ALGIT - Assembly Line for Green IT - Numbers, Data, Facts

GreenSoftwareDevelop 66 views 16 slides Jun 10, 2024
Slide 1
Slide 1 of 16
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16

About This Presentation

Presentation from Ghazal Aakel and Eric Jochum at the GSD Community Stage Meetup on June 6th, 2024


Slide Content

Klassifizierung: Intern
Green IT -MMIGIT
Green IT as a driver for
future viability
The Earth, The Climate and Everything
Green Software Development Meetup
06.06.2024

Klassifizierung: Intern
metafinanz Contacts for GreenIT
Ghazal Aakel Eric Jochum
Expert GreenIT Expert GreenIT
+ 49 89 3605316444 + 49 89 3605316205
[email protected] [email protected]

Klassifizierung: Intern
Green IT —
New thinking
and acting
Green IT as a driver for future viability

Klassifizierung: Intern
•Digitalization refers to the process of converting
analogue information, data and processes into
digital formats.
•Digitalization has far-reaching effects on society and
the economy and is seen as a driver of innovation,
increased efficiency and growth.
•This is not possible without energy!
Green IT — New thinking and acting
Digitalization
Green IT is the key to
sustainable digitalizationand
future viability!

Klassifizierung: Intern
Green IT — New thinking and acting
MMIGIT (MaturityModel Integrated Green IT) –
Solutions Landscape Green IT
Initial OptimizingManagedDefinedRepeatable
Paper
(not organized)
Technic
(defined & documented)
Blueprint
(standardized)
KPIs
(monitored)
Selfoptimizing
Dynamic Software Services and Resource Allocation
AI Energy Optimization
Green Data Management
Heuristics for Hyperscale Hardware Management
Domain-specific Hardware I Code I Pipeline
Green Coding
Green Architecture
Future Hardware Architecture
Strategies for Awareness Creation
Sustainable ICT Skills Training
Conscious Software Developer and Software Consumer
Design for Reuse
Green Energy Resources
Energy Aware Software Solutions
Distributed energy Landscapes
Strategic Geolocation of Digital Infrastructure
Cloudification
Flexible Distributed and Disaggregated Data Storage
Hardware Breakthroughs
Location Shifting
Measuring Energy Consumption of IT Applications
Time Shifting
Demand Shaping
Technical Solutions
Paradigm Shift
Environmental Solutions
Social Solutions
06.06.2024Green IT: MMIGIT & ALGIT

Klassifizierung: Intern
Concrete
Approaches
Green IT as a driver for future viability

Klassifizierung: InternKlassifizierung: Intern
Green IT: MMIGIT & ALGIT
Green
Development
Guidelines
Green
Data
Mgmt
Green
Archit
ecture
Green
Codin
g
Development
Lifecycle
EC**
Data
Cloud -Production
ECM
App A
App B
App C…
Power
Consumption
In Production
CBDMS
Storage
/ Release
App X
Power Consumption Measurement
metafinanz GreenIT/RETIT
GreenIT KPI
PC/LoC
Source Code Scan
CAST Imaging
Quick Energy Consumption
Improvement (QECI)
Success
Stories
Go Live
ALGIT: The Assembly Line of Green IT
Source Code Scan
CAST Highlight
GreenIT
GitHub
Order the applications by
potential of improvement
06.06.2024

Klassifizierung: InternKlassifizierung: Intern
ALGIT: The Assembly Line of Green IT
Show Case Using Generative AI in Code Optimization
Green IT: MMIGIT & ALGIT
Model used: Generative Pre-trained Transformer
Setting the Context for the AI model to Optimize Code
•prompt the AI model to be familiar with the programming language and requiring its assistance.
•introduce the code to the AI model
•Instruct the model with Green Deficiencies rules (Guidelines) and best examples to improve its performance and accuracy.
The Goal is to use specialist LLMs which are aware of the context
06.06.2024

