🌍📱👉COPY LINK & PASTE ON GOOGLE https://9to5mac.org/after-verification-click-go-to-download-page👈
Want to make the video with your background speech? Feel annoyed by the unsynchronized audio file with the video? Hope to add more audio tracks for your current video to animate your vide...
🌍📱👉COPY LINK & PASTE ON GOOGLE https://9to5mac.org/after-verification-click-go-to-download-page👈
Want to make the video with your background speech? Feel annoyed by the unsynchronized audio file with the video? Hope to add more audio tracks for your current video to animate your video. Aiseesoft Video Converter Ultimate makes its significant update to fully support external audio track and multi-audio track to meet your demands fully.
Size: 2.17 MB
Language: en
Added: Apr 19, 2025
Slides: 36 pages
Slide Content
Il ruolo dei grafi
nell’AI Conversazionale Ibrida
The team
Dr.MariaDiMaro–Post-docincomputationallinguistics,expertiseinCommonGround
managementandClarificationRequests
MartinaDiBratto–PhDStudentincomputationallinguistics,expertiseinargumentation-based
dialogue
SabrinaMennella–PhDStudentincomputationallinguistics,expertiseincommonsense
representation
RobertoBasileGiannini–Masterstudentincomputerscience,workingonInfluenceDiagramsfor
ConversationManagement
DaniloEsposito–Masterstudentincomputerscience,workingoninstructionssequencegeneration
basedoncommonsensereasoning
MarcoGalantino–bachelorstudentincomputerscience,workingonexpressivespeechsynthesis
YegorNapadystyy–bachelorstudentincomputerscience,workingonNvidiaAudio2FaceREST
control
Theoretical
Model
theoretical
framework built
upon the
observation of
communicative
behaviourpatterns
Evaluation
on the field
deployment of the
computational
model in human
centered tasks for
evaluation purposes
Computational
Model
formal
representation of
the theoretical
model
03
01 02
Modellinglanguagevs modelling
communication
It is a tale told by an idiot,
full of sound and fury,
signifying nothing.
Macbeth
Dialogue
system
Dialogueflow
ASR LLM TTS
ASR
Common
Ground
Representation
Decision
Making
LLM TTS
GenerativeAI isgood for Natural Language Generationbutnotfor
DialogueManagement
Illusionof intelligence
Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. MIT press
Simplewiredvehiclescanleadhumansto
attributeintelligentbehaviourtomachineswhile
onlyreactivecapabilitiesaregiven
MachineLearningisverygoodatcleaningdata
byrecognisingunderlyingpatternsinsidenoisy
channels.
AreNeuralNetworksverycomplexBraitenberg
vehicles?Mayappeartobeintelligentbuttruly
nothaveactualintentionality
[…]whenwelookatthesemachinesorvehiclesasiftheywereanimals
inanaturalenvironment...wewillbetempted,then,tousepsychological
languageindescribingtheirbehavior.Andyetweknowverywellthat
thereisnothinginthesevehiclesthatwehavenotputinourselves
Austin, J. L. (1962). Speech acts.
Austin, J. L. (1962). Speech acts.
Conflict Search Graph
Di Maro, M., Origlia, A., & Cutugno, F. (2021). Cutting melted butter? Common Ground inconsistencies management in dialogue systems using graph databases. IJCoL. Italian Journal of Computational Linguistics, 7(7-1, 2), 157-190.
Bastian
The ladderof causation
Pearl, J., & Mackenzie, D. (2018).The book of why: the new science of cause and effect. Basic books.
Understandingone’sownroleintheworldgives
meaningtoproducinglinguisticacts
Machinelearningbasedagentsarepassive
observersoftheworldandcanonlyreacttoit,not
actinit
Modellingtheeffectthatactingintheworld
provides,includingspeaking,andconfrontingthe
consequencesallowstogeneratelanguageforits
intendedpurpose
Retrospectivereasoningisafundamentalability
thatreliesoncausalmodellingcapabilities
Language asa tool
I havea dream
But it is not this day
When diplomacy ends, war begins
The first step in the development of taste is to be
willing to credit your own opinion
Blessed are those who are persecuted because of
righteousness
Does he look like a bitch?
The roleof graphs
Goodtorepresentdataina
humaninterpretableway
Backedbyconsiderablemath
Canbeprojectedinnumerical
spacesforthemachinetowork
with
Amodernwaytorecover
inferenceengines
Support grounding and
explainability
Networkanalysisalgorithmshelpstudying
theproblemfromamathematicalpointof
view.
TheHyperlink-InducedTopicSearch
(HITS)algorithmscoresnodesintermsof
Authority:howimportantthenodeisinthe
network
Hub:howimportantarethenode’s
relationships
Paglieri, F., & Castelfranchi, C. (2005). Revising beliefs through arguments: Bridging the gap between argumentation and belief revision in mas. Argumentation in multi-agent systems: First international workshop
Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46(5), 604-632.
The roleof graphs
Textembeddingsarenumericvectorsthat
capturethegeneraltopicsfoundintextual
content(movieplots)
Nodeembeddingsarenumericvectorsthat
capturetheroleofthenodeinthenetwork,
intermsofneighbourhood
Weightedembeddingscanbecomputed
usingtextsimilarities
Chen, H., Sultan, S. F., Tian, Y., Chen, M., & Skiena, S. (2019). Fast and accurate network embeddings via very sparse random projection. In Proceedings of the 28th ACM international conference on information and knowledge
management(pp. 399-408).
The roleof graphs
Illocutionarystrength
Problem
complexity
InterpretabilityIncompleteness Incoherence Instability Undesirability
Unfilledcore
FE
Perception
Syntactic
Lexical
Reference
Unfillednon-core
FE
Information
optionality
Belief
strenght
Answer
complexity
StructuredQA
Entropy
Deliberate
Information
sharing
Explanation
RAG
Neutralconflict
CS conflict
-IAR conflict
+IAR conflict
Illocutionaryforces
BehaviourTrees
FANTASIA
Origlia, A., Cutugno, F., Rodà, A., Cosi, P., & Zmarich, C. (2019). FANTASIA: a framework for advanced natural tools and applications in social, interactive approaches. Multimedia Tools and Applications, 78(10), 13613-13648.
Origlia, A., Di Bratto, M., Di Maro, M., & Mennella, S. (2022). DevelopingEmbodiedConversationalAgents in the UnrealEngine: The FANTASIA Plugin. InProceedingsof the 30th ACM International Conference on
Multimedia(pp. 6950-6951).
The Metafamily–Maya
2017 –2023
Spatially aware presentations
The Metafamily–Bastian
2020 –2023
Common ground inconsistencies
The Metafamily–Jason
2021 –2023
User profiling and recommendation
Desideratum SymbolicAIStatistical AIMarkov
Random
Fields
Embedding Logical
Neural
Networks
Neuralnets asuniversalsolvers X X X
Allowspecialisedsub-units X X X X
Meta-learning/Multi-task X - X
Modular X - - X
Can use priorknowledge X X X
True reasoning X - - X
Variables X X X X
Symbol manipulation X ---
Genericmodels X X X X X
Causality - - ---
Planning capabilities X X -
Perception/reasoningblending - - X
PerformtrueNLU with novel
interpretationgeneration
-
Acquireknowledge throughNatural
Language
---
Learnwith lessdata ---
Conclusions
ModernAI providesgreattools to project physicalobservationsin n-dimensionalnumericalspaces, which
can representthe mindof a machine
A machine can onlycommunicatewith intentionifitisgiventhe chance to exploreand learnaboutthe
consequencesof the action of speaking
Psychologicaltheories aboutmotivationand emotionprovidedrivers for the machine to evaluatewhat
speakingor notspeakingimplies
Researchistoomuchorientedatdepletingthe mine of everytechnologythatispresented. Lotsof papers
showingthe applicationsof new models and littleresearchaboutthe reasonswhythesemodels work
A commercial pushtowardsbrute force approachesispresent: onlythe big players havethe strengthso
democratizationisa problem
Computer science ismaybethe mostintrospectiveamonghardsciences. Developingmachines thattalk
can help model intelligence and build tools to stimulatethoughtthroughunbiaseddialogues