material tests unless the owner's designated representative for design specifies
in the contract documents that additional testing is to be performed at the
owner’s expense.

8.3. Non-Destructive Testing
When non-destructive testing is required, the process, extent, technique and
standards of acceptance shall be clearly specified in the contract documents.

8.4. Surface Preparation and Shop Painting Inspection
Inspection of surface preparation and shop painting shall be planned for the
acceptance of each operation as the fabricator completes it. Inspection of the
paint system, including material and thickness, shall be made promptly upon
completion of the paint application. When wet-film thickness is to be inspected,
it shall be measured during the application.

8.5. Independent Inspection
When inspection by personnel other than those of the fabricator and/or erector
is specified in the contract documents, the requirements in Sections 8.5.1
through 8.5.6 shall be met.

8.5.1. The fabricator and the erector shall provide the inspector with access to all
places where the work is being performed. A minimum of 24 hours notification
shall be given prior to the commencement of work.

8.5.2. Inspection of shop work by the inspector shall be performed in the fabricator’s
shop to the fullest extent possible. Such inspections shall be timely, in-sequence
and performed in such a manner as will not disrupt fabrication operations and
will permit the repair of non-conforming work prior to any required painting
while the material is still in-process in the fabrication shop.

8.5.3. Inspection of field work shall be promptly completed without delaying the
progress or correction of the work.

8.5.4. Rejection of material or workmanship that is not in conformance with the
contract documents shall be permitted at any time during the progress of the
work. However, this provision shall not relieve the owner or the inspector of the
obligation for timely, in-sequence inspections.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-60
8.5.5. The fabricator, erector, and owner's designated representatives for design and
construction shall be informed of defici encies that are noted by the inspector
promptly after the inspection. Copies of all reports prepared by the inspector
shall be promptly given to the fabricator, erector, and owner's designated
representatives for design and construction. The necessary corrective work shall
be performed in a timely manner.

8.5.6. The inspector shall not suggest, direct, or approve the fabricator or erector to
deviate from the contract documents or the approved shop and erection
drawings, or approve such deviation, without the written approval of the
owner's designated representatives for design and construction.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-61
SECTION 9. CONTRACTS

9.1. Types of Contracts

9.1.1. For contracts that stipulate a lump sum price, the work that is required to be
performed by the fabricator and the erector shall be completely defined in the
contract documents.

9.1.2. For contracts that stipulate a price per pound, the scope of work that is required
to be performed by the fabricator and the erector, the type of materials, the
character of fabrication and the conditions of erection shall be based upon the
contract documents, which shall be representative of the work to be performed.

9.1.3. For contracts that stipulate a price per item, the work that is required to be
performed by the fabricator and the erector shall be based upon the quantity
and the character of the items that are described in the contract documents.

9.1.4. For contracts that stipulate unit prices for various categories of structural steel,
the scope of work that is required to be performed by the fabricator and the
erector shall be based upon the quantity, character and complexity of the items
in each category as described in the contract documents, and shall also be
representative of the work to be performed in each category.

9.2. Calculation of Weights
Unless otherwise specified in the contract, for contracts stipulating a price per
pound for fabricated structural steel that is delivered and/or erected, the
quantities of materials for payment shall be determined by the calculation of the
gross weight of materials as shown in the shop drawings.

Commentary:
The standard procedure for calculation of weights that is described in this Code
meets the need for a universally acceptable system for defining “pay weights” in
contracts based upon the weight of delivered and/or erected materials. These
procedures permits the owner to easily and accurately evaluate price-per-pound
proposals from potential suppliers and enables all parties to a contract to have a
clear and common understanding of the basis for payment.
The procedure in this Code affords a simple, readily understood
method of calculation that will produce pay weights that are consistent
throughout the industry and that may be easily verified by the owner. While this
procedure does not produce actual weights, it can be used by purchasers and
suppliers to define a widely accepted basis for bidding and contracting for
structural steel. However, any other system can be used as the basis for a
contractual agreement. When other systems are used, both the supplier and the
purchaser should clearly understand how the alternative procedure is handled.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-62

9.2.1. The unit weight of steel shall be taken as 490 lb/ft
3
[7 850 kg/m
3
]. The unit
weight of other materials shall be in accordance with the manufacturer’s
published data for the specific product.

9.2.2. The weights of standard structural shapes, plates and bars shall be calculated
on the basis of shop drawings that show the actual quantities and dimensions of
material to be fabricated, as follows:

(a) The weights of all standard structural shapes shall be calculated using the
nominal weight per ft [mass per m] and the detailed overall length.
(b) The weights of plates and bars shall be calculated using the detailed overall
rectangular dimensions.
(c) When parts can be economically cut in multiples from material of larger
dimensions, the weight shall be calculated on the basis of the theoretical
rectangular dimensions of the material from which the parts are cut.
(d) When parts are cut from standard structural shapes, leaving a non-standard
section that is not useable on the same contract, the weight shall be
calculated using the nominal weight per ft [mass per m] and the overall
length of the standard structural shapes from which the parts are cut.
(e) Deductions shall not be made for material that is removed for cuts, copes,
clips, blocks, drilling, punching, boring, slot milling, planing or weld joint
preparation.

9.2.3. The items for which weights are shown in tables in the AISC Steel Construction
Manual shall be calculated on the basis of the tabulated weights shown therein.

9.2.4. The weights of items that are not shown in tables in the AISC Steel
Construction Manual shall be taken from the manufacturer’s catalog and the
manufacturer’s shipping weight shall be used.

Commentary:
Many items that are weighed for payment purposes are not tabulated with
weights in the AISC Steel Construction Manual. These include, but are not
limited to, anchor rods , clevises, turnbuckles, sleeve nuts, recessed-pin nuts,
cotter pins and similar devices.
9.2.5. The weights of shop or field weld metal and protective coatings shall not be
included in the calculated weight for the purposes of payment.

9.3. Revisions to the Contract Documents
Revisions to the contract documents shall be confirmed by change order or extra
work order. Unless otherwise noted, the issuance of a revision to the contract
documents shall constitute authorization by the owner that the revision is

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-63
released for construction. The contract price and schedule shall be adjusted in
accordance with Sections 9.4 and 9.5.

9.4. Contract Price Adjustment

9.4.1. When the scope of work and responsibilities of the fabricator and the erector
are changed from those previously established in the contract documents, an
appropriate modification of the contract price shall be made. In computing the
contract price adjustment, the fabricator and the erector shall consider the
quantity of work that is added or deleted, the modifications in the character of
the work and the timeliness of the change with respect to the status of material
ordering, detailing, fabrication and erection operations.

Commentary:
The fabrication and erection of structural steel is a dynamic process. Typically,
material is being acquired at the same time that the shop and erection drawings
are being prepared. Additionally, the fabrication shop will normally fabricate
pieces in the order that the structural steel is being shipped and erected.
Items that are revised or placed on hold generally upset these
relationships and can be very disruptive to the detailing, fabricating and erecting
processes. The provisions in Sections 3.5, 4.4.2 and 9.3 are intended to
minimize these disruptions so as to allow work to continue. Accordingly, it is
required in this Code that the reviewer of requests for contract price adjustments
recognize this and allow compensation to the fabricator and the erector for
these inefficiencies and for the materials that are purchased and the detailing,
fabrication and erection that has been performed, when affected by the change.
9.4.2. Requests for contract price adjustments shall be presented by the fabricator
and/or the erector in a timely manner and shall be accompanied by a description
of the change that is sufficient to permit evaluation and timely approval by the owner.
9.4.3. Price-per-pound and price-per-item contracts shall provide for additions or
deletions to the quantity of work that are made prior to the time the work is released for construction. When changes are made to the character of the work
at any time, or when additions and/or deletions are made to the quantity of the work after it is released for detailing, fabrication or erection, the contract price
shall be equitably adjusted.

9.5. Scheduling

9.5.1. The contract schedule shall state when the design drawings will be released for
construction, if the design drawings are not available at the time of bidding, and
when the job site, foundations, piers and abutments will be ready, free from

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-64
obstructions and accessible to the erector, so that erection can start at the
designated time and continue without interference or delay caused by the
owner's designated representative for construction or other trades.

9.5.2. The fabricator and the erector shall advise the owner's designated
representatives for design and construction, in a timely manner, of the effect
any revision has on the contract schedule.

9.5.3. If the fabrication or erection is significantly delayed due to revisions to the
requirements of the contract, or for other reasons that are the responsibility of
others, the fabricator and/or erector shall be compensated for the additional
costs incurred.

9.6. Terms of Payment
The fabricator shall be paid for mill materials and fabricated product that is
stored off the job site. Other terms of payment for the contract shall be outlined
in the contract documents.

Commentary:
These terms include such items as progress payments for material, fabrication,
erection, retainage, performance and payment bonds and final payment. If a
performance or payment bond, paid for by the owner, is required by contract, no
retainage shall be required.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-65
SECTION 10. ARCHITECTURALLY EXPOSED STRUCTURAL STEEL

10.1. General Requirements
When members are specifically designated as architecturally exposed structural
steel or AESS in the contract documents, the requirements in Sections 1 through
9 shall apply as modified in Section 10. AESS members or components shall be
fabricated and erected with the care and dimensional tolerances that are
stipulated in Sections 10.2 through 10.4. The following additional information
shall be provided in the contract documents when AESS is specified:

(a) Specific identification of members or components that are AESS;
(b) Fabrication and/or erection tolerances that are to be more restrictive than
provided for in this Section, if any; and,
(c) Requirements, if any, of a mock-up panel or components for inspection and
acceptance standards prior to the start of fabrication.

Commentary:
This Section of this Code defines additional requirements that apply only to
members that are specifically designated by the contract documents as
architecturally exposed structural steel (AESS). The common use of exposed
structural steel as a medium of architectural expression has given rise to a
demand for closer dimensional tolerances and smoother finished surfaces than
required for ordinary structural steel framing.
This Section of this Code establishes standards for these requirements
that take into account both the desired finished appearance and the abilities of
the fabrication shop to produce the desired product. It should be pointed out that
the term architecturally exposed structural steel, as covered in this Section,
must be specified in the contract documents if the fabricator is required to meet
the fabricating standards in this Section, and applies only to that portion of the
structural steel so identified.
AESS requirements usually involve significant cost in excess of that
for structural steel that is fabricated in the absence of an AESS requirement.
Therefore, the designation AESS should be applied rationally, with visual
acceptance criteria that are appropriate for the distance at which the exposed
element will be viewed in the completed structure. In order to avoid
misunderstandings and to hold costs to a minimum, only those structural steel
surfaces and connections that will remain exposed and subject to normal view
by pedestrians or occupants of the completed structure should be designated as
AESS.

10.2. Fabrication

10.2.1. The permissible tolerances for out-of-square or out-of-parallel, depth, width and
symmetry of rolled shapes shall be as specified in ASTM A6/A6M. Unless
otherwise specified in the contract documents, the exact matching of abutting

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-66
cross-sectional configurations shall not be necessary. The as-fabricated
straightness tolerances of members shall be one-half of the standard camber and
sweep tolerances in ASTM A6/A6M.

10.2.2. The tolerances on overall profile dimensions of members that are built-up from
a series of standard structural shapes, plates and/or bars by welding shall be
taken as the accumulation of the variations that are permitted for the component
parts in ASTM A6/A6M. The as-fabricated straightness tolerances for the
member as a whole shall be one-half the standard camber and sweep tolerances
for rolled shapes in ASTM A6/A6M.

10.2.3. Unless specific visual acceptance criteria for weld show-through are specified in
the contract documents, the members or components shall be acceptable as
produced.

Commentary:
Weld show-through generally is a function of weld size and material thickness.
10.2.4. All copes, miters and cuts in surfaces that are exposed to view shall be made
with uniform gaps of 8 in. [3 mm] if shown as open joints, or in reasonable
contact if shown without gap.
10.2.5. All welds that are exposed to view shall be visually acceptable if they meet the
requirements in AWS D1.1, except all groove welds in butt joints and outside corner joints and plug welds that are exposed to view shall not project more than
z in. [2 mm] above the exposed surface. Finishing or grinding of welds shall
not be necessary, unless such treatment is required to provide for clearances or
fit of other components.

10.2.6. Erection marks or other painted marks shall not be made on those surfaces of
weathering steel AESS members that are to be exposed in the completed
structure. Unless otherwise specified in the contract documents , the fabricator
shall clean weathering steel AESS members to meet the requirements of SSPC-
SP6.

10.2.7. Stamped or raised manufacturer’s identification marks shall not be filled,
ground or otherwise removed.

10.2.8. Seams of hollow structural sections shall be acceptable as produced. Seams
shall be oriented away from view or as directed in the contract documents.

10.3. Delivery of Materials
The fabricator shall use special care to avoid bending, twisting or otherwise
distorting the structural steel.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-67

10.4. Erection

10.4.1. The erector shall use special care in unloading, handling and erecting the
structural steel to avoid marking or distorting the structural steel. Care shall
also be taken to minimize damage to any shop paint. If temporary braces or
erection clips are used, care shall be taken to avoid the creation of unsightly
surfaces upon removal. Tack welds shall be ground smooth and holes shall be
filled with weld metal or body solder and smoothed by grinding or filing. The
erector shall plan and execute all operations in such a manner that the close fit
and neat appearance of the structure will not be impaired.

10.4.2. Unless otherwise specified in the contract documents, AESS members and
components shall be plumbed, leveled and aligned to a tolerance that is one-half
that permitted for non-AESS members. To accommodate these erection
tolerances for AESS, the owner's designated representative for design shall
specify connections between AESS members and non-AESS members,
masonry, concrete and other supports as adjustable items, in order to provide the
erector with means for adjustment.

10.4.3. When AESS is backed with concrete, the owner's designated representative for
construction shall provide sufficient shores, ties and strongbacks to prevent
sagging, bulging or similar deformation of the AESS members due to the weight
and pressure of the wet concrete.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-68
APPENDIX A. DIGITAL BUILDING PRODUCT MODELS

The provisions in this Appendix shall apply when the contract documents indicate that a
three-dimensional digital building product model replaces contract drawings and is to be
used as the primary means of designing, representing, and exchanging structural steel
data for the project. When this is the case, all references to the design drawings in this
Code shall instead apply to the design model, and all references to the shop and erection
drawings in the Code shall instead apply to the manufacturing model. The CIS/2 Logical
Product Model shall be used as the building product model for structural steel.
If the primary means of project communication reverts from a model-based
system to a paper-based system, the requirements in this Code other than in this
Appendix shall apply.

Commentary:
Current technology permits the transfer of three-dimensional digital building product
model data among the design and construction teams for a project. Over the last several
years, designers and fabricators have used CIS/2 as a standard format in the exchange of
building product models representing the steel structure. This Appendix facilitates the
use of this technology in the design and construction of steel structures, and eliminates
any interpretation of this Code that might be construed to prohibit or inhibit the use of
this technology. While the technology is new and there is no long-established standard of
practice, it is the intent in this Appendix to provide guidance for its use.
APPENDIX A. GLOSSARY

Add the following definitions to the Glossary:

Building Product Model. A digital information structure of the objects making up a
building, capturing the form, function, behavior and relations of the parts and
assemblies within one or more building systems. A building product model can be
implemented in multiple ways, including as an ASCII file or as a database. The data
in the model is created, manipulated, evaluated, reviewed and presented using
computer-based design, engineering, and manufacturing applications. Traditional
two-dimensional drawings may be one of many reports generated by the building
product model (see Eastman, Charles M.: Building Product Models: Computer
Environments Supporting Design and Construction; 1999 by CRC Press).

CIS/2 (CIMSteel Integration Standards/Version 2). The specification providing the
building product model for structural steel and format for electronic data
interchange (EDI) among software applications dealing with steel design, analysis,
and manufacturing.

Data Management Conformance (DMC). The capability of the CIMSteel model to
include optional data entities for managing and tracking additions, deletions and

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-69
modifications to a model, including who made the change and when the change was
made for all data changes.

Logical Product Model (LPM). The CIS/2 building product model, which supports the
engineering of low-, medium- and high-rise construction, in domestic, commercial
and industrial contexts. All elements of the structure are covered, including main and
secondary framing and connections. The components used can be of any variety of
structural shape or element.
The LPM addresses the exchange of data between structural steel applications.
It is meant to support a heterogeneous set of applications over a fairly broad portion
of the steel lifecycle. It is organized around three different sub-models: the analysis
model (data represented in structural analysis), the design model (data represented in
frame design layout) and the manufacturing model (data represented in detailing for
fabrication).

A1.2. Referenced Specifications, Codes and Standards
Add the following reference to Section 1.2:

CIMSteel Integration Standards Release 2: Second Edition P265: CIS/2.1:
Volumes 1 through 4.

A3. DESIGN DRAWINGS AND SPECIFICATIONS
In addition to the requirements in Section 3, the following requirements shall
apply to the design model:

A3.1. Design Model

The design model shall:

(a) Consist of data management conformance classes.
(b) Contain analysis model data so as to include load calculations as specified
in the contract documents.
(c) Include entities that fully define each steel element and the extent of
detailing of each element, as would be recorded on equivalent set of
structural steel design drawings.
(d) Include all steel elements identified in the contract documents, as well as
any other entities required for strength and stability of the completely
erected structure.
(e) Govern over all other forms of information, including drawings, sketches,
etc.

A3.2. LPM Administration

The owner shall designate an administrator for the LPM, who shall:

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-70

(a) Control the LPM by providing appropriate access privileges (read, write,
etc) to all relevant parties.
(b) Maintain the security of the LPM.
(c) Guard against data loss of the LPM.
(d) Be responsible for updates and revisions to the LPM as they occur.
(e) Inform all appropriate parties as to changes to the LPM.

Commentary:
When a project is designed and constructed using EDI, it is imperative that an
individual entity on the team be responsible for maintaining the LPM. This is to
assure protection of data through proper backup, storage and security and to
provide coordination of the flow of information to all team members when
information is added to the model. Team members exchange information to
revise the model with this administrator. The administrator will validate all
changes to the LPM. This is to assure proper tracking and control of revisions.
This administrator can be one of the design team members such as an
architect, structural engineer of record, or a separate entity on the design team
serving this purpose. The administrator can also be the steel detailer or a
separate entity on the construction team serving this purpose.

A4.3. Fabricator Responsibility
In addition to the requirements in Section 4.3, the following requirements shall
apply:

When the design model is used to develop the manufacturing model the
fabricator shall accept the information under the following conditions:

(a) When the design information is to be conveyed to the fabricator by way of
the design model, in the event of a conflict between the model and the
design drawings, the design model will control.
(b) The ownership of the information added to the LPM in the manufacturing
model should be defined in the contract documents. In the absence of terms
for ownership regarding the information added by the fabricator to the
LPM in the contract documents, the ownership will belong to the
fabricator.
(c) During the development of the manufacturing model, as member locations
are adjusted to convert the modeled parts from a design model, these
relocations will only be done with the approval of the owner’s designated
representative for design.
(d) The fabricator and erector shall accept the use of the LPM and design
model under the same conditions as set forth in Section 4.3 with regard to
CAD files, except as modified in Section A4.3 above.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-71


A4.4. Approval
In addition to the requirements in Section 4.4, the following requirements shall
apply:

When the approval of the detailed material is to be done by the use of the
manufacturing model the version of the submitted model shall be identified. The
approver shall annotate the manufacturing model with approval comments
attached to the individual elements as specified in the CIS/2 standard. As
directed by the approval comment the fabricator will reissue the manufacturing
model for re-review and the version of the model submitted will be tracked as
previously defined.

Commentary:
Approval of the manufacturing model by the owner’s designated representative
for design can replace the approval of actual shop and erection drawings. For
this method to be effective, a system must be in place to record review,
approval, correction and final release of the manufacturing model for fabrication
of structural steel. The versions of the model must be tracked, and review
comments and approvals permanently attached to the versions of the model to
the same extent as such data is maintained with conventional hard copy
approvals. The CIS/2 standard provides this level of tracking.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
One East Wacker Drive, Suite 700, Chicago, Illinois 60601

AISC 303-10 (2M710)

Revision and Errata List—August 2013
AISC Steel Construction Manual, 14
th
Edition

The following list represents corrections to the Second Printing of the AISC Steel Construction Manual, 14th
Edition. These corrections are incorporated in the Third Printing.

Page(s) Item

3-227 Case 42 figure, the reaction under point B should read, R
B = 1.14wl .

7-28, 7-29 Revise the note at the bottom of Table 7-5 to read:

Note: Edge distance indicated is from the center of the hole or slot to the edge of the element
in the line of force. Hole deformation is considered. When hole deformation is not considered,
see AISC Specification Section J3.10.

16.1-120 In Table J3.2, revise the metric conversion in parentheses of the nominal shear strength in bearing-
type connections to 469 MPa, for Group A (e.g., A325) bolts, when threads are excluded from
shear planes, and Group B (e.g., A490) bolts, when threads are not excluded from shear planes.

16.1-204 In Table A-3.1, Section 5.6, for “Crack initiating from weld root:”, under the column labeled,
“Constant C
f,” the entry should be “Eqn. A-3-6 or A-3-6M” (not Eqn. A-3-5 or A-3-5M).

16.1-529 Insert the following reference:

ASCE (2008), Standard Calculation Methods for Structural Fire Protection, ASCE/SEI
SFPE 29-08, American Society of Civil Engineers, Reston, VA.

1
Revision and Errata ListFebruary 2012
AISC Steel Construction Manual, 14
th
Edition

The following list represents corrections to the First Printing of the AISC Steel
Construction Manual, 14th Edition. These corrections are incorporated in the Second
Printing.

Page(s) Item

1-34 The
HP12 53 should have footnote “c” following the shape designation.

2-50 Replace Table 2-6 with the attached revised Table 2-6. (Revisions are
indicated with boxes and include: addition of F2280, added footnote d to
A490 and F1852 and revised the shading and applicability for F1554
grades relative to anchor rods.)

3-225 In Case 35, replace the 5th line with the following:

2
(at 0.423 )........................... 0.0642max
Ml
xl
EI
 


3-225 In the last line of Case 36, insert “(when x > a)” following “
x”.

4-25, 26, 27 Replace Table 4-2 on these pages with the attached revised Table 4-2
(Insert P4-25, P4-26 and P4-27). See boxed areas for revisions.

6-43 Replace this table with the attached Insert P6-43. See boxed areas for
revisions.

6-49 Replace this table with the attached Insert P6-49. See boxed areas for
revisions.

6-51 Replace this table with the attached Insert P6-51. See boxed areas for
revisions.

10-17 For Group A bolts, with N thread condition and STD holes, the ASD value
for 5/16-in. angle thickness should be 165 kips.

15-4 In Equation 15-7, replace V
a with V n.

16.1-16 In Case 1, the double angle figure should show the b dimension to the heel
of the angle.

16.1-17 In Case 16, under the heading “Examples”, replace the lefthand figure
with the following.

16.1-31 In Section E1, 2nd line, replace P
nc with P n/c.

16.1-145 Insert “< B” following “(5t
p+lb)” at the end of Equation K1-15.

16.1-306 Replace Figure C-F1.4 with the following:


16.1-366 In the 2nd full paragraph, 2nd to last line, replace “use of method 2” with
“use of method 1”.
16.1-387 In the 6th line, revise “1.5 times the thickness of the material….” to “1.0
times the thickness of the material….”
16.1-388 In Section J1.8, third line, replace “(Kulak and Grondin, 2001)” with
“(Kulak and Grondin, 2003).”
16.1-390 The captions under Figure C-J2.1 should read as follows:
(a) Incorrect for t
 4 in. (b) Correct for t  4 in.

16.1-403 In the middle paragraph, end of the last line should read, “…by 0.75/0.90
= 0.833.”

16.1-542 Insert the following missing reference following the reference, Kulak and
Grondin (2002):
2

Kulak, G.L. and Grondin, G.Y. (2003), “Strength of Joints that Combine
Bolts and Welds,” Engineering Journal, AISC, Vol. 40, No. 2, 2nd
Quarter, pp. 8998.
3

Table 2-6
Applicable ASTM Specifications for
Various Types of Structural Fasteners
Fy
Min. Fu
Yield Tensile
ASTM Stress Stress
a
Diameter Range Designation (ksi) (ksi) (in.)
A108 — 65 0.375 to 0.75, incl.
A325
d
— 105 over 1 to 1.5, incl.
— 120 0.5 to 1, incl.
A490
d
— 150 0.5 to 1.5
F1852
d
— 105 1.125
— 120 0.5 to 1, incl.
F2280
d
— 150 0.5 to 1.125, incl.
A194 Gr. 2H — — 0.25 to 4
A563 — — 0.25 to 4
F436
b
— — 0.25 to 4
F959 — — 0.5 to 1.5
A36 36 58-80 to 10
— 100 over 4 to 7
A193 Gr. B7
e
— 115 over 2.5 to 4
— 125 2.5 and under
A307 Gr. A — 60 0.25 to 4
A354 Gr. BD
— 140 2.5 to 4, incl.
— 150 0.25 to 2.5, incl.
— 90 1.75 to 3, incl.
c
A449 — 105 1.125 to 1.5, incl.
c
— 120 0.25 to 1, incl.
c
Gr. 42 42 60 to 6
Gr. 50 50 65 to 4
A572 Gr. 55 55 70 to 2
Gr. 60 60 75 to 1.25
Gr. 65 65 80 to 1.25
42 63 Over 5 to 8, incl.
A588 46 67 Over 4 to 5, incl.
50 70 4 and under
A687 105 150 max. 0.625 to 3
F1554 Gr. 36 36 58-80 0.25 to 4
Gr. 55 55 75-95 0.25 to 4
Gr. 105 105 125-150 0.25 to 3
=Preferred material specification
=Other applicable material specification, the availability of which should be confirmed prior to specification
=Material specification does not apply
— Indicates that a value is not specified in the material specification.
a
Minimum unless a range is shown or maximum (max.) is indicated.
b
Special washer requirements may apply per RCSC SpecificationTable 6.1 for some steel-to-steel bolting applications and per Part 14 for
anchor-rod applications.
c
See AISC SpecificationSection J3.1 for limitations on use of ASTM A449 bolts.
d
When atmospheric corrosion resistance is desired, Type 3 can be specified.
e
For anchor rods with temperature and corrosion resistance characteristics.
2–50 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Conventional
Common Bolts
Nuts
Washers
Direct-Tension-
Indicator Washers
Threaded Rods
Steel Headed Stud
Anchors
Hooked
Headed
Threaded
& Nutted
Twist-Off-Type
Tension-Control
High-
Strength
Bolts
Anchor Rods4 Revised Table 2-6

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–25
Table 4-2 (continued)
Available Strength in
Axial Compression, kips
HP-Shapes
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
HP16
Fy= 50 ksi
c
Shape is slender for compression with Fy=50 ksi.
Shape HP16×
lb/ft 183 162 141 121 101 88
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01610243014302150125018801070161089513507491130
61570236013902090122018301040157087113107291100
71560234013802070120018101030155086213007221080
81540232013602050119017901020154085212807141070
91520229013502020118017701010152084112607051060
10150022601330200011601740995149082912506941040
11148022301310197011401720979147081612306841030
12146021901290193011201690962145080212106721010
1314302150126019001100166094414207871180659991
1414102110124018601080163092613907711160646971
1513802070121018201060159090613607541130632950
1613502020119017801030156088513307361110617928
1713201980116017401010152086313007181080602905
181280193011301700985148084112606991050587882
191250188011001650958144081812306791020570857
20122018301070161093114007941190659991554833
22115017201010151087613207461120618929520782
2410701610942142081912306961050576866485729
261000150087713207611140646971534802450676
28 927139081112207031060596896491739415623
30 85412807461120645970546821450676380571
32 78311806821030589886498748409615346520
34 7131070620932535804451678370556313471
36 646971561843482725405609331498281423
38 581873503756433651364547297447253380
40 524787454682391587328494268404228343
Properties
Pwo, kips 435 653363545300451241362189283155232
Pwi, kips/in. 37.7 56.533.350.029.243.825.037.520.831.318.027.0
Pwb, kips 2100 3160145021909741460612920356535229345
Pfb, kips 239 35918728114321510515873.111054.682.0
Lp, ft 13.6 13.5 13.4 16.7 20.2 22.9
Lr, ft 67.6 60.2 54.5 48.6 43.6 40.6
Ag, in.
2
53.9 47.7 41.7 35.8 29.9 25.8
Ix, in.
4
2490 2190 1870 1590 1300 1110
Iy, in.
4
803 697 599 504 412 349
ry, in. 3.86 3.82 3.79 3.75 3.71 3.68
rx/ry 1.76 1.77 1.77 1.78 1.78 1.78
Pex(KL)
2
/10
4
, k-in.
2
71300 62700 53500 45500 37200 31800
Pey(KL)
2
/10
4
, k-in.
2
23000 19900 17100 14400 11800 9990
ASD LRFD
Ω
c=1.67 φ c=0.905 Insert P4-25

Shape HP14× HP12×
lb/ft 117 102 89 73
c
84 74
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
010301550901135078111706239377371110653981
610001500875131075811406059097051060624938
7 9901490865130075011305988996941040614923
8 9771470855128074011105908876811020603906
9 9641450843127073011005828756671000591888
10 949143082912507181080573861652980577867
11 933140081512207051060563846636955562845
12 916138080012006921040552830618929546821
13 897135078311806771020541813599901530796
14 87813207661150662995528794580872512770
15 85712907481120646971516775560842494743
16 83612607291100629946502755539810476715
17 81312207091070612920489735518779457687
18 79011906891030594893475713496746437658
19 76711506681000576866460691474713418628
20 7431120646972557838445669452680398599
22 6941040603906519780415623408614359540
24 643967558839480722384577365549320482
26 593891514772441663353531323486283426
28 543816470706403606322484283425247372
30 494742427641365549292439247371216324
32 446671385579329494263396217326189285
34 400602344518294441235354192289168252
36 357537307462262394210316171257150225
38 320482276414235353188283154231134202
40 289435249374212319170256139208121182
Properties
Pwo, kips 201 302162243134201100150158236132198
Pwi, kips/in. 26.8 40.323.535.320.530.816.825.322.834.320.230.3
Pwb, kips 790 1190531798354532195294572859393591
Pfb, kips 121 18293.014070.810647.771.787.813269.6105
Lp, ft 12.9 15.6 17.8 21.2 10.4 11.9
Lr, ft 50.5 45.7 41.7 37.6 41.3 37.9
Ag, in.
2
34.4 30.1 26.1 21.4 24.6 21.8
Ix, in.
4
1220 1050 904 729 650 569
Iy, in.
4
443 380 326 261 213 186
ry, in. 3.59 3.56 3.53 3.49 2.94 2.92
rx/ry 1.66 1.66 1.67 1.67 1.75 1.75
Pex(KL)
2
/10
4
, k-in.
2
34900 30100 25900 20900 18600 16300
Pey(KL)
2
/10
4
, k-in.
2
12700 10900 9330 7470 6100 5320
ASD LRFD
Ω
c=1.67 φ c=0.90
Table 4-2 (continued)
Available Strength in
Axial Compression, kips
HP-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
HP14-HP12
Fy= 50 ksi
c
Shape is slender for compression with Fy=50 ksi.
4–26 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION6 Insert P4-26

Shape HP12× HP10× HP8×
lb/ft 63 53
c
57 42 36
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 551 828 460 691 500 751 371 558 317 477
6 526 791 439 660 469 706 348 523 287 432
7 518 778 432 649 459 690 340 511 277 416
8 508 763 424 637 447 672 331 497 266 400
9 497 747 415 623 434 652 321 482 254 381
10 485 729 405 608 420 631 310 465 241 362
11 472 710 394 592 404 608 298 448 227 341
12 459 690 383 575 388 584 286 430 213 320
13 445 668 371 557 372 559 273 411 199 299
14 430 646 358 538 355 533 260 391 184 277
15 414 622 345 519 337 506 247 371 170 256
16 398 598 332 499 319 480 233 351 156 235
17 382 574 318 478 301 453 220 330 143 214
18 365 549 304 457 283 426 206 310 129 194
19 348 524 290 436 265 399 193 290 117 175
20 332 498 276 415 248 373 180 270 105 158
22 298 448 248 373 214 322 154 232 86.9131
24 265 399 221 332 182 273 131 196 73.0110
26 234 351 194 292 155 233 111 167 62.293.5
28 203 305 169 254 133 201 95.9144 53.780.7
30 177 266 147 221 116 175 83.5126 46.770.3
32 156 234 129 194 102 154 73.4110 41.161.8
34 138 207 114 172 90.5136 65.097.7
36 123 185 102 153 80.7121 58.087.2
38 110 166 91.6138 72.5109 52.178.2
40 99.6150 82.7124 65.498.347.070.6
Properties
Pwo, kips 107 161 81.9123 118 177 78.2117 83.8126
Pwi, kips/in. 17.2 25.814.521.818.828.313.820.814.822.3
Pwb, kips 243 365 147 221 397 597 158 237 241 363
Pfb, kips 49.674.635.453.259.789.833.049.637.155.7
Lp, ft 14.4 16.6 8.65 12.3 6.90
Lr, ft 34.0 31.1 34.8 28.3 27.3
Ag, in.
2
18.4 15.5 16.7 12.4 10.6
Ix, in.
4
472 393 294 210 119
Iy, in.
4
153 127 101 71.7 40.3
ry, in. 2.88 2.86 2.45 2.41 1.95
rx/ry 1.76 1.76 1.71 1.71 1.72
Pex(KL)
2
/10
4
, k-in.
2
13500 11200 8410 6010 3410
Pey(KL)
2
/10
4
, k-in.
2
4380 3630 2890 2050 1150
ASD LRFD
Ω
c=1.67 φ c=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Table 4-2 (continued)
Available Strength in
Axial Compression, kips
HP-Shapes
HP12-HP8
Fy= 50 ksi
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.7 Insert P4-27

STEEL BEAM-COLUMN SELECTION TABLES 6–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
W24×
103
c
94
c
84
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.130.7531.270.8471.260.8401.400.9331.460.9681.591.06
111.521.011.420.9441.671.111.571.051.921.281.801.20
121.621.081.460.9721.781.181.621.082.031.351.871.24
131.731.151.511.001.901.261.681.122.171.441.931.28
141.861.231.551.032.041.361.731.152.331.552.001.33
152.001.331.611.072.211.471.791.192.521.682.081.38
162.181.451.661.102.401.601.861.242.751.832.161.44
172.381.581.721.142.621.741.931.283.012.002.251.49
182.611.741.781.192.881.922.011.333.322.212.341.56
192.881.921.851.233.182.122.091.393.682.452.451.63
203.192.121.921.283.532.352.171.454.082.712.561.70
223.862.572.091.394.272.842.431.614.943.282.951.96
244.603.062.371.585.083.382.761.845.883.913.372.24
265.403.592.651.775.963.973.102.066.904.593.802.53
286.264.162.941.956.924.603.442.298.005.324.242.82
307.194.783.222.147.945.283.792.529.186.114.673.11
328.185.443.502.339.036.014.132.7510.46.955.113.40
Other Constants and Properties
by×10
3
, (kip-ft)
–1
8.58 5.71 9.50 6.32 10.9 7.27
ty×10
3
, (kips)
–1
1.10 0.733 1.21 0.802 1.35 0.900
tr×10
3
, (kips)
–1
1.35 0.903 1.48 0.987 1.66 1.11
rx/ry 5.03 4.98 5.02
ry, in. 1.99 1.98 1.95
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W24
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.8 Insert P6-43

Shape
W21×
68
c
62
c
57
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 1.771.182.231.481.981.312.471.652.181.452.761.84
6 1.951.302.231.482.181.452.471.652.561.712.911.94
7 2.021.342.271.512.261.502.541.692.731.823.042.03
8 2.101.402.351.562.351.562.621.742.941.963.192.12
9 2.211.472.431.622.471.642.711.813.212.143.352.23
10 2.331.552.511.672.611.742.811.873.562.373.532.35
11 2.481.652.611.732.781.852.921.944.022.683.732.48
12 2.671.772.701.802.981.983.042.024.603.063.952.63
13 2.891.922.811.873.222.143.162.105.323.544.202.79
14 3.162.102.931.953.532.353.302.196.174.104.482.98
15 3.472.313.052.033.892.593.442.297.084.714.943.29
16 3.842.553.192.124.312.873.612.408.065.365.473.64
17 4.272.843.342.224.833.213.782.529.106.056.014.00
18 4.793.193.502.335.413.603.982.6510.26.796.554.36
19 5.343.553.722.486.034.014.332.8811.47.567.104.72
20 5.913.934.032.686.684.454.703.1312.68.387.655.09
22 7.164.764.663.108.095.385.463.6315.210.18.765.83
24 8.525.675.313.539.636.406.244.15
26 9.996.655.953.9611.37.527.024.67
2811.67.716.604.3913.18.727.815.20
3013.38.857.264.83
Other Constants and Properties
by×10
3
, (kip-ft)
–1
14.6 9.71 16.4 10.9 24.1 16.0
ty×10
3
, (kips)
–1
1.67 1.11 1.83 1.21 2.00 1.33
tr×10
3
, (kips)
–1
2.05 1.37 2.24 1.49 2.46 1.64
rx/ry 4.78 4.82 6.19
ry, in. 1.80 1.77 1.35
STEEL BEAM-COLUMN SELECTION TABLES 6–49
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W21
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.9 Insert P6-49

Shape
W21× W18×
44
c
311
h
283
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 2.971.983.732.480.3650.2430.4730.3140.4010.2670.5270.351
6 3.532.354.032.680.3810.2530.4730.3140.4190.2790.5270.351
7 3.782.514.242.820.3870.2570.4730.3140.4260.2840.5270.351
8 4.092.724.482.980.3940.2620.4730.3140.4340.2890.5270.351
9 4.503.004.753.160.4020.2680.4730.3140.4430.2950.5270.351
10 5.033.355.053.360.4120.2740.4730.3140.4540.3020.5270.351
11 5.743.825.393.590.4220.2810.4740.3150.4660.3100.5300.352
12 6.684.455.793.850.4340.2890.4770.3170.4800.3190.5330.355
13 7.845.226.254.160.4470.2980.4800.3190.4950.3290.5370.357
14 9.106.057.114.730.4620.3080.4830.3210.5120.3400.5400.359
1510.46.957.995.320.4790.3190.4860.3230.5300.3530.5440.362
1611.97.918.905.920.4970.3310.4890.3250.5510.3670.5480.364
1713.48.939.836.540.5170.3440.4920.3270.5740.3820.5510.367
1815.010.010.87.180.5400.3590.4950.3290.6000.3990.5550.369
1916.811.111.87.820.5640.3750.4980.3310.6280.4180.5590.372
2018.612.412.78.470.5920.3940.5010.3330.6590.4390.5630.374
22 0.6550.4360.5070.3380.7320.4870.5710.380
24 0.7320.4870.5140.3420.8210.5460.5790.385
26 0.8260.5500.5210.3470.9290.6180.5880.391
28 0.9420.6270.5280.3511.060.7080.5960.397
30 1.080.7200.5350.3561.220.8130.6050.403
32 1.230.8190.5420.3611.390.9250.6140.409
34 1.390.9240.5500.3661.571.040.6240.415
36 1.561.040.5570.3711.761.170.6340.422
38 1.741.150.5650.3761.961.300.6440.428
40 1.921.280.5730.3822.171.450.6540.435
Other Constants and Properties
by×10
3
, (kip-ft)
–1
35.0 23.3 1.72 1.15 1.93 1.28
ty×10
3
, (kips)
–1
2.57 1.71 0.365 0.243 0.401 0.267
tr×10
3
, (kips)
–1
3.16 2.10 0.448 0.299 0.493 0.328
rx/ry 6.40 2.96 2.96
ry, in. 1.26 2.95 2.91
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W21-W18
STEEL BEAM-COLUMN SELECTION TABLES 6–51
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fy= 50 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
Note: Heavy line indicates
KL/ryequal to or greater than 200.Insert P6-51 10
Tags