Klassifizierung: InternKlassifizierung: Intern
ALGIT: The Assembly Line of Green IT
Show Case Using Generative AI in Code Optimization
Green IT: MMIGIT & ALGIT
FindingsCategories
Avoidinstantiationsinsideloops
Avoid string concatenation in loops
Avoidnestedloops
Prefer comparison-to-0 in loop conditions
Avoid calling a function in a condition loop
Avoidprimitive type wrapperinstantiation
Avoid Programs not using explicitly OPEN and CLOSE for files or streams
Scan Report & QECI
Program Size and CAST Highlight
Findings
Numbers
Program Size (#LoC Lines of Code) 115.214
Number of Findings by CAST
Highlight
233
Number of LoC / Finding 494 (every 494 LoC 1 Finding)
RESULTS Original QECI
API Call CPU [s]Energy [mWh]CPU [s]Energy [mWh]Savings [%]Absolute [mWh]
api_v1_private_catalog__id_ 3,34 61,232,71 49,68 18,86 11,55
api_v1_private_catalog 2,99 54,822,53 46,38 15,38 8,43
api_v1_category_product__ProductId_2,11 38,681,66 30,43 21,33 8,25
api_v1_category__id__manufacturer_2,09 38,321,68 30,80 19,62 7,52
api_v1_category__friendlyUrl_ 2,08 38,131,66 30,43 20,19 7,70
api_v1_category 1,39 25,481,17 21,45 15,83 4,03
06.06.2024

Klassifizierung: InternKlassifizierung: Intern
ALGIT – QECI- Example: Avoid Nested Loops
06.06.2024Green IT: MMIGIT & ALGIT
•Mastertextformat bearbeiten
•Zweite Ebene
•Dritte Ebene
•Vierte Ebene
•Fünfte Ebene
https://github.com/marton-eifert/shopizer_showcase/compare/3.2.5-actual...3.2.5-actual-QECI-fix--ATTEMPT-1-only-avoid-nested-loops-1-of-6-a#diff-1e8015b8c0587993f78ad512df20fc9e4c33d1c86 0a4b73e46ae804f7f7ee28d

Klassifizierung: InternKlassifizierung: Intern
ALGIT – QECI- Example: Avoid Nested Loops
06.06.2024Green IT: MMIGIT & ALGIT
•Mastertextformat bearbeiten
•Zweite Ebene
•Dritte Ebene
•Vierte Ebene
•Fünfte Ebene
https://github.com/marton-eifert/shopizer_showcase/compare/3.2.5-actual...3.2.5-actual-QECI-fix--ATTEMPT-1-only-avoid-nested-loops-1-of-6-a#diff-1e8015b8c0587993f78ad512df20fc9e4c33d1c86 0a4b73e46ae804f7f7ee28d

Klassifizierung: InternKlassifizierung: Intern
https://github.com/marton-eifert/shopizer_showcase/compare/3.2.5-actual...3.2.5-actual-QECI-fix--ATTEMPT-1-only-avoid-nested-loops-1-of-6-a#diff-1e8015b8c0587993f78ad512df20fc9e4c33d1c86 0a4b73e46ae804f7f7ee28d
ALGIT – QECI- Example: Avoid Nested Loops
06.06.2024Green IT: MMIGIT & ALGIT

Klassifizierung: Intern
Leopoldstraße 146
80804 München
Theodor-Heuss-Str. 30
70174 Stuttgart
Wiesenhüttenplatz 25
60329 Frankfurt am
Main
metafinanz
Informationssysteme
GmbH
Vielen Dank

Klassifizierung: Intern
Energy Savings
with AI?
Green IT as a driver for future viability

Klassifizierung: Intern
Green AI
Red AI vs Green AI
Green IT: MMIGIT & ALGIT
Red AIleads to a surprisingly large
carbon footprint, and makes it difficult for
academics, students, and researchers to
engage in deep learning research.
The computational costs of state-of-the art AI research
has increased 300,000x in recent years. This trend,
denoted Red AI, stems from the AI community’s focus on
accuracy while paying attention to efficiency.
Schmid, Thomas; Hildesheim, Wolfgang; Holoyad, Taras;
Schumacher, Kinga, 2021. The AI Methods, Capabilities and
Criticality Grid. A Three-Dimensional Classification Scheme for
Artificial Intelligence Applications. KI -KünstlicheIntelligenz35 (3), S.
425–440 DOI: 10.1007/s13218-021-00736-4
06.06.2024

Klassifizierung: Intern
Green AI
Red AI vs Green AI
Green IT: MMIGIT & ALGIT
The term Green AIrefers to AI research that yields novel results while taking into account the computational cost,
encouraging a reduction in resources spent. Whereas Red AI has resulted in rapidly escalating computational (and thus
carbon) costs, Green AIpromotes approaches that have favorableperformance/efficiency trade-offs.
Trainings
Precise
Green AI
Generalist
vs
Specialist
Program-
ming
Language
Pre-
trained
programs
Specific
process-
sors
06.06.2